
EEMCS, Delft University of Technology

The Netherlands

Getting AI to Cooperate:
Sharing a Critic in a Video Game

Author
J. J. H. Groenendijk

Supervisors:
Dr. F. A. Oliehoek

R. Loftin

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2023



Abstract

The popular video game ”Overcooked” is a great example of a task requiring
complex planning and cooperation with other players. This game is used as the
inspiration for an environment for evaluating AI, called ”Overcooked-AI”. This
paper implements a centralized critic into the Overcooked-AI environment’s
implementation of the PPO algorithm and compares the results with the decen-
tralized critic approach when it comes to cooperation with human-like agents
and computational efficiency.

The centralized critic approach gives similar results compared to the de-
centralized critic approach, both in self-play and when playing with human-like
agents. This is probably due to the decentralized critic approach already having
full access to the entire observation space, and no hyperparameter tuning being
done due to a lack of time.

1 Introduction

The field of AI research has seen a lot of interest in research into the capabilities
of AI in video games. Some reasons for this include that video games simulate
difficult problems in repeatable, easily gradable scenarios which allow for rapid
prototyping compared to real-world experiments. This makes them perfect for
testing how well AI algorithms can be taught to perform certain tasks.

The popular video game ”Overcooked” is a great example of such a task,
since not only does it require complex planning, but it also requires coopera-
tion with other players (which could be AI agents or humans). This research
project will focus on the feasibility and efficiency of centralized critics for use
with multi-agent reinforcement learning.

When using reinforcement learning in games with multiple players, it is best
to have a shared method of evaluating how well each player is doing, rather than
having each player learn on their own. This helps account for the fact that the
actions of other players can affect the game and provides a more accurate way
of measuring success. Centralized critics are a method of doing this by having
a shared value function to see how well the agents are doing.

Currently, there is a popular framework for evaluating AI based on Over-
cooked, namely Overcooked-AI [1]. This framework has been used for evaluating
many different cooperative AI strategies like training models specifically to team
them up with humans [8], adding unit testing to see how the model responds to
unpredictable actions [5], and obscuring information from the AI to see how it
responds [9].

1



In this environment, currently, PPO (Proximal Policy Optimization) [11] is
implemented. This is an On-Policy Optimization algorithm that allows for the
optimization of a Markov Decision Process.

The goal of this research project is to implement centralized critics into this
multi-agent reinforcement learning framework by implementing the MAPPO
(Multi-Agent Proximal Policy Optimization) approach [12]. MAPPO is a good
choice here because when we compare PPO and MAPPO, it will show the im-
pact of the centralized critic well, and the central critic can be implemented
with relative ease by using the RLlib library [6], which is a nice-to-have.

This research will answer the question of whether agents trained with a cen-
tral critic can still work well with humans, or if they become too dependent on
the other models the AI trains with. Specifically, it will answer the question:
”How does MAPPO compare to PPO when it comes to efficiency and collabo-
rating with human-like agents in the Overcooked-AI environment?”

In this paper, a basic overview of PPO is given. Then, the applied changes to
the environment are shown, as well as the results of those changes. Afterward,
the two trained models are compared with regard to computational efficiency
(the training time of the algorithm), as well as flexibility when working together
with other AI agents or even agents trained to behave like humans.

2 Background

To understand what is being done in this paper, it is good to understand what
PPO[11] is and how it works. I will be giving a high-level overview of PPO for
brevity’s sake. PPO is a reinforcement learning network that trains a policy to
perform a required task. To be precise, it optimizes a Markov Decision Process,
which is a function that maps a state to a list of actions and their probabilities.
To aid in this, it uses a second function, called the value function, which is used
to evaluate the average reward of a given state. The step-by-step process of how
(the clip version of) PPO is implemented is:

1. Initialize the policy and value function networks: Start by initializing the
policy and value function networks with random weights. These networks
will be trained to improve the agent’s policy and estimate the state-value
function.

2. Collect trajectories: Interact with the environment by running the cur-
rent policy to collect trajectories. A trajectory consists of states, actions,
rewards, and the next states.

3. Compute advantages: Calculate the advantages for each state-action pair
in the collected trajectories. Advantages represent how much better or
worse an action is compared to the prediction from the value function.

2



4. Compute policy ratio and surrogate loss: Calculate the ratio between the
probabilities of choosing our current action in the new policy and the old
policy for each state-action pair. Compute the surrogate loss, which is
a combination of the policy ratio and the advantages. This helps ensure
that the policy update is within a certain range.

5. Update the policy: Use the surrogate loss to update the policy network.
This is done by optimizing the objective function using a gradient ascent
algorithm, such as stochastic gradient descent (SGD) or Adam [4].

6. Update the value function: After updating the policy, update the value
function network. Use the collected trajectories to train the value function
network using a regression algorithm.

7. Perform multiple iterations: Repeat steps 2-6 for a specified number of
iterations or until convergence. Each iteration involves collecting new
trajectories, computing advantages, and updating the policy and value
function.

The specific part of this algorithm that turns this algorithm into PPO is
step 4. Here, the surrogate loss is calculated in such a way that does not let the
algorithm make too drastic changes.

To go into detail: Take:

• pnew to be the proposed new policy

• pold to be the current policy

• r to be the ratio of the chances of taking the current attempted action in
the current policy and the new policy

• A to be the advantage, representing how much better the action is than
the average action in the current state

• S to be the current batch of N state action pairs

• ϵ a hyperparameter, usually around 0.1 or 0.2 [2]

The surrogate loss is calculated to be:

Lpold
(pnew, S) =

S∑
s,a

(min(r ·A, clip(r, 1− ϵ, 1 + ϵ) ·A))/N

This means that if the change is quite drastic (the ratio of probabilities r is
further than ϵ away from 1), the loss is set to 1−ϵ or 1−ϵ, and since this does not
depend on our policy, the gradient of this loss with respect to our parameters is
0. There is one slight caveat to this, namely that the clipped value is not taken
directly as the output, but it is actually the minimum of the clipped value and

3



the ratio multiplied by the advantage. This has the effect that if our advantage
is negative and we are more likely to take this choice, the loss is not clipped,
and if our advantage is positive and we are less likely to take this choice, the
loss is not clipped.

The value function used in the overcooked-ai environment is a bit special
because it’s not a network on its own. The output of the policy is both an
action and a value. One could see this both as a value function that takes in
just a state (called a V function) because the input to the whole function is a
state, or one could see this as a value function that takes in both the state as
the input and a proxy value of the action (since the final action is computed
from these inputs). This type of function is called a Q function.

In the MAPPO implementation, I explicitly pass in the action, the oppo-
nent’s action, and the environment to the value function, so it is clearly a Q
function. More info on this can be found in Section 3.

To obtain the advantages in the overcooked-ai environment, a method called
Generalized Advantage Estimation [10] is used. This takes the rewards and
values at every step, as well as two hyperparameters, γ and λ to calculate an
estimate for the advantages.

3 Contribution and Methodology

To answer the research question, I will be amending the PPO algorithm with a
centralized critic. A centralized critic is a way to give the value function more
information, with the goal of speeding up the learning process by giving the
critic insight into the strategy of the other agent. In other cases, this would
also include the other agent’s observation, but since there are no partial envi-
ronments (a.k.a. every agent has all the information available to it at runtime),
this is unnecessary.

After implementing this version of the PPO algorithm, the algorithm (now
modified into MAPPO), will be used to train an agent with the same hyperpa-
rameters as the PPO agent. If I had more time, I would modify the hyperpa-
rameters following the advice of the authors of the original paper [12]. Using
this agent trained with MAPPO in a self-play scenario, I will compare it against
a PPO self-play trained agent in multiple ways.

1. Computational Efficiency: Do we need less training time to achieve the
same results?

2. Self-Cooperation: How does it perform compared to PPO when paired
with an agent using the same algorithm as itself?

3. Human-Like-Cooperation: how does it perform compared to PPO when
paired with a human-like agent, created using Behavioural Cloning (BC)?

4



This research will grant us valuable insight into the value of a centralized
critic. Especially since care will be taken to modify the environment as little as
possible besides adding the centralized critic, allowing for accurate assessment
of the impact of adding such a centralized critic, especially in this case where
there are no partial observations, and the centralized critic only gets access to
the opponent’s action as the extra information.

Since centralized critics are a popular addition to the Machine Learning land-
scape, a lot of research has already been done using centralized critics. However,
data on the effectiveness of centralized critics in a full observation environment,
when compared with Decentralized critics, is scarce and will be valuable for the
cooperative AI research landscape.

Some papers contrast Centralized and Decentralized critics, like [7], but they
mostly focus on environments with partial observations because this is where
multi-agent setups and centralized critics make the most impact. These other
papers also do not look at the performance in terms of cooperation with humans
or human-like agents, which my paper does.

4 Experimental Setup and Results

4.1 Experimental Setup

The results in this paper have been obtained by taking the latest version of the
overcooked-AI GitHub repository1, forking it2, and implementing a centralized
critic in a method similar to the example given by the Ray RLLib3. After this,
I have trained the PPO/MAPPO models in a self-play scenario as given by the
file human aware rl/ppo/run experiments.sh. I have used the hyperparameters
supplied by the original authors, and have not done any hyperparameter tuning
myself due to lack of time. I have trained the Behaviour Cloning agents used
for these results using the human aware rl/imitation/reproduce bc.py.

After this, I obtained my results by moving my agents to the
evaluate centralized critic/models directory and running the
evaluate centralized critic/evaluate.py and the
evaluate centralized critic/visualize.py scripts to analyze the results and obtain
my graphs.

The main difference in my MAPPO implementation when compared to the
original PPO implementation is the setup of the value function. In MAPPO,
the value function uses information from both agents, not just from the agent
that is being evaluated. The difference in setup is shown in figure 1.

1https://github.com/HumanCompatibleAI/overcooked ai
2https://github.com/jellejurre/overcooked ai
3https://github.com/ray-project/ray/blob/master/rllib/examples/centralized critic.py

5



Figure 1: The difference in setups between the PPO and MAPPO setups of
overcooked-AI

4.2 Results

I have trained MAPPO and PPO agents in a self-play scenario on four out of the
five supplied maps (Counter Circuit wasn’t included due to technical difficulties
with this map). I have used the AgentEvaluator class to evaluate the agents
against each other, every time using 3 games of 400 steps. The combinations I
am using are:

1. MAPPO self-play vs MAPPO self-play

2. PPO self-play vs PPO self-play

3. MAPPO self-play vs Behaviour Cloning

4. PPO self-play vs Behaviour Cloning

5. Behaviour Cloning vs Behaviour Cloning

On these maps, I have put agents from different training iterations against
each other. Note that since BC doesn’t have training iterations, I have used the
same BC agent for every comparison.

6



(a) Asymmetric Advantages (b) Coordination Ring

(c) Cramped Room (d) Forced Coordination

Figure 2: The rewards of comparing different agents over training iterations

We can see in figure 2 that the results between MAPPO And PPO seem
quite similar in their results. One interesting point is that in the coordination
ring layout, which is the layout where the agents have to coordinate most in
their movement due to the relative ease of blocking each other, the MAPPO self-
play agent outperforms the PPO self-play agent, both when paired with itself
as when paired with the behaviour cloning agent. However, when paired with
itself, the gap remains during the entire training process, and when paired with
the behaviour cloning agent, it about evens out after 200 training iterations.

7



(a) Asymmetric Advantages (b) Coordination Ring

(c) Cramped Room (d) Forced Coordination

Figure 3: The max scores and their standard errors when comparing different
agents

In figure 3 we can see the maximum mean value that was reached over all
the training iterations, and the standard error over the three games which ob-
tained that mean value. Here again, we can see that in most cases, MAPPO vs
MAPPO and PPO vs PPO are very similar, with the only exception here being
Coordination Ring’s MAPPO vs MAPPO outperforming its PPO vs PPO score
by about 35 points. Behaviour cloning, on the other hand, seems less stable,
with MAPPO sometimes outperforming PPO, and vice versa.

I think the lower difference than what we would expect in most maps is due
to the centralized critic being less of a benefit when both agents already have
access to the full observation space since instead of both learning what the other
agents are seeing and doing, they only gain access to what the other agent is
doing compared to a decentralized critic approach. Another explanation for the
lack of differences is the lack of hyperparameter tuning due to a lack of time.

8



5 Responsible Research

My work is reproducible by setting the ”centralized critic” flag to true in the
config and then performing the steps to reproduce the agents from the original
paper. It is written in a way that does not affect the original PPO agent, yet
still allows for easy addition of more agents or interaction with an MAPPO
agent.

The framework used uses the MIT license, and I am following this license.

For the behaviour cloning, the data used was obtained from the original
paper by Caroll et al. [1], for which they completely anonymized the data. No
human data was obtained for this paper alone.

6 Related work

[1] has made the environment this paper is based on. They research how well
PPO and Behaviour cloning can work together with human test subjects. They
do prune their data to throw out bad runs, but this is understandable as their
limits on this are quite reasonable (worse performance than a single human).
Their research shows models trained with a human-like model work together
with other humans quite well compared to self-trained models. My paper looks
into whether a centralized critic helps with this or not.

[12] looks into the performance of multiple multi-agent algorithms, and in-
troduces MAPPO as an algorithm. They show MAPPO has good sample effi-
ciency and performs well compared to other algorithms, although they do call
their data an ”empirical analysis”, and say that their paper ”does not directly
analyze the theoretical underpinnings of PPO” (p. 10).

[7] compares Reinforcement Learning methods with centralized agents and
critics and decentralized agents and critics, and they come to the conclusion
that ”policies trained by centralized critics avoid more-biased estimates usually
produced by decentralized critics, but in return suffer more variance in the
training process” (p. 6). It is nice to have such a direct comparison of centralized
and decentralized critics and agents, although our results differ in how much the
centralized critic matters, probably either due to their observation space being
a partial space, or due to the lack of hyperparameter tuning on my end.

9



7 Discussion And Future Research

The original work trains agents both in self-play and Population Based Training
(PBT) [3], however, I have based my work on the latest version of the reposi-
tory to get access to their RLLib implementation (their old implementation uses
TensorFlow’s Stable Baselines) for faster computation and easier implementa-
tion of the centralized critic. This means that I do not have access to the PBT
implementation and cannot run my tests with these agents. This is one area
the future research could expand on.

If I had time to do hyperparameter tuning, I would follow the advice of
Yu et al. [12] and increase the batch size, lower epoch count and tune the
clipping parameter, which would hopefully lead to better final performance,
and faster convergence, so future work could verify if my results still hold with
more specifically tuned hyperparameters.

References

[1] Micah Carroll et al. On the Utility of Learning about Humans for Human-
AI Coordination. 2020. arXiv: 1910.05789 [cs.LG].

[2] Wouter van Heeswijk. Proximal Policy Optimization (PPO) explained.
Jan. 2023. url: https://towardsdatascience.com/proximal-policy-
optimization-ppo-explained-abed1952457b.

[3] Max Jaderberg et al. Population Based Training of Neural Networks. 2017.
arXiv: 1711.09846 [cs.LG].

[4] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Op-
timization. 2017. arXiv: 1412.6980 [cs.LG].

[5] Paul Knott et al. Evaluating the Robustness of Collaborative Agents. 2021.
arXiv: 2101.05507 [cs.LG].

[6] Eric Liang et al. RLlib: Abstractions for Distributed Reinforcement Learn-
ing. 2018. arXiv: 1712.09381 [cs.AI].

[7] Xueguang Lyu et al. Contrasting Centralized and Decentralized Critics in
Multi-Agent Reinforcement Learning. 2021. arXiv: 2102.04402 [cs.LG].

[8] Patrick Nalepka et al. “Interaction Flexibility in Artificial Agents Teaming
with Humans”. In: July 2021.

[9] João G. Ribeiro et al. Assisting Unknown Teammates in Unknown Tasks:
Ad Hoc Teamwork under Partial Observability. 2022. arXiv: 2201.03538
[cs.AI].

[10] John Schulman et al. High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation. 2018. arXiv: 1506.02438 [cs.LG].

[11] John Schulman et al. Proximal Policy Optimization Algorithms. 2017.
arXiv: 1707.06347 [cs.LG].

10



[12] Chao Yu et al. The Surprising Effectiveness of PPO in Cooperative, Multi-
Agent Games. 2022. arXiv: 2103.01955 [cs.LG].

11


