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Preface

This thesis is about dynamics, a field of physics concerning motion of matter. Quietly, dy-
namics plays a large role in our daily life, from music we listen to the path of the moon we
look at during night. It’s quite fascinating that a lot of those dynamic events can be described
by mathematics, giving us understanding, the ability to make predictions and the knowledge
for new designs, enabling the impossible. Wondering serves as a point of departure for ask-
ing questions, driving research to new fields every time. This thesis aims to answer some
questions, although in the end, new rose. I hope that during reading this thesis, you will be
fascinated about the wonderful world of nonlinear dynamics, and perhaps further discover it.

Master of Science Thesis V. Bos



viii Preface

V. Bos Master of Science Thesis



Acknowledgements

I would like to thank my supervisor prof.dr. P.G. Steeneken for offering me this wonderful
project and the many interesting discussions we’ve had.

I would also like to thank dr.ir. F. Aljani for his help, especially on the numerics, and ir. A.
Keşkekler (A.Keskekler-1@tudelft.nl), for involving me in his project and sharing experimental
results.

Furthermore, I would like to thank Willian for his nice company while travelling to Delft every
day. Last, I would like to thank my fellow students in the office for their fruitful discussions
and encouragements.

Delft, University of Technology V. Bos
January 18, 2020

Master of Science Thesis V. Bos



x Acknowledgements

V. Bos Master of Science Thesis



Chapter 1

Introduction

Micro and nano structures open up a world of new possibilities for sensors and actuators.
For their performance, efficient energy handling (expressed in the quality factor) is very
important. Bad energy management is related to high damping, yielding low sensor sensitivity.
Graphene is a new, ultra strong material, but suffers from high damping. The physical
mechanism behind this is still unknown. Possibly, nonlinear dynamics play a role in this
damping mechanism as it can create ’mode coupling’. To illustrate the interaction between
damping and this ’mode coupling’, two examples are given in the following.

Imagine two neighbours living in a semi-detached house. The first habitant is very sparing,
and buys double-glazed windows to keep all warmth inside. The second habitant is a student,
not caring about warmth or durability, leaving open all windows. Despite the efforts of our
sparing fellow to prevent heat flow to the environment, he still has to burn gas, as heat flows
through the partition-wall to the student’s house. The coupling between the two houses limits
the maximum energetic efficiency he can get.

In dynamic structures, the same can happen. For example, consider an A-string on a guitar.
When it is played gently, you can hear it’s fundamental tone, and very softly, the higher
harmonics. While listening, the pitch remains steady, as all energy remains in the tones
you put it with your finger. Waiting patiently, the sound fades out as energy is lost to
the surrounding air. However, when touching the string more boldly, something special
may happen. The higher harmonics tap energy from the fundamental A-tone, generating
a broader sound. This coupling is due to nonlinear dynamic effects, which arise at large
vibration amplitude.

Modelling nonlinear dynamics proves to be very challenging and requires extensive compu-
tational resources, or is simply impossible. The only possible approach is to simplify the
problem, while preserving the nonlinear character.

Therefore, the value of this work is two-sided. First, methods are presented to obtain nonlinear
coupling, which could be used for very different purposes. Second, presented methods are used
to investigate how this nonlinear coupling serves as a damping mechanism.
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2 Introduction

Research questions

From the preceeding problem statement, the research question can be defined as follows:

How can the nonlinear dynamics of a structure be described in a simple model using
Finite Element Modelling (FEM) and to what extend do those nonlinearities limit
the quality factor?

To answer this, the following sub-questions are formulated:

1. How can a simple mathematical model be built to describe the nonlinear dynamics of
a structure using FEM?

(a) Which approaches exist to model nonlinear dynamics and which one is most suit-
able for non-analytic, multi-physical models?

(b) How can the selected method be implemented and improved such that it can be
used for 2D structures?

(c) How can in-plane dynamics be modelled using eigenmodes?

2. How does nonlinear stiffness influence the dynamic behaviour of simple structures?

(a) What nonlinear dynamic effects can be observed numerically during direct forced
vibration of simple structures?

(b) What nonlinear dynamic effects can be observed during parametric excitation of a
string or circular membrane?

(c) To what extend does the dynamic response of a square or circular membrane
resemble experimental results?

(d) To what extend can Fermi-Pasta-Ulam (FPU) behaviour be observed during free
vibration of strings and membranes?

3. How can the energy flow due to nonlinear mode coupling be described?

(a) How can mode coupling damping be extracted from free vibration simulations?
(b) How does mode coupling damping in membranes depend on initial conditions like

vibration energy and noise temperature?
(c) How does mode coupling damping in membranes depend on geometric properties

like diameter and aspect ratio?

Thesis outline

In chapter 2, the first sub-question is treated. Different methods from literature are discussed,
whereafter the most promising is selected. The chapter continues describing the improvement
and implementation of the selected method. In chapter 3, the implemented method is used
to analyse a couple of simple structures. Several nonlinear dynamic effects are shown, and
finally compared to experimental data from literature. Chapter 4 focusses on mode coupling

V. Bos Master of Science Thesis
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damping, the final goal of this work. Energy flow is described qualitatively as a function of
different parameters, to capture the effect. Results are discussed in chapter 5, leading to the
conclusion written in chapter 6. Recommendations regarding future work are mentioned in
chapter 7, finalizing this thesis.
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Chapter 2

Methods

This chapter describes the methods used to analyse dynamics of (geometric) nonlinear struc-
tures. Besides, it serves as a guide for someone who would like to use the developed code
himself, or perform a comparable study.

In section 2-1, a brief introduction is given into the modelling of nonlinear dynamics. Section
2-2 continues discussing existing approaches, followed by a detailed explanation of the Stiffness
Evaluation Procedure (STEP). Then, section 2-4 treats the difficulty of in-plane mode han-
dling, proposing several solutions. Finally, section 2-5 elaborates on the implementation of
the STEP method.

2-1 Introduction

2-1-1 Sources of nonlinearity

Most physical laws are nonlinear. Fluid mechanics describes dozen of nonlinear effects, partly
only known by empirical relations. In structural mechanics, several sources can be identi-
fied. The kinematic relations (describing the relation between displacements and strains)
are quadratic and coupled, and also most damping mechanisms are nonlinear. On top of
that, structures can be coupled to nonlinear forces like magnetic or electric, or exhibit fluid-
structure interaction.

In structural mechanics, vibration amplitudes remain usually small and nonlinear effects can
be neglected (or linearised). However, structures with high aspect ratio can have low bending
stiffness in one or more directions, allowing for large displacements. Here, nonlinear effects
become important. Typical structures are strings, thin beams, plates and membranes. For
structures with both ends fixed, stretching of the midplane causes the out-of-plane stiffness to
increase for large displacements (hardening). Furthermore, cantilevers show nonlinear effects
related to inertia. Due to large displacements, a nonlinear coupling arises between axial and
transversal vibrations, affecting the effective inertia.
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6 Methods

This project mainly focusses on static nonlinearities (nonlinear stiffness) which arise from the
nonlinear kinematic relations.

2-1-2 Reduced Order Model (ROM)

Predicting the dynamic behaviour of geometric nonlinear structures can be challenging, as
it may require huge computationally resources. In order to simplify the problem, a reduced
order model can be constructed, including non-linearities. Predicting the behaviour by solving
the equations now becomes feasible. To add nonlinearities to a reduced order model, a few
methods are available. This work mainly focusses on geometric nonlinear stiffness. However,
the methods could also be used for other sources of nonlinearity. In the following chapter, the
implementation of a method proposed in literature is described including some improvements.
In the appendix an example of the used techniques applied to a simple 2 degree of freedom
(dof) structure can be found.

Linear reduced order models

Modelling the dynamics of a structure can computationally be very expensive. Modal analysis
allows for splitting up the structure according to it’s harmonic behaviour. Each eigenmode
describes the vibration at a certain frequency, and according to the spatial and harmonic
content of the loadcase a proper selection of eigenmodes can be made. This set of eigenmodes
is the basis for the reduced order model, which is computationally way cheaper to solve. After
applying the loadcase and initial conditions, the problem can be solved easily. The solution
is transformed back to the physical domain to obtain the result. This method is well known
and straightforward for linear systems. For systems having nonlinear behaviour that cannot
be neglected, the method is still very useful, but has to be extended.

Nonlinear reduced order models

Nonlinear reduced order models include nonlinear terms in the reduced set of equations. Those
could be any type of nonlinear functions. However, as most functions can be approximated
well by Taylor series for a limited range around a certain point, usually quadratic and cubic
terms are introduced. They can describe symmetric and non-symmetric behaviour as well as
coupling between modes.
The nonlinear terms in the reduced equations can directly yield from the full set of equa-
tions describing the complete system. Another way is to determine the nonlinearities for each
eigenmode after the reduced basis is formed. This could be done both numerically or experi-
mentally. In the next section, some methods to construct a nonlinear ROM are discussed.

2-2 Methods for identification of modal nonlinear stiffness

There exist at least 3 methods to identify nonlinear stiffness in the modal domain. For simple
structures, analytical methods can be used. Some examples of feasible structures are given in
section 2-2-1. For more complicated structures, methods based on FEM are available. Those
are discussed in sections 2-2-2 and 2-2-3.
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2-2 Methods for identification of modal nonlinear stiffness 7

2-2-1 Analytic approach

For structures that can be described by continuous mathematical functions, an analytical
approach could be used. The great benefit of this method is that the obtained values can be
still a function of structure properties like Youngs’s modulus and thickness. This provides
insight in the mechanisms behind the obtained values. The results are usually used as a
reference for other methods. Usually, some assumptions are made to simplify the equations,
such that they become suitable for analytical methods. In literature, some structures are
analysed, for example:

• a string (fixed-fixed, 2D, with pre-stress, without bending stiffness [1], [2])

• a beam (simply supported, 2D, nonlinear bending stiffness [3])

• a circular membrane (fixed, 2D axisymmetric, without bending stiffness [4])

• a circular plate (free at the edge, 2D, nonlinear bending stiffness [5])

To apply this method, fundamental knowledge of the mechanics as well as a good understand-
ing of nonlinear differential equations is required. Due to the complexity of the nonlinear
partial differential equations, results may look at first sight quite incomprehensible, making
it less accessible.

2-2-2 FEM elementwise approach

For more complicated structures, a FEM based method should be applied. K. Markestein
proposed a method [6] in which the modal nonlinear stiffness could be obtained from the
elemental nonlinear stiffness. This method is fast and precise. However, it should be im-
plemented in the FEM package itself, which has to be accessible. Second, it can only work
with the elements available in the package. Third, in-depth knowledge about FEM and the
governing physics is required. Fourth, static condensation (on which will be elaborated in
section 2-4-2) is not easily applicable.

2-2-3 STEP

Another FEM based method was proposed by Muravyov and Rizzi [7], called Stiffness Eval-
uation Procedure (STEP). The method constructs modal nonlinear stiffness terms from a
set of solutions to static loadcases. Therefore, it requires a FEM package which can handle
geometric nonlinearities, but requires no access to the FEM source code.

As the method requires a set of static analysis, the procedure can be regarded slower than
Markensteins’s method. However, all static problems are independent of each other (they do
not require the solution of another problem), so it is perfectly suited for parallel computing.
As any FEM package fulfilling the requirements can be used, a broad range of elements can
be used. Moreover, also nonlinear stiffness due to other physical effects could be captured.
Besides, no in-depth knowledge is required of the physics and discretization. Importantly, in

Master of Science Thesis V. Bos



8 Methods

this thesis it is shown that for 2D structures, static condensation can be easily integrated in
STEP (section 2-4-2), which can significantly reduce computational cost.

As the STEP method is regarded very promising, it is extensively discussed in the next
section.

2-3 STEP

The STEP method is explained in two papers of Rizzi and Muravyov, applying the method to
a fully clamped beam and a plate [7]. Here, it will be briefly explained in a more descriptive
way. First, the method is located in the complete modelling process (section 2-3-1). There-
after, the method is explained and illustrated by some schedules in section 2-3-2. Finally, a
mathematical description is given in section 2-3-3.

2-3-1 Modelling overview

Modelling of nonlinear dynamics using the STEP method is summarized in Figure 2-1:

Reality

Physical model

Discrete model 
(nonlinear)

Linear model

Linear reduced
order model (ROM)

Nonlinear ROM

Modal solu�on

Nodal solu�on

Physical solu�on

Interpreta�on

STEP

Figure 2-1: Overview modelling nonlinear dynamics using STEP method. The method is located
after the construction of a linear ROM. Besides, it uses information coming from the full nonlinear
model (indicated as the dotted line). Using this information and the linear ROM, the nonlinear
ROM is constructed.

The method pops up after the linear reduced order model is defined, and uses the full nonlinear
FEM model to extract the nonlinear modal stiffness. In the following sections, it is explained
more detailed.
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2-3 STEP 9

2-3-2 Procedure

The linear reduced order model consists of a set of decoupled linear equations, each describing
the linear dynamics of a mode (figure 2-2, part a). However, in reality each mode also exhibits
a nonlinear stiffness (figure 2-2, part b) (This information was lost when the structure was
linearised in order to perform a modal analysis.) The nonlinear stiffness can be identified
(figure 2-2, part c) by prescribing a displacement ∆x and evaluating the needed force Fe (the
system can be solved statically as we impose zero velocity and acceleration). Using this result,
the nonlinear stiffness coefficient b can be determined.

𝑚

𝑚𝑥 + 𝑘𝑥 = 0a

𝐹1
𝐹2

𝑚

𝐹𝑒

𝑏Δ𝑥3 = 𝐹𝑒 − 𝑘Δ𝑥

Δ𝑥

𝐹1 = 𝑘𝑥 𝐹2 = 𝑏𝑥3

𝑚

𝑚𝑥 + 𝑘𝑥 + 𝑏𝑥3 = 0

𝑥

𝐹1 = 𝑘𝑥

b c

Figure 2-2: STEP method: 1) Linear uncoupled system obtained from modal analysis 2) In
reality, nonlinear stiffness is present 3) The nonlinear stiffness can be identified by prescribing a
modal displacement and evaluating the modal force

The last part (figure 2-2, part c) can be subdivided into the following actions (shown in figure
2-3):

1. Define a set of displacement fields u. Each field is a linear combination of the linear
eigenvectors φ included in the ROM consisting of L modes. The contribution of each
eigenvector is indicated by it’s modal amplitude qj , such that uk = ∑L

j=1φjqjk. In
Figure 2-3b, this is illustrated for u = φ1q1.

2. Subject the full nonlinear model to the set of prescribed displacement fields u and
compute nodal reaction forces F (Figure 2-3c)

3. Map nodal reaction forces F to modal forces f (Figure 2-3d)

4. Determine nonlinear stiffness terms (b1 in the example) (Figure 2-3e)
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𝑞1𝝓1

𝑭(𝒖 = 𝑞1𝝓1)

a

𝑓1 = 𝝓1
𝑇𝑭

𝑏1𝑞1
3 = 𝑓1 − 𝑘1𝑞1

b

c

d

e

Figure 2-3: STEP method: a) undeformed configuration b) prescribe displacement field c)
evaluate nodal reaction forces d) calculate modal force e) solve for nonlinear stiffness coefficient

In this way, all nonlinear stiffness coefficients can be determined, including those coupling the
mode to each other. A mathematical description is given in the next section.

2-3-3 Step method: mathematical explanation

The following part is a shortened copy (literal citation) of part of the paper of Muravyov and
Rizzi [7], which describes the STEP method, and is reproduced here for convenience of the
reader.

"The equations of motion of a multiple degree-offreedom, viscously damped geo-
metrically nonlinear system can be written in the form:

MẌ(t) +CẊ(t) +KX(t) + Γ(X(t)) = F (t) (2-1)

where M,C,K are the mass, proportional damping, and linear stiffness matri-
ces, respectively, and X is the displacement response vector and F is the force
excitation vector. For the problems of interest, the nonlinear stiffness force vector
Γ is more than adequately represented by second and third order terms in X and
vanishes for small displacements.
A set of coupled modal equations with reduced degrees-of-freedom is first obtained
by applying the modal coordinate transformation

X = Φq (2-2)

to Eq 2-1, where Φ is the eigenvectors obtained from (2-1) without C, q is the
vector of modal coordinates, and the time dependence is implied. Generally, a
subset of L eigenvectors are included in the solution such that L < N , and N is
the number of physical degrees of freedom. This coupled set is expressed as
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2-3 STEP 11

M̃q̈ + C̃q̇ + K̃q + γ (q1, q2, . . . , qL) = F̃ (2-3)

M̃ = ΦTMΦ = [I] (2-4)
C̃ = ΦTCΦ = [2ζrωr] (2-5)
K̃ = ΦTKΦ =

[
ω2
r

]
(2-6)

γ = ΦTΓ (2-7)
F̃ = ΦTF (2-8)

where q1, q2, ..., qL are the components of q, and ωr are the undamped natural
frequencies. By writing the nonlinear force vector in the form

γr (q1, q2, . . . , qL) =
L∑
j=1

L∑
k=j

arjkqjqk +
L∑
j=1

L∑
k=j

L∑
l=k

brjklqjqkql, r = 1, 2, . . . , L

(2-9)
the problem of determining the nonlinear stiffness is reduced from one in which
a large set of simultaneous nonlinear equations must be solved to one involving
simple algebraic relations, as will be subsequently shown. Its evaluation entails
solving for the coefficients ajk and bjkl using a new procedure.
The procedure is based on the restoration of nodal applied forces by prescribing
nodal displacements in both linear and nonlinear static solution settings. The
total nodal force FT may be written in physical coordinates as

FT = F L + FNL = KXc + Γ (Xc) (2-10)

where Xc is a prescribed physical nodal displacement vector, and F L and FNL
are the linear and nonlinear contributions to the total nodal force.
F L is first obtained by prescribing Xc in the linear static solution. FT is then
obtained by prescribing Xc in the nonlinear static solution. Finally, the nonlinear
contribution FNL is obtained by subtracting F L from FT, or

FNL = Γ (Xc) = FT − F L (2-11)

To illustrate the technique, one can begin by prescribing the displacement fields

Xc = +φ1q1
Xc = −φ1q1

(2-12)

The nonlinear nodal force contributions FNL are determined using (7) after solv-
ing the linear and nonlinear static solutions. These may be written in modal
coordinates as
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F̃NL1 = ΦTFNL1 = ΦTΓ (+φ1q1) = [ar11] q1q1 + [br111] q1q1q1
F̃NL2 = ΦTFNL2 = ΦTΓ (−φ1q1) = [ar11] q1q1 − [br111] q1q1q1

(2-13)

where the sought stiffness coefficients [ar11] and [br111] are vectors of length L. Note
that the other nonlinear terms do not appear in (2-13) since qj = 0 for j 6= 1.
Since q1 is a known scalar, the coefficients [ar11] and [br111] for r = 1, 2, . . . , L can be
determined from the resulting system (2-13) of 2 linear equations. The remaining
coefficients

[
arjj

]
and

[
brjjj

]
j = 1, 2, . . . , L can be determined in an analogous

manner." (Muravyov and Rizzi, 2003 [7])

In the following sections, the notation introduced by Muravyov and Rizzi is used.

2-4 In-plane modes

Structures with high aspect ratio like strings, beams, plates and membranes exhibit the
special property of having a very low stiffness in (at least) one direction compared to the
others. It turns out that the nonlinear ROM containing eigenmodes (corresponding to the
linearised system) selected on frequency and load mapping criteria, is not capable to represent
loadcases in which large displacements occur. To illustrate this, consider the following case:

For a simple fixed free beam, the fundamental eigenmode contains only significant out-of-
plane (transversal) displacements. The in-plane (lateral) component is negligible. However,
when a tip force is applied such that the resulting vertical displacement is in the order of the
beam thickness, the tip also displaces horizontally. Therefore, the fundamental eigenmode
on it’s own cannot represent the true behaviour. When only including this mode in the
ROM, it represents a structure which has constrained horizontal displacement at the free
end. Therefore, the (nonlinear) ROM is stiffer than the real structure it should represent.

Figure 2-4: Summation of in and out-of-plane modes
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2-4 In-plane modes 13

ROM Completeness

From the previous it can be concluded that for large deformations and if e.g. in-plane dynamic
eigenmodes or other modes are neglected, a ROM can be stiffer than the original structure.
As a consequence, the linear eigenmodes (green in Figure 2-4) do not properly represent the
large dynamic displacement field (blue in Figure 2-4).

If this is the case, softening shapes (or in-plane modes, like the orange shape in Figure 2-4),
should be determined which could be added to make the ROM proper. The determination of
those softening shapes turns out to be quite involved, and is discussed in the next section.

2-4-1 In-plane mode selection

Literature

In literature, some methods to determine softening in-plane vectors (like the orange shape in
Figure 2-4) are reported. Here, two methods are mentioned.

The first method, described in [8], is based on the response to loadcases. A load in the shape
of the out-of-plane eigenmode (green mode in Figure 2-4) is applied, and from the obtained
displacement field the out-of-plane eigenvector (green mode in Figure 2-4) is subtracted. The
remaining displacement vector (which should be the orange shape in Figure 2-4) is due to
nonlinear coupling, and should contain the most important (having the largest softening
effect) in-plane mode.

However, beside the desired in-plane mode, the resulting displacement field (orange shape in
Figure 2-4) could also contain other in-plane or out-of-plane eigenvectors. This makes the
procedure quite complicated, especially when the ROM contains multiple out-of-plane modes
which all need additional in-plane modes.

A second approach [9] is based on the change of the eigenvectors along deformation in a certain
mode. To determine this, derivatives are calculated with respect to the system matrices. In
our scenario where the FE software is treated as a black box, the nonlinear stiffness matrix
is not available. Therefore, this class of approaches cannot be used.

Besides, both above mentioned methods have an additional disadvantage. Both approaches
yield additional shapes which are no eigenvectors of the structure, so they are not ideal to
model in-plane dynamics. Therefore, in the following part, another method is introduced.

In-plane mode selection method

Above mentioned approaches construct softening shapes from scratch. However, the full set
of eigenvectors still contains the complete linearised mechanics of the structure. Therefore,
an eigenmode which describes in-plane displacement could be added to the ROM. This mode
can decrease the effective stiffness of the out-of-plane eigenmode (having a softening effect).
Beside, as it is strongly coupled, its dynamics can also play a role, possibly influencing effective
inertia and damping. The idea of using still a linear basis of eigenvectors is already mentioned
in [8], in the context of other approaches.
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To automatically select the relevant in-plane mode(s), we make use of the softening effect
of an in-plane mode on an out-of-plane mode. This can be determined directly from the
governing equations (Eq. (2-3)), and requires only the very first stage of the STEP method
(described in Eq. (2-13)).

Determining softening effect

In order to determine the softening effect of an in-plane mode on the out-of-plane (OOP)
eigenmode, the first step is to apply a displacement field in the shape of the OOP eigenmode.
The question for determining the importance of a mode is: If, additional to the applied shape,
the applied field would contain a fraction of the in-plane mode, such that the in-plane modal
force vanishes, would the OOP modal reaction force change? To answer this, consider the
following sub-steps:

1. Prescribe a displacement field u in the shape of OOP mode φ1 and evaluate the OOP
modal force fa1 = φT1 F (u1) (red arrows in Figure 2-5-b) and in-plane modal force
f2 = φT2 F (u1) (yellow arrows)

2. Add a fraction α of in-plane mode φ2 to the prescribed displacement field u, such that
the in-plane modal force f2 vanishes (Figure 2-5-d)

3. Compare the resulting OOP modal forces fa1 and f b1 (As can be seen, the vertical
arrows in Figure 2-5-d are smaller than those in Figure 2-5-b.) From this, determine
the softening effect of in-plane mode φ2 on OOP mode φ1.

The sub-steps described above can be performed numerically, using the information obtained
from the first stage of the STEP method (Eq. (2-13)). This is explained in the next section.

Softening calculation

In this section, a mathematical description is provided to determine in-plane modes. The
complete derivation can be found in section A-2. To explain the method, a very simple 2dof
system is considered, although the method is also applicable to larger systems. Note that the
derived formula itself was already proposed in literature [10], but not used in combination
with the STEP method for the selection of in-plane modes.

Consider the static equations coupling two modes (from Eq. (2-3) and Eq. (2-9)):

k1q1 + a
(1)
11 q

2
1 + a

(1)
12 q1q2 + a

(1)
22 q

2
2 + b

(1)
111q

3
1 + b

(1)
112q

2
1q2 + b

(1)
122q1q

2
2 + b

(1)
222q

3
2 = F (1) (2-14)

k2q2 + a
(2)
11 q

2
1 + a

(2)
12 q1q2 + a

(2)
22 q

2
2 + b

(2)
111q

3
1 + b

(2)
112q

2
1q2 + b

(2)
122q1q

2
2 + b

(2)
222q

3
2 = F (2) (2-15)

(2-16)

When applying the complete STEP method for two modes, all coupling terms could be
determined. However, in this way, it would require a huge computational cost to investigate
the softening effect of all modes on one OOP mode. For a system consisting of 100 eigenmodes,
the full STEP method should be processed 99 times to investigate the softening effect of all
modes independently on one OOP mode.
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𝝓1

𝑭(𝒖 = 𝝓1)

𝒖12 = 𝝓1 + 𝛼𝝓2

𝑓2 = 𝝓𝟐
𝑻 𝑭(𝒖𝟏𝟐) = 0

𝝓2

a

b

c

d

Figure 2-5: In-plane mode selection method for a fixed-free beam: a) undeformed configuration,
out-of-plane eigenmode φ1 and in-plane eigenmode φ2 b) reaction forces due to subjected displace-
ment field u = φ1 c) combine in-plane and out-of-plane eigenmodes to construct a displacement
field d) combination of eigenmodes such that the in-plane modal force equals zero

To reduce computational cost, an approximation is constructed. This approximation requires
only one iteration of the very first stage of the STEP method (Eq. (2-13)) to determine the
softening effect of all modes on a certain OOP mode. Consider the following approach:
Processing the very first stage of the STEP method yields the a(i)

11 and b(i)
111 coefficients. Using

the relations among coefficients (like a(1)
12 = 2a(2)

11 , derived in section C-2-1, Eq. (C-15)) and
removing all terms with unknown coefficients yields:

k1q1 + a
(1)
11 q

2
1 + a

(1)
12 q1q2 + b

(1)
111q

3
1 + b

(1)
112q

2
1q2 = F (1) (2-17)

k2q2 + a
(2)
11 q

2
1 + b

(2)
111q

3
1 = F (2) (2-18)

For a given q1, an estimate for q2 can be calculated (by solving for F (2) = 0 like in Figure 2-
5-d):

q2 = −a
(2)
11 q

2
1 + b

(2)
111q

3
1

k2
(2-19)
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Eq. (2-19) can be substituted into Eq. (2-17) yielding (the complete derivation can be found
in section A-2):

k1q1 + a
(1)
11 q

2
1 + b

(1)
111(1− ϑ(1)

2 )q3
1 = F (1) (2-20)

ϑ
(1)
2 = 2

(
a

(2)
11

)2

b
(1)
111k2

(2-21)

Eq. (2-20) can be seen as an approximation of Eq. (2-14) by eliminating Eq. (2-16). Here, ϑ(j)
i

can be seen as the relative influence of the in-plane mode i on the out-of-plane mode j, and
thus acts as a criteria to determine whether the in-plane mode should be incorporated into
the ROM or not. Note that for all modes, the a and b coefficients needed to calculate ϑ(j)

i

for one OOP mode are available from only applying two displacement fields to the structure
(the very first stage of the STEP method).

As mentioned before, the idea of including linear in-plane eigenvectors is not entirely new
[8], and the derived formula (Eq. (2-20)) was already reported in [10] (although not in the
context of in-plane mode selection). However, in this work, it is implemented for the STEP
method in a computationally efficient way, which is new as far as known to the author.

Limitations

The previous presented method was implemented and tested for strings and circular mem-
branes (results are shown in section 3-1-3). The method works fine as long as only one or
a small number of in-plane modes are needed per out-of-plane mode. For strings and mem-
branes, this is the case. However, for other structures, this does not necessary have to be the
case, possibly yielding a very large number of modes in the ROM. This is undesirable, as it
increases calculation time of both the STEP method and the post-processing. Therefore, in
the next section, another way to deal with in-plane modes is presented.

2-4-2 Static condensation

In the previous section, a method was presented to explicitly include in-plane modes in the
ROM. In this way, inertia, damping and stiffness of in-plane modes are fully included in the
nonlinear ROM. However, if the dynamics of in-plane modes are not of particular interest,
for some structures, they can be neglected.

Conditions

Neglecting in-plane dynamics is allowed as long as the in-plane modes do not interact with
relevant out-of-plane modes, which can be assumed when the in-plane eigenfrequencies are far
above the out-of-plane eigenfrequencies. In this case, in-plane modes operate far below their
eigenfrequency and thus their effective mass can be neglected. As their stiffness comprises a
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2-4 In-plane modes 17

softening effect on the out-of-plane modes, this cannot be neglected as will be explained later
on.

The simplification can be made for structures where all in-plane displacements can be de-
scribed by a fixed set of dofs, while the remaining dofs are still able to represent all eigenmodes
in the ROM.

Approach

To apply static condensation, it should be determined for each dof of the complete system
whether it represents out-of-plane or in-plane displacement. The dof corresponding to the
in-plane direction are remained free in the STEP procedure, such that the solver can search
for the in-plane displacement which results in the lowest in-plane modal forces (as shown in
Figure 2-5 and Eq. (2-19)). In this way, in-plane stiffness (resulting in softening) is still taken
into account, while in-plane mass is neglected.

As the in-plane modes are free to respond (condense) instantaneously (as their mass is ne-
glected), they act like static springs, and the method is called static condensation. For exam-
ple strings, membranes, flat plates and straight beams are well suited for this simplification
method.

An example

As an example, consider the structure from Figure 2-3 again: A 2D cantilever consisting of 2
nodes (shown in Figure 2-6), each having only translational degrees of freedom.

𝑢𝑥
(1)

𝑢𝑦
(1)

𝑢𝑥
(2)

𝑢𝑦
(2)

Figure 2-6: A simple cantilever consisting of 2 nodes.

The displacement vector u writes:

uT = [u(1)
x u(1)

y u(2)
x u(2)

y ] (2-22)

Here, the superscript (1) indicates the left fixed node, and (2) the free end. Now, an important
step is to identify the directions of in and out-of-plane modes. For the simple cantilever shown
in Figure 2-3, in-plane modes are assumed to act in horizontal direction (x), while OOP modes
are assumed to act in vertical (y) direction. Consider the following eigenvector:

φT
1 = [0 0 0 1] (2-23)

which corresponds to vertical displacement of the free tip. If this would be used in the STEP
method, the tip would be constrained in x-direction because u(2)

x = 0 in φ1. This corresponds
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to the green deformation in Figure 2-4. However, in line with the static condensed STEP
method, only dof corresponding to the OOP direction are prescribed. Therefore, the vector
containing prescribed displacements should contain only the following dof:

xT = [u(1)
y u(2)

y ] (2-24)

When using eigenvector φ1 in the STEP process, the corresponding prescribed displacement
field writes:

xT = [u(1)
y u(2)

y ] = [0 1] (2-25)

Now, it is clear that only the OOP component of the eigenvector is prescribed, while the
in-plane degrees of freedom are left free. In this way the solver can determine the horizontal
tip displacement corresponding to the lowest in-plane force (as it searches for a minimum in
potential energy).

Advantages

In the code written, this method is also implemented. Appendix section F-1-4 shows part of
the code associated to this method (note that in line 12 the dof corresponding to the OOP
direction are selected). The computational cost of the STEP method is significantly reduced,
as at least half the number of modes are needed in the ROM (compared when including in-
plane modes explicitly), and no in-plane mode selection procedure is needed. Furthermore,
the resulting set of equations is much smaller, reducing computation time for post-processing
(like bifurcation analysis).

Literature

In literature, the same concept of static condensation is applied for an analytic approach
analysing a string [1]. Besides, the term static condensation is mentioned in the context of
post-processing [8] (ODE solvers etc.). As far as known to the author, static condensation is
not applied yet for the STEP method.
If the structure does not fulfil the conditions to use static condensation, another variant of
the STEP method, discussed in the next section, could possibly be used.

2-4-3 Compliant ROM

For the mentioned approaches thus far, all modes that are not included in the ROM were
fixed. However, when in reality the structure is subjected to a force, it is free to move in
those modes. The STEP procedure can be changed such that it is compliant in all excluded
modes if a force instead of displacement field is applied. By including constraints, resulting
modal displacements of included modes can be managed.
This method was implemented for a string, to investigate the feasibility. Compared to the
condensed STEP variant, it was slightly slower but didn’t need any information of in-plane
directions.
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Literature

The same concept (although different applied) is mentioned in literature [11] and [12], in
the context of the ’applied loads method’. However, this method does not use constraints to
manage mode contributions in the response. Instead, regression is used to determine nonlinear
stiffness from several loadcases, which should in general be less accurate.

2-5 Implementation

To implement the STEP method, a FEM package as well as a programming environment for
pre and post processing is needed. The FEM package should have the following features:

• modal analysis
• geometric nonlinear static analysis
• interfacing
• parallelization (preferred)

Comsol is chosen as the best candidate, to be combined with MATLAB, as those have a well
developed interface. MATLAB is well suited for pre- and post processing. For bifurcation
analysis of large systems, AUTO is more suited, which can interface with MATLAB by text
files.

2-5-1 Overview

The programming structure is summarized in figure 2-7.

Set parameters
User input Modal

analysis

Structure
Geometry & physics

In-plane handling*
Displacement 
fields

Nonlinear
sta�c solver

Algebra

Nonlinear ROMScaling

Write 
equa�ons for
AUTO

Write 
equa�ons for
Fortran ODE

Bifurca�on
analysis AUTO

Ringdown
ODE Fortran

Reading & post-
processing

Visualiza�on

Elas�c poten�al

Matlab Comsol Fortran

Figure 2-7: Overview code structure. * In-plane handling: choose between explicit including
in-plane-modes (section 2-4-1) and static condensation (section 2-4-2).
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2-5-2 Matlab-Comsol interface

The Matlab-Comsol interface is build from (among others) the following parts:

• in Comsol:

– A component, containing parametrized geometry, physics and mesh
– A study containing an eigenvalue solver
– A study containing a static nonlinear solver

• in Matlab:

– A script declaring all structure parameters and solver settings (appendix F-1-1)
– A script interfacing for modal analysis (appendix F-1-5)
– A script creating displacement fields (appendix F-1-3)
– A script interfacing with the nonlinear solver (appendix F-1-6 and F-1-2)
– A script performing linear algebra to determine the nonlinear stiffness (appendix

F-1-7)

The implementation of the STEP procedure can be summarized by the following sequence:

1. In Matlab, structure parameters and solver settings are provided as input
2. Through the Application programming interface (API), this is send to Comsol
3. The eigenvalue analysis in Comsol is started (from API)
4. All structure information is gathered from Comsol (Mesh, dofs, system matrices)
5. All solution information (eigenvectors & eigenvalues) is gathered.
6. The framework needed for the prescribed displacements is built from the ROM settings.

Optionally, static condensation is applied ór additional in-plane modes are selected.
7. The (scaled) eigenvectors are loaded in Comsol by interpolation functions (which are

later on used to construct prescribed displacement fields)
8. A Parametric sweep is set using the API, which defines for each loadcase the contribution

of each eigenvector (using the framework)
9. All solutions (nodal reaction forces) are loaded in Matlab, to determine the modal forces

10. Using linear algebra, all stiffness coefficients are determined (using Eq. (2-13) and similar
equations described in [7])

Elements

In Comsol, different structural elements are available. Most parts of the code are independent
of the element type used. However, as different elements generate different output, a small
piece of code interfacing with Comsol is element specific. In Table 2-1 the elements for which
the interface code is build and tested are listed. For every element, their linear stiffness is
listed, beside the nonlinear stiffness the code can extract. In the chapter 3, the nonlinear
stiffness is tabulated and compared to values obtained in literature from analytical methods
(as mentioned in section 2-2-1).
Using truss and membrane elements, nonlinear stiffness due to stretching of the mid-plane can
be identified. This can be a quite easy detectable in practice. However, using beam and plate
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Table 2-1: Stiffness contributions for different element types in Comsol. All listed elements were
implemented and tested, but other elements might also be used. Even for different types of mul-
tiphysics the presented methodology might be employed (optical or electromagnetic resonators).
Note that the beam element in Comsol is not suited for our type of nonlinear analysis.

Linear stiffness Nonlinear stiffness
Element Axial Pre-stress Bending Mid-plane stretching Bending
2D truss X X × X ×
2D beam X × X × ×
3D membrane X X × X ×
2D plate X X X X X

Table 2-2: Implemented methods for different element types. Note that all analysed structures
are flat (2D).

Element Condensed STEP In-plane STEP Compliant STEP
2D truss X X X
3D membrane X X
2D plate X X

elements, also nonlinear bending stiffness can be identified. For example, the plate element
can model a fully-clamped pre-stressed plate, having linear bending and pre-stress stiffness,
and nonlinear stiffness consisting of both mid-plane stretching and nonlinear bending.

2-5-3 Matlab-AUTO interface

In order to study forced vibrations, ’AUTO 97: Continuation and bifurcation software for
ordinary differential equations’ by E.J. Doedel is used. This software is able to calculate
frequency response curves for nonlinear systems, and detects most bifurcations points. It
can also be used for parametric excitation, but it is not suited for random excitation or
discontinuous functions. As it is written in Fortran, it is very fast, and large systems are
allowed (say up to 20 2nd order Ordinary differential equation (ODE)’s). The interface can
be summarized as follows:

1. The system of 1st order ODEs is written by Matlab into a text file.

2. The solver settings are written by Matlab in separate text files.

3. In Matlab, using the API of the compiler, the AUTO project workspace (including
libraries, settings and ODE files) is compiled, generating an executable.

4. In Matlab, the executable AUTO file is run, performing the bifurcation analysis

5. The output filed generated by the executable (containing the solutions) are red by
Matlab
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This scheme was partly implemented by Koen Markestein before, although it was coded
in Python and step 3 (automated compilation) was not included yet. Apart from that,
automated compilation was also used by Justin Smid, although in a more basic way. Some
notes on the use of AUTO can be found in appendix A-1-2.

2-5-4 Matlab-Fortran ODE

In order to study free vibrations (including noise), time integration is used. For large, strongly
nonlinear systems, the ODE solvers in Matlab are way too slow. Therefore, again Fortran
is used to perform the time integration. Fortran contains International Mathematics and
Statistics Library (IMSL) libraries containing ODE solvers well suited for large nonlinear
systems. The subroutine DIVPAG is called, which is especially suited for stiff equations as
it is set to use Gear’s Backward differentiation formula (BDF) method. The interface can be
summarised as follows:

1. The system of 1st order ODE’s, the settings and governing Fortran code is written by
Matlab into a text file

2. Initial conditions are written by Matlab in a text file

3. The project workspace is compiled, generating an executable

4. By Matlab, the executable file is run, performing time integration

5. The output filed generated by the executable (containing the solutions) are loaded into
Matlab

For accuracy, the total energy in the system is monitored, yielding admissible tolerance set-
tings. The created executables can be run stand-alone (only need the initial conditions file).
Therefore, they can be run in parallel, using the full capacity of all CPU’s and making it
ideal for cluster computing. The Fortran script was supplied by F. Aljiani, and was changed
slightly to make it suitable for our purpose.

2-5-5 Scaling

In order to use the ROM in ODE solvers or bifurcation analysis software, the equations should
be scaled in a proper way. Most software packages cannot handle extraordinary large or small
numbers, and perform best when the equation contains terms in the range of O(1). To scale
the ROM, the eigenvectors, time and space can be scaled. In the following, it is shown how
scaling is implemented in this work.

Time and space scaling

The eigenvectors are scaled such that all equations of motion have unit mass. Then, time
and space are scaled such that for the first eigenmode in the ROM, unit linear and nonlinear
stiffness are obtained.
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Consider the mass-normalised equation of motion of the first mode:

ü+ ku+ au2 + bu3 + 2ζωnu̇ = f sin(ωt) (2-26)

Space and time are scaled the following way (where h and T are defined in Eq. (2-29)):

ũ = u

h
, τ = t

T
(2-27)

yielding (see appendix A-2-1)

ũ′′ + k̃ũ+ ãũ2 + b̃ũ3 + 2ζω̃nũ′ = f̃ sin(ω̃τ) (2-28)

For good numerical performance, we impose k̃ = 1 and max{ã, b̃} = 1. Therefore,

T = 1√
k
, h = min

ka ,
√
k

b

 (2-29)

Eigenvector scaling - nonlinear stiffness

For linear systems, eigenvectors can have arbitrary scaling, and modal stiffness and mass
can be calculated easily. If later on another scaling is preferred, modal quantities can be
recalculated. For systems having nonlinear terms however, rescaling the eigenvectors does
not result in straightforward rescaling of the nonlinear terms. The following part describes
a procedure for rescaling the reduction basis. The full derivation can be found in appendix
A-2-2.

Mass-normalised quantities are denoted with subscript m, quantities corresponding to max-1
displacement eigenvectors are denoted with subscript u. The modal transformation for one
eigenmode is defined as x = φq. The ratio between the eigenvectors is defined as:

φm = φuα (2-30)

Yielding for each eigenmode i:

qmi = qui

αi
(2-31)

Consider γ as the nonlinear modal force term, depending on the modal displacements included
in the ROM: γ(q1, q2, ..., qL).

For one mode i, the equation of motion writes:

φTmi
Mφmi

q̈mi + φTmi
Kφmi

qmi + γmi(qm1 , qm2 , ...) = φTmi
F (2-32)

This can be rewritten in terms of max-1 based eigenmodes (appendix A-2-2):
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φTui
Mφui

q̈ui + φTui
Kφui

qui + γui(qu1 , qu2 , ...) = φTui
F (2-33)

Here, γ is rewritten such that the correction terms are implemented in the coefficients of all
nonlinear terms. For each nonlinear stiffness term, we obtain:

b(r)
uijk

=
b

(r)
mijk

αrαiαjαk
, a(r)

uij
=

a
(r)
mij

αrαiαj
(2-34)

Here, (r) represents the equation index, such that b(2)
uijk corresponds to the second equation

of motion (in line with the notation introduced in section 2-3-3). Max-1 based modal linear
quantities can be directly obtained from multiplication with the max-1 based eigenvectors.
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Chapter 3

Dynamics

In this chapter, several simple structures are analysed using the methods explained in the
previous chapter. First, resulting nonlinear stiffnesses are non-dimensionalised and tabulated.
Next, each structure is analysed by a frequency sweep, revealing nonlinear dynamic effects.
Successively, two structures of which experimental data is available are simulated, followed
by the free vibrations to investigate FPU behaviour.

3-1 Dynamics of simple structures

3-1-1 Equations of motion

Recall the set of coupled modal equations (Eq. (2-3)), obtained after applying the modal
transformation:

M̃q̈ + C̃q̇ + K̃q + γ (q1, q2, . . . , qL) = F̃

where the nonlinear force vector could be expanded in the following form (2-9):

γr (q1, q2, . . . , qL) =
L∑
j=1

L∑
k=j

arjkqjqk +
L∑
j=1

L∑
k=j

L∑
l=k

brjklqjqkql, r = 1, 2, . . . , L

For a ROM consisting of two modes, the (undamped) equations of motion write:

m1q̈1 + k1q1 + a
(1)
11 q

2
1 + a

(1)
12 q1q2 + a

(1)
22 q

2
2 + b

(1)
111q

3
1 + b

(1)
112q

2
1q2 + b

(1)
122q1q

2
2 + b

(1)
222q

3
2 = F (1)

m2q̈2 + k2q2 + a
(2)
11 q

2
1 + a

(2)
12 q1q2 + a

(2)
22 q

2
2 + b

(2)
111q

3
1 + b

(2)
112q

2
1q2 + b

(2)
122q1q

2
2 + b

(2)
222q

3
2 = F (2)

(3-1)

which just fits in one line. However, to quickly compare values, it is more convenient to put
them into tables, like Table 3-1. Here, each column contains the coefficients present in one
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equation of motion. The shown values are non-dimensionalised with factors adim, so they can
be used for arbitrary parameter values. The value of each coefficient can be determined as:

a
(1)
11 = ã

(1)
11 adim (3-2)

and the same notation holds for the cubic coefficients.

Table 3-1: Pre-factors for quadratic coefficients, such that a(1)
11 = ã

(1)
11 adim

Eq. 1 Eq. 2

a11 ã
(1)
11 ã

(2)
11

a12 ã
(1)
12 ã

(2)
12

a22 ã
(1)
22 ã

(2)
22

3-1-2 String

For a simple, straight string, the STEP method is applied using static condensation (so
in-plane modes are not explicitly present) for a ROM including the three first eigenmodes.
Modal linear coefficients are listed in Table 3-2, and the non-dimensionalising terms for both
linear and nonlinear quantities are listed in Table 3-3. Non-dimensionalised quadratic stiffness
coefficients are shown in Table 3-4 (here, they all equal zero), the cubic terms are shown in
Table 3-5.

Table 3-2: Non-dimensionalised linear modal values

Eq. 1 Eq. 2 Eq. 3
m/mt 0.5 0.5 0.499
k/k0 4.93 19.7 44.4
ωn/ω0 1 2 3

Table 3-3: Scaling values string

Linear Nonlinear
mt k0 ω0 adim bdim

ρAL
σA

L

1
2L

√
σ

ρ

EA

L2
δh

L

EA

L3

In literature [1], the same value for b(1)
111 (both b̃

(1)
111 and bdim) is reported. The other cou-

pling therms are not calculated in [1], but [2] proposes a method to determine them using a
perturbation technique (this source is a bit less comprehensible).

From the tables (Table 3-2, Table 3-3, Table 3-4 & Table 3-5), the following can be said about
straight strings:

• All eigenmodes have equal modal mass
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Table 3-4: Non-dimensionalised quadratic coefficients

Eq. 1 Eq. 2 Eq. 3
a11 0 0 0
a12 0 0 0
a13 0 0 0
a22 0 0 0
a23 0 0 0
a33 0 0 0

Table 3-5: Non-dimensionalised cubic coefficients straight string

Eq. 1 Eq. 2 Eq. 3
b111 12.2 0 0.107
b112 0 49.4 0
b113 0.417 0 111
b122 49.4 0 1.62
b123 −0.0711 3.36 −0.132
b133 111 0 0.0151
b222 0 195 0
b223 1.69 0 445
b233 0 445 0
b333 −0.002 98 0 989

• Eigenfrequencies are linear increasing and just equal the mode index
• All quadratic stiffness terms equal zero, no softening is present for a straight string.
• Even (2) and uneven (1 & 3) modes are hardly coupled by cubic stiffness. Even modes
have the same amount of displacement in positive and negative vertical direction. For
uneven modes, this is not the case, which could be the reason for the particular small
coupling between even and uneven modes. Note that this doesn’t hold for all terms, as
for example b̃(1)

122 is nonzero.
• As linear stiffness, nonlinear stiffness increases for increasing mode index. Because
eigenmodes only differ in the number of waves, nonlinear stiffness terms seem to increase
in a constant portion (e.g. b̃(3)

223 = 4b̃(3)
113, although this relation is not set by the elastic

potential (Eq. (C-15)))

The frequency response is shown in Figure 3-1 and Figure 3-2. All modes show hardening, and
mode 3 (which is, like mode 1, asymmetric) shows small interaction with mode 1. However,
this is negligible, as it remains invisible at the point of (numerical) measurement.
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Figure 3-1: Modal frequency response string for external force of 0.6 N at xp = 2
3L. Dashed

lines represent unstable solutions.
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Figure 3-2: Frequency response of a string for increasing external force level. Excitation and
measurement at the same point (collocated), xp = 2

3L. Dashed lines represent unstable solutions.
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Peak value

In Figure 3-2, it is visible that the maximum compliance decreases with forcing amplitude
(or absolute amplitude). However, the damping present in the equations remains constant,
so the effect is purely due to the nonlinear hardening. To understand what’s happening, the
single dof duffing equation is analysed in the following part.

The forced Duffing equation including viscous damping writes:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (3-3)

Using the method of harmonic balancing, solutions can be found (shown in section B-1). The
maximum compliance at resonance can be approximated as:

zmax
γ
≈ 1
δω

(3-4)

which reveals that indeed, for increasing forcing (and thus eigenfrequency), the compliance
decreases at the limit point. In section B-1 more details can be found.

3-1-3 String including in-plane modes

To show the resemblance between both variants of the STEP method (the first one using in-
plane modes (section 2-4-1), the second using static condensation (section 2-4-2)), the analysis
of a straight string is performed including in-plane modes in the ROM. The method described
in section 2-4-1 is used to select the proper in-plane mode (shown in Figure 3-4) which has
a softening effect on the out-of-plane mode. Only 1 out-of-plane eigenmode is included, just
to show the principle. The resemblance between both methods is further investigated and
analytically proven in appendix D-1. The possibility of interaction between the in-plane and
out-of-plane modes of a string was also mentioned (but not elaborated) by [2].

Modal linear coefficients are listed in Table 3-7, the non-dimensionalising terms for both
linear and nonlinear quantities are listed in Table 3-6. Non-dimensionalised quadratic stiffness
coefficients are shown in Table 3-8, the cubic terms are shown in Table 3-9.

Table 3-6: Scaling values straight string of in-plane mode

Linear Nonlinear
mt k0out k0in ω0out ω0in adim bdim

ρAL
σA

L

EA

L

1
2L

√
σ

ρ

1
L

√
E

ρ

EA

L2
EA

L3
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Table 3-7: Non-dimensionalised linear modal values of a straight string including in-plane modes.
Note the different scaling per equation: In Eq. 1, k0 = k0out , and for Eq. 2, k0 = k0in . This also
holds for ω0.

Eq. 1 Eq. 2
m/mt 0.5 0.5
k/k0 4.93 4.97
ω/ω0 1 2

Table 3-8: Non-dimensionalised quadratic coefficients of a straight string including in-plane
modes

Eq. 1 Eq. 2
a11 0 7.75
a12 15.5 0
a22 0 0

Table 3-9: Non-dimensionalised cubic coefficients of a straight string including one in-plane
mode.

Eq. 1 Eq. 2
b111 18.3 0
b112 0 48.7
b122 48.7 0
b222 0 292
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Figure 3-3: Modal frequency response of a string (including an in-plane mode) for external force
of 1 N at xp = 2

3L.
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Figure 3-4: In-plane eigenmode coupled to the fundamental out-of-plane eigenmode.
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Conclusion

Comparing b̃
(1)
111 values, it can be concluded that indeed the stiffness yielding from static

condensation (Table 3-5) is lower than the one obtained when including in-plane modes (Ta-
ble 3-9). This is correct according to Eq. (2-20), which predicts a lower b̃(1)

111 stiffness if the
in-plane mode is free to move (as it is during static condensation STEP). The effective stiff-
ness of mode 1 in the ROM including in-plane modes is thus lower than the one reported
in Table 3-9, which is revealed when loading the structure. This effect is further explained
in appendix D-1. Further note that indeed the quadratic stiffness terms ã(2)

11 and ã
(2)
11 are

non-zero, allowing for the selection criterion stated in Eq. (2-21).

3-1-4 Circular membrane

As a second step, a slightly more complicated structure, a circular membrane (without bending
stiffness), is analysed. The physical quantities describing its geometry and physics are listed
in Table 3-10. Again, the STEP method is applied using static condensation (so in-plane
modes are not explicitly present) for a ROM including the three non-degenerate eigenmodes.
Modal linear coefficients are listed in Table 3-11, and the non-dimensionalising terms for both
linear and nonlinear quantities are listed in Table 3-12. Non-dimensionalised cubic stiffness
coefficients are shown in Table 3-13 (the quadratic terms appear to all equal zero).

Table 3-10: Properties circular membrane

Parameter Formula Units Description
E - Pa Young’s modulus
h - m Thickness
R - m Radius
ν - - Poisson’s ratio
ρ - kg/m3 Density
σ - Pa Stress
ρ̃ ρh kg/m2 Mass per unit area
T0 σh N m−1 Membrane tension

Table 3-11: Non-dimensionalised linear modal values circular membrane. Index included modes:
1,2,6

Eq. 1 Eq. 2 Eq. 3
m/mt 0.269 0.244 0.115
k/k0 4.9 11.2 11
ωn/ω0 1 1.59 2.3

The frequency response of the circular membrane is shown in Figure 3-6 and Figure 3-7. Here,
the first 9 non-degenerate modes are included in the ROM. The shape and eigenfrequency of
those modes can be found in Table 3-14, simulation settings are listed in Table 3-15.
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Table 3-12: Scaling values of a flat circular membrane [13]

Linear Nonlinear
mt k0 ω0 adim bdim

πR2hρ T0
2.405
R

√
T0
ρ̃

[−] π

1.27− 0.97ν − 0.27ν2
Eh

R2

Table 3-13: Non-dimensionalised cubic coefficients circular membrane. Index included modes:
1,2,6

Eq. 1 Eq. 2 Eq. 3
b111 1 0.000 238 −0.201
b112 0 3.32 0
b113 −0.601 0 3.26
b122 3.32 0.000 741 −0.252
b123 0 −0.503 0.003 39
b133 3.26 0.001 66 −3.45
b222 0.000 19 7.19 −0.000 298
b223 −0.252 −0.000 235 6.02
b233 0.001 62 6.02 −0.003 01
b333 −1.15 −0.001 28 8.06

Table 3-14: Normalised eigenfrequencies of a circular membrane

Index Waveindex(t,r) ωi/ω0 Shape
1 (0,1) 1 axisymmetric
2 (1,1) 1.5943
3 (1,1) 1.5945
4 (2,1) 2.1404
5 (2,1) 2.1406
6 (0,2) 2.3044 axisymmetric
7 (3,1) 2.6664
8 (3,1) 2.6677
9 (1,2) 2.9423
10 (1,2) 2.9448
11 (4,1) 3.1847
12 (4,1) 3.1903
13 (2,2) 3.5532
14 (2,2) 3.5584
15 (0,3) 3.6642 axisymmetric
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(a) 1st mode (b) 2nd mode

(c) 4th mode (d) 6th mode

(e) 7th mode (f) 9th mode

(g) 11th mode (h) 13th mode

(i) 15th mode

Figure 3-5: Eigenmodes of a circular membrane
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Table 3-15: Simulation settings frequency response circular membrane

Parameter Value Description
ζ 5.0× 10−4 Relative damping of all modes
(xp, yp) R · (0.2, 0.5) Coordinates of excitation & measurement point
Fext {10,50,100,200} pN External direct forcing range
Mmodes {1,2,4,6,7,9,11,13,15} Set of included mode indices
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Figure 3-6: Modal frequency response of a circular membrane for external force of 2× 10−11 N
at (xp, yp) = R · (0.2, 0.5).
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Figure 3-7: Frequency response of a circular membrane for increasing external force level. Exci-
tation and measurement at the same point (collocated), at (xp, yp) = R · (0.2, 0.5).

3-1-5 Square membrane

In this section, a square membrane is analysed. For thin structures, bending stiffness can be
ignored and almost all the modes are different from the circular membrane. Some eigenmodes
are shown in Figure 3-12.

The physical quantities describing it’s geometry and physics are listed in Table 3-16. Again,
the STEP method is applied using static condensation (so in-plane modes are not explic-
itly present) for a ROM including the three first non-degenerate eigenmodes. Modal linear
coefficients are listed in Table 3-17, and the non-dimensionalising terms for both linear and
nonlinear quantities are listed in Table 3-18. Non-dimensionalised cubic stiffness coefficients
are shown in Table 3-19 (the quadratic terms appear to all equal zero).

Table 3-16: Properties square membrane

Parameter Formula Units Description
E - Pa Young’s modulus
h - m Thickness
L - m Length
ν - - Poisson’s ratio
ρ - kg/m3 Density
σ - Pa Stress
ρ̃ ρh kg/m2 Mass per unit area
T0 σh N m−1 Membrane tension
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Table 3-17: Non-dimensionalised linear modal values of a square membrane. Index included
modes: 1,2,4.

Eq. 1 Eq. 2 Eq. 3
m/mt 0.25 0.215 0.25
k/k0 4.93 10.6 19.7
ω/ω0 1 1.58 2

Table 3-18: Scaling values square membrane

Linear Nonlinear
mt k0 ω0 adim bdim

L2hρ T0
π

L

√
2T0
ρ̃

[−] π

1.27− 0.97ν
Eh

L2

Table 3-19: Non-dimensionalised cubic coefficients square membrane. Index included modes:
1,2,4.

Eq. 1 Eq. 2 Eq. 3
b111 3.66 0 −0.000 152
b112 0 11.7 0
b113 −0.000 145 0 15.3
b122 11.7 −0.000 159 10.5
b123 −0.000 31 21 −0.001 44
b133 15.3 −0.000 251 0.001 62
b222 −0.000 21 21.9 0.000 831
b223 10.5 0.000 977 58.4
b233 −0.000 307 58.4 −0.001 59
b333 0.000 484 0 58.5
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Figure 3-8: Modal frequency response of a square membrane for external force of 2× 10−11 N
at (xp, yp) = R · (0.2, 0.5).
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Figure 3-9: Frequency response of a square membrane for increasing external force level. Exci-
tation and measurement at the same point (collocated), at (xp, yp) = L/2 · (0.2, 0.5).
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Figure 3-10: Modal frequency response of a square membrane for external force of 2× 10−11 N
at (xp, yp) = R · (0.2, 0.5). The ROM includes 8 modes.
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Figure 3-11: Frequency response of a square membrane for increasing external force level. Exci-
tation and measurement at the same point (collocated), at (xp, yp) = L/2 · (0.2, 0.5). The ROM
includes 8 modes.
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Table 3-20: Simulation settings frequency response square membrane

Parameter Value Description
ζ 5.0× 10−4 Relative damping of all modes
(xp, yp) L/2 · (0.2, 0.5) Coordinates of excitation & measurement point
Fext {1,3,7,15} pN External direct forcing range
Mmodes {1,2,4,5,7,9,11,12} Set of included mode indices

ωnxny = cπ

√
n2
x

a2 +
n2
y

b2 (3-5)

Table 3-21: Ratio of eigenfrequency w.r.t. the fundamental eigenmode ωnxny
/ω11, found by

Greiner [14]. The same values yield from modal analysis in Comsol.

ny \ nx 1 2 3 4
1 1.00 1.58 2.24 2.92
2 1.58 2.00 2.55 3.16
3 2.24 2.55 3.00 3.54
4 2.92 3.16 3.54 4.00

Table 3-22: Normalised eigenfrequencies (of non-degenerate modes) of a square membrane

Index Waveindex(nx, ny) ωnxny/ω11

1 (1,1) 1.00
2 (2,1) 1.58
4 (2,2) 2.00
5 (3,1) 2.24
7 (3,2) 2.55
9 (4,1) 3.00
11 (3,3) 2.92
12 (4,2) 3.16

3-1-6 Cantilever

The structures analysed before showed nonlinear stiffness due to stretching of the mid-plane.
A simple beam clamped at one end does not show this axial stretching. However, nonlinearities
are still present due to the nonlinear kinematic relation [3] & [1].

The physical quantities describing its geometry and physics are listed in Table 3-23. Again,
the STEP method is applied using static condensation (so in-plane modes are not explic-
itly present) for a ROM including the three first non-degenerate eigenmodes. Modal linear
coefficients are listed in Table 3-24, and the non-dimensionalising terms for both linear and
nonlinear quantities are listed in Table 3-25. Non-dimensionalised cubic stiffness coefficients
are shown in Table 3-26 (the quadratic terms appear to all equal zero).
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(a) 1st mode (b) 2nd mode

(c) 4th mode (d) 5th mode

(e) 7th mode (f) 9th mode

(g) 11th mode (h) 12th mode

Figure 3-12: Eigenmodes of a square membrane
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Table 3-23: Properties cantiliver

Parameter Value Description
E 210 GPa Young’s modulus
h 3 mm Thickness
B 4 cm Width
L 0.5 m Length
ν 0 Poisson’s ratio
ρ 7850 kg/m3 Density
xp L/3 Point of excitation

Table 3-24: Non-dimensionalised linear modal values cantiliver

Eq. 1 Eq. 2
m/mt 0.25 0.25
k/k0 1.03 40.5
ω/ω0 1 6.27

Table 3-25: Scaling values cantiliver [3] & [15]

Linear Nonlinear
mt k0 ω0 adim bdim

LBhρ
3EI
L3 1.8752

√
EI

ρAL4 [−] EI

L5

Table 3-26: Non-dimensionalised cubic coefficients cantiliver

Eq. 1 Eq. 2
b111 3.88 5.05
b112 34.2 176
b122 292 556
b222 308 1.5× 103
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Figure 3-13: Modal frequency response of a cantilever for external force of 2 N.
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Figure 3-14: Frequency response of a cantilever for increasing external force level. Excitation
and measurement at the same point (collocated), at xp = L/3.
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Observations

From Table 3-26, it may be observed that the coupling between the two first eigenmodes of a
cantilever is quite strong. There are no values negligible, contrary to the string discussed in
section 3-1-2. Here, probably the effect of a different source of nonlinearity becomes visible.
Further note that because the stiffness increases very fast with mode index, the eigenfrequency
sequence is quadratic. Therefore, the eigenfrequency spectrum is way less dense than for a
string or membrane, reducing the modal interaction.

3-2 Parametric excitation

Until this point, the frequency response was obtained by direct harmonic forcing, as present in
the right-hand-side of (3-1). However, it is also possible to excite the structure parametrically.
This implies that the one of the parameters in (3-1) becomes time-dependent. This can be
achieved for example if a coefficient is temperature dependent, while temperature is varied
over time.
Structures like strings obtain their linear stiffness from pre-tension. When heated up, they
will tend to expand. When they are pre-tensioned however, the stress is lowered. As a result,
the linear stiffness decreases. Using this property, by varying temperature, stiffness can be
varied over time. The equation of motion for a linear system writes:

mq̈(t) + k(t)q(t) = 0 (3-6)

When the linear stiffness and direct excitation force are varied harmonically with ωf , we
obtain:

mq̈(t) + k(1 + γ sin(ωft))q(t) = F sin(ωf t) (3-7)

which is in literature known as a forced Matthieu equation. There are several sources de-
scribing this equation and it’s phenomena ([2] & [16]). Adding cubic nonlinearity, viscous
damping and dividing by the mass yields:

q̈1 + µq̇1 + ω2
1(1 + γ sin(ωft))q1 + bq3

1 = F̂ sin(ωft) (3-8)

with

Λ = F̂

2(ω2
f − ω2

1) (3-9)

This equation was also studied by Ramakrishnan & Feeny, 2012 [17], where the following is
observed:

• If there is no specific relation between the excitation frequency ωf and the natural
frequency ωn, the parametric excitation has no effect on the steady-state solution.

• If ωf = 1
kωn, superharmonic resonance occurs for k = 1, 2, ...

• If ωf = kωn, subharmonic resonance occurs for k = 1, 2, ...
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3-2-1 Superharmonic resonance

Superharmonic resonances occur at excitation frequencies below the natural resonance fre-
quency. For the first superharmonic resonance at ω = 1

2ωn, the following holds [17]:

qpeak = γΛ
2µ

ωpeak = 1
2ωn + 3bΛ2(1 + γ2

32µ2 )
(3-10)

Therefore, the peak amplitude tends to decrease the further it is away from the natural
resonance, because Λ reduces. For the superharmonic resonance, kind of the same behaviour
as for the natural resonance is observed:

• The peak amplitude increases with both direct force and parametric excitation ampli-
tude, but decreases with damping.

• Hardening or softening bends the resonance curve for higher amplitude

Superharmonic resonances appear to reshape certain parts of the solution branch, but they
do not create new solutions branches. They also appear when no cubic stiffness is present.

3-2-2 Subharmonic resonance

Subharmonic resonances occur at excitation frequencies above the natural resonance fre-
quency. However, their behaviour is somewhat different from the superharmonic resonances.
For the first subharmonic resonance at ω = 2ωn, the resonance exists if [17]:

2µ ≤ γ (3-11)

The solution shows the same hardening (or softening) behaviour as the natural resonance
peak. In contrary to the superharmonic resonance, the solutions are at new branches. A
period doubling bifurcation appears at the intersection of the branches. For one subharmonic
resonance, two period doubling bifurcations are present, connecting the start and endpoint
of the period doubling branch to the base branch. The original or ’base’ solution branch
is unstable in between the two period doubling bifurcation points, so in practice the period
doubling path is followed.

In Figure 3-15 and Figure 3-16, the frequency response is shown. The period doubling bifur-
cation points of the subharmonic resonances are clearly visible for each eigenmode, enclosing
the unstable parts. (Period doubling branches are not drawn, to clearly show the unstable
intervals.) Besides, the first and second superharmonic resonances are visible.
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Figure 3-15: Modal frequency response of a circular membrane for external force of 4× 10−11 N
at (xp, yp) = R · (0.2, 0.5) and parametric amplitude fp of 0.02. Period doubling bifurcations are
marked with diamonds. Unstable solutions are indicated with dotted lines.
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Figure 3-16: Frequency response of a circular membrane for increasing external force level.
Excitation and measurement at the same point (collocated), at (xp, yp) = R · (0.2, 0.5). Period
doubling bifurcations are marked with diamonds. Unstable solutions are indicated with dotted
lines.
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In Figure 3-17, the frequency response of a parametrically excited single dof system is given.
It includes the subharmonic resonance branche, which bends to the right due to cubic stiffness.
The excitation levels (both direct force F and parametric excitation level γ) are increased
slightly. As visible, the maximum frequency of the parametric resonance branch is very
sensitive to the parametric excitaion level γ.
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Figure 3-17: Frequency response of a circular membrane for increasing direct (F ) and parametric
(γ) excitation. Both scale with excitation level ν: Fi = F0νi and γi = γ0νi, where F0 =
1× 10−12 ,γ0 = 0.002. Linear viscous damping with damping ratio ζ = 5× 10−4. Excitation and
measurement at the same point (collocated), at (xp, yp) = (0, 0). Period doubling bifurcations
are marked with diamonds. Unstable solutions are indicated with dotted lines.
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Figure 3-18: Modal frequency response of a circular membrane for increasing direct (F ) and
parametric (γ) excitation. Parameters: F = 1.05× 10−12, γ = 2.15× 10−3, ζ = 5× 10−4,
(xp, yp) = R · (0.2, 0.5).
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Figure 3-19: Frequency response of a circular membrane for direct (F ) and parametric (γ)
excitation. ν: F = F0ν and γi = γ0ν, where F0 = 1× 10−12 ,γ0 = 0.002. Parameters:
ζ = 5× 10−4, (xp, yp) = R · (0.2, 0.5).
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3-2-3 Period doubling bifurcation threshold

From Eq. (3-11), the threshold value for the period doubling bifurcation can be calculated. For
the fundamental mode, the result is exact agreement with the simulation shown in Figure 3-
19. However, for constant damping ratio ζ, the damping coefficient (c or µ in Eq. (3-11)) is
higher for higher modes (ci = 2ωiζ). Therefore, higher modes should have a higher treshold.
However, in the simulation this is not observed, as all parametric resonances appear at the
same excitation level. Probably, the assumptions made to derive Eq. (3-11) do not hold for
ndof systems.

Proportional damping

In literature [18], it is observed that period doubling branches of higher modes appear at
higher parametric excitation levels (Figure 3-20). Therefore, a new simulation is performed
using (stiffness) proportional damping, yielding an increasing damping ratio for higher modes.
The resulting damping values are listed in Table 3-27.

In Figure 3-21, simulation results are shown. Here, clearly period doubling bifurcations of
higher modes pop up at a higher excitation level, similar to experimental data shown in
Figure 3-20. Therefore, if the parametric excitation mapping can be assumed to be the same
for all modes, it is suspected that the drum experimentally analysed exhibits a similar sort
of damping (proportional, or at least having the proportionality ζi ∝ ωi).

Figure 3-20: Experimental parametric spectrum circular membrane from [18]
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Table 3-27: Damping ratio of all modes due to (stiffness) proportional damping. ci = κki,
ζi = κωi/2, κ = 1× 10−3

Mode ωi ζi

1 1.00 5.0× 10−4

2 1.59 8.0× 10−4

4 2.14 10.7× 10−4

6 2.30 11.5× 10−4
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Figure 3-21: Frequency response of a circular membrane with proportional damping for in-
creasing parametric (γ) excitation level. Excitation levels: Fi = F0β and γi = γ0γ, where
F0 = 1× 10−12 ,γ0 = 0.002. Parameters: κ = 1× 10−3, (xp, yp) = R · (0.18, 0.35). Note that
only the start of each period doubling resonance branches is shown here. Further note that the
excitation levels are chosen to be at the onset (appearance) of each period doubling bifurcation.

3-3 Experimental validation

To show the validity of the proposed methods, in this section simulations are compared to
experimental data.
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3-3-1 Square membrane including bending stiffness

In literature [19], experiments are performed on a (almost) square membrane, where some
special features are observed. At large excitation amplitude, axisymmetric deformation pat-
terns arise (Figure 3-22b) and the mean transmissibility decreases significantly for increasing
driving power (Figure 3-22a).

(a) Experimentally obtained frequency re-
sponse

(b) Experimentally observed ring-shapes, cor-
responding to driving frequencies shown in
sub-figure (a)

Figure 3-22: Experimentally obtained data from [19]

The membrane tested has a length over width ratio slightly larger than one. This causes
all eigenmodes (except the fundamental one) to loose anything looking like axisymmetry.
However, when including bending stiffness for a square membrane, some eigenmodes become
almost axisymmetric. By including those in the ROM, it should be able to describe the
observed ring shape.

As mentioned, the average transmissibility decreases less than what would follow from the
duffing equation. This could be due to higher modes having strong interaction with the
fundamental mode, consuming power. As they are much stiffer, their contribution to the
average displacement is low compared to the fundamental mode.

The quantities describing the structure geometry and physics are listed in Table 3-28. Again,
the STEP method is applied using static condensation (so in-plane modes are not explicitly
present) for a ROM including the 15 first non-degenerate eigenmodes. The eigenmodes are
shown in Figure 3-23, and their corresponding frequencies are listed in Table 3-30.

In the experiment, instead of direct forcing, the anchor to which the membrane is mounted is
excited, resulting in an anchor diplacement p(t). This yields in a forcing proportional to the
mode stiffness (as damping is very low, ζ � ωn, so velocity-based excitation is neglected):

q̈(t) + k(q(t)− p(t)) = 0
q̈(t) + kq(t) = kp(t)

(3-12)
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(a) 1st mode (b) 2nd mode (c) 4th mode

(d) 5th mode (e) 6th mode (f) 7th mode

(g) 9th mode (h) 11th mode (i) 12th mode

(j) 13th mode (k) 14th mode (l) 16th mode

(m) 17th mode

Figure 3-23: Eigenmodes of a square plate
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Table 3-28: Properties square plate

Parameter Value Description
E 240 GPa Young’s modulus
h 478 nm Thickness
L 413.5 µm Radius
ν 0.24 Poisson’s ratio
ρ 3184 kg/m3 Density
σ 110 MPa Pre-stress

Table 3-29: Simulation settings frequency response circular membrane

Parameter Value Description
ζ 2.5× 10−5 Relative damping of all modes
pext {3, 6, 12, 20} × 10−3 m Amplitude base excitation range
Mmodes {1,2,4,5,6,7,9,11,12,13,14,16,17} Set of included mode indices

For harmonic base excitation, the modal frequency response of the square membrane is shown
in Figure 3-24, revealing the interaction between the eigenmodes. Figure 3-25a shows the
mean amplitude of the whole membrane (which is also reported in [19]). As higher modes
increase in amplitude, they contribute to the resulting shape of vibration. The shape at
maximum amplitude (indicated with the red dot in Figure 3-25a) is shown in Figure B-3. A
cross-section of the shape for different driving frequencies is shown in Figure 3-27.

In Figure 3-25b, the frequency response of the mean amplitude is shown for a model including
only the fundamental eigenmode (single degree-of-freedom model). Comparing the 13 dof
model (Figure 3-25a) to the sdof model, the following can be observed:

• The 13 dof model has much lower amplitude at the limit point

• The 13 dof model needs higher excitation level (about double) to reach the same limit
point frequency

Table 3-30: Normalised eigenfrequencies (of non-degenerate modes) of a square membrane

Index 1 2 4 5 6 7 9 11 12 13 14 16 17
ωi/ω0 1.00 1.59 2.01 2.26 2.26 2.58 2.97 3.06 3.23 3.23 3.64 3.71 3.71
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Figure 3-24: Modal frequency response of a square membrane for base excitation of 700 nm.
The ROM includes 13 modes.
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(a) Frequency response of a square membrane for increasing base excitation level (vibration
amplitude is integrated over complete surface). The frequency content at the red dot is
shown in Figure 3-26 and Figure B-2.
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(b) Frequency response of a square membrane for increasing base excitation level (vibration
amplitude is integrated over complete surface). The ROM contains only the fundamental
mode.

Figure 3-25: Frequency response of a square membrane (including bending stiffness) for increas-
ing base excitation level.
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Figure 3-26: FFT of modal signal of stable solution along the resonance curve at ωf = 1.2ω1
(the red dot in Figure 3-25a)
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Figure 3-27: Vibration amplitude along cross section x = 0 for different points along the
resonance peak.

Note that, as analysed in Figure 3-26, most higher modes vibrate at three times the excitation
frequency. However, summing the amplitude of vibration of every point still provides a kind
of total deflection pattern.

Conclusion

Comparing the results to the experimental results reported in [19], it can be concluded that

• Modal interaction could cause flattening of the resonance curve (Figure 3-25). This can
be seen as a way of mode-coupling damping in forced vibration, as energy flows from
the fundamental mode to the higher modes, where it is dissipated. In literature [20],
observations during ringdown experiments related to this phenomena are reported.

• The rise of ring-shape deformation patterns shows some qualitatively similar behaviour
as in the experiment, but cannot completely be explained by nonlinear mode coupling
(using linear eigenmodes). Probably other effects like dynamic interaction with the
anchor also play a role here.

3-3-2 Circular Graphene membrane

A. Keşkekler has performed experiments on a graphene membrane fabricated on a chip. By
illumination with lasers, the membrane is heated up, inducing thermal expansion. As a
consequence, the pre-stress and thus the linear stiffness is changed, resulting in parametric
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excitation. Additionally, the lasers cause direct forcing, through a photonic force or due to
imperfections (which is rather complicated). Because the membrane is very small (it has a
diameter of around 5 micron, and thickness in the nanometer range), it’s properties are not
precisely known. Besides, during fabrication imperfections like wrinkles and tension variations
could occur. Moreover, the point of excitation and measurement are only approximately
known and the direct and parametric forcing levels have to be estimated from the laser power
levels. Nevertheless, as the experiments are performed at different power levels, a lot of
information can be gathered from the datasets. The following steps are taken to gather all
information:

1. From the linear frequency response, the (first 10) eigenfrequencies of the circular mem-
brane are found (shown in Table 3-33 and Figure 3-28). Despite the asymmetry (inho-
mogeneous pretension, as listed in Table 3-31), the eigenmodes 4 & 5 and 7 & 8 remain
degenerate, resulting in only one resonance peak per set. Mode 9 remains invisible,
probably due to the actuation or sensor location.

2. A FEM model is build of a circular membrane clamped at the edge. Plate elements are
used, so bending stiffness can be included.

3. From the experimentally found eigenfrequencies, pre-stress (in x -and y direction), bend-
ing stiffness and thickness are estimated (listed in Table 3-31). This yields the linear
response shown in Figure 3-29b and Figure 3-30b.

4. From the frequency response in the linear domain, the damping can be estimated (using
the half-width bandwidth or the resonance-stiffness ratio).

5. The fundamental eigenmode exhibits hardening, shifting the frequency at maximum
amplitude upwards. From this shift, the direct forcing level can be determined.

6. For each higher mode, the modal force can be determined from the hardening. Subse-
quently, the mapping of the direct force can be determined.

7. From the amplitude at resonance in the linear regime, the sensor-mapping can be deter-
mined for each mode. Here, the sensing is assumed to remain linear at higher amplitude.

8. Also the period doubling branch shows hardening. From this, the parametric excitation
level can be determined (just like the direct force was extracted).
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(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) 4th mode (e) 5th mode (f) 6th mode

(g) 7th mode (h) 8th mode (i) 9th mode

(j) 10th mode (k) 11th mode (l) 12th mode

(m) 13th mode (n) 14th mode (o) 15th mode

Figure 3-28: Eigenmodes of Ata’s membrane
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Table 3-31: Properties circular membrane

Parameter Value Description
E 430 GPa Young’s modulus
h 11.6 nm Thickness
R 2.5 µm Radius
ν 0.16 Poisson’s ratio
ρ 2267 kg/m3 Density
T0x 0.321 N m−1 Membrane tension in x-direction
T0y 0.257 N m−1 Membrane tension in y-direction

Table 3-32: Simulation settings frequency response circular membrane

Parameter Value Description
ζ 0.0028 Relative damping of all modes
Q 180 Quality factor
F0 10 pN External direct forcing multiplier
γ0 0.01 Parametric excitation multiplier
Mmodes {1,2,3,4,6,7,10} Set of included mode indices

Table 3-33: Normalised eigenfrequencies of a circular membrane with different pre-stress in x
and y direction. Note that only the degenerate modes 2 & 3 and 9 & 10 diverge.

Index Waveindex(t,r) ωi/ω0 Shape
1 (0,1) 1 axisymmetric
2 (1,1) 1.728
3 (1,1) 1.779
4 (2,1) 2.586
5 (2,1) 2.593
6 (0,2) 2.884 axisymmetric
7 (3,1) 3.540
8 (3,1) 3.541
9 (1,2) 4.069
10 (1,2) 4.140
11 (4,1) 4.610
12 (4,1) 4.611
13 (2,2) 5.447
14 (2,2) 5.447
15 (0,3) 5.801 axisymmetric
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(a) Experimentally obtained frequency response of a membrane (smoothed data).
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(b) Simulated frequency response of a membrane.

Figure 3-30: Frequency response of a clamped membrane in the linear regime.
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(a) Experimentally obtained frequency response of a membrane.
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(b) Simulated modal frequency response of a membrane.

Figure 3-29: Frequency response of a clamped membrane in the linear regime.
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Figure 3-31: Simulation and experiment (smoothed) of a clamped membrane in the linear regime.
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(a) Experimentally obtained frequency response.
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(b) Simulated modal frequency response due to direct forcing.

Figure 3-32: Frequency response of a clamped membrane showing hardening.
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(a) Experimentally obtained frequency response of a membrane (smoothed data).
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(b) Simulated frequency response of a membrane.

Figure 3-33: Frequency response of a clamped membrane showing hardening.
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(a) Experimentally obtained frequency response.
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(b) Simulated modal frequency response due to direct and parametric excitation.

Figure 3-34: Frequency response of a parametrically excited clamped membrane showing hard-
ening.
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(a) Experimentally obtained frequency response of a membrane (smoothed data).
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(b) Simulated frequency response of a membrane due to direct and parametric excitation.

Figure 3-35: Frequency response of a clamped membrane showing hardening.

Conclusion

In conclusion, it can be stated that using the Condensed STEP method for a pre-stressed plate,
simulations resemble experimental data very well. Both hardening caused by cubic stiffness,
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as well as parametric resonance appear in simulations, while only structural parameters like
thickness and elasticity (which are only approximately known) are fitted.

3-3-3 Shooting - internal resonance

When further increasing the excitation level, something strange happens. The limit point of
the period doubling branch of the first mode does not increase in frequency anymore (locking,
as visible in Figure 3-36a at ω/ω1 = 2.5). Then, after a certain threshold is reached, the limit
point jumps to a frequency far away, ignoring the natural resonance peaks of mode 4 and 6.

This behaviour was observed in experiments by ir. A. Keşkekler (Figure 3-36a and Fig-
ure 3-38a), and shows up in simulations almost identically (Figure 3-37b and Figure 3-38b).
Additionally, in Figure 3-37 and Figure 3-39, the modal amplitude of each mode is shown,
which reveals the underlying mechanisms. The period doubling resonance peak of the second
eigenmode is not simulated, as this is not at our interest at this point.
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(a) Experimentally obtained frequency response (smoothed data).
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(b) Simulated frequency response for increasing direct (F ) and parametric (γ) excitation.
Excitation levels: Fi = F0β and γi = γ0γ, where F0 = 1 × 10−11 ,γ0 = 0.01.

Figure 3-36: Frequency response of a clamped membrane showing locking.
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(a) Simulated modal frequency response for excitation levels β = 14.32 and γ = 2.5.
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(b) Simulated frequency response of a membrane due to direct and parametric excitation.
The model includes 11 modes

Figure 3-37: Frequency response of a clamped membrane showing locking and no shooting yet.
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(a) Experimentally obtained frequency response for several forcing (voltage) levels. Note locking
at 0.34 V
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(b) Simulated physical frequency response for increasing direct (F ) and parametric (γ) excitation.
Excitation levels: Fi = F0β and γi = γ0γ, where F0 = 1 × 10−11 ,γ0 = 0.01.

Figure 3-38: Frequency response of a clamped membrane showing shooting. The model includes
11 modes.

Master of Science Thesis V. Bos



72 Dynamics

1 1.5 2 2.5 3 3.5 4

Normalised frequency ( /
1
)

10-4

10-2

100

102

C
om

pl
ia

nc
e 

(m
/N

)

1
2
3
4
6
7
9
10
11
13
15

Mode

(a) Simulated modal frequency response for excitation level β = 26.22 and γ = 3.2.

(b) Simulated modal frequency response for all forcing levels.

Figure 3-39: Frequency response of a clamped membrane showing shooting.
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Note that after the locking point (at ω = 2.53), the period doubling branch is unstable for
a short interval. This is also visible in the experimental data, as the amplitude fluctuates
at this point. To investigate this behaviour, all found bifurcations are shown in Figure 3-40.
After the locking point, a torus bifurcation shows up, enclosing the unstable interval.
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Figure 3-40: Simulated frequency response incl. bifurcation points. Diamond: Period doubling
bifurcation - Circle: Torus bifurcation. Excitation levels: Fi = F0β and γi = γ0γ, where
F0 = 1× 10−11 ,γ0 = 0.01.

Note that, for the locking at ω = 2.53, although only mode 15 shows a real resonance peak
at high amplitude, also mode 6 is essential for the internal resonance (if only mode 15 is
included in the ROM, no locking happens). If the ROM contains only the modes 1,6 and 15,
the locking - shooting phenomena can be observed (see Figure 3-41). However, the shooting
branch now continues without any obstacles after it has overcome the locking at ω = 2.53, as
the modes required for the soft locking at ω = 3.24 are not present.
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(a) Simulated modal frequency response for excitation level β = 26.22 and γ = 3.2.
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(b) Simulated frequency response incl. bifurcation points. Diamond: Period doubling bifurcation - Circle: Torus
bifurcation. Excitation levels: Fi = F0β and γi = γ0γ, where F0 = 1 × 10−11 ,γ0 = 0.01.

Figure 3-41: Frequency response of a clamped membrane showing shooting. The model consist
of mode 1,6 and 15.
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In Table 3-34, the eigenfrequencies of the interacting modes at the locking points are shown.
In appendix B-1-2, the ratio is compared to what is found from Fourier analysis of the solution
at the locking points (Figure B-4 and Figure B-5). The time signals of the solution points are
shown in Figure 3-43 and Figure 3-45. The resulting shape of vibration is shown in Figure B-
6 and Figure B-7 in appendix B-1-2. A cross section of this shape along the whole period
doubling resonance curve is shown in Figure 3-46.

Table 3-34: Internal resonance along the period doubling resonance of the first mode. The
actual frequency of vibration of a mode is denoted as ω∗, and the eigenfrequencies ωi correspond
to those listed in Table 3-33. Note that, due to parametric excitation, the frequency at which the
fundamental mode vibrates is half the parametric excitation frequency (ω∗

1 = 1
2ωf ).

ωf/ω1 Interacting modes Eigenfrequency ratio Frequency ratio from FFT
2.53 1,6,15 ω6 = 2.28ω∗1, ω15 = 4.58ω∗1 ω∗6 = 3ω∗1, ω∗15 = 5ω∗1
3.24 1,4,13 ω4 = 1.6ω∗1, ω13 = 3.36ω∗1 ω∗4 = 2ω∗1, ω∗13 = 4ω∗1
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Figure 3-42: Simulated frequency response for increasing direct (F ) and parametric (γ) excita-
tion. For the black and red dot, the solution is further investigated. Excitation levels: Fi = F0β
and γi = γ0γ, where F0 = 1× 10−11 ,γ0 = 0.01.
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Figure 3-43: Modal time signal of stable solution along the resonance curve at ωf = 2.53ω1 (the
red dot in Figure 3-42)
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(a) 1st quarter period
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(b) 2nd quarter period
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(c) 3rd quarter period
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(d) 4th quarter period

Figure 3-44: Deformation along cross section during one period at ωf = 2.53ω1
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Figure 3-45: Modal time signal of stable solution along the resonance curve at ωf = 3.37ω1 (the
black dot in Figure 3-42)
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Figure 3-46: Vibration amplitude along cross section x = 0 for different points along the
parametric resonance peak.

Conclusion

Regarding the preceding analysis, it can be concluded that the nonlinear ROM yielding from
the condensed STEP method is able to describe very complicated experimentally observed
effects like shooting. Those effects appear directly, without tweaking the modal equations of
motion.

Beside, it may be observed that the parametric resonance remains bounded due to modal
interaction, causing additional effective damping (In literature [18], usually artificial nonlinear
damping like Fd = x2ẋ is introduced). Therefore, mode-coupling damping can be seen as an
essential mechanism to describe parametric resonance correctly.

3-4 FPU

The famous FPU problem [21] states that for a set of nonlinear coupled oscillators, energy
is not equally divided after infinite time. Moreover, the system tends towards the initial
conditions U0 after a time T1. Every T2 = nT1, the initial conditions are met almost exactly.
The original problem was posted for a string where the individual atoms where modelled using
linear and nonlinear reaction forces. Because the real (nonlinear) forces between the atoms
were unknown, a qualitative model consisting of quadratic, cubic or discontinuous forces was
introduced.

Master of Science Thesis V. Bos



80 Dynamics

3-4-1 FPU in strings

Using our code, the equations of motion for a string can be derived from first principle. Using
an ODE solver, the behaviour monitored at a large time scale. In this way, the behaviour can
be compared to the FPU observations.

Ẽ is taken as measure for the nonlinearity of the initial state. Ẽ represents the energy (both
kinetic and potential) in the initial state per mode, relative to the energy needed to pre-stress
the membrane:

Ẽ = Etot
nmodeEpre

(3-13)

Here, Epre equals the energy needed to pre-stress the membrane and Etot equals the total
energy in the system (of all modes). Another, more absolute measure of the initial state
is known as the equivalent noise temperature. From a thermodynamic point of view, the
energy is seen as a source of noise, related to the entropy of the system. The equivalent noise
temperature writes (where kB equals the Boltzmann constant, see [4]):

Tnoise = Etot
nmodekB

; (3-14)

The initial conditions are chosen such that all modes have an equal amount of energy. All
modes start in their equilibrium position (zero displacement), having a velocity corresponding
to their initial energy level.

In Figure 3-47, Figure 3-49 and Figure 3-50, the time response is shown for different initial
conditions (structure properties are listed in Table 3-35, simulation settings are listed in
Table 3-36). For low initial energy, there is only weak interaction. In Figure 3-48, a slow
oscillation is visible, which grows in time and probably would tend towards chaos. For high
initial energy, this chaotic behaviour appears directly (Figure 3-50), and energy flows freely
from one mode to another. As stated in the FPU problem, there does not appear a steady
state, in which the system would rest until infinite time.

Table 3-35: Structure parameters

Parameter Value Description
E 210 GPa Youngs modulus
σ 1520 MPa Pre-stress
D 0.001 m Diameter
L 1 m Length
ρ 7850 kg m−3 Density
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Table 3-36: Simulation settings for long-time behaviour of a string. Note that χ is chosen such
that the each mode has the same initial energy.

Parameter Value Description
nmodes 6 Number of modes in the reduced order model
ζ 5e-10 Viscous damping active on all modes
nper 500 number of periods simulated
χ 1/6 Fraction of initial energy in fundamental mode
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Figure 3-47: Long-time behaviour of a string: RMS-amplitude of vibration. Ẽ = 0.016

Master of Science Thesis V. Bos



82 Dynamics

0 50 100 150 200 250 300 350 400 450

Normalised time t / T
0

0

1

2

3

4

5

6

7

8

N
or

m
al

is
ed

 a
m

pl
itu

de
 q

/h

1
2
3
4
5
6

Mode

Figure 3-48: Long-time behaviour of a string: RMS-amplitude of vibration. Ẽ = 0.10
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Figure 3-49: Long-time behaviour of a string: RMS-amplitude of vibration. Ẽ = 0.41
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Figure 3-50: Long-time behaviour of a string: RMS-amplitude of vibration. Ẽ = 10.2

3-4-2 FPU in membranes

For a membrane, the same simulations are performed. The results are shown in Figure 3-
51, Figure 3-52 and Figure 3-53, simulation setting are listed in Table 3-38 and structure
parameters are given in Table 3-37. Interestingly, again slow oscillations appear, already at
low energy levels (Figure 3-51). In contrary to the string, now those oscillations remain stable,
also for larger energy levels (Figure 3-52). Finally, when increasing the energy enough, the
system becomes chaotic (Figure 3-53), and the slow periodicity in amplitude is lost.

Table 3-37: Structure parameters

Parameter Value Description
E 1044 GPa Youngs modulus monolayer graphene
ν 0.16 Poisson’s ratio
T0 0.035 N m−1 Pretension
h 0.335 nm Membrane thickness
R 30 nm Radius

Master of Science Thesis V. Bos



84 Dynamics

Table 3-38: Simulation settings for long-time behaviour of a membrane.

Parameter Value Description
nmode 6 Number of modes in the reduced order model
ζ 5e-10 Viscous damping active on all modes
nper 500 number of periods simulated
χ 1/6 Fraction of initial energy in fundamental mode
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Figure 3-51: Long-time behaviour of a membrane: RMS-amplitude of vibration. Ẽ = 0.0042 or
T = 1K
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Figure 3-52: Long-time behaviour of a membrane: RMS-amplitude of vibration. Ẽ = 0.084 or
T = 20K
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Figure 3-53: Long-time behaviour of a membrane: RMS-amplitude of vibration. Ẽ = 1.67 or
T = 400K
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Coefficient of variance

From Figure 3-51 and Figure 3-52, it may be observed that for larger initial velocity, the
fluctuation in amplitude of all modes increase. The fluctuation in amplitude can be described
by the coefficient of variance (or relative standard deviation), which is defined as the standard
deviation divided by the mean:

cv = σ

µ
(3-15)

This coefficient is calculated for the energy of the fundamental mode of each simulation.
For different initial conditions, the result is shown in Figure 3-55 for a membrane, and in
Figure 3-54 for a string. For the membrane, the coefficient of variance is also plotted versus
the equivalent noise temperature in appendix B-1-3.

From Figure 3-55, it becomes clear that the slow oscillation amplitude increases linearly
with energy. However, when the relative energy per mode (Ẽ) approaches unity, the system
turns into chaos, and the coefficient of variance saturates near unity. Note that the string
(Figure 3-54) shows the same trend, having only a slight offset.
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Figure 3-54: Coefficient of variance as a function of initial energy for a string.
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Figure 3-55: Coefficient of variance as a function of initial energy for a membrane.

Conclusion

Regarding the original FPU problem, some features where found in the analysed structures.
As the FPU problem stated, there is, (at sufficient high energy level), no steady state con-
figuration in which the system rests after very long time (thermalization does not happen).
Moreover, the membrane shows a periodicity of it’s amplitude of vibration on a large timescale.
Here, the initial conditions are met closely every period (the system remembers it’s initial
state). This last feature is not so clear observed for a string.

3-5 Overview

In Table 3-39, an overview is provided of all observed dynamic effects investigated in this
chapter. For some structures, a certain effect is not investigated, so it is left open. The
effect of interacting modes increasing very rapidly at a certain frequency as well as shooting
are named under internal resonance, as this is the expected mechanism behind. For a string
including in-plane modes, internal resonance is described in the appendix, section D-6-2.
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Table 3-39: Overview of the observed nonlinear dynamic effects for different structures. Unknown
combinations are left open. Structures marked with a star (*) have additional bending stiffness.
†: this effect can be found in the appendix, section D-6-2

Element Softening Hardening Internal resonance FPU
String × X ×
String (incl. in-plane modes) X X X†
Circular membrane × X X
Circular membrane* × X X
Square membrane × X
Square membrane* × X X
Cantilever × X
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Chapter 4

Quality factor

This chapter focusses on the quality factor due to mode interaction. Usually, the quality
factor is determined by physical damping mechanisms, which convert vibration energy into
heat. However, in coupled systems, energy can also flow from one mode to another, resulting
in a decay of the drained mode comparable to physical damping mechanisms. This effect can
be observed during the transient response of a freely vibrating system, which is therefore the
main focus in this section.
In section 4-1, the system of equations is studied, in order to understand the (mathematical)
mechanisms behind the mode interaction. Those equations can hardly be solved analytically,
but the dependence on different parameters can be estimated. The influence of initial con-
ditions (total and noise energy) and shape (radius and aspect ratio) is investigated in the
succeeding sections.

4-1 Free vibration

In linear systems, all eigenmodes are uncoupled, so energy cannot flow from one mode to an-
other. In coupled (nonlinear) systems however, energy can flow between the modes. The rate
of flow cannot be deduced from the equations directly. Therefore, in this section estimations
are made for the scaling of the power.

4-1-1 Equations

Consider a ROM consisting of 2 modes, having only cubic nonlinear stiffnesses (like the
straight string in section 3-1-2, or the flat membrane from section 3-1-4) and no external
forcing. Then, from Eq. (3-1), only the following remains:

m1q̈1 + k1q1 = −b(1)
111q

3
1 − b

(1)
112q

2
1q2 − b(1)

122q1q
2
2 − b

(1)
222q

3
2

m2q̈2 + k2q2 = −b(2)
111q

3
1 − b

(2)
112q

2
1q2 − b(2)

122q1q
2
2 − b

(2)
222q

3
2

(4-1)
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Note that there are no linear damping terms present in Eq. (4-1), as we are only interested
in damping due to nonlinear effects. Therefore, in this chapter the total energy is conserved.

The first term on the right-hand-side in the first line of Eq. (4-1) (b(1)
111q

3
1) acts as a cubic

stiffness solely on the first mode (q1), and therefore creates no coupling to the second mode.
The last 3 terms on the right-hand-side (with stiffness b(1)

112, b
(1)
122, b

(1)
222) have mixed indices, and

therefore act as a nonlinear coupling spring. Through this coupling, energy can flow from one
mode to another. The rate of energy flow (power) can, at first glance, not easily be obtained
from the equations. To get some insight, the elastic potential is derived in the next section,
which appears to be very useful later on.

Elastic potential

From the stiffness terms in Eq. (4-1), an elastic potential can be derived. Adding the kinetic
energy, the total energy in the system can be determined. The linear elastic energy in mode
1 writes:

E
(1)
L = 1

2k1q
2
1 (4-2)

The nonlinear elastic potential of each spring can be found by integrating the force (further
elaborated in section C-2-1):

E1112 =
∫
Fdu =

∫
b

(1)
112q

2
1q2dq1 = 1

3b
(1)
112q

3
1q2 (4-3)

The total nonlinear potential (of the whole system) writes:

ENL = 1
4b

(1)
111q

4
1 + 1

3b
(1)
112q

3
1q2 + 1

2b
(1)
122q

2
1q

2
2 + b

(1)
222q1q

3
2 + 1

4b
(2)
222q

4
2 (4-4)

Here, the energies with mixed indices allow for coupling (ENLC), the others only for storage
(ENLS).

E
(1)
NLS = 1

4b
(1)
111q

4
1, E

(2)
NLS = 1

4b
(2)
222q

4
2 (4-5)

E1−2
NLC = 1

3b
(1)
112q

3
1q2 + 1

2b
(1)
122q

2
1q

2
2 + b

(1)
222q1q

3
2 (4-6)

Note that, because multiple stiffness terms yield from the same term in the elastic potential,
those terms are related to each other (relations between terms can be found in [7]).
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4-1-2 Energy transfer between modes

The coupling terms in the right hand side of Eq. (4-1) can be seen as nonlinear springs,
connecting both modes. Each mode can add or subtract energy to the spring, allowing
energy to flow from one mode to another. If we assume harmonic motion (with amplitude q̂),
the work done on a nonlinear spring can be estimated by integrating the power with respect
to time (a derivation can be found in section C-2-3):

W =
∫ T

0
Pdt (4-7)

The work of mode 1 on the cubic spring with coefficient b(1)
112 (during one period of mode 1)

can be determined now. Here, the frequency of mode 2 is expressed as a fraction of mode 1
ω2 = n

mω1, yielding:

W
(1)
112 = b

(1)
112q̂

3
1 q̂2

1
8

(cos (2πmδ)
δ

− cos (2πmδ3)
δ3

− cos (2πmσ)
σ

+ cos (2πmσ3)
σ3

)
(4-8)

δ = ω2 − ω1
ω1

, δ3 = ω2 − 3ω1
ω1

, σ = ω1 + ω2
ω1

, σ3 = 3ω1 + ω2
ω1

, T1 = m
2π
ω1

(4-9)

The expression can be split up in an energy and frequency depended part, multiplied with
some constatnt c:

W
(1)
112 = cE1112f(ω1, ω2) (4-10)

This is an important result, as it allows us to distinguish between the mechanisms creating
the energy flow. The energy part is used to determine the influence of energy-related quan-
tities like noise-temperature (section 4-5). The frequency dependent part plays a role when
analysing shape influence (section 4-7).

Entropy: energy flow direction

In literature [22], a law is derived from thermodynamics, indicating the (average) energy flow
between coupled mechanical oscillators:

Ẇ =< E1 > − < E2 > (4-11)

where < Ei > indicates the average modal energy. This law ensures that, on time average,
energy flows from a mode containing a lot of energy to one containing less, revealing the
macroscopic driving force behind the damping mechanism.
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4-2 Simulation approach

In this section, the simulation approach is outlined. First, a proper measure for damping is
discussed, followed by the used simulation setup. Finally, an example is given to illustrate
the procedure. Beside, in section C-1-1, the numerical accuracy of the used ODE solver is
discussed.

Damping measure

Damping can be expressed in several measures, but one close to physics is the loss factor:

η = ∆U
2πU (4-12)

where U equals stored energy (in the mode under study) and ∆U the lost energy (from the
mode under study towards the other modes) during one period of the mode. Note that η
is usually used for linear systems. In that case it is independent of amplitude, in nonlinear
systems this can change.

For some physical sources of damping, η can be determined from first principles (like ther-
moelastic damping). However, the energy flow between modes cannot easily be deduced from
the governing equations. Therefore, it has to be obtained empirical (numerical or experi-
mentally). In this work, only numerical simulations are performed, which are compared to
experiments from literature if available.

Simulation setup

The simulations comprise the following:

1. Initial conditions are determined from global settings (like energy levels etc.)

2. The response of the system (in absence of external forces) is calculated for a certain
timespan.

3. The effective damping is determined from the response.

This is close to what is called a Ringdown experiment in literature. The simulated time
interval is quite short, such that the system remains close to the global properties set by the
initial conditions. In this way, the Q-factor is effectively evaluated at one amplitude and the
amplitude dependence of Q in the nonlinear system can be evaluated. To ensure this, the
number of simulated periods should remain shorter than the quality factor (nper < Q). In
this way, the influence of the initial settings can be investigated.

From the initial settings, energy levels for all modes can be determined. Those can be trans-
lated to initial velocity v(0) and displacement u(0) by specifying the initial phase θ (assuming
all modes to vibrate at their own eigenfrequency). Assuming sinusoidal motion, the initial
phase can be determined:
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u = sin(ωt+ θ)
v = ω cos(ωt+ θ)

(4-13)

θ = arctan
(

u(0)
v(0)/ω

)
(4-14)

However, this initial phase can influence the behaviour significantly. To remove this influence,
each simulation is repeated (several times) using different initial phase (obtained from a
random set) for each mode each simulation. From each batch of datasets belonging to the
same initial settings, statistical measures like the mean and variance can be determined,
finally providing use the desired result. The number of simulations per parameter set (nr) is
shown for each analysis, and varies between 40 and 200, depending on the accuracy needed.

To model the transient response, an ODE solver is used, which integrates the system of
equations over a given time interval. The implementation of the solver is described in section
2-5-4.

Extracting the loss-factor η

The loss-factor can be calculated at every time-step (further explained in appendix section
C-2-4):

η = ∆U
2πU = PT

2πU = P

ωU
(4-15)

Because the system is nonlinear, the vibration frequency changes with amplitude. Therefore,
instead of just assuming the linear eigenfrequency, the instantaneous frequency (see section
C-2-5) is determined, which can be seen as the geometric mean of the Amplitude Spectral
Density (ASD):

finst =
∫∞

0 fX(f)df∫∞
0 X(f)df (4-16)

Here, X(f) equals the Fourier transform of the time signal, and is determined using the Fast
Fourier Transform (FFT) algorithm (this is done for multiple time intervals using a moving
window).

Overview simulation setup

In Figure 4-1, an overview is presented of the simulation setup.
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Global condi�ons
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𝒚(𝑖)(0) 𝒚(𝑖)(𝑡)

Figure 4-1: Overview of the simulation setup. Initial state vectors are denoted as y(i)(0),
solution vectors as y(i)(t). Calculation of both loss-factor η and instantaneous frequency finst are
performed during the processing.

4-2-1 Example

To illustrate the procedure, one simulation is shown in Figure 4-2. The simulation settings
are listed in Table 4-1.

Note that there is very little viscous damping (ζ = 5× 10−10) added for numerical consistency.
It is preferred here to have a very small damping source which is known and can be monitored,
instead of ’unpredictable’ numerical damping (due to ODE tolerances or machine precision),
which can fluctuate for different simulations. Numerical damping is always present, but at
least it is not dominant in this case. From ζ, the range in which results are valid can be
estimated. This is further elaborated in section C-1-1.

Here, some key values are introduced which define the simulation settings. The fraction of
the total initial energy present in the fundamental mode is defined as χ:

χ = E1
Etot

(4-17)

The remaining energy is equally distributed over the other modes. As a measure for the
initial energy, Ṽ0 is defined as the relative initial velocity of the fundamental mode. The value
corresponds to the amplitude of vibration for sinusoidal motion (like Eq. (4-13)), normalised
to the structure thickness h:

Ṽ0 = v1(0)
hω1

(4-18)

Using this definition, a value of Ṽ0 � 1 corresponds to the linear regime, and Ṽ0 � 1 to the
nonlinear regime.
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Table 4-1: Simulation settings method example.

Parameter Value Description
nmodes 20 Number of modes in the reduced order model
ζ 5× 10−10 Linear viscous damping for each mode (for numerical consistency)
nr 5 Number of simulations per batch
nper 200 Number of periods simulated
χ 0.6 Fraction of total initial energy in the fundamental mode
Ṽ0 14 Relative initial velocity of the first mode

Figure 4-2: Relative modal energy: E equals the modal energy in each mode, ET the total
energy in the system, t equals time which is normalised to T0, the period of the fundamental
mode (T0 = 2π/ω1). Different colours correspond to different modes.

4-2-2 Damping measures

Time-averaged loss factor

From the previous example, it becomes clear that there is no gradual decrease, it is very
bumpy. Therefore, two descriptive numbers are defined, one corresponding to the time-
averaged energy decay, and one to the instantaneous fluctuations. For one simulation, the
loss factor η can be calculated at every timestep ti. Calculating the time average of η yields
the time-averaged loss factor ηta:
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ηta = 1
Ns

i=Ns∑
i=1

η(ti) (4-19)

where η(ti) equals the loss factor evaluated at sample time ti and Ns equals the number of
samples. Note that this is closely related to comparing the initial and final energy level.
However, by ignoring the data in between, fluctuations in vibration frequency would not be
taken into account.

Instantaneous loss factor

Calculating the standard deviation (σ) of η provides information of the dispersion. A constant
decay should result in a small value, while a very irregular progress should yield a large
standard deviation. The standard deviation is used to define the instantaneous loss factor:

σ =

√√√√ 1
Ns − 1

Ns∑
i=1

(η(ti)− ηta)2 (4-20)

ηins = ηta + σ (4-21)

From another point of view, ηins can be seen as a soft upper bound for the loss factor, as
approximately 84% of the set values should be lower. Note that ηins is close related to the
coefficient of variance cv (defined in section 3-4-2), both being a nondimensional measure for
the dispersion.

Batch data

As mentioned before, multiple simulations are run per batch, where each simulation has
different random phase but the same initial energy levels. For all simulations in one batch,
all data of η is taken together and regarded as one dataset, the batchdata. From this, the
instantaneous and time-averaged loss factor are determined to provide a balanced statistical
measure.
Note that for the standard deviation of multiple datasets, instead of Eq. (4-20), the pooled
standard deviation would be right statistical measure. However, for data having large disper-
sion (small mean w.r.t. the sample data), the pooled version yields comparable results. As
the loss factor is found to have large dispersion (Figure 4-2), the total standard deviation is
assumed to still provide a good measure for the dispersion.

4-3 Membrane model

In the subsequent sections, damping through mode interaction is further investigated by per-
forming simulations. The structure of interest is again a circular membrane made of graphene,
as the damping in those structures is a significant obstacle for practical implementation [23].
Structure properties (as found from [23]) are listed in Table 4-2, eigenfrequencies are listed
in Table 4-3 and Table 4-4.
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Table 4-2: Properties circular graphene membrane

Parameter Value Description
E 1014.9 GPa Youngs modulus graphene
ν 0.16 Poisson’s ratio
T0 0.0340 N m−1 Pretension
h 0.335 nm Membrane thickness
R 300 nm Radius
ρ 2209 kg/m3 Density

Table 4-3: Normalised eigenfrequencies of the first 9 axisymmetric modes of a circular membrane

Index Waveindex(t,r) ωn/ω1

1 (0,1) 1
6 (0,2) 2.2959
15 (0,3) 3.6027
30 (0,4) 4.904
51 (0,5) 6.2114
74 (0,6) 7.5202
105 (0,7) 8.8341
140 (0,8) 10.152
175 (0,9) 11.479

Table 4-4: First 20 normalised eigenfrequencies of a circular membrane

Index Waveindex(t,r) ωn/ω1 Shape
1 (0,1) 1 axisymmetric
2 (1,1) 1.5934
3 (1,1) 1.5934
4 (2,1) 2.1358
5 (2,1) 2.1358
6 (0,2) 2.2959 axisymmetric
7 (3,1) 2.6539
8 (3,1) 2.6539
9 (1,2) 2.9188
10 (1,2) 2.9189
11 (4,1) 3.1573
12 (4,1) 3.1573
13 (2,2) 3.5036
14 (2,2) 3.5036
15 (0,3) 3.6027 axisymmetric
16 (5,1) 3.6511
17 (5,1) 3.6511
18 (3,2) 4.0658
19 (3,2) 4.0658
20 (6,1) 4.1385
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4-4 Energy dependence

According to Eq. (4-10), the energy flow depends on the energy in the coupling springs.
Some work in literature concerning this is shared in the next section (4-4-1). Thereafter, a
theoretical hypothesis is constructed in section 4-4-2. To test it, simulations are performed
subsequently in section 4-4-3.

4-4-1 Literature

In literature, the influence of energy in a system on mode coupling damping is already men-
tioned. Midtvedt et al. [4] reported a linear dependence of the loss factor on the total energy
in the system. In Figure 4-3, their results are shown. Here, the noise energy is a constant
portion of the total energy, and is translated to the equivalent noise temperature (reported
on the x-axis). Despite their nice results, they do not provide a theoretical explanation for
the observed behaviour. Therefore, this is investigated in the next section.
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Figure 4-3: Energy dependence of the loss factor (of the fundamental mode). Results are
obtained from Molecular Dynamics (MD) and Continuum Mechanics (CM). The noise energy is
translated to the equivalent noise temperature. In the CM model, only axisymmetric modes are
included.

4-4-2 Theory

According to Eq. (4-10), the energy flow depends on the energy in the coupling springs. This
allows making a rough estimation of the loss factor due to this coupling. The loss factor is
defined as:

η = ∆U
2πU

The stored energy U equals the sum of both linear and nonlinear energy:

U = EL + ENLS (4-22)
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Recall Eq. (4-10) (the work done due to a coupling spring) to estimate the lost energy during
one period:

∆U1112 = E1112f1112(ω1, ω2) (4-23)

As our point of interest is currently the influence of energy levels, the frequency dependent
term is ignored in the following part. Recall the nonlinear coupling and storage potentials:

E
(1)
NLS = 1

4b
(1)
111q

4
1, E

(2)
NLS = 1

4b
(2)
222q

4
2 (4-24)
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3b
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112q
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2 + b
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222q1q

3
2 (4-25)

The energy in the coupling springs can be fixed to a constant fraction of the stored non-linear
energy:

E1−2
NLC = γE

(1)
NLS, (4-26)

yielding the energy loss in terms of stored nonlinear energy:

∆U ∝ E1112 + E1122 + E1222 = E1−2
NLC = γE

(1)
NLS (4-27)

Eq. (4-27) and Eq. (4-22) can be substituted in Eq. (4-12), to obtain the loss factor for the
first mode:

η = ∆U
2πU (1) ∝

γE
(1)
NLS

E
(1)
L + E

(1)
NLS

= γ
1
4b

(1)
111q

4
1

1
2k

(1)q2
1 + 1

4b
(1)
111q

4
1

= γ
q2

1

2 k(1)

b
(1)
111

+ q2
1

(4-28)

η ∝ γ q2
1

α+ q2
1

(4-29)

This implies that for low amplitude (q2
1 � α), the loss factor is proportional to q2

1 (which
is proportional to the linear energy), which is in accordance to the behaviour reported in
literature (section 4-4-1):

η(q2
1 � α) ∝ q2

1 ∝ EL (4-30)

However, for large amplitude (q2
1 � α), the q2

1 dependence vanishes, as the loss factor reaches
an upper bound set by γ:

η(q2
1 � α) ∝ γ (4-31)

This was not reported in literature yet (note that in [4], only small energy levels are consid-
ered). Therefore, in the next section simulations are performed to investigate whether this
upper bound really exists or not.
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4-4-3 Simulations

In this section, the influence of the total energy is investigated by performing numerical
simulations (as explained in section 4-2). Simulations are run for increasing initial energy
levels at the start. However, the ratio between the energy in the fundamental mode and the
total energy (χ) at the start is kept constant. For each set belonging to the same energy level,
the time-averaged (ηta) and instantaneous (ηins) loss factor are calculated.

The total energy can be normalised with respect to the pre-strain energy Epre (indicating the
nonlinearity reached):

Ẽt = Etot
Epre

(4-32)

The results using this scaling are shown in Figure 4-4. Alternatively, the energy level can be
expressed as the equivalent noise temperature (already defined in section 3-4):

Enoise = Etot − Enoise (4-33)

Tnoise = Enoise
nmodekB

; (4-34)

which is shown in Figure 4-7.

Note that because the amplitude of vibration of the fundamental mode becomes quite high,
also it’s frequency of vibrations increases. To ensure that the eigenfrequencies of the noise
modes cover the frequency range of the fundamental mode, only 9 axissymmetric modes are
included in the ROM. Those modes are equally spaced in the spectrum (with constant distance
of about 1.3 · ω1), and cover a sufficient range of eigenfrequencies (listed in Table 4-3).

Table 4-5: Simulation settings energy scaling. This ROM consist only of axisymmetric modes.

Parameter Value Description
nmodes 9 Number of modes in the reduced order model
ζ 5× 10−11 Viscous damping active on all modes
nr 80 Number of simulations per parameter set
nper 40 Number of periods simulated
χ 0.75 Fraction of initial energy in fundamental mode
Ṽ0 0.1-70 Relative initial velocity of the first mode
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Figure 4-4: Time-averaged loss factor ηta (defined in Eq. (4-19)) versus initial total relative
energy Ẽt.
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Figure 4-5: Time-averaged loss factor ηta versus initial total relative energy Ẽt, including the
asymptotes. The blue line is related to small energy: η ∝ EL (Eq. (4-30)). The green line is
related to large energy: η ∝ γ (Eq. (4-31)). The transition is located at E∗, which is related to
q2

1 ≈ α.
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Figure 4-6: Instantaneous loss factor ηins (defined in Eq. (4-21)) versus initial total relative
energy Ẽt.
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Figure 4-7: Time-averaged loss factor ηta (defined in Eq. (4-19)) versus equivalent noise tem-
perature Tnoise.
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4-4-4 Conclusions

In the simulations, the behaviour predicted in section 4-4-2 indeed appears. For low energy,
the loss factor linear increases with energy (η ∝ γ

αq
2
1). However, at a certain energy level this

relation saturates, as the loss factor reaches an upper bound (η ∝ γ).

4-5 Temperature dependence

In the previous section, an equation was derived for the scaling of the loss-factor, whereafter
the energy dependence was investigated. However, from the equation (Eq. (4-29)), the loss
factor also appears to scale with γ, which depends on the amplitude of the noise modes. In
a physical system, the noise energy is set by its temperature. Therefore, in this section the
influence of temperature is investigated.

In the next subsection (4-5-1), some work in literature related to this subject is discussed. In
section 4-5-2, the behaviour is predicted (using the equations from section 4-4-2), which is
validated through simulations in section 4-5-3.

4-5-1 Literature

The fluctuation-dissipation theorem states that, if there is a process that dissipates energy,
turning it into heat, there is a reverse process related to thermal fluctuations [24]. As those
two phenomena are related to each other, increasing the noise temperature is expected to
yield higher damping.

4-5-2 Theory

Recall the energy scaling for the loss-factor, Eq. (4-29)

η ∝ γ q2
1

α+ q2
1

where γ was defined in Eq. (4-26) as:

γ = ENLC

E
(1)
NLS

=
1
3b

(1)
112q

3
1q2 + 1

2b
(1)
122q

2
1q

2
2 + b

(1)
222q1q

3
2

1
4b

(1)
111q

4
1

From Eq. (4-26), it becomes clear that the loss-factor depends also on q2, which is related to
the noise energy level (or equivalent noise temperature T ). According to the equipartition
theorem and assuming the other modes are in thermal equilibrium at temperature T, the
noise energy and equivalent temperature was defined in Eq. (4-34) as:

Enoise = Etot − Enoise = nmodekBTnoise
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As the noise energy is expected to be much lower than the signal energy (E1 � Enoise),
this also holds for the mode amplitudes (q1 � q2). From this, it is expected that for very
low noise energy, the loss-factor mainly linearly depends on q2, which is related to

√
T . For

increasing noise energy, the loss-factor scales quadratic (γ ∝ q2
2 ∝ T ) or at maximum cubic

(γ ∝ q3
2 ∝ T 1.5).

4-5-3 Simulations

In this section, simulations are run to investigate the influence of the noise temperature T
on the loss factor. To do so, the noise energy is increased for different sets, while the signal
energy (energy in mode 1) is kept constant. Simulation settings are listed in Table 4-6, the
result is shown in Figure 4-8 and 4-9.

Table 4-6: Simulation settings temperature scaling. This ROM consist only of axisymmetric
modes.

Parameter Value Description
nmodes 9 Number of modes in the reduced order model
ζ 5× 10−11 Viscous damping active on all modes
nr 80 Number of simulations per parameter set
nper 50 Number of periods simulated
Tnoise 4 − 800 K Fraction of initial energy in fundamental mode
Ṽ0 5 Relative initial velocity of the first mode
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Figure 4-8: Time-averaged loss factor ηta versus equivalent noise temperature Tnoise.

V. Bos Master of Science Thesis



4-5 Temperature dependence 105

101 102

10-4

10-3

Figure 4-9: Instantaneous loss factor ηins versus equivalent noise temperature Tnoise.
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Figure 4-10: Modal displacement for Tnoise = 0
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Figure 4-11: Modal displacement, zoomed in around the origin in Figure 4-10 for Tnoise = 0

4-5-4 Conclusions

In Figure 4-8, indeed an increasing loss factor for increasing temperature can be observed,
as was predicted by Eq. (4-26). However, for high temperature, a decrease in scaling is
visible. Probably, this is because the signal and noise energy levels are approaching each
other, according to Eq. (4-11). For very low temperature (even for Tnoise = 0, as shown in
Figure 4-10 and Figure 4-11), there seems to be a lower bound on the loss factor. Probably
this is due to FPU oscillations as described in section 3-4, which can be ignited by the b(r 6=1)

111 q3
1

terms in the equations of motion. Apparently, this mechanism transfers a vast energy portion
irrespective of the noise energy level. In conclusion, it can be stated that Eq. (4-26) captures
the mode-coupling behaviour reasonably, but for very low or high noise temperature, FPU
and entropy effects have to be taken into account additionally.

4-6 Membrane diameter scaling

In the preceding sections, the influence of the initial conditions on the loss-factor have been
investigated. However, the next sections focus on the influence of the structure itself. This
section investigates the loss-factor as a function of the membrane radius, the next section
treats nonsymmetric membranes.

In section 4-6-1, some relevant literature is discussed, followed by section 4-6-2, in which
theoretical background is provided. Section 4-6-3 includes simulations to test the theory,
after which both are compared in section 4-6-4.
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4-6-1 Literature

In literature, there are some works concerning the influence of geometry on damping, although
the mechanism of mode-coupling damping is not mentioned explicitly. One work which is
particularly of our interest was published by R. Barton et al [23]. In their work, the damping
of graphene membranes is experimentally determined for different diameters. They found the
quality factor to be strongly size-dependent, but could not indicate a reason for this. Their
main result is shown in Figure 4-12, where the red line indicates a fit of Q ∼ D1.1. Further
note that in [4], the Q-factor was stated to be radius independent, although no theoretical
reasoning was given.

Figure 4-12: Experimentally obtained Q-factor for different membrane diameters, published in
[23]. The Q-factor is determined by the half-power bandwidth of each resonance peak. The red
line indicates a fit of Q ∼ D1.1

4-6-2 Theory

From literature, there seems to be evidence for diameter dependent damping in membranes.
Therefore, in this section the theory regarding mode-coupling damping is judged with respect
to diameter scaling.
As a starting point, consider the loss-factor estimate from Eq. (4-29), derived in section 4-4-2:

η ∝ γ q2
1

α+ q2
1

where α is defined as

α = 2k
(1)

b
(1)
111

(4-35)

Both the linear stiffness k(1) and the cubic stiffness b(1)
111 are structure dependent. Therefore,

it’s worth taking a closer look at their ratio. The scaling of the linear stiffness of a membrane
was written in Table 3-12:
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k ∝ T0 = σpreh = εpreEh (4-36)

In the same table, the scaling for the nonlinear cubic stiffness was written:

b ∝ Eh

R2 (4-37)

As α was defined as the ratio between those, we find (for a membrane):

α = 2k
(1)

b
(1)
111
∝ R2

Eh
εpreEh = R2εpre (4-38)

Recall that for small vibrations, the loss-factor is inversely proportional to α:

η(q1 � α) ∝ γ

α
q2

1 (4-39)

Fixing the other parameters yields:

η ∝ 1
α

= 1
R2εpre

(4-40)

and for the Q-factor (defined as the inverse):

Q = 1
η
∝ R2εpre (4-41)

This result resembles the experimental results from literature (Figure 4-12), although the
relation is stronger (quadratic) than yielding from the data fit. Other damping sources could
also play a role in determining Q, like edge losses and material losses. Moreover, it would be
of interest to test the linear dependence on prestrain epsilon.

Effective Q-factor

In practice, the fundamental mode can have damping itself due to other damping effects than
mode coupling. Consider each damping effect to result in an energy loss ∆Ui every period:

ηtot = ∆U1 + ∆U2 + ...

2πU = ∆U1
2πU + ∆U2

2πU + ... = η1 + η2 + ... (4-42)

which influences the resulting Q-factor in a nonlinear way:

Q1 = 1
ηtot

= 1
ηs + ηc

(4-43)

Here the indices represent solo (ηs, representing a constant intrinsic damping mechanism)
and coupling (ηc) damping. The resulting Q-factor can therefore have a weaker dependence
(depending on the ratio between the coupling and solo damping) on the physical quantities,
compared to the case of no intrinsic damping in the fundamental mode.
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4-6-3 Simulations

In the previous section, it was derived that the loss-factor is expected to scale inversely to the
radius squared. Therefore, in this section, this hypothesis is tested using simulations. The
structure used for experiments in [23] is modelled, as described in section 4-3. Using constant
initial noise and signal energy, simulations are run for different membrane radii, after which
the loss-factor is extracted. Simulation settings are listed in Table 4-7, the results are shown
in Figure 4-13 and 4-14. In Figure 4-17, the amplitude signal of one of the simulations is
given.

Table 4-7: Simulation settings radius scaling. This ROM consist of the first 12 unique modes,
listed in Table 4-4

Parameter Value Description
nmodes 12 Number of modes in the reduced order model
ζ 5× 10−11 Viscous damping active on all modes
nr 100 Number of simulations per parameter set
nper 50 Number of periods simulated
χ 0.5 Fraction of initial energy in fundamental mode
Ṽ0 30 Relative initial velocity of the first mode
ẼT 8.7 Relative total energy
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Figure 4-13: Time-averaged loss factor ηta for varying radius.
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Figure 4-14: Instantaneous loss factor ηins for varying radius.
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Figure 4-15: Time-averaged Q factor for varying radius.
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Figure 4-16: Instantaneous Q factor for varying radius.
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Figure 4-17: Amplitude signal of one (arbitrary) simulation run.
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4-6-4 Conclusions

From Figure 4-13, the radius dependence can be approximated as ηta ∼ R−2.0 and ηins ∼
R−1.7. The time-averaged loss factor ηta is in good accordance to the theoretical prediction,
although it is fluctuating slightly. For small radii, the effect seems to decrease slightly. Pos-
sibly, the amplitude of vibration is reaching the saturation regime; (q2

1 ∼ α), so the influence
of α decreases, reducing the effect of the radius. Regarding to experimental data discussed
in 4-6-1, probably the intrinsic damping in the fundamental mode plays a role as depicted in
the end of section 4-6-2.

Concluding, it can be stated that mode coupling damping can indeed be a source of diam-
eter dependent damping, and could be a candidate for the damping behaviour observed in
experiments reported in literature.

4-7 Elliptic membranes

This section treats the influence of vibration frequency (and thus indirectly internal resonance)
on mode coupling damping. To do so, the simple circular membrane which was used so
far is changed to an oval by altering the aspect ratio. This changes the eigenfrequency
spectrum gradually, allowing for a systematic investigation of the effect on the loss-factor when
frequency differences between coupled modes change. In section 4-7-1, relevant literature is
shown. Subsequently, section 4-7-2 provides a theoretical background, followed by simulations
in section 4-7-3 which are discussed in the end.

4-7-1 Literature

For a circular membrane, the eigenfrequencies are located at a fixed value with respect to
the fundamental eigenfrequency. When neglecting bending stiffness, the spectrum is indepen-
dent of any material (density, Young’s modulus) or geometric (thickness, radius) properties.
However, by making the membrane elliptic, the eigenfrequencies shift with respect to each
other (the same can be obtained by altering the pre-stress ratio). The eigenfrequencies can
be determined analytically using Mathieu functions, which is shown in [25].

Several works treat the shape-dependence of damping in mechanical structures. However, here
mainly mechanical damping mechanisms like anchor losses are subject of investigation [26].
Literature or experiments concerning the influence of a structure’s shape on mode-coupling
damping is unknown to the author.

4-7-2 Theory

In section 4-1-2, Eq. (4-8) was derived, revealing the energy transfer between modes to be a
function of their relative vibration frequency:

W
(1)
112 = b

(1)
112q̂

3
1 q̂2

1
8

(cos (2πmδ)
δ

− cos (2πmδ3)
δ3

− cos (2πmσ)
σ

+ cos (2πmσ3)
σ3

)
(4-8)
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or

W
(1)
112 = cE1112f(ω1, ω2) (4-10)

In Figure 4-18, the energy dependent function f(ω1, ω2) is shown. At ω2
ω1

= 1 or 3 (the
conditions for 1:1 of 1:3 internal resonance), the work (W (1)

112) becomes infinite. Therefore,
modes with frequency ratio’s close to this can show strong interaction. Energy transmission
vanishes for modes with eigenfrequencies far apart (from about ω2

ω1
> 5).
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Figure 4-18: f(ω1, ω2): Frequency dependence of the work of mode 1 on the cubic spring.

Note that for cubic stiffness terms with other index repetition (like, when 3 modes are in-
cluded, b(1)

123q
2
1q2q3), the frequency dependence may change. However, the fluctuating be-

haviour including sharp peaks can be seen as characteristic for the frequency dependence.

4-7-3 Simulations

For oval membranes, eigenfrequencies change and degenerate modes are not present anymore.
In Figure 4-19, the eigenfrequencies of the first 20 modes (normalised to the first eigen-
frequency) are shown for different aspect ratio’s. Note that altering the pretension in one
direction has the same effect (compared to the radius, it scales with square root).
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From Figure 4-19, it becomes clear that the eigenfrequencies come closer to the fundamental
eigenfrequency for higher aspect ratio (the spectrum becomes denser in this area). According
to (4-8), power transfer increases when vibration frequencies approach each other. However,
mode interaction can occur at many different frequency ratio’s of multiple modes, and is
difficult to predict. Therefore, in this section, we change the aspect ratio to investigate the
influence of frequency spacing between the eigenmodes on the loss factor.

In Table 4-8, the properties of the simulated membrane are listed, and Table 4-9 shows the
used simulation settings. The results are shown in Figure 4-21 and 4-20.

Table 4-8: Structure parameters of an oval membrane

Parameter Value Description
E 1044 GPa Youngs modulus monolayer graphene
ν 0.16 Poisson’s ratio
T0 0.035 N m−1 Pretension
h 0.335 nm Membrane thickness
R1 300 nm Radius
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Figure 4-19: Normalised eigenfrequencyversus aspect ratio for 20 modes

V. Bos Master of Science Thesis



4-7 Elliptic membranes 115

Table 4-9: Simulation settings to estimate the loss-factor of an oval membrane.

Parameter Value Description
nmode 20 Number of modes in the reduced order model
ζ 5× 10−10 Viscous damping active on all modes
nper 20 number of periods simulated
nr 400 number of simulations per batch
χ 0.3 Fraction of initial energy in fundamental mode
Ṽ0 4 Relative initial velocity: Ṽ0 = V0

ω1h
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Figure 4-20: Time-averaged loss factor ηta of an oval membrane for different aspect ratio’s.
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Figure 4-21: Instantaneous loss factor ηins of an oval membrane for different aspect ratio’s.
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Figure 4-22: Spectrum spacing of an elliptic membrane for different aspect ratio’s.

The spectrum spacing can be derived from the distance between the eigenfrequencies:
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d1 = ω2 − ω2, d2 = ω3 − ω2, ... (4-44)

Then, the spectrum spacing (normalised with respect to the fundamental eigenfrequency) of
the structure is defined as follows:

Υ = 1
Nω1

√√√√ N∑
i=1

d2
i (4-45)

Here, N equals the number of distances di (one less than the considered number of eigenfre-
quencies). A small spacing implies that the eigenfrequencies are almost equally distributed,
whereas a large spacing implies large gaps between them.

Further note that in this work, only the energy flow from the fundamental mode is considered.
However, it could be interesting to investigate the energy flow between higher modes, as for
some aspect ratio’s, those modes have equal eigenfrequency (intersections in Figure 4-19).

4-7-4 Conclusions

In conclusion, the eigenfrequency spectrum is found to have significant influence on the loss-
factor, although the variation remains within one order of magnitude. Part of the aspect
ratio dependence can be predicted from the eigenfrequency spectrum, but on detail level,
only simulations reveal the true behaviour. In general, it can be recommended to stick to a
circular shape or an aspect ratio of 1.5 to minimize mode-coupling damping.
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Chapter 5

Discussion

This chapter contains a discussion concerning the presented work. Some of the topics are
further elaborated in the recommendations (chapter 7).

5-1 Methods

In chapter 2, the STEP method was found to be most suitable for our purpose. In the follow-
ing, the method is discussed with respect to applicability, computational cost and accuracy.

5-1-1 In-plane STEP

The in-plane STEP variant can yield a very complete description of the dynamics of a struc-
ture, It can be seen as the only way to ’exactly’ model in-plane inertia and damping. At least
for simple structures, the effect of in-plane dynamics can be investigated thoroughly, without
the need to introduce artificial terms like x2ẍ & xẋ2 (for inertia) or x2ẋ (for damping).
However, the method is only feasible as long as in-plane motion can sufficiently be repre-
sented by a limited number of eigenvectors. For plane-stretching nonlinearity (like strings
and membranes have), this is the case, but for bending nonlinearity (like beams have), many
eigenvectors are needed. If a lot of in-plane eigenvectors are needed, the ROM becomes bulky,
strongly increasing computational cost of the STEP process as well as all post-processing. A
second drawback of this method can be found in the fact that in-plane modes usually have
a much higher eigenfrequency. Therefore, they require much finer time-discretization for
post-processing, increasing computational cost.
Last, the selection procedure for in-plane modes is only validated for 2D structures, for which
it worked fine. However, as it searches for strong quadratic coupling stiffness, selected modes
does not necessarily need to be ’in-plane’, but could also be of different nature. Neverthe-
less, as the selected softening mode is strongly coupled, and thus significantly influences the
corresponding out-of-plane mode, it should be included for the same reason we include other
in-plane modes.
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5-1-2 Condensed STEP

If in-plane dynamics can be neglected, for 2D structures the condensed STEP variant is
proposed (section 2-4-2). For most structures analysed in this work, this method was used.
It was observed that for analysing fixed-free structures like a cantilever, it took the static
nonlinear solver more effort to meet set tolerances. First, this could be due to the fact that
bending nonlinearity is harder to detect as it arises at larger deformation compared to plane
stretching nonlinearity. Second, its nature is of higher order than cubic, making the result
depending on the amplitude of the prescribed displacements. Third, calculated force fields
show a force concentration at the free tip, probably indicating that Comsol has difficulties
finding a balanced force distribution.

5-1-3 STEP - performance

Concerning the accuracy of the STEP method, it may be observed that the coefficients are
sequentially calculated [7]. As a result, errors are accumulated in the last computation step
concerning bri 6=j 6=k coefficients. This could be improved by writing all equations in one system
and additionally including the equality relations between them. In this way, the solver can
search for the solution yielding the smallest error. To give an indication of the current
accuracy, some key values are listed in Table 5-1.

Computation time

Because the determination of stiffness coefficients relies on solving a full nonlinear static
finite element problem, it can be regarded computationally more expensive than for example
analytic methods. However, this does not have to be a serious problem. First of all, when
judging a structures performance in practice, it is subjected to numerous loadcases related to
it’s functionality. Therefore, loadcases related to nonlinear dynamics using the STEP method
should in practice not significantly increase the total computational cost.

For optimization purposes, where the structure’s dynamic behaviour have to be evaluated
for many different designs, the STEP method might be less suitable (especially for heavy
structures & a large number of included eigenmodes). Note that this doesn’t hold for the
case in which only a subset of coefficients is optimized, as the determination of a subset can
be done much faster.

Nevertheless, for the structures analysed in this work, the processing time of the STEP method
usually was comparable or less than the time needed for post-processing (like bifurcation
analysis). Some typical values indicating the performance are listed in Table 5-1.

5-2 Dynamics

In chapter 3, nonlinear effects in simple structures were investigated. For all structures,
hardening was observed, but other effects like internal resonance only showed up in a few
cases. However, if for a structure a certain effect is not observed in this work, this does not
imply that it cannot happen. For every analysis, choices had to be made regarding simulation
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Table 5-1: Testcase STEP method for a circular membrane, modelled using 3D membrane
elements in Comsol. Physical properties are listed in Table 4-8. The relative error is defined in
appendix C-2-2

Value Description
20 · h prescribed displacement amplitude (h equals thickness)
2619 number of dof
20 number of modes in the reduced order model
1750 number of loadcases
1606 sec (27min) total computation time
0.058 maximum relative error
0.0054 mean relative error

settings like damping, force level and excitation point. Therefore, using different conditions,
perhaps effects could be discovered which remained unrevealed in this work.

In section 3-3-2, simulations were performed to mimic experimental results. While the resem-
blance was quite good, still some physical mechanisms behind the experimentally observed
effects remain unknown. For example, the mechanism creating parametric excitation could
be further investigated using multiphysics modelling software. In this way the parametric ex-
citation mapping for each mode can be determined from first principle. When the parametric
modal mapping is known, modal damping can be determined more certainly using the period
doubling bifurcation threshold (as depicted in section 3-2-3).

5-3 Quality factor

In chapter 4, mode coupling damping was investigated by simulating free vibrations. This
method was regarded as the most ’clean’ approach to capture the effect, as no other damping
sources are present in the analysis. In this way, all observed damping is definitely due to
mode-coupling. In section 4-2, it was already shown that the damping behaviour is quite
difficult to extract, as the modes show slow oscillations in energy level, on top of a gradual
decay. By defining two loss factors, both effects are captured separately.

However, there are some settings which may possibly have influence on the result. The
number of simulated periods (nper) for example can have slight influence depending on the
energy regime. It should be long enough to ensure the modes can develop interaction in
order to exchange energy. On the other hand, it should remain short to stay close to the
initial energy levels. As the observed Q-factor was throughout all simulations larger than
about 1000, the second condition is assumed to be met for all simulations. For the sake of
computational cost, nper is kept in the range of 20-80 (depending on the number of included
modes).

Another difficulty arises from the energy equations. The equations describing coupling energy
are costly to evaluate for large systems, as the number of terms increases rapidly. Therefore, it
is not practical to monitor the total energy in the system for all simulations. Alternatively, for
some typical scenario’s the numerical accuracy is investigated (appendix C-1-1) by considering
the total system energy, yielding proper simulation settings to be used subsequently.
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Looking at the results, it may be noticed that the time-averaged loss factor shows quite some
wobbling behaviour. Because the system approaches chaos for large energy levels, the response
can be completely different for slightly changed initial conditions (it’s ill-posed). To account
for this, a large number of initial conditions is simulated (section 4-2), of which statistical
values are extracted. The result is a trade-off between computational cost (increasing with
the number of simulations nr) and statistical coherence.
Furthermore, it should be noted that the experimental data mentioned in section 4-6-1 con-
cerns forced vibration. Here, the quality factor is determined from the half-width power,
which might be influenced by noise (altering the pretension), pretending higher damping.
For a good comparison, free-vibration experiments should be done, varying the important
parameters mentioned in chapter 4.
On the other hand, also forced vibration could be studied numerically regarding mode cou-
pling damping. However, as this concerns periodic (steady state) solutions, there is way less
freedom in setting initial settings like energy and noise. Moreover, some means of damping
should be added to ensure bounded solutions, which could trouble the mode coupling damping
measurement.

5-3-1 Mode coupling damping in graphene

As mentioned in the introduction, the performance of graphene sensors is currently strongly
limited by it’s low quality factor. From experiments (section 3-3-2), the quality factor of a mul-
tilayer graphene membrane was found to be approximate 180, and 300-2000 for a monolayer
membrane (section 4-6-1). In both multi and monolayer graphene, this low quality factor was
already in the linear regime experimentally observed. However, the smallest observed (time-
averaged) quality factor in simulations is about 10000, occurring far in the nonlinear regime.
Therefore it can be concluded that mode-coupling is not the dominant damping mechanism
in graphene.
However, for large vibration amplitude, mode coupling damping can be very important. From
section 3-3-3, it is found that the parametric resonance curve can be blocked when there is
strong interaction with other modes. As their amplitude increases, they dissipate more energy
(due to their viscous damping) which they tap from the fundamental mode. This process can
also be seen as mode coupling damping. In full agreement with section 4-4, this effect only
occurs at large vibration amplitude.
Second, in section 3-3-1 it is shown that the resonance curve of the fundamental mode can be
significantly flattened due to the presence of higher modes. Similar to the shooting phenom-
ena, the flattening is caused by the rise of higher modes, resulting in mode coupling damping
of the fundamental mode. Again, this phenomena occurs at high vibration amplitude, con-
firming section 4-4. Although this analysis concerns a silicon membrane having very low
intrinsic damping, the phenomena of very rapidly rising higher modes (or internal resonance)
could occur in any structure.
Further note that the instantaneous loss factor (defined in section 4-2-2) indicates the capa-
bility of power transmission between modes rather than a general decay rate. This value is
usually an order of magnitude larger than the time-averaged loss factor, and occurs fewer.
Therefore, it shows resemblance to forced vibrations, where at some scarce conditions, strong
coupling appeared (recall for example the shooting effect in section 3-3-3).
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Chapter 6

Conclusions

In this chapter, conclusions are made regarding the complete work. For every subsection,
research questions are repeated, followed by the answers, yielding from the concerning chapter.

Main conclusion

The research question was defined as follows:

How can the nonlinear dynamics of a structure be described in a simple model
using Finite Elements, and to what extend do those nonlinearities limit the quality
factor?

Using the condensed STEP method, a compact nonlinear ROM can be constructed, which
is perfectly suited for further dynamic analysis. The condensed STEP method is an exten-
sion of the original STEP method and was developed in this project. It was implemented
for 2D structures, and appeared to be accurate and easily applicable for different types of
elements. Through a connection to the powerful software AUTO, the dynamic behaviour can
be simulated. In this way, the nonlinear ROM is able to describe experimentally observed
complicated effects like parametric resonance and shooting. Due to nonlinearities, energy
flows from highly energetic modes to calmer ones, limiting the quality factor of an excited
mode. Typically, the quality factor due to mode coupling is larger than 1× 104, although
for short time-spans, it may drop to about 1× 103. The damping process is described by
several scaling laws, giving opportunities to reduce the damping effect and design for better
performance.

Methods

How can a simple mathematical model be built to describe the nonlinear dynamics of a struc-
ture using FEM?
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124 Conclusions

Using the condensed STEP method, a compact nonlinear ROM can easily be constructed,
implicitly accounting for in-plane motion. For 2D structures, the method proved to be ac-
curate and straightforward applicable for different types of elements. Optionally, in-plane
modes can be selected automatically, to include in-plane inertia and damping. Other FEM
based methods require in-dept FEM knowledge and have severe difficulties to include in-plane
softening, making them less appealing.

Dynamics

How does nonlinear stiffness influence the dynamic behaviour of simple structures?

For straight strings, beams and flat membranes, it was found that cubic stiffness is present,
causing hardening of the resonance curve. Moreover, through cubic coupling terms, modes
excite each other, supporting modal interaction. For a circular membrane, this may result in
significant vibration of higher modes when the fundamental mode is parametrically excited.
For a special case, shooting occurs in simulations, strikingly matching experimental results.
Concerning free-vibrations, FPU periodicity can be observed due to mode coupling. For
a circular membrane, an energy region of stable FPU periodicity exists, while in a string
these FPU oscillations appear to be unstable. An overview of all observed dynamic effects is
provided in Table 3-39.

Quality factor

How can the energy flow due to nonlinear mode coupling be described?

The energy flow due to nonlinear mode coupling is found to obey certain scaling laws. Mode
coupling increases with signal and noise energy, but reduces with radius or pre-stress. These
scaling laws have been analytically derived, and are confirmed by simulations. Additionally,
the coupling proved to be shape and eigenfrequency spectrum dependent. Globally, the
spectrum spacing of an elliptic membrane can be related to mode coupling-damping.
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Chapter 7

Recommendations

This chapter contains recommendations concerning future research. Some of them where
already partly explored, but not reported as they were not directly connected to the research
goals of this work.

Methods

Regarding the current implementation, some improvements could be made. The computa-
tional load of the STEP method consists of independent loadcases, which could all be handled
in parallel (parallel computing, using multiple cores). This feature could be further exploited
in order to reduce the processing time of computational heavy structures. Second, the STEP
method could be exploited for multiphysic dynamics (for example a string in a magnetic field).
Third, the condensed STEP method could be used to approximate in-plane damping & iner-
tia around the eigenfrequency of the corresponding out-of-plane mode. Here, in-plane damp-
ing and inertia can result in nonlinear damping and nonlinear mass acting on the out-of-
plane (OOP) mode. Their influence (expressed in nonlinear damping and mass terms in the
equations) on the OOP mode could be determined by prescribing velocity and acceleration
instead of displacement fields in the STEP method. Then, the equation of motion of the
in-plane mode can be removed, yielding a much smaller ROM. Fourth, the applicability of
proposed methods to 3D structures could be investigated, as the compliant STEP method is
expected to be applicable without any limitations on structure geometry.

Dynamics

Beside starting new directions of research, some effects shown in this work deserve further
investigation. Shooting behaviour was simulated and related to experiments in section 3-3-
3. However, this could be made complete by doing a systematic study, investigating both
theory (like necessary conditions) and applications (like determination of sample material
properties). Second, FPU effects could be further investigated both theoretically (defining
key parameters and testing other structures) and experimentally.
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Using the described methods, in chapter 3 the dynamics of a couple of structures where
analysed. However, this is just a tip of the iceberg, as much more types of structures could be
investigated. As a first step close to this work, other geometries like for example triangles and
diamonds could be studied (as those have a different eigenspectrum and coupling). Thereafter,
the effect of varying thickness throughout the structure could be an interesting follow up.

It can be observed that most analysed structures in chapter 3 have no quadratic nonlinear
stiffness. However, by altering geometry (for example introducing asymmetry), quadratic
stiffness could arise, inducing dynamic effects like softening. Fourth, using the preceding
knowledge, efficient ways of energy transmission between modes would be worth studying.
As mode interaction is quite complicated to predict on forehand, (as it depends as well
on multiple coupling stiffnesses as on frequency ratio), presented methods can be used to
investigate beneficial conditions.

Qfactor

In chapter 4, mode-coupling damping was theoretically investigated. It would be very in-
teresting to compare the discovered scaling laws with experiments (Ideally, using materials
having low internal damping.). Second, mode-coupling damping could be investigated for
forced vibrations. Here, intrinsic mode damping cannot be ignored and energy flow has to be
steady (for stable solutions). Third, the effect of viscous damping on mode coupling damping
for free vibration could be investigated, as some literature [20] suggest this to be an impor-
tant factor. Fourth, another simulation setup could be considered. Instead of starting from
randomised initial conditions, a steady state solution found from the frequency sweep could
be used. Last, perturbation techniques could be applied to the equations of motion. Possibly,
this would yield insight in as well FPU behaviour as mode-coupling damping.
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Appendix A

Supplementary material for Chapter 2

In this appendix, supplementary material to chapter 2 can be found.

A-1 Remarks

A-1-1 In-plane mode selection method

Remarks on the selection procedure:

• If no matching in-plane modes can be found, it can be worth refining the mesh, as the
higher modes can be sensitive to it.

• For more complicated structures, multiple in-plane mode can have a softening effect on
a single out-of-plane mode. They should all be included in the ROM.

A-1-2 Matlab-AUTO interface

In order to study forced vibrations, ’AUTO 97: Continuation and bifurcation software for
ordinary differential equations’ by E.J. Doedel is used. To compile the Fortran workspace,
Visual Fortran Professional Edition 6.1.0 is used. Some notes on the use of AUTO:

• for lower computation time

– switch bifurcation detection off
– use low values for discretisation (NTST & NCOL)
– In the compiler, set optimalization for runtime speed. (at the cost of compilation

time). This works for small systems.

• a small amount of damping is needed
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• the number of characters per line and the number of line continuations are limited. For
long statements, functions could be used.

• output is written realtime, so in case of unexpected long computations, the output files
can be consulted.

• make sure to declare all variables before assigning values to them

• to start a nw branch from a bifurcation point, make sure the bifurcation point is found
using a very small step size.

• the phase of the excitation (the solutions to the ODE producing sin and cos) can change
for different solutions. Make sure the extracted phase of the state vectors are with
respect to the phase of the excitation signal

• create an NMAKE file to easily use the API to compile while using preferred compilation
settings

A-2 Mathematical derivations

Softening calculation

Consider the static equations coupling two modes:
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2
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Only the a(i)
11 and b(i)

111 coefficients are known, but they are related to other terms (see appendix
C-2-1 Eq. (C-15)). Removing all terms with unknown coefficients (this will be justified later)
yields:
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1 = F (2) (A-4)

For a given q1, the corresponding q2 can be calculated (for F (2) = 0):

q2 = −a
(2)
11 q

2
1 + b

(2)
111q

3
1

k2
(A-5)

Note that the b(2)
112q

2
1q2 term is of equal order in q2 as k2q2, and should actually be be present in

the denominator of Eq. (2-19). However, at this point it is still unknown, and is not necessary
to estimate the mode softening effect. Eq. (2-19) can be substituted into Eq. (2-17):
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The b(2)
111 and b

(1)
112 coefficients correspond to terms of order higher than 3, and thus will be

neglected as the original out-of-plane equation does not contain this order of terms in q1:

k1q1 + a
(1)
11 q

2
1 − a

(1)
12 q1

a
(2)
11 q

2
1

k2
+ b

(1)
111q

3
1 = F (1) (A-7)

Use a(1)
12 = 2a(2)

11

k1q1 + a
(1)
11 q

2
1 +

b(1)
111 − 2

(
a

(2)
11

)2

k2

 q3
1 = F (1) (A-8)

k1q1 + a
(1)
11 q

2
1 + b

(1)
111(1− ϑ(1)

2 )q3
1 = F (1) (A-9)

ϑ
(1)
2 = 2

(
a

(2)
11

)2

b
(1)
111k2

(A-10)

Now, ϑ can be seen as the relative influence of the in-plane mode i on the out-of-plane mode
j, and thus acts as a criteria to determine whether the in-plane mode should be incorporated
into the ROM or not. Note that for all modes, the a and b coefficients needed to calculate ϑ(j)

i

for one UOP mode are available from only applying two displacement fields to the structure
(the very first stage of the STEP method, Eq. (2-13)).

A-2-1 Time and space scaling

Scaling is applied such that for the first eigenmode in the ROM, unit mass, stiffness and
nonlinear stiffness are obtained. Consider the sdof equation for the first mode:

mü+ k1u+ k2u
2 + k3u

3 + cu̇ = F sin(ωt) (A-11)

Dividing by mass m yields

ü+ k1
m
u+ k2

m
u2 + k3

m
u3 + c

m
u̇ = F

m
sin(ωt) (A-12)

Which is simplified to:

ü+ ku+ au2 + bu3 + 2ζωnu̇ = f sin(ωt) (A-13)

Space is scaled the following way:

u = ũh −→ ũ = u

h
(A-14)
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Time is scaled as:

t = τT −→ τ = t

T
(A-15)

Yielding time derivatives:
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scale time:
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scale only space:
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combine both:
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mass normalise:
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For good numerical performance, we impose k̃ = 1 and max{ã, b̃} = 1. Therefore,
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A-2-2 Eigenvector scaling - nonlinear stiffness

Mass-normalised quantities are denoted with subscript m, quantities corresponding to max-1
displacement eigenvectors are denoted with subscript u. The modal transformation for one
eigenmode is defined as x = φq. The ratio between the eigenvectors is defined as:

φm = φuα (A-26)

Each scaling of the eigenmode should not influence the contribution of the mode to the total
displacement:

x = φmqm = φuqu −→ φuαqm = φuqu (A-27)

Yielding for each eigenmode i:

qmi = qui

αi
(A-28)

Consider γ as the nonlinear modal force term, depending on the modal displacements: γ(q1, q2, ..., qL)
with q1, q2, ..., qL the modal displacements of all modes included in the ROM.

For one mode i, the equation of motion writes:
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F (A-29)

replace the mass-normalised eigenvectors and modal displacements:
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Here, γ is rewritten such that the α terms are implemented in the coefficients of all nonlinear
terms. For example, if γ contains one cubic stiffness term and the first mode is considered:
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So for each nonlinear stiffness term,

b(r)
uijk
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uij
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mij

αrαiαj
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The max-1 based modal linear quantities can be directly obtained from multiplication with
the max-1 based eigenvectors.

A-2-3 Nonlinear material damping

For linear systems, it is common to define linear damping, originating from energy losses in
the material. In the hysteresic model, the damping is related to the stress inside the material.
For harmonic motion (u(t) = u0 cosωt), the stress is defined as:

σ = E′ε+ E′′

ω

dε
dt (A-37)

which is known as the Kelvin-Voigt model. The storage term (related to stiffness) and the
dissipation term are proportional to each other (for fixed ω). This implies that every stiffness
force should have a companion damping force. For a linear stiffness term, the companion
damping force writes:

Fd = h

ω
u̇ (A-38)

where u is displacement, ω is the frequency of excitation and h is the damper constant, which
can be related to the Young’s moduli. For linear underdamped systems, the highest amplitude
of vibration can be found at it’s resonant frequency, which is therefore usually substituted
Eq. (A-38) for ω.

For each nonlinear stiffness term, the companion damping term can be calculated, resulting
in a system obeying the material behaviour stated in Eq. (A-37).

If the strain equation contains the term ε = ε0u
3 resulting in cubic stiffness like F = ku3,

then the strain-rate and stress write:

dε
dt = ∂ε

∂u

∂u
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= 3ε0u

2u̇ (A-39)

σ = E′ε+ E′′

ω

dε
dt = E′ε0u

3 + 3E
′′

ω
ε0u

2u̇ (A-40)

This yields a nonlinear damping force, also known as the Van der Pol term:

Fd−NL = h

ω
u2u̇ (A-41)
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B-1 Additional material

Peak value

The forced Duffing equation including viscous damping writes:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (B-1)

Using the method of harmonic balancing, the solutions can be found to obey the following
equation [27]:

[(
ω2 − α− 3

4βz
2
)

+ (δω)2
]
z2 = γ2 (B-2)

or

z2

γ2 = 1[(
ω2 − α− 3

4βz
2
)

+ (δω)2
] (B-3)

However, we are only looking for the limit point, where z
γ is maximum. At this point, it can

be assumed that the first term in the denominator is close to zero, yielding:

zmax
γ
≈ 1
δω

(B-4)

which reveals that indeed, for increasing forcing (and thus eigenfrequency), the compliance
decreases at the limit point. Form Eq. (B-3), for different forcing levels the limit point can be
calculated numerically, which is shown in Figure B-1. Here, indeed the inverse proportionality
to the vibration frequency is visible, as predicted in Eq. (B-4).
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Figure B-1: Maximum compliance of the duffing oscillator as a function of forcing level.
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B-1-1 Square membrane including bending stiffness
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Figure B-2: Modal time signal of stable solution along the resonance curve at ωf = 1.2ω1 (the
red dot in Figure 3-25a)
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Figure B-3: Vibration amplitude at ωf = 1.2ω1 (the red dot in Figure 3-25a)
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B-1-2 Shooting - internal resonance
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Figure B-4: FFT of modal signal of stable solution along the resonance curve at ωf = 2.53ω1
(the red dot in Figure 3-42)
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Figure B-5: FFT of modal signal of stable solution along the resonance curve at ωf = 3.37ω1
(the black dot in Figure 3-42)
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Figure B-6: Vibration amplitude at ωf = 2.53ω1 (the red dot in Figure 3-42)

Figure B-7: Vibration amplitude at ωf = 3.37ω1 (the black dot in Figure 3-42)
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B-1-3 Coefficient of variance
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Figure B-8: Coefficient of variance as a function of noise temperature for a membrane.
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Supplementary material for Chapter 4

C-1 Supporting material

C-1-1 Numerical accuracy

In this part, the accuracy of the numerical ODE solver is investigated. First the model used
is introduced. Thereafter, the method of validation is explained followed by results.

Model

The model used is the same as presented in section 4-3, although in this case only the first 5
unique eigenmodes (listed in Table C-2) are included in the ROM.

Table C-1: Properties circular graphene membrane

Parameter Value Description
E 1014.9 GPa Youngs modulus graphene
ν 0.16 Poisson’s ratio
T0 0.0340 N m−1 Pretension
h 0.335 nm Membrane thickness
R 300 nm Radius
ρ 2209 kg/m3 Density

Numerical stability

To investigate the performance of the numerical ODE solver, the total energy in the system
is monitored. This comprises both linear energy (kinetic and potential) and the complete
nonlinear set (both storage and coupling energy, as explained in section C-2-1). The equations
describing the nonlinear coupling energy increase rapidly with the number of included modes,
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Table C-2: First 5 normalised unique eigenfrequencies of a circular membrane

Index Waveindex(t,r) ωn/ω1 Shape
1 (0,1) 1 axisymmetric
2 (1,1) 1.5934
4 (2,1) 2.1358
6 (0,2) 2.2959 axisymmetric
7 (3,1) 2.6539

and become very expensive to evaluate for large systems. Therefore, only five modes are
included in the ROM.

It is assumed that for larger systems, the global error remains approximately the same (for
the same solver settings), as the internal error handling of the solver remains the same.

Simulations

Table C-3: Simulation settings numerical stability. This ROM consist only of the first 5 unique
modes.

Parameter Value Description
nmodes 5 Number of modes in the reduced order model
ζ 0.5e-10 Viscous damping active on all modes
nr 40 Number of simulations per parameter set
nper 20 Number of periods simulated
χ 0.65 Fraction of initial energy in fundamental mode
Ṽ0 4 Relative initial velocity of the first mode
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Figure C-1: Modal displacement
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Figure C-2: Modal displacement - vertical zoom
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Figure C-3: Modal energy

Figure C-4: Total energy

C-1 shows the modal response for one simulation. In Figure C-2, the amplitude of the
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fundamental mode is shown more detailed, revealing the slight decay. This may also be
observed in Figure C-3, in which the modal energy is shown. Note that, because also the
coupling energy is included here, it looks a little bumpy. However, summing all modal energies
yields the total system energy, which is almost constant. In Figure C-4 the total energy
is shown for all simulations. Of coarse, a very small energy drift is present, due to finite
numerical precision. In the next section, the consequence of this energy drift is investigated.

Numerical damping

Energy loss due to numerical effects can be expressed in an equivalent loss factor ηnum, in
order to compare it significance:

ηnum = ∆U
2πU = ∆Utot

2πUn = ∆Utot
Utω

(C-1)

Here, Utot indicates the total energy lost during the whole simulation, and ω equals the mean
radial frequency over the whole timespan. The total number of periods is estimated using:

n = t

T
= tω

2π (C-2)

Note that there is also very little viscous damping present, of which the effect is also included
in ηnum. Last, the Absolute Tolerance mainly influences the solver accuracy. Simulation
results are listed for three different values of ζ in Tab C-4, C-5 and C-6.

Table C-4: Simulation results concerning numerical stability. Reported values correspond to the
average of all simulations. Note that for a linear system, η = 2ζ

Parameter Value Description
ζ 5e-10 Viscous damping active on all modes
ηcoup 2.8602e-05 Mode coupling damping
ηnum 1.3681e-09 Numerical damping
AbsTol 1e-12 Absolute Tolerance ODE solver
npnt 200 Number of time steps per fundamental period

Table C-5: Simulation results concerning numerical stability. Reported values correspond to the
average of all simulations. Note that for a linear system, η = 2ζ

Parameter Value Description
ζ 5e-11 Viscous damping active on all modes
ηcoup 2.8601e-05 Mode coupling damping
ηnum 1.8945e-10 Numerical damping

From the results, it becomes clear that the absolute tolerance effectively sets the accuracy of
the ODE solver. A intuitive guess for the numerical damping could be:

ηnum = npntAbsTol
2πyrep

(C-3)
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Table C-6: Simulation results concerning numerical stability. Reported values correspond to the
average of all simulations. Note that for a linear system, η = 2ζ

Parameter Value Description
ζ 5e-16 Viscous damping active on all modes
ηcoup 2.8601e-05 Mode coupling damping
ηnum 4.7118e-11 Numerical damping

which should actually be squared for energy equivalence.

Conclusion

Concluding from the results, it becomes clear that the numerical error is effectively set by
the Absolute Tolerance of the ODE solver, resulting in a numerical loss factor of about
npntAbsTol. For the used settings, the numerical damping remains more than 5 orders of
magnitude lower than the damping through mode coupling.

C-1-2 Equivalent damping ratio

For a single dof oscillator including viscous damping, a damping ratio ζ, loss factor η and
Q-factor can be determined. As the loss factor indicates the relative amount of energy lost
with respect to the stored energy, this value can be useful to compare different damping
mechanisms.

mẍ+ cẋ+ kx = 0 (C-4)
ẍ+ 2ζωnẋ+ ω2

nx = 0 (C-5)

ζ = c

2ωnm
, η = ∆U

2πU = 2ζ, Q = 1
η

(C-6)

To compare the different terms, they are written in the same form as the viscous damp-
ing term: F ∝ cq̇1. The coefficient can be a function of amplitude now, and velocity and
displacement amplitude are related by assuming simple harmonic motion:

q = sin(ωt) (C-7)
q̇ = ω sin (ωt) (C-8)

→ q ∝ 1
ω
q̇ (C-9)
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Table C-7: Damping models for harmonic motion x = A cos(ωdt) and unit mass m = 1, found
from [28]

Type Equation of motion η

Viscous ẍ+ cẋ+ ω2
nx = 0 2ζ ωd

ωn

Fluid ẍ+ c|ẋ|ẋ+ ω2
nx = 0 3

4π c
ωd
ωn
A

Displ.-based ẍ+ cx2sgn(ẋ) + ω2
nx = 0 4

π c
1
ω2

d
A

C-2 Mathematical derivations

C-2-1 Elastic potential

The linear energy at each time instant writes:

EL = 1
2k

(1)q2
1 + 1

2k
(2)q2

2 + 1
2m

(1)q̇2
1 + 1

2m
(2)q̇2

2 (C-10)

Here, the kinetic and potential terms interchange the energy. When taking for q̂ the amplitude
of vibration, the linear energy stored in mode 1 can be written as:

E
(1)
L = 1

2k
(1)q̂2

1 (C-11)

The nonlinear elastic potential of each spring can be found by integrating the force:

E
(1)
112 =

∫
Fdu =

∫
b

(1)
112q

2
1q2dq1 = 1

3b
(1)
112q

3
1q2 (C-12)

E
(2)
111 =

∫
Fdu =

∫
b

(2)
111q

3
1dq2 = b

(2)
111q

3
1q2 (C-13)

E1112 = c f(q3
1q2) = E

(1)
112 = E

(2)
111 (C-14)

Therefore, also the coefficients should be related to each other:

1
3b

(1)
112 = b

(2)
111 (C-15)

In the same way other relations can be constructed.

The total nonlinear potential writes:

ENL = 1
4b

(1)
111q

4
1 + 1

3b
(1)
112q

3
1q2 + 1

2b
(1)
122q

2
1q

2
2 + b

(1)
222q1q

3
2 + 1

4b
(2)
222q

4
2 (C-16)

ENL = E1111(q4
1) + E1112(q3

1, q2) + E1122(q2
1, q

2
2) + E1222(q1, q

3
2) + E2222(q4

2) (C-17)
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Here, the energies with mixed indices allow for coupling, the others only for storage.

Enl = Estorage + Ecoupling = Enls + Enlc (C-18)

However, the energy stored solely in the first mode is just the first term:

E
(1)
NL = 1

4b
(1)
111q

4
1 (C-19)

C-2-2 Relative error nonlinear stiffness coefficients

By checking Eq. (C-15) after determining the stiffness coefficients using the STEP method,
the accuracy of both coefficients can be determined. Using all equality relations, the accuracy
of the complete analysis can be determined. The relative error between two coefficients b1
and b2 that should be equal to each other could be calculated as:

ε = b1 − b2
(b1 + b2)/2 (C-20)

To prevent division by zero, the cubic stiffness of the fundamental modes is taken as a repre-
sentative value (absolute values are considered):

brep = max{b(1)
111, (b1 + b2)/2} (C-21)

yielding

ε = b1 − b2
brep

(C-22)

C-2-3 Energy transfer between modes

The coupling terms in the right hand side of the equations can be seen as nonlinear springs,
connecting both modes. Each mode can add or subtract energy to the spring, and in this way
energy can go from one mode to another. If we assume harmonic motion for both modes, the
work done on the nonlinear spring can be estimated

F = b1
112q

2
1q2 (C-23)

q1 = q̂1 sin (ω1t) (C-24)
q2 = q̂2 sin (ω2t) (C-25)
q̇1 = q̂1ω1 cos (ω1t) (C-26)

nω1 = mω2 (C-27)

The energy transmitted from mode 1 to the b(1)
112 spring (during m periods of mode 1) can be

found as
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P = Fv = b1
112q

2
1q2q̇1 (C-28)

W =
∫ T1

0
Pdt (C-29)

W
(1)
112 = b1

112q̂
3
1 q̂2

1
8

(cos (2πmδ)
δ

− cos (2πmδ3)
δ3

− cos (2πmσ)
σ

+ cos (2πmσ3)
σ3

)
(C-30)

δ = ω2 − ω1
ω1

, δ3 = ω2 − 3ω1
ω1

, σ = ω1 + ω2
ω1

, σ3 = 3ω1 + ω2
ω1

, T1 = m
2π
ω1

(C-31)

The expression can be split up in an energy and a frequency dependent part:

W
(1)
112 = c1E1112f(ω1, ω2) (C-32)

C-2-4 Power loss free vibration

P = ∆U
∆t = Ui+1 − Ui

ti+1 − ti
(C-33)

Here the stored energy U is determined form the sum of the elastic and kinetic energy. The
elastic energy also includes storage terms from the nonlinear elastic potential.

C-2-5 Instant frequency

Because the system is nonlinear, the free-vibration frequency changes with amplitude of vi-
bration. Therefore, instead of just assuming the linear eigenfrequency, the instantaneous
frequency is taken, which is defined as

ωinst(t) = dφ(t)
dt (C-34)

For a simple cosine, this can easily be verified:

s(t) = A cos(ωt+ θ) = A cos(φ(t)) (C-35)

The instantaneous frequency can also be seen as the geometric centre of the Amplitude
Spectral Density (ASD), which is calculated as:

finst =
∫∞

0 fX(f)df∫∞
0 X(f)df (C-36)

Here, X(f) is determined from the Fast Fourier Transform of the time signal.
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C-2-6 Bending stiffness

Note that bending stiffness of a circular membrane is also dependent on the radius (using
Kirchhoff-Love Plate theory for circular plates):

kbend ∝
Eh3

R2 (C-37)

The total linear stiffness is the sum of both. However, for thin structures, bending stiffness
can be ignored:

kpre
kbend

= σh
R2

Eh3 = εpreEh
R2

Eh3 = εpre
R2

h2 (C-38)
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2dof example

This chapter describes the interaction between in-plane modes and out-of-plane modes, as
introduced in section 2-4. A very simple, 2dof model is introduced, resembling a string or
simplified membrane. For this model, the different approaches to handle in-plane modes (as
shown in section 2-4-1 and 2-4-2) are applied. However, because the model contains only
2 degrees of freedom, the nonlinear stiffness can also be determined exact. Thereafter, the
analytically derived exact differential equations are compared to the equations yielding from
the approximation methods by calculating the frequency response.

D-1 The simplified model

Here we consider a simplified model for a nonlinear membrane shown in figure D-1. The model
is intended to capture the essential physics of nonlinear membrane motion in only a 2 degree
of freedom system. Two masses are connected to each other and the walls by three identical
strings, each string having a stiffness area product κ = EA, where E is the Young’s modulus
and A the cross sectional area. Only motion that is symmetric upon reflection in the central
dashed line along the y-axis, such that the central string always has to stay horizontal. With
this constraint we focus on the fundamental membrane modes only. Therefore the motion
can be considered fully by addressing the motion of left mass only (then the position of the
other mass is obtained by mirror symmetry).

D-1-1 Initial condition

In the initial state the membrane is flat, with all three strings having a length L0 towards the
center of the masses. In addition there is initial tension applied on the strings by extending
them over a distance Lt = L0−Li, with their actual starting length without any tension being
Li=L0−Lt, with Lt � L0. As a consequence the initial tension in the string is Ft = κLt/Li.
The energy stored in the string is therefore Es = 1

2
κ
Li

(L−Li)2, for simplicity we define k = κ
Li
.
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Figure D-1: Simplified model for a nonlinear membrane.

D-1-2 Energy expressions

Now the mass M is displaced by a distance u in the x-direction and a distance w in the
y-direction. For this configuration the length of the left string becomes:

Ll =
√

(L0 + u)2 + w2 (D-1)

The elongation of the middle spring equals two times the horizontal displacement of the
left mass, because the displacement of the other mass is in opposite direction. Therefore, a
displacement of the left mass u leads to a length change 2u. The length of the middle string
equals:

Lm = L0 − 2u (D-2)

Now the spring energy stored in the left string is:

El = 1
2k(Ll − Li)2 (D-3)

Because we consider only the left half of the system, we on only take half the energy of the
middle spring into account, giving in addition a factor 1/2.

Em = 1
2

1
2k(Lm − Li)2 (D-4)

And the kinetic energy is;

Ekin = 1
2M(u̇2 + ẇ2) (D-5)
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D-1-3 Equations of motion

We obtain for the Lagrangian:

L = Ekin − (El + Em) = M

2 (u̇2 + ẇ2)− 1
2k(Ll − Li)2 − 1

4k(Lm − Li)2) (D-6)

From this the equations of motion can be derived:

Mẅ + k(1− Li
Ll

)w = Fy (D-7)

Mü+ k[3u+ Li(1−
L0 + u

Ll
)] = Fx (D-8)

Linearization gives (using Ll ≈ L0 + u):

Mü+ 3ku = Fx (D-9)
Mẅ + kLt

w

L0
= Fy (D-10)

When we linearise the equations of motion, they decouple. The equation for horizontal
displacement describes just a simple spring-mass-spring system, where the right spring has
double stiffness as it’s midpoint is virtually fixed. The second equation mimics a string with
a slider at one end, which seems plausible since in our system, the middle spring remains
horizontal. Here, kLt mimics the pretension, and w

L0
approximates the tangents, yielding the

vertical component of the pretension force.

In more mathematical terms, the linear solutions of the equations of motion are thus just the
sinusoidal motions of the mass along the x-axis (u0e

iω2t, 0) and along the y-axis (0, w0e
iω1t)

with ω2
2 = 3k

M and ω2
1 = kLt

ML0
. Since Lt � L0, it follows that ω1 � ω2. The corresponding

linear modeshapes φ(u,w) are φ1 = (0, 1) and φ2 = (1, 0).

D-2 Method Muravyov and Rizzi

According to the paper we impose a static displacement Xc = +φ1q1 = (u = 0, w = q1) on
the structure. The static force can be obtained from the equations of motion, by setting the
accelerations equal to zero. For the linear case, this results in a force vector:

FL(φ1q1) = (0, k Lt
L0
q1) (D-11)

For the nonlinear case this results in (see appendix):

FT (+φ1q1) ≈ (1
2k

Li
L2

0
q2

1 −
3
8k

Li
L4

0
q4

1 +O(q6
1), k Lt

L0
q1 + 1

2k
Li
L3

0
q3

1 −
3
8k

Li
L5

0
q5

1 +O(q7
1)) (D-12)
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Note that we are neglecting all terms higher than third order here. In principle higher orders
could be kept, although this would significantly complicate matters. Since these higher order
terms are (as far as I can judge) kept by finite element methods like Comsol, it might be that
in the following the results of the coefficients could depend on the actual value chosen for q1.
It is therefore of importance to keep q1 small enough, such that (q1/L0)2 � 1. All analysis is
only exactly valid in this limit.

FNL1 = Γ(+φ1q1) = FT (+φ1q1)− FL(+φ1q1) = (1
2k

Li
L2

0
q2

1,
1
2k

Li
L3

0
q3

1) (D-13)

FNL2 = Γ(−φ1q1) = (1
2k

Li
L2

0
q2

1,−
1
2k

Li
L3

0
q3

1) (D-14)

F̃NL1 = ΦTFNL1 =
(

0 1
1 0

)
FNL1 =

 1
2k

Li

L3
0
q3

1
1
2k

Li

L2
0
q2

1

 = [ar11]q2
1 + [br111]q3

1 (D-15)

F̃NL2 = ΦTFNL2 =
(

0 1
1 0

)
FNL2 =

 −1
2k

Li

L3
0
q3

1
1
2k

Li

L2
0
q2

1

 = [ar11]q2
1 − [br111]q3

1 (D-16)

Solving these 2 equations for 2 unknowns gives:

[ar11] =
(

0
1
2k

Li

L2
0

)
(D-17)

[br111] =
( 1

2k
Li

L3
0

0

)
(D-18)

According similar methods all other elements of the a and b matrix of vectors can be con-
structed, as outlined in [1], this leads to a reduced equation of motion as shown in equations
(3) and (5) of [1].

D-2-1 Other coefficients

The other coefficients can be determined in a similar way(see appendix). We find:

[ar22] =
(

0
0

)
(D-19)

[br222] =
(

0
0

)
(D-20)

[ar12] =
(
k Li

L2
0

0

)
(D-21)
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[br112] =
(
−k Li

L3
0

0

)
(D-22)

[br122] =
(
−k Li

L3
0

0

)
(D-23)

D-2-2 Equations of motion

Now the equations of motion of the approximate model (containing max cubic order terms)
can be written:

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1q2 + b

(1)
111q

3
1 + b

(1)
122q1q

2
2 = F y (D-24)

m(2)q̈2 + k
(2)
1 q2 + a

(2)
11 q1q1 + b

(2)
112q

2
1q2 = F x (D-25)

From this we can see that the in-plane eigenmode, has no source of nonlinearity from itself
(a(2)

22 and b
(2)
222 equal zero), it has only nonlinear coupling to the out-of-plane mode. The

quadratic term in the equation for out-of-plane motion ((a(1)
12 ) indicates softening behaviour,

lowering the effective stiffness of this mode. If we consider first the static case with no external
forcing on the second mode, we can write q2 in terms of q1 and substitute this back in the
equation of motion for q1, yielding the effective stiffness of this mode.

k
(2)
1 q2 + a

(2)
11 q1q1 + b

(2)
112q

2
1q2 = 0

q2 = −a(2)
11 q1q1

k
(2)
1 + b

(2)
112q

2
1

Substitute q2(q1) in the static equation (see appendix) for q1 (and use Li ≈ L0):

b
(1)
111−eff = b

(1)
111 −

a
(2)
11 a

(1)
12

k
(2)
1

= 1
2k

Li
L3

0
− 1

6k
L2
i

L4
0

1
3k

Li
L3

0
(D-26)

D-3 Farbod’s method - Static condensation

According to the method applied by Farbod, when considering only out-of-plane modes, the
coefficients of [1] are too stiff. For motion in the linear eigenmode φ1 in the y-direction, the
mass can also move in the x-direction to lower the elastic energy.

As can be seen in equation (18) a displacement according φ1 results in a nonzero force in the
x-direction, which might be compensated by a motion along the φ2 mode (u displacement).
Since the resonance frequency ω2 � ω1, this motion can occur virtually instantaneous when
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the motion is at ω1 and the inertia of the system for movement along the φ2 mode can be
neglected.
In that case, only a displacement w = q1 along the y-direction is imposed, and the force in
the x-direction should be zero to have equilibrium.
We return to equation (17):

FT = k[3u+ Li(1−
L0 + u

Ll
)], k(1− Li

Ll
)w) (D-27)

FT (+φ1q1 + φ2q2) = (k[(L0 −
Li√

(1 + q2
L0

)2 + q2
1
L2

0

)(1 + q2
L0

)− (L0 − Li − q2)], (D-28)

k(L0 −
Li√

(1 + q2
L0

)2 + q2
1
L2

0

) q1
L0

) (D-29)

Now we look for the solution for which the forces along the x-direction are zero. The equation
above is difficult to solve, but for small q1/L0 one can simply take the linear stiffness 2k
in the x-direction and set it equal to the x-direction force generated by the out-of-plane
displacement. So 3kq2 = − kLi

2L2
0
q2

1, (note that this result can also be obtained by the equation
above, by setting the horizontal force equal to zero) gives:

q2,eq = −1
6
Li
L2

0
q2

1 (D-30)

The motion in the fundamental mode will thus follow the parabolic curve (u(q1), w(q1)) =
(−1

6
Li

L2
0
q2

1, q1). In that case the nonlinear force becomes:

FT (+φ1q1 + φ2(−1
6
Li
L2

0
q2

1)) = (0,

k(L0 −
Li√

(1− 1
6
Li

L3
0
q2

1)2 + q2
1
L2

0

) q1
L0

)

Now for small q1/L0 and Li ≈ L0, which is true for small Lt, one obtains:

FTw ≈ k(L0 −
Li√

(1− 1
3
Li

L3
0
q2

1) + q2
1
L2

0

) q1
L0
≈ kLi(Lt/Li + 1− 1√

1 + 2
3
q2

1
L2

0

) q1
L0

≈ k
Lt
L0
q1 −

1
3k

Li
L3

0
q3

1 + 1
6k

Li
L5

0
q5

1

Working this further out according to the method of [1], results in the same cubic stiffness as
the effective cubic stiffness obtained by the first method. However, when no in-plane modes
are involved, the first method gives a nonlinear stiffness which is a factor 1.5 too high.
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[ar11] =
(

0
0

)
(D-31)

[br111] =
( 1

3k
Li

L3
0
q3

1

0

)
(D-32)

D-4 Approximations

D-4-1 Nonlinear mass

The in-plane mode has a nonzero modal mass, so at some point this may influence the
dynamic response of the out-of-plane mode. If we consider harmonic motion around the
first eigenfrequency (of the out-of-plane mode), the in-plane mode will still follow it’s forcing
terms, as it’s mass has small influence at ω = ω1 << ω2. To investigate the lowest-order
influence, we neglect the b112 and b122 stiffness, as they result in higher order coupling. So
we obtain the following simplified equations of motion:

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1q2 + b

(1)
111q

3
1 = sin(ωf t) (D-33)

m(2)q̈2 + k
(2)
1 q2 + a

(2)
11 q1q1 = 0 (D-34)

Consider motion of the out-of-plane mode following the forcing term:

q1 = q̂1 sin(ωf t)

q2
1 = q̂2

1 sin(ωf t)2 = q̂2
1

1
2(1− cos(2ωf t))

We can consider the quadratic coupling term in the in-plane equation of motion as an external
forcing, yielding:

m(2)q̈2 + k
(2)
1 q2 = −a(2)

11 q1q1 = −a(2)
11 q̂

2
1

1
2(1− cos(2ωf t))

The static force yields a static displacement:

q2−static = − a
(2)
11

2k(2)
1
q̂2

1 = −β 1
2 q̂

2
1 (D-35)

The dynamic force can be analysed using Laplace (only looking at steady state solutions)
(use ω2f = 2ωf ):
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m(2)q̈2 + k
(2)
1 q2 = a

(2)
11 q̂

2
1

1
2 cos(ω2f t) = f(ω2f ) (D-36)

Q2(−m(2)(ω2f )2 + k
(2)
1 ) = F (ω2f ) (D-37)

Q2(ω2f )
F (ω2f ) = 1

(k(2)
1 −m(2)(ω2f )2

= 1
k

(2)
1

1
1− (ω2f

ω2
)2 (D-38)

q2−dynamic = a
(2)
11

2k(2)
1
q̂2

1
1

1− (2ωf

ω2
)2

cos(2ωf t) = 1
2βα(ωf )q̂2

1 cos(2ωf t) (D-39)

The total solution then writes:

q2 = q2−static + q2−dynamic = −β 1
2 q̂

2
1 + 1

2βα(ωf )q̂2
1 cos(2ωf t) (D-40)

q2 = −βq̂2
1

1
2(1− α cos(2ωf t)) = −βq̂2

1

[1
2α(1− cos(2ωf t))−

1
2(α− 1)

]
(D-41)

q2 = −βαq̂2
1

1
2

[
(1− cos(2ωf t))− (1− 1

α
)
]

(D-42)

Recall

q2
1 = q̂2

1 sin(ωf t)2 = q̂2
1

1
2(1− cos(2ωf t))

q2 = −βα
[
q2

1 − q̂2
1

1
2(1− 1

α
)
]

= −βα
[
q2

1 − ε
]

(D-43)

For ωf = 0, ε = 0, so q2 ≥ 0. For ωf < 2ωn, α ≥ 1, so in this domain 0 < ε < 1
2 q̂

2
1. Actually, ε

is translating the squared sine downward. This causes q2 to also take negative values, meaning
that the in-plane mode is also moving towards the centre.
This can be inserted in the out-of-plane equation of motion:

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1

(
−βα

[
q2

1 − ε
])

+ b
(1)
111q

3
1 = sin(ωf t) (D-44)

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1ε− βαa(1)

12 q
3
1 + b

(1)
111q

3
1 = sin(ωf t) (D-45)

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1ε+ q3

1(b(1)
111 − βαa

(1)
12 ) = sin(ωf t) (D-46)

As ε depends on q̂1 which is not analythic available, ε is removed. However, it is assumed to
lower the maximum value of q2. As q2 seems to have a softening effect on q1, this softening
can be seen as an upper bound, so probably the amplitude of q1 will be slightly lower. When
putting back all the original terms in the equation,

m(1)q̈1 + k
(1)
1 q1 + q3

1

b(1)
111 −

a
(2)
11 a

(1)
12

k
(2)
1

1
1− (2ωf

ω2
)2

 = sin(ωf t) (D-47)
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Here, we find again the same factor we found for the static analysis a
(2)
11 a

(1)
12

k
(2)
1

. However, an
additional term governing the in-plane inertia is now visible. This term becomes infinite at
half the in-plane eigenfrequency, removing the cubic hardening effect of the out-of-plane mode
itself. Therefore, the backbone curve will not pass this point.
Small in-plane damping (eg Q > 100) can be added, as long as the phase shift is small enough
to neglect.

m(1)q̈1 + k
(1)
1 q1 + q3

1

b(1)
111 −

a
(2)
11 a

(1)
12

k
(2)
1

1√
(1− (2ωf

ω2
)2)2 + (2ζ 2ωf

ω2
)2

 = sin(ωf t)(D-48)

Damping can reduce the softening influence of the inertia, and can prevent the out-of-plane
to lock when the in-plane mode starts to resonate. The above derivation is not exact, but it
contains the features regarding strong mode interaction and reveals the dependencies.
One interesting extension could be to include in the in-plane equation the cubic coupling term
b

(2)
112q

2
1q2. This yields a linear stiffness which is parametrically excited, resulting in resonances

at integer fractions like 2ωf = 1
nω2, n = 2, 3, 4... (see paper par res).

From this we can see that around the out-of-plane eigenfrequency, the in-plane inertia does
not play a big role. However, at higher frequency, the dynamic stiffness of the in-plane motion
reduces, by which the negative cubic correction term increases. At ωf = 1

2ω2, the in-plane
mode should resonate and the out-of-plane mode could get negative cubic stiffness creating
instability.
To compare this with other ways of modeling nonlinear inertia, we approximate the fraction
with a Taylor series, which is valid for small ωf

ω2
(see appendix):

m(1)q̈1 + k
(1)
1 q1 + b

(1)
111−effq

3
1

[
1− 1

2

(2ωf
ω2

)2
]

= sin(ωf t) (D-49)

The nonlinear intertia appears to scale with q3
1ω

2. Terms like xẋ2 or ẍx2 (which could be
introduced to the out-of-plane equation of motion), have the same scaling.

D-4-2 Nonlinear damping

The non-linear mass approximation incorporates the softening due to in-plane mass. If the
in-plane mode has some viscous damping, it dissipates part of it’s stored energy. However,
energy can also flow from the out-of-plane mode to the in-plane mode, where it is dissipated.
To account for this, an additional nonlinear damping term could be added to the NLM
approximation. The dissipated energy during one cyce due to viscous damping writes:

∆U = 2πx̂2ωnωζ (D-50)

The approximation term should dissipate the same amount of energy:

Master of Science Thesis V. Bos



160 2dof example

∆U1a = 2πq̂1
2ω(1)

n ω1ζ1a = 2πq̂2
2ω(2)

n ω2ζ2 (D-51)

ζ1a = ζ2

(
q̂2
q̂1

)2 ω
(2)
n

ω
(1)
n

ω2
ω1

(D-52)

Using the amplitude relation obtained before (only considering the harmonic part):

q̂2 ≈ βαq̂1
2 (D-53)

Substitute q̂2
q̂1
≈ βαq̂1:

ζ1a = ζ2(βαq̂1)2ω
(2)
n

ω
(1)
n

ω2
ω1

(D-54)

Note that, in this case, ω2 ≈ 2ω1, β ≈ 1, 1 < α <∞, ω
(2)
n

ω
(1)
n

≈ 20, so the effective damping ratio
of this nonlinear damping term is at least 20 times higher than it’s linear damping ratio. The
added term to the equation of motion of the out-of-plane mode could be:

2ω(1)
n ζ1aq̇1 ≈ cq2

1 q̇1 (D-55)

This would hold for excitation frequencies far away from the resonances of the in-plane mode,
where α ≈ 1. Anyway, this leads to the conclusion that if structures suffer from amplitude or
frequency depended damping, this could be caused by coupled-damping and can be described
by a quadratic dependence of the viscous damping value.

D-5 Real string

To compare the validity of the proposed model introduced in the first section, it is compared
here to the nonlinear model yielding from a real string. To do so, Rizzi’s method is imple-
mented in Comsol to obtain the coefficients. We define the structure to be a A4 string, tuned
to 440 Hertz. The string has diameter h of 1mm, a pre-stress of 1520 MPa, a total length of
50 cm and a density of 7850 kg/m3.

Table D-1: Coefficients of a Comsol model and simplified model (Rizzi’s method)

Parameter Value Description
ρ 7850 kgm−3 density
σ 1520 MPa pre-stress
D 1 mm Diameter
Lfull 0.5 m Full length
E 210 GPa Young’s modulus
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L0 = 1
3Lfull (D-56)

ε = σ

E
; (D-57)

Lt = εL0 (D-58)

Li = L0 − Lt (D-59)

Table D-2: Coefficients of a Comsol model and simplified model (Rizzi’s method)

Coefficient Simple model Comsol
k(1) 7.2151 · 103 1.1781 · 104

k(2) 2.9905 · 106 6.5563 · 106

m(1) 0.0015 0.0015
m(2) 0.0015 0.0015
f1 344.3421 440.0529
f2 7010.3 10383
f2/f1 20.3586 23.596

a
(1)
11 0 0
a

(2)
11 2.9688 · 106 0.5113 · 107

a
(1)
12 5.9376 · 106 1.0225 · 107

a
(2)
12 0 0
a

(1)
22 0 0
a

(2)
22 0 0

b
(1)
111 1.7813 · 107 2.410 · 107

b
(2)
111 0 0
b

(1)
112 0 0
b

(2)
112 −3.5626 · 107 6.424 · 107

b
(1)
122 −3.5626 · 107 6.424 · 107

b
(2)
122 0 0
b

(1)
222 0 0
b

(2)
222 0 3.9286 · 108

From the table, the following can be said about the resemblance:

• The modal masses are equal. This is expected as they arise just from the structure
geometry
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• The out-of-plane modal linear stiffness is about 30% less than the one yielding from
FEM. The 2dof in-plane stiffness is about 50%, which could be due to the fact that
the in-plane mode is actually the second in plane mode (when sorted from low to high
stiffness) of the complete system. Usually, the approximation becomes less accurate for
hgher modes.

• The coefficients of the nonlinear coupling stiffness terms are almost all in the same order
of magnitude.

• The cubic coupling terms from the 2dof model have negative sign, where those from FEM
have positive ones. Those negative stiffnesses are assumed to cause in-plane instability
(see figure ...), as the FEM equations does not show this instability.

• The FEM analysis yields cubic nonlinear stiffness for the in-plane mode, which is not
in the 2dof model.

D-5-1 Nonlinear in-plane stiffness

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xj

+ ∂uk
∂xi

∂uk
∂xj

)
(D-60)

εxx = ∂ux
∂xx

+ 1
2

(
∂ux
∂xx

∂ux
∂xx

+ ∂uy
∂xx

∂uy
∂xx

+ ∂uz
∂xx

∂uz
∂xx

)
(D-61)

For ν = 0 and if only load in x-direction are considred, the resulting displacements are only
in the direction of the load, leaving only one nonlinear term:

εxx = ∂ux
∂xx

+ 1
2

(
∂ux
∂xx

)2
(D-62)

For a bar, loaded axially at the endpoint (endpoint displacement q), (stress and strain are
constant over the volume), with unit volume, the elastic energy writes:

U = 1
2

∫
σεdV = 1

2

∫
εEεdV = 1

2εEε (D-63)

using

σ = εE (D-64)

ux = xq (D-65)

∂ux
∂xx

= q (D-66)

εxx = q + 1
2q

2 (D-67)
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U = E(1
2q + 1

2q
2)(q + 1

2q
2) = 1

2E(q2 + 1
3q

3 + 1
4q

4) (D-68)

The energy term which is dependent on q4 originates from a cubic stiffness, which is also seen
in the table.

However, here also a quadratic stiffness term arises, which is not present in the table. This
term has the property that, for negative displacement, the energy becomes negative. The in-
plane eigenmode is symmetric around the midpoint. This means that the ’quadratic stiffness
energy’ stored in the left part is the same as in the right part, but with opposite sign.
Therefore, the contributions cancel out, and the effective quadratic stiffness equals zero.

To obtain the stiffness terms for the in-plane mode for the string, the displacement field of
the mode can be inserted into the strain equation.

ux = q̂ sin x (D-69)

∂ux
∂xx

= q̂ cosx (D-70)

εxx = q̂ cosx+ 1
2 q̂

2 cos2 x (D-71)

U = 1
2

∫
σεdV = 1

2

∫
εEεdV = 1

2AE
∫
ε2
xxdx = (D-72)

U = 1
2AE

∫ 2π

0

(
q̂ cosx+ 1

2 q̂
2 cos2 x

)2
dx (D-73)

U = 1
2AE

∫ 2π

0
q̂2 cos2 x+ q̂3 cos3 x+ q̂4 1

4 cos4 xdx (D-74)

Recall

∫ 2π

0
cos3 xdx = 0 (D-75)

Therefore, the ’quadratic stiffness’ energy term vanishes, so indeed the effective quadratic
stiffness equals zero. As in the table, only the linear and cubic stiffness remain.

D-6 Numerical solution

It would be of interest to solve this system in AUTO or Matcont and see if the result of the
differential equations (11) and (12) indeed can be well captured by both methods, and also
see at what amplitude corrections are needed.
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D-6-1 Statics

To obtain insight the nature of the differences, we consider first the static case. As load
case, we put an vertical external force on the mass, so only the out-of-plane mode is directly
excited. Then we solve for the out-of-plane and in-plane displacements, for each load step.

Figure D-2: Force-displacement diagram.

The result can be seen in figure D-2, where the resulting out-of-plane displacement is plotted
versus the external force. The linear response seems reliable up to about 10 times the thick-
ness. At higher displacements the response is clearly nonlinear. Both Farbod’s and Rizzi’s
method seem to be able to describe the out-of-plane displacement correctly, as they match
the exact solution perfectly.
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Figure D-3: Path mass mindpoint.

Figure D-3 shows the path of the mass midpoint, with respect to the undeformed configu-
ration. As the linear solution and Farbod’s method do not (directly) solve for the in-plane
motion, they are not shown here. Rizzi’s method seems to be able to describe the in-plane
movement quite well, as the curves match quite good. Only at large deformations, the in-
plane displacement yielding from Rizzi’s method seems to deviate very slightly from the exact
solution. Note that when using Farbod’s method, using the relation between q1 and q2, the
in-plane displacement could be calculated afterwards.

In conclusion, we can say that when only considering statics, both Farbod’s and Rizzi’s
method can describe the nonlinear effects quite well. Computationally, Rizzi’s method is
more expensive as the number of equations to solve doubles, but it also directly yields the
in-plane displacements.

D-6-2 Dynamics

To analyse the dynamic response of the structure, we use AUTO. The structure is subjected
to a harmonic load, to obtain the frequency response. To prevent infinite resonance peaks,
some artificial damping ζ is added to the equations of motion, (ζ = 0.002).
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Linear regime

Figure D-4: Frequency response at low force level. Amplitude is normalised to string diameter.
F = 0.05N

Considering very low excitation forces, all methods give the same result. As visible in figure D-
4, the out-of-plane response looks quite linear. The in-plane response shows it’s own resonance
at 10ω1. The actual resonance frequency equals 20ω1, but because in-plane motion has two
periods during one out-of-plane period, the resonance is found at half the true resonance
frequency. From now on, we look only around the first resonance, as at higher frequency
nothing special happens when increasing the excitation force.

Entering the nonlinear regime

When increasing the excitation force to 0.5N, hardening occurs, but still all methods match
the exact solution. The responses are shown in figures D-5 and D-6
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Figure D-5: Frequency response, entering the nonlinear regime. F = 0.5N

Figure D-6: Frequency response, entering the nonlinear regime. F = 0.5N
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Nonlinear regime

After the excitation force is increased to 5N, small differences are visible (see figure D-5 and
D-6). Farbod’s method seems to be slightly stiffer than the exact solution, while Rizzi is still
matching it. This is probably due to the softening effect of the in-plane mass, as found in
equation D-49. Furthermore, Farbod’s solution shows a resonance peak that has it’s maximum
value at higher frequency than the exact solution, as visible in figure D-8

Figure D-7: Frequency response, further into the nonlinear regime. F = 5N
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Figure D-8: Frequency response, further into the nonlinear regime: zoom in at tip resonance
peaks. F = 5N

In-plane resonance

If the excitation force is further increased to 10N, the in-plane response shows a small res-
onance at 2.5ω1, which is also 1

8ω2. Note that the exact solution shows a small dip, while
Rizzi’s solution shows a larger peak. The out-of-plane behaviour remains still unaltered by
this in-plane phenomena.
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Figure D-9: Frequency response, encountering in-plane resonance at 2.5ω1. F = 10N

Figure D-10: Frequency response, encountering in-plane resonance at 2.5ω1: In-plane motion.
F = 10N
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Figure D-11: Frequency response, encountering in-plane resonance at 2.5ω1: zoom in at tip
resonance peaks. F = 10N

Locking

When pushing the system far into the nonlinear regime by using a force of F = 170N, the
methods show large differences. In-plane resonances occur also at ω = 3.3ω1 = 1

6ω2 and
ω = 4.93ω1 = 1

4ω2. When the excitation force is in or decreased, the response does hardly
change, as the resonance peak cannot pass the resonance of the in-plane mode (see figure
D-12). Farbod’s method covers no in-plane dynamics, so it does not see any barriers, yielding
a maximum amplitude at way higher frequency. Rizzi’s method seems a bit too sensitive for
the in-plane resonances, as it founds already at ω = 4.6ω1 a barrier which causes it to bend
backward.
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Figure D-12: Frequency response, locked at 4.93ω1. F = 170N

Both Farbod’s and Rizzi’s method relay on an approximation of the nonlinearity estimated
in the equilibrium position. However, at resonance, the out-of-plane amplitude equals about
200 times the string diameter. Therefore, it could be useful to approximate the nonlinearities
around this displacement. This method wil be indicated as ’Rizzi’s method numerical’, or
briefly ’RNum’. When the STEP method is applied at the high amplitude region (w =
230, u = 4), nonlinear coefficients are somewhat changed. This results in a response which
matches the exact solution in this region better then Rizzi’s original solution, as it locks at the
right frequency. When looking at the in-plane motion, it becomes clear that Rizzi’s numerical
method is still oversensitive for the in-plane resonances. However, this is hardly influencing
the out-of-plane response curve, as it locks at the right frequency.
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Figure D-13: Frequency response, locked at 4.93ω1. F = 170N

Figure D-14: Frequency response, locked at 4.93ω1: zoom in at tip resonance peaks. F = 170N
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Figure D-15: Frequency response, locked at 4.93ω1: In-plane motion. F = 170N
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Figure D-16: Frequency response, locked at 4.93ω1: In-plane motion. F = 170N
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Parameter choice

The interaction between the in-plane and out-of-plane mode strongly depend on their corre-
sponding eigenfrequencies. By changing the pretension, only the out-of-plane eigenfrequency
changes, so the interaction can be altered. When introducing more damping, the sharp peaks
in the in-plane response vanish partly, but the overall behaviour does not change.

D-6-3 Conclusions

When considering systems with strongly coupled in- and out-of-plane modes and high vibra-
tion amplitude (wrt. structure thickness), both in-plane stiffness and mass can have significant
influence on the structure’s dynamics. The effect becomes more important as the eigenfre-
quencies approach each other. In this analysis, Rizzi’s method showed the best capability to
track the exact solution, as it could be tuned to the range of interest. However, if nonlinear
intertia terms would be added to Farbod’s method, it could possibly be improved.

D-7 References

[1] A.A. Muravyov, S.A. Rizzi, Computers and Structures 81 (2003) 1513-1523.

D-8 Mathematical derivations

D-8-1 Equations of motion

We obtain for the Lagrangian:

L = Ekin − (El + Em) = M

2 (u̇2 + ẇ2)− 1
2k(Ll − Li)2 − 1

4k(Lm − Li)2) (D-76)

Writing down the Euler-Lagrange equations step by step, using dLl
du = L0+u

Ll
, dLl

dw = w
Ll
,

dLm
dw = 0 and dLm

du = −2.
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∂L
∂Lm

∂Lm
∂u

= −1
2k(Lm − Li)(−2) = k(Lm − Li) (D-77)

∂L
∂Ll

∂Ll
∂u

= −k(Ll − Li)
L0 + u

Ll
(D-78)

∂L
∂u

= ∂L
∂Ll

∂Ll
∂u

+ ∂L
∂Lm

∂Lm
∂u

(D-79)

∂L
∂u

= −k(Ll − Li)
L0 + u

Ll
+ k(Lm − Li) (D-80)

∂L
∂w

= ∂L
∂Ll

∂Ll
∂w

+ ∂L
∂Lm

∂Lm
∂w

(D-81)

∂L
∂w

= −k(Ll − Li)
w

Ll
(D-82)

d
dt
∂L
∂u̇

= Mü (D-83)
d
dt
∂L
∂ẇ

= Mẅ (D-84)

Thus we obtain the nonlinear equations of motion:

d
dt
∂L
∂q̇i
− ∂L
∂qi

= Fi

Mẅ + k(Ll − Li)
w

Ll
= Fy

Mü+ k[(Ll − Li)
L0 + u

Ll
− (L0 − 2u− Li)] = Fx

Simplified we can write:

Mẅ + k(1− Li
Ll

)w = Fy (D-85)

Mü+ k[3u+ Li(1−
L0 + u

Ll
)] = Fx (D-86)

Linearization gives (using Ll ≈ L0 + u):

Mü+ 3ku = Fx (D-87)
Mẅ + kLt

w

L0
= Fy (D-88)

D-8-2 Other coefficients

The other coefficients can be determined in a similar way: we start with the displacement
field Xc = +φ2q2 = (u = q2, w = 0), to obtain the force vector FT = (F yL, F xL). In the linear
case we have:
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F yL(φ2q2) = 0
F xL(φ2q2) = 3kq2

In the nonlinear case we obtain:

F yL(φ2q2) = 0
F xL(φ2q2) = 3kq2

Because this is the same as for the nonlinear case, all the coefficients that should appear equal
zero:

[ar22] =
(

0
0

)
(D-89)

[br222] =
(

0
0

)
(D-90)

To obtain the last missing coefficients, we apply the displacement field Xc = φ1q1 + φ2q2 =
(w = q1, u = q2). In the linear case we have:

F yL(φ1q1 + φ2q2) = k
Lt
L0
q1

F xL(φ1q1 + φ2q2) = 3kq2

In the nonlinear case, we obtain:

F yT (φ1q1 + φ2q2) = k(1− Li√
(L0 + q2)2 + q2

1

)q1

F xT (φ1q1 + φ2q2) = k[3q2 + Li(1−
L0 + q2√

(L0 + q2)2 + q2
1

)]
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F xT (φ1q1 + φ2q2) = k

3q2 + Li

1− 1√
1 + q2

1
(L0+q2)2




1√
1 + q2

1
(L0+q2)2

≈ 1− 1
2

q2
1

(L0 + q2)2 +O(q4
2)

F xT (φ1q1 + φ2q2) = k

[
3q2 + Li

{
1
2

q2
1

(L0 + q2)2

}]

F xT (φ1q1 + φ2q2) = k

[
3q2 + 1

2
Li
L2

0
q2

1

{
1

(1 + q2
L0

)2

}]
1

(1 + q2
L0

)2 ≈ 1− 2 q2
L0

+O(q2
2)

F xT (φ1q1 + φ2q2) = k

[
3q2 + 1

2
Li
L2

0
q2

1

{
1− 2 q2

L0

}]
F xT (φ1q1 + φ2q2) = k

[
3q2 + 1

2
Li
L2

0
q2

1 −
Li
L3

0
q2

1q2

]

For the vertical force, we have:

F yT (φ1q1 + φ2q2) = kq1(1− Li√
(L0 + q2)2 + q2

1

)

F yT (φ1q1 + φ2q2) = kq1(1− Li
L0 + q2

1√
1 + q2

1
(L0+q2)2

)

F yT (φ1q1 + φ2q2) ≈ kq1(1− Li
L0 + q2

{1− 1
2

q2
1

(L0 + q2)2 })

F yT (φ1q1 + φ2q2) ≈ k(q1 − q1
Li

L0 + q2
+ 1

2Li
q3

1
(L0 + q2)3 )

F yT (φ1q1 + φ2q2) ≈ k(q1
L0 + q2 − Li
L0 + q2

+ 1
2
Li
L3

0
q3

1
1

(L0 + q2)3 )

F yT (φ1q1 + φ2q2) ≈ k(q1
Lt + q2
L0

1
1 + q2

L0

+ 1
2
Li
L3

0
q3

1 +O(q3
1q

2
2))
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1
(1 + q2

L0
) ≈ 1− q2

L0
+ q2

2
L2

0
+O(q3

2)

F yT (φ1q1 + φ2q2) ≈ k(q1
Lt + q2
L0

{1− q2
L0

+ q2
2
L2

0
)}+ 1

2
Li
L3

0
q3

1)

F yT (φ1q1 + φ2q2) ≈ k(q1{
Lt
L0

+ q2
L0
− q2

Lt
L2

0
− q2

2
L2

0
+ q2

2
Lt
L3

0
)}+ 1

2
Li
L3

0
q3

1 +O(q3
1q2))

q2
L0

(1− Lt
L0

) = q2
L0

(−L0 + (L0 − Li)
L0

) = q2
Li
L2

0
q2

2
L2

0
(−1 + Lt

L0
) = −q2

2
Li
L3

0

F yT (φ1q1 + φ2q2) ≈ k
Lt
L0
q1 + k

Li
L2

0
q1q2 − k

Li
L3

0
q1q

2
2 + 1

2
Li
L3

0
q3

1

The coefficients can be found using the procedure earlier decribed. We find:

[ar12] =
(
k Li

L2
0

0

)
(D-91)

[br112] =
(

0
−k Li

L3
0

)
(D-92)

[br122] =
(
−k Li

L3
0

0

)
(D-93)

D-8-3 Method Muravyov and Rizzi

According to the paper we impose a static displacement Xc = +φ1q1 = (u = 0, w = q1) on
the structure. The static force can be obtained from the equations of motion, by setting the
accelerations equal to zero. For the linear case, this results in a force vector:

FL(φ1q1) = (0, k Lt
L0
q1) (D-94)

For the nonlinear case this results in:

FT (+φ1q1) = k[3u+ Li(1−
L0 + u

Ll
)], k(1− Li

Ll
)w) (D-95)

FT (+φ1q1) = (k(Li −
Li√

1 + q2
1
L2

0

), k(L0 −
Li√

1 + q2
1
L2

0

) q1
L0

) (D-96)

The term with the square root can be estimated using a Taylor approximation:
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1√
1 + x2

≈ 1− 1
2x

2 + 3
8x

4 +O(x6) (D-97)

FT (+φ1q1) ≈ (1
2k

Li
L2

0
q2

1 −
3
8k

Li
L4

0
q4

1 +O(q6
1), k Lt

L0
q1 + 1

2k
Li
L3

0
q3

1 −
3
8k

Li
L5

0
q5

1 +O(q7
1)) (D-98)

D-8-4 Equations of motion

Now the equations of motion of the approximate model (containing max cubic order terms)
can be written:

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1q2 + b

(1)
111q

3
1 + b

(1)
122q1q

2
2 = F y (D-99)

m(2)q̈2 + k
(2)
1 q2 + a

(2)
11 q1q1 + b

(2)
112q

2
1q2 = F x (D-100)

From this we can see that the in-plane eigenmode, has no source of nonlinearity from itself
(a(2)

22 and b
(2)
222 equal zero), it has only nonlinear coupling to the out-of-plane mode. The

quadratic term in the equation for out-of-plane motion ((a(1)
12 ) indicates softening behaviour,

lowering the effective stiffness of this mode. If we consider first the static case with no external
forcing on the second mode, we can write q2 in terms of q1 and substitute this back in the
equation of motion for q1, yielding the effective stiffness of this mode.

k
(2)
1 q2 + a

(2)
11 q1q1 + b

(2)
112q

2
1q2 = 0

q2 = −a(2)
11 q1q1

k
(2)
1 + b

(2)
112q

2
1

Substitute q2(q1) in the static equation for q1:

k
(1)
1 q1 + a

(1)
12 q1

−a(2)
11 q1q1

k
(2)
1 + b

(2)
112q

2
1

+ b
(1)
111q

3
1 + b

(1)
122q1

{
−a(2)

11 q1q1

k
(2)
1 + b

(2)
112q

2
1

}2

= F y

k
(1)
1 q1 −

a
(2)
11 a

(1)
12

k
(2)
1

q3
1

1

1 + b
(2)
112
k

(2)
1
q2

1

+ b
(1)
111q

3
1 + b

(1)
122O(q5

1) = F y

k
(1)
1 q1 −

a
(2)
11 a

(1)
12

k
(2)
1

q3
1(1 +O(q2

1)) + b
(1)
111q

3
1 + b

(1)
122O(q5

1) = F y

k
(1)
1 q1 −

a
(2)
11 a

(1)
12

k
(2)
1

q3
1 + b

(1)
111q

3
1 = F y
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Use k(2)
1 = 3k, a(2)

11 = 1
2k

Li

L2
0
, a(1)

12 = 2a(2)
11 = k Li

L2
0

b
(1)
111−eff = b

(1)
111 −

a
(2)
11 a

(1)
12

k
(2)
1

= 1
2k

Li
L3

0
− 1

3k
1
2

{
k
Li
L2

0

}2
= 1

2k
Li
L3

0
− 1

6k
L2
i

L4
0

(D-101)

Use Li ≈ L0

b
(1)
111−eff = 1

3k
Li
L3

0
(D-102)

D-8-5 Nonlinear mass

The in-plane mode has a nonzero modal mass, so at some point this may influence the
dynamic response of the out-of-plane mode. If we consider harmonic motion around the
first eigenfrequency (of the out-of-plane mode), the in-plane mode will still follow it’s forcing
terms, as it’s mass has small influence at ω = ω1 << ω2. To investigate the lowest-order
influence, we neglect the b112 and b122 stiffness, as they result in higher order coupling. So
we obtain the following simplified equations of motion:

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1q2 + b

(1)
111q

3
1 = sin(ωf t) (D-103)

m(2)q̈2 + k
(2)
1 q2 + a

(2)
11 q1q1 = 0 (D-104)

Consider motion of the out-of-plane mode following the forcing term:

q1 = q̂1 sin(ωf t)

q2
1 = q̂2

1 sin(ωf t)2 = q̂2
1

1
2(1− cos(2ωf t))

We can consider the quadratic coupling term in the in-plane equation of motion as an external
forcing, yielding:

m(2)q̈2 + k
(2)
1 q2 = −a(2)

11 q1q1 = −a(2)
11 q̂

2
1

1
2(1− cos(2ωf t))

The static force yields a static displacement:

q2−static = − a
(2)
11

2k(2)
1
q̂2

1 = −β 1
2 q̂

2
1 (D-105)

The dynamic force can be analysed using Laplace (only looking at steady state solutions)
(use ω2f = 2ωf ):
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m(2)q̈2 + k
(2)
1 q2 = a

(2)
11 q̂

2
1

1
2 cos(ω2f t) = f(ω2f ) (D-106)

Q2(−m(2)(ω2f )2 + k
(2)
1 ) = F (ω2f ) (D-107)

Q2(ω2f )
F (ω2f ) = 1

(k(2)
1 −m(2)(ω2f )2

= 1
k

(2)
1

1
1− (ω2f

ω2
)2 (D-108)

q2−dynamic = a
(2)
11

2k(2)
1
q̂2

1
1

1− (2ωf

ω2
)2

cos(2ωf t) = 1
2βα(ωf )q̂2

1 cos(2ωf t) (D-109)

The total solution then writes:

q2 = q2−static + q2−dynamic = −β 1
2 q̂

2
1 + 1

2βα(ωf )q̂2
1 cos(2ωf t) (D-110)

q2 = −βq̂2
1

1
2(1− α cos(2ωf t)) = −βq̂2

1

[1
2α(1− cos(2ωf t))−

1
2(α− 1)

]
(D-111)

q2 = −βαq̂2
1

1
2

[
(1− cos(2ωf t))− (1− 1

α
)
]

(D-112)

Recall

q2
1 = q̂2

1 sin(ωf t)2 = q̂2
1

1
2(1− cos(2ωf t))

q2 = −βα
[
q2

1 − q̂2
1

1
2(1− 1

α
)
]

= −βα
[
q2

1 − ε
]

(D-113)

For ωf = 0, ε = 0, so q2 ≥ 0. For ωf < 2ωn, α ≥ 1, so in this domain 0 < ε < 1
2 q̂

2
1. Actually, ε

is translating the squared sine downward. This causes q2 to also take negative values, meaning
that the in-plane mode is also moving towards the centre.
This can be inserted in the out-of-plane equation of motion:

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1

(
−βα

[
q2

1 − ε
])

+ b
(1)
111q

3
1 = sin(ωf t) (D-114)

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1ε− βαa(1)

12 q
3
1 + b

(1)
111q

3
1 = sin(ωf t) (D-115)

m(1)q̈1 + k
(1)
1 q1 + a

(1)
12 q1ε+ q3

1(b(1)
111 − βαa

(1)
12 ) = sin(ωf t) (D-116)

As ε depends on q̂1 which is not analythic available, ε is removed. However, it is assumed to
lower the maximum value of q2. As q2 seems to have a softening effect on q1, this softening
can be seen as an upper bound, so probably the amplitude of q1 will be slightly lower. When
putting back all the original terms in the equation,

m(1)q̈1 + k
(1)
1 q1 + q3

1

b(1)
111 −

a
(2)
11 a

(1)
12

k
(2)
1

1
1− (2ωf

ω2
)2

 = sin(ωf t) (D-117)
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Here, we find again the same factor we found for the static analysis a
(2)
11 a

(1)
12

k
(2)
1

. However, an
additional term governing the in-plane inertia is now visible. This term becomes infinite at
half the in-plane eigenfrequency, removing the cubic hardening effect of the out-of-plane mode
itself. Therefore, the backbone curve will not pass this point.
Small in-plane damping (eg Q > 100) can be added, as long as the phase shift is small enough
to neglect.

m(1)q̈1 + k
(1)
1 q1 + q3

1

b(1)
111 −

a
(2)
11 a

(1)
12

k
(2)
1

1√
(1− (2ωf

ω2
)2)2 + (2ζ 2ωf

ω2
)2

 = sin(ωf t)(D-118)

Damping can reduce the softening influence of the inertia, and can prevent the out-of-plane
to lock when the in-plane mode starts to resonate. The above derivation is not exact, but it
contains the features regarding strong mode interaction and reveals the dependencies.
One interesting extension could be to include in the in-plane equation the cubic coupling term
b

(2)
112q

2
1q2. This yields a linear stiffness which is parametrically excited, resulting in resonances

at integer fractions like 2ωf = 1
nω2, n = 2, 3, 4... (as described in [17]).

From this we can see that around the out-of-plane eigenfrequency, the in-plane inertia does
not play a big role. However, at higher frequency, the dynamic stiffness of the in-plane motion
reduces, by which the negative cubic correction term increases. At ωf = 1

2ω2, the in-plane
mode should resonate and the out-of-plane mode could get negative cubic stiffness creating
instability.
To compare this with other ways of modeling nonlinear inertia, we approximate the fraction
with a Taylor series, which is valid for small ωf

ω2
:

1
1− (2ωf

ω2
)2
≈ 1 +

(2ωf
ω2

)2
+O(

(2ωf
ω2

)4
) (D-119)

Yielding

m(1)q̈1 + k
(1)
1 q1 − a(1)

12 q1
a

(2)
11

k
(2)
1
q̂2

1

(
1 +

(2ωf
ω2

)2
)

+ b
(1)
111q

3
1 = sin(ωf t) (D-120)

Split up the quadratic correction term in a static and dynamic part:

m(1)q̈1 + k
(1)
1 q1 + b

(1)
111−effq

3
1

[
1− 1

2

(2ωf
ω2

)2
]

= sin(ωf t) (D-121)

The nonlinear intertia appears to scale with q3
1ω

2. Terms like xẋ2 or ẍx2 (which could be
introduced to the out-of-plane equation of motion), have the same scaling.
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Appendix E

Supplementary material for Chapter 3:
Tables of coefficients

Table E-1: Non-dimensionalised linear modal values of a string. (Extended version of Table 3-2.)
Dimensional pre-factors are listed in Table 3-3

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7
m/mt 0.5 0.5 0.5 0.5 0.499 0.499 0.499
k/k0 4.93 19.7 44.4 78.9 123 178 242
ω/ω0 1 2 3 4 5 6 7

Table E-2: Non-dimensionalised linear modal values of a string incl in-plane modes. (Extended
version of Table 3-7.) Dimensional pre-factors are listed in Table 3-6, although eigenfrequencies
are normalised w.r.t. the fundamental mode (ω1). Note that Eq. 4, Eq. 5 & Eq. 6 describe
in-plane modes.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6
m/mt 0.5 0.5 0.499 0.5 0.501 0.497
k/k0 4.93 19.7 44.4 4.97 19.9 44.6
ω/ω1 1 2 3 23.6 47.2 70.9

Table E-3: Non-dimensionalised linear modal values of a circular membrane. (Extended version
of Table 3-11.) Dimensional pre-factors are listed in Table 3-12 Modes: 1,2,4,6,7,9,11.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7
m/mt 0.269 0.24 0.25 0.115 0.233 0.133 0.227
k/k0 4.9 11.1 20.8 11.1 29.8 20.6 41.2
ω/ω0 1 1.59 2.14 2.3 2.66 2.92 3.16

Master of Science Thesis V. Bos



186 Supplementary material for Chapter 3: Tables of coefficients

Table E-4: Non-dimensionalised linear modal values of a square membrane. (Extended version
of Table 3-17.) Dimensional pre-factors are listed in Table 3-18 Modes: 1,2,4,5,7,9,11.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7
m/mt 0.25 0.215 0.25 0.206 0.154 0.227 0.248
k/k0 4.93 10.6 19.7 20.3 19.8 38.2 44.2
ω/ω0 1 1.58 2 2.24 2.55 2.92 3

Table E-5: Non-dimensionalised linear modal values of A. Keşkekler’s membrane shown in
section 3-3-2. Dimensional pre-factors are listed in Table 3-12, although eigenfrequencies are
normalised w.r.t. the fundamental mode (ω1). Modes: 1,2,4,6,7,9,15

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7
m/mt 0.204 0.195 0.183 0.103 0.192 0.118 0.0698
k/k0 5.78 16.5 34.6 24.2 68.3 55.4 64.9
ω/ω1 1 1.73 2.59 2.89 3.54 4.07 5.73

Table E-6: Non-dimensionalised linear modal values of an elliptic membrane, R2 = 2R. Di-
mensional pre-factors are listed in Table 3-12, although eigenfrequencies are normalised w.r.t. the
fundamental mode (ω1). Modes: 1-7

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7
m/mt 0.25 0.257 0.226 0.201 0.193 0.232 0.171
k/k0 5.61 10.1 14.2 14.9 18.1 23.2 22.6
ω/ω1 1 1.33 1.68 1.82 2.05 2.12 2.42
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Table E-7: Ext. version of Table 3-5, coeff. for a string. Error: εmax < 20%, εmean < 4%

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7

b111 12.2 0 0.171 0 0.003 04 0 −0.0022
b112 0 49.8 0 1.46 0 0.051 0
b113 0.608 0 112 0 2.65 0 0.0137
b114 0 1.4 0 199 0 4.19 0
b115 0.003 78 0 2.6 0 310 0 6.07
b116 0 0.0056 0 4.15 0 447 0
b117 −0.001 06 0 0.009 89 0 6.04 0 608
b122 49.9 0 2.38 0 3.66 0 0.0293
b123 −0.343 4.43 −1.15 8.37 −0.272 13.5 −0.626
b124 3.45 −0.365 8.84 −1.66 14.7 −0.609 20.5
b125 −0.798 8.48 −0.862 15.2 −4.8 22.4 −1.71
b126 0.287 −1.21 13.4 −1.51 22.5 −6 31.2
b127 0.143 −0.596 −0.805 20.3 −1.45 31.1 −8.14
b133 112 0 1.12 0 7.99 0 11.2
b134 −0.0343 7.98 1.51 −1.27 1.12 24.9 −0.564
b135 5.91 0 16.1 0 −0.653 0 36.7
b136 0.031 12.8 −1.49 24.7 −0.433 −2.76 0.271
b137 −0.794 0 21.4 0 35.4 0 −2.89
b144 200 0 0.711 0 0.0884 0 19.6
b145 0.188 14.6 1.35 2.88 4.23 2.39 1.88
b146 10.2 0.181 25.4 0.355 0.233 2.97 0.032
b147 0.711 19.4 0.063 37.4 1.55 −0.727 7.24
b155 312 0 1.11 0 0.0555 0 0.152
b156 −0.171 21.2 −0.682 2.37 −4.22 6.12 −3.12
b157 14.9 0 37.1 0 0.536 0 3.83
b166 449 0 1.6 0 0.027 0 −0.0186
b167 0.17 29.5 −0.053 −0.752 −3.12 −6.1 −8.26
b177 611 0 2.17 0 0.0351 0 −0.0775
b222 0 196 0 0 0 2.28 0
b223 1.75 0 446 0 0.013 0 12.3
b224 0 0 0 792 0 0 0
b225 2.86 0 0.005 89 0 1.24 × 103 0 0.000 294
b226 0 7.16 0 0 0 1.78 × 103 0
b227 0.002 72 0.000 128 11.9 −0.000 14 0.001 04 0 2.42 × 103

b233 0 446 0 10.5 0 0.398 0
b234 7.01 0.334 20.6 1.65 35.1 −0.411 −0.855
b235 0.307 −0.631 −1.47 35.2 4.18 53.2 −1.76
b236 10.7 1.19 2.28 0.487 53.1 5.94 75.1
b237 0.439 27 4.1 0.451 0.0871 74.1 10.7
b244 0 792 0 0 0 28.4 0
b245 11.4 0.64 34.4 −2.62 −4.02 −0.522 81.6
b246 0 −2.69 0 60.8 0 −7.52 0
b247 15.9 −0.66 −0.884 2.62 81.2 −0.471 −8.03
b255 0 1.24 × 103 0 0.0394 0 1.1 0
b256 17.5 −1.19 52 −1.07 6.32 −5.93 1.72
b257 0.202 −0.667 −1.84 80.7 4.17 0.163 −8.18
b266 0 1.78 × 103 0 0 0 4.5 0
b267 24.1 1.19 73.2 0.0757 1.69 5.93 12.4
b277 0 2.42 × 103 0 0.000 354 0 2.16 0.000 741
b333 0.004 55 0 990 0 0.107 0 0.314
b334 0 9.96 0 1.78 × 103 0 0.0111 0
b335 6.18 0 0.007 19 0 2.78 × 103 0 0.0132
b336 0 0 0 0.000 223 0 4 × 103 0
b337 8.6 0 0.0227 −0.000 308 0.0147 0.000 13 5.44 × 103

b344 0.004 34 0 1.78 × 103 0 33.2 0 0.0186
b345 −0.211 33.3 −0.378 65.8 −2.26 99.7 0.834
b346 20.1 −0.156 −1.46 2.58 99.7 −5.92 141
b347 −0.61 0.394 −1.5 2.71 −0.735 140 −8.17
b355 0.006 68 0 2.78 × 103 0 0.0295 0 72.1
b356 0.222 49.9 −1.48 98.7 4.08 −5.86 0.609
b357 28.9 0 −3.99 0 151 0 −10.5
b366 0.000 541 0 4 × 103 0 0.0147 0 0.0421
b367 0.327 69.4 1.48 139 1.56 6 8.05
b377 0.000 825 0 5.45 × 103 0 0.0809 −0.000 283 0.175
b444 0 0 0 3.13 × 103 0 0 0.000 116
b445 0 0 32.5 0 4.94 × 103 0 0.0171
b446 0 25.9 0 0 0 7.11 × 103 0
b447 15.1 0.000 174 0.001 01 −0.001 64 0.002 78 0.000 291 9.68 × 103

b455 0 0.009 81 0 4.94 × 103 0 81.2 0
b456 0.000 673 0.504 97.6 0.341 162 2.95 228
b457 0.293 76.3 0.261 −2.59 −4.03 228 8.05
b466 0 0 0 7.11 × 103 0 0 0
b467 −0.288 −0.503 137 2.63 226 −5.86 −8
b477 0 0.0192 0 9.68 × 103 −0.000 303 −0.000 856 −0.003 26
b555 0 0 0 0 7.63 × 103 0 −0.000 158
b556 0 −0.000 26 0 80.3 0 1.11 × 104 0
b557 0 0.000 246 70.1 −0.000 824 0.0133 0.000 246 1.51 × 104

b566 0 0 0.0163 0 1.11 × 104 0 169
b567 0 −0.000 865 −0.878 225 −0.224 336 −3.72
b577 0.007 26 0 0.000 528 −0.000 301 1.51 × 104 0 0.0181
b666 0 −0.044 0 0 0.000 126 1.58 × 104 −0.000 211
b667 −0.000 238 0.000 407 0.002 46 −0.0014 168 0.001 81 2.18 × 104

b677 0 −0.000 578 −0.000 273 0.0246 0 2.18 × 104 0.002 69
b777 −0.029 0.0851 0.497 −0.266 1.4 0.128 2.93 × 104

Master of Science Thesis V. Bos



188 Supplementary material for Chapter 3: Tables of coefficients

Table E-8: Ext. version of Table 3-9, coeff. for a string incl in-plane modes. Note that Eq.
4, Eq. 5 & Eq. 6 describe in-plane modes. Error: εmax < 0.2%, εmean < 0.004%

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6

b111 18.3 0 18.3 0 0 0
b112 0 146 0 0 0 0
b113 54.8 0 328 0 0 0
b114 0 0 0 48.7 −48.8 0.005 33
b115 0 0 0 −48.8 195 146
b116 0 0 0 0.004 03 146 437
b122 146 0 219 0 0 0
b123 0 438 0 0 0 0
b124 0 0 0 0 0 0
b125 0 0 0 0 0 0
b126 0 0 0 0 0 0
b133 328 0 −0.0227 0 0 0
b134 0 0 0 146 −292 −437
b135 0 0 0 −292 −0.006 55 876
b136 0 0 0 −437 876 −0.0632
b144 48.7 0 73 0 0 0
b145 −97.5 0 −292 0 0 0
b146 0.007 47 0 −437 0 0 0
b155 195 0 −0.003 86 0 0 0
b156 292 0 876 0 0 0
b166 437 0 −0.0141 0 0 0
b222 0 292 0 0 0 0
b223 219 0 1.31 × 103 0 0 0
b224 0 0 0 292 0 −292
b225 0 0 0 0 781 0
b226 0 0 0 −292 0 1.75 × 103

b233 0 1.31 × 103 0 0 0 0
b234 0 0 0 0 0 0
b235 0 0 0 0 0 0
b236 0 0 0 0 0 0
b244 0 292 0 0 0 0
b245 0 0 0 0 0 0
b246 0 −583 0 0 0 0
b255 0 781 0 0 0 0
b256 0 0 0 0 0 0
b266 0 1.75 × 103 0 0 0 0
b333 0.004 17 0 1.48 × 103 0 0 0
b334 0 0 0 438 −439 0.0182
b335 0 0 0 −439 1.76 × 103 −0.0141
b336 0 0 0 0.006 27 0.001 05 3.93 × 103

b344 73 0 438 0 0 0
b345 −292 0 −877 0 0 0
b346 −437 0 0.0373 0 0 0
b355 0.000 582 0 1.76 × 103 0 0 0
b356 876 0 −0.0161 0 0 0
b366 −0.011 0 3.93 × 103 0 0 0
b444 0 0 0 292 0 −290
b445 0 0 0 0 2.34 × 103 0
b446 0 0 0 −875 0 5.24 × 103

b455 0 0 0 2.34 × 103 0 −3.51 × 103

b456 0 0 0 0 −7.02 × 103 0
b466 0 0 0 5.24 × 103 0 0.502
b555 0 0 0 0 4.7 × 103 0
b556 0 0 0 −3.51 × 103 0 2.1 × 104

b566 0 0 0 0 2.1 × 104 0
b666 0 0 0 0.132 0 2.35 × 104
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Table E-9: Ext. version of Table 3-8, quadratic coeff. for a string incl in-plane modes. Note
that Eq. 4, Eq. 5 & Eq. 6 describe in-plane modes.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6

a11 0 0 0 7.75 −0.000 153 −0.0014
a12 0 0 0 0 0 0
a13 0 0 0 46.5 −93.1 0.006 46
a14 15.5 0 46.5 0 0 0
a15 −0.000 152 0 −93.1 0 0 0
a16 −0.001 32 0 0.008 06 0 0 0
a22 0 0 0 0 −62.1 0
a23 0 0 0 0 0 0
a24 0 0 0 0 0 0
a25 0 −124 0 0 0 0
a26 0 0 0 0 0 0
a33 0 0 0 0.000 349 −0.001 73 −209
a34 46.5 0 −0.001 16 0 0 0
a35 −93.1 0 −0.001 73 0 0 0
a36 −0.001 08 0 −418 0 0 0
a44 0 0 0 0 −186 0
a45 0 0 0 −372 0 1.12 × 103

a46 0 0 0 0 1.12 × 103 0
a55 0 0 0 0 0 0
a56 0 0 0 1.12 × 103 0 0.0162
a66 0 0 0 0 −0.0111 0
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Table E-10: Coeff. for a circ. membrane (as Table 3-13). Modes: 1,2,4,6,7,9,11. Error:
εmax < 1.3%, εmean < 0.26%

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7

b111 2.84 0 −0.000 122 −0.57 0 0 0
b112 0 9.26 −0.000 107 0.000 187 −0.000 951 1.79 0.000 884
b113 −0.000 357 −0.000 105 12.4 0.000 777 0.000 174 0.001 59 0.000 771
b114 −1.71 0.000 174 0.000 754 9.27 −0.000 657 0.000 617 0.000 131
b115 −0.000 275 −0.000 181 0.000 18 −0.000 635 14.7 −0.001 55 0.001 45
b116 −0.000 136 1.78 0.001 59 0.000 568 −0.001 43 15.2 0.005 98
b117 0.000 229 0.000 837 0.000 677 0.000 151 0.0015 0.005 99 17.7
b122 9.27 −0.0013 8.05 −0.726 −0.002 35 −0.000 538 0.001 28
b123 0.001 66 16.1 0.0305 0.004 49 6.35 6.25 0.004 07
b124 0.001 11 −1.42 0.007 49 0.0126 −0.001 72 −10.6 −0.0126
b125 −0.005 54 0.0183 6.34 −0.0112 0.066 −0.035 19.7
b126 3.56 −0.0183 6.21 −10.7 −0.0105 0.0428 0.0112
b127 −0.002 41 0.0166 0.006 64 −0.0206 19.7 −0.009 67 0.0844
b133 12.4 −0.002 28 0.004 13 4.64 −0.0071 −0.004 43 7.58
b134 0.0048 −0.003 18 9.32 0.0189 −0.002 45 −0.006 39 0.0143
b135 −0.004 24 6.36 0.0363 −0.0112 0.0974 −0.521 −0.0177
b136 0.003 84 6.21 −0.0216 −0.0119 −0.542 16.6 0.004 81
b137 0.002 52 −0.000 397 15.2 0.0135 −0.003 52 0.0119 0.0899
b144 9.27 −0.000 675 −0.003 47 −9.85 −0.000 607 −0.003 13 0.000 111
b145 0.002 42 0.000 722 −0.002 71 0.0218 15.9 0.006 73 0.005 72
b146 0.005 68 −10.7 −0.007 69 −0.0249 0.006 69 −18.9 −0.0288
b147 0.003 89 −0.0118 0.000 269 0.0215 0.006 07 −0.0287 22
b155 14.7 −0.001 57 0.004 55 7.94 −0.0126 −0.005 52 0.0137
b156 −0.000 589 −0.0212 −0.538 0.006 03 −0.045 0.061 −6.76
b157 −0.002 01 19.7 −0.008 78 0.002 91 0.101 −6.72 0.0823
b166 15.2 0.001 19 8.28 −9.47 0.007 85 −0.0112 −0.000 778
b167 0.0142 −0.008 18 0.002 34 −0.0304 −6.77 0.0373 −0.058
b177 17.7 −0.000 84 0.000 344 11 −0.0171 −0.004 68 0.009 94
b222 −0.000 543 19.8 −0.002 15 −0.000 668 1.02 2.67 −0.000 844
b223 8.07 −0.005 99 52.3 10.5 −0.0115 0.001 51 8.95
b224 −0.706 −0.001 92 10.5 16.8 −0.008 94 −0.004 12 0.002 04
b225 −0.002 13 3.05 −0.0114 −0.008 62 55.9 −1.93 0.007 35
b226 −0.000 816 8.01 0.001 71 −0.004 11 −1.93 48.1 0.005 94
b227 0.001 19 −0.001 99 8.95 0.001 66 0.007 04 0.0057 61.5
b233 −0.002 06 52.3 −0.0137 −0.002 36 12.6 −3.77 −0.0189
b234 −0.0146 21 −0.0601 −0.0471 12.4 −15.8 −0.0445
b235 6.35 −0.0508 25.2 12.4 −0.0911 0.0102 69.1
b236 6.22 0.0293 −7.55 −15.8 0.000 848 0.0689 −15.5
b237 −0.0167 17.9 −0.0971 −0.0539 69.1 −15.4 −0.152
b244 −0.000 209 16.8 −0.002 72 0.007 93 −0.003 88 7.08 0.008 64
b245 −0.0122 −0.0247 12.4 −0.0319 −0.0167 −0.006 25 40.5
b246 −10.7 −0.006 05 −15.9 14.1 −0.0167 0.0161 0.0135
b247 −0.0189 −0.0024 −0.0373 0.000 754 40.5 0.018 −0.0335
b255 0 55.9 0 0.0076 0.0398 −24 −0.0056
b256 −0.002 05 −3.84 −0.0162 −0.0172 −48 10.3 −0.0348
b257 19.7 −0.006 18 69.2 40.5 −0.0827 −0.0124 −0.0256
b266 0.001 76 48.1 0.0702 0.023 5.17 35.9 0.118
b267 0.008 44 0.0355 −15.5 0.0103 −0.0338 0.186 −77.7
b277 0.000 185 61.5 −0.023 0.001 07 0.0468 −38.9 0.0243
b333 0.001 15 −0.004 14 61.9 0.0048 −0.005 11 −0.007 29 0.0212
b334 4.66 −0.001 64 0.0138 55.9 0 −0.0191 26.5
b335 −0.007 93 12.6 −0.0143 0 152 −2.4 0.0268
b336 −0.004 44 −3.81 −0.0208 −0.0186 −2.39 64.3 −0.0475
b337 7.6 −0.0192 0.0608 26.5 0.0279 −0.047 176
b344 −0.003 85 −0.002 06 55.9 −0.0123 −0.008 29 −0.009 12 −0.0108
b345 −0.0124 12.5 −0.005 19 −0.0352 −0.017 −28.7 −0.0256
b346 0.002 01 −15.9 −0.0154 0.002 21 −28.7 13.7 −0.067
b347 −0.014 −0.024 53 −0.0387 −0.009 48 −0.0795 −0.147
b355 0.009 56 −0.001 26 152 0.005 76 −0.008 92 −0.042 −7.13
b356 −0.529 −0.002 54 −4.78 −28.7 −0.0461 0.116 −44.9
b357 −0.0227 69.2 0.006 98 −0.0347 −14.3 −44.9 0.0142
b366 8.29 0.0686 64.4 6.92 0.0842 −0.1 29.9
b367 0.0231 −15.5 −0.0675 −0.07 −44.9 59.8 −0.0377
b377 0.003 38 −0.0235 176 −0.046 0.0735 −0.0457 0.125
b444 −3.29 0.002 82 −0.004 18 22.9 −0.003 46 −0.001 54 0.004 13
b445 −0.000 242 −0.002 63 −0.008 63 −0.01 67.6 −0.0102 0.0115
b446 −0.003 39 7.05 −0.0088 −0.005 74 −0.009 78 56.6 −0.0187
b447 0 0.008 91 −0.0111 0.0133 0.0115 −0.0188 75.2
b455 7.96 0.006 57 0.001 21 67.6 0.0512 0.0131 0.0261
b456 0.0158 −0.003 53 −28.7 −0.009 72 0.0416 0.0927 −89.9
b457 −0.006 49 40.5 −0.0109 0.008 95 0.0352 −89.9 0.0487
b466 −9.47 0.0233 6.92 56.6 0.0605 −0.12 −0.0198
b467 −0.0245 0.0168 −0.0697 −0.0297 −89.9 −0.0576 −0.005 41
b477 11 0.000 208 −0.0465 75.2 0.04 −0.0123 −0.0864
b555 −0.004 19 0.0145 −0.003 16 0.0172 133 −0.0259 0.037
b556 −0.005 27 −24 −0.0436 0.0127 −0.0797 116 −0.171
b557 0.0127 −0.01 −7.14 0.027 0.115 −0.171 333
b566 0.009 11 5.17 0.0853 0.0608 116 −18.9 0.0809
b567 −6.76 −0.0154 −44.9 −89.9 −0.323 0.127 0.065
b577 −0.0201 0.054 0.0681 0.0404 333 0.009 68 0.0256
b666 −0.004 26 12 −0.0328 −0.0392 −6.29 96.8 −0.0741
b667 −0.001 24 0.119 29.9 −0.0198 0.0806 −0.223 151
b677 −0.004 42 −38.9 −0.0458 −0.012 0.0149 151 −0.457
b777 0.002 68 0.008 51 0.0411 −0.0296 0.007 24 −0.153 273
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Table E-11: Coeff. for a square membrane (as Table 3-19). Modes: 1,2,4,5,7,9,11. Error:
εmax < 7.5%, εmean < 0.87%

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7

b111 3.65 0 0 −0.0807 0 −0.000 131 −0.0466
b112 0 11.6 0 −0.000 267 1.17 −1.17 −0.000 234
b113 0 0 15.2 −0.000 269 0 0 −0.001 12
b114 −0.242 0 −0.000 418 16.4 −0.000 231 −0.000 154 −0.635
b115 0 1.15 0.000 103 −0.000 291 12.9 −1.27 0.001 07
b116 0 −1.13 −0.000 234 −0.000 123 −1.27 31.8 0.002 11
b117 −0.144 −0.000 263 −0.001 17 −0.634 0.000 812 0.001 59 27.4
b122 11.6 −0.000 387 10.4 2.87 −0.000 952 −0.0015 0.367
b123 −0.0597 20.7 −0.303 −0.0311 −13.7 −8.35 −0.109
b124 −0.0514 5.63 −0.0362 −0.385 4.47 7.54 0.179
b125 2.29 −0.057 −14.1 4.49 −0.193 −0.0697 −18
b126 −2.32 −0.126 −8.16 8 −0.0441 −0.494 −9.19
b127 0.0561 0.791 0.0117 0.0806 −18.2 −8.97 −0.397
b133 15.2 −0.000 448 0.002 01 1.2 0.001 78 −0.003 27 8.13
b134 −0.019 0.001 78 2.29 −0.186 0.000 313 0.006 95 −0.0058
b135 −0.0147 −14 −0.121 −0.005 15 10.3 −9.72 −0.16
b136 −0.0233 −8.18 −0.14 −0.0121 −9.85 −3.8 −0.0321
b137 0.0116 0.001 07 16.5 −0.007 81 0.007 65 −0.006 99 −0.232
b144 16.4 0 0 2.26 −0.001 41 0.004 65 −19.8
b145 −0.0133 4.48 0.003 81 −0.175 3.1 −8.76 0.0714
b146 −0.0633 8.01 0.005 51 −0.26 −8.47 19.2 0.227
b147 −1.16 0.002 15 −0.005 16 −39.3 −0.000 571 0.0115 −0.279
b155 12.9 −0.003 23 5.31 1.64 −0.001 01 −0.001 47 2.64
b156 −2.53 −0.0488 −9.79 −8.34 −0.148 −0.267 −17.9
b157 0.0263 −18.2 −0.0387 0.0259 5.39 −17.6 −0.312
b166 31.8 0.0107 −1.71 9.94 0.0026 −0.0312 0.307
b167 0.061 −9.15 0.000 304 0.189 −17.8 1 −0.458
b177 27.4 0 0.0117 0.2 0.0051 −0.0057 0.11
b222 −0.000 165 21.9 0 0.000 103 −0.117 −1.95 0.000 453
b223 10.5 0.000 308 58.2 2.24 0.002 78 0.0003 8.15
b224 2.91 0 2.24 58.7 −0.003 07 0.005 54 −6.02
b225 −0.000 944 −0.34 0.002 68 −0.002 86 51 −6.71 0.007 85
b226 −0.001 46 −5.86 −0.000 207 0.004 51 −6.71 79.3 −0.000 829
b227 0.307 0.001 35 8.17 −6.03 0.007 68 −0.001 78 69.9
b233 −0.000 749 58.2 −0.0025 −0.001 13 −28.8 −2.03 −0.0032
b234 −0.0416 4.4 −0.115 −0.19 −7.88 37.6 0.0978
b235 −14.1 0.0428 −57.7 −7.9 −0.224 0.0697 −64.9
b236 −8.21 −0.0898 −4.19 37.7 0.144 −0.495 11.6
b237 −0.008 33 16.4 −0.0144 0.0216 −64.9 11.6 −0.316
b244 0 58.7 0.003 45 0.002 42 34.5 21.1 0.001 02
b245 4.56 −0.0935 −7.91 68.8 −0.267 −0.195 −26.9
b246 8.12 −0.169 37.7 42 −0.116 −0.904 −58.8
b247 0.0902 −12 0.0513 0.398 −26.9 −58.7 −0.63
b255 −0.003 67 51 −0.008 05 −0.006 74 −20.2 10.4 −0.0024
b256 −0.000 602 −13.5 0.0222 −0.0165 20.7 46 0.0198
b257 −18.3 0.0616 −65 −26.9 0.146 0.128 −15.4
b266 0.0114 79.4 0.009 16 0.0192 23.2 4.87 −0.0265
b267 −9.2 0.121 11.6 −59.1 0.0295 0.535 72.6
b277 0.001 43 70 −0.006 57 −0.02 −7.5 36.4 −0.0217
b333 0.000 617 −0.0005 58.5 −0.002 02 0.003 16 0.000 402 0.004 16
b334 1.21 0 −0.006 48 67 −0.003 99 0.003 73 4.26
b335 0.001 61 −28.9 0.009 64 −0.004 11 96.5 3.74 0.011
b336 −0.0036 −2.01 −0.000 215 0.002 01 3.72 145 −0.004 39
b337 8.21 −0.002 74 0.0113 4.26 0.0106 −0.004 83 156
b344 0 0.002 94 67 0.001 08 0.005 33 −0.000 892 −0.007 72
b345 0.009 29 −7.9 −0.0623 −0.089 10.9 −16.8 −0.0892
b346 −0.0278 37.8 −0.0846 −0.116 −16.8 2 0.0116
b347 0.006 47 0.0126 8.55 0.122 0.001 04 −0.0017 −0.208
b355 5.3 −0.008 47 96.5 5.51 0.028 −0.0255 71.2
b356 −9.82 0.0311 7.38 −16.9 −0.134 −0.235 −19.5
b357 −0.0299 −65.1 0.005 07 0.006 18 143 −19.5 −0.193
b366 −1.73 0.0104 145 1.16 −0.0114 −0.097 −12.7
b367 −0.0406 11.6 0.0688 −0.0194 −19.6 −25.1 −0.472
b377 0.0107 −0.007 93 156 0.0176 0.008 23 −0.0476 0.137
b444 0.767 0.000 402 0.000 369 81.4 −0.003 72 0.0116 −7.64
b445 −0.001 48 34.5 0.005 03 −0.0106 112 41 0.0106
b446 0.002 54 21.2 −0.003 15 0.0327 40.9 192 −0.0431
b447 −20.1 0.003 05 −0.007 74 −22.9 0.0118 −0.0465 253
b455 1.66 −0.008 14 5.52 112 −0.008 63 −0.0149 −9.73
b456 −8.43 −0.114 −16.9 81.7 −0.224 −0.459 −80.8
b457 0.0719 −26.9 −0.004 88 0.178 −19.3 −80.8 −0.367
b466 9.98 0.0206 1.16 192 0.0156 0.393 −103
b467 0.195 −59.1 −0.002 07 0.455 −80.9 −205 −0.59
b477 0.215 −0.0217 0.0231 252 −0.043 0.003 34 0.049
b555 −0.000 449 −6.75 0.009 86 −0.002 93 76.1 −9.91 0.0205
b556 0.001 39 10.4 −0.0263 −0.0158 −29.7 158 −0.0479
b557 2.57 −0.003 12 71.3 −9.74 0.0581 −0.0474 240
b566 0.005 79 23.2 −0.0138 0.0161 158 −0.405 −0.0349
b567 −17.9 0.118 −19.6 −81.1 −0.0376 0.243 −0.642
b577 0.004 84 −7.5 0.006 27 −0.0436 240 −0.186 −0.007 17
b666 −0.0145 1.63 −0.0311 0.139 −0.136 357 −0.105
b667 0.147 −0.0237 −12.7 −103 −0.0374 −0.317 406
b677 −0.005 76 36.6 −0.0549 0.001 93 −0.251 406 0.145
b777 −0.0396 −0.006 22 0.0474 0.0102 −0.001 17 0.0459 295
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Table E-12: Coeff. for A. Keşkekler’s membrane. Modes: 1,2,4,6,7,9,15. Error: εmax < 15%,
εmean < 1%

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7

b111 2.55 0 0.313 1.34 0.000 204 0.000 435 −0.529
b112 0 8.57 −0.000 307 −0.000 596 −0.426 −4.05 0.000 196
b113 0.942 −0.000 283 9.79 1.07 −0.001 11 0.000 244 −0.0467
b114 4.02 −0.000 585 1.07 10.8 0.001 24 −0.000 745 2.96
b115 0.000 58 −0.434 −0.001 09 0.001 24 12 0.71 0.000 527
b116 0.001 28 −4.05 0.000 289 −0.000 762 0.711 15.9 0.0028
b117 −1.61 0.000 168 −0.0469 2.96 0.000 479 0.0028 14.2
b122 8.61 0 −5.82 3.82 0.001 54 0.002 08 −2.56
b123 −0.143 −11.8 0.349 0.0771 −13.8 7.28 0.0707
b124 0.001 29 7.69 0.0838 0.167 0.621 −14.5 0.08
b125 −0.826 0.174 −13.7 0.625 0.434 0.0744 2.17
b126 −8.12 0.0522 7.31 −14.5 0.0669 0.26 0.184
b127 −0.0667 −5.07 0.0861 0.0629 2.17 0.158 0.361
b133 9.88 0.000 849 1.46 1.37 −0.000 543 0.002 17 −7.65
b134 2.13 0.000 409 2.83 6.92 0.002 48 −0.000 509 4.82
b135 −0.0277 −13.7 0.22 −0.000 755 1.95 6.94 −0.0145
b136 −0.001 52 7.33 0.085 0.019 6.94 −9.79 −0.006 23
b137 −0.0863 −0.000 881 −15.3 4.82 0.0112 −0.003 04 10.5
b144 10.8 −0.000 906 3.54 17.4 0.001 68 −0.000 612 8.08
b145 0.0254 0.634 0.0135 0.133 −1.84 2.25 −0.0204
b146 0.0829 −14.4 0.0383 0.167 2.25 34 −0.006 71
b147 5.92 −0.005 01 4.86 16.3 0.003 22 0.0132 28.8
b155 12.1 −0.000 487 1.18 −1.01 −0.001 61 0.005 79 −11.1
b156 1.45 0.02 7.02 2.27 0.197 0.293 −0.336
b157 −0.032 2.16 −0.000 708 −0.0264 −22.1 −0.336 0.136
b166 16.1 0.002 54 −4.79 16.8 0.006 14 −0.0112 2.66
b167 −0.033 0.161 −0.001 44 −0.0053 −0.335 5.38 0.144
b177 14.4 −0.006 84 5.31 14.3 0.002 16 0.0112 3.13
b222 0 18.7 −0.000 908 −0.001 43 1.94 −6.99 0.000 362
b223 −5.73 −0.002 72 45.2 6.43 −0.004 45 −0.001 77 6.38
b224 3.83 −0.004 33 6.42 16 0.001 59 −0.001 27 3.57
b225 0.001 46 5.81 −0.004 34 0.001 56 47.7 4.2 −0.009 25
b226 0.001 94 −21 −0.001 57 −0.001 27 4.21 53 0.0126
b227 −2.48 0.000 901 6.38 3.55 −0.009 39 0.0125 22.2
b233 0.000 75 45.2 −0.004 85 −0.004 84 31.9 −5.51 −0.004 98
b234 0.004 52 12.9 −0.005 23 −0.0825 20.3 7.73 −0.0346
b235 −13.5 −0.224 64 20.3 −0.399 −0.0729 15.6
b236 7.3 0.0157 −10.9 7.74 −0.0876 −0.285 −9.19
b237 −0.0112 12.8 −0.0207 −0.0566 15.6 −9.18 −0.158
b244 −0.000 933 16 −0.002 87 −0.003 74 −3.94 −14.1 −0.007 15
b245 0.605 0.008 98 20.3 −7.81 0.0907 0.002 22 −2.75
b246 −14.3 −0.0382 7.73 −28.1 0.002 47 0.15 −11.7
b247 0.0374 7.29 0.0448 0.237 −2.76 −11.8 0.376
b255 −0.000 489 47.8 0.004 69 −0.001 45 0.0154 10.7 −0.012
b256 −0.004 83 8.51 −0.004 51 −0.0111 21.5 5.05 0.000 509
b257 2.13 −0.0207 15.6 −2.74 0.007 64 0.006 18 −12.7
b266 0.002 43 53.3 −0.0148 0.004 74 2.42 −66.2 −0.018
b267 −0.108 −0.0164 −9.17 −11.7 0.0066 0.0415 −29.3
b277 −0.006 64 22.3 −0.004 88 −0.0109 −6.38 −14.7 −0.005 34
b333 0.476 −0.001 44 44.9 4.06 −0.005 68 −0.001 14 0.176
b334 1.35 −0.004 73 12.2 45.4 −0.000 223 −0.0106 8.8
b335 −0.000 782 31.8 −0.0168 −0.000 288 121 11.2 −0.006 72
b336 0.002 11 −5.46 −0.002 99 −0.0106 11.2 54.8 −0.008 19
b337 −7.59 −0.005 04 0.53 8.78 −0.007 05 −0.008 23 45.1
b344 3.5 −0.002 79 45.4 0.37 −0.005 26 −0.003 48 5.32
b345 −0.005 34 20.2 0.0276 −0.0768 5.01 58.3 −0.0532
b346 −0.007 06 7.68 −0.006 18 −0.0376 58.3 12.7 0.002 49
b347 4.81 −0.000 293 17.6 10.5 −0.0412 0.0192 4.01
b355 1.15 0.004 91 121 2.55 0.000 372 −0.002 −6.49
b356 6.9 −0.0452 22.4 58.3 −0.145 −0.213 −14
b357 −0.000 73 15.5 0.003 02 −0.0546 −13 −14 −0.085
b366 −4.85 −0.0145 54.9 6.4 −0.0298 0.009 73 11.9
b367 −0.005 78 −9.12 −0.003 29 0.001 84 −14 23.8 −0.0382
b377 5.24 −0.004 72 45.1 2.09 −0.003 47 0.0116 −2.47
b444 5.72 −0.001 18 0.121 26.5 0.001 94 −0.001 52 13.7
b445 0.001 57 −3.92 −0.005 16 0.005 24 57.3 −4.5 0.0103
b446 −0.000 414 −14 −0.003 38 −0.005 93 −4.5 61.5 0.0181
b447 8.05 −0.007 03 5.31 41.1 0.0101 0.0182 70.8
b455 −1.05 −0.001 39 2.54 57.3 0.004 56 −0.003 35 −11.8
b456 2.22 −0.007 29 58.3 −8.97 0.0408 0.0648 8.01
b457 0.0154 −2.73 −0.0417 0.0565 −23.6 8.01 0.0482
b466 16.5 0.005 02 6.39 61.5 −0.007 38 −0.0574 24.7
b467 0.0212 −11.6 0.0228 0.0718 8.01 49.5 0.129
b477 14.1 −0.0106 2.08 70.8 −0.006 54 0.0288 77.4
b555 −0.000 543 0.0125 0.000 385 0.001 93 116 2.28 −0.006 66
b556 0.005 66 10.7 −0.001 35 −0.003 52 6.83 105 −0.0293
b557 −10.9 −0.012 −6.49 −11.8 −0.0234 −0.0292 61.7
b566 0.006 17 2.45 −0.0296 −0.007 28 105 42.2 −0.017
b567 −0.308 −0.001 15 −14 8.01 −0.0505 −0.0185 −4.96
b577 0.001 92 −6.34 −0.003 34 −0.006 72 61.8 −2.49 0.0524
b666 −0.002 65 −21.9 0.0039 −0.0176 14.1 99.4 0.0251
b667 2.89 −0.0179 11.9 24.7 −0.0172 0.077 67.3
b677 0.0108 −14.5 0.0118 0.0285 −2.49 67.3 0.0274
b777 1.13 −0.000 123 −0.814 25.8 0.0211 0.006 82 81.4
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Table E-13: Coeff. for an elliptic membrane. Modes: 1-7. Error: εmax < 0.8%, εmean < 0.09%

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 Eq. 7

b111 2.46 0 −0.586 0 −0.000 189 0 0.0028
b112 −0.000 163 6.57 0 0.000 146 2 −0.000 218 0.000 989
b113 −1.76 0 6.48 −0.001 24 0.001 88 0.001 01 −2.11
b114 −0.000 144 0.000 169 −0.001 21 8.69 0.000 954 −0.0025 −0.0061
b115 −0.000 574 2 0.001 92 0.000 976 6.45 −0.001 12 −0.008 07
b116 −0.000 282 −0.000 27 0.001 03 −0.002 46 −0.001 16 9.68 0.004 49
b117 0.008 18 0.000 99 −2.11 −0.006 09 −0.008 14 0.004 46 6.78
b122 6.57 0.000 125 4.44 −0.000 204 0.000 97 0.001 27 −2.27
b123 −0.004 11 8.88 −0.0197 −0.0022 −8.17 0.002 49 0.008 87
b124 −0.002 49 −0.006 85 −0.003 21 −0.0208 −0.008 99 −12.8 −0.006 38
b125 4 0.004 18 −8.18 −0.004 17 0.005 89 −0.000 361 −7.82
b126 0.004 21 0.0119 0.006 75 −12.8 0.003 63 −0.0357 −0.0609
b127 0.002 66 −4.53 0.0193 −0.008 09 −7.83 −0.0572 −0.0647
b133 6.48 −0.001 32 1.43 0.003 24 −0.009 94 0.001 96 3.63
b134 0.000 751 −0.002 42 −0.000 275 −11.5 0.000 366 0.005 71 0.0535
b135 0.005 26 −8.18 −0.0124 0 2.38 0.0121 0.0446
b136 0.004 29 0.002 62 0.0121 0.0057 0.0122 2.4 −0.036
b137 −4.23 0.0171 7.27 0.0501 0.0337 −0.0337 1.97
b144 8.7 −0.001 88 −5.77 0.005 55 −0.003 84 −0.003 23 1.73
b145 0.003 38 −0.009 27 −0.000 303 0.000 859 −0.004 52 −13.3 −0.0286
b146 −0.001 72 −12.8 0.005 84 0.0192 −13.3 −0.0217 −0.008 32
b147 −0.0149 −0.007 81 0.0559 3.44 −0.0277 −0.005 54 −0.132
b155 6.45 0.007 75 1.19 0.001 62 0.005 35 −0.0106 0.925
b156 −0.004 02 0.003 91 0.0123 −13.3 −0.0112 0.0243 −0.0108
b157 −0.0156 −7.83 0.0372 −0.0281 1.84 −0.0116 0.0267
b166 9.68 −0.000 366 1.21 0.007 63 0.004 93 0.0131 −7.49
b167 0.006 13 −0.0574 −0.0379 −0.006 05 −0.0119 −15 0.0398
b177 6.78 −0.0257 0.991 −0.0619 0.006 26 0.0147 0.191
b222 0 6.93 0 −0.000 58 0.137 0.002 55 0.004 56
b223 4.44 −0.000 351 17.6 0 −0.007 08 0.006 86 −1.1
b224 −0.000 312 −0.0017 0 12.1 0.003 75 −0.000 637 0.0209
b225 0.000 943 0.412 −0.007 12 0.0038 18 0.009 84 −0.005 54
b226 0.001 06 0.0074 0.006 76 −0.000 685 0.0099 21.7 −0.0124
b227 −2.27 0.0137 −1.1 0.0208 −0.005 52 −0.0124 19.3
b233 −0.001 32 17.6 0.0108 −0.006 45 −11.3 0.005 34 0.009 79
b234 −0.003 31 −0.001 54 −0.0165 −0.004 72 −0.0126 −11.8 0.0313
b235 −8.18 0.000 151 −22.6 −0.0139 0.0137 0.0162 −22.1
b236 0.006 16 0.0192 0.0214 −11.8 0.0129 −0.0248 −0.134
b237 0.0151 −2.2 0.007 96 0.0287 −22.1 −0.129 −0.192
b244 −0.002 18 12.1 0 0.001 96 8.47 −0.006 34 −0.000 944
b245 −0.004 74 0.006 87 −0.0138 16.9 0.0167 −0.0117 −0.017
b246 −12.8 0.005 92 −11.9 0.006 44 −0.0082 −0.0624 17.7
b247 −0.006 74 0.0403 0.0321 −0.006 39 −0.0173 17.7 −0.0219
b255 0.007 71 18 0.0242 0.0102 −3.32 0.0109 −0.0459
b256 −0.000 223 0.0175 0.0166 −0.0119 0.0336 14.3 0.0436
b257 −7.83 −0.006 95 −22.1 −0.0172 −0.11 0.0433 −6.62
b266 −0.000 572 21.7 −0.001 15 −0.0168 7.17 0.0328 0.0384
b267 −0.0632 −0.0225 −0.132 17.7 0.0459 0.0639 0.174
b277 −0.0259 19.3 −0.0836 −0.007 47 −3.33 0.0799 0.006 93
b333 0.476 0.003 54 14.9 0.001 58 −0.003 01 0.001 47 0.578
b334 0.002 94 −0.006 17 0.005 28 15.9 −0.003 24 −0.000 745 −0.001 26
b335 −0.0103 −11.3 −0.009 32 −0.003 11 35.5 −0.008 54 −0.009 65
b336 0.0021 0.005 29 0.004 73 −0.000 859 −0.008 26 26.3 −0.0151
b337 3.64 0.009 98 1.73 −0.001 29 −0.009 47 −0.015 37
b344 −5.77 0 15.9 −0.0418 0.0113 0.0161 −10.3
b345 −0.000 73 −0.0135 −0.004 84 0.025 −0.007 78 15.5 0.0257
b346 0.005 41 −11.9 0.001 26 0.0382 15.5 −0.0513 −0.0554
b347 0.0487 0.0289 −0.001 42 −20.7 0.0237 −0.0553 0.16
b355 1.19 0.0247 35.5 −0.001 58 −0.006 21 0.000 133 22.5
b356 0.0131 0.011 −0.0196 15.5 0.008 43 −0.0505 0.132
b357 0.0409 −22.1 0.005 09 0.024 45.1 0.136 0.421
b366 1.21 −0.000 984 26.3 −0.0213 −0.0295 0.0718 −9.13
b367 −0.0335 −0.13 −0.0277 −0.0559 0.136 −18.3 0.158
b377 0.991 −0.0838 37 0.0819 0.183 0.0745 7.39
b444 0.002 37 0.000 559 −0.014 26.4 0.004 37 0.0081 −0.0244
b445 −0.003 67 8.47 0.011 0.0133 17.7 −0.03 −0.0435
b446 −0.003 28 −0.005 93 0.0164 0.0243 −0.0298 61.2 0.0478
b447 1.73 −0.001 13 −10.3 −0.0733 −0.0435 0.0479 19.4
b455 0.001 92 0.0102 −0.001 58 17.7 0.0185 −0.0328 0.0372
b456 −13.3 −0.008 04 15.5 −0.0665 −0.057 0.0608 15.8
b457 −0.0286 −0.0193 0.0228 −0.0854 0.0724 15.8 0.0521
b466 0.006 69 −0.0169 −0.0211 61.2 0.0258 −0.041 0.139
b467 −0.0104 17.7 −0.057 0.0991 15.8 0.271 0.0768
b477 −0.062 −0.007 76 0.0822 19.4 0.023 0.0344 −0.0223
b555 0.001 77 −1.11 −0.002 29 0.006 08 26.9 0.0114 0.008 19
b556 −0.0108 0.011 0.000 592 −0.0329 0.0354 36.2 0.0937
b557 0.922 −0.0462 22.6 0.0371 0.0241 0.0938 63.5
b566 0.005 19 7.17 −0.0295 0.0258 36.2 0.007 07 −0.0144
b567 −0.0109 0.045 0.135 15.8 0.192 −0.0222 0.312
b577 0.006 58 −3.32 0.183 0.0236 63.5 0.161 0.215
b666 0.0044 0.0108 0.0239 −0.0131 0.002 44 47.9 −0.0118
b667 −7.5 0.0378 −9.13 0.138 −0.0143 −0.0354 41.1
b677 0.0152 0.0806 0.0745 0.0342 0.161 41.1 −0.0726
b777 0.0627 0.002 36 2.47 −0.007 73 0.0724 −0.0245 45.9
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Appendix F

Code

In this appendix, a selection of the written code is shown. Some scripts written automatically
by Matlab are shown, like ’duffing.for’ and ’fenergy_mode.m’. Those scripts automatically
written for a given set of coefficients (of the equations of motion), and in practice are very
large. To provide insight in their structure, they are shown here for a ROM of 2 modes.
Scripts that write Fortran scripts are not shown, as they are quite incomprehensible.

The commands for the API can be found from the ’Comsol API Reference Manual’. However,
it is very difficult to program a model from scratch this way. Therefore, it is recommended to
build a model in the Comsol GUI and save it as m-file. From this file, one can exactly learn
how the commands should be used.

F-1 Matlab-Comsol interface: STEP method

F-1-1 Element settings

1 function [ a_coefname , b_coefname , a_coef_un , b_coef_un , Km_value_un , MD ] . . .
2 = fsnaar_model_out_of_plane ( n_eig_solve , ind_eig , MP )
3
4 % Snaar Step method
5 % Vincent Bos
6 % 26-3-2019
7
8 %{
9 @I/O@ : this line determines type of analysis : include in−plane or not

10 @ST@ : this line is structure dependent
11 %}
12
13 %% 1. INITIALISE COMSOL INTERFACE
14 import com . comsol . model .∗
15 import com . comsol . model . util .∗
16 % ModelUtil.tags % geeft alle open modellen weer
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17 ModelUtil . clear ;
18 ModelUtil . showProgress ( true ) ; % toon progress
19
20 fstruc2var (MP ) ;
21
22 % SETTINGS
23 disp_factor = 2 ;
24 fact_disp_in= 1 ; % hoeveel in-plane kleiner moet zijn dan out-of-plane
25 n_ele = 100 ;
26 n_eig = length ( ind_eig ) ;
27 ind_in = [ ] ;
28
29 %% 2. COMSOL INTERFACE
30
31 model = mphopen (’snaar’ ) ; % @ST@ open model
32
33 % SET PHYSICAL AND GEOMETRICAL MODEL PROPERTIES whole section: @ST@
34 model . param . set (’L’ , [ num2str ( Length ) ’[m]’ ] , ’length’ ) ;
35 model . param . set (’As’ , [ num2str (As ) ’[m]’ ] , ’diameter string’ ) ;
36 model . param . set (’Emod’ , [ num2str ( Emod ) ’[Pa]’ ] , ’Young’’s modulus’ ) ;
37 model . param . set (’nu’ , [ num2str (nu ) ] , ’Poisson’’s ratio’ ) ;
38 model . param . set (’rho’ , [ num2str ( rho ) ’[kg/m^3]’ ] , ’density’ ) ;
39 model . param . set (’sig0’ , [ num2str ( sig0 ) ’[Pa]’ ] , ’prestress’ ) ;
40
41 % settings eigenvalue analysis
42 model . param . set (’n_ele’ , [ num2str ( n_ele ) ] , ’number of elements’ )

; % @ST@
43 model . sol (’sol1’ ) . feature (’e1’ ) . set (’neigs’ , n_eig_solve ) ; % @I/O@ //

OUT-OF-PLANE \\ # eigenmodes
44
45 model . sol (’sol1’ ) . feature (’e1’ ) . set (’shift’ , ’1[Hz]’ ) ; % search

around freq
46 model . sol (’sol1’ ) . feature (’e1’ ) . set (’eigvfunscale’ , ’mass’ ) ; % scale

eigenvectors to make mass matrix identity
47
48 % run eigenvalue analysis
49 model . sol (’sol1’ ) . runAll ;
50
51 % extract solution
52 [ MS ] = fSTEP_sol ( model , ind_eig ) ; fstruc2var (MS ) ;
53
54 % EXTRACT MESH INFO
55 [ MM ] = fSTEP_mesh ( model ) ; fstruc2var (MM ) ;
56
57 % ~~ structure settings ~~ %
58 study_nr = 2 ; % @ST@ index node nonlinear solver
59 physics_name = ’truss’ ; % @ST@ name of physics
60 arg_coord = ’x,y’ ; % @ST@ coordinates for interp

functions (string)
61 n_arg_coord = 2 ; % @ST@ # of coordinates: 2D: 2, 3D

: 3
62 index_out_of_plane = 1 ; % @ST@ 0-based index dof-dir with

largest amplitude
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63 index_u = [0 1 ] ’ ; % @ST@ 0-based index of dof-dir
related to displacements

64 dir_ind_v = [1 2 ] ’ ; % @ST@ 1-based index of dof-dir
eigenvectors to be saved

65 n_f = [ 1 ] ; % @ST@ @I/O@ 0-based vector met
richtingen die opgelegd worden: [ 1]: LEAVE IN-PLANE FREE

66 dir_fix = dir_name ( n_f+1) ; % names of applied fields
67 dispname = dir_name {2} ; % @ST@ hoofdrichting , voornaamste

verplaatsing modes <-- struct afhankelijk
68 dispname_in = dir_name {1} ; % @ST@ in-plane richting ,
69
70 % select geometry
71 geom_index = 1 ; % @ST@ 1 for edge, 2 for domain
72 geom_selection = [ 1 ] ; % @ST@ selection of geometry

entities
73
74 % INTERFACE & STEP METHOD
75 S_STEP_out_of_plane
76
77 % close Comsol model
78 ModelUtil . clear
79 end

F-1-2 Organizing block static condensation

1 %% STEP METHOD FOR ONLY OUT-OF-PLANE MODES
2 % Vincent Bos
3 % 24-5-2019
4
5 MT = fvar2struc ( dir_fix , physics_name , index_out_of_plane , index_u , n_f ,

dispname , dispname_in , geom_index , geom_selection , dir_ind_v ) ;
6
7 % extract FEM data
8 [ MFC ] = fSTEP_FEM_info_pre ( model , MM , MS , MT ) ; fstruc2var ( MFC ) ;
9

10 mode_in = [ ] ;
% @I/O@

11 U_in = [ ] ;
% @I/O@

12 f_in = [ ] ;
13
14 [ MD , U_eig , Km , ind_eig , n_eig , n_eig_out ] = fSTEP_FEM_in_out ( model , MS , MM , MFC ,

MT , MP , U_in , mode_in , f_in ) ; % ADD IN-PLANE EIGENVECTORS TO TOTAL SET (
U_eig is different from the one in the stucture MS!)

15
16 %% 3. EXPORT EIGENVECTORS TO COMSOL
17
18 kmv = diag ( MFC . Km ) ’ . / MFC . Km ( 1 , 1 ) ;
19
20 U_vmax = maxk ( U_eig ( dof_u , : ) , 1 , 1 , ’ComparisonMethod’ ,’abs’ ) ;

% <--- was struct dependent
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21 qv = disp_factor∗thic . / U_vmax . / kmv ;
% scalar to lower displacements

8* default
22 qm = diag (qv ) ;
23
24 % check coord for interpolation: remove y coord if curved string
25 if exist (’ind_coord’ )
26 coord_disp_corr = coord_disp ( : , ind_coord ) ;
27 else
28 coord_disp_corr = coord_disp ;
29 end
30
31 % Storing eigenvectors
32 [ filename , B ] = fSTEP_csv ( n_eig , U_eig , qm , n_node_disp , n_field_disp ,

dof_dir , n_f , coord_disp_corr ) ;
33 csvwrite ( filename , B )
34
35 % set interpolation functions and constraints
36 S_constr_interp_out
37
38 %% ~~ ~~

%
39 %% *************************** 4. STEP METHOD ***************************

%
40
41 % coefficients: names & numbers
42 [ SH ] = fSTEP_h ( n_eig ) ; fstruc2var (SH )
43 disp ( [ num2str ( n_htot /8) ’ sec computation time expected’ ] )
44
45 % export h-matrix
46 S_h_comsol ;
47
48 % Static analysis - run Comsol
49 F_lin_mod = Km∗qm∗h ; % linear
50 tic , model . sol ( solut_name ) . runAll ; toc , % nonlinear analysis
51
52 F_tot = mphgetu ( model , ’soltag’ , solut_name , ’solnum’ , [ 1 : 1 : n_htot ] , ’

type’ ,’reacf’ ) ; % read comsol model: NON-linear analysis
53 F_tot_mod = U_eig ’ ∗ F_tot ;
54 F_nonlin = F_tot_mod − F_lin_mod ;
55
56 % determine coeff automatically
57 [ A , B , a_coef , b_coef ] = fSTEP_coef (SH , qv , F_nonlin ) ;
58
59 %% 5. WRITE OUTPUT
60
61 n_dim_U = n_eig∗2 + 2 ;
62 MD . Emod = Emod ;
63 MD . U_vmax = U_vmax ;
64 MD . modal_mass = modal_mass ;
65
66 a_coef_un = a_coef ;
67 b_coef_un = b_coef ;
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68 Km_value_un = diag (Km ) ;
69
70 path_overdracht = ’C:\Users\Vincent\Documents\2. School\2017-2018\

Afstuderen\1. Matlab\BESTAND OVERDRACHT’ ;
71 save ( [ path_overdracht ’\coefficients.mat’ ] , . . .
72 ’A’ ,’B’ ,’a_coefname’ ,’b_coefname’ ,’a_coef_un’ ,’b_coef_un’ ,’a_length’ ,

’b_length’ , . . .
73 ’n_eig’ ,’Km_value_un’ ,’n_dim_U’ ,’ind_eig’ ,’MD’ ,’MP’ ) ;

F-1-3 Create modal displacement matrix

1 function [ SH ] = fSTEP_h ( n_eig )
2
3 % INPUT: n_eig
4 % OUTPUT: h, HT, n_htot ,
5
6 % aantal coefficienten
7 L = n_eig ; % # eigenmodes involved
8 i = 1 ;
9

10 for j=1:L
11 for k=j : L
12 a_coefname (i , : ) = str2num ( [ num2str (j ) ’ ’ num2str (k ) ] ) ;
13 a_coefnamevec (i , : ) ={[num2str (j ) ’ ’ num2str (k ) ] } ;
14 a_coefnamematrix (j , k ) = str2num ( [ num2str (j ) num2str (k ) ] ) ;
15 i = i+1;
16 end
17 end
18
19 i = 1 ;
20 for j=1:L
21 for k=j : L
22 for l=k : L
23 b_coefname (i , : ) = str2num ( [ num2str (j ) ’ ’ num2str (k )

’ ’ num2str (l ) ] ) ;
24 b_coefnamevec (i , : ) ={[num2str (j ) ’ ’ num2str (k ) ’ ’

num2str (l ) ] } ;
25 b_coefnamematrix (j , k , l ) = str2num ( [ num2str (j ) num2str (k )

num2str (l ) ] ) ;
26 i = i+1;
27 end
28 end
29 end
30
31 a_length = (L∗(L+1) ) /2 ;
32 b_length = (L∗(L+1)∗(L+2) ) /(3∗2) ;
33 n_h1 = 2 ∗ L ;
34
35 if (L > 1)
36 n_h2 = 3 ∗ factorial (L ) /( factorial (2 ) ∗( factorial (L−2) ) ) ;
37 else
38 n_h2 = 0 ;
39 end
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40
41 if (L > 2)
42 n_h3 = factorial (L ) /( factorial (3 ) ∗( factorial (L−3) ) ) ;
43 else
44 n_h3 = 0 ;
45 end
46
47 n_htot = n_h1 + n_h2 + n_h3 ;
48
49 %% Assemble h-matrix: weights for prescribed displacement fields
50
51 % -- h1 --
52 h1_block = [1 −1];
53 h1 = zeros (L , n_h1 ) ;
54 for i = 1 : n_h1/2
55 h1 (i , [ 2 ∗ i−1 2∗i ] ) = h1_block ;
56 h1_name (i ) = {num2str (i ) } ;
57 h1_name_ind (i ) = 2∗i−1;
58 end
59
60 H1 = containers . Map ( h1_name , h1_name_ind ) ;
61
62 % -- h2 --
63 h2_block_1 = [1 −1 1 ] ;
64 h2_block_2 = [1 −1 −1];
65 h2 = zeros (L , n_h2 ) ;
66 n = 1 ;
67
68 if n_h2 > 0
69 for i = 1 : L−1
70 for j = i+1 : L
71 h2 (i , [ 3 ∗ n−2 3∗n−1 3∗n ] ) = h2_block_1 ;
72 h2 (j , [ 3 ∗ n−2 3∗n−1 3∗n ] ) = h2_block_2 ;
73
74 h2_name (n ) = { [ num2str (i ) ’ ’ num2str (j ) ] } ;
75 h2_name_ind (n ) = 3∗n−2 + n_h1 ;
76 n = n+1;
77 end
78 end
79 H2 = containers . Map ( h2_name , h2_name_ind ) ;
80 else
81 h2_name = [ ] ;
82 h2_name_ind = [ ] ;
83 H2 = [ ] ;
84 end
85
86 clearvars i j n
87
88 % -- h3 --
89 h3 = zeros (L , n_h3 ) ;
90 n = 1 ;
91 if n_h3 > 0
92 for i = 1 : L−2
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93 for j = i+1 : L−1
94 for k = j+1 : L
95 h3 ( [ i j k ] , n ) = 1 ;
96 h3_name (n ) = { [ num2str (i ) ’ ’ num2str (j ) ’ ’

num2str (k ) ] } ;
97 h3_name_ind (n ) = n + n_h1 + n_h2 ;
98 n = n+1;
99

100 end
101 end
102 end
103 H3 = containers . Map ( h3_name , h3_name_ind ) ;
104 else
105 h3_name = [ ] ;
106 h3_name_ind = [ ] ;
107 H3 = [ ] ;
108 end
109
110 HT = containers . Map ( [ h1_name h2_name h3_name ] , [ h1_name_ind h2_name_ind

h3_name_ind ] ) ;
111
112 h = [ h1 h2 h3 ] ;
113
114 SH = fvar2struc (h , H1 , H2 , H3 , HT , n_htot , a_coefname , b_coefname , a_coefnamevec

, b_coefnamevec , a_length , b_length , h1 ) ;
115
116 end

F-1-4 Write prescribed displacement fields static condensation

1 function [ filename , B ] = fSTEP_csv ( n_eig , U_eig , qm , n_node_disp ,
n_field_disp , dof_dir , n_f , coord_disp )

2
3 % INPUT: n_eig , U_eig , qm,n_node ,n_field_disp ,dof_dir ,n_f,coord_t
4
5 h_eig = eye ( n_eig ) ;
6 Q_eig = U_eig∗qm∗h_eig ; % combined displacement vector , all dir
7 X = zeros ( n_node_disp , n_field_disp∗n_eig ) ;
8
9 for j=1:n_eig

10 for i=1:n_field_disp
11 kol = (j−1)∗n_field_disp + i ;
12 X ( : , kol ) = Q_eig ( dof_dir==n_f (i ) ,j ) ;
13 end
14 end
15
16 B = [ coord_disp X ] ;
17 filename = ’eigenvectors.csv’ ; % schrijf file in current

folder
18
19 % toon max verplaatsing
20 disp_w_max = max (X , [ ] , 1 ) ;
21
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22 end

F-1-5 Import solution eigenvalue analysis from Comsol

1 function [ MS ] = fSTEP_sol ( model , ind_eig , DIM )
2 % STORE SOLUTION IN STRUCTURE
3
4 n_eig = length ( ind_eig ) ;
5 solution_info = mphsolutioninfo ( model , ’soltag’ ,’sol1’ ) ’ ;

% list of solution tags
6 sol_info = mphsolinfo ( model , ’soltag’ ,’sol1’ ) ;
7 n_dof = sol_info . size ;
8 n_sol = sol_info . sizesolvals ;
9 vec_all = [ 1 : n_sol ] ;

10
11 U_eig = mphgetu ( model , ’soltag’ ,’sol1’ ,’solnum’ , ind_eig ) ;

% solution matrix
12 U_all = mphgetu ( model , ’soltag’ ,’sol1’ ,’solnum’ , vec_all ) ;
13
14 freq = abs ( imag ( sol_info . solvals ) . / ( 2∗ pi ) ) ;
15 eigenval = sol_info . solvals ;
16
17 % filter on eigenvalues
18 %
19 %% FILTER EIGENVALUES , REMOVE NAN AND REAL eigenvalues (we added no

damping)
20 ind_val = find ( ~isnan ( eigenval ) & real ( eigenval ) == 0 & abs ( imag (

eigenval ) ) > 1 ) ; % dit is de beste selectie
21
22 freq = freq ( ind_val ) ;
23
24 %% EXTRACT EIGENVECTORS
25 U_eig = mphgetu ( model , ’soltag’ ,’sol1’ ,’solnum’ , ind_val ( ind_eig ) ) ;

% solution matrix
26 U_all = mphgetu ( model , ’soltag’ ,’sol1’ ,’solnum’ , ind_val ) ;
27 %}
28
29
30 [ MS ] = fvar2struc ( sol_info , n_dof , n_sol , U_eig , U_all , freq , eigenval , n_eig ) ;
31
32 end

F-1-6 Create parametric sweep in Comsol

1 % EXPORT h-MATRIX TO COMSOL
2
3 study_name = [ ’std’ num2str ( study_nr ) ] ;
4 solut_name = [ ’sol’ num2str ( study_nr ) ] ;
5
6 for i=1:size (h , 1 )
7 h_name {1 ,i} = [ ’h’ num2str (i ) ] ;
8 p_name {1 ,i} = [ ’pAPI’ num2str (i ) ] ;
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9 h_val {1 ,i} = num2str (h (i , : ) ) ;
10 p_unit {1 ,i} = ’’ ;
11 end
12
13 %% FILTER ON EXISTING PAR SWEEPS
14
15 % show par sweeps
16 model . sol ( [ ’sol’ num2str ( study_nr ) ] ) . feature (’s1’ ) ;
17
18 txt_out = char ( model . sol ( solut_name ) . feature (’s1’ ) . toString ( ) ) ;
19
20 ind_p = strfind ( txt_out , ’pAPI1’ ) ;
21 ex_p = ~isempty ( ind_p ) ;
22
23 if ex_p == 1
24 model . sol ( solut_name ) . feature (’s1’ ) . feature . remove (’pAPI1’ ) ; % dus

bij feature moet je niet de naam opgeven!
25 else
26 end
27
28 %%
29
30 model . sol ( [ ’sol’ num2str ( study_nr ) ] ) . feature (’s1’ ) . create (’pAPI1’ , ’

Parametric’ ) ; % standard name is pDef, maar de 2e par
sweep heet p1.

31
32
33 model . study ( study_name ) . feature (’stat’ ) . set (’pname’ , h_name ) ;
34 model . study ( study_name ) . feature (’stat’ ) . set (’plistarr’ , h_val ) ;
35 model . study ( study_name ) . feature (’stat’ ) . set (’punit’ , p_unit ) ;
36
37 model . sol ( solut_name ) . feature (’v1’ ) . set (’clistctrl’ , p_name ) ;
38 model . sol ( solut_name ) . feature (’v1’ ) . set (’cname’ , h_name ) ;
39 model . sol ( solut_name ) . feature (’v1’ ) . set (’clist’ , h_val ) ;
40 model . sol ( solut_name ) . feature (’s1’ ) . set (’probesel’ , ’none’ ) ;
41 model . sol ( solut_name ) . feature (’s1’ ) . feature (’pAPI1’ ) . set (’pname’ , h_name )

;
42 model . sol ( solut_name ) . feature (’s1’ ) . feature (’pAPI1’ ) . set (’plistarr’ ,

h_val ) ;
43 model . sol ( solut_name ) . feature (’s1’ ) . feature (’pAPI1’ ) . set (’punit’ , p_unit )

;

F-1-7 Linear algebra to determine nonlinear stiffness coefficients

1 function [ A , B , a_coef , b_coef ] = fSTEP_coef (SH , qv , F_nonlin )
2
3
4 % INPUT: a_coefname , b_coefname , H1, H2, H3, qv, F_nonlin
5 % OUTPUT: A,B,a_coef ,b_coef
6
7 fstruc2var (SH )
8
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9 a_set1 = a_coefname ( a_coefname ( : , 1 ) == a_coefname ( : , 2 ) , : ) ; %
coeff names with all the same index

10 a_set1_ind = find ( a_coefname ( : , 1 ) == a_coefname ( : , 2 ) ) ; %
index of combi ’s in a_coefname vector

11 a_set2 = a_coefname ( a_coefname ( : , 1 ) ~= a_coefname ( : , 2 ) , : ) ; %
coeff names with unequal indices

12 a_set2_ind = find ( a_coefname ( : , 1 ) ~= a_coefname ( : , 2 ) ) ; %
index of combi ’s

13
14 % 1e set: a_11
15 for i = 1 : size ( a_set1 , 1 )
16 q1 = qv ( a_set1 (i , 1 ) ) ;
17 F1_ind = H1 ( num2str ( a_set1 (i ) ) ) ;
18 a_coef ( a_set1_ind (i ) , 1 ) = { ( F_nonlin ( : , F1_ind ) + F_nonlin ( : ,

F1_ind+1) ) . / (2∗q1^2) } ;
19
20 end
21
22 A = containers . Map ( a_coefnamevec ( a_set1_ind ) , a_coef ( a_set1_ind ) ) ;
23
24 % 1e set b
25 b_set1 = b_coefname (~std ( b_coefname ’ ) ’ , : ) ; % coeff combi

equal
26 b_set1_ind = find (~std ( b_coefname ’ ) ’ ) ; % index of combi ’

s
27
28 for i = 1 : size ( b_set1 , 1 )
29 q1 = qv ( b_set1 (i , 1 ) ) ;
30 q2 = qv ( b_set1 (i , 2 ) ) ;
31 q3 = qv ( b_set1 (i , 3 ) ) ;
32 F1_ind = H1 ( num2str ( b_set1 (i ) ) ) ;
33 b_coef ( b_set1_ind (i ) , 1 ) = { ( F_nonlin ( : , F1_ind ) − F_nonlin ( : ,

F1_ind+1) ) . / (2∗q1^3) } ;
34 end
35
36 B = containers . Map ( b_coefnamevec ( b_set1_ind ) , b_coef ( b_set1_ind ) ) ;
37
38 %% STOP IF ONLY a_11 COEFF ARE DESIRED
39 if exist (’a_only’ )
40 if a_only == 1
41 return
42 else
43 end
44 else
45 end
46
47 %% CONTINUE NORMAL WAY
48
49
50 % 2e set a
51 for i = 1 : size ( a_set2 , 1 )
52
53 q1 = qv ( a_set2 (i , 1 ) ) ;
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54 q2 = qv ( a_set2 (i , 2 ) ) ;
55
56 F1_ind = H2 ( num2str ( a_set2 (i , : ) ) ) ;

% index in de verpl matrix
57
58 f1 = a_coefname ( a_set2_ind (i ) , 1 ) ;
59 f1_val = A ( num2str ( [ f1 f1 ] ) ) ;

% a_11 waarde
60
61 f2 = a_coefname ( a_set2_ind (i ) , 2 ) ;
62 f2_val = A ( num2str ( [ f2 f2 ] ) ) ;

% zoek naa 22 als key voor a_22
waarde

63
64 a_coef ( a_set2_ind (i ) , : ) = {( F_nonlin ( : , F1_ind ) + F_nonlin ( : ,

F1_ind+1) − 2∗q1^2 .∗ . . .
65 f1_val − 2∗q2^2 .∗ f2_val ) . / (2∗q1∗

q2 ) } ;
66 end
67
68 % write maps
69 keySet = a_coefnamevec ( [ a_set1_ind ; a_set2_ind ] ) ;
70 valueSet = a_coef ( [ a_set1_ind ; a_set2_ind ] ) ;
71 A = containers . Map ( keySet , valueSet ) ;
72 clearvars keySet valueSet
73
74 % 2e set b: b_122
75 b_set2_bool = ( b_coefname ( : , 2 ) == b_coefname ( : , 3 ) ) & ( b_coefname ( : , 1 ) ~=

b_coefname ( : , 2 ) ) ;
76 b_set2 = b_coefname ( b_set2_bool , : ) ;
77 b_set2_ind = find ( b_set2_bool ) ;
78
79 % 3e set b: b_112
80 b_set3_bool = ( b_coefname ( : , 1 ) == b_coefname ( : , 2 ) ) & ( b_coefname ( : , 1 ) ~=

b_coefname ( : , 3 ) ) ;
81 b_set3 = b_coefname ( b_set3_bool , : ) ;
82 b_set3_ind = find ( b_set3_bool ) ;
83
84 % 2e set b: b_122
85 for i = 1 : size ( b_set2 , 1 )
86 q1 = qv ( b_set2 (i , 1 ) ) ;
87 q2 = qv ( b_set2 (i , 2 ) ) ;
88
89 name = b_coefname ( b_set2_ind (i ) , : ) ;

% coeff naam, indices
90 F1_ind = H2 ( num2str ( [ name (1 ) name (2 ) ] ) ) ;

% index in de verpl matrix
91 a_11 = A ( num2str ( [ name (1 ) name (1 ) ] ) ) ;

% a_11 waarde
92 a_22 = A ( num2str ( [ name (2 ) name (2 ) ] ) ) ;

% a_22 waarde
93 b_111 = B ( num2str ( [ name (1 ) name (1 ) name (1 ) ] ) ) ;

% b_111 waarde
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94
95 b_coef ( b_set2_ind (i ) , : ) = { ( F_nonlin ( : , F1_ind ) + F_nonlin ( : , F1_ind

+ 2) . . .
96 − 2∗q1^2 .∗ a_11 − 2∗q2^2 .∗ a_22 − 2∗q1^3 .∗

b_111 ) . / (2∗q1∗q2∗q2 ) } ;
97 end
98
99 % 3e set b: b_112

100 for i = 1 : size ( b_set3 , 1 )
101 q1 = qv ( b_set3 (i , 1 ) ) ;
102 q2 = qv ( b_set3 (i , 3 ) ) ;
103
104 name = b_coefname ( b_set3_ind (i ) , : ) ;

% coeff naam, indices
105 F1_ind = H2 ( num2str ( [ name (2 ) name (3 ) ] ) ) ;

% index in de verpl matrix
106 a_12 = A ( num2str ( [ name (1 ) name (3 ) ] ) ) ;

% a_11 waarde
107 b_222 = B ( num2str ( [ name (3 ) name (3 ) name (3 ) ] ) ) ;

% b_111 waarde
108
109 b_coef ( b_set3_ind (i ) , : ) = { ( F_nonlin ( : , F1_ind ) − F_nonlin ( : , F1_ind

+ 2) . . .
110 − 2∗q1∗q2 .∗ a_12 − 2∗q2^3 .∗ b_222 ) . / (2∗

q1∗q1∗q2 ) } ;
111 end
112
113
114 % write maps
115 keySet = b_coefnamevec ( [ b_set1_ind ; b_set2_ind ; b_set3_ind ] ) ;
116 valueSet = b_coef ( [ b_set1_ind ; b_set2_ind ; b_set3_ind ] ) ;
117 B = containers . Map ( keySet , valueSet ) ;
118 clearvars keySet valueSet
119
120 % 4e set b: b_123
121 b_set4_bool = ( ( ( b_coefname ( : , 1 ) ~= b_coefname ( : , 2 ) ) & ( b_coefname ( : , 1 )

~= b_coefname ( : , 3 ) ) ) & ( b_coefname ( : , 2 ) ~= b_coefname ( : , 3 ) ) ) ;
122 b_set4 = b_coefname ( b_set4_bool , : ) ;
123 b_set4_ind = find ( b_set4_bool ) ;
124
125 format = ’ %u %u %u’ ;
126 % 4e set b: b_123
127 for i = 1 : size ( b_set4 , 1 )
128 q1 = qv ( b_set4 (i , 1 ) ) ;
129 q2 = qv ( b_set4 (i , 2 ) ) ;
130 q3 = qv ( b_set4 (i , 3 ) ) ;
131
132 name = b_coefname ( b_set4_ind (i ) , : ) ;

% coeff naam, indices
133 F1_ind = H3 ( num2str ( [ name (1 ) name (2 ) name (3 ) ] , format ) ) ;

% index in de verpl matrix
134 a_11 = A ( num2str ( [ name (1 ) name (1 ) ] ) ) ;

% a_11 waarde
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135 a_22 = A ( num2str ( [ name (2 ) name (2 ) ] ) ) ;
% a_22 waarde

136 a_33 = A ( num2str ( [ name (3 ) name (3 ) ] ) ) ;
% a_22 waarde

137 a_12 = A ( num2str ( [ name (1 ) name (2 ) ] ) ) ;
% a_12 waarde

138 a_13 = A ( num2str ( [ name (1 ) name (3 ) ] ) ) ;
% a_12 waarde

139 a_23 = A ( num2str ( [ name (2 ) name (3 ) ] ) ) ;
% a_12 waarde

140 b_111 = B ( num2str ( [ name (1 ) name (1 ) name (1 ) ] , format ) ) ;
% b_111 waarde

141 b_222 = B ( num2str ( [ name (2 ) name (2 ) name (2 ) ] , format ) ) ;
% b_111 waarde

142 b_333 = B ( num2str ( [ name (3 ) name (3 ) name (3 ) ] , format ) ) ;
% b_111 waarde

143 b_112 = B ( num2str ( [ name (1 ) name (1 ) name (2 ) ] , format ) ) ;
% b_111 waarde

144 b_122 = B ( num2str ( [ name (1 ) name (2 ) name (2 ) ] , format ) ) ;
% b_111 waarde

145 b_113 = B ( num2str ( [ name (1 ) name (1 ) name (3 ) ] , format ) ) ;
% b_111 waarde

146 b_133 = B ( num2str ( [ name (1 ) name (3 ) name (3 ) ] , format ) ) ;
% b_111 waarde

147 b_223 = B ( num2str ( [ name (2 ) name (2 ) name (3 ) ] , format ) ) ;
% b_111 waarde

148 b_233 = B ( num2str ( [ name (2 ) name (3 ) name (3 ) ] , format ) ) ;
% b_111 waarde

149
150
151 b_coef ( b_set4_ind (i ) , : ) ={(F_nonlin ( : , F1_ind ) . . .
152 − a_11 .∗ q1^2 − a_22 .∗ q2^2 −

a_33 .∗ q3^2 − a_12 .∗ q1∗q2 . . .
153 − a_13 .∗ q1∗q3 − a_23 .∗ q2∗q3 −

b_111 .∗ q1^3 . . .
154 − b_222 .∗ q2^3 − b_333 .∗ q3^3 −

b_112 .∗ q1∗q1∗q2 . . .
155 − b_122 .∗ q1∗q2∗q2 − b_113 .∗ q1∗q1∗q3 −

b_133 .∗ q1∗q3∗q3 . . .
156 − b_223 .∗ q2∗q2∗q3 − b_233 .∗ q2∗q3∗q3 ) . / ( q1

∗q2∗q3 ) } ;
157 end
158
159 keySet = b_coefnamevec ( [ b_set1_ind ; b_set2_ind ; b_set3_ind ;

b_set4_ind ] ) ;
160 valueSet = b_coef ( [ b_set1_ind ; b_set2_ind ; b_set3_ind ;

b_set4_ind ] ) ;
161 B = containers . Map ( keySet , valueSet ) ;
162 clearvars keySet valueSet
163
164 end
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F-2 Matlab-AUTO interface: Bifurcation analysis

F-2-1 Equations of motion written by Matlab

1 SUBROUTINE FUNC (NDIM , U , ICP , PAR , IJAC , F , DFDU , DFDP )
2 IMPLICIT DOUBLE PRECISION (A−H , O−Z )
3 DIMENSION U ( NDIM ) , PAR (20)
4 DIMENSION F ( NDIM ) , DFDU (NDIM , NDIM ) , DFDP (NDIM , 2 0 )
5
6 real∗8 omega , TPI , pp , Nh ,
7 ∗ ft1 , ft2 ,
8 ∗ fp1 , fp2 ,
9 ∗ km1 , km2 ,

10 ∗ cm1 , cm2
11 TPI=4∗DATAN ( 1 . 0 D0 )
12 pp=PAR (3 ) /1000 . d0
13 omega=PAR (2 )
14 Nh = 0.0000d+00
15 ft1=−7.7934d−05 ∗ PAR (1 )
16 ft2=2.7989d−04 ∗ PAR (1 )
17 fp1 =0.0000d+00 ∗ PAR (1 )
18 fp2 =0.0000d+00 ∗ PAR (1 )
19 km1 = 1.0000d+00
20 km2 = 3.9263d+01
21 cm1 = 1.0000d−03
22 cm2 = 6.2660d−03
23 F (1 )=U (2 )
24 F (3 )=U (4 )
25 F (5 )=U (5 )+omega∗U (6 )−U (5 ) ∗ ( ( U (5 ) ) ∗∗2+(U (6 ) ) ∗∗2)
26 F (6 )=−omega∗U (5 )+U (6 )−U (6 ) ∗ ( ( U (5 ) ) ∗∗2+(U (6 ) ) ∗∗2)
27 F (2 )=−km1∗(1+fp1∗U (5 ) ) ∗U (1 )−cm1∗U (2 )+ft1∗U (5 )+eq1p (U )
28 F (4 )=−km2∗(1+fp2∗U (5 ) ) ∗U (3 )−cm2∗U (4 )+ft2∗U (5 )+eq2p (U )
29
30 IF ( IJAC . EQ . 0 ) RETURN
31 RETURN
32 END
33
34
35 function eq1p (U )
36 IMPLICIT DOUBLE PRECISION (A−H , O−Z )
37 dimension U (6 )
38 real∗8 d1
39 d1 =
40 ∗ −8.0862d−15∗U (1 ) ∗U (1 ) −7.2646d−12∗U (1 ) ∗U (3 ) −2.3874d−11∗U (3 ) ∗U (3 )
41 ∗ −1.0000d+00∗U (1 ) ∗U (1 ) ∗U (1 ) −6.3603d+00∗U (1 ) ∗U (1 ) ∗U (3 ) −6.0204d+01∗

U (1 ) ∗U (3 ) ∗U (3 )
42 ∗ −6.3641d+01∗U (3 ) ∗U (3 ) ∗U (3 )
43
44 eq1p =
45 ∗ +d1
46 return
47 end
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48
49 function eq2p (U )
50 IMPLICIT DOUBLE PRECISION (A−H , O−Z )
51 dimension U (6 )
52 real∗8 d1
53 d1 =
54 ∗ −3.6323d−12∗U (1 ) ∗U (1 ) −4.7747d−11∗U (1 ) ∗U (3 ) −−4.9852d−11∗U (3 ) ∗U (3 )
55 ∗ −2.1201d+00∗U (1 ) ∗U (1 ) ∗U (1 ) −6.0204d+01∗U (1 ) ∗U (1 ) ∗U (3 ) −1.9092d+02∗

U (1 ) ∗U (3 ) ∗U (3 )
56 ∗ −3.8643d+02∗U (3 ) ∗U (3 ) ∗U (3 )
57
58 eq2p =
59 ∗ +d1
60 return
61 end
62
63 SUBROUTINE STPNT (NDIM , U , PAR , T )
64 IMPLICIT DOUBLE PRECISION (A−H , O−Z )
65 DIMENSION U ( NDIM ) , PAR (20)
66
67 real∗8 omega , ft1 , TPI , pp
68 TPI=8∗DATAN ( 1 . 0 D0 )
69 omega=0.6
70 pp=0.
71 ft1=0.
72 PAR (1 )=ft1 ∗10000.
73 PAR (2 )=omega
74 PAR (3 )=pp ∗1000 . d0
75 PAR (11)=TPI/omega
76
77 do ii=1,4
78 U (ii )=0.
79 enddo
80 U (5 )=DSIN ( TPI∗T )
81 U (6 )=DCOS ( TPI∗T )
82 RETURN
83 END
84
85 SUBROUTINE BCND (NDIM , PAR , ICP , NBC , U0 , U1 , FB , IJAC , DBC )
86 RETURN
87 END
88 SUBROUTINE ICND (NDIM , PAR , ICP , NINT , U , UOLD , UDOT , UPOLD , FI , IJAC , DINT )
89 RETURN
90 END
91 SUBROUTINE FOPT (NDIM , U , ICP , PAR , IJAC , FS , DFDU , DFDP )
92 RETURN
93 END
94 SUBROUTINE PVLS (NDM , U , PAR )
95 RETURN
96 END

F-2-2 Useful AUTO commands
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1 % COMPILATION FORTRAN PROJECT WORKSPACE
2 command = [ ’ echo off’ . . .
3 ’ & cd C:\Users\Vincent\Documents\2. School\2017-2018\

Afstuderen\software\unzipped\Fortran + Duffing\FORTRAN\
FORTRAN\X86\DF\BIN’ . . .

4 ’ & DFVARS.bat’ . . .
5 ’ & cd C:\Users\Vincent\Documents\2. School\2017-2018\

Afstuderen\software\unzipped\Fortran + Duffing\
Duffing_auto\Mostafa_auto’ . . .

6 ’ & NMAKE duffing.mak’ ] ;
7
8 % WRITE AUTO SETTINGS
9 fsettings (dfnr , NDIM , IRS , ICP , RL0 , RL1 , DS , DSMIN , DSMAX , NTST , autofolder )

10 % RUN AUTO
11 system ( [ ’echo off & cd ’ autofolder ’ & auto duffing 2 & newrun’ ’ & cd

’ matlabfolder ] ) ;

F-2-3 Reading AUTO output

1 function [ end_type , end_label , end_par , Mf7 ] = freadfort7 ( autofolder )
2 %{
3 input : autofolder
4 output : last point : type , label , par waarde
5 %}
6
7 fileID = fopen ( [ autofolder ’\fort.7’ ] ) ;
8
9 fgetl ( fileID ) ;

10 tline = fgetl ( fileID ) ; % sla header & witregel over
11 i = 0 ;
12
13 while feof ( fileID ) == 0
14 tline = fgetl ( fileID ) ;
15 if ( any ( tline (4 ) == ’123456789’ ) | | any ( tline (3 ) == ’123456789’ ) )
16 i = i + 1 ;
17 tlinec = split ( tline ) ;
18 Mf7 (i , : ) = str2double ( tlinec ( 2 : end ) ) ’ ; % eerst nam hij de

branch niet mee
19 end
20 end
21
22 fclose ( fileID ) ;
23
24 last_line = Mf7 (end , [ 2 3 4 ] ) ;
25 end_type = Mf7 (end , 3 ) ;
26 end_label = Mf7 (end , 4 ) ;
27 end_par = Mf7 (end , 5 ) ;

1 function [ Dat_f8 ] = freadfort8 ( n_labels , NTST , autofolder )
2
3 NCOL = 4 ;
4 % NTST = 40;
5 %% UITLEZEN FORT8

V. Bos Master of Science Thesis



F-2 Matlab-AUTO interface: Bifurcation analysis 211

6
7 fileID = fopen ( [ autofolder ’\fort.8’ ] ) ;
8
9 tline = fgetl ( fileID ) ;

% sla header &
witregel over

10 tlinec = split ( tline ) ;
11 header_start = tlinec ( 2 : end ) ;
12 ibr = str2double ( header_start {1}) ; %
13 ipnt = str2double ( header_start {2}) ; %
14 ptype = str2double ( header_start {3}) ; %
15 label = str2double ( header_start {4}) ; %
16 nfpr = str2double ( header_start {5}) ; %
17 isw = str2double ( header_start {6}) ; %
18 n_timepnt = str2double ( header_start {7}) ; % lusinfo
19 n_column = str2double ( header_start {8}) ; % lusinfo
20 nrowpr = str2double ( header_start {9}) ; % lusinfo
21 ntst = str2double ( header_start {10}) ;
22 ncolloc = str2double ( header_start {11}) ;
23 nparx = str2double ( header_start {12}) ;
24 n_rest = nrowpr − n_timepnt ; % sla nutteloze data over
25
26 frewind ( fileID ) ; % set position indicator back

to begin of file
27 n_timepntmax = NTST∗NCOL + 1 ; % max aantal tijdpunten per

label
28 Uall = zeros ( [ n_timepntmax n_column n_labels ] ) ;
29 n_timepnt = zeros ( n_labels , 1 ) ; % aantal tijdstappen dat een

label heeft
30 j = 0 ;
31 while feof ( fileID ) == 0
32 j = j + 1 ;
33 header (j , 1 : 1 2 ) = fscanf ( fileID , ’%d’ , [ 1 2 , 1 ] ) ’ ;

% 1e blok
34 n_timepnt (j ) = header (j , 7 ) ;
35 Um = fscanf ( fileID , ’%f’ , [ n_column , n_timepnt (j ) ] ) ’ ;
36 Ummax (j , : ) = max (Um ) ;
37 header (j , 1 3 : 1 4 ) = fscanf ( fileID , ’%d’ , [ 2 , 1 ] ) ’ ;

% 2e blok
38 par_dot (j , : ) = fscanf ( fileID , ’%f’ , [ 2 , 1 ] ) ’ ;
39 Um_dot = fscanf ( fileID , ’%f’ , [ n_column−1,n_timepnt (j ) ] ) ’ ;
40 Par (j , : ) = fscanf ( fileID , ’%f’ , [ nparx , 1 ] ) ’ ;
41 fgetl ( fileID ) ;
42
43 Uall ( 1 : n_timepnt (j ) , : , j ) = Um ;
44 clearvars Um
45 end
46 fclose ( fileID ) ;
47
48 Dat_f8 . Uall = Uall ;
49 Dat_f8 . Par = Par ;
50 Dat_f8 . n_timepnt = n_timepnt ;
51 Dat_f8 . header = header ; % 1e kol branch , 4e kol label
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52
53 end

F-3 Matlab-Fortran

F-3-1 Create random initial conditions for specified energy levels

1 function [ U0 , v0 , u0 , MRI ] = fode_initial ( V0_amp , Vstart , T_noise , Eta , phase ,
CO1 , MP , kB , mass_tot , MD , scale_T , scale_U )

2 % CREATE SET OF INITIAL CONDITIONS
3
4 %{
5 INPUT
6 OPTION 1 : T_noise & Eta
7 Noise temperatuur & Eta
8
9 OPTION 2 : T_noise & V0_amp

10
11 OPTION 3 : V0_amp & Eta
12
13 OPTION 4 : Vstart & Eta
14 een vaste begin−energie ,
15 moment gedurende de val gespecificeerd door Eta
16 %}
17
18
19 fstruc2var (MP ) ;
20 fstruc2var ( CO1 ) ;
21
22 ndim = n_eig ∗2 ;

% tbv ringdown
ode solver

23 i_u = 1 : 2 : ndim ;
24 i_v = i_u + 1 ;
25 i_high = i_v ( 2 : end ) ;
26
27 % INPUT
28 if ~isnan ( Vstart ) && ~isnan ( Eta ) % OPTIE 4
29 V0i = Vstart ∗thic∗ omega_fm ;
30 E0i = 1/2 ∗ CO1 . Mm_value (1 ) ∗ V0i ^2;% determine energy at start
31 E0 = Eta∗E0i ; % correct for already lost

fraction
32 V0 = sqrt (2∗E0/CO1 . Mm_value (1 ) ) ; % determine initial velocity from

energy
33
34 elseif isnan ( Vstart ) && ~isnan ( V0_amp ) % OPTIE 2,3,4
35 V0 = V0_amp ∗thic∗ omega_fm ;
36 E0 = 1/2 ∗ CO1 . Mm_value (1 ) ∗ V0^2;
37
38 end
39
40 N_noise = n_eig − 1 ;
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41
42 if ~isnan ( T_noise ) && ~isnan ( V0_amp ) % OPTIE 2
43
44 E_noise_per = kB∗T_noise ;
45 E_noise = N_noise∗E_noise_per ;
46 E_tot = E0 + E_noise ;
47 Eta = E0/E_tot ;
48
49 elseif ~isnan ( T_noise ) && ~isnan ( Eta ) % OPTIE 1
50
51 E_noise_per = kB∗T_noise ;
52 E_noise = N_noise∗E_noise_per ;
53 E0 = E_noise_per ;
54 V0 = sqrt (2∗E0 / CO1 . Mm_value (1 ) ) ;
55 V0_amp = V0 / ( thic∗ omega_fm ) ;
56
57 elseif ~isnan (V0 ) && ~isnan ( Eta ) && isnan ( T_noise ) % OPTIE 3
58
59 E_noise = (1/ Eta −1)∗E0 ;
60 E_noise_per = E_noise/N_noise ;
61 T_noise = E_noise_per/kB ;
62 else
63 disp (’~~ no proper inital condiations. Choose T or Eta ~~’ )
64 return
65 end
66
67 % BEPAAL INITIAL SPEED NOISE MODES
68 m_noise = CO1 . Mm_value ( 2 : end ) ;
69 Vh = sqrt (2∗ E_noise_per . / m_noise ) ;
70
71 %% RANDOM PHASE INITIAL CONDITIONS
72
73 % 0. vector eigenfrequencies
74 wn = sqrt ( CO1 . Km_value . / CO1 . Mm_value ) ;
75
76 % 2a. get nonlinear stiffness
77 [ a11 , b111 ] = fsolostiff ( CO1 ) ;
78
79 % 2b. determine amplitude more precise
80 a = 1/4.∗ b111 .∗ sin ( phase ) . ^ 4 ;
81 b = 1/2.∗ CO1 . Km_value .∗ sin ( phase ) .^2 + 1/2 .∗ CO1 . Mm_value

.∗ wn .^2 .∗ cos ( phase ) . ^ 2 ;
82 c = −E_noise_per ;
83
84 for i = 1 : n_eig
85 rr = roots ( [ a (i ) b (i ) c ] ) ;
86 amp (i , 1 ) = real ( sqrt ( max (rr ) ) ) ;
87 end
88
89 % 3. create displacement & velocity
90 u = amp .∗ sin ( phase ) ;
91 v = amp .∗ wn .∗ cos ( phase ) ;
92
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93 % 4. write total vector
94 U01 = zeros ( n_eig ∗2 ,1) ;
95 U01 ( i_u ) = u ;
96 U01 ( i_v ) = v ;
97 U01 ( i_v (1 ) ) = V0 ;
98 U01 ( i_u (1 ) ) = 0 ;
99

100 % 4. check total energy
101 [ Es , ~ ,~ ,~ ,~ ,~ ] = fget_energy_mode (0 , U01 ’ ) ;
102
103 Emode = Es . mode . t . T ;
104 Enoise_i = sum ( Emode ( 2 : end ) ) ;
105 err = ( Enoise_i − E_noise ) / E_noise ;
106
107 %% BEPAAL DIM LESS ENERGY
108 E_tot = E0 + E_noise ;
109 MP . E_pre = 2∗eps_pre^2 ∗C_L^2 ∗mass_tot ;
110 E_tilde_tot = E_tot / MP . E_pre ;
111 E_tilde_eq = E_tilde_tot / n_eig ;
112
113 % % BEGIN MET MODE 1 SNELHEID
114 % U01 = zeros(n_eig*2,1);
115 % U01(i_v(1)) = V0;
116 % U01(i_high) = Vh;
117
118 U0m = U01 . / MD . alpha2 ’ ; % --> transform to mass-

normalised eigenvectors
119 U0 = U0m ∗ scale_T / scale_U ; % scale to original domain
120
121 u0 = U0 ( i_u ) ’ ; % for text file
122 v0 = U0 ( i_v ) ’ ;
123
124 zeta_ring = 1/2 ∗ CO1 . Cm_value (1 ) / sqrt ( CO1 . Km_value (1 ) .∗ CO1 .

Mm_value (1 ) ) ;
125
126 % write table
127 tab_name = {’V0_amp’ ; ’E_tilde_tot’ ; ’E_tilde_eq’ ; ’T_noise’ ; ’Eta’ ; ’

n_eig’ ; ’zeta’ } ;
128 tab_val = { V0_amp ; E_tilde_tot ; E_tilde_eq ; T_noise ; Eta ;

n_eig ; zeta_ring } ;
129 varNames = {’Parameter’ ’Value’ } ;
130 Tab = table ( tab_name , tab_val , ’VariableNames’ , varNames ) ;
131
132 [ MRI ] = fvar2struc ( V0_amp , U0 , T_noise , E_tilde_tot , Eta , E_tilde_eq

, E0 , E_noise , zeta_ring , Tab ) ;
133
134
135 end

F-3-2 Run ODE solvers in parallel
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1 %% ODE PARALLEL
2
3 % OVERHEAD SETTINGS
4 varvec = [ 1 ] ’ ;
5 n_var = length ( varvec ) ;
6 n_par1 = 80 ; % sim per set
7
8 v_p1 = ones ( n_par1 , 1 ) ;
9 v_tot = v_p1∗varvec ’ ;

10 v_vec = reshape ( v_tot , [ ] , 1 ) ;
11
12 % PARRALLEL SETTINGS
13 V0_amp = 2 ;
14 Vstart = NaN ;
15 T_noise = 1 %5e5;
16 Eta = NaN ; %1/n_eig
17 n_par = n_par1∗n_var ;
18 T_vec = v_vec ;
19 xas_vec = varvec ;
20
21 % show initial conditions
22 solo = 1 ; % if solo == 1: no coupling energy
23 fwrite_energy_mode (CO1 , solo ) ;
24 phase = rand ( [ n_eig , n_par1 ] ) ; % create random phase for each mode 2*pi

*
25
26 [ U0 , v0 , u0 , MRI ] = fode_initial ( V0_amp , Vstart , T_noise , Eta , phase ( : , 1 ) ,CO1 ,

MP , kB , mass_tot , MD , scale_T , scale_U ) ;
27
28 warning (’off’ , ’MATLAB:MKDIR:DirectoryExists’ ) ;
29 % 1. create set of initial conditions: select changed parameter
30 for i = 1 : n_par
31 i_ph = 1+ mod (i , n_par1 ) ;
32 % create initial conditions
33 T_noise = T_vec (i ) ;
34 [ U0 ( : , i ) ,v0 , u0 , MRIp{i } ] = fode_initial ( V0_amp , Vstart , T_noise , Eta ,

phase ( : , i_ph ) ,CO1 , MP , kB , mass_tot , MD , scale_T , scale_U ) ;
35 % create folder
36 status = mkdir ( [ ode_folder ’\set_’ num2str (i ) ] ) ;
37 path_set = [ ode_folder ’\set_’ num2str (i ) ] ;
38 path_p = [ path_set ’\p.dat’ ] ;
39
40 dlmwrite ( [ path_set ’\p_in.dat’ ] , [ v0 ; u0 ] , ’delimiter’ , ’ ’ ,’newline’ , ’

pc’ ) ;
41 copyfile ( [ path_fort_ode ’\time_panel_Farbod.exe’ ] , path_set ) ; %

3. copy .exe to folders
42
43 end
44
45 n_par_max = 40 ;
46 n_cpu = 5 ;
47 n_check = 0 ;
48 n_cmd = 0 ;
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49 n_go = n_par_max − n_cmd
50
51 for i = 1 : n_par
52
53 path_set = [ ode_folder ’\set_’ num2str (i ) ] ;
54 system ( [ ’echo off & cd ’ path_set ’ & start /min time_panel_Farbod &

cd ’ matlabfolder ] ) ; %run ode solver fortran
55 disp ( [ ’running ode ’ num2str (i ) ’ out of ’ num2str ( n_par ) ] )
56 n_go = n_go − 1 ;
57
58 if n_go <= 0
59 pause ( 0 . 1 )
60 [ ~ , tasklist ] = system (’tasklist’ ) ;
61 n_cmd = length ( regexp ( tasklist , ’time_panel_Farbod.exe’ )

) ;
62 n_go = n_par_max − n_cmd
63 if n_cmd > n_cpu
64 n_par_max = max ( n_cpu , n_par_max − 2)
65 end
66 else
67 end
68
69 while n_cmd >= n_par_max
70 n_check = n_check + 1 ;
71 [ ~ , tasklist ] = system (’tasklist’ ) ;
72 n_cmd = length ( regexp ( tasklist , ’time_panel_Farbod.exe’ )

) ;
73 n_go = n_par_max − n_cmd
74 pause ( 0 . 1 )
75 end
76 end
77
78 while n_cmd > 0
79 [ ~ , tasklist ] = system (’tasklist’ ) ;
80 n_cmd = length ( regexp ( tasklist , ’time_panel_Farbod.exe’ ) ) ;
81 pause (2 )
82 end

1 %% FUNCTION FOR LOSS FACTOR ESTIMATE
2 %
3 f01 = sqrt ( CO1 . Km_value (1 ) /CO1 . Mm_value (1 ) ) / (2∗pi ) ;
4 fe1 = 10∗f01 ;
5 Ts = T/(2∗pi ) ;
6 f0 = 1/2∗pi ;
7
8 % 1. calc energy
9 solo = 1 ; % if solo == 1: no coupling energy

10 fwrite_energy_mode (CO , solo ) ;
11
12 % per simulation
13 for i = 1 : n_par
14 [ Es , ~ ,~ ,~ ,~ ,~ ] = fget_energy_mode (T , Yp{i}) ;
15
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16 Emode{i , 1} = Es . mode . t . T ;
17 Enoise ( : , i ) = sum (Es . mode . t . T ( : , 2 : end ) , 2 ) ;
18 E1 ( : , i ) = Es . mode . t . T ( : , 1 ) ;
19 Etot ( : , i ) = sum (Es . mode . t . T , 2 ) ;
20
21 % 2. calc fft
22 [ omega ( : , i ) ]= fEN_fft (T , Yp{i } ( : , 1 ) ,f0 , 10∗ f0 ) ;
23
24 % 2. calc loss factor
25 [ NEta ( : , i ) ] = fEN_loss_facor ( Emode{i} ,T , omega ( : , i ) , n_pnt ) ;
26 end
27
28 %% exctract Eta at start
29 per_set = 20 ;
30
31 for i = 1 : n_var
32 i_set ( : , i ) = (i−1)∗n_par1 + [ 1 : n_par1 ] ;
33 NEta_set ( : , : , i ) = NEta ( : , i_set ( : , i ) ) ;
34 [ MRS (i ) ] = fENeta_stat ( NEta_set ( : , : , i ) , per_set , n_pnt ) ;
35
36 Eta_var (i ) = MRS (i ) . Eta_mean ;
37 end

F-4 Energy

F-4-1 Modal energy

1 function [ ET ] = fenergy_mode (y )
2 km1 = 467 . 2 9 ;
3 km2 = 18351 ;
4 mm1 = 0 .11775 ;
5 mm2 = 0 .11778 ;
6 cm1 = 0 ;
7 cm2 = 0 ;
8 a1_1_1 = 8.4661e−12;
9 a2_1_1 = 1.9017e−09;

10 a1_1_2 = 3.8034e−09;
11 a2_1_2 = 2.5e−08;
12 a1_2_2 = 1.25e−08;
13 a2_2_2 = −5.221e−08;
14 b1_1_1_1 = 2345 . 8 ;
15 b2_1_1_1 = 2487 ;
16 b1_1_1_2 = 7460 . 9 ;
17 b2_1_1_2 = 70628 ;
18 b1_1_2_2 = 70628 ;
19 b2_1_2_2 = 2.24 e+05;
20 b1_2_2_2 = 74668 ;
21 b2_2_2_2 = 9.0685e+05;
22 ET (1 ) = +1/3 ∗a2_2_2∗ y (3 ) ∗ y (3 ) ∗ y (3 ) +1/4 ∗b2_2_2_2∗ y (3 ) ∗ y (3 ) ∗ y

(3 ) ∗ y (3 ) +1/2∗km2∗y (3 ) ^2 +1/2∗mm2∗y (4 ) ^2 ;
23 ET (2 ) = +1/3 ∗a1_1_1∗ y (1 ) ∗ y (1 ) ∗ y (1 ) +1/4 ∗b1_1_1_1∗ y (1 ) ∗ y (1 ) ∗ y

(1 ) ∗ y (1 ) +1/2∗km1∗y (1 ) ^2 +1/2∗mm1∗y (2 ) ^2 ;

Master of Science Thesis V. Bos



218 Code

24 ET (3 ) = +1/1 ∗a2_1_1∗ y (3 ) ∗ y (1 ) ∗ y (1 ) +1/2 ∗a1_1_2∗ y (1 ) ∗ y (1 ) ∗ y
(3 ) +1/2 ∗a2_1_2∗ y (3 ) ∗ y (1 ) ∗ y (3 ) +1/1 ∗a1_2_2∗ y (1 ) ∗ y (3 ) ∗ y (3 ) +1/1
∗b2_1_1_1∗ y (3 ) ∗ y (1 ) ∗ y (1 ) ∗ y (1 ) +1/3 ∗b1_1_1_2∗ y (1 ) ∗ y (1 ) ∗ y (1 ) ∗ y

(3 ) +1/2 ∗b2_1_1_2∗ y (3 ) ∗ y (1 ) ∗ y (1 ) ∗ y (3 ) +1/2 ∗b1_1_2_2∗ y (1 ) ∗ y (1 ) ∗
y (3 ) ∗ y (3 ) +1/3 ∗b2_1_2_2∗ y (3 ) ∗ y (1 ) ∗ y (3 ) ∗ y (3 ) +1/1 ∗b1_2_2_2∗ y

(1 ) ∗ y (3 ) ∗ y (3 ) ∗ y (3 ) ;
25 end

1 function [ ETname ] = fenergy_mode_name ( )
2 ETname{1} = [ 2 ] ;
3 ETname{2} = [ 1 ] ;
4 ETname{3} = [1 2 ] ;
5 end

F-4-2 Calculate loss factor

1 function [ Eta ] = fEN_loss_facor ( Emode , T , omega , n_pnt )
2 % CALCULATE ENERGY & LOSS FACTOR
3
4 %{
5 INPUT :
6 Emode : Energy per mode
7 omega : Freq of vibration fund mode
8
9 OUTPUT :

10 Eta : Loss factor
11 %}
12
13 dtT = T (2 ) − T (1 ) ;
14 n_tot = length (T ) ;
15 wind = n_pnt ∗5 ;
16
17 E1_ruw = Emode ( : , 1 ) ;
18 E1 = smoothdata ( E1_ruw , ’movmean’ , wind ) ;
19
20 P1_ruw = −1.∗diff (E1 ) . / dtT ;
21 P1 = smoothdata ( [ P1_ruw ; NaN ] , ’movmean’ , wind ) ;
22
23 w_smooth= smoothdata ( omega , ’movmean’ , wind ) ;
24
25 Eta = P1 . / (E1 .∗ w_smooth ) ;
26
27 end
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Glossary

List of Acronyms

FEM Finite Element Modelling

ROM Reduced Order Model

OOP out-of-plane

STEP Stiffness Evaluation Procedure

ODE Ordinary differential equation

API Application programming interface

dof degree of freedom

IMSL International Mathematics and Statistics Library

BDF Backward differentiation formula

ASD Amplitude Spectral Density

FPU Fermi-Pasta-Ulam
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