

Delft University of Technology

What is Pseudocode?

de Weerdt, Mathijs

DOI
10.4233/uuid:8af9f012-24ff-4cb0-95a3-f740ed52d047
Publication date
2019
Document Version
Final published version
Citation (APA)
de Weerdt, M. (2019). What is Pseudocode? Delft University of Technology.
https://doi.org/10.4233/uuid:8af9f012-24ff-4cb0-95a3-f740ed52d047

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:8af9f012-24ff-4cb0-95a3-f740ed52d047
https://doi.org/10.4233/uuid:8af9f012-24ff-4cb0-95a3-f740ed52d047

Delft University of Technology

Report - EEMCS, Algorithmics by M.M. de Weerdt

What is Pseudocode?

Nov. 1, 2019

What is Pseudocode?

Mathijs de Weerdt

November 1, 2019

Abstract

Pseudocode is a clear, compact, unambiguous description of an algorithm or
computer program aimed to communicate this to people.

1 Introduction

When presenting and discussing algorithms, we often refer to the “pseudocode” of the
algorithm. This is often the most precise description of the algorithm that is used to
explain it, and therefore it is very important that we can all read and write pseudocode.
However, there is no single language definition of pseudocode. Syntax varies across
books (and slides) and scientific papers, sometimes even from the same authors. In this
note I explain what pseudocode is, what it is used for, and provide concrete guidelines
for writing pseudocode. The resources I used can be found at the end of this note and
include early books on programming such as by Aho and Hopcroft (1974); Sahni and
Horowitz (1978); Baase (2009).

2 What is the goal of pseudocode?

Pseudocode is a clear, compact, unambiguous description of an algorithm or computer
program aimed to communicate this to other people. This is thus in contrast to code
expressed in a programming language, which is primarily aimed at communicating an
algorithm (or more generally, computing instructions) to a compiler for processing by a
machine. Pseudocode is a compromise between the understandability of English and the
precision provided by a programming language, and therefore is more informal and high-
level than code, but is more structured and precise than English. Software engineering
issues such as data abstraction, modularity and error handling are often ignored in order
to convey the essence more concisely (Cormen et al., 2001).

There can be several reasons for communicating an algorithm or program to other
people, and one or many may apply in each specific situation:

• for yourself, while you are thinking about how to program, before you start to
program,

1

• to efficiently communicate your main idea for a new algorithm to discuss and
improve it together with others (such as in a team of developers),

• to explain how to solve a problem such that others can implement this algorithm,

• to explain the main concept behind a large piece of code, such that others can use
or adapt it more effectively (as in reference documentation, or developing software
in a team),

• to explain functionality to non-programmers,

• to explain how to efficiently solve a problem, so that others can verify its runtime
bound, correctness or optimality, or

• to enable proving a runtime bound, correctness, or optimality of the algorithm
yourself (and explain this to others).

The focus of pseudocode is therefore on readability ; and when writing, the main
criterion is whether the intended goal of communicating to the intended audience is
reached effectively. In principle, pseudocode is independent of a specific programming
language, but, depending on the goal and audience, it could be a bit stylized towards a
certain language, i.e., one which most readers are familiar with.

3 Guidelines for writing pseudocode

For writing pseudocode some guidelines and general principles are available. These
guidelines assume the reader has some understanding of what an algorithm is (i.e., the
steps you must take to achieve a specific goal), how a typical flow looks like (a sequence
of statements, iterations, and conditional statements), and which English words are used
to represent this.

Before presenting the algorithm, make sure the reader understands the aim of the
program. For example, describe the problem by giving a concise description of the
expected input and intended output.

Then, for the pseudocode, aim to follow these principles:

• Follow guidelines for good code (e.g. follow variable naming conventions, refrain
from using break/goto).

• Follow guidelines for proper English (e.g. check spelling and refrain from using
slang).

• Use simple non-technical terms where possible: use the vocabulary of the applica-
tion domain (and not that of a programming language). For example: use “Extract
the next word from the line” instead of “Set word to get next token” (Instructional
Software Research and Development Group, 2007).

• Make sure that your pseudocode can be understood to mean exactly one thing (no
ambiguity).

2

3.1 Basic constructs, notation and layout

In more detail, the following guidelines can be followed to meet those principles:

• Express each statement or action on its own line.

• Include programming constructs that are common in most (imperative) program-
ming languages whenever applicable (for, while, repeat/until, switch/case, return,
if/then/else, etc.).

• Use indentation of the inner parts of loops, if statements, and methods/function
bodies (this is preferred over begin/end for conciseness).

• Let keywords and commands stand out clearly (e.g. using bold face).

• Use comments, indicated using a clear symbol and layout (e.g. ‘//‘ and position
to the right of the code).

• For assignments (e.g., of 42 to x) you may use either x← 42 or x := 42. These are
preferred over x = 42, because this can then be reserved for the logical statement
of whether x is equal to 42.

• Refrain from using language-specific constructs such as using a dot for a method
call to an object (as in this.example()).

• When methods are using parameters, assume they are passed on by value (i.e., a
copy is assumed to be made).

Generally, aim to be concise. So include essential details such as the initialisation
of variables and return and/or print statements, but leave out unnecessary or obvious
details, such as type declarations if this is clear from the context, the implementation of
datastructures (unless you are explaining the inner workings of a datastructure), and a
sorting routine (unless you are explaining the inner workings of it).

For example, never present a direct copy of your (Java) code (because that is harder to
read for humans and contains unnecessary details). Check for balance. If the pseudocode
is hard for a person to read or difficult to translate into working code (or worse yet,
both!), then something is wrong with the level of detail you have chosen to use. If you
need to explain, include this explanation (Godse and Godse, 2008).

A good test is to transfer your pseudocode into code (without thinking too much
about it), test whether it works, correct your code until it does, and then go back to
your pseudocode to see if you missed something.

3.2 Advanced constructs

When writing for advanced readers, such as (fellow) scientists in mathematics or com-
puter science, also concepts from basic mathematics may be used inside the pseudocode,
such as vectors, sets and operations on these (min, max, union, etc.). The extent, how-
ever, to which you can do this depends on the context: 1) who is your audience, and 2)

3

sort the breakpoints, so that 0 = b1  b2  · · ·  bn

bn L
S {0} . Selected breakpoints
x 0 . Current breakpoint
while x 6= bn do

let p be the largest integer such that bp  x + C
if bp = x then

return No solution
end if
x bp

S S [{p}
end while
return S

1

Figure 1: An algorithm which greedily selects breakpoints such that two subsequently
selected points never are further apart than C. This example has been made using the
LATEX package algpseudocode (algorithmicx).

what do you aim to convey: if a factor of n is important for the runtime analysis, do
not write finding the maximum x of an unsorted set S as x← maxS but as a for-loop:

1 max← −∞
2 for x ∈ S do
3 if x > max then
4 max← x

5 return max

If (the level of) your audience is unknown, make sure that at least your peers can
implement the code and obtain the solution without understanding the algorithm.

3.3 Technicalities

Besides explaining an algorithm in plain text or markdown or formatting it with a
WYSIWYG editor/presenter tool, there are several LATEX packages and visualization
tools available (Hansen et al., 2002) that automatically generate a consistent represen-
tation.

4 Examples

This note is concluded with a number of examples, for different audiences and using
slightly different visualizations.

• For a second-year undergraduate course on algorithm design: see for example
pseudocode in books like by Cormen et al. (2001) or Kleinberg and Tardos (2005),

4

1 if C = ∅ then
2 return True
3 else
4 Select a clause c ∈ C. Let L1, L2, and L3 be the literals of c.
5 Assign the variable in L1 such that it is true; let C1 be the set of clauses

from C updated with this assignment.
6 Assign the variable in L1 such that it is false, in L2 such that it is

true; let C2 be the set of clauses updated with these assignments.
7 Assign the variable in L1 and in L2 such that these are false, and in

L3 such that it is true; let C3 be the set of clauses updated with these
assignments.

8 if a clause in C1 is False then
9 c1 ← False

10 else
11 c1 ← Solve3SAT(C1)
12 if a clause in C2 is False then
13 c2 ← False
14 else
15 c2 ← Solve3SAT(C2)
16 if a clause in C3 is False then
17 c3 ← False
18 else
19 c3 ← Solve3SAT(C3)
20 return c1 or c2 or c3

Algorithm 1: Solve3SAT(C)

Input: Weighted directed graph G = 〈V,E〉; vertex ordering d : V → {1, . . . , n}
Output: Distance matrix D, or inconsistent if G contains a negative cycle

1 G← DPC(G, d);
2 return inconsistent if DPC did;

3 ∀i, j ∈ V : D[i][j]←∞;
4 ∀i ∈ V : D[i][i]← 0;
5 for k ← 1 to n do
6 forall j < k such that {j, k} ∈ E do
7 forall i ∈ {1, . . . , k − 1} do
8 D[i][k]← min {D[i][k], D[i][j] + wj→k};
9 D[k][i]← min {D[k][i], wk→j + D[j][i]};

10 return D;
Algorithm 2: Snowball (Planken et al., 2012)

5

or the example in Figure 1 of greedily selecting a subset of breakpoints S from a
list of breakpoints such that any two closest points in S never are further from each
other than a distance C. This example has been made using the LATEX package
algorithmics.

• For a graduate course on exact algorithms for NP-hard problems, an algorithm for
solving the 3-satisfiability problem given a formula in 3-conjunctive normal form,
i.e., represented by a set of clauses C with each three literals. This (recursive)
pseudocode is formatted using the LATEX package algorithm2e, see Algorithm 1.

• For a scientific paper on a fast polynomial algorithm for all-pair-shortest-paths,
please see Algorithm 2. This algorithm computes all pair-wise shortest path lengths
D given a graph with edges E and edge-lengths form k to j denoted by wk→j .

• Finally, from a scientific paper on a charging scheduling problem where each task
i has a deadline, a value vi, and some total demand mi, and there is a supply mt

during each time step t, and the objective is to schedule a subset of these tasks
that have the highest total value (de Weerdt et al., 2018). The pseudocode is given
using a LATEX numbered list, i.e., enumerate:

1. Sort all charging task triples on deadline (increasing, with arbitrary tie-
breaking).

2. Let M1,M2, . . . ,Mn be the cumulative supply at the deadlines of tasks 1, 2, . . . , n—
that is, Mi =

∑di
t=1mt—and let M0 = 0.

3. Run a dynamic program based on the following recursion (where m denotes
the remaining cumulative supply available for the first i tasks):

OPT (m, i) = 
0 if i = 0

OPT (min {m,Mi−1} , i− 1) if m < wi

max {OPT (min {m,Mi−1} , i− 1) ,

vi + OPT (min {m− wi,Mi−1} , i− 1)} otherwise

where the first call is OPT (Mn, n).

4. Recover the set of tasks that get allocated and match this to resources to find
a concrete possible allocation.

References

Aho, A. V. and Hopcroft, J. E. (1974). The design and analysis of computer algorithms.
Pearson Education India.

Baase, S. (2009). Computer algorithms: introduction to design and analysis. Pearson
Education India.

6

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to
Algorithms. The MIT Press.

de Weerdt, M., Albert, M., Conitzer, V., and van der Linden, K. (2018). Complex-
ity of Scheduling Charging in the Smart Grid: Extended Abstract. In Proc. of the
17th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2018), pages 1924–1926. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS).

Godse, A. P. and Godse, D. A. (2008). Fundamentals of Computing and Programming.
Technical Publications Pune.

Hansen, S., Narayanan, N. H., and Hegarty, M. (2002). Designing educationally effective
algorithm visualizations. Journal of Visual Languages and Computing, 13.

Instructional Software Research and Development Group (2007). Structured system
analysis and design. Tata McGraw-Hill.

Kleinberg, J. and Tardos, É. (2005). Algorithm Design. Pearson.

Planken, L. R., de Weerdt, M. M., and van der Krogt, R. P. J. (2012). Computing All-
Pairs Shortest Paths by Leveraging Low Treewidth. Journal of artificial intelligence
research, 43:353–388.

Sahni, S. and Horowitz, E. (1978). Fundamentals of computer algorithms. Computer
Science Press.

7

