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Neuromorphic Attitude Estimation and Control

S. Stroobants ¥, C. De Wagter

Abstract—The real-world application of small drones is
mostly hampered by energy limitations. Neuromorphic computing
promises extremely energy-efficient Al for autonomous flight but
is still challenging to train and deploy on real robots. To reap the
maximal benefits from neuromorphic computing, it is necessary to
perform all autonomy functions end-to-end on a single neuromor-
phic chip, from low-level attitude control to high-level navigation.
This research presents the first neuromorphic control system using
a spiking neural network (SNN) to effectively map a drone’s raw
sensory input directly to motor commands. We apply this method to
low-level attitude estimation and control for a quadrotor, deploying
the SNN on a tiny Crazyflie. We propose a modular SNN, separately
training and then merging estimation and control sub-networks.
The SNN is trained with imitation learning, using a flight dataset
of sensory-motor pairs. Post-training, the network is deployed on
the Crazyflie, issuing control commands from sensor inputs at
500 Hz. Furthermore, for the training procedure we augmented
training data by flying a controller with additional excitation and
time-shifting the target data to enhance the predictive capabilities
of the SNN. On the real drone, the perception-to-control SNN tracks
attitude commands with an average error of 3.0 degrees, compared
to 2.7 degrees for the regular flight stack. We also show the benefits
of the proposed learning modifications for reducing the average
tracking error and reducing oscillations. Our work shows the
feasibility of performing neuromorphic end-to-end control, laying
the basis for highly energy-efficient and low-latency neuromorphic
autopilots.

Index Terms—Imitation learning, neurorobotics, machine
learning for robot control.

I. INTRODUCTION

UADROTORS have soared in popularity over the past
decade, significantly influencing the field of autonomous
aerial vehicles (AAVs) with their unique capabilities.
These agile machines are applicable in a myriad of applications,
such as search and rescue operations [1], environmental mon-
itoring [2] and precision agriculture [3], owing to their ability
to hover, perform vertical take-offs and landings, and navigate
through confined spaces with remarkable precision.
The integration of Artificial Intelligence (AI) promises to
extend the capabilities of quadrotors even further [4], [5]. By
leveraging advances in Al, we can envision quadrotors that
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Fig. 1. We present an approach to training a spiking neural network for end-

to-end attitude estimation and control of tiny drones (deployed on a Crazyflie,
top). The network is a merging of a 2-layer attitude estimation sub-network
with recurrency and a 1-layer recurrent attitude control network (bottom). The
network exhibits a spiking activity of 15%, which is promising in terms of energy
efficiency for future implementation on a neuromorphic processor. The network
currently runs at 500 Hz on a Teensy microcontroller.

not only perform pre-programmed tasks but also adapt to new
challenges, achieving levels of flight performance and opera-
tional robustness previously unattainable while solving tasks
that are currently performed post-flight or offboard. However,
the current generation of quadrotors is hindered by hardware that
is often power-hungry and algorithms that fall short in efficiency
and adaptability [6].

A promising solution to these challenges lies in the emerging
field of neuromorphic hardware [7]. Neuromorphic systems,
including processors and sensors such as event-based cam-
eras [8], [9], draw inspiration from neural systems found in
nature. These systems use sparse and asynchronous spikes to
transmit information that are both energy-efficient and enable
high-speed processing. Due to the low latency, this approach is
particularly well-suited for dynamic environments where rapid
decision-making is crucial [10]. Central to this neuromorphic
paradigm are Spiking Neural Networks (SNNs) [11], which
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emulate the brain’s information processing using neural spikes.
SNNs have demonstrated their potential in various robotic ap-
plications, yet their use in controlling the full flight dynamics of
quadrotors remains largely unexplored. By adopting strategies
seen in nature, such as the reflexive control and visual processing
used by the fruit fly [12], we can develop more integrated and
efficient control systems. This does, however, require a fully
end-to-end neuromorphic system.

Neuromorphic control is a nascent field at the intersection
of neuroscience and robotics control theory [13]. The benefits
of neuromorphic hardware, such as fast inference and high
energy efficiency [14], harmonize with demanding control and
estimation tasks. While the output of rudimentary sensors for
quadrotors, such as Inertial-Measurement-Units, can already be
processed at the high frequencies necessary for agile and robust
control, vision-based tasks are severely limited by processing
power on a flying machine [15]. However, Dimitrova et al. [16]
have shown that using event-based cameras allows a quadrotor
to track the horizon at extremely high speeds. To further increase
the potential of such a system, the authors of [17] showed that
integration of this horizon tracker with a manually-tuned SNN
controller on a single neuromorphic processor leads to even
faster control, benefiting from having all parts on the same chip.

Despite significant advances in Al for quadrotors, limita-
tions remain, particularly in vision-based tasks constrained by
onboard computational resources. Falanga et al. [18] argue
that regular frame-based cameras are inadequate for avoiding
obstacles due to their high latency, which can be detrimental
in fast-paced environments. Although event-based cameras ad-
dress these latency issues, the processing on non-neuromorphic
hardware required compromises in detection algorithms to favor
speed over accuracy.

Recent breakthroughs in quadrotor research have achieved
impressive results, such as outperforming human pilots in drone
races using only onboard computations [19]. Also, Song et
al. [4] show that for these tasks, optimal control methods are
no longer sufficient and are beaten by Reinforcement Learning
(RL) employing Deep Learning.

Despite these accomplishments, the reliance on slower frame-
based vision systems, typically operating at 30 Hz or lower,
highlights a significant gap where neuromorphic solutions could
offer substantial improvements. These examples underscore the
critical need for fully integrated neuromorphic systems capable
of high-speed data processing.

To allow such a unified system, the entire estimation and
control loop needs to be considered. Despite the promising
results in partial implementations, a fully integrated neuro-
morphic system connecting sensor inputs directly to motor
commands has not yet been realized in operational quadrotors.
Results focusing exclusively on lower-level SNN control have
been obtained using manually tuned networks [20], [21] or
were limited to simulation [22], [23]. Moreover, even state-of-
the-art learned quadrotor controllers using regular Multilayer
Perceptrons (MLPs) as presented in [24], [25] and [26], that
were learned with RL, assume full state knowledge or need
a lower-level controller to go from rate commands to motor
outputs. Zhang et al. [27] have demonstrated in simulation that

4859

by using an expert privileged policy, an MLP can be trained to
perform end-to-end control. But also here the observation model,
containing the measurements, included a direct measurement
of the drone’s attitude. However, such privileged information —
complete and accurate state information — is rarely available in
real-world scenarios. This limitation is further exacerbated by
the reality gap, that arises when algorithms trained or evaluated
in simulation must cope with real-world conditions character-
ized by imperfect measurements, sensor noise, actuator delays,
and unpredictable environmental influences.

Notable efforts towards a complete end-to-end neuromorphic
system include the use of Intel’s Loihi processor [28] in a
quadrotor for velocity control based on optical flow estimates
from event-based cameras [29], which successfully combined
ego-motion estimation with a basic linear controller. The exper-
imental results confirmed the potential of neuromorphic tech-
nology, as the vision ran at frequencies between 274—1600 Hz,
while only spending 7 mW for network inference compared to
14-25 Hz on a Jetson Nano that required 1-2 W for inference.
The neuromorphic system was not only significantly faster, but
also required orders of magnitude less power. However, it still
relied on a companion computer for attitude control, introducing
delays, increasing power consumption, and adding weight to
the drone. Moreover, the linear neuromorphic controller lacked
a mechanism to compensate for steady-state errors, such as
those caused by sensor biases like gyroscope drift. With our
work, we want to demonstrate how the pipeline of [29] could
be extended to run on a single neuromorphic chip. In [30] a
closed-form spiking network was proposed that could do end-
to-end control and estimation for linear systems and was shown
to perform well with a small number of neurons in simulation.
Since this approach needs to be able to read out a floating point
“firing rate” of neurons in the hidden layer, it is not trivially
implemented on commonly available neuromorphic hardware
where the input and outputs are limited to vectors of binary
spikes.

The main contribution of this article is that we design, train,
and implement the first fully neuromorphic system for attitude
estimation and control of quadrotors. The proposed method
involves real-time processing from sensors to actuators and does
not require traditional computing hardware. Our approach is to
train two separate sub-networks, one for state estimation and
one for control, and to merge them after training. For both
parts of the network, we employ supervised / imitation learning.
In our creation of the training scheme we had to overcome
substantial challenges, as the spiking neural network needs to
cope with (i) sensor bias, (ii) delays due to the progressive
updates of spiking neural networks, (iii) the reality gap and
(iv) converting binary spikes to a motor command that leads to
smooth control. Additional contributions of our work concern
how we tackled these challenges. For the sensor bias, we find
that constraining the parameters of a small subgroup of neurons
to function as integrators is necessary for successful training
results. These integrator neurons can now operate analogously to
the integral component of a standard PID controller, effectively
mitigating persistent sensor biases. For the delays in the SNN,
we propose to time-shift the targets for learning, so that the SNN
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predicts future outputs of the traditional controller. This brings
substantial performance improvement. For the reality gap, we
first add noise to the motor outputs of the traditional controller
to sufficiently excite the system and avoid biases in learning.
Subsequently, we gather more training data with a first version
of the SNN, so that relevant off-target attitudes and rates are
explored. Finally, we evaluate system performance in real-world
conditions, comparing the trained SNN with traditional control
methods.

The rest of the article is organized as follows. Section I details
our methodology, covering attitude control from sensor data, the
network architecture, training procedures, and the hardware used
for real-world testing. In Section III, we present the test results,
including position control, attitude control, and an analysis of
power consumption. Finally, Section IV summarizes our key
findings and outlines potential directions for future work in
neuromorphic control systems.

II. METHODOLOGY

This section discusses how an SNN used for attitude estima-
tion and control of the Crazyflie in real time, was constructed
and trained.

A. Attitude Control From IMU Measurements

The attitude of a quadrotor, its orientation relative to gravity,
can be estimated using measurements from an Inertial Mea-
surement Unit (IMU). These IMUs commonly contain a 3 DOF
(Degree of Freedom) gyroscope, measuring rotational velocities
and a 3 DOF accelerometer, measuring linear acceleration. The
gyroscope data offers high-frequency information about the
rotation of the quadrotor while the accelerometer measurements
contain an absolute measurement of the gravity vector [31].
Combined, these two form the backbone of most quadrotor
control algorithms. These 6 inputs are usually combined into an
estimate of the orientation of the drone, which in turn gets sent
to a controller together with a target orientation. This controller
calculates the necessary motor speeds for each four rotors.

B. Spiking Neural Network Architecture

1) LIF Neurons: Inthis work, we apply one of the most com-
mon spiking neuron models; the current-based leaky-integrate-
and-fire (CUBA-LIF) neuron. This model is chosen since it
captures temporal dynamics, is computationally efficient and is
the default model in current available neuromorphic platforms
such as Intel’s Loihi [28]. Each neuron is connected to other
neurons via synapses, connections that carry a multiplicative
weight. Every neuron keeps track of two hidden states at each
timestep; its membrane potential and synaptic current. The
membrane potential v and synaptic input current ¢ at timestep ¢
as discrete functions of time are given as:

vi(t +1) = 7" (t) +4i(t), (1)
Bt 1) =700 + Y wigsi () + > wisk(t), ()

where j and ¢ denote presynaptic (input) and postsynaptic (out-
put) neurons within a layer, k the neurons in the same layer as
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i, s € [0, 1] a neuron spike, and w* and w® feedforward and
recurrent connections (if any), respectively. The leak values of
the two internal state variables are denoted by 7™ and 7,°". A
neuron fires an output spike if the membrane potential v; exceeds
threshold 6; to all connected neurons, resetting its membrane
potential to zero at the same time.

The input of the networks during training is a linear layer
that is directly inserted into the current ¢ of the first layer. This
way, the encoding of floating point sensor data to binary spikes
is included in the training procedure. The output is decoded
similarly; the hidden spiking layer is connected via a weight
matrix to the outputs.

2) Combination of Networks: To facilitate learning of spe-
cific tasks and increase the debugability, the training is split
into two parts; estimation and control. By learning layers of
spiking neurons that have a certain function, there is more control
over the stability of the final solution, and it also reduces the
search space. Since we define the input- and output values of
both sub-networks as a linear multiplication of the input- or
output-vector respectively, the networks can be easily combined.
The output of the first network can be written as y(t) = W, s(t),
with s(t) the spikes in the hidden layer, and the input to the
next network is x(t) = Wjy(t). We can now combine these by
multiplying the weight matrices of the output weights W, of
the first network and the input weights W; of the second, as
introduced in [29], since these are both linear transformations.
The attitude part of the input to the second network can therefore
be written as

(best
Hest

west

Stacking the binary output spikes of the first network with the
floating-point command values that are passed (see Fig. 1), the
new set of weights to the hidden layer of the second network can
be written as

= WiW,s(t). 3)

0 I/Vi,comrnand

Wnew =
WiW, 0

“)

C. Training

The model is trained using imitation learning, cloning the
behavior of an expert policy. Data is gathered at 500 Hz by flying
manually with a Crazyflie for 20 minutes. During these tests, the
Crazyflie uses a complementary filter for estimating the attitude
and a cascaded PID controller for control. In this work, these
function as the expert policy. The Crazyflie controller used the
default parameters as defined by the Bitcraze firmware [32]. This
data was split into sequences of 2000 timesteps and normalized
according to total training set statistics. From every sequence the
integrator value at the beginning of this sequence was subtracted,
since this value is not contained in the input data so would not
be possible to learn. All of the parameters p of the network
(rem, 7Y w;;, wyy, and 6;) were then trained using supervised
backpropagation-through-time (BPTT). The loss was defined
as a weighted sum of the Mean Squared Error (MSE) and the

Authorized licensed use limited to: TU Delft Library. Downloaded on April 28,2025 at 11:44:08 UTC from IEEE Xplore. Restrictions apply.



STROOBANTS et al.: NEUROMORPHIC ATTITUDE ESTIMATION AND CONTROL

Pearson Correlation Loss;
. 1 .

with x and 7 the target- and network response values respectively
and p(x, &) the Pearson Coefficient [33]. One major step in train-
ing SNNs using regular BPTT despite the non-differentiability
of the spiking threshold function is replacing the Heaviside
step-function in the backwards pass with a surrogate function
that represents a smooth approximation of the real gradient [34].
In this work, the derivative of a scaled arctangent was used, like
in [35];

d (1 1
% (3 afCtan(Sx)) = W’ (6)

where s is the slope of the surrogate. A higher slope results
in a more accurate proxy of the real gradient, but can lead
to vanishing gradients for neurons with a very low or high
membrane potential. A shallow slope, on the other hand, is
less accurate but leads to less “dead” neurons that have no
contribution to the output. Among alternatives for the surrogate
gradient is the derivative of the Sigmoid, but research has shown
that the exact shape does not matter [36]. The slope s of the
derivative, however, does have a large influence on the training
speed and final results. For this work, the slope s has been setto 7.

Multiple challenges were observed during the train-
ing/deployment iterations. These are discussed here.

1) Delay in SNN, Training With Time-Shifted Data: During
training-implementation iterations, oscillations were observed
on the real quadrotor. After investigation, these were attributed
to a delay in the output of the network versus the target control
signal. Due to the nature of the SNN with the implicit memory
due to the leaking voltage and current, the output was delayed.
This can be observed in Fig. 2. In the top part of the figure,
the Pearson Correlation between the output of the SNN and the
regular PID is compared for different shifts in time on the entire
data set. In the bottom part of the figure, a small time sequence is
shown that clearly shows the lag. The correlation is highest for
5-6 timesteps shift, indicating that this is indeed a problem when
one trains SNNs for highly dynamic tasks that require a quick
response to fast changes. In the case of a controller, a small
delay in the derivative command will induce oscillations. To
reduce this delay, and improve flight characteristics, we trained
the control network on a time-shifted version of the target data.
Specifically, we used the target signals of ~ 6 steps in the future.
Consequently, the SNN needs to predict the reference control
output in the future, which in turn results to less delay in the
implemented controller.

2) Imitation Learning; Reducing the Reality Gap: The re-
ality gap is a significant challenge in imitation learning par-
ticularly, since the reference controller only explores a limited
portion of the state space around its stable behavior. This leads
to a dataset that does not fully represent the full range of
potential flight conditions or disturbances the SNN controller
may encounter when deployed [37], [38]. Consequently, when
the trained controller operates in real-world conditions, it can
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Fig. 2. Pearson Correlation between the output of the trained SNN and the

regular PID output for different time shifts d. The bottom graph shows the
output of the network for time shifts d = 0, d = 6 and d = 12 compared to the
target, further demonstrating that a delay is present in the network.

encounter “unseen” states or disturbances not present in the
training data, resulting in unpredictable and unstable behavior.

To address this, we expanded the training data to include a
broader, more realistic range of states. Initially, the SNN con-
troller was trained on data generated with the reference controller
in the loop, as described in Section II-C. We then conducted addi-
tional data collection in two steps to diversify the training set: (1)
flying the quadrotor with the initially trained SNN controller in
the loop, while simultaneously logging the outputs the reference
controller would have provided. This approach exposed the SNN
to a set of states it is likely to encounter, fine-tuning the network
around these points. (2) Introducing random disturbances to the
regular PID controller’s outputs to simulate unexpected envi-
ronmental or system changes. Specifically, disturbances were
applied to pitch, roll, and yaw commands at a 1% probability per
timestep (at 500 Hz), lasting 0.2 seconds each, with disturbance
size X ~ U(0,50)% of the absolute maximum command.

This additional data, including both the reference controller
outputs and the effects of random disturbances, was incorporated
into the training set. Retraining the SNN controller on this ex-
panded dataset improved its robustness, enabling it to generalize
across a wider range of states and disturbances, thereby reducing
the likelihood of instability during real-world deployment.

3) Splitting Estimation and Control: As discussed in the
section on architecture (see Fig. 1), the network was split into
an estimation and control part. If the network learning attitude
estimation also has access to the control command, training is
prone to end up at a local minimum. The network will then
learn a function between control command and attitude; since the
reference controller was in the loop this will be an easy function
to learn. It can then completely disregard the sensor data, or only
use it to slightly optimize the estimation. When this estimator
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Loss curves for fixed and free parameters
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Fig. 3. Training loss curves comparing fixed versus free neuron leak and

threshold parameters. The proposed approach of fixing neuron parameters leads
to stable convergence during training. Allowing these parameters to remain free
results in training becoming trapped in local minima.

is then used in the loop, the function between input command
and attitude will be different since the trained controller is not
perfect; this will further degrade flight performance. Hence,
no connections between the input command and the attitude
estimation layer are established.

4) Integrator: In developing an integrator within the spik-
ing neural network (SNN) architecture, we faced challenges
with parameter sensitivity, where small adjustments often led
to significant errors or instability, causing the network to ei-
ther underestimate the integral or diverge. This challenge is
particularly acute in recurrent neural networks (RNNs), where
recurrent gains above 1 often destabilize the system, while a
recurrency lower than 1 produces a low-pass filter response.
Orvieto et al. [39] have shown that carefully structuring RNN
network architecture before training (e.g. by linearizing and
diagonalizing the recurrency) is important to obtain the superior
results of deep State Space Models (SSMs) [40].

Another issue was the integrator signal’s dynamic: it shows
large deviations at the start of a flight test but stabilizes quickly
under constant disturbance. Effective integration through im-
itation learning required varying disturbances and resetting
the initial integral for each sequence. Additionally, the inte-
gral signal changes more slowly than the proportional and
derivative components, complicating the extraction of inte-
gral information from the total signal in a supervised-learning
scheme.

To address these issues for SNNs, we propose fixing certain
neuron parameters within a small subgroup of neurons dur-
ing training to ensure stability. Specifically, we set the leak
parameters 7;”" and 7" and threshold 6; of 10 neurons in
the control layer to 1. This allowed the neurons to integrate
incoming signals without decay. By training only the input and
output weights and averaging spike outputs on integral data
alone, we achieved a spike rate approximating the cumulative
incoming signal, making the neuron responsive to transient and
steady-state inputs. This approach is validated in Fig. 3, which
compares training curves for an integration task with fixed versus
free neuron leak and threshold parameters. The fixed-parameter
integrator provided the necessary stability, outperforming
the fully unconstrained trained approach and satisfying the
SNN-based system’s control requirements.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 5, MAY 2025

D. Hardware Setup

To demonstrate the capabilities of our approach, we have
implemented it in the control loop of the tiny open-source
quadrotor Crazyflie [32]. By adding a Teensy 4.0 development
board to the Crazyflie, the necessary computation power for
running an SNN on a processor was obtained. This allowed us to
run the complete SNN from input encoding to control commands
at 500 Hz in C++ on the ARM Cortex-M7 microprocessor. To
carry the extra weight of the Teensy, the regular 16 mm brushed
motors of the Crazyflie are swapped with 20 mm brushed motors.
To maximize the accuracy of the network while utilizing the
Teensy to its full extent, the network was optimized for speed
by removing unnecessary neurons. This was done by performing
inference on a number of test sequences and calculating the total
contribution of a neuron on the output by calculating the total
number of spikes emitted multiplied by its weight to all outputs.
Now the N lowest contributing neurons can be removed from the
implementation in C++ on the Teensy. Although the network
was trained with 150-150-130 neurons per layer respectively,
we reduced the size to 150, 100, and 80 per layer respectively.
By mainly pruning the neurons with recurrent connections this
way, we almost halve the number of mathematical operations
while retaining over 99% of the original MSE that was used as
the loss function during training.

We send the attitude setpoints, along with the IMU measure-
ments from the gyroscope and accelerometer, via UART to the
Teensy deck. The neural controller’s torque command outputs
are transmitted back to the Crazyflie through the same UART
connection, where they are incorporated into the motor mixer.
The motor mixer is a linear transformation that converts torque
commands into rotor velocities. As the network runs at 500 Hz
in the loop, the maximum delay introduced in the system is 2
milliseconds. Even though this is fast enough to keep up with the
lower-level control-loop in the Crazyflie, it might still influence
the overall stability.

An OptiTrack motion capture system provides accurate po-
sition measurement and an absolute heading. These are sent to
the Crazyflie via a radio connection to a ground station laptop,
which also handles the sending of high-level commands.

The total take-off weight of the Crazyflie, including the
Teensy 4.0 and upgraded motors, is only 35 grams. This allows
for approximately 5 minutes of flight time.

III. RESULTS
A. Position Control

To demonstrate the capabilities of the proposed SNN, we
include it in a position control task. The higher-level attitude
commands together with the IMU values are sent as inputs to
the SNN, which produces pitch, roll and yaw torque commands.
After a short period of hovering at (x,y) = (0, 0), the Crazyflie
is commanded to move 1 m in z-direction after which it is
commanded to move back to (0,0). For both the SNN and
PID controller, these tests were performed ten times. In Fig. 4,
the position control results are shown. The results show that
performing attitude estimation and control using an onboard
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SNN Fusion and Control
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Fig. 4. Position step responses of the SNN system (top) and the regular PID

flight stack (bottom) for 10 individual test runs. The SNN can accurately track
the attitude references as given by the outer-loop position controller and maintain
a stable flight path.

SNN results in stable reference tracking, comparable to the
regular flight stack of the Crazyflie.

B. Impact of Time-Shifted and Augmented Training Data on
SNN Performance

During testing, it was quickly identified that training the
fusion network without augmenting the dataset does not produce
a network that can be used in flight. Therefore, it was necessary
to augment the dataset for this sub-network. However, to further
investigate the behavior of the SNN and the influence of the mod-
ifications to the training procedure, another test is performed.
Since the directly controlled variable is the attitude command,
we compare the response of differently trained networks to an
attitude setpoint change. For these tests, the Crazyflie received
a roll setpoint of 0° for 2 seconds, followed by a setpoint of
+10° for 1.5 seconds, a setpoint of —10° for 1.5 seconds before
returning to a 0° setpoint for 2.5 seconds. Again, we performed
ten tests per controller. The combined results of these ten tests
per controller are shown in Fig. 5, with A) the final SNN, B)
the SNN that was trained on the augmented dataset, C) the SNN
that was trained on time-shifted data, but without augmenting
the dataset and D) the regular attitude estimator and controller
on the Crazyflie. The Root Mean Square Error (RMSE) between
the commanded roll setpoint and the resulting (estimated) roll
angle is given in Table I, together with the average standard
deviation (SD) of the response with respect to the average of all
tests with the same controller. With a tracking error of only
3.03°, the network is able to correctly estimate the attitude
and also control it. Adding the suggested modifications to the
training procedure reduces the tracking error from 3.24° to 3.03°
compared to 2.67° for the reference controller (please note that
the reference controller receives the estimated attitude directly,
while the SNN needs to internally calculate this). Also, training
on time-shifted data significantly reduces the oscillations as can
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TABLE I
ROOT MEAN SQUARE ERROR (RMSE), STANDARD DEVIATION (SD) AND
RISE-TIME (RT) COMPARISON BETWEEN DIFFERENT CONTROLLERS

Controller RMSE | avg. SD | avg. RT
SNN (time-shifted & augm.) 3.03° 0.77 145ms
SNN (augmented) 3.10° 0.95 130ms
SNN (time-shifted) 3.24° 0.92 145ms
SNN (baseline) 3.14° 1.16 135ms
PID 2.67° 0.23 125ms

Note that the PID receives the estimated attitude as input, while the SNN needs
to calculate this internally.

be seen in Fig. 5. This can also be inferred from the average SD
thatis significantly lower for the fully-trained SNN, showing that
the controller performs more consistently across multiple tests.
On the other hand, training on time-shifted data very slightly
increases the rise-time (see Table I). Since the increase is in
the order of milli-seconds, it will not affect tasks like obstacle
avoidance that generally operate in the 20—40 Hz range [41] but
it should be considered if it is used in super agile flight.

C. Power Usage Analysis

The main benefits of having an end-to-end attitude SNN
mainly derive from its combination with other autonomy func-
tions such as computer vision on a single neuromorphic chip.
Given the elementary nature of attitude estimation and control
tasks, we do not expect any substantial performance or energy
improvements for attitude estimation and control by itself.

Still, we do think it is insightful to analyze the power usage
of the current solution. The SNN in this research runs on a con-
ventional microprocessor, as currently available neuromorphic
chips (like Intel’s Loihi [28], [42] or SpiNNaker [43]) require
supporting embedded systems that are too large for a 35-gram
quadrotor or challenging to source. To explore potential power
advantages, we performed some estimative calculations. Spike
propagation through the network relies solely on additions rather
than multiplications, allowing us to calculate the necessary
operations based on addition alone. For the three-layer network
used here, this would initially amount to approximately 42,500
additions per update. However, due to the 15-20% sparsity in
neuron activations at each timestep, the actual required opera-
tions reduce to around 7,500 additions. In contrast, the cascaded
PID controller on the Crazyflie requires about 28 additions and
52 multiplications per timestep. Moreover, a straightforward
complementary attitude estimation filter will have as most ex-
pensive operation a non-linear atan?2 function that requires in
the order of 15-30 multiplications. Since a 32-bit floating-point
multiplication uses roughly 37 times more energy than a 32-bit
integer addition [44], we can roughly equate the number of
additions of a straightforward traditional pipeline with ~ 3,000
additions. Hence, on a conventional microcontroller, the SNN
performs in the same energy order of magnitude as a PID-based
controller.

If small neuromorphic hardware becomes available that can
natively support IMU readings, while implementing the SNN
in hardware, energy consumption can be substantially reduced.
Nonetheless, we maintain that the real gain would come when
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Fig. 5. Attitude step responses of A) the fully-trained SNN system, B) the SNN trained with augmentation, C) the SNN trained with time-shifted data and D) the

regular PID flight stack. The images on top show the Crazyflie during the different maneuvers.

expanding this network to handle image data for instance, as seen
in other neuromorphic works that show up to 100 x gains in effi-
ciency (e.g. [29], [42]). This would create larger disparities due
to the high multiplication demands in image processing tasks.
Then, implementing all functionality in a single neuromorphic
chip would make conventional companion computers obsolete,
massively reducing energy consumption.

Finally, further benefits can be expected when moving to
event-based control, which has demonstrated potential for dras-
tic reductions in computational load (up to 80% for quadrotor
attitude control [45]) by activating only when significant events
occur. A drone in hover should only need to interfere and adapt its
actuator commands when it starts to move, requiring no energy
expenditure in between control events. Current microprocessors
can not optimally benefit, because they still need to perform
operations at a fixed frequency.

IV. CONCLUSION

In this article, we have presented the first fully spiking attitude
estimation and control pipeline for a quadrotor. We show that by
using imitation learning, it is possible to train a fully end-to-end
SNN to control a micro drone. We augmented training data
to further enhance the performance, using in-flight data. The
network was also taught to predict a k-step advance control
action to mitigate delays that are inherent to the SNN. These
methods led to significant reductions in RMSE relative to the
target attitude and decreased oscillations, collectively enhancing
the drone’s flight stability. Furthermore, our findings indicate
that constraining parameters during training to function as inte-
grators improves training precision and information integration.
For RNNs these parameters would be the recurrent weights,

and for SNNs the leak and threshold parameters. This novel ap-
proach avoids local minima during training and allows for faster
convergence. Next to that, our methods of implicitely learning
integration and differentiation are not only applicable to attitude
control for quadrotors, but apply to perception and control for
robotics in general (e.g. using integration with rotary encoders
or using differentiation to predict future states in model-based
control). By evaluating the system’s performance in real-world
conditions and comparing it with traditional control methods, we
have laid the groundwork for future developments in neuromor-
phic control strategies. The importance of a working imitation
learning pipeline, for instance, has been demonstrated in [46],
where the authors show that bootstrapping a RL pipeline with
imitation learning results in more reliable RL training while
outperforming imitation learning only. Our methods can thus be
used to improve RL for SNNs.

Future research should aim to implement these algorithms
on neuromorphic hardware, which could yield substantial gains
in energy efficiency and reduced latency, potentially extend-
ing flight times and enabling neuromorphic AAVs in energy-
constrained scenarios. By advancing these techniques, we en-
vision the next generation of highly efficient, adaptive, and
intelligent AAVs.

SUPPLEMENTARY MATERIALS

All code necessary to 1) train the SNN, 2) convert and run the
SNN on a Teensy 4.0, 3) integrate in the Crazyflie firmware and
4) perform the tests can be found in https://github.com/tudelft/
neuromorphic_att_est_and_control. The data that was used for
training can be found here https://doi.org/10.4121/f474ef0a-
6efl-4eal-a958-4827c4eadf60.
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