
https://doi.org/10.1109/TQE.2022.3174017
https://doi.org/10.1109/TQE.2022.3174017

Quantum Computing Engineeringuantum
Transactions onIEEE

Received February 25, 2022; revised April 8, 2022; accepted April 27, 2022; date of publication May 10, 2022;
date of current version June 3, 2022.

Digital Object Identifier 10.1109/TQE.2022.3174017

Neural-Network Decoders for Quantum
Error Correction Using Surface Codes: A
Space Exploration of the Hardware
Cost-Performance Tradeoffs
RAMON W. J. OVERWATER1,2 , MASOUD BABAIE1,2 (Member, IEEE),
AND FABIO SEBASTIANO1,2 (Senior Member, IEEE)
1QuTech, Delft University of Technology, 2600 Delft, GA, The Netherlands
2Department of Quantum and Computer Engineering, Delft University of Technology, 2600 Delft, GA, The Netherlands

Corresponding authors: Ramon W. J. Overwater; Fabio Sebastiano (e-mail: r.w.j.overwater@tudelft.nl; f.sebastiano@tudelft.nl).

This work was supported by Intel.
All data and code are available [1] at doi: 10.4121/16539786.

ABSTRACT Quantum error correction (QEC) is required in quantum computers to mitigate the effect of
errors on physical qubits. When adopting a QEC scheme based on surface codes, error decoding is the most
computationally expensive task in the classical electronic back-end. Decoders employing neural networks
(NN) are well-suited for this task but their hardware implementation has not been presented yet. This work
presents a space exploration of fully connected feed-forward NN decoders for small distance surface codes.
The goal is to optimize the NN for the high-decoding performance, while keeping a minimalistic hardware
implementation. This is needed to meet the tight delay constraints of real-time surface code decoding. We
demonstrate that hardware-based NN-decoders can achieve the high-decoding performance comparable to
other state-of-the-art decoding algorithms whilst being well below the tight delay requirements (� 440 ns)
of current solid-state qubit technologies for both application-speci�c integrated circuit designs (<30 ns) and
�eld-programmable gate array implementations (<90 ns). These results indicate that NN-decoders are viable
candidates for further exploration of an integrated hardware implementation in future large-scale quantum
computers.

INDEX TERMS Application-speci�c integrated circuit (ASIC), complementary metal-oxide semiconduc-
tor (CMOS), CMOS integrated circuits, combinational circuits, cryo-CMOS decoding, cryogenic elec-
tronics, digital integrated circuits, error correction codes, feedforward neural networks (NNs), �eld pro-
grammable gate array (FPGA), �xed-point arithmetic, machine learning, NNs, pareto analysis, quantum
computing, quantum-error-correction (QEC) codes, supervised learning, surface codes (SCs).

I. INTRODUCTION
For certain problems, quantum-computing algorithms have
been demonstrated to run with polynomial time complexity,
where classical counterparts would scale with an exponential
time complexity [2]�[5]. This speed-up is ascribed to the use
of quantum bits (qubits) that, unlike classical bits, can exploit
quantum effects, such as superposition, entanglement, and
interference [6], [7]. Unfortunately, the information stored in
the qubits can be lost via decoherence, due to their sensitiv-
ity to their environment. The errors due to decoherence can
be mitigated by adopting quantum-error-correction (QEC)
schemes that encode multiple imperfect physical qubits into

a logical quantum state, similar to classical error correction.
However, while classical bits can be simply copied to intro-
duce redundancy, the quantum no-cloning theorem prevents
the copying of qubits [8], [9], thus calling for ad-hoc QEC
schemes.
The surface code (SC), a planar form of the toric code [10],

is among the most popular QEC schemes thanks to its high
error threshold, scalable 2-D structure and the need for
only next-neighbor interactions [11]. This makes it suitable
for integration in promising solid-state qubit technologies,
such as superconducting qubits [12], [13] and quantum-
dot-based qubits [14]. Although encoding a logical state in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 3, 2022 3101719

https://orcid.org/0000-0002-8101-8434
https://orcid.org/0000-0001-7635-5324
https://orcid.org/0000-0002-8489-9409
https://dx.doi.org/10.4121/16539786

Engineeringuantum
Transactions onIEEE

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

FIGURE 1. Schematic representation of the four smallest distances of the rotated SC. The white dots represent the data qubits, the blue dots the
X -ancillas and the red dots the Z-ancillas. The connections between the qubits correspond to the local interactions whilst performing the measurement
round.

an SC is straightforward, detecting the errors occurring on
the physical qubits typically requires a complex decoder
[15]�[18], as physical qubits cannot be directly measured
without losing quantum information. In addition to the com-
putational complexity of QEC decoding algorithms, the
decoder should run orders of magnitude faster than the
decoherence process affecting the physical qubits, with a
required execution time well below 1 µs for typical solid-
state qubits. This stringent timing requirement has raised
the question whether the decoders need to be implemented
in hardware instead of running in software for even faster
inference [19]. Furthermore, hardware decoders would be
preferred to support the scalability of quantum computers.
Promising candidates for large-scale quantum computers
comprise large arrays of cryogenic solid-state qubits con-
trolled by local electronics also operating at cryogenic tem-
peratures to ensure compactness and reliability by avoid-
ing long interconnects between several temperature stages
[20]�[28]. Thus, the QEC decoder must also run at cryogenic
temperature and an integrated hardware implementation is
favorable to minimize the area occupation (for compact-
ness) and the power dissipation (to comply with the lim-
ited cooling budget of cryogenic refrigerators). Recent work
has demonstrated hardware-based decoders that run fast
enough [29]�[32], but research is lacking on the hardware
implementation of a decoding solution that has the potential
to outperform them all: neural networks (NNs).
NN decoders have attracted large interest, thanks to their

fast and constant inference time and state-of-the-art decod-
ing performance [19], [33]�[40]. The hardware requirements
for NN decoders have been estimated before [19], [38], but
the tradeoffs between hardware cost and performance have
not been explored. This work bridges this gap by focusing
on the hardware implementation of an NN decoder for SC
QEC [33]. First, the relation between decoder performance
and the NN design parameters, such as the number of layers
and their size, the neuron transfer function, signal quanti-
zation, and symmetries, are explored. Then, the tradeoffs
between the decoding performance (error rate, computing
delay) and the hardware cost (area, power) are evaluated for
an implementation on both an application-speci�c integrated

circuit (ASIC) and a commercial FPGA, with explicit atten-
tion to the cryogenic operation of both platforms.
This work demonstrates that hardware NN-based decoders

can achieve the high-decoding performance comparable to
other state-of-the-art decoding algorithms while satisfying
with ample margin the tight delay requirements of current
solid-state qubit technologies. The hardware cost in terms of
silicon area and power quickly increases with NN size and
SC distance. The obtained decoding times are low enough for
future work to explore further optimization of the hardware
costs.
The rest of this article is organized as follows. First, Sec-

tion II gives a short background on decoding the SC. This is
followed by Section III, which shows the proposed decoder.
Next, Section IV outlines the simulation setup. The decoding
performance results and design space exploration are shown
in Section V. The results are combined with the hardware
cost estimations in Section VI. The results are then discussed
in Section VII. Finally, Section VIII concludes this article.

II. DECODING THE SC
The SC, as shown in Fig. 1, is a simple 2-D scalable structure
of physical qubits (denoted by the dots) that only requires
local interactions between qubits (as illustrated by the lines
in between the dots). Only a brief overview of the SC op-
eration is given in this section; the interested reader is re-
ferred to [11] for a complete treatment. This work focuses
on rotated SCs [41], which use the least amount of physical
qubits per logical qubit. Each code has a distance d, meaning
that a perfect decoder can correctly identify a maximum of
(d � 1)/2 physical errors. A rotated SC of distance d consists
of a d × d grid of data qubits (white dots in Fig. 1) that
encode a single logical qubit. The d2 � 1 colored dots in
Fig. 1 represent two types of ancilla qubits. These X- and
Z-ancillas can be measured to �nd the errors on the adja-
cent data qubits without destroying the quantum state of the
encoded logical qubit. This measurement outcome is called
the error syndrome and needs to be continuously measured
to detect errors in every so-called SC cycle. The task of the
decoder is to �nd the errors on the data qubits from this error
syndrome.

3101719 VOLUME 3, 2022

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION Engineeringuantum
Transactions onIEEE

FIGURE 2. CNOT gate sequence. The number on each data qubit
indicates the order in which the four adjacent data qubits are addressed
by both the X -ancilla (blue, on the left) and the Z-ancilla (red, on the
right). This process is performed on each ancilla qubit of the rotated SC
shown in Fig. 1.

FIGURE 3. (Left) Quantum circuits for the commonly used SC cycle
employing Hadamard and CNOT gates. (Right) Equivalent circuit with CZ
and Ry (± �

2) on the right based on [42]. The Ry (± �
2) are denoted as ±. In

both figures, the top circuit shows the circuits for the X -ancillas and the
bottom circuit for the Z-ancillas. The colored qubits are the ancillas. The
other gray qubits are the data qubits surrounding this ancilla. Top to
bottom this is the same order as the 1 to 4 shown in Fig. 2 in the CNOT
dance. Although some Ry (± �

2) seem to cancel, those rotations are
needed as the data qubits are interacting with other ancilla qubits in
between.

A. SC CYCLE
During an SC cycle, all ancillas are �rst initialized into the
ground state |0�. Next, theX-ancillas (Z-ancillas) are brought
onto the x-axis (z-axis) using a Hadamard gate (identity
gate1).
A sequence of CNOT gates is then performed, as shown

in Fig. 2, to entangle each ancilla with its four adjacent data
qubits. In case an ancilla is at the edge of the SC, only the two
neighboring data qubits are used. Finally, the X-ancillas are
brought back onto the z-axis and all ancillas are measured in
the z-basis. This whole cycle is shown in Fig. 3 on the left.

The measurement on each ancilla will return either +1 or
�1, re�ecting the parity of the four (or two) adjacent data
qubits. The set of all ancilla measurements in an SC is called
the error syndrome. After all the ancillas are pushed into a
state, there are still some degrees of freedom of the SC. These
degrees of freedom de�ne the logical state of the logical
qubit. Any operation that does not change the error syndrome
and logical state is called a stabilizer. The following section
shows this in more detail. Measuring the ancillas puts the

1The identity gate (idling) is shown to keep the two execution �ows
synchronized.

FIGURE 4. (a) Product of four stabilizers on the distance 5 SC. (b) Single
logical X -operations. (c) Two logical Z-operations. (d) Two illustrations of
the product of a logical X -operation and an X -stabilizer.

total SC into an eigenstate of all stabilizers where the error
syndrome represents the eigenvalues.
After the �rst measurement cycle, the SC is initialized

and all ancillas will either be +1 or �1. These do not rep-
resent errors, but the random initial quiescent state of the
data qubits. Repeated measurement cycles will keep it in the
same quiescent state. Any change in the error syndrome after
measurement indicates a deviation from the quiescent state
and, thus, an error.

B. LOGICAL OPERATIONS AND ERRORS
To understand how a stabilizer does not change the error syn-
drome [see Fig. 4(a)]. Performing four X-operations (shown
in blue) on the data qubits around X-ancilla 3, does not
change the parity of the (13, 14, 16) Z-ancilla measurements
and, thus, does not change the error syndrome. Similar rea-
soning applies to the Z-operations around Z-ancilla 15. A
product of two stabilizers is performed around X-ancillas 2
and 4. Due to the double X-operation on data qubit 16, an
identity operation is performed on that qubit. It can be seen
that this product of two stabilizers also does not change any
of the adjacent Z-stabilizer measurements and also forms a
continuous loop of single qubit operations.
In general, a product of X- or Z-stabilizers will always

form a closed chain (or loop) of X- or Z-single-qubit op-
erations. Thus, these loops will never change the quiescent
state and the error syndrome. Since an error is modeled here
as a random and nonintentional operation on a data qubit,
errors that, by chance, form loops will not change the error
syndrome and the logical state.
Next, Fig. 4(b) shows a chain of X-operations running be-

tween the top and bottom edge. Such an edge-to-edge chain
performs a logical X-operation. One can check that this does
not affect any of the Z-ancilla parity measurements.

VOLUME 3, 2022 3101719

Engineeringuantum
Transactions onIEEE

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

FIGURE 5. Decomposition of the error E into a product of stabilizers S, a
logical error L, and a pure error P. Of this product, only the pure error
leads to a change in the error syndrome outcome.

Similarly, Fig. 4(c) shows two logical Z-operations, which
should correspond to a logical I-operation. Not altering the
logical state and error syndrome, those operations could also
be written as a product of stabilizers. In general, any even
number of logical operations can be written as a product
of stabilizers and every odd number of logical operations
can be written as a single logical operation and a product of
stabilizers.
Finally, Fig. 4(d) shows a product of a logical X-operation

as a chain between data qubits 2 and 22 with a stabilizer
around X-ancilla 7. A product of these two results in a chain
with the same shape as the one drawn between data qubit
0 and 20 and with the same effect on the logic state. This
exempli�es that any odd number of chains, not necessarily
straight, between the top and bottomwill result in a logicalX-
operation. Similarly, chains between the left and right sides
of the SC result in logical Z-operations.

C. PURE ERRORS
The errors and operators discussed in the previous section
do not change the error syndrome. Note that these operation
chains do not end in the center of the SC. If they do end in
the center, the error syndrome will change. For instance, the
Z-error chain shown in Fig. 5 denoted by the error E starts
at the edge at data qubit 10 and ends in the center at data
qubit 17. As this is not a product of just stabilizers and logical
operators, the error syndrome will be different, in this case at
X-ancilla 8.
As Fig. 5 shows, any stabilizer S or logical operators L

can be applied on top of the error E without changing the
error syndrome. We call any state that gives the same error
syndrome as the original error, and thus is only separated by
stabilizers and logical operators, a pure error P [19], [43].
This pure error can, thus, be logically different from the orig-
inal error E, but it will always give the same error syndrome.
To phrase it differently, any error can be decomposed into a
product of stabilizers, a logical operator, and a pure error.

FIGURE 6. Sketch of the logical versus physical error rate of an
unencoded qubit (black line) and five different distances of the SC. The
pth is shown by colored circles and the decoder threshold by the gray
circle. For a larger code distance, both the slope and the pth increase.

D. DECODING
The purpose of the decoder is to identify an error con�gura-
tion on the data qubits that produces the same error syndrome
as was measured and is logically equivalent to the actual data
error con�guration. In other words, the decoder must output
any data error con�guration that only differs from the actual
data error con�guration by a product of stabilizers. This can
then either be used to immediately correct the errors or can
be tracked for later correction using Pauli frames [44]. The
error syndromemust be the same to ensure that the SC returns
to a logical state. The logical error must also be the same to
prevent logical errors during the computation. As stabilizers
do not in�uence either the error syndrome or the logical state,
they can be neglected.
Since many data qubit con�gurations produce the same er-

ror syndrome, the error syndrome generation is a noninvert-
ible function, thus making it impossible to unambiguously
�nd the real data qubit con�guration. This constitutes the
main challenge for the decoder implementation and necessar-
ily requires the decoder to make an arbitrary choice, which
can be optimal if it is the one occurring with the highest
probability.

E. DECODING PERFORMANCE
In order to quantify the decoding performance, the relation
between the error rate of the logical qubit and the error rate
of the physical qubits must be analyzed, as shown in Fig. 6.
In this �gure, both the logical error rate for an increasing SC
distance (colored lines) and the error rate for an unencoded
physical qubit (black line) are shown. The physical error
rate for which the decoder achieves approximately2 the same
performance independent from the SC distance is de�ned as
the decoder threshold.

2In practice, it is possible that all lines do not cross exactly in a single
point

3101719 VOLUME 3, 2022

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION Engineeringuantum
Transactions onIEEE

FIGURE 7. Model fit of (1) on the simulation of the MWPM decoder for
the distances 3, 5, 7, and 9. The error bars represent the 99.9%
confidence interval.

For any physical error rate in the following, the decoder
threshold, it pays off to invest in a larger distance. The de-
coder threshold is often used as a single parameter to quantify
the performance of a decoding algorithm. However, as shown
in this sketch, operating at this physical error rate will be
outperformed by a single unencoded qubit.
The physical error rate at which the logical qubit will

outperform the physical qubit is called the pseudo-threshold
(pth). The pth is different for every distance and is used to
compare decoders at the same SC distance. A higher pth is
preferred as it allows obtaining an advantage of using QEC
with worse qubits. Even for a �xed physical error rate well
below the pth, a higher pth will still give a lower logical error
rate, assuming a constant slope of the lines in Fig. 6. Thus,
the decoder slope is also an important parameter. Both the
slope and the pth increase when going to larger distances, but
due to the exponential relation, the slope typically dominates
the decoding performance at lower physical error rates.
As this article mainly compares decoders operating at

a certain SC distance, we will focus on comparing the
pth and the decoder slope. The proposed decoders will be
benchmarked against the minimum weight perfect matching
(MWPM) algorithm [15], also known as Blossom or Ed-
monds� algorithm. Although better decoders exist [16], the
MWPM algorithm is adopted as benchmark, as commonly
done in prior works [16], [17], [19], [29]�[33], [35]�[37],
[39], [40].
As an example, Fig. 7 shows the simulated performance of

the MWPM decoder for the smallest four SC distances. The
data are �tted using (1), adapted from [11, eq. 11] where �p
and �l are, respectively, the physical and logical error rate,
and pth, s and c are �tting parameters representing the pth,
the slope for �p � pth and the �attening of the curve for
increasing physical error rates, respectively. The good �tting

TABLE I State-of-the-Art Operation Times for the Two Target
Technologies, and the Resulting SC Duration Assuming the Circuit in
Fig. 3(Right)

of the model up to the decoder threshold in Fig. 7 indicates
that interpolation in the logarithmic domain is necessary to
calculate the pth

�l = pth
�

�p

pth

�s•(1�c•�p)
. (1)

F. HARDWARE REQUIREMENTS AND COSTS
In addition to the decoding performance, decoder implemen-
tations must also be compared based on their hardware re-
quirements (delay) and hardware costs (area and power).
When using quantum error detection with Pauli frames,

the main requirement is the minimum decoder throughput
to avoid a data backlog [11], [44]. In principle, the decoder
can run in parallel with the main algorithm execution and,
to ensure the throughput, the decoding delay should be just
lower than the measurement cycle, but not necessarily much
smaller. However, tracking of errors is not enough when us-
ing non-Clifford gates, and the physical correction of errors
is needed [44]. Since such a correction must be performed
before the next cycle after the error detection, the decoding
can only take a fraction of the cycle time.
The maximum allowed delay in case of transmons and

silicon-based single-electron spin qubits are estimated in Ta-
ble I assuming the SC cycle shown in Fig. 3. For the targeted
qubit technologies, the circuit on the left of Fig. 3 can be
replaced with the circuit on the right [42], [45], as the cz and
Ry(–�/2) gates can be performed faster andmore accurately
in those physical platforms. The minimum reported duration
for each operation is used to obtain the most stringent con-
straint on the delay. Also, the initialization of the ancillas is
neglected [42], [45] to get a lower bound of the estimated
cycle time. For quantum error detection, the delay must be
below 440 ns. However, when including a correction step for
using non-Clifford gates, the delay needs to be as small as
possible. This work will, thus, strive to minimize the delay
and report the corresponding power and area.
Since the decoder is used once per QEC cycle and the cycle

duration is �xed by the qubit technology, the hardware cost
in terms of power is accounted for by computing the energy
per decoding cycle. The dissipated energy per cycle should
be as small as possible to allow for the largest number of
logical qubits before running into the cooling power limita-
tions. When fully integrating the decoder with the qubits on
the same chip (or in the same package), the area must also be
as small as possible to ease the integration requirements [46].

VOLUME 3, 2022 3101719

Engineeringuantum
Transactions onIEEE

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

III. PROPOSED DECODER
In this work, we focus on decoding the smallest four rotated
SCs, see Fig. 1. The goal is to obtain a decoder that has the
high-decoding performance, runs fast enough to avoid a data
backlog, and can be ef�ciently implemented in hardware.
NNs are a promising solution for several reasons. First,

they have shown higher pth compared to other decoders,
such as the MWPM algorithm [19]. They can also adapt to
many error models during training, perhaps even tailored to
a speci�c qubit technology or even an individual quantum
computing sample. After training, their execution (inference)
time is constant and independent of the input. On the one
hand, the inference time of NN decoders in hardware im-
plementations has been estimated before [19], [38], but did
not satisfy the throughput requirement. On the other hand,
these analyzes do suggest that an optimized design on an
ASIC could meet such a requirement. Finally, their regular
structure makes them well suited for hardware optimization
by parallelization and pipelining.
However, they also have their drawbacks. A large enough

training dataset is needed to avoid over�tting. Even though
any dataset can be generated using an error model, the size
requirement of this dataset can still be a problem [33]. Next,
NNs are quite complex and self-trained algorithms that are
dif�cult to thoroughly understand, thus risking unexpectedly
failing in untested situations. On top of that, there are a lot
of additional parameters that need to be optimized during
training [33], [38], making the search space for �nding the
optimum solution even greater. The main challenge, how-
ever, is that NNs are not well suited for direct application
to the decoding problem. Fig. 8(a) shows the NN in such
a direct, so-called low-level decoder (LLD) application. In
this con�guration, the NN takes in the error syndrome and
guesses the error on every data qubit. The goal is that this
data qubit con�guration returns the correct logical error and
also results in the same error syndrome as was measured.
The problem is that the NN has no notion of what such
a valid solution entails. This will limit the chance that a
valid data error con�guration is obtained. Consequently, a
rerun of the algorithm is needed until a satisfying solution is
found. To circumvent this limitation, we adopt the solution
proposed in [19] and use a high-level decoder (HLD). In an
HLD, the task of obtaining any correct error syndrome is
performed by a pure error decoder (PED). This reduces the
task of the NN to �nding the type of logical error, allowing
the NN to be a classi�er, a task that is well suited to NNs,
see Fig. 8(b).
This work focuses on fully connected feed-forward NNs.

Although they show limits in scalability, those can be solved
by opting for more complex topologies, such as convolu-
tional neural networks (CNNs) [39]. However, for near-term
small-distance SCs, we deem that the advantages of fully
connected NNs still outweigh their disadvantages. The fol-
lowing sections will explain the basic functionality of the NN
and the PED chosen in this work.

FIGURE 8. (a) NN in an LLD. This takes the error syndrome as inputs and
gives the data qubit errors as output. (b) NN together with a PED in an
HLD. Here, the PED gives the data qubit errors. The NN outputs the
expected logical error that the PED makes compared to the actual data
qubit errors.

A. PURE ERROR DECODER
The only task of the PED is �nding a con�guration for the
data qubit errors that produces the error syndrome measured
by the ancillas [19], [43]. As shown in Fig. 5, this pure
error will only differ from the actual data qubit errors by a
product of stabilizers and logical operators. As the product
of stabilizers does not in�uence the error syndrome or the
logical error, it can be neglected. Thus, the only signi�cant
difference between the error estimation given by the PED and
the effective error is a logical error. Leaving the task of the
NN to guess the logical error.
The bene�t of this approach is that the guess made by the

PED does not need to be the most probable. As a result, the
PED can be optimized for other properties, and in this work,
we focus on the following three main points.

1) Software simulation speed: As the PEDmust run every
time the NN is run or trained, the speed of the PED
must be maximized.

2) Hardware simplicity: The area and power of the PED
must be minimized.

3) Exploiting symmetries:The SC is characterized by sev-
eral symmetries that can be exploited in the training
of the NN. However, as the NN also learns on the
basis of the PED output, the PED should also show the
same symmetries as the SC for fully optimizing the NN
training.

The algorithm for the PED illustrated in Fig. 9(d) com-
plies with the three abovementioned optimization targets.

3101719 VOLUME 3, 2022

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION Engineeringuantum
Transactions onIEEE

FIGURE 9. Figure illustrating the steps to obtain the PED used in this
work. (a) Boundaries where the error chains end for the ancillas of that
given color. (b) Data qubits are grouped to the corresponding ancillas at
the boundary. (c) Chains of equal length and equal distance apart for all
the Z-ancillas, routing them to the corresponding edge. (d) Chains of
equal length and distance apart for all ancillas.

To understand how this PED is obtained, we recall Fig. 5,
which shows that pure errors form chains of contiguous an-
cilla errors from the inner part to the boundaries. This means
that our PED must �nd chains that connect all the ancilla
errors to the boundaries corresponding to the appropriate
logical error. These boundaries are shown in Fig. 9(a). For
this discussion, wewill �rst focus on the top half (Z-ancillas).
The full decoder can then be obtained by rotating this Algo-
rithm 3 times by 90�.

For any distance, one semiplane has (d2 � 1)/4 (6 for
the example in Fig. 9) ancillas to be routed to the edge. As
highlighted in Fig. 9(b), at the edge, there are (d + 1)/2 (3)
ancillas and d (5) data qubits. As we need only one data qubit
per ancilla, we only need (d + 1)/2 (3) data qubits as well.
For symmetry, we choose to route each ancilla to the data
qubits on the boundary that are equally spaced, as shown in
Fig. 9(c). To be invariant to translations, all (d + 1)/2 (3)
error chains are kept equidistant when moving toward the
boundary. Since we have (d2 � 1)/4 (6) ancillas, each chain
will be (d � 1)/2 (2) ancillas long. By rotating this scheme
3 times by 90�, each ancilla is routed to the boundary as
in Fig. 9(d). Combining this pattern with the numbering as
shown, an algorithm to be executed in software or hardware
can be derived. This algorithm has minimized the length of
the longest chains, making the hardware as fast as possible.
As it turns out this means that all chains have equal lengths.
The resulting algorithm is just a series of XOR gates and

can be described by the iterative formula in (3) with initial

FIGURE 10. Illustration of a computing node in an NN. The picture
shows node j in layer l .

step 2. Here, i indicates the step in the algorithm, starting
from the center at i = 0 to the edge at i = (d � 1)/2 � 1.
E(qi) is the error on data qubit with number qi, and E(ai) is
the error on the ancilla ai

E(q0) = E(a0) (2)

E(qi) = E(ai) � E(qi�1). (3)

The indices qi and ai correspond to the data and ancilla qubits
in Fig. 9(d) and can be calculated as

qi =
�

d � 1
2

+ r • (i + 1) + 1
�

• [t • d + (1 � t)] � 1

+ 2 • c • [d • (1 � t) � t] (4)

ai =
�
d2 � 1

4

�
• [1 + 2 • t] +

�
r � 1
2

+ r • i
�

•
�

d + 1
2

�
+ c

(5)

where t is either 0 or 1 for an X- or Z-chain, respectively, r
is the rotation of the algorithm, being �1 or +1 for left or
right for X-chains and up or down for Z-chains and c is the
speci�c chain. For example, if there is an error on X-ancilla
8, we take a look at t = 0, r = +1, and c = 2. If we plug
these values into (4) and (5), we obtain

qi = 23 + i (6)

ai = 8 + 3i. (7)

The initial step i = 0 says that there is an error at q0 = 23
because there is an error at ancilla a0 = 8. Next, there is also
an error at q1 = 24, as there is no error at ancilla a1 = 11.
This results in the same pure error, as shown in Fig. 5 P. The
output of the PED is the sum of all data errors after running
this iterative process over all chains on both sides of both
ancilla types.

B. NEURAL NETWORK
As mentioned earlier, an NN is used to determine the logical
error made by the error estimation of the PED. The input to
the NN is the error syndrome that consists of all the ancilla
measurements and its output is the estimated logical error,
i.e., one of the possible logical errors. This work uses a fully
connected feed-forward NN, which is a regular multilay-
ered structure consisting of computing nodes. Every node
in a layer is connected to all the nodes in the previous and
following layer, as illustrated in Figs. 10 and 11. There are
two main variations, which are sparsely connected or CNNs,

VOLUME 3, 2022 3101719

Engineeringuantum
Transactions onIEEE

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

FIGURE 11. Illustration of a fully connected feed-forward NN. This work
uses two hidden layers and two outputs as depicted here.

which only connect a selection of nodes between two layers,
and recurrent neural networks (RNNs), which connect the
outputs of a layer back to its inputs, thus obtaining memory.
Effectively these two variations, respectively, decrease or
increase the number of inputs seen by every node, compared
to the basic fully connected feed-forward neural network.
Every node sums its weighted inputs, adds a bias to the

resulting sum and applies a nonlinear function to the result
to generate the output. This is expressed analytically as

a(l)j =
�

i

W (l�1)
j,i • y(l�1)

i + b(l�1)
j (8)

y(l)j = f
�
a(l)j

�
(9)

where yl
i is the output of node i on layer l,W (l�1)

j,i is the weight
to be applied to the output of node i of the previous layer
(l � 1) when contributing to the node j of the layer l, b(l�1)

j is
the bias, a(l)j is the accumulated output, and f (•) is a nonlinear
transfer function (or activation function). The nonlinearity
of the transfer function is crucial to avoid the whole neural
network collapsing into a single-linear layer.
A neural network always contains an output layer. As the

name suggests, all the nodes in this layer produce the outputs
of the neural network. The vector of inputs is sometimes
called the input layer. However, as can be seen in Fig. 11,
this layer does not contain any nodes. If more layers are used
between the input layer and the output layer, they cannot be
directly observed, and are, hence, called hidden layers.
Even though a single hidden layer is enough to map any

function [50], having multiple layers reduces the number of
nodes needed in each layer. Previous work showed us that
two hidden layers perform better than a single layer in terms
of decoding accuracy [33]. Since adding another layer did
not yield any signi�cant improvement, we will focus on two
hidden layers in this work.
The number of inputs of every node depends on the num-

ber of nodes of the previous layer, except for the �rst hidden

FIGURE 12. Overview of the simulation setup used in this work.

layer. In this layer, the number of inputs is equal to the num-
ber of ancilla qubits, i.e., d2 � 1.

The number of nodes in the output layer depends on the
classi�cation scheme. One can use the classi�cation scheme
shown in Fig. 8(b), using four nodes to represent the different
errors. This can either be no error, called a logical identity I,
or one of the logical X , Y , or Z errors. These logical errors
represent the logical difference between the PED output and
the actual data errors. However, this can again lead to dif-
ferent output nodes competing and deciding independently.
For this reason, we choose only two output nodes, one for
signaling a logical X error and the second one for a logical
Z-error. This has the added bene�t of reducing the number
of output nodes, and thus, the weights and size of the neural
network, whilst still keeping the four output classes as no or
both X and Z give I and Y , respectively.

This work opts for the simplest implementation of a fully
connected feed-forward neural network as a �rst step toward
the hardware implementation of NN QEC decoders. More
complex architectures include CNNs, which only connect a
selection of nodes between two layers, and RNNs, which
connect the outputs of a layer back to its inputs to imple-
ment memory capabilities. While CNNs and RNNs would be
more suited for this application when considering scalability
and a more realistic error model, they would only require
small modi�cations in the hardware of the individual nodes,
as CNNs and RNNs, respectively, decrease or increase the
number of inputs seen by every node compared to the ba-
sic fully connected feed-forward neural network. However,
including these options is beyond the scope of this initial
study, as it would drastically increase the search space in
the performance/hardware-cost tradeoffs. At the same time,
thanks to the similarity in hardware, the proposed results can
form the basis for future extensions to these more complex
architectures.

IV. METHODS FOR SIMULATION AND TRAINING
Before delving into the design and optimization of the dif-
ferent parameters of the neural network, the details about
the simulation infrastructure are �rst described. The �ow of
the simulation setup is shown in Fig. 12. First, to generate
a realistic error pattern for both NN training and evaluation,
the data qubit errors are sampled using the depolarizing error
model as discussed in the following section. Those are then
fed to the SC simulator to obtain the corresponding error
syndrome. The error syndrome is passed to the PED, which

3101719 VOLUME 3, 2022

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION Engineeringuantum
Transactions onIEEE

returns the pure error. The pure error is compared with the
actual data qubit errors and the logical difference between the
two is saved as the target output for the neural network. The
error syndrome is also given to the neural network, which
produces a logical error estimate. By comparing such an
estimate to the target logical difference, the correctness of the
estimation can be derived, which can then be used to assess
during the training of the NN or to evaluate its performance.

A. SAMPLING
Since this work only focuses on feed-forward neural net-
works that are unable to deal with measurement errors due
to their lack of memory, we adopted the depolarizing error
model without measurement errors. The error model is im-
plemented by applying a random physical error on each data
qubit in every cycle chosen among a X-, Y -, or Z-error with
equal probabilities p/3. This sampling is done on the �y just
before the neural network is run, without pregenerating a
dedicated training and testing dataset.
Prior work [33] investigated the optimal way of generating

such a dataset without over�tting. To generate their dataset,
they sampled a large number of data qubit error con�gura-
tions and recorded the resulting error syndrome and logical
error of the PED. For every error syndrome, a distribution
of the four resulting logical errors (IL, XL,YL, ZL) was saved.
The neural network was then trained on this �nite error syn-
drome dataset with the target output being the corresponding
logical error distribution until it reached a certain accuracy
on such a training dataset. However, due to the huge space
of possible error syndrome for SC distances larger than 5,
only a small set of all possible error syndromes is represented
in the dataset. Furthermore, the logical error distribution for
each error syndrome is also undersampled. Especially for the
rarer error syndromes, only a single logical error might be
sampled. This will inevitably result in an incorrect training
data set, with no guarantee of generalization and a large risk
of over�tting to incorrect data.
This work proposes a different method. Our simulation

setup does not generate a predetermined �nite dataset. In-
stead, this work keeps sampling new data on the �y only
providing a single syndrome with the corresponding logical
error at each step, which will always be correct. The training
procedure itself will then average out all of these points and
the neural network will learn the error distribution. Over�t-
ting is avoided as all the data will be new, and the neural net-
work will only bene�t from training longer. In addition, since
the dataset is uncorrelated, the resulting logical error rate at
the end of the training will always represent the performance
of the neural network. Thus, instead of �nishing training by
matching the training dataset, our work stops training when
the current decoding performance is saturating or deemed
suf�cient.
The work in [33] found that training at a certain physical

error rate will optimize the performance of the neural net-
work at that physical error rate. Because we want to optimize
the performance at the pth, we sample at the physical error

rate corresponding to the pth of the MWPM algorithm for
that distance.

B. TRAINING AND TESTING
The training is done using the ADAM optimizer [51] with a
batch size of 4992. As we have no �nite dataset to optimize
for, we trained the neural network for 300 000 batches. This
results in a total dataset of � 1.5 × 109 for each training.
Fig. 14 plots the logical error rate during training per iteration
of 2000 batches on the largest used neural network, showing
the performance saturation after 150 iterations. The testing
after training is done similarly to training. We again run 2000
batches to obtain the desired statistical accuracy. This is done
for several logarithmically spaced values in a range between
0.03 and 0.3. As can be seen in Fig. 7, this range includes the
pth, the decoder threshold, and clearly shows the slope differ-
ence. To obtain the slope, a �t is performed using the model
in (1), and to obtain the pth, we interpolate the two values
above and below the ler = per line in the logarithmic domain.
The reported variance used in the con�dence interval is the
sum of the variances of these two points. For the simulations
that include quantization, this process is repeated for every
combination of quantization levels and regularization levels.
All training and testing were done on custom-written code

in C++ and Cuda, which was run on NVIDIA Tesla K40
GPUs over a span of a couple of months. All code is available
at [1].

C. COST FUNCTION FOR QUANTIZATION
Due to the targeted hardware implementation, some addi-
tional regularization terms are added to the typical mean-
squared-error cost function used during the NN training. The
process is illustrated in Fig. 13. Usually, the weights are ran-
domly initialized in a certain range [see Fig. 13(a)]. During
training, the weights expand outward [see Fig. 13(b)] [52],
which usually is not a problem for weights using the �oating-
point representation. However, if we want to quantize those
weights to a set of discrete levels [see Fig. 13(c)], issues
arise when limiting the number of bits used in quantization.
If, for example, all the weights are quantized between �1
and +1, all weights outside this region are clipped to �1 and
+1 [see Fig. 13(d)]. To push the weights toward 0 during
training, we can add the sum of all squared weights |w|2
to the cost function [see Fig. 13(e)] [52]. This will push
less important weights to zero and decrease the average size
of all weights. Another problem is that before quantization
all the weights are uniformly distributed between the –1
range. To minimize the quantization error, we can also try
to push the weights toward certain quantization levels during
training [see Fig. 13(f)]. This can be done by adding the sum
of the squares of the difference between every weight and
the nearest quantization level |w � wq|2. Combining the two
[see Fig. 13(g)] results in the following cost function:

�
(y � t)2 + r •

��
|w|2 +

�
|w � wq|2

�
(10)

VOLUME 3, 2022 3101719

Engineeringuantum
Transactions onIEEE

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

FIGURE 13. Method adopted for training to optimize the representation
of the weight using fixed point rather than floating point. This involves
using weight regularization to push the weights toward zero and toward
the nearest quantization level. The weights and outputs are then
quantized after training.

FIGURE 14. Logical error rate during training for a distance 9 code with
the maximum neural network used in this work (hidden layer sizes: 256
and 64), comparing to the MWPM decoder the final error rate for
different transferfunctions (TanH and SQNL) and for the use of the
rotational symmetry (0 or 1). The error bars show a confidence interval
of 99.9%.

where y is the output, t is the target output, w is the value of
the weight, and wq is the quantized weight. The additional
scaling term r decreases the in�uence of the weight regular-
ization compared to the output error.
To further decrease the quantization error, a different num-

ber of quantization bits can be used to sample the weights
than is used for the regularization. An example where we
sample with an additional bit is shown in Fig. 13(h). The

�nal reported performance is the optimum over all possible
regularization bits. Finally, because we use two�s comple-
ment signed �xed-point numbers, the discussion mentioned
above should be in the range [�1, 1 � 1/2b�1], where b is
the number of bits.

V. DECODING PERFORMANCE RESULTS
The main objective of this work is to minimize the com-
plexity of the neural network used in the HLD, while still
obtaining a competitive decoding performance. Reducing the
complexity implies a reduction in the number of free param-
eters. For instance, this can be done by reducing the size of
the neural network, or by constraining the architecture and
weights. Constraining should be done with care [53], but can
reduce the size while still improving the performance [54].
An example is CNNs, where the connectivity is limited and
weights are reused.
In this work, we focus on four tuning knobs that in�uence

both the decoding performance and the hardware cost: the
rotational symmetry, the transfer functions, the layer sizes,
and the number of bits used for quantization. When looking
at these parameters, we will compare the obtained decoder
slope and the pth. First, the in�uence of rotational symmetry
is determined. Next, different transfer functions are com-
pared. These results are then used in a layer-size sweep and
in a bit-width sweep for the quantization.

A. ROTATIONAL SYMMETRY
This work focuses on fully connected neural networks, thus
leaving exploration of other SC symmetries using CNNs for
future work. However, the rotational symmetry of the SC
and our PED can be investigated. The weights of the neural
network can be copied and rotated four times. If we then
use an initial neural network with a quarter of the size, the
number of independent weights is divided by four, while still
keeping the same total amount of weights and connectivity.
This will both reduce the hardware cost by reducing on-chip
memory, and ease the optimization during training.
In order to compare the performance difference between

rotating the neural network or not, we ran simulations for all
different distances, transfer functions (TanH, ReLU, SQNL,
see following section), and layer sizes (from 4 to 256). For all
these simulations, both a version with and without rotational
symmetry is trained. The pth and slope have been extracted
and the averages over the different transfer functions and
layer sizes are presented in the top two rows of Table II. The
average is calculated by taking the geometric mean of the
ratio between including and excluding symmetry for every
con�guration. If the ratio is larger than 1, an improvement
is found by rotating. Since the performance for some con-
�gurations was too low, resulting in an unde�ned slope or
pth, those con�gurations were excluded from the computed
average.
We �nd that including rotational symmetry has a positive

effect on both the pth and the slope for all distances. This is
mainly attributed to the training having an easier time �nding

3101719 VOLUME 3, 2022

