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Preface

This thesis is written in service of completing the master’s degree Applied Mathematics
at Delft University of Technology. It shows how the discipline of applied mathematics
bridges theoretical mathematics and its application on problems arising from practice. In
this particular case, methods solving complex optimization programs are used to design
and operate industrial waste water usage and treatment.



iv Preface



Management summary

In industry, waste water is used, treated, and reused in vast amounts in a variety of
applications. For instance, it is used in processes as manufacturing, washing and re-
finery operations, during which the water gets contaminated. The increasing scarcity
of industrial water and binding environmental regulations require the most efficient use
and treatment of water possible. One way to improve efficiency is by integrating the
water usage of processing units and treatment operations in one single network. As a
result, the intake of fresh water can be reduced, as well as the operation of treatment
facilities. Hence, a reduction in total costs can be obtained. The design and operation of
such an integrated network at minimal costs can be challenging. One reason being that
an accurate mathematical model of such a problem has to be a Mixed Integer Nonlinear
Program (MINLP), with which solvers struggle.

This thesis aims to detect suitable solution methods to solve the problem of optimizing
an integrated industrial waste water network. The main research question is:

What solution methods are suitable for solving the MINLP total waste water network
problem?

An analysis of the optimization model and on existing modeling approaches resulted in
the selection of seven solution methods that might be suitable to solve this problem. The
selected methods were tested on a set of cases from theory and practice. An analysis of
the computation times and quality of the solutions showed that the combined information
of two solution methods obtains high quality solutions within acceptable computation
times. The recommendation is to solve the original MINLP model with a local nonlinear
solver to obtain a feasible solution. Then, assess the quality of the feasible solution by
solving a linearized version of the MINLP, which serves as a tight lower bound on the
optimal solution value.

This research provided a solution on the total waste water network problem and is
applicable to related network optimization problems. In addition, it gives an indication
on possible enhancement of the selected methods.
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Nomenclature

Table 1: Sets and indices

Description Set Index

Contaminants C c

Network units U u

Process units PU ∈ U p

Treatment units TU ∈ U t

Sources WI ∈ U w

Sinks WO ∈ U d

Mixers M m

Mixers before treatment unit MT ⊆M mt

Mixers before process unit MP ⊆M mp

Mixers before sink MO ⊆M md

Splitters after unit u S s

Splitters after treatment unit ST ⊆ S st

Splitters after process unit SP ⊆ S sp

Splitters after source SI ⊆ S sw

Pipe connections PC (s,m)
Fixed pipe connections PCfixed ⊆ PC (s,m)
Optional pipe connections PCfree ⊆ PC (s,m)



xiv Nomenclature

Table 2: Variables Total Flow model

Variable Description # Variables

Continuous non negative variables
φw water intake from source w (ton/h) w

φp,in flow rate into process unit p (ton/h) p

φp,out flow rate out of process unit p (ton/h) p

φt,in flow rate into treatment unit t (ton/h) t

φt,out flow rate out of treatment unit t (ton/h) t

ρp,c,in concentration of contaminant c in process unit p (ppm) pc

ρp,c,out concentration of contaminant c out of pc

process unit p (ppm)
ρt,c,in concentration of contaminant c in treatment unit t (ppm) tc

ρt,c,out concentration of contaminant c out of tc

treatment unit t (ppm)
φd flow rate in discharge stream of sink d (ton/h) d

ρd,c concentration of contaminant c in discharge stream cd

of sink d (ppm)
φs,m flow rate from splitter s to mixer m (ton/h) (w + p+ t)(p+ t+ d)
ρs,m,c concentration of contaminant c from

splitter s to mixer m (ppm) c(w + p+ t)(p+ t+ d)
Binary variables
ψs,m binary variable for pipe existence between

splitter s and mixer m (−) (w + p+ t)(p+ t+ d)



xv

Table 3: Network parameters Total Flow model

Parameter Description

Water sources
φw maximum flow rate from source w (ton/h)
ρw,c concentration of contaminant c from source w (ppm)

Process units
φp maximum flow rate through process unit p (ton/h)
φ
p

minimum flow rate through process unit p (ton/h)
ρp,c,in maximum concentration of contaminant c entering process unit p (ppm)
ρp,c,out maximum concentration of contaminant c exiting process unit p (ppm)
φp,∆ water added or subtracted in process unit p from water flow (ton/h)
ωp,c discharge load of contaminant c into water flow through process unit p (kg/h)

Treatment units
φt maximum flow rate through treatment unit t (ton/h)
φ
t

minimum flow rate through treatment unit t (ton/h)
ρt,c,in maximum concentration of contaminant c entering treatment unit t (ppm)
ρt,c,out maximum concentration of contaminant c exiting treatment unit t (ppm)
λt,c percentage of contaminant c removed by treatment unit t (%)

Water sinks
φd maximum discharge flow rate in sink d (ton/h)
φ
d

minimum discharge flow rate in sink d (ton/h)
ρd,c maximum concentration of contaminant c in discharge flow in sink d (ppm)
ρ
d,c

minimum concentration of contaminant c in discharge flow in sink d (ppm)
Pipe connections
φs,m maximum flow rate from splitter s to mixer m (ton/h)
κmin minimum number of pipes in the system (−)
κmax maximum number of pipes in the system (−)

Recycling parameters
θTU ∈ {0, 1} TU recycling allowed or not
θPU ∈ {0, 1} PU recycling allowed or not



xvi Nomenclature

Table 4: Cost objective parameters Total Flow model

Parameter Description

Water sources
πw price per ton of water from source w ($/ton)

Treatment units
πt,IC investment cost coefficient of treatment unit t ($)
πt,OC operating cost coefficient of treatment unit t ($/ton)
α investment discount factor for treatment units (−)

Pipe connections
πs,m,fix fixed pipe cost ($)
πs,m,var variable pipe cost ($)
πs,m,op pipe operation cost per ton ($/ton)
γ investment discount factor for pipes (−)

Other parameters
H number of hours of operation per year (h/year)
AR annualized factor for investment (−)



Chapter 1

Introduction

In industry, waste water is used, treated, and reused in vast amounts. For instance, it
is used in processes as manufacturing, washing and refinery operations, during which
the water gets contaminated. The increasing scarcity of industrial water and binding
environmental regulations require the most efficient use, recycling and treatment of water
possible.

It was most common to dispose the contaminated water to a separate central treatment
facility after usage. In this facility, the water would be purified to meet effluent restric-
tions before disposal in the environment. However, combining the treatment operations
and water usage processes in a single network, would reduce the amount of fresh water
demand and treatment needed.

Such an integrated network, that contains both water usage processes and treatment
processes, has been used more often over the last decades and is called a Total Waste
Water Network (TWWN). The TWWN consists of one or more of the following elements,
schematically illustrated in Figure 1-1: (i) sources that take water, e.g. fresh drinking
water or seawater, into the network, (ii) process units (PU’s), such as cooling systems,
that use the water and increase the contamination levels, (iii) treatment units (TU’s),
like Ultra Violet disinfection and sand filters, that purify the water with a certain removal
ratio, (iv) sinks, in which water is disposed, whereafter the effluent is returned into the
environment.

Figure 1-1: Schematic minimal example of a TWWN
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Each sink, PU and TU is located after a mixer unit (mu) and each source, PU and
TU is followed by a splitter unit (su), where different streams are combined and sepa-
rated respectively. Between every splitter and mixer in the network, may exist a pipe
connection.

1-1 Research motivation

For industries, it is important to operate the process units and to meet given effluent
restrictions at minimal investment and operational costs. In order to meet these require-
ments, the question is which treatment facilities to include, which pipe connections to
construct and how to operate the resulting network. This challenge is called the TWWN
problem. This might be challenging, due to the rapid growth of possible unit arrange-
ments within the network when the number of units increases. This is illustrated by
Figure 1-2, which shows the superstructure of a TWWN with two PU’s and two TU’s,
consisting of all possible network connections.

Figure 1-2: Superstructure of TWWN with two PU’s and two TU’s

The difficulty increases further when considering the specifications of flow rates and
contaminant levels, not to mention the need to have a robust network design suitable
for a wide range of input and output requirements. There are several variations within
the domain of TWWN problems. They vary e.g. in: (1) the type of treatment facilities
and (2) optimization objective. The type of TWWN studied here is characterized by
the following:

1. The treatment units remove contamination with a fixed removal ratio.

2. The objective is to minimize costs with respect to source water intake, investment
and operation of treatment units and investment and operation of pipe connections.

The design and operation problem of the TWWN can be modeled as a mathematical
optimization program. It contains continuous variables and binary variables: the con-
tinuous variables represent the flow rates and contaminant levels in every part of the
network, the binary variables represent the existence of a possible pipe connection in
the network. Constraints are added to guarantee the network restrictions and water
and contamination conservation within the network. The constraints that represent the
balance conservation in a network are typically bilinear constraints. Accordingly, the re-
sult is a Mixed Integer Nonlinear Program (MINLP), which can be solved with a global
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solver. Current global solvers have difficulty solving this type of problem to global op-
timality within reasonable time, if even at all. Finding a feasible solution is not even
guaranteed. Since this type of problem appears in multiple applications [Misener and
Floudas, 2010, Furman and Androulakis, 2008] and responds to current developments,
alternative suitable solution methods are desired. Here, a solution method is defined
as the combination of a mathematical model and a solver. A suitable method should
provide a solution on the original design and operation TWWN problem with a certain
accuracy, which is to be specified later, and within reasonable time. A common approach
is to linearize the model, such that a Mixed Integer Program (MIP) remains to be solved.
Since a wide variety of specialized linear solvers is available, the resulting problem can
be solved more easily.

1-2 Research questions

This thesis aims to detect suitable solution methods for solving the MINLP TWWN
problem and, moreover, to provide understanding about when to use which approach.
The focus of this research is on modeling rather than search algorithms. This is the
basis of the research question which is stated as follows:

What solution methods are suitable for solving the MINLP total waste water network
problem?

The answers on the following three sub-questions yield a conclusion to the main question:

1. What are the characteristics of the MINLP formulation of the TWWN problem
that affect the selection of a suitable solution method?

2. What modeling approaches exist in literature and how can they be implemented
to solve the TWWN problem?

3. What is the performance of the proposed methods when applied to different prob-
lem instances?
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1-3 Methodology

In order to answer the research questions, an iterative approach is used. This approach
consists of five steps. The relation between these steps and the chapters of this report
is illustrated in Figure 1-3.

Figure 1-3: Reading guide

In the first step, the MINLP model of the TWWN problem is assessed in terms of
difficulty and nonlinear characteristics. Based on this analysis, the second step is to find
suitable solution methods. The process of obtaining such methods is illustrated in Figure
1-4, including the resulting methods and the chapters discussing them. Each method is
obtained by first choosing between a linear or nonlinear model. If it is the latter, it is
combined with a suitable nonlinear solver. If it is the former, further decisions on the
linearization and formulation techniques have to be made, before selecting a suitable
solver.

Figure 1-4: Solution methods

The resulting methods are tested on a set of TWWN instances taken from literature and
real life application, and based on these experiments, the methods are assessed according
to objective function value, running time and solution characteristics.
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1-4 Main findings

An analysis on the performance of the seven methods from Figure 1-4 showed that it is
difficult to obtain a high quality solution in reasonable time using TFM-BARON. This
can be improved slightly if a feasible initial solution is provided. As an alternative, several
approximation methods can be applied, based on different linearization techniques and
model formulations. Two of these methods, obtained by a linear relaxation of the model,
CH-CPLEX and CHlog-CPLEX, result in an accurate lower bound for the original model,
where CHlog-CPLEX outperformed CH-CPLEX with respect to running time. Two
other methods, based on a model obtained by piecewise linear approximation, PWL-
CPLEX and PWLlog-CPLEX, obtain equally accurate approximations. However, these
approximations are not guaranteed to be either an upper bound or lower bound on the
global optimal solution.

A feasible upper bound on the global optimum can be found by using a local non-
linear solver, as in TFM-AOA. Another method, Discrlog-CPLEX, solves a linearized
model, based on disretization of one of the variables constituting the bilinear terms.
Both methods yield an equally accurate upper bound, but overall, TFM-AOA outper-
forms Discrlog-CPLEX with respect to running time. However, both methods have no
guarantee on the solution quality.

In summary, combining the methods TFM-AOA and CHlog-CPLEX, is a promising ap-
proach to find a high quality feasible solution to the MINLP TWWN problem, with a
known maximal gap to the global optimal solution.

The outline of this thesis is as follows. First, the MINLP model is formulated and an-
alyzed in Chapter 2. Then, the computational complexity of the TWWN problem is
specified in Chapter 3. Suitable solution methods are selected in the following two chap-
ters: Chapter 4 assesses two methods that incorporate a nonlinear model formulation,
and Chapter 5 discusses five solution methods based on linear model formulations. The
different solution methods are tested in Chapter 6 on a set of instances, including the
experimental results. Finally, Chapter 7 concludes this thesis and provides recommen-
dations.
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Chapter 2

Mathematical Model

In this chapter, the MINLP formulation of the TWWN model is assessed. The MINLP
model is introduced in Section 2-1, formulated in Section 2-2, validated in Section 2-
3 and analyzed on its nonlinear characteristics in Section 2-4. The analysis from this
chapter will be input for choosing suitable solution methods.

2-1 MINLP models

The waste water network problem was firstly introduced in 1980 in [Takama et al., 1980],
aiming to optimize a waste water treatment network. Since then, many mathematical
formulations and configurations have been presented. In 1994, the integrated TWWN
problem was raised in [Wang and Smith, 1994]. Not only mathematical optimization
models, but also other approaches have been applied, such as the ones in [Wang and
Smith, 1994]. The interested reader is referred to [Halim et al., 2015] for a recent survey,
where it was shown that many approaches can obtain high quality solutions, but without
guarantee on optimality. Solving the MINLP problem formulation with a global solver
does guarantee convergence to the global optimal solution. Due to the computational
complexity however, running time is an issue. The complexity is further specified in
Chapter 3.

A general formulation of a MINLP problem for this type of network problem can be
stated as follows, based on [Quesada and Grossmann, 1992]:

z = min
x,y

cᵀy + f(x),

s.t. g(x) +By ≤ 0,
x ∈ X = {x | x ∈ Rn, xL ≤ x ≤ xU},
y ∈ Y = {y | y ∈ {0, 1}m, By ≤ b}.

(MINLP)

The objective function z consists of investment and operational cost terms. The non-
linearities are contained both in the objective function in f(x), and in the optimization
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constraints in g(x). The function g(x) is defined as:

g(x) =
[
g1(x) g2(x) . . . gp(x)

]ᵀ
.

The matrix B may contain zero row vectors, resulting in constraints which only involve
continuous variables. Note that (MINLP) is linear with respect to its binary variables
y. In case nonlinear terms including binary variables are present, the MINLP formula-
tion can be reformulated into the general form of (MINLP) by introducing additional
constraints and continuous variables.
Two ways exist to model the TWWN as a MINLP formulation, see [Quesada and Gross-
mann, 1995]. The main difference is the use of material balance versus mass balance
equations for contaminant flows. The model that uses material balance equations for-
mulation is hereafter called the Total Flow Model (TFM). The model using mass balance
equations will be called the Component Based Model (CBM). The TFM contains vari-
ables representing total water flow rates and contaminant concentrations and was used
in [Ahmetović, 2011]. The CBM contains variables for individual component flow rates
in a stream, as applied in [Galan and Grossmann, 1998, Galan and Grossmann, 1999].
Using material balances, as in the TFM, results in a model with two types of variables:
water flow rate variables φ (ton/h) and contaminant concentration variables ρ (ppm).
Using mass balances, as in the CBM model, on the other hand, yields a model with the
same water flow rate variables φ (ton/h), but with contamination flow rate variables f
(kg/h) instead.
These formulations yield different models and it might accordingly affect the selection
of suitable solution methods, the solving time and solution quality. Some statements
about the differences and effects are made in [Karuppiah and Grossmann, 2006] without
any further substantiation: for an equal number of splitter and mixer units in a sys-
tem, the TFM would involve fewer bilinearities, which is an advantage with respect to
solving time. Another advantage over the second model would be the uniform order of
magnitude of bounds on the variables, which improves the model’s numerical scalability.
The impact and specification of both arguments is absent. Therefore, a more detailed
research is conducted in order to make a clear distinction between these models and
detect corresponding benefits and drawbacks, see Appendix A. After a detailed compar-
ison, a conclusion on the best suited model formulation can be found in Appendix A-3.
It is concluded that the TFM would indeed be the most promising formulation, due to
the superior numerical solvability. For the sake of completeness, the CBM formulation
is stated in Appendix A-1. The next section states the TFM, which is the benchmark
MINLP model for this research.

2-2 TFM formulation

The TWWN problem will be formulated in the form of (MINLP). First, the sets, vari-
ables and parameters are introduced, after which the model constraints and objective
value z are defined.

Sets and indices

The sets and corresponding indices are stated on page xiii in Table 1. These sets define
the different types of network elements.
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For the mixers and splitters it holds that MT ∪MP ∪MO = M and ST ∪SP ∪SI = S.

Variables

Three types of model variables are distinguished:

1. Continuous non negative flow rate variables, defined by φ (ton/h). These variables
are defined for each network unit and pipe connection.

2. The contaminant concentration variables are defined by ρ. This dimensionless
variable represents the fraction of contaminant. Here, (ppm) is taken as unit of
measurement, like is used in [Karuppiah and Grossmann, 2006]. The underlying
assumption is that all molecules present in the flow are comparable in weight.
These variables are defined for each network unit and pipe connection as well.

3. The last type of variables are (iii) binary variables ψ, define the topology of the
network. These variables represent the existence or non-existence of every optional
pipe connection from a splitter s to a mixer m in the network.

All variables are specified in Table 2 on page xiv. The network from Figure 1-1 for
example, would yield nine variables ψs,m. The same holds for the continuous variables,
which in addition are defined for each flow entering or leaving a network unit. One
exception is the contaminant concentration of the source flow entering the network,
ρw,c, which is fixed as input parameter. For the example from Figure 1-1, the total
amount of both flow rate variables φ and contaminant concentration variables ρ is 15.
Which is a result of adding the total splitter to mixer connections (9), flows entering
a unit (3) and flows leaving a unit (3). A complete overview of the model variables is
stated in Table 2, including a parameterized variable count in the last column.

Parameters

Together with the superstructure of the waste water network that has to be optimized,
the TFM takes a variety of input parameters into account. These parameters define the
following network characteristics:

• Bounds on maximum and minimum flow rates φ and contaminant concentrations
ρ.

• Process unit properties such as the contamination rate ω.

• Treatment unit properties such as the contamination removal rate λ.

• Allowance of recycling around treatment and process units.

• Cost objective parameters.

A complete overview of all network parameters is stated in Table 3 on page xv. The
cost objective parameters are listed on page xvi in Table 4.
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Constraints

With the introduction of the variables and parameters in the previous paragraphs, the
model constraints can be formulated. All constraints are either bound constraints or
balance constraints and are defined both for water flow rates and contaminant concen-
trations. Bound constraints contain upper and lower limits and the balance constraints
ensure flow and contaminant continuity in all network elements. The bound and bal-
ance constraints are grouped per network element type and are explained below. In
addition one redundant constraint is added to the model formulation, representing the
total network contaminant balance.

Water source

Source

Bounds on water intake :

φw ≤ φw ∀w. (2-1)

Process unit

Process unit

Bounds on water intake:

φ
p
≤ φp,in ≤ φp ∀p. (2-2)

Bounds on contaminant concentration intake and output:

ρp,c,in ≤ ρp,c,in ∀p, c, (2-3)
ρp,c,out ≤ ρp,c,out ∀p, c. (2-4)

Water flow rate balance around unit:

φp,out = φp,in + φp,∆ ∀p. (2-5)
Mass contaminant balance around unit:

φp,out · ρp,c,out = φp,in · ρp,c,in + 1000 · ωp,c ∀p, c. (2-6)

In Equation (2-5), the water flow rate out, φp,out is obtained
by adding the water produced by the process unit, φp,∆ to the
flow rate entering the unit φp,in.
In Equation (2-6), the contaminant mass leaving the process
unit is a result of adding the contaminant mass entering the
unit and the production of contaminant in the process unit
ωp,c (kg/h).
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Treatment unit

Treatment unit

Bounds on water intake:

φt ≤ φt,in ≤ φt ∀t. (2-7)

Bounds on contaminant concentration intake and output:

ρt,c,in ≤ ρt,c,in ∀t, c, (2-8)
ρt,c,out ≤ ρt,c,out ∀t, c. (2-9)

Water flow rate balance around unit:

φt,in = φt,out ∀t. (2-10)

Contaminant concentration balance around unit:

ρt,c,out = (1− λt,c
100) · ρt,c,in ∀t, c. (2-11)

The contaminant concentration intake ρt,c,in is reduced by the
treatment unit with a percentage of λt,c, resulting in the re-
maining contaminant concentration ρt,c,out.

Water sink

Sink

Bounds on water intake:

φ
d
≤ φd ≤ φd ∀d. (2-12)

Bounds on contaminant concentration intake:

ρ
d,c
≤ ρd,c ≤ ρd,c ∀d, c. (2-13)

Unit mixer

Mixer

Water flow rate balance around mixer:

φu,in =
∑
s

φs,mu ∀u. (2-14)

Contaminant mass balance around mixer:

φu,in · ρu,c,in =
∑
s

φs,mu · ρs,mu,c ∀u, c. (2-15)

The sum of contaminant masses entering the mixer unit equals
in the contaminant mass leaving the mixer unit.
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Unit splitter

Splitter

Water flow rate balance around splitter:

φu,out =
∑
m

φsu,m ∀u. (2-16)

Contaminant concentration preservation around splitter:

ρsu,m,c = ρu,c,out · ψsu,m ∀u, c s.t. (su,m) ∈ PCfree,
(2-17)

ρsu,m,c = ρu,c,out ∀u, c s.t. (su,m) ∈ PCfixed.
(2-18)

The contaminant concentration leaving the splitter is pre-
served in any connection for fixed connections. In case the
connection su to m is optional and present, the binary vari-
able ψsu,m has value one.

Pipe constraints

Pipe

Bounds on water flow rate:

φs,m ≤ φs,m · ψs,m ∀(s,m) ∈ PCfree, (2-19)
φs,m ≤ φs,m ∀(s,m) ∈ PCfixed. (2-20)

Bound on number of connections:

κmin ≤ |PCfixed|+
∑

(s,m)
∈PCfree

ψs,m ≤ κmax. (2-21)

Bound on recycling

φst,mt ≤ θTU · φt,in ∀t, (2-22)
φst,mt ≤ θPU · φp,in ∀p. (2-23)

The total number of pipe connections in Equation (2-21) is
bounded by the minimum number κmin and maximum number
κmax.
If recycling around a treatment unit is not allowed, the binary
parameter θTU is zero and the flow from a unit to the same
unit, φst,mt is bounded by zero. The same holds for the process
units.
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Total network contamination balance (redundant)

Network contaminant mass balance:∑
w

φw · ρw,c + 1000
∑
p

ωp,c =
∑
d

φd · ρd,c +
∑
t

φt · (ρt,c,in − ρt,c,out) ∀c. (2-24)

This constraint represents the total network contaminant
mass balance. It is already implied by other constraints and is
therefore redundant. Sometimes it is useful though, to include
Equation (2-24) for algorithmic purposes, see e.g. [Karuppiah
and Grossmann, 2006].

Objective function

The objective of minimizing annual network costs consists of five terms concerning treat-
ment unit costs, pipe connection costs and costs for intake of source water. Both in-
vestment costs and operating costs are included. The latter depend on the amount of
operation hours per year. These five terms are:

i Pipe connection investment costs dependent on the number of connections and
flow rate through the pipe.

ii Pipe connection operating costs dependent on flow rate through the pipe.

iii Source water operating costs dependent on the amount of water intake.

iv Treatment unit investment costs dependent on flow rate through treatment unit.

v Treatment unit operating costs dependent on flow rate through treatment unit.

This leads to the objective’s mathematical formulation:

z = min
φ,ρ,ψ

AR ·

 ∑
(s,m)
∈PCfree

πs,m,fix · ψs,m +
∑

(s,m)
∈PCfixed

πs,m,fix +
∑

(s,m)
πs,m,var · (φs,m)γ


︸ ︷︷ ︸

i

+ H
∑
s

∑
m

πs,m,op · φs,m︸ ︷︷ ︸
ii

+H
∑
w

φw · πw︸ ︷︷ ︸
iii

(2-25)

+ AR
∑
t

πt,IC · (φt)α︸ ︷︷ ︸
iv

+ H
∑
t

πt,OC · φt︸ ︷︷ ︸
v

(2-26)

Note that in many cases in literature, the cost terms concerning pipe connections (i and
ii) are excluded from the objective function.
The mathematical definition of the objective concludes the formulation of the TFM in
Equations (2-1) - (2-25).
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2-3 Model validation

In order to validate the TFM formulation, it is applied to the four cases used in [Karup-
piah and Grossmann, 2006]. They solved the MINLP TWWN problem with the global
solver BARON 7.2. The global solver used here is BARON 15 [Sahinidis, 1996]. The
solution and solution value from the TFM are compared with the ones it is based on
from [Karuppiah and Grossmann, 2006]. These results should display the smallest pos-
sible deviation. If this is the case, the TFM model is verified as a representative MINLP
model.
These test instances K1, K2, K3 and K4 consist of one single source and sink, up
to five process units and up to three treatment units. The instances are specified in
Appendix E-1. Since the experiments from Karuppiah and Grossmann did not include
costs with respect to pipe connections, the corresponding terms i and ii are not included
in the objective out during this comparison. The maximum running time is set to 10800
seconds. Table 2-1 shows the solution values for the instances K1, K2 and K3. The fourth
instance, instance K4, is left out during this comparison, since the solver exceeded the
maximum running time. Figure 2-1 shows the optimal network configuration for instance
K1 as found both in literature, and with solving the TFM. It shows that the difference
between the two solutions is negligible for all three instances.

Table 2-1: MINLP models objective value comparison

Instance Pipe Literature TFM Difference
costs soln. ($/year) soln. ($/year) (%)

K1 no 584016.90 584016.97 0.00
K2 no 381751.35 381751.35 0.00
K3 no 874057.37 874057.36 0.00

Figure 2-1: Optimal network Instance K1 for TFM

It is interesting to note that solving the TFM for Instance K2 obtains a different solution
than the one from [Karuppiah and Grossmann, 2006]. At least three different solutions
can be found with the same global optimal objective value. These solutions are shown in
Figure 2-2 to 2-4. The solution in Figure 2-2 is from [Karuppiah and Grossmann, 2006],
the other two solutions from Figure 2-3 and 2-4 were found by solving the TFM with
BARON. Since pipe costs are excluded from the optimization, all costs are determined
by the intake of source water, the number of treatment units and the flow rates through
each treatment unit. For all network configurations shown in Figure 2-2 to 2-4, these
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three cost factors are equal. Therefore the existence of multiple optima is caused by the
multiple possibilities of directing water flows through a network with a fixed topology.

Figure 2-2: Optimal water flow Instance K2 - [Karuppiah and Grossmann, 2006]

Figure 2-3: Optimal water flow Instance K2 - TFM

Figure 2-4: Alternative optimal water flow Instance K2 - TFM
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2-4 Nonlinear characteristics of the MINLP model

Now that the TFM is verified as benchmark MINLP model. It is interesting to analyze
the different nonlinear elements. Since it is these elements that solution methods struggle
with, the type of nonlinearities determine which alternative methods would be suitable
to solve the TWWN problem. The TFM formulation contains three different types of
nonlinearities:

1. Equations containing a product of a continuous and binary variable in Equation
(2-17).

2. Equations containing bilinear terms: terms that are linear in each of its arguments.
These occur in Equations (2-6), (2-15) and (2-24).

3. Exponential terms in the objective function z, Equation (2-25).

The following paragraphs discuss these nonlinear elements and possibilities to deal with
them.

Product of continuous and binary variables

The formulation of this type of nonlinearity is used in Equation (2-17) with two non-
negative continuous variables and one binary variable:

ρsu,m,c = ρu,out,cψsu,m ∀u, c s.t. (su,m) ∈ Pfree. (2-27)

This equation ensures contaminant concentration preservation in an existing pipe con-
nection leaving a unit. If no pipe connection exists, the binary variable ψ is zero. Hence,
the contaminant concentration is forced to be zero too. As stated in Section 2-1 on page
8, this type of nonlinearity can be reformulated into a set of linear constraints such that
the resulting model formulation fits the general formulation of (MINLP). The upper and
lower bounds of the continuous contaminant concentration variables, ρLu,out,c and ρUu,out,c,
are used to rewrite Equation (2-17) by three equations:

ρsu,m,c ≤ ρUu,out,cψsu,m,

ρsu,m,c ≥ ρu,out,c − (1− ψsu,m)ρUu,out,c, ∀c, (su,m) ∈ Pfree (2-28)
ρsu,m,c ≤ ρu,out,c + (1− ψsu,m)ρUu,out,c.

Here, each splitter su corresponds to the unit u which is located right after the splitter.
Replacing the constraint from Equation (2-17) with the three constraints from Equation
(2-28), removes this type of nonlinearity from the MINLP model.

Bilinear terms

The bilinear terms contain a product of a flow rate variable and a contaminant concen-
tration variable. These terms are used in balance equations around units and mixers,
occurring in Equations (2-6), (2-15), (2-24). They can be generalized as:

φ1ρ1,c = φ2ρ2,c + φ3ρ3,c + . . . ∀c. (2-29)
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The characteristics of this type of equation can be stated as follows:

• Both the left-hand side and right-hand side contain bilinear terms.

• The right-hand side contains multiple bilinear terms.

• All variables occur only once.

In contrast to Constraints (2-27), these nonlinearities cannot be reformulated to linear
equations. Another property of Equation (2-29) is the fact that it is nonseparable. In
contrast to a nonseparable function, a separable multivariate function can be reformu-
lated to a sum of terms, consisting of at most one variable, i.e. univariate terms [Belotti
et al., 2013]. For example the bilinear function

z = xy,

can be reformulated as:
log(z) = log(x) + log(y).

In this case, one dimensional nonlinearities are left to be dealt with after reformulation.
However, Equation (2-29) is nonseperable due to the multiple terms at the right hand
side. Moreover, the log operator is undefined at zero. Therefore, the equation holds the
property of being nonseparable. This property is of importance when selecting suitable
model reformulations for the TWWN problem.

Due to the fact that the bilinear terms are the most frequent occurring nonlinearities in
the MINLP TWWN problem, these equations guide the search for a suitable solution
method.

Exponential terms

Besides the model constraints, the objective function contains nonlinear terms as well.
In specific, the following two terms describe the investment costs of the treatment units
and pipe costs respectively:

AR
∑
s

∑
m

πs,m,var(φs,m)γ +AR
∑
t

πt,IC(φt)α.

Both terms contain a nonlinear element describing a flow rate variable to the power
of an investment factor. By replacing these terms by a linear approximation, the only
nonlinear elements remaining in the MINLP model are the bilinear terms. This situation
provides a good starting position for a comparison of solution methods. In order to
linearize the objective, the two terms are approximated by the linear under estimators
φ̂t and φ̂s,m, illustrated in Figure 2-5 for φ̂t.
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Figure 2-5: Cost factor under estimator φ̂t for flow rate φt and investment discount factor
α

These estimators are defined by two equations in form of the linear equation y ≥ ax+ b
with slope a and intersection with the y-axis b:

φ̂t ≥ (φLt )γ +
(

(φUt )γ − (φLt )γ

φUt − φLt

)
(φt − φLt ) ∀t, (2-30)

φ̂s,m ≥ (φLs,m)α +
(

(φUs,m)α − (φLs,m)α

φUs,m − φLs,m

)
(φs,m − φLs,m) ∀s,m. (2-31)

The effect of these linear relaxations is a linear objective to replace the original one from
Equation (2-25):

min
φ,ρ,ψ

AR

 ∑
(s,m)
∈PCfree

πs,m,fixψs,m +
∑

(s,m)
∈PCfixed

πs,m,fix +
∑

(s,m)
πs,m,varφ̂s,m


︸ ︷︷ ︸

i

+ H
∑
s

∑
m

πs,m,opφs,m︸ ︷︷ ︸
ii

+H
∑
w

φwπw.︸ ︷︷ ︸
iii

(2-32)

+ AR
∑
t

πt,IC φ̂t︸ ︷︷ ︸
iv

+H
∑
t

πt,OCφt︸ ︷︷ ︸
v

For the remainder of this thesis, this linearized objective function is used for all solu-
tion methods. The complete formulation of the TFM with linear objective function in
Equations (2-1) - (2-24), (2-30) - (2-32) is stated in Appendix B.

The effects of linearizing the objective function are shortly assessed next, based on in-
stances K1, K2 and K3, and including all five cost terms in the objective. First, the
instances were solved using the TFM as stated in Appendix B. Next, the nonlinear ob-
jective function was used for the same solution. The solution values, obtained by both
objectives, are stated Table 2-2. The last column represents the relative cost underesti-
mation due the linearized objective function. These results show that the annual costs
are underestimated with 2.5-5%, using the linear objective function.
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Table 2-2: Impact of using a linearized objective function for the TFM

Instance Soln. ($/year) Relative under-
Lin. obj. Nonlin. obj. estimation (%)

K1 5.804E+5 5.940E+5 2.34
K2 3.781E+5 3.946E+5 4.37
K3 8.696E+5 8.940E+5 2.79

In addition, the TFM with nonlinear objective was used to solve the instances, in order
to observe whether a different solution is optimal for the linear objective function. For
all three instances, the solution for both objective functions was the same. Even though
this short assessment does not prove the effects of using a linear objective function, it
does provide a first indication that it is representative for the solution of the TFM with
the original nonlinear objective function.

2-5 Summary of the mathematical models

The TFM provides a verified MINLP formulation of the TWWN problem. It is based on
modeling water flow rates and contaminant concentrations. The model contains three
types of nonlinearities:

• Constraints that include a product of a continuous and binary variable.

• Bilinear terms of two continuous variables.

• Exponential terms in the objective function.

The first type of nonlinearity can be eliminated from the model by the introduction of
three alternative constraints. The exponential terms are replaced by linear underestima-
tors. The presence of the bilinear terms is therefore binding for the selection of suitable
solution methods in Chapter 4 and 5.
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Chapter 3

Computational complexity

Up to now, solving the MINLP TWWN problem has been classified as "difficult to solve",
but without clear definition of "difficult". This chapter elaborates on the computational
complexity in more detail. In order to do so, definitions from computational complexity
theory are used.

In computational complexity theory, problems can be divided in different complexity
classes. This classification is based on the rate of growth of computation time needed
when the the size of the problem input increases. Two important classes are class P and
class NP. Class P contains all problems that can be solved in polynomial time. For the
problems in class NP, this might not be the case. A third class is the class of NP-hard
problems. A definition of this class is given in [Pinedo, 2012], Appendix D:

Definition 3.1. A problem P, either a decision problem or an optimization problem, is
called NP-hard if the entire class of NP problems polynomially reduces to P.

All problems that are NP-hard can be classified to be as least as hard as the hardest
problem in class NP. A fundamental concept used here is problem reduction. A problem
P is said to reduce to P’, if for any instance of P, an equivalent instance of P’ can be
constructed. Once a problem P is reduced to P’, this implies that if a polynomial
time algorithm exists for P’, it also exists for P. This concept enables to show difficulty
equivalences between problems based on reduction.

The remainder of this chapter aims to prove that it is not guaranteed that the MINLP
TWWN problem can be solved in polynomial time. The proof is based on a reduction
from the related pooling problem to the TWWN problem. It shows that the pooling
problem can be formulated as a special case of the TFM from Section 2-2. In particular,
this proves that the TWWN problem is NP-hard.
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3-1 The pooling problem

The pooling problem arises in the application of refinery processes [Gupte et al., 2016].
The problem objective is to minimize costs such that raw materials are mixed in pools
before being sent to the final demand outputs while meeting certain specification cri-
teria. This bilinear optimization problem is proven to be strongly NP-hard in Section
3, Proposition 1, from [Alfaki and Haugland, 2013]. This proof holds even for a fixed
number of pools. For this proof, a polynomial reduction from the NP-hard maximum
independent vertex set (MIVS) problem is used.

There are different formulations of the pooling problem. The one used here is given in
Section 2.2 from [Gupte et al., 2016]. The p-formulation [Haverly, 1978] of the generalized
pooling problem is defined as follows:

Definition 3.2. Given is a directed graph G = (N ,A) with a set of nodes N and set
of arcs A. Set N is partitioned into three nonempty subsets I, L, J ⊂ N . These subsets
contain inputs exclusively in I, pools in L and outputs in J , see Figure 3-1. Connections
are only allowed from inputs to pools and outputs, from pools to pools and from pools to
outputs:

A ⊆ (I × L) ∪ (I × J) ∪ (L× L) ∪ (L× J).

Figure 3-1: Set definition and superstructure pooling problem

For each arc (i, j) ∈ A a variable cost ci,j is defined for using this connection. Every
node i ∈ N has a maximum incoming or outgoing flow capacity Ci. Ci denotes the
maximum supply for input i ∈ I, Cl is considered the volumetric size of a pool for l ∈ L,
and Cj defines the maximum intake at output j inJ . In addition the upper bound on
each arc (i, j) ∈ A is given by uij.

The level of specification (spec) k in the raw material at input i ∈ I is given by λi,k for
k ∈ K, which is the set of specifications. Upper and lower bounds on a required spec level
k ∈ K at output j ∈ J are given by µmax

jk and µmin
jk . A flow on arc (i, j) ∈ A is given by

yij and the concentration value of spec k ∈ K in flow yij ∈ A is given by pik. The cost
factor of using arc (i, j) ∈ A is defined by cij per unit of flow yij.

The objective of the pooling optimization problem is to find a minimum cost feasible flow
in graph G:

min
y,p

∑
(i,j)∈A

cijyij , (3-1)
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satisfying capacity constraints: ∑
j∈L∪J

yij≤Ci i ∈ I, (3-2)

∑
j∈L∪J

ylj≤Cl
l ∈ L, (3-3)

∑
i∈I∪L

yij≤Cj j ∈ J, (3-4)

0 ≤ yij ≤ uij (i, j) ∈ A, (3-5)

flow balance constraint: ∑
i∈I∪L

yil =
∑

j∈L∪J
ylj l ∈ L, (3-6)

spec output constraints:∑
i∈I

λik · yij +
∑
l∈L

plk · ylj ≤ µmax
jk

∑
i∈I∪L

yij j ∈ J, k ∈ K, (3-7)

∑
i∈I

λik · yij +
∑
l∈L
·plkylj ≥ µmin

jk

∑
i∈I∪L

yij j ∈ J, k ∈ K, (3-8)

and spec tracking constraint:∑
i∈I

λik · yil +
∑
l′∈L

pl′k · yl′l = plk
∑

j∈L∪J
ylj l ∈ L, k ∈ K. (3-9)

Equation (3-9) represents the spec balance equation around pool l ∈ L for spec k ∈ K.

3-2 Reduction to TWWN problem

In order to fit Definition 3.2 to the TWWN MINLP, all sets, indices, variables and pa-
rameters in the TWWN program are defined such that the program stated in Equations
(3-1) - (3-9) is equivalent to a special case of the TFM from Equations (2-1) - (2-25).
Since the pooling problem is a special case of the TFM, the TWWN parameters are
defined such that the pooling problem remains. Both the translation from the pooling
elements to the TFM and the remaining parameter definitions are stated below.

Sets and indices

The relation between the sets and indices from the two programs is stated in Table 3-1.
The remaining sets from the TFM are the set of process units PU , and the sets of pipe
connections PCfixed and PCfree. The set of process units is defined as empty, PU := ∅,
as is the set of optional pipe connections: PCfree := ∅, such that set PC is equal to set
PCfixed.

Each splitter s and each mixer m are associated with the corresponding network unit.
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Table 3-1: Sets and indices translation

TWWN Pooling
Description Set Index Description Set Index

Contaminants C c Spec K k

Sources WI w Inputs I i

Treatment units TU t Pools L l

Sinks WO d Outputs J j

Variables

The translation between the variables from the two programs is stated in Table 3-2.
Some variables from the TWWN problem are not defined in the pooling problem. In the
following sections it is shown that the constraints regarding these variables can be substi-
tuted by other constraints, resulting a formulation, solely based on variables from table
3-2. In addition, the TFM contains a binary variable ψs,m which represents the pipe
existence between splitter s and mixer m for optional pipe connections. Since this vari-
able is not present in the p−formulation of the pooling problem, the relevant constraints
should not appear in the spcieal case of the pooling problem. This is accomplished by
choosing the set of variable pipe connections PCfree to be empty. The constraints con-
cerned are Equation (2-17), (2-19) and (2-21). In the following paragraphs it is shown
that these constraints are indeed absent in the resulting model formulation.

Table 3-2: Variables translation

TWWN Pooling
Description Variable Description Variable

Water flow φsw,mt Flow yil

Water flow φsw,md
Flow yij

Water flow φst,md
Flow ylj

Water flow φst,mt′ Flow yll′

Contaminant concentration ρst,md,c Spec plk

Contaminant concentration ρst,m′
t

Spec plk

Contaminant concentration ρst,md
Spec plk

Parameters

The translation between the parameters from the two programs is stated in Table 3-
3. In addition, some parameters from the TFM will be fixed in case of the pooling
instance. All parameters related to process units are zero, since no process units are
defined. Additionally, the parameters used in the objective function are fixed such that
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Table 3-3: Parameters translation

TWWN Pooling
Description Parameter Description Parameter

Max intake source φw Available supply input Ci
Contaminant intake source ρw,c Spec level input λik

Max flow rate TU φt Pool capacity Cl

Max discharge flow sink φd Max intake at output Cj
Min contaminant discharge sink ρ

d,c
Min spec level output µmin

jk

Max contaminant discharge sink ρd,c Max spec level output µmax
jk

Operational pipe costs πs,m,op Cost factor arc cij

the resulting objective yiels the one given in Equation (3-1). The definitions of the
remaining parameters are stated in Table 3-4.

Table 3-4: Remaining TWWN parameters definition

Parameter Description Value

πw Price of water intake 0

πt,IC Investment costs TU 0
πt,OC Operational costs TU 0
φ
t

Min flow rate TU 0
ρt,c,in Max contaminant entering TU sufficiently large
ρt,c,out Max contaminant leaving TU sufficiently large
λt,c Removal ratio TU 0
φ
d

Min discharge flow sink 0

H Operation hours arbitrary
AR Investment factor TU arbitrary
κmin Min number of pipe connections 0
κmax Max number of pipe connections 0
α Investment discount factor TU arbitrary
γ Investment discount factor pipes arbitrary
πs,m,fix Fixed cost pipes 0
πs,m,var Variable cost pipes 0
θTU Recycling around TU 1
θPU Recycling around PU 1
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Constraints

In this special case of representing the pooling problem as an instance from the TFM,
the constraints are a result of the variable and parameter definitions stated above. The
equivalence between the constraints from the pooling problem and the constraints from
the TFM is shown in Table 3-5, using substitution of constraints and the definitions as
stated above.

Table 3-5: Constraint translation

TWWN Pooling
Description Constr Description Constr

Flow bound source (2-1),(2-16) Capacity constraint intake (3-2)
Flow bound TU (2-7),(2-10),(2-16) Capacity constraint pool (3-3)
Flow bound sink (2-12),(2-14) Capacity constraint output (3-4)
Flow bound pipe (2-20),(2-22) Capacity contraint arc (3-5)

Flow balance (2-10),(2-14),(2-16) Flow balance pool (3-6)

Flow and contaminant (2-13),(2-14),(2-15) Spec output constraint (3-7),(3-8)
bound and balance

Flow and contaminant (2-10), (2-11),(2-15) Spec tracking around pool (3-9)
balance (2-16),(2-18)

Constraint (3-6) from the pooling problem is the result of substitution of constraint (2-
14) and (2-16) in constraint (2-10), and using the variable and parameter translations
from the previous paragraphs:

︸ ︷︷ ︸
(2−14)

∑
i∈I∪L

yil =

(2−10)︷ ︸︸ ︷
yl,in =

︸ ︷︷ ︸
(2−16)

yl,out =
∑

j∈L∪J
ylj l ∈ L.

With the same reasoning, constraints (3-7) and (3-8) are both the result of substituting
constraints (2-13) and (2-15) in (2-14):

︸ ︷︷ ︸
(2−15)

∑
i∈I

λik · yij +
∑
i∈L

plk · ylj =

(2−10)︷ ︸︸ ︷
pj,in,kyj,in = ︸ ︷︷ ︸

(2−16)

pj,in,k
∑
i∈I∪L

yij ≤ µmaxjk

∑
j∈L∪J

yij j ∈ J, k ∈ K,

︸ ︷︷ ︸
(2−15)

∑
i∈I

λik · yij +
∑
i∈L

plk · ylj =

(2−10)︷ ︸︸ ︷
pj,in,kyj,in = ︸ ︷︷ ︸

(2−16)

pj,in,k
∑
i∈I∪L

yij ≥ µminjk

∑
j∈L∪J

yij j ∈ J, k ∈ K.
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Finally, spec tracking constraint (3-9) is the result of combining constraints (2-10), (2-
11), (2-15), (2-16) and (2-18):∑

i∈I
λik · yil +

∑
l′∈L

pl′k · yl′l = pl,in,k · yl,in︸ ︷︷ ︸
(2−15)

=(2−10)
(2−11)

pl,out,k · yl,out

=(2−16)
(2−18)

plk
∑
j∈I∪J

ylj l ∈ L, k ∈ K.

The remaining constraints from the TFM that are not in accordance with one of the
constraints from the pooling problem are either redundant or implied otherwise by the
pooling problem definition. These constraints are specified in Table 3-5.

Table 3-6: TWWN constraints which are absent or redundant in pooling problem

Description Constr Reason

Contaminant intake bound TU (2-8) Definition ρt,c,in
Contaminant output bound TU (2-9) Definition ρt,c,out
PU Constraints (2-2),(2-3),(2-4), Empty set PU

(2-5),(2-6),(2-23)
Contaminant balance splitters (2-17) Empty set PCfree
Contaminant balance splitters (2-18) Parameter λi,k implies constraint (2-18)
Flow bound pipe (2-19) Empty set PCfree
Number of pipe connections (2-21) Definition κmin and κmax
Total network balance (2-24) Redundant

Objective function

By definition of all parameters and variables as stated in Table 3-2, 3-3 and 3-4, the
objective function (2-25) from the TFM as pooling problem becomes:

min
φ,ρ

∑
s

∑
m

πs,m,opφs,m. (3-10)

This is in agreement with the objective function from the pooling problem stated in
Definition 3.2. This completes the pooling problem defined as a special case of the
TWWN formulation as presented in the TFM. Thus the following holds:

Theorem 1. The TWWN problem is NP-hard.

Proof. The NP-hardness of the pooling problem is shown in Proposition 1, page 901-202
of [Alfaki and Haugland, 2013]. This chapter contains the proof that the pooling problem
is a special case of the TWWN problem on page 23-27. Thus the TWWN problem is
NP-hard.
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Chapter 4

Nonlinear solution methods

In the previous chapters, the MINLP formulation of the TWWN was analyzed: the
TFM. Solution methods that take this model as input, need a nonlinear solver. For linear
programs, a wide variety of solvers is available. These solvers have rapidly improved and
specialized over time, to state of the art solvers. For nonlinear optimization however,
no such variety of solvers is available. The issue of finding global optimal solutions for
large scale problems remains an open research area, see [Tawarmalani and Sahinidis,
2005]. Additional complexities such as non convexity and integer characteristics make
the problems too complex to solve even for small problem instance sizes.

Two search algorithms that might be suitable to solve the TFM are discussed here:
Outer Approximation (OA) and spatial Branch-and-Bound (SB&B). OA is designed to
solve convex MINLP models by using decomposition, outer approximation and relaxation
[Duran and Grossmann, 1986]. It is used in the solver DICOPT [Grossmann et al., 2002]
and in the AIMMS Outer Approximation (AOA) solver in AIMMS [Bisschop and Roelofs,
2006]. The method of solving the TFM with AOA, results in the solution method called
TFM-AOA. This search algorithm is discussed in Section 4-1. The second method
uses SB&B to solve the TFM. This is the steering algorithm in the Branch-And-Reduce
Optimization Navigator (BARON): [Tawarmalani and Sahinidis, 2005]; a computational
system which solves non linear optimization problems to global optimality using cutting
planes and a continuous branch and bound strategy. The method of solving the TFM
with SB&B, TFM-BARON, is discussed in Section 4-2. A summary of the nonlinear
solution methods is stated in Section 4-3.

4-1 Outer approximation

OA is based on a finite iterative process in which relaxed MILP and NLP problems
are solved consecutively, using decomposition, outer approximation and relaxation. It
is closely related to the generalized Benders decomposition method, using a cutting-
plane approach using both primal and dual optimality information. One main difference
however, is that OA only uses primal information for the linear relaxation.
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For convex problems with integer variables, OA converges to the global optimum. How-
ever, convergence is not guaranteed in case of non convex problems [Fletcher and Leyffer,
1994]. This section describes the basic workings of the method for the class of convex
MINLP programs. Given by:

z = min
x,y

cᵀy + f(x)

s.t. g(x) +By ≤ 0
x ∈ X ⊂ Rn

y ∈ Y ⊂ Zm+ ,

(P)

where both the functions f : Rn 7→ R and g : Rn 7→ Rp are assumed to be convex and
continuously differentiable. The function g(x) is defined as:

g(x) =
[
g1(x)g2(x) . . . gp(x)

]ᵀ
.

The setX := {x : x ∈ Rn, A1x ≤ a1} is assumed to be a closed polyhedral set, and the set
Y := {y : y ∈ Y ∈ Zm+ , A2y ≤ a2} a nonnegative finite discrete set. The matrix B may
contain zero row vectors, resulting in constraints which only involve continuous variables.
Note that (P) is linear with respect to its discrete variables. This characteristic, together
with the convexity of the nonlinear functions, is exploited in the algorithm.

The OA algorithm

The method creates an increasingly tighter relaxation on the original MINLP program in
each iteration, which is then called the Master Program (MP). This MP is created each
iteration k by finding a solution for both the NLP and MIP subproblems and replacing
the nonlinear functions f(x) and g(x) by supporting half-spaces in the current solution
point xk. It starts with fixing an initial solution yk in iteration k. This solution yk

should satisfy the following integer constraints:

yk ∈ Y ⊂ Zm+ ,
g(x) +Byk ≤ 0 for some x ∈ X.

(IP)

Now, the following NLP program is solved:

z(yk) = min
x

cᵀyk + f(x)

s.t. g(x) +Byk ≤ 0
x ∈ X ⊂ Rn.

(NLPk)

The feasible solution, xk, provides an upper bound (xU , yU ) for the optimal solution
(x∗, y∗). Next, the Master Program is created by linearizing (P) around solution xk.
This is done by defining the supporting half-spaces at xk. The supporting half-spaces
are defined as follows:

Definition 4.1. For every convex f(x) and for any xk ∈ X ⊂ Rn the supporting half-
space is defined by:

f(x) ≥ f(xk) +∇f(xk)ᵀ(x− xk),

where ∇f(xk) is the gradient vector of f(xk) with dimension n.
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Thus, for any α ∈ R:
α ≥ f(x),

may be relaxed to:
α ≥ f(xk) +∇f(xk)ᵀ(x− xk).

This yields the MIP Master Program:

min
x,y,z

z

s.t. z ≥ cᵀy + f(xi) +∇f(xi)ᵀ(x− xi) ∀xi ∈ T k

gj(xi) +∇gj(xi)ᵀ(x− xi) + (By)j ≤ 0 ∀i ∈ T k ∀j ∈ {1, 2, . . . , p}
x ∈ X ⊂ Rn

y ∈ Y ⊂ Zm+
z ∈ R.

(MPk)

where T k := {xi optimal solution to program (NLPi), i = 1, 2, . . . , k} ⊆ T . With each
iteration, more half-spaces are added to the Master Program, resulting in an increasingly
tight, linear relaxation of (P).

Solving this program results in either a solution, or an infeasible program. In the latter
case the global optimum has been found in this iteration for yk and xk after solving
(NLPk). In case a solution is found for (MPk), this yields a lower bound (xL, yL) on
the global optimum. Otherwise an updated fixed integer part is taken as new input for
problem (IP).

One problem that may occur is that no feasible solution can be found for (NLPk). In that
case, an integer cut is added to (MPk) in order to eliminate yk from future iterations.
The complete algorithm can now be presented as the flow diagram in Figure 4-1. It
was shown in [Duran and Grossmann, 1986] that the solutions found for (MPk) in each
iteration are a monotonic non-decreasing sequence on the optimal value of the original
problem (P). Moreover, the algorithm terminates in a finite number of iterations, due to
the fact that the set of feasible integer solutions is finite by assumption, and revisiting
integer combinations from previous iterations is ruled out. For more details about OA
and its convergence, the reader is referred to [Duran and Grossmann, 1986].

OA applied to the TWWN problem

The OA method is implemented as a solver in DICOPT [Grossmann et al., 2002] and
in AIMMS [Bisschop and Roelofs, 2006] as AIMMS Outer Approximation. Since OA
exploits the linearity of the integer variables, it is of value to check whether the TFM
can be written in the format of (P). This format requires all terms containing integer
variables to be linear. The TFM violates this format in constraints (2-17). However,
these constraint can each easily be replaced by the set of linear Equations (2-28). After
this substitution the TFM can be written in the format of program (P), using Equations
(2-1)-(2-16),(2-19)-(2-25),(2-28). For this model formulation of the TWWN problem,
OA can be applied.
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Figure 4-1: OA algorithm

4-2 Spatial branch-and-bound

In order to quantify the difficulty of solving the MINLP TWWN problem, a suitable non-
linear solver was selected. In previous research, BARON has more than once been the
benchmark for solving the TWWN problem [Karuppiah and Grossmann, 2006, Wicak-
sono and Karimi, 2008, Ahmetović, 2011] and the closely related pooling problem [Pham
et al., 2009, Gupte et al., 2016, Alfaki and Haugland, 2013]. For smaller instances of the
TWWN problem, the solver proved to obtain a global optimum within reasonable time
[Karuppiah and Grossmann, 2006]. However, in many other cases, no global solution was
found within the limits on running times [Karuppiah and Grossmann, 2006, Ahmetović,
2011].

The following system is designed to globally solve nonlinear non convex optimization
problems [Sahinidis, 1996] with general formulation (Q) from [Sahinidis, 2002]:

z = min
x,y

f(x)

s.t. g(x) ≤ 0
xi ∈ Rn i = 1, . . . , nd
xi ∈ Zm i = nd + 1, . . . , n,

(Q)

where f : Rn 7→ R, and g : Rn 7→ Rm.
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The SB&B algorithm

As the name BARON (Branch and Reduce Optimization Navigator) suggests, the sys-
tem is based on two ground principles: spatial branching on continuous variables, and
variable range reduction. While both principles are known solution strategies, BARON
enhanced these principles and created a new framework involving constraint propagation
and duality techniques. By doing so, BARON was the first global branch-and-bound
solver addressing nonlinear and MINLP problems. The main steps and components of
the solver are described in [Sahinidis, 1996, Sahinidis, 2002]:

1. Branching on continuous variables using node selection rules such that convergence
is guaranteed.
The main rule to select a node, is based on bound-improving. In each iteration,
the node with the current lowest bound is selected. The selected variable is par-
titioned at the location of the last relaxation solution. The bound-improving rule
is alternated with selection of a variable with the widest range remaining. The
combination of these rules guarantees convergence. See [Horst and Tuy, 1996].

2. Creating a linear relaxation at each node.
The integer part of (Q) is relaxed by dropping the integrality conditions. Relax-
ation of the nonlinear part, however, is more complex; It involves a polyhedral
outer-approximation algorithm and convexification prior to this algorithm, in case
the nonlinear part is not convex.
BARON combines several convexification strategies:

• Factorable programming relaxations can be applied to functions containing
sums and products of univariate functions. With the introduction of new
variables, these functions are decomposed, after which straightforward outer-
approximations of the resulting parts can be applied. It may however, result
in a large relaxation gap.

• A second method that does not result in such a large relaxation gap, is convex
extensions. This method constructs a convex function that contains the orig-
inal continuous function and corresponds to the original function values. In
[Tawarmalani and Sahinidis, 2002], a methodology for creating these exten-
sions is provided. This method can be applied to several multilinear functions
among others.

After application of these convexification methods, a polyhedral outer approxima-
tion scheme is applied, introduced as the sandwich algorithm in [Tawarmalani and
Sahinidis, 2004]. In each step of the algorithm, a supporting hyperplane is added
to the convex nonlinear function at the location where the relaxation error is max-
imal. The algorithm terminates when the required accuracy is obtained, resulting
in a polyhedral relaxation of problem at the current node.

3. Solving the linear relaxation of the problem, including range reduction of the con-
tinuous variables in pre- and post processing steps.
Prior to solving the linear relaxation, feasibility-based range reduction reduces the
feasible range of the variables, using information from the problem constraints. A
linear program is solved, based on individual constraints.
BARON incorporates two range reduction strategies:
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• Solving the complete set of according linear constraints. This method yields
the maximal range reduction, but is computationally expensive. At each
node, BARON applies this strategy to a few auspicious variables.

• Approximated range reduction, which is commonly used in the application of
constraint programming and solving MIPs, see [Hooker, 2011]. This method
does not guarantee maximal range reductions, but takes less computational
effort. Therefore this method is applied at each node for all variables.

Following the range reduction as preprocessing step, the linear relaxation at the
node is solved, resulting in a lower bound of problem (Q). The solution obtained
is used for additional range reduction: optimality-based range reduction, based on
[Ryoo and Sahinidis, 1995]. For variables at their bound in the linear relaxed
problem, the Lagrange multiplier of the dual solution is used. Combining this
information with the primal information, results in a feasible range reduction. In
case a variable is not at its bounds, some additional steps could still obtain a range
reduction, using the information of the current solution.

4. Local optimization of problem (Q) restricted to the feasible domain of the current
node, obtaining an upper bound on the global optimum.

These steps are combined in an iterative framework, resulting in an algorithm that
iteratively improves the current best upper and lower bounds, converging to the global
optimum of problem (Q).

SB&B applied to the TWWN problem

Different studies showed that BARON outperforms other nonlinear solvers and it is
therefore a promising choice for different kinds of nonlinear problems, including MINLP
programs [Lastusilta et al., 2007, Nowak and Vigerske, 2008].

In [Lastusilta et al., 2007], four different MINLP solvers were compared: sBB, Dicopt,
GAMS/αECP and BARON. The solver sBB combines branch-and-bound with NLP
solvers integrated in modeling language GAMS. DICOPT [Viswanathan and Grossmann,
1990] is based on outer approximation techniques. GAMS/αECP [Westerlund and Pörn,
2002] however, is based on solving a sequence of MILP problems until a feasible solution
is found. The comparison of these solvers was based on a test set of 250 problems
from the GAMS MINLP model library [gam, 2016b], given a running time limit of
1000 seconds. The results showed that BARON obtained the most accurate results in
case a feasible solution was found. The running time however, was relatively high. An
interesting observation was that there were more than 80 cases for which only one solver
obtained a feasible or optimal solution. This emphasizes the importance of selecting a
suitable solver for each problem.

In [Nowak and Vigerske, 2008], BARON was chosen to compare with the branch-and-cut
algorithm LaGO (Lagrangian Global Optimizer), which is designed to solve MINLP prob-
lems. The comparison was based on 127 MINLPs and 77 Mixed Integer all-Quadratic
Programs (MIQQP) from the GAMS model libraries [gam, 2016a, gam, 2016b]. Over
50% of these test instances were non convex. Overall, BARON outperformed LaGO
both on running time and solution quality. For less than 5% of the test instances, LaGO
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found a solution within an hour, where BARON did not. The reversed was true for
almost 25% of the cases.

In summary, BARON showed to be a high performance MINLP solver in general, and
was selected as MINLP solver in advanced research on pooling problems and TWWN
problems.

4-3 Summary of nonlinear solution methods

In this section, two nonlinear solver strategies are explained which can be applied to
solve the TWWN problem, based on the MINLP TFM.

TFM-AOA obtains an upper bound when applied to the TWWN problem. An ad-
vantage is the acceptable running times, making the method suited for finding a local
optimum of the TWWN problem. However, its distance from the global optimum is
unknown.

The methodTFM-BARON uses BARON as a global solver. A drawback is the possible
exploding running time when increasing the instance size for the TWWN problem. In
case the algorithm terminates within reasonable time, the obtained solution is guaranteed
to be the global optimum.



36 Nonlinear solution methods



Chapter 5

Linear solution methods

The nonlinear solution methods discussed in the previous chapter, use the TFM formu-
lation as input for a nonlinear solver. Linearization is incorporated in nonlinear solution
methods as well, though only applied locally. However, the methods in this section are
based on different linear reformulations of the TFM, resulting in a MIP formulation.
These models can be solved with a linear solver. For this research, the linear solver
that is used to solve all MIP models is IBM ILOG CPLEX 12.6.2 [ILOG, 2014]. The
different linearization techniques, that result in a MIP formulation, can be categorized
as: relaxation, approximation and discretization. The theoretical background and im-
plementation of these techniques are explained in this chapter.

The first solution method, CH-CPLEX, incorporates a linearized model, CH, obtained
by a relaxation technique. This technique is known as the Convex Hull method. The tech-
nique uses linear over- and underestimators in order to approximate the nonlinearities
in the formulation [McCormick, 1976]. It is implemented in a global branch-and-bound
algorithm in the APOGEE software [Misener et al., 2011] and is described in Section
5-1. Several, smaller, convex hulls can be added to tighten the relaxation. This entails
selecting breakpoints, which specify the start and end of each convex hull. As expected,
each break point requires a binary variable in the mathematical program to represent
it. In order to speed up the algorithm, an alternative formulation can be used, reduc-
ing the additional number of binary variables to a logarithmic increase with respect to
the number of breakpoints added. A detailed description of this model, CHlog and the
corresponding solution method, CHlog-CPLEX, starts at page 42.

A second linearization technique concerns the use of Piecewise Linear (PWL) Approxi-
mation. This technique defines and solves a linear approximation of the original nonlinear
model. A research on existing literature resulted in the most suited MIP formulations
for the TWWN problem: PWL and PWLlog. These model formulations are derived and
stated in Section 5-2. The corresponding solution methods are referred to as PWL-
CPLEX and PWLlog-CPLEX respectively.

The final linearization technique discussed, is based on discretization. This technique
is introduced in [Gupte et al., 2013] for the application of the pooling problem. The
original MINLP model is approximated by discretizing part of the continuous variables.
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Reformulation of the approximated model results in a MIP problem, Discrlog, that can
be solved using linear solvers. For this linearization technique, a formulation is used
based on a logarithmic number of additional variables and constraints. All solutions
obtained by the solution method Discrlog-CPLEX are feasible for the original MINLP
model and provide an upper bound on the global optimum. The discretization strategy
is stated in Section 5-3.

5-1 Convex hull relaxation

Convex hull relaxation relies on linear relaxations of bilinear terms by creating tight
convex hulls. These can be considered linear envelopes enclosing the nonlinear term.
The use of linear relaxation for bilinear programs was introduced in [Balas, 1985] and
was applied to waste water treatment problems in [Karuppiah and Grossmann, 2006].
Since then, different MIP formulations of the convex hull relaxation have been defined
and compared for several bilinear programming applications. For existing models and
twelve other formulations, an extended comparison was done in [Wicaksono and Karimi,
2008]. Both uniform and random interval lengths were taken into account. They com-
pared fifteen formulations on two case studies from integrated water systems synthesis
and distillation column sequencing. Moreover, in [Gounaris et al., 2009] fifteen formula-
tions were compared on benchmark problems, some different formulations than those in
[Wicaksono and Karimi, 2008]. It was shown in [Hasan and Karimi, 2010] that for any
bilinear program a uniform interval distribution is the best strategy.

Three categories of formulations are distinguished in [Gounaris et al., 2009, Wicaksono
and Karimi, 2008]: the BigM Class, Convex Combination Class, and Incremental Cost
Class. These classes differ in the definition of the additional binary variables, and the use
of a large M coefficient. Both [Gounaris et al., 2009] and [Wicaksono and Karimi, 2008]
showed that the best running times can be obtained using the convex combination and
incremental cost formulations. For the pooling problem, the best convex combination
based models outperformed the best incremental cost based models on most instances
in [Gounaris et al., 2009] for both formulations of the pooling problem [Haverly, 1978].

In previous work that applied the convex hull method to the TWWN problem [Karuppiah
and Grossmann, 2006], a convex combination based formulation from [Gounaris et al.,
2009] was used. This formulation is the base of the first linear relaxation method that is
discussed in this section: CH-CPLEX. The formulation of the CH model starts at page
40.

A tool that incorporates the use of convex hulls is APOGEE [Misener et al., 2011]. As the
name suggests, the tool Algorithms for Pooling-problem global Optimization in GEneral
and Extended classes (APOGEE) is developed in order to solve all cases of pooling
problems, of which the general case is described in Chapter 3-1. APOGEE based their
novel formulation on the incremental cost based formulation nf4r from [Gounaris et al.,
2009]. This formulation can be found in Appendix D. It is used for a novel formulation,
based on an alternative formulation from [Vielma and Nemhauser, 2008]. Previously,
this formulation was used for piecewise linear approximation only. It uses a logarithmic
number of additional binary variables and constraints, instead of a linear number. This
novel formulation, hereafter called the CHlog model, is derived in this chapter at page
42.
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The remainder of this chapter is organized as follows: first, the general idea of linear
relaxation is explained, followed by the concept of domain partitioning. Then, a formu-
lation of the models CH and CHlog is stated, followed by the application of these models
of solving the TWWN problem.

Linear relaxation

The tightest linear relaxation of a bilinear term was introduced in [McCormick, 1976].
This relaxation is based on the bilinear convex and concave envelope and it can generally
be described as a relaxation of the set:

S :=
{

(xy, x, y) ∈ R3
+ | x ∈ [xL, xU ], y ∈ [yL, yU ]

}
.

This set is relaxed by replacement of the bilinear term xy by z and the below definition
of its convex linear underestimators:

z ≥ xLy + yLx− xLyL,
z ≥ xUy + yUx− xUyU ,

(5-1)

and convex linear overestimators:

z ≤ xLy + yUx− xLyU ,
z ≤ xUy + yLx− xUyL,

(5-2)

yielding the relaxed convex linear set of S:

C(S) :=
{

(z, x, y) ∈ R3
+ | z ≥ xLy + yLx− xLyL,

z ≥ xUy + yUx− xUyU ,
z ≤ xLy + yUx− xLyU ,

z ≤ xUy + yLx− xUyL
}
.

(5-3)

Note that C(S) is the convex hull of S in R3. These four inequalities create an envelope
around a bilinear term and are commonly referred to as the McCormick envelopes.

The construction of the convex hull is depicted in Figure 5-1, where the cross-section
x = y of the 3D - space of function z = xy is illustrated. The tightness of the linear
relaxation can be improved by partitioning of the domain, such that smaller convex hulls
can be defined for each interval. This is explained in the following paragraphs.

Domain partitioning

Since the tightness of the relaxation from (5-3) depends on the size of the domain
[xL, xU ] × [yL, yU ], one of the variables can be partitioned in order to create tighter
relaxations for each interval separately.

The definition of the convex hull method applied over disjunctive intervals is as follows:
in case x is the variable that is partitioned in Np uniform intervals, the following points
define the values of x at each of the domain boundaries:

xL = x1 < x2 < · · · < xNp < xNp+1 = xU .
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Figure 5-1: Construction of convex hull C(S)

The convex hull relaxation from (5-3) can now be applied over each interval [xnp , xnp+1]
for any np ∈ {1, 2, . . . , Np}, yielding the following linear estimators from [Karuppiah and
Grossmann, 2006]. For x ∈

[
xnp , xnp+1

]
it should hold that:

z ≥ xnpy + yLx− xnpy
L,

z ≥ xnp+1y + yUx− xnp+1y
U ,

z ≤ xnpy + yLx− xnp+1y
L,

z ≤ xnpy + yUx− xnpy
U .

(5-4)

Equations 5-4 are the base of the CH model, which is to be formulated in the next
section.

CH model

The partitioned convex hull relaxation from equations 5-4 can be reformulated such that
it can be included in a MIP program.It is equivalent to formulation ch from [Gounaris
et al., 2009]. Incorporated in an optimization program, the set of constraints from (5-4)
yields a small convex envelope at the particular interval in which the optimal solution is
located, instead of one convex hull around the whole solution space.
For each np ∈ {1, 2, . . . , Np}, both a πnp and χnp are introduced, such that:

πnp =
{
x if x ∈

[
xnp , xnp+1

]
0 else,

and
χnp =

{
y if x ∈

[
xnp , xnp+1

]
0 else.

This is done by definition of the indicator variable λnp and constraining it to:

λn,p =
{

1 if x ∈
[
xnp , xnp+1

]
0 else.
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These variables and constraints can now be implemented as a MIP, using the equations
from (5-4), which now hold for the interval containing x. This results in partitioned
convex hull MIP program:

x = π1 + π2 + · · ·+ πNp ,

y = χ1 + χ2 + · · ·+ χNp ,

z ≥
Np∑
np=1

xnpχnp + yLπnp − xnpy
Lλnp ,

z ≥
Np∑
np=1

xnp+1χnp + yUπnp − xnp+1y
Uλnp ,

z ≤
Np∑
np=1

xnp+1χnp + yLπnp − xnp+1y
Lλnp, (5-5)

z ≤
Np∑
np=1

xnpχnp + yUπnp − xnpy
Uλnp ,

xnpλnp ≤ πnp ≤ xnp+1λnp ∀np ∈ {1, 2, . . . , Np},
yLλnp ≤ χnp ≤ yUλnp ∀np ∈ {1, 2, . . . , Np},

Np∑
np=1

λnp = 1; λnp ∈ {0, 1} ∀np ∈ {1, 2, . . . , Np}.

For each interval np, one additional binary variable λnp and two continuous variables,
πnp and χnp , are defined. The convex hull over the whole domain, and the convex hull
defined for each interval are illustrated in Figure 5-2, which shows the cross-section
y = c ∈ (yL, yU ) of the 3D-space of function z = xy. This figure illustrates that the
increasing the number of intervals improves the tightness of the linear relaxation.

Figure 5-2: Convex hull of xy over a single interval (left) and partitioned interval for
Np = 4 (right) [Misener et al., 2011]
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CHlog model

The partitioned linear relaxation from (5-5) yields a number of additional binary and
continuous variables that scale linearly with the number of intervals Np. The model
stated in this section uses additional binary variables which scale logarithmically with
the number of intervals, instead of linearly. This scaling is obtained by using a binary
encoding of the interval number. APOGEE adapted this reformulation in such a way
that it applies to bilinear programs. This reformulation is based on formulation nf4r
[Gounaris et al., 2009], see Appendix D. The reformulation and the effects on solving
time are stated next.

The main idea of the CHlog model, is that only dlog2(Np)e variables are needed to define
Np intervals. This is obtained by using a binary representation of the intervals. A total
of Nl = dlog2(Np)e binary variables is needed:

λnl
∈ {0, 1}Nl , λ = [λ1, λ2, . . . , λNl

]ᵀ .

In the linear formulation of nf4r, (D-7) - (D-8), the binary variable λ represents the
interval in which x lies. For the logarithmic formulation, λ represents the the largest
interval boundary point smaller than x. An example forNp = 5, where x lies in the fourth
interval, is shown in Figure 5-3. Figure 5-3a shows that using the linear formulation
yields

λ =
[
0 0 0 1 0

]ᵀ
,

indicating that x lies in the fourth interval. The logarithmic formulation yields the
vector:

λ =
[
1 1 0

]ᵀ
,

which indicates that x lies in the interval after the third breakpoint (i.e. 1× 1 + 1× 2 +
0× 4 = 3) . Note that the most left breakpoint at xL is considered to be the breakpoint
zero. The intervals and corresponding values of λ are illustrated in Figure 5-3b. The

(a) Linear number of binary variables

(b) Logarithmic number of binary variables

Figure 5-3: Activation of fourth interval for Np = 5 and Nl = dlog2(Np)e = 3
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continuous switch ∆ynl
is now defined for each nl:

∆ynl
=
{
y − yL if λnl

= 1
0 elsewhere.

In addition, the introduction of one additional variable for each nl is needed. The
variable snl

defines continuous slack and is introduced since multiple λnl
can obtain a

value of 1, as can be seen in Figure 5-3b.

The variable snl
can obtain the values:

snl
=
{
y − yL if λnl

= 0
0 if λnl

= 1. (5-6)

The definition of the continuous switch, continuous slack and binary variable λ from
Equations (D-2) and (5-6) is obtained by the constraints:

∆ynl
≤ (yU − yL)λnl

∀nl ∈ {1, 2, . . . , Nl}, (5-7)
∆ynl

= (y − yL)− snl
∀nl ∈ {1, 2, . . . , Nl}, (5-8)

snl
≤ (yU − yL)(1− λnl

) ∀nl ∈ {1, 2, . . . , Nl}. (5-9)

The uniform interval length a for each interval nl ∈ {1, 2, . . . , Np}, a, is defined as:

a = xU − xL

Np
.

Next, the interval containing x is bounded by the constraints:

xL +
Nl∑
nl=1

a2nl−1λnl
≤ x ≤ xL + a+

Nl∑
nl=1

a2nl−1λnl
, (5-10)

and one additional constraint which limits the right interval bound to be at most xU .
This constraint is only non redundant in case mod (dlog2(Np)e) 6= 2:

xL + a+
Nl∑
nl=1

a2nl−1λnl
≤ xU . (5-11)

The reformulation of the partitioned convex hulls as formulated in (5-4) can now be
stated as follows:

z ≥ xyL + xL(y − yL) +

 Nl∑
nl=1

a2nl−1∆ynl

 , (5-12)

z ≥ xyU + (xL + a)(y − yU )+ Nl∑
nl=1

a2nl−1
(
∆ynl

− (yU − yL)λnl

) , (5-13)

z ≤ xyL + (xL + a)(y − yL) +

 Nl∑
nl=1

a2nl−1∆ynl

 , (5-14)
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z ≤ xyU + xL(y − yU )+ Nl∑
nl=1

a2nl−1
(
∆ynl

− (yU − yL)λnl

) . (5-15)

For the example of five intervals with x in the fourth interval illustrated in Figure 5-
3, the following values hold for different nl: Substitution of these values in Constraint

nl 1 2 3
λnl

1 1 0
∆ynl

y − yL y − yL 0
snl

0 0 y − yL
2nl−1 1 2 4

(5-12) indeed yields the first convex underestimator from Equations (5-4):

z ≥ xyL + xL(y − yL) + a(y − yL) + 2a(y − yL)
= xyL + xL(y − yL) + 3ay − 3ayL

= (xL + 3a)y + xyL − (3a+ x)yL

= x4y + yLx− x4y
L.

The other convex estimators can be deduced in the same way.
Constraints (5-7)-(5-15) represent the MIP implementation of the partitioned CHlog
formulation, using a logarithmic number of binary variables, continuous variables and
constraints.

Effect on computational performance

The effect of using the alternative logarithmic formulation of the linear relaxations was
analyzed in [Misener et al., 2011]. They incorporated both the linear and alternative for-
mulation in their global algorithm on twenty-five pooling problem instances. This algo-
rithm is described in Section 5-1. The instances were solved for Np = 3, 4, 5, 6, 8, 12, 16.
They concluded that the logarithmic formulation outperforms the linear formulation
from (5-5) on computational effort, especially when using a higher number of intervals
(Np ≥ 8). For a smaller number of intervals, the linear formulation performed better.
A possible explanation for this result was not given. A short analysis on the additional
number of constraints, however, shows that, up to four intervals, the total number of
constraints is 2-8% less for the linear formulation. For the case of Np = 8, the logarith-
mic formulation needs 4-5% less constraints. Since the difference in additional binary
variables is not that significant for Np = 4, the use of additional constraints might ex-
plain the worse results for the logarithmic formulation. In addition, they showed it is
beneficial to use a number of intervals, which is a power of 2.
The conclusion from [Misener et al., 2011] is that, when solving the bilinear pooling
problem with the algorithm from Section 5-1, the logarithmic formulation is best to use
in case the problem requires a higher number of partition intervals. Otherwise a linear
formulation is recommended.
No results were presented on the performance of solving the MIP, separated from the
other steps in the algorithm. Therefore, additional analysis is needed in order to compare
the performance of both formulations isolated, when solving TWWN instances. applied
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CHlog applied in APOGEE

The algorithm incorporated in APOGEE uses the linear relaxations described in the
previous sections in a continuous branch-and-bound tree search [Misener et al., 2011].
It uses a strategy to select a new node and defines variable bounds for each new node
using optimality-based bounds tightening [Belotti et al., 2009]. The upper bound (UB)
is updated each time a feasible solution for the relaxed MIP program is obtained. The
algorithm terminates in case one of the following holds:

1. The running time limit is reached: in this case the current upper bound UB is
returned as solution, if present.

2. Branch-and-bound tree is empty while UB ≤ ∞: in this case the best solution is
returned.

3. Branch-and-bound tree is empty while UB =∞: in this case an infeasibility notice
is reported.

CH and CHlog applied to the TWWN problem

The application of linearly relaxed convex hulls is thoroughly tested for the use on
pooling problems in [Misener et al., 2011]. Since this type of problem is a special case
of the TWWN problem, as shown in Appendix 3-2, this method promises to be a suited
method for the TWWN problem as well.

The model CH is used to solve the TWWN in [Karuppiah and Grossmann, 2006] for
several instances. They concluded that it is best to partition the flow variable in intervals
instead of the concentration variable. This conclusion was verified in [Misener et al.,
2011]. The logarithmic formulation CHlog has not been applied to the TWWN up to
now. Therefore, an analysis on the differences between the linear and logarithmic convex
hull formulations for the TWWN problem is of value.

5-2 PWL approximation

In this section, the PWL approximations, most suited for the TWWN problem, are for-
mulated. In case of a two-dimensional function g(x), the PWL approximation results
in line segments, connecting points on the original function g(x): a PWL approxima-
tion of a three dimensional surface f(x, y) results in triangles with its vertices on the
original surface, see Figure 5-4. The resulting approximation is integrated in a MIP by
constraining a solution point to be on the surface of any triangle.

To obtain this approximation, first, the domain is partitioned in triangles. The result
is a triangulation of the domain. At the vertices of this triangulation, the breakpoints,
the function values represent the vertices of the PWL approximation. The triangular
planes connecting every set of corresponding vertices yield the linear approximation of
the original function f(x, y).

Many ways of triangulating the domain are possible. The importance of choosing a suited
breakpoint strategy was pointed out in [Lin and Tsai, 2015] and different strategies were
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Figure 5-4: Piecewise linear approximation of 3D surface [Commons, 2007]

proposed in [Lundell, 2009]. For the TWWN problem and related pooling problem,
a uniform breakpoint distribution was used in every single case. This research will
therefore only focus on PWL approximation using a uniform breakpoint distribution.
For more details and a specific formulation of all models, the reader is referred to litera-
ture [D’Ambrosio et al., 2010, Vielma et al., 2010, Geißler et al., 2012]. These researches
compare the available PWL approximation methods for multivariate problems.
In the remainder of this section, the domain triangulations are specified and the deriva-
tion of the MIP formulations PWL and PWLlog is provided.

Domain triangulation

This section describes the different ways of triangulating the domain with uniform inter-
vals. This is discussed in literature [D’Ambrosio et al., 2010, Vielma et al., 2010, Geißler
et al., 2012]. The triangulation determines whether the function is under or overapprox-
imated. For some model formulations, different triangulations are possible, while for
other models, only one triangulation is possible. The different triangulations are com-
pared below. For one domain part [xi, xi+1]× [yj , yj+1], the two possible triangulations
are shown in Figure 5-5.

i i+1

x

j

j+1

y

(a) Triangulation I

i i+1

x

j

j+1

y

(b) Triangulation II

Figure 5-5: Two triangulations for the interval [xi, xi+1]× [yj , yj+1]

For more than one interval, three different triangulations can be defined: Triangulation
I from Figure 5-5a repeated for each interval, Triangulation II from Figure 5-5b repeated
for each interval, or using the two triangulations alternating. The latter is called the
Union Jack triangulation in [Todd, 1977]. The three options are shown in Figure 5-6.
Each triangulation obtains a different PWL approximation of the surface, which is il-
lustrated by the following example: define f(x, y) = xy for x, y ∈ [0, 1], shown in Figure



5-2 PWL approximation 47

i - 1 i i+1

x

j - 1

j

j+1

y

(a) Triangulation I
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(b) Triangulation II
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(c) Alternating

Figure 5-6: Three triangulations for 2× 2 uniform intervals in the domain
[xi−1, xi+1]× [yj−1, yj+1]

5-7. For each triangulation from Figure 5-6, the PWL approximation of the surface is
shown in Figure 5-8. Figure 5-8a shows that Triangulation I yields a linear overestima-
tor for f(x, y). Triangulation II in Figure 5-8b results in a linear underestimator. The
Union Jack triangulation in Figure 5-8c and 5-8d alternates between a linear under- and
overestimator for each interval.

0.5

0

xy

1

x

0.5 1

y

0.51 0

Figure 5-7: f(x, y) = xy for x, y ∈ [0, 1]

Now, the different MIP formulations can be derived for the corresponding domain tri-
angulations. The linearization techniques used to obtain these MIP formulations are
stated in the following paragraphs.
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Figure 5-8: Three PWL approximations for 2× 2 intervals in the domain [0, 1]× [0, 1]

PWL model

The multivariate model PWL formulates a PWL approximation by imposing each point
to be on the surface of a triangle that has its vertices on the original function [Dantzig,
1960, Lee and Wilson, 2001]. The solution point is formulated as a convex combination
of the corresponding three vertices and is based on the Convex combination model (CC )
from [Vielma et al., 2010]. The formulation used here is based on the explicit formulation
from [D’Ambrosio et al., 2010]. The model is presented for Triangulation I from Figure
5-6a.
The domain [xL, xU ] × [yL, yU ] for a function z(x, y) is considered. Both the x-domain
and y-domain are partitioned. For Nc ·Mc intervals, the breakpoints (xi, yj) are defined
for i ∈ {1, 2, . . . , Nc, Nc + 1} and j ∈ {1, 2, . . . ,Mc,Mc + 1}, where:

xL = x1 < x2 < · · · < xNc < xNc+1 = xU ,

and
yL = y1 < y2 < · · · < yMc < yMc+1 = yU .

The function z(x, y) can be approximated by a convex combination of the function
values of the breakpoints (xi, yj). The constraints that impose this approximation for
αi,j ∈ [0, 1] ∀i, j are:

x =
Nc+1∑
i=1

Mc+1∑
j=1

αi,jxi, (5-16)
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y =
Nc+1∑
i=1

Mc+1∑
j=1

αi,jyj , (5-17)

z(x, y) =
Nc+1∑
i=1

Mc+1∑
j=1

αi,jz(xi, yj), (5-18)

Nc+1∑
i=1

Mc+1∑
j=1

αi,j = 1. (5-19)

Here, the continuous variables αi,j represent the weight of the corresponding vertex
at (xi, yj). Since exactly one triangle has to be selected, only the breakpoints of the
corresponding triangle may have a positive weight. This single triangle is selected by
introducing one binary variable for each triangle. Since each interval contains two trian-
gles, two binary variables λUi,j and λLi,j define the respectively upper and lower triangle
for each interval, illustrated in Figure 5-9.

i i+1

x

j

j+1

y

λ
i,j
U

λ
i,j
L

Figure 5-9: Definition of upper triangle and lower triangle

Now exactly one triangle from the domain is selected by the constraint:

Nc∑
i=1

Mc∑
j=1

(
λLi,j + λUi,j

)
= 1. (5-20)

What remains, is to allow only the vertices of the selected triangle to have positive
weights. The constraint that ensures this is:

αi,j ≤ λUi,j + λLi,j + λUi,j−1 + λLi−1,j + λUi−1,j−1 + λLi−1,j−1 ∀i, j, (5-21)

with boundary values:

λL0,j = λU0,j = λLi,0 = λUi,0 = λLi,Mc+1 = λUi,Mc+1 = λLNc+1,j = λUNc+1,j = 0. (5-22)

On the right-hand side of Constraints (5-21), exactly one binary variable is nonzero for
αi,j in case the vertex at (xi, yj) is part of the selected triangle.

Constraints (5-16) - (5-22) yield the MIP PWL model. For each bilinear term, the model
uses an additional 2NcMc binary variables and (Nc + 1)(Mc + 1) continuous variables.

For the Union Jack triangulation, another linearization technique is used in order to
obtain a MIP model, called PWLlog. This technique is also based on convex combination
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formulation, but needs less additional binary variables and constraints. Since the increase
in binary variables and constrains scale logarithmically with the number of intervals, the
model is referred to as PWLlog. This model is explained in the following paragraph.

PWLlog model

The model PWLlog reduces the number of additional binary variables of PWL. The
approach that is used to improve the convex hull formulation in Section 5-1, is in fact
derived from the PWLlog formulation Log in [Vielma and Nemhauser, 2008]. It is based
on a branching scheme for this particular triangulation with only a logarithmic number
of binary variables.

As in Section 5-2, consider Nc ·Mc uniform intervals for the domain [xL, xU ]× [yL, yU ].
The breakpoints that define the interval boundaries xi are:

xL = x1 < x2 < · · · < xNc < xNc+1 = xU ,

and yj :
yL = y1 < y2 < · · · < yMc < yMc+1 = yU .

In order to define the intervals, a logarithmic number of binary variables is used:

dlog2(Nc)e = Nl

binary variables λn for n ∈ {1, 2, . . . , Nl}, and

dlog2(Mc)e = Ml

binary variables λm for m ∈ {1, 2, . . . ,Ml}.

Since the PWLlog model is also based on the convex combination formulation, Con-
straints (5-16)-(5-19) still hold. As opposed to the PWL model, where the main idea is
to select one triangle, and to constrain only the values αi,j of the corresponding vertices
to nonzero; the setup for the PWLlog method is different: three values αi,j are selected
that may be nonzero, according to the following rules:

1. For the x-dimension, it holds that: in case αi,j is nonzero for xi, then any other
αi,j can only be nonzero for xi, and either the adjacent xi−1 or xi+1. The same
holds for the other dimension: if αi,j is nonzero for yj , then any other αi,j can only
be nonzero for yj , and either the adjacent yj−1 or yj+1.

2. In any triangle exactly one vertex is present where i and j are both not odd nor
even, indicated by the squares and diamonds in Figure 5-10. Therefore, from the
three selected αi,j , it holds for exactly one αi,j that both i and j are nor odd nor
even.

These rules results in the selection of one triangle and the according nonzero values αi,j .
The MIP implementation of rule 2 requires the introduction of one additional binary
variable µ and two subsets of breakpoints (xi, yj) :

∆L := {(xi, yj) | i is even and j is odd},
∆R := {(xi, yj) | i is odd and j is even}.
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Figure 5-10: Selection of one triangle [Vielma and Nemhauser, 2008]

Set ∆L is illustrated in Figure 5-10 by the rectangle shaped breakpoints, and Set ∆R by
the diamond shaped breakpoints. The following constraints enforce phase 2:∑

(i,j)|(xi,yj)∈∆L

αi,j ≤ µ, (5-23)

∑
(i,j)|(xi,yj)∈∆R

αi,j ≤ (1− µ). (5-24)

According to the statements from rule 1, the variables αi,j have to be constrained such
that, in any dimension, at most two variables are nonzero. In addition, these two
variables have to be adjacent. This property is called the Special Ordered Set of type 2
(SOS2) property. Implementation of this property using only a logarithmic number of
binary variables, requires a SOS2 compatible binary representation of the intervals, which
is called the Gray code. This representation has been used before for similar purposes,
but was introduced in [Vielma and Nemhauser, 2008] for the alternating triangulation.
A binary formulation holding the Gray code property, differs exactly in one digit in
each subsequent interval. It is shown that, for each number of intervals, such a Gray
code formulation can be obtained. Table 5-1 illustrates the difference between a natural
binary encoding and Gray code for four intervals.

Table 5-1: Natural binary code and Gray code formulation

Interval Binary Gray
λ2 λ1 λ2 λ1

1 0 0 0 0
2 0 1 0 1
3 1 0 1 1
4 1 1 1 0

Figure 5-11 illustrates that the Gray code of two subsequent intervals are equal in all
but one digits. This property enables that a set of statements can exclusively activate
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Figure 5-11: Binary interval representation Gray code in x-direction

two adjacent values αi,j . For the x-direction of example of Nc = 4 from Table 5-1, the
following four statements suffice:

If λ1 = 0 then α3,j = 0 ∀j
If λ1 = 1 then α1,j = α5,j = 0 ∀j

If λ2 = 0 then α4,j = α5,j = 0 ∀j
If λ2 = 1 then α1,j = α2,j = 0 ∀j

Formulating these statements for any number of intervals as a MIP formulation results,
in the following equations:

Mc+1∑
j=1

∑
i|xi∈S+

X(n)

αi,j ≤ λn ∀n, (5-25)

Mc+1∑
j=1

∑
i|xi∈S0

X(n)
αi,j ≤ (1− λn) ∀n, (5-26)

where

S+
X(n) := {xi | λn = 1 for each adjacent interval} ∀n,
S0
X(n) := {xi | λn = 0 for each adjacent interval} ∀n.

Implementing the example for Nc = 4 indeed yields:

S+
X(1) := {x3} ,
S0
X(1) := {x1, x5} ,

S+
X(2) := {x4, x5} ,
S0
X(2) := {x1, x2} ,

such that Constraints (5-25) and (5-26) impose the SOS2 property:
Mc+1∑
j=1

α3,j ≤ λ1,

Mc+1∑
j=1

α1,j + α5,j ≤ (1− λ1),

Mc+1∑
j=1

α4,j + α5,j ≤ λ1,

Mc+1∑
j=1

α1,j + α2,j ≤ (1− λ1).
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The same set definitions and constraints hold for the y-dimension:

S+
Y (m) := {yj | λm = 1 for each adjacent interval} ,
S0
Y (m) := {yj | λm = 0 for each adjacent interval} .

Nc+1∑
i=1

∑
j∈S+

Y (m)

αi,j ≤ λm ∀m, (5-27)

Nc+1∑
i=1

∑
j∈S0

Y (m)
αi,j ≤ (1− λm) ∀m. (5-28)

This concludes the SOS2 constrains for both dimensions. In summary, Constraints (5-16)
- (5-19), (5-23) - (5-28) define the MIP PWLlog model.

PWL and PWLlog applied to TWWN problem

Bilinearities are the main nonlinear component, making the use of PWL approximation
promising for the TWWN problem. Since the triangulation models proved to be both
accurate and flexible for solving MINLP multivariate problems [D’Ambrosio et al., 2010,
Vielma et al., 2010, Geißler et al., 2012], this group of models is selected to be applied
to the TWWN problem. Among the different models available within this group, the
model Log from [Vielma et al., 2010] showed to outperform other models with respect
to running time. Therefore, Log was the base of the model PWLlog, and the Convex
combination model, CC, it is based on, will be used for the PWL model.

5-3 Discretization

Another linearization technique is based on discretization of part of the continuous vari-
ables. In the special case of a bilinear program, one variable from the bilinear term is
discretized. Reformulation techniques can be applied to model the resulting MINLP as
a MIP problem. A solution obtained by solving the MIP problem, guarantees to be fea-
sible for the MINLP TWWN problem. This method is introduced in [Gupte et al., 2013]
for the application of the bilinear pooling problem and followed by additional research
in [Gupte et al., 2016]. In this section, the most promising reformulation technique is
explained, which is hereafter named Discrlog.

Discretization relaxation

For each bilinear term of two continuous variables, one variable has to be discretized.
Consider the bilinear equation z = xy, where x ∈ [xL, xU ] and y ∈ [yL, yU ]. The set
representation of this equation is:

S =
{

(z, x, y) ∈ R3
+ | z = xy, x ∈ [xL, xU ], y ∈ [yL, yU ]

}
.

Let us choose variable x to discretize. This yields subset Sx ⊂ S:

Sx :=
{

(z, x, y) ∈ R+ × Z+ × R+ | z = xy, x ∈ {xL, xU}, y ∈ [yL, yU ]
}
.
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Set Sx still consists of nonlinear equations. Different reformulation methods are avail-
able to obtain a MIP formulation. All reformulations integrate the use of McCormick
envelopes from Equation (5-3). They vary in the number of additional binary variables,
continuous variables and constraints.

The unary reformulation of Sx introduces an additional binary variable, and a Mc-
Cormick envelope for each integer in the range {xL, xU}. A second reformulation, the log
unary reformulation reduces the additional number of binary variables logarithmically,
by using the method introduced in [Vielma and Nemhauser, 2008]. It does, however,
uses more additional continuous variables and constraints. A third method uses a base-
2 expansion of the discretized variable, called the binary reformulation. This method
requires only a logarithmic number of additional constraints and variables, both binary
and continuous.

These three possible reformulations were compared on a variety of pooling problem
instances in [Gupte et al., 2016]. Since the p-formulation of the pooling problem, as
defined in Chapter 3-1, is in accordance with the TWWN formulation from Section 2-
2, the focus is on the results found for this p−formulation. The experiments showed
the best results for discretizing the flow variable for the p-formulation of the pooling
problem, in combination with the binary reformulation, which is to be explained next.

binary reformulation

The binary reformulation uses an additional number of binary variables that scales log-
arithmically with number of discrete values of x: for the general case of 0 ≤ xL < xU , a
total of

D := dlog2(xU )e

binary variables is needed to formulate all possible integer values of x. Additionally, the
discretization level can be refined to 1

2F by introduction of F additional binary variables
λd. Now d ∈ {−F,−F + 1, .., D}, where −F < D.

The reformulation is obtained by two steps: first, set Sx is reformulated using a base-2
expansion of x. Then, the obtained formulation is linearized using the constraints from
Equation (5-3).

The base-2 expansion of x is defined as:

x =
D∑

d=−F
2dλd, (5-29)

where λd ∈ {0, 1} ∀d, and

xL ≤
D∑

d=−F
2dλd ≤ xU . (5-30)

Substitution of Equation (5-29) in z = xy yields:

z = y
D∑

d=−F
2dλd. (5-31)

Constraints (5-29) - (5-31) conclude the reformulation of set Sx with the base-2 expansion
of x. Now, the MIP formulation of the discretized model Discrlog can be formulated.
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Discrlog model

In order to obtain a MIP reformulation of Constraints (5-29) - (5-31), Equation (5-31)
has to be linearized. Note that, w.l.o.g, this equation can be rewritten as:

z =
D∑

d=−F
(2dλdy). (5-32)

The bilinear terms λdy can be linearized using the convex hull relaxation from Equation
(5-3). Substitution of γd := λdy in Equation (5-32) and introduction of the McCormick
envelope constraints yields:

z =
D∑

d=−F
(2dγd), (5-33)

and
γd ≥ λLd y + yLλd − λLd yL,
γd ≤ λLd y + yUλd − λLd yU ,
γd ≥ λUd y + yUλd − λUd yU ,
γd ≤ λUd y + yLλd − λUd yL,

∀d ∈ {−F,−F + 1, . . . , D}

Since λLd = 0 and λUd = 1, it holds that:

γd ≥ yLλd,

γd ≤ yUλd,

γd ≥ y + yUλd − yU

= y + yU (λd − 1),
γd ≤ y + yLλd − yL

= y + yL(λd − 1).

(5-34)

Because of the binary variable in the bilinear term, only two cases can occur: λd = 0 or
λd = 1. In case λd = 0, the first two constraints from (5-34) yield γd = 0. The other
constraints are redundant. In case λd = 1, the last two constraints yield γd = y and the
first two constraints are redundant. This is exactly what is stated in Equation (5-32).
This shows the following:

(5-32)⇔ (5-33) ∧ (5-34).

In summary, the MIP formulation of set Sx is given by Constraints (5-29), (5-30), (5-33),
(5-34), concluding the Discrlog model.

Discrlog applied to the TWWN problem

Based on the results from [Gupte et al., 2016], the discretization as stated in the previous
paragraphs, looks promising for the pooling problem application. Since the TWWN
problem formulation is similar to the p-formulation of the pooling problem, these results
indicate the same holds for application to the TWWN problem. Therefore, the binary
reformulation based on a base-2 expansion of the flow variable, is applied to the MINLP
problem. For the pooling problem, a discretization was applied in [Gupte et al., 2016]
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such that only the integer values of the flow variable were allowed, i.e., F = 0 and
D = dlog2(xU )e. This level of discretization is accordingly the configuration applied to
the TWWN problem.

5-4 Summary of linear solution methods

In this chapter, suitable linearization techniques were explained to reformulate a MINLP
problem to a MIP problem. The resulting MIP problems can be solved with a linear
solver.

The technique of linear relaxation is suitable for bilinear problems. It defines convex
hulls around each nonlinear term in order to obtain a tight linear relaxation. In the case
of bilinear terms, this is the tightest linear relaxation possible. By using partitioning
of the domain, the tightness of the relaxation is further improved. The resulting MIP
formulation is called the CH model. The time needed to solve CH can be reduced
by using an alternative formulation of the relaxation, CHlog, using only a logarithmic
number of additional binary variables. One drawback of these methods is that solutions
of both CH-CPLEX and CHlog-CPLEX are not feasible for the original TWWN
problem. It merely provides a lower bound on the global optimum.

In addition to relaxation, PWL approximation techniques can be applied. The resulting
models are flexible in choosing the number of intervals in two dimensions. The MIP
formulations based on convex combinations of the vertices showed to be the most pro-
mising. For different triangulations of the domain, different PWL techniques can be
applied. For a first domain triangulation, Triangulation 1, the technique results in the
PWL model. A drawback of this model is the rapid growth in additional binary variables
for an increasing number of intervals. In order to reduce the number of additional binary
variables, a MIP formulation using only a logarithmic number of binary variables can be
obtained for the Union Jack triangulation: the PWLlog model. Solutions obtained for
both methods PWL-CPLEX and PWLlog-CPLEX are not feasible for the original
MINLP problem. Further more, the solutions are not guaranteed to be either an upper
or lower bound on the global optimum.

The third technique introduced in this chapter is based on discretization of a part of the
variables. The resulting MIP model, Discrlog, uses a base-2 expansion of the discretized
variable. For the pooling problem it was shown to be most effective to discretize the
flow variable. Hence, when applied to the TWWN problem, the flow variable is chosen
to discretize. The method Discrlog-CPLEX results in a feasible upper bound for the
global optimum of the MINLP TWWN problem.



Chapter 6

Experiments

The nonlinear and linear solution methods, introduced in Chapter 4 and 5 are used to
optimize the TWWN. This chapter presents and evaluates the results for the different
methods, instances and interval partitioning schemes. The set of instances consist of
ten cases of TWWN problems, both theoretical and from application. The experimental
setup is stated in Section 6-1. The actual results and their evaluation are presented in
Section 6-2. To conclude, Section 6-3 discusses the main findings of this chapter.

The models are implemented and solved in AIMMS [Bisschop and Roelofs, 2006]. To
solve the MIP problems, IBM ILOG CPLEX 12.6.2 [ILOG, 2014] is used. For the MINLP
model, both BARON 15 [Sahinidis, 2016] and AOA [Hunting, 2011] are used. A 64-bit
operating system is used with an Intel(R) Core(TM) i7-5600 CPU 2.60 GHz processor
and 8.00 GB of RAM. The system operates under Windows 7.

6-1 Experimental setup

An overview of the methods that are tested is illustrated in Figure 1-4. Some additional
information is stated in Table 6-1. For the PWL-CPLEX method, initially two differ-
ent domain triangulations were considered, as defined in Chapter 5-2. For the sake of
simplicity, only the results of Triangulation 1 are included in this report. In general,
Triangulation 1 slightly outperforms the other triangulation and therefore Triangulation
2 is left out of further analysis.

Partitioning schemes

For the linear solution methods, different configurations are tested with respect to the
number of partitioning intervals.

Both models CH and CHlog require partitioning of a single dimension. In Chapter 5-1
on page 45, the range of the flow variable was selected to partition. The partitioning
schemes considered, consist of N uniform intervals over domain of each flow variable,
where N ∈ {1, 2, 4, 8, 16, 32}. This results in a total of six configurations.
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Table 6-1: Method overview

Method Introduced Nr of dimensions that Solution Feasible for
in Chapter can be partitioned provides TFM model

Nonlinear methods
TFM-SB&B 4-2 0 Global optimum Yes
TFM-OA 4-1 0 Local optimum Yes

Linear methods
CH-CPLEX 5-1, p39 1 Lower bound No
CHlog-CPLEX 5-1, p42 1 Lower bound No
PWL-CPLEX 5-2, p48 2 Approximation No
PWLlog-CPLEX 5-2, p50 2 Approximation No
Discrlog-CPLEX 5-3 1 Upper bound Yes

For the piecewise linear approximation methods PWL and PWLlog, both the flow vari-
able and contamination variable may be partitioned. The different partitioning schemes
are defined for N uniform intervals for the domain of the flow variables and M uniform
intervals for the domain of the contaminant variables. The different configurations are
defined as an element of set Sconf as defined below:

Sconf :=
{

(N,M) ∈ {1, 2, 4, 8, 16, 32}2 | NM ≤ 32
}
. (6-1)

This results in a total of 21 possible configurations.

For Discrlog, the continuous flow variables are redefined as discrete variables which are
allowed to hold all integer values within the variable bounds. This results in one config-
uration.

Instances

The data set used for the experiments consists of ten problem instances from different
sources. Some of them are slightly modified to fit the TFM as formulated in Section 2-2.
The set is put together in such a way that a variety of network problems is taken into
consideration. A summary of the instances is stated in Table 6-2.

The first nine instances are theoretical cases, used in previous research. Instance R1
however, represents a real life TWWN problem. Note that all instances include both
TU’s and PU’s, except for instance B1, J1 and R1. Instance B1 is a water using network
and Instance J1 and R1 are water treatment networks. All data is provided in detail in
Appendix E, including the slight modifications.
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Table 6-2: Intance overview

Instance PU’s TU’s Sources Sinks Contaminants

K1 2 2 1 1 2
K2 3 3 1 1 2
K3 4 2 1 1 2
K4 5 3 1 1 3
A1 6 3 4 1 3
A2 2 3 1 1 4
B1 10 0 1 1 1
J1 0 2 7 1 5
T1 1 3 3 1 3
R1 0 7 2 3 3

Termination criteria

In case no additional remarks are made, the following termination criteria are used:

• The relative termination tolerance for CPLEX is set to ε = 1e− 003.

• The relative termination tolerance for BARON is set to ε = 1e− 003.

• The time limit for the MIP problems is set to 10800 seconds. If the time limit
is the binding termination condition, the current best upper bound is taken as
solution.

Evaluation criteria

The different methods are tested with respect to the following evaluation criteria:

• Solution quality: a solution is said to be accurate, if it is guaranteed to be within
1.5% of the global optimal solution.

• Running time: running time is said to be acceptable, if it is in the order of mag-
nitude of 102 seconds.

• Time needed to close the relative gap to 5%, 2% and 1%.

• Relative gap at termination.

• Number of pipe connections in resulting network.
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6-2 Results

Detailed results and analysis are presented here, though a reader who is only interested
in major findings can directly go to page 70 for a summary. A general overview of the
best performances per method is stated in Table 6-3. It shows the corresponding running
times, partitioning schemes if used, and accuracy of the solution compared to the global
optima, highlighted with the stars. In case no global optimum is found, the best upper
bound is used as benchmark value. The solutions which are feasible for the TFM are
highlighted with the f-superscripts.

For all but instances B1 and T1, a feasible upper bound is found that is guaranteed to
be within 1.5% of the global optimum. Using TFM-SB&B, five instances are solved to
global optimality. One should note that BARON did need a high quality initial solution,
provided by AOA, and many trials in order to do so. BARON could not close the gap
in case the initial gap was significant. Even with an initial upper bound provided by
AOA, BARON showed no big improvements over time.

Another method that provides a feasible solution for the TWWN problem, is method
TFM-AOA. It finds an upper bound for each instance within 5 minutes. In some cases
this upper bound is equal to the global optimal solution. Due to random initialization
of AOA, it might take several runs to obtain the solution quality as stated in Table 6-3.

A third method that yields a feasible solution for the TFM is Discrlog-CPLEX. The solu-
tions, obtained by this method, show similar upper bounds as for TFM-AOA. However,
the running time exceeded 10800 seconds for five instances. Note that in addition to
the solving time, Discrlog-CPLEX needs additional implementation to obtain the MIP
formulation, which TFM-AOA does not need.
For instance T1, the discretization method could not be directly applied, due to the fixed
noninteger flows that are required for the processing units, see Appendix E-2, page 102.
Therefore, the discretization model was solved, using the enclosing two integer values of
the flow, hence, obtaining an infeasible solution for the TFM.
In order to improve the upper bound found by Discrlog-CPLEX, a post solve step can be
executed. This is done by resetting the flow variables to the original continuous range,
and fixing the flow variables in the model that have value zero. Then, BARON is used as
solver to solve the remaining MINLP model. Due to the decrease in number of variables
and constraints, the chances of finding a solution within acceptable time are reasonable.
The results of this post solve step are stated in Table 6-4 on page 62. The running
times of Discrlog-CPLEX can be found in Table 6-3. The results show that the post
solve yields the global optimum for four instances In addition, for instance K3 an upper
bound is obtained that is equal to the best found for either TFM-AOA or TFM-SB&B.
The relative improvement with respect to the upper bound found by Discrlog-CPLEX is
limited to less than 1%. Note that the postsolve step resulted in a feasible upper bound
for instance T1 as well.
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Table 6-3: Best performances per method

TFM-SB&B TFM-AOA Discrlog-CPLEX CH-CPLEX
LB Soln. Time UB Time % from UB Time % from LB Time N % from

($/year) (s) ($/year) (s) global ($/year) (s) global ($/year) (s) global

Instance
K1 5.804E+5 5.804E+5* 370.75 5.804E+5f 33.15 0.00 5.831E+5f 19.83 0.47 5.714E+5 471.54 32 -1.56
K2 3.781E+5 3.781E+5* 20.89 3.781E+5f 191.12 0.00 3.781E+5f 157.83 0.00 3.707E+5 5705.57 32 -1.94
K3 8.678E+5 8.697E+5f >10800 8.697E+5f 143.12 ≤0.21a 8.712E+5f 228.70 ≤0.38a 8.679E+5 407.94 16 ≤0.40a

K4 1.014E+6 1.027E+6f >10800 1.025E+6f 721.07 ≤1.02a 2.527E+6f >10800 >100.00b 1.014E+6 1341.03 4 ≤-1.04
A1 8.404E+5 - >10800 8.517E+5f 203.25 ≤1.35b - >10800 - 8.403E+5 103.58 2 ≤-1.33b

A2 5.097E+5 5.097E+5* 32.24 5.106E+5f 256.92 0.09 5.102E+5f 3.07 0.09 5.069E+5 1.70 32 -0.55
B1 7.840E+5 1.388E+5f >10800 1.351E+6f 100.00 ≤72.26c 1.391E+6f >10800 ≥2.97b 7.839E+5 2066.86 16 ≤41.95b

J1 1.927E+6 1.927E+6* 53.77 1.927E+6f 19.42 0.00 1.942E+6f 63.35 0.78 1.912E+6 183.21 32 -0.81
T1 1.081E+5 5.321E+5 >10800 5.321E+5 58.67 ≤23.85a 5.581E+5 >10800 ≤29.89a 1.335E+5 41.61 4 ≤-45.75b

R1 4.945E+7 4.945E+7* 2.31 4.945E+7* 458.21 0.00 4.945E+7f >10800 0.02 4.945E+7 0.11 1 0.00

CHlog-CPLEX PWL-CPLEXd PWLlog-CPLEXd

LB Time N % from Approx. Time N % from Approx. Time N % from
($/year) (s) global ($/year) (s) global ($/year) (s) global

Instance
K1 5.714E+5 6.16 32 -1.56 5.680E+5 5504.68 8 -2.14 5.749E+5 6121.70 16 -0.95
K2 3.707E+5 67.41 32 -1.94 3.653E+5 189.20 4 -3.39 3.737E+5 7062.48 8 -1.17
K3 8.713E+5 8.70 16 ≤0.40a 8.682E+5 2058.96 4 ≤-0.18b 8.682E+5 2058.96 4 ≤-0.18b

K4 1.014E+6 3329.86 8 ≤-1.02 - >10800 - - 1.014E+6 0.86 2 ≤-1.03b

A1 8.404E+5 53.79 2 ≤-1.33b - - - - 8.403E+5 1.69 2 ≤-1.33b

A2 5.069E+5 1.70 32 -0.55 5.097E+5 394.48 4 0.00 5.097E+5 3.90 4 0.00
B1 7.839E+5 830.86 16 ≤-41.95b 7.875E+5 9705.65 1 ≤-41.69b 7.875E+5 9772.53 1 ≤-41.69b

J1 1.912E+6 3.65 32 -0.81 1.915E+5 1.98 1 -0.65 1.926E+5 294.58 8 -0.09
T1 4.297E+5 2356.33 16 ≤-19.26b 4.904E+5 57.36 1 -7.84 4.904E+5 11.33 1 -7.84
R1 4.945E+7 0.11 1 0.00 4.945E+7 0.39 1 0.00 4.945E+7 0.17 1 0.00

a Based on best solution found by CHlog; b Based on best solution found by OA or SB&B; c Based on LB found by SB&B; d Solely based on configurations
where M = 1; f Solution feasible for TFM; * Global optimum;
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Table 6-4: Discrlog - Results for integer flows and post solve improvement

Discrlog UB Post solve UB Running time Relative
($/year) ($/year) post solve (s) Improvement (%)

Instance
K1 5.831E+5 5.809E+5 23.07 -0.38
K2 3.781E+5 3.781E+5* 157.83 0.00
K3 8.712E+5 8.697E+5a 16.51 -0.17
K4 2.527E+6 2.527E+6 >10800 0.00
A1 - - - -
A2 5.102E+5 5.097E+5* 0.76 -0.09
B1 1.391E+6 1.390E+6 8,073.07 -0.06
J1 1.942E+6 1.927E+6* 29.06 -0.77
T1 5.581E+5 5.550E+5 >10800 -0.55
R1 4.945E+7 4.945E+7* 0.73 -0.02

* Global optimum;
a Equal to best found upper bound by SB&B or OA.

The methods CH-CPLEX, CHlog-CPLEX, PWL-CPLEX and PWLlog-CPLEX, do not
provide a feasible solution for the TWWN model. However, they are suited to find an
approximation of the optimal network costs. The results in Table 6-3 show that for at
least some partitioning levels, an accurate approximation of the global optimal solution
can be obtained, by any of these methods. Detailed results of these methods are shown
in Figure 6-1 and Figure 6-2. These figures show the running times and lower bounds
per instance and for each interval partitioning. The results include values with a relative
gap, named x in the legend, up to 1% at termination. Solution values with non-zero
relative gap at termination are marked with a cross. For the models PWL and PWLlog,
M is fixed to value 1. Note that models CH and CHlog yield equal solution values in
case a solution is found within the time limits, as expected.

In Figure 6-1, some general observations can be made with respect to running time.
For these ten instances, the methods based on CHlog and PWLlog outperform their
linear counter methods. For almost every partitioning configuration, CHlog is fastest,
followed by CH, PWLlog and PWL respectively. These differences in running time can
be explained by the number of constraints and the number of binary variables, used in
the model formulation. PWL uses, on average, 1.5 times the number of constraints used
in CH, and up to eight times the number of binary variables, regardless of the interval
partitioning scheme. While the differences are smaller for the logarithmic formulations,
PWLlog uses up to 1.25 times the number of constraints used in CHlog and up to three
times the number of binary variables. For increasing N , the differences become smaller.
Using model PWLlog instead of PWL, results in 60% less constraints and up to 85%
less binary variables. Model CHlog needs up to 50% less constraints and up to 60% less
binary variables than CH.
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Figure 6-1: Running times for CH, CHlog, PWL and PWLlog for increasing N
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A comparison of solving the both linear relaxation models, shows that the efficient
formulation of CHlog becomes of significant value for N ≥ 8. This is illustrated by
the results in Table 6-5. Here, both relaxation methods are compared with respect to
number of completed runs and running time.

Table 6-5: CH-CPLEX and CHlog-CPLEX - Av-
erage running time for each N

Nr. solutions Average
< 10800s running time (s) a

CH CHlog CH CHlog

N
1 10 10 3.50 2.71
2 10 10 20.29 11.23
4 9 9 158.02 154.71
8 7 9 15.20 5.74
16 7 8 385.61 143.56
32 5 5 1335.61 20.12

a Average taken over instances for which both
CH and CHV terminated after less than 10800
seconds.

Figure 6-2 shows that some instances were easier to approximate, using linear solution
methods, than others. For instances A2, J1 K4, T1 and R1, PWL-CPLEX finds an accu-
rate approximation for partitioning level N = 1, which might not improve for increasing
N . For almost every partitioning level N , the best approximations are obtained by the
solutions methods PWL-CPLEX and PWLlog-CPLEX. For increasing N , this difference
diminishes, and it occurs more often that only the linear relaxation based methods obtain
a solution. For CH-CPLEX and CHlog-CPLEX, a larger value of N is needed to ensure
a tight lower bound on the global optimal solution. However, due to the relatively high
speed of the method CHlog-CPLEX, higher partitioning schemes can be solved while
maintaining acceptable running times. The following paragraphs elaborate more on the
effect of using different partitioning schemes.

The average improvement of the solution quality, obtained by doubling the previous
value of N , is stated in Table 6-6 for both linear relaxation based methods.

Table 6-6: CH-CPLEX and CHlog-CPLEX - Relative improvement of solution value for
increasing N

CH CHlog
N 1 2 4 8 16 32 1 2 4 8 16 32

- 13.48 6.10 2.74 1.21 0.57 - 13.48 6.10 15.03 7.16 0.57

For CHlog-CPLEX, on average, every increase of N up to the value of 16, results in an
significant improvement of solution quality. For CH-CPLEX, the average improvement
decreases with every increase of N . Table 6-7 states, for each instance, the minimal
number of intervals N needed, to approximate the best feasible solution for the TFM
up to 5%, 2% and 1% respectively. Due to missing accurate information on the global
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optimal value of instance B1 and T1, the results for these instances are unknown. These
results show that for the remaining instances, an approximation within 5% of the best
found feasible solution can be found within four seconds.

Table 6-7: CHlog - Minimum N needed to approximate the best found feasible solution up
to 5%, 2% and 1%

Final gap 5% 2% 1%
min. N Time (s) min. N Time (s) min. N Time (s)

Instance
K1 16 3.20 32 6.16 - -
K2 1 0.19 32 67.41 - -
K3 1 0.33 1 0.33 1 0.33
K4 1 0.36 1 0.36 - -
A1 1 1.15 1 1.15 - -
A2 8 0.72 16 1.03 32 1.70
B1
J1 8 0.80 16 2.15 32 3.65
T1
R1 1 0.11 1 0.11 1 0.11

Both PWL-CPLEX and PWLlog-CPLEX perform worse than CH-CPLEX and CHlog-
CPLEX with respect to running time, with the exception of configurations where N = 2.
However, for the corresponding solution values in Figure 6-2, this particular configuration
for N = 2 obtains low quality solutions for PWLlog-CPLEX. It is not directly explainable
why this odd jump occurs consistently over a number of instances. Starting from N = 2,
better solution approximations are obtained for each increase in N . For five instances,
using any N > 1 did not obtain a better approximation for PWL-CPLEX and PWLlog-
CPLEX than N = 1.

The results presented for the methods PWL-CPLEX and PWLlog-CPLEX so far, were
limited to M = 1. This is because no clear improvement is obtained for either running
time or approximation accuracy for increased M . Table 6-8 states the accuracy of
the approximations per partitioning schemes that terminated before the time limit was
reached. One can observe that no better approximations are found for any partitioning
scheme with M > 1 and any value of N , than for M = 1 and some N . The running
times increase for configurations with increasing M ·N .



6-2 Results 67

Table 6-8: PWL and PWLlog - Percentage from best feasible solution for different parti-
tioning configurations

PWL PWLlog
N 1 2 4 8 16 32 1 2 4 8 16 32

Instance M
A1 1 -1.33

2 -1.33 -1.33
4 -1.04 -1.33
8

A2 1 0.58 0.58 0.00 0.00 0.00 0.58 -74.33 0.00 0.00 0.00
2 0.58 0.58 0.00 -74.33 -74.33 -15.65 -74.33 -74.33
4 0.58 -0.46 -40.02 -20.12 -3.74
8 0.58 -0.46 -0.22

16 0.92 -74.33 -40.02

B1 1 -41.69 -41.69
2 -42.11 -42.11 -42.1 -42.07 -41.95
4 -42.11 -42.1 -42.07

16 -42.11

J1 1 -0.65 -1.01 -0.65 -8.88 -3.72 -0.09 -0.75
2 8.54 0.04 -8.88 -8.88 -7.29 -8.88 -1.65
4 24.36 0.19 -8.52 -7.64 -3.27
8 9.85

16 -8.88

K1 1 -6.55 -6.39 -3.42 -2.14 -6.55 -6.90 -5.22 -0.97 -0.95
2 -6.60 -6.02 -2.33 -6.90 -6.90 -6.80 -6.90 -2.48
4 -6.55 -6.90 -6.90 -6.83 -5.89
8 -2.28 -3.41 -1.60

16 -6.90 -6.90

K2 1 -3.40 -3.40 -3.39 -3.40 -3.44 -3.40 -1.17
2 -1.27 -3.44 -3.44 -3.44 -3.44 -2.72
4 -3.44 -3.44 -3.44 -3.01
8 -1.27

16 -3.44

K3 1 0.18 0.18 0.18 -0.23 -0.18
2 -0.23 -0.23 -0.22 -0.23
4 -0.21 -0.23 -0.22 -0.21
8 -0.21

16 -0.23

K4 1 -1.03
2 -1.03 -1.03
4 -1.03
8 -1.03

16 -1.03

R1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00
4 0.00

T1 1 -7.84 -7.84 -78.79
2 -6.14 -78.79 -78.79 -74.9 -78.79
4 -8.17 -78.63 -75.71
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So far, the results based on solution value quality and running times have been stated.
What remains to look at, is the solution itself. One of the main characteristics of the
solution is the number of pipe connections, that is selected in the optimal configuration.
Figure 6-4 shows the resulting number of pipes found by each method for each instance
per interval partitioning. Even though no clear common behavior is observed, for some
instances, the number of pipes found by the linear solution methods gives a rough in-
dication of the number of pipes in a quality feasible solution. Overall, the solutions
found by PWL-CPLEX and PWLlog-CPLEX provide the best indication of the number
in the best found feasible network configuration. This information could be used in other
methods that obtain feasible solutions, to specify the model parameter κmax.

To conclude the results, a few findings are stated on the real life case, instance R1. It
appears that for the real life case, R1, all methods, except Discrlog, are able to find the
global optimal solution within a relative short amount of time. No partitioning of the
domains is needed in order to obtain an accurate outcome. This might explained by the
very distinct options the instance contains. Since the costs on the sinks are relatively
high compared to other costs, these are binding. By choosing one effluent option, the
according treatment facilities needed are as good as fixed. One of the optimal solutions
found by SB&B is illustrated in Figure 6-3. All optimal networks found by the models
use sink 1.

Figure 6-3: Best found solution for instance R1
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6-3 Results summary

Running the different solution methods on a set of test instances, showed that finding
a high quality solution with TFM-SB&B is not guaranteed within reasonable time. As
an alternative, the methods TFM-AOA and Discrlog-CPLEX both provide an accurate
upper bound. In most cases, TFM-AOA obtained a solution more quickly. Discrlog-
CPLEX can be slightly enhanced by using a postsolve technique, which improves the
upper bound.

Other methods aim to approximate the optimal network costs without obtaining a feasi-
ble solution for the TFM. All four methods CH-CPLEX, CHlog-CPLEX, PWL-CPLEX
and PWLlog-CPLEX are able to obtain a tight approximation on the global optimal so-
lution for the right interval partitioning N . With respect to running time, the methods
using a logarithmic formulation technique outperform their linear counter method. In ad-
dition, CH-CPLEX and CHlog-CPLEX outperform PWL-CPLEX and PWLlog-CPLEX.
Overall, CHlog-CPLEX is the fastest method, where the difference becomes significant
for N ≥ 8. Furthermore, this method is guaranteed to obtain a better lower bound for
each increasing N .

For PWL-CPLEX and PWLlog-CPLEX, increasing the interval partitioning for the con-
tamination dimension, M , did not show to improve the approximation quality.

An analysis on the solutions showed that the number of pipe connections in the best
feasible network configuration can be roughly indicated by the solutions of PWL-CPLEX
and PWLlog.

All methods were able to find a very accurate solution value for the real life instance. In
fact, this instance showed to be one of the most easy to solve.



Chapter 7

Conclusion and recommendations

This thesis investigated suitable solution methods for solving the MINLP total waste
water network problem. The motivation was that optimal solutions are difficult to
obtain within reasonable time. In specific, this thesis addressed the following questions:

1. What are the characteristics of the MINLP formulation of the TWWN problem
that affect choosing a suitable solution method?

2. What modeling approaches exist in literature and how can they be implemented
to solve the TWWN problem?

3. What is the performance of the proposed methods when applied to different prob-
lem instances?

A suitable solution method is considered to be the combination of a model and solver,
that provides an accurate solution to the TWWN problem within reasonable time, within
1.5% of the global optimal solution.

In order to find the most suited methods, first the MINLP formulation of the TWWN
problem was analyzed. It was proven that the TWWN problem is NP-hard. Based on
the nonlinear characteristics, a literature review resulted in possibly suitable methods.
Five of these methods include a linearization of the MINLP model to a MIP, solved by
a linear solver. The other two methods are based on solving the MINLP model with a
nonlinear solver. The performance of the methods was tested on the basis of ten TWWN
instances. Based on these results, the research question will be answered. The following
sections answer the sub-questions and conclude on the main research question.

1. What are the characteristics of the MINLP formulation of the TWWN problem that
affect choosing a suitable solution method?

It was shown, that the TWWN problem is NP-hard. Hence, it is not guaranteed that the
problem can be solved within polynomial time. This supports the need for alternative
solution methods, besides solving the MINLP problem with a global solver. Whether
a solution method is based on an alternative modeling approach, or on an alternative
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solver, in both cases it is of importance that it suits the specific nonlinear elements of
the MINLP model. Three different types of nonlinearities are present in the TFM:

• Constraints that include a product of a continuous and binary variable.

• Constraints that consist of bilinear terms of two continuous variables.

• Exponential terms in the objective function.

The first type of nonlinear term was reformulated as a set of three linear constraints.
The objective function was linearized using a linear underestimator. The presence of the
bilinear terms was binding for the selection of suitable solution methods.

2. What modeling approaches exist in literature and how can they be implemented to
solve the TWWN problem?

A literature review showed that a variety of alternative methods may be applicable to
the TWWN problem and related problems. An overview of these methods was stated
in Figure 1-4. Besides finding the global optimum solution of the TFM with a spacial
Branch-and-Bound solver, an outer approximation algorithm can be used to find an up-
per bound for the TFM. These two methods were named TFM-BARON and TFM-AOA
respectively. Another way of obtaining an upper bound is to discretize the continuous
flow variables and reformulate the resulting problem to a MIP by using additional bi-
nary variables and constraints. The method that solves this MIP with CPLEX is called
Discrlog-CPLEX.

Other methods included relaxation of the bilinear terms in the TFM, using convex hulls.
The method that solves the resulting MIP with CPLEX provides a lower bound on
the optimal solution value. The lower bound can be improved by partitioning of one
dimension of the search domain, which results in a tighter relaxation. Two related
methods were considered. They differ in the formulation technique: CH-CPLEX and
CHlog-CPLEX.

Finally, two approximation methods were considered: PWL-CPLEX and PWLlog-CPLEX.
The base of these methods is a MIP model obtained by piecewise linear approximation
of the nonlinear model elements. The model accuracy can be improved by partition-
ing one or two dimensions of the search domain. While CH-CPLEX and PWL-CPLEX
formulate the MIP with a linear increase in additional binary variables and constraints
for increasing partitioning schemes of the search domain, CHlog-CPLEX and PWLlog-
CPLEX use a logarithmic increase.

3. What is the performance of the proposed methods when applied to different problem
instances?

The performance of each of the methods, mentioned in previous answer, was tested and
evaluated on the basis of several criteria. These criteria were: (i) solution quality, (ii)
running time, (iii) time needed to close the relative gap, (iv) relative gap at termination,
and (v) number of pipe connections in the resulting network. In addition, it was taken
into account whether the method finds an upper bound, approximation or lower bound
on the global optimum. A varied set of instances was used to test the methods, including
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networks containing either processing units or treatment units exclusively, networks with
several sources, several sinks and a real life case.

The experiments showed that finding the global optimal solution of the MINLP of the
TFM is quite difficult using one single method. For five out of ten instances, TFM-
SB&B found the global optimum within reasonable time. Two instances were not even
solved with a relative gap up to 1.5%. The methods Discrlog-CPLEX and TFM-AOA
both provided upper bounds with comparable performance. The upper bounds found
by TFM-AOA proved to be closer to the optimal solution value in most cases and solved
faster. This method was a good trade-off between speed and solution quality. Due to
random initialization of the solver AOA, it has taken a few runs to find the accuracy as
stated in Table 6-3.

Other methods aimed to approximate the optimal network costs without obtaining a
feasible solution for the TFM. All four methods CH-CPLEX, CHlog-CPLEX, PWL-
CPLEX and PWLlog-CPLEX were able to obtain a tight approximation on the global
optimal solution for the right interval partitioning N . Overall, CHlog-CPLEX was the
fastest method, especially for N ≥ 8. For a partitioning level of N = 16, CHlog-CPLEX
guaranteed a lower bound not more than 2% from the global optimal solution for at
least eight instances. For this configuration, the running times varied from one second
to one minute.

Even though PWL-CPLEX and PWLlog-CPLEX provided accurate approximations for
some configurations, the methods were not guaranteed to find either an upper or lower
bound on the global optimum. Using PWL and PWLlog-CPLEX, the best approxima-
tions were obtained for partitioning levels M = 1 and N = 1 or N = 8.

The experiments showed that there are suitable methods available for solving different
variations of the TWWN problem, though no accurate approximation was obtained for
the instances B1 and T1, by any method or combination of methods. These instances
may contain elements that made them harder to solve. Instance B1 was different from
the other instances since it was a network containing only processing units, with no
tight upper bound on the maximal flows. Instance T1 had a large complexity since it
contained three sources, a processing unit and three treatment units. For other network
configurations consisting of one source, one or multiple sinks and a number of processing
and treatment units, an accurate solution has been obtained.

In order to assess the applicability of the computational methods, also a problem arising
in application was considered: instance R1. All methods except Discrlog-CPLEX found
the global optimal solution. It was not needed to use domain partitioning to do so. This
instance was one of the easier ones to solve, which indicated that it is acceptable to
extend the conclusions made for the literature cases, to real life cases as well.
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To conclude, an answer can be stated for the main research question:

What solution methods are suitable for solving the MINLP total waste water network
problem?

Since the method CHlog-CPLEX resulted in an accurate lower bound, it provided a good
indicator that an upper bound found by either TFM-SB&B, TFM-AOA or Discrlog-
CPLEX was close to optimal. Out of these three methods, TFM-AOA showed to be
the most suitable to obtain an upper bound. By combining the information from CHlog-
CPLEX and TFM-AOA, the global optimum was tightly approximated from below and
above respectively, solving the TWWN problem accurately within reasonable time.

Recommendations for practical use

Using a global solver to solve the MINLP TWWN problem to global optimality is time
consuming and does not guarantee to converge within reasonable time at all. Therefore,
it is recommended to use alternative solution methods to approximate the global opti-
mum as accurately as possible: a combination of TFM-AOA and CHlog-CPLEX provides
an accurate approximation, since the former method provides an accurate upper bound,
while the latter obtains an accurate lowerbound. It is effective to use a partitioning level
of N = 16 for obtaining the lower bound with CHlog-CPLEX.

During this research, it proved to be important to invest time in obtaining logic variable
bounds as tight as possible, by using the network characteristics. By doing so, TFM-
AOA has a smaller search space and the probability of finding an accurate upper bound
increases accordingly. In addition, the relaxations used in CHlog-CPLEX will become
more tight and therefore its lower bound is more accurate.

The performance of the different solution methods indicate that some TWWN instances
are easier to solve than others. Therefore, it is recommended to define the problem in
which preferably not more than one of the following factors is unknown:

• The number of treatment units needed.

• The number of sources and sinks that are used.

• The order in which the process units are operated.

Instances containing a significant amount of network elements and more of these ques-
tions incorporated, might not be solvable by any method.
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Recommendations for future work

As an extension of this research, the following factors could be varied in order to improve
the method performances:

• As suggested in [Karuppiah and Grossmann, 2006], among others, constraints can
be added to reduce the search space and speed up the solving time. One redun-
dant constraint is added, but there are additional possibilities to explore: a short
network analysis could determine how many pipe connections would be present in
a possible optimal network design. Setting the parameters κmax and κmin slightly
above and below this estimation respectively, may cut off parts the search space
with a disproportional number of pipe connections. For the instances used in this
thesis, default values of κmin = 0 and κmax = 100 were used.

• Zooming in on the settings of the methods as applied in this research, there are
additional options to consider. For the method Discr, only one configuration with
discretized intervals is considered. More research can be done on the effect of either
increasing or reducing the discretization precision. An increased precision could
result in more accurate upper bounds, but could also take additional running time.
The opposite would be expected for a reduced precision.

In addition, one element that has not been elaborated on in this research, is the effect of
linearizing the objective function. The original exponential cost terms in the objective
function have been fixed to their linear underestimator, in order to compare the different
solutions methods on a common ground. The effects on the solution and solution value
of this linearization are not yet clear.

This thesis considered solely treatment units which remove contamination with a certain
removal rate. Both in literature and practice, another type of treatment is used as
well: reducing contamination up to a fixed threshold concentration, independent of
the incoming contaminant concentration, see Example 6 from [Ahmetović, 2011] and
Instance R1 in Appendix E-3. It would be of added value to incorporate this treatment
option.

To conclude, it would be interesting to evaluate the methods and configurations based
on a larger set of test instances. Due to the relative small set of ten test instances, it
is not possible to detect patterns and to extend the conclusions to groups of a specific
type of instance. Increasing the instance set would provide insight in which particular
characteristics of a TWWN make it more difficult or easy to solve by specific methods.
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Appendix A

Component Based MINLP model

In this appendix a second formulation of the MINLP model is stated for a TWWN; the
CBM. This model was analyzed as an optional MINLP formulation. Since this model
was found to be inferior to the TFM, this section is added solely for comparison.

The model definition and formulation are stated in Appendix A-1. A comparison between
this second model formulation and the earlier stated TFM from Section 2-2 can be found
in Appendix A-2. This comparison resulted in a decision to continue this research using
the TFM. The arguments leading to this decision are stated in Appendix A-3.

A-1 Model formulation

The CBM is based on modeling the component flow rates of separate contaminants
[Galan and Grossmann, 1998, Galan and Grossmann, 1999]. This model uses contami-
nant flow rates f (kg/h), instead of contaminant concentrations ρ (ppm). In addition,
the model contains one extra variable: the splitter fraction.

The variables used in this model are stated in Table A-1, the additional network param-
eters in Table A-2. The cost related parameters are equal to the TFM parameters in
Table 4. After the definitions, the constraints are stated. The objective is equal to the
one stated in Equation (2-25) from the TFM.
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Table A-1: Variables CBM

Variable Description # Variables

Continuous non negative variables
φw water intake from source w (ton/h) w

φp,in flow rate into process unit p (ton/h) p

φp,out flow rate out of process unit p (ton/h) p

φt,in flow rate into treatment unit t (ton/h) t

φt,out flow rate out of treatment unit t (ton/h) t

φd water flow rate in discharge of sink d (ton/h) d

φs,m water flow rate through from splitter s to mixer m (ton/h) (w + p+ t)(p+ t+ d)
fp,c,in flow rate contaminant c entering process unit p (kg/h) pc

fp,c,out flow rate contaminant c exiting process unit p (kg/h) pc

ft,c,in flow rate contaminant c entering treatment unit t (kg/h) tc

ft,c,out flow rate contaminant c exiting treatment unit t (kg/h) tc

fs,m,c flow rate contaminant c from splitter s to mixer m (kg/h) c(w + p+ t)(p+ t+ d)
fd,c flow rate contaminant c in discharge of sink d (kg/h) cd

ζms ∈ [0, 1] split fraction from splitter s to mixer m (−) (w + p+ t)(p+ t+ d)
Binary variables
ψs,m existance of connection splitter s to mixer m (-) (w + p+ t)(p+ t+ d)

Table A-2: Additional parameters CBM

Parameter Description

Water sources
fw,c flow rate from source w of contaminant c (kg/h)

Process units
fp,c,in maximum flow rate of contaminant c entering process unit p (kg/h)
fp,c,out maximum flow rate of contaminant c exiting process unit p (kg/h)

Treatment units
f t,c,in maximum flow rate of contaminant c entering treatment unit t (kg/h)
f t,c,out maximum flow rate of contaminant c exiting treatment unit t (kg/h)

Water sinks
fd,c maximum discharge flow rate of contaminant c in sink d (kg/h)
f
d,c

minimum discharge flow rate of contaminant c in sink d (kg/h)
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Constraints

Water source

Source

Bound on intake:

φw ≤ φw ∀w. (A-1)

Process unit

Process unit

Bounds on intake and output:

φp ≤ φp,in ≤ φp ∀p, (A-2)
fp,c,in ≤ fp,c,in ∀p, c, (A-3)
fp,c,out ≤ fp,c,out ∀p, c, (A-4)

Balance around process unit:

φp,out = φp,in + φp,∆ ∀p, (A-5)
fp,c,out = fp,c,in + ωp,c ∀p, c. (A-6)

Treatment unit

Treatment unit

Bounds on intake and output:

φt ≤ φt,in ≤ φt ∀t, (A-7)
ft,c,in ≤ f t,c,in ∀t, c, (A-8)
ft,c,out ≤ f t,c,out ∀t, c. (A-9)

Balance around treatment unit:

φt,in = φt,out ∀t, (A-10)

ft,c,out = (1− λt,c
100) · ft,c,in ∀t, c. (A-11)

Water sink

Sink

Bounds on intake:

φ
d
≤ φd ≤ φd ∀d, (A-12)

f
d,c
≤ fd,c ≤ fd,c ∀d, c. (A-13)
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Unit mixer

Mixer

Balance around mixer:

φu,in =
∑
s

φs,mu ∀u, (A-14)

fu,c,in =
∑
s

fs,mu,c ∀u, c. (A-15)

Unit splitter

Splitter

Balance around splitter:∑
m

ζsu,m = 1 ∀u, (A-16)

ζsu,m · φu,out =
∑
m

φsu,m ∀u, (A-17)

ζsu,m · fu,c,out = fsu,m,c ∀u, c. (A-18)

Pipe constraints

Pipe

Bound on flow rate:

φs,m ≤ φs,mψs,m ∀(s,m) ∈ PCfree. (A-19)
φs,m ≤ φs,m ∀(s,m) ∈ PCfixed. (A-20)

Bound on number of connections:

κmin ≤ |Pfixed|+
∑

(s,m)
∈PCfree

ψs,m ≤ κmax. (A-21)

Bound on recycling

φs,m ≤ θTU · φt,in ∀t, (A-22)
φs,m ≤ θPU · φp,in ∀p. (A-23)
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Redundant cuts

Network flow balance:∑
w

φw +
∑
p

φp,∆ =
∑
d

φd. (A-24)

Network contaminant balance:∑
w

fw,c +
∑
p

ωp,c =
∑
d

fd,c +
∑
t

(ft,c,in − ft,c,out) ∀c. (A-25)

This concludes the formulation of the Component Based MINLP model in equations
(2-25), (A-1) - (A-25).

A-2 Model comparison

The formulation of the MINLP model greatly influences all following steps from solving
the model up to finding appropriate linearization methods. Therefore a detailed compar-
ison is required in order to select the most suitable formulation. The main differences
between the two models are stated in Table A-3, under the assumption that all pipe
connections from any splitter to any mixer are variable, so Pfixed = ∅.

The number of nonlinear equations for the TFM is obtained by counting the number of
nonlinear equations (2-6), (2-15), (2-17), (2-24), summed over all related indices. These
nonlinearities contain bilinear terms and product terms with a continuous and binary
variable. For the CBM the same approach is used for the bilinear equations (A-17),
(A-18). The number of bilinear terms is counted by summing all nonlinear terms in
the equations stated above over all relevant indices. For The CBM this yields the same
number of nonlinear terms as the number of equations, since all nonlinearities consist
of a single bilinear term. The total number of variables is counted by adding all values
in the last column from Table 2 and Table A-1. The difference in number of variables
between the two models shows to be equal to the number of possible splitter to mixer
connections in the network.

In order to compare the differences more explicitly, Table A-3 shows the number of non-
linearities, bilinear terms and number of variables for random but representative small-
and larger instances with a varying number of contaminants. This model comparison
shows significantly less nonlinear equations for the TFM for all cases and this difference
increases with both the instance size and number of contaminants. However, the num-
ber of total bilinear terms is less for the CBM in most cases. It’s interesting to see that
this difference in number of bilinear terms does not increase drastically with the total
number of bilinear terms for increasing instance sizes. Thus it is concluded that the
CBM contains approximately 10% less bilinear terms for different instance sizes.

Since linearizing nonlinearities creates additional variables, constraints and computa-
tional effort, a MINLP model with the least possible nonlinearities is desired. It is
interesting to compare the examples’ values in Table A-4 with a statement made in lit-
erature [Karuppiah and Grossmann, 2006]; In section 4 is said that a model like The
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Table A-3: Comparison MINLP models

Characteristic TFM CBM

Location nonlin mixers splitters
process units
objective function

Type nonlin eqn multiple bilinear terms single bilinear term
product of continuous
and binary variable

# nonlin eqns c(2p+ t+ d+ 1) (p+ t+ d)(w + (c+ 1)(p+ t))
+c(p+ t)

# bilinear terms c((1 + t+ p)(p+ t+ d) (p+ t+ d)(w + (c+ 1)(p+ t))
+2(t+ p) + d)

# Variables (c+ 3)(w + p+ t)(p+ t+ d) (c+ 2)(w + p+ t)(p+ t+ d)
+(c+ 1)(2p+ 2t+ d) + w +(c+ 1)(2p+ 2t+ d) + w

Unique variables contaminant concentration ρ contaminant flow f

split fraction ζ
magnitude variables water flow rate φ: order 2 water flow rate φ: order 2

contaminant concentration contaminant flow f : order 1
ρ: order 2 split fraction ζ: order 0

TFM contains fewer bilinearities than a model formulation as the CBM. This is in con-
tradiction with 3 out of 4 examples discussed here.

A final measure of comparison is the order of magnitude of the different variable types
[Karuppiah and Grossmann, 2006]. In case variables are divergent with respect to order
of magnitude, additional numerical difficulties may occur. For the TFM, both the flow
rate and contaminant concentration variables obtain values within the same range. For
the CBM however, the order of magnitude differs among the variable types from the
[0, 1] range on the split fraction to order 2 variables on the water flow rates.

A-3 Choice of MINLP model

With respect to all differences discussed above, both models have their advantages and
disadvantages. Since the number of bilinear terms is from the same order of magnitude,
this is not a binding decision criterion. This does not outweighs the importance of a
numerical solvability of the model. This is why the TFM is chosen to implement as
MINLP model formulation and used as benchmark to compare with different linearized
MILP models. This model choice is in accordance with the conclusion drawn in an earlier
comparison [Karuppiah and Grossmann, 2006].
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Table A-4: Example configurations

Instance characteristic TFM CBM

w = 1, p = 2, t = 2, d = 1, c = 3
Number of nonlinear equations 36 85
Number of bilinear terms 102 85
# Variables 137 162

w = 1, p = 2, t = 2, d = 1, c = 7
Number of nonlinear equations 84 165
Number of bilinear terms 238 165
# Variables 298 323

w = 3, p = 5, t = 5, d = 2, c = 3
Number of nonlinear equations 84 516
Number of bilinear terms 462 516
# Variables 869 1025

w = 3, p = 5, t = 5, d = 2, c = 7
Number of nonlinear equations 196 996
Number of bilinear terms 1078 996
# Variables 1581 1637
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Appendix B

TFM with linear objective

In this appendix the complete TFM with linear objective is stated. The original TFM
is formulated in Section 2-2 and the nonlinear objective is derived in Section 2-4.

min
φ,ρ,ψ

AR
∑
t

πt,IC · φ̂t +H
∑
t

πt,OC · φt

+AR

 ∑
(s,m)
∈PCfree

πs,m,fix · ψs,m +
∑

(s,m)
∈PCfixed

πs,m,fix


+AR

∑
(s,m)

πs,m,var · φ̂s,m

+H
∑

(s,m)
πs,m,op · φs,m +H

∑
w

φw · πw

s.t. φ̂t ≥ (φLt )α +
(

(φUt )α − (φLt )α

φUt − φLt

)
(φt − φLt ) ∀t

φ̂s,m ≥ (φLs,m)γ +
(

(φUs,m)γ − (φLs,m)γ

φUs,m − φLs,m

)
(φs,m − φLs,m) ∀s,m

φw ≤ φw ∀w
φp ≤ φp,in ≤ φp ∀p

φt ≤ φt,in ≤ φt ∀t
φ
d
≤ φd ≤ φd ∀d

φs,m ≤ φs,m · ψs,m ∀(su,m) ∈ PCfree
φs,m ≤ φs,m ∀(s,m) ∈ PCfixed
ρp,c,in ≤ ρp,c,in ∀p, c
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ρp,c,out ≤ ρp,c,out ∀p, c
ρt,c,in ≤ ρt,c,in ∀t, c
ρ
d,c
≤ ρd,c ≤ ρd,c ∀d, c

φu,out =
∑
m

φsu,m ∀u

φu,in =
∑
s

φs,mu ∀u

φp,out = φp,in + φp,∆ ∀p
φt,in = φt,out ∀t

φu,in · ρu,c,in =
∑
s

φs,mu · ρs,mu,c ∀u, c

φp,out · ρp,c,out = φp,in · ρp,c,in + 1000 · ωp,c ∀p, c

ρt,c,out = (1− λt,c
100) · ρt,c,in ∀t, c

ρsu,m,c = ρu,c,out · ψsu,m ∀u, c s.t. (su,m) ∈ PCfree
ρsu,m,c = ρu,c,out ∀u, c s.t. (su,m) ∈ PCfixed
κmin ≤ |PCfixed|+

∑
(s,m)
∈PCfree

ψs,m ≤ κmax

φst,mt ≤ θTU · φt,in ∀t
φsp,mp ≤ θPU · φp,in ∀p

ρw,c + 1000
∑
p

ωp,c =
∑
d

φd · ρd,c +
∑
t

φt(ρt,c,in − ρt,c,out) ∀c
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Variable bounds

In this appendix, the definition of the upper- and lower bounds on the network variables is
stated. In Section 5 the use of bounds on variables is introduced as important component
of linear solving methods. In addition, these bounds are incorporated as redundant
constraints in the MINLP problem.

Table C-1: Variable lower bounds

Variable Condition Lower bound

φw |WI| > 1 φ
w

φw |WI| = 1 max
{

minp(φp),mind(φd), φw
}

φp,in φ
p

φp,out φ
p

+ φp,∆

φt,in φ
t

φt,out φ
t

φd |WO| > 1 0
φd |WO| = 1

∑
w φ

L
w +

∑
p φp,∆

φs,m 0
ρp,c,in 0
ρp,c,out

1000·ωp,c

φp+φp,∆

ρt,c,in 0
ρt,c,out 0
ρs,m,c 0
ρd,c ρ

d,c
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Table C-2: Variable upper bounds

Variable Condition Upper bound

φw |PU | > 0
∑
p φp

φw |PU | = 0 min
{
φw,max(

∑
t φt,

∑
d φd)

}
φp,in φp

φp,out φp + φp,∆

φt,in θt = 1 min
{
φt, 2 max

(∑
p φ

U
p,out,

∑
w φ

U
w

)}
φt,in θt = 0 min

{
φt,max

(∑
p φ

U
p,out,

∑
w φ

U
w

)}
φt,out φUt,in

φd min
{∑

w φ
U
w +

∑
p φp,∆, φd

}
φsu1,mu2 min

{
φs,m, φ

U
u1,out, φ

U
u2,in

}
ρp,c,in ρp,c,in

ρp,c,out
φ

p
ρp,c,in+1000·ωp,c

φ
p
+φp,∆

ρt,c,in min
{
ρt,c,in,max

(
maxp(ρUp,c,out),maxw(ρw)

)}
ρt,c,out (1− λt,c)ρUt,c,in
ρd,c ρd,c

ρsu,m,c u ∈ PU or u ∈ TU ρUu,out

ρsu,m,c u ∈WI ρw,c
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Convex hull formulation

In this Appendix, the MIP implementation of the incremental cost based convex hull
formulation, nf4r from [Gounaris et al., 2009] is demonstrated. Formulation nf4r is
based on the use of the binary variable λnp for each
np ∈ {1, 2, . . . , Np} such that

λnp =
{

1 if x ∈
[
xnp , xnp+1

]
0 elsewhere. (D-1)

In addition a continuous variable ∆ynp is introduced:

0 ≤ ∆ynp ≤ yU − yL,

which yields values

∆ynp =
{
y − yL if λnp = 1

0 elsewhere. (D-2)

The MIP formulation is defined as follows. The first constraint fixes only one interval
[xnp , xnp+1] to be active:

Np∑
np=1

λnp = 1. (D-3)

This interval contains x:
Np∑
np=1

xnpλnp ≤ x ≤
Np∑
np=1

xnp+1λnp . (D-4)

For this active interval, ∆ynp should obtain value y − yL, and zero otherwise. This is
enforced by the constraints:

0 ≤ ∆ynp ≤ (yU − yL)λnp , (D-5)

and

y = yL +
Np∑
np=1

∆ynp . (D-6)
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The introduction of the variable ∆ynp , referred to as a continuous switch in [Misener
et al., 2011], results in a reduced relaxation size compared to other formulations, such as
the one formulated in Section 5-1 and used in [Karuppiah and Grossmann, 2006]. The
piecewise linear convex envelopes are defined by two underestimators and two overesti-
mators, see (5-4). In case of multiple intervals, they are written as:

z ≥ xyL +
Np∑
np=1

xnp∆ynp ,

z ≥ xyU +
Np∑
np=1

xnp+1∆ynp

− (yU − yL)
Np∑
np=1

xnp+1λnp .

(D-7)

The two overestimators are defined by:

z ≤ xyL +
Np∑
np=1

xnp+1∆ynp ,

z ≤ xyU +
Np∑
np=1

xnp∆ynp

− (yU − yL)
Np∑
np=1

xnpλnp .

(D-8)

Substitution of λnp = 1 and ∆ynp = y − yL in (D-7) indeed yields the recognizable
convex underestimators from (5-4) for interval [xnp , xnp+1]:

z ≥ xyL + xnp(y − yL)
= xnpy + yLx− xnpy

L,

z ≥ xyU + xnp+1(y − yL)− (yU − yL)xnp+1

= xnp+1y + yUx− xnp+1y
U .

The same substitution would obtain the corresponding convex overestimators.

Equations (D-3) - (D-8) represent formulation nf4r.
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Instance specifications

In this appendix the instance data as for the experiments is stated. This data is gathered
from different sources to obtain a diverse set of ten instaces. A summary is given
in Section 1-3, Table 6-2. The remainder of this appendix contains the input data.
In case input parameters are absent in the tables below, they are not defined for the
particular instance. Appendix E-1 contains data for four instances from [Karuppiah and
Grossmann, 2006], used to validate the model, followed by five additional instances in
Appendix E-2. The real life case is stated in Appendix E-3. For all instances holds that
Pfixed = ∅.

E-1 Base cases

The four instances from [Karuppiah and Grossmann, 2006] are stated in this section.
Throughout this thesis, these instances are referred to as instance K1, K2, K3 and K4
respectively. The superstructures for all four instances are illustrated in Figure E-1,
E-2, E-3 and E-4. For each of these instances one source and one sink is present with
the same requirements, stated in Table E-1 and E-4. Data for the process units and
treatment units is given in Table E-2 and Table E-3 respectively. Additional parameters
are stated in Table E-5.

Figure E-1: Superstructure instance K1
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Figure E-2: Superstructure instance K2

Figure E-3: Superstructure instance K3

Figure E-4: Superstructure instance K4
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Table E-1: Source data base cases

Unit Flow rate (ton/h) Cont. conc. Intake costs
Min Max (ppm) ($/t)

A B C

Instance K1, K2, K3, K4
Source1 - - 0 0 0 1

Table E-2: PU data base cases

Unit Flow rate Discharge Cont. conc.
(ton/h) load (kg/h) in max (ppm)

A B C A B C

Instance K1
PU1 40 1 1.5 0 0
PU2 50 1 1 50 50

Instance K2
PU1 40 1 1.5 0 0
PU2 50 1 1 50 50
PU3 60 1 1 50 50

Instance K3
PU1 40 1 1.5 0 0
PU2 50 1 1 50 50
PU3 60 1 1 50 50
PU4 70 2 2 50 50

Instance K4
PU1 40 1 1.5 1 0 0 0
PU2 50 1 1 1 50 50 50
PU3 60 1 1 1 50 50 50
PU4 70 2 2 2 50 50 50
PU5 80 1 1 0 25 25 25
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Table E-3: TU data base cases

Unit Removal ICC OCC
ratio (%)

A B C

Instance K1
TU1 95 0 16800 1
TU2 0 95 12600 0.0067

Instance K2
TU1 95 0 16800 1
TU2 80 90 24000 0.033
TU3 0 95 12600 0.0067

Instance K3
TU1 95 0 16800 1
TU2 0 0 12600 0.0067

Instance K4
TU1 95 0 0 16800 1
TU2 0 0 95 9500 0.04
TU3 0 95 0 12600 0.0067

Table E-4: Sink data base cases

Unit Flow rate (ton/h) Max cont.
Min Max discharge (ppm)

A B C

Instance K1, K2, K3, K4
Sink1 - - 10 10 10
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Table E-5: Other data base cases

Parameter Description Value

φs,m Maximum pipe flow (ton/h) -
κmin Minimum number of pipes (−) -
κmax Maximum number of pipes (−) -
θTU Recycling around TU’s allowed (−) 1
θPU Recycling around PU’s allowed 1

α Cost exponent for TU (−) 0.7
πs,m,fix Fixed pipe cost ($) 6
πs,m,var Variable pipe cost ($) 100
πs,m,op Operating pipe cost ($/t) 0.006
γ Cost exponent for pipes (−) 0.6
H Total operation time (h/year) 8000
AR Annualized investment factor TU(−) 0.1
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E-2 Additional cases

The set of four base cases is extended with five more cases: instance A1 and A2 from
[Ahmetović, 2011], instance B1 from [Bagajewicz and Savelski, 2001], instance J1 from
[Poplewski and Jeżowski, 2007] and instance T1 from [Takama et al., 1980]. Instance
A2 was slightly modified: originally the treatment units from this instance removed
contamination up to a fixed concentration. To fit the TFM this type of treatment was
changed to treatment with a removal ratio.

Figure E-5: Superstructure instance A1

Figure E-6: Superstructure instance A2
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Figure E-7: Superstructure instance B1

Figure E-8: Superstructure instance J1

Figure E-9: Superstructure instance T1
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Table E-6: Source data additional cases

Unit Flow rate (ton/h) Cont. conc. Intake costs
Min Max (ppm) ($/t)

A B C D E

Instance A1
Source1 0 0 0 1
Source2 25 35 35 0.5
Source3 45 40 40 0.2
Source4 50 50 50 0.15

Instance A2
Source1 100 100 100 100 0.1

Instance B1
Source1 0 1

Instance J1
Source1 18 18 1390 10 250 200 400 0
Source2 25 25 14000 110 400 600 2800 0
Source3 50 50 25 100 1350 2500 3115 0
Source4 60 60 8550 800 45 220 230 0
Source5 36 36 500 300 600 500 500 0
Source6 12 12 50 1500 400 200 100 0
Source7 8 8 2300 12500 200 1000 200 0

Instance T1
Source1 0 0 0.3



E-2 Additional cases 101

Table E-7: Sink data additional cases

Unit Max cont. discharge (ppm)
A B C D E

Instance A1
Sink1 10 10 10

Instance A2
Sink1 10 10 10 10

Instance B1
Sink1 800

Instance J1
Sink1 150 200 140 175 200

Instance T1
Sink1 2 2 5

Table E-8: TU data additional cases

Unit Removal ratio (%) Cont. conc. in max (ppm) ICC OCC
A B C D E A B C D E

Instance A1
TU1 95 0 0 16800 1
TU2 0 0 95 9500 0.04
TU3 0 95 0 12600 0.0067

Instance A2
TU1 90 90 90 90 100 100 100 100 10000 0.1
TU2 100 100 100 100 10 10 10 10 25000 1.15
TU3 95 95 95 95 30000 1.8

Instance J1
TU1 99 70 80 60 55 1 1
TU2 90 88 55 85 90 1 1

Instance T1
TU1 99.9 0 0 16800 1
TU2 0 95 0 4800 0
TU3 90 90 97 12600 0.0067



102 Instance specifications

Table E-9: PU data additional cases

Unit Flow rate (ton/h) Water Discharge Cont. conc.
Min Max Added (ton/h) load (kg/h) in max (ppm)

A B C D A B C D

Instance A1
PU1 40 40 0 1 1.5 1 25 25 25
PU2 50 50 0 1 1 1 50 50 50
PU3 60 60 0 1 1 1 50 50 50
PU4 70 70 0 2 2 2 50 50 50
PU5 80 80 0 1 1 0 25 25 25
PU6 90 90 0 1 1 0 10 10 10

Instance A2
PU1 40 40 0 1 1.5 1 1 0 0 0 0
PU2 50 50 0 1 1 1 1 50 50 50 50

Instance T1
PU1 45.8 45.8 0 17.9 0.5 1.2 0 0 0
PU2 32.7 32.7 0 536 3.3 0.5 500 20 50
PU3 56.5 56.5 0 1.3 5.7 2.0 20 120 50

Table E-10: PU data case B1

Unit Flow rate (ton/h) Water Discharge Cont. conc. max (ppm)
Min Max Added (ton/h) load (kg/h) In Out

A A A

Instance B1
PU1 25 - 0 2 25 80
PU2 32 - 0 2.9 25 90
PU3 20 - 0 4 25 200
PU4 30 - 0 0 50 100
PU5 37.5 - 0 30 50 800
PU6 6.25 - 0 5 400 800
PU7 3.33 - 0 2 400 600
PU8 10 - 0 1 0 100
PU9 66.67 - 0 20 50 300
PU10 21.67 - 0 6.5 150 300
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Table E-11: Other data additional cases

Parameter Description Value

Instance A1, A2, B1, J1, T1
φs,m Maximum pipe flow (ton/h) -
κmin Minimum number of pipes (−) -
κmax Maximum number of pipes (−) -
θTU Recycling around TU’s allowed (−) 1
θPU Recycling around PU’s allowed 1

α Cost exponent for TU (−) 0.7
πs,m,fix Fixed pipe cost ($) 6
πs,m,var Variable pipe cost ($) 100
πs,m,op Operating pipe cost ($/t) 0.006
γ Cost exponent for pipes (−) 0.6
H Total operation time (h/year) 8000
AR Annualized investment factor TU (−) 0.1

E-3 Real life case

Besides the other cases from literature, one real life case is included in the experi-
ments: instance R1, illustrated in Figure E-10. This treatment network consists of two
contaminated input streams, eight treatment units and three possible outlets. Due to
confidentiality considerations, no more details on the origins are included. The case was
almost one-on-one ready to implement in the TFM. However, for treatment units TU1
to TU4, a treatment with a linear removal rate is used instead of treatment up to a
fixed level. In addition, one main aspect of instance R1 is significant costs on the use
of each sink. These costs are stated in Table E-12. Since the TFM does not take these
costs into consideration, they have to be incorporated otherwise. The costs for each
sink are therefore translated to pipe connections right before the corresponding sink.
In case there would exist only one pipe connection to every sink, these costs could be
levied over the use of these pipes. In order to obtain this network structure, a dummy
treatment unit is introduced: TU8∗. This treatment unit serves as an additional mixer
in the network, collecting the network flows.

Table E-12: Sink cost requirements

Unit Operational Investment
costs ($/year) costs ($)

Sink1 0 148590
Sink2 60000000 720090
Sink3 90000000 0
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Figure E-10: Superstructure instance R1

Now a single flow can be directed from this treatment unit to any sink. In this way
the sink cost components are implied by the costs levied on the pipe connections from
TU8∗ to the sinks. The specifications of the different treatment units and the dummy
treatment unit TU8∗ are stated in Table E-15. The input parameters for the sources
and sinks can be found in Table E-13 and E-14. The cost specifications and remaining
parameters are stated in Table E-16.

Table E-13: Source data instance R1

Unit Flow rate (ton/h) Cont. conc. Intake costs
Min Max (ppm) ($/ton)

A B C

Source1 80 100 100 1000 7 0
Source2 795 927 100 10000 260 0

Table E-14: Sink data instance R1

Unit Flow rate (ton/h) Max cont.
Min Max discharge (ppm)

A B C

Sink1 0 5086.8 15 5 -
Sink2 0 5086.8 30 5 -
Sink3 0 5086.8 - - -
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Table E-15: TU data instance R1

Unit Removal Flow rate (ton/h) Max cont. conc (ppm) ICC OCC
ratio (%) Min Max In Out

A B C A B C A B C

TU1 50 99.75 0 11.25 768.5 100 10000 260 50 25 260 2300000 0.07
TU2 50 99.75 0 11.25 768.5 100 10000 260 50 25 260 2300000 0.07
TU3 85 99.75 0 11.25 768.5 100 10000 260 15 25 260 2300000 0.07
TU4 85 99.75 0 11.25 768.5 100 10000 260 15 25 260 2300000 0.07
TU5 95 80 0 11.25 333.3 50 25 260 5 25 260 1670000 0.05
TU6 95 80 0 11.25 333.3 50 25 260 5 25 260 1670000 0.05
TU7 95 80 0 11.25 333.3 50 25 260 5 25 260 1670000 0.05
TU8∗ 0 0 0 0 - - - - - - - 0 0

Table E-16: Other data instance R1

Parameter Description Value

φs,m Maximum pipe flow (ton/h) -
κmin Minimum number of pipes (−) -
κmax Maximum number of pipes (−) -
θTU Recycling around TU’s allowed (-) 1

α Cost exponent for TU (−) 0.66
πs,m,fix ∀m /∈MO Fixed pipe cost ($) 0
πs,m,fix for msink1 Fixed pipe cost ($) 148600
πs,m,fix for msink2 Fixed pipe cost ($) 60000000
πs,m,fix for msink3 Fixed pipe cost ($) 90000000
πs,m,var ∀m /∈MO Variable pipe cost ($) 0
πs,m,var for msink1 Variable pipe cost ($) 148590
πs,m,var for msink2 Variable pipe cost ($) 720090
πs,m,var for msink3 Variable pipe cost ($) 0
πs,m,op Operating pipe cost ($/t) 0.006
γ Cost exponent for pipes (−) 0.66
H Total operation time (h/year) 8000
AR Annualized investment factor TU (−) 0.1
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