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Abstract
Conduction-dominated geothermal systems are essential for decarbonizing the built environment, particularly
in densely populated areas with high heating demand. Geothermal development in the West Netherlands
Basin (WNB) has accelerated but still remains largely uncoordinated, following a "first-come, first-served"
model which results in suboptimal subsurface resource utilization.
This study presents a multi-objective optimization approach for geothermal field development that simultane-
ously considers economic performance and reservoir longevity. The framework applies the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) to identify Pareto-optimal configurations for well placement and
operational control. Objective functions, Net Present Value (NPV) and system lifetime, are evaluated through
fully coupled geothermal reservoir simulations using the Delft Advanced Research Terra Simulator (DARTS).
The framework incorporates constraint-aware optimization with regulatory compliance, enabling simultaneous
optimization of spatial configuration and flow rates through capacity-dependent rate allocation.
The approach is developed and validated on a small-scale synthetic model before application to a realistic
corner-point geometry model of the WNB incorporating heterogeneous fluvial architecture. Multiple well
configurations (10, 12, and 20 doublets) are systematically evaluated across different geological realizations.
Results demonstrate that NSGA-II effectively identifies diverse Pareto-optimal solutions spanning NPV ranges
of 0.8-1.6 billion euros and system lifetimes of 35-100 years. The analysis reveals that total injection capacity
directly correlates with economic performance, with higher well-count configurations achieving superior NPV
through increased heat extraction capacity. The optimization consistently reveals a distinctive spatial strategy
where injection wells are positioned in the thickest reservoir regions with high-permeability zones, while
producers balance maximizing distance from injectors with targeting high-temperature, high-permeability
areas.
This framework provides quantitative evidence that coordinated planning strategies yield superior performance
compared to the current "first-come, first-served" strategies. By applying multi-objective optimization to
geothermal planning, the study advocates for the move towards coordinated, regional-scale planning strategies
that enable more sustainable and economically superior use of subsurface resources.
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1
Introduction
The increasing global demand for sustainable and renewable energy sources has drawn significant attention to
geothermal energy as a viable solution to mitigate environmental impacts of fossil fuels. Geothermal energy is
heat stored in the subsurface that can be sustainably exploited as a renewable resource (Limberger et al., 2018).
This energy source provides commercial base-load electricity generation and has been utilized for over 100
years (Moeck, 2014).
For direct-use applications, geothermal energy offers reliable heating solutions for space heating, district
heating (Limberger et al., 2018), and industrial processes. Unlike intermittent renewable energy sources such
as solar or wind, geothermal systems provide steady and consistent base-load supply regardless of weather
conditions, making them particularly valuable for energy transition strategies (Moeck, 2014).

1.1. Motivation and Problem Statement
Conduction-dominated geothermal systems, which typically operate at reservoir temperatures below 150°C,
are particularly suited for direct use in heating applications (Moeck, 2014). These systems are characterized
by heat transfer through conduction in sedimentary basins and other passive tectonic settings, where deep
aquifers are heated by near-normal geothermal gradients (Moeck, 2014). These systems have gained significant
traction in densely populated regions with high heating demands, such as urban and suburban areas. The
West Netherlands Basin (WNB) is a notable example, where geothermal heat recovery has been identified
as a key contributor to regional energy transition goals, with potential to cover up to 20% of provincial heat
demand by 2050 (Willems & M. Nick, 2019). However, optimizing the economic and technical performance of
these systems remains challenging due to complex trade-offs between energy production and system lifetime
(Daniilidis, Khait, et al., 2020).
The "first-come, first-serve" approach observed in the WNB deployment, where individual operators indepen-
dently select well locations based on immediate needs and constraints, often neglecting broader optimization
opportunities for the reservoir as a whole (Willems & M. Nick, 2019), exemplifies a widespread challenge
in geothermal resource exploitation worldwide. This approach results in suboptimal reservoir utilization.
Significant inefficiencies arise from:

1. Poorly coordinated well placement: In large reservoirs such as the WNB, optimizing the spatial dis-
tribution of wells is crucial to maximize overall reservoir performance (Willems & M. Nick, 2019), as
poorly coordinated placement can lead to significant interference between doublets (Willems et al., 2017),
particularly in fault-affected areas where system lifetime can be reduced by over 40% (Daniilidis, Nick,
et al., 2021).

2. Suboptimal control strategies: Production and reinjection rates play a critical role in balancing heat
recovery efficiency with reservoir sustainability, as thermal recharge processes can extend significantly
beyond operational timescales (Wallmeier, 2024). Without coordinated optimization of well placement,
these rates may accelerate reservoir depletion (S. Zhang et al., 2021), while suboptimal control strategies
can substantially reduce long-term economic returns from geothermal field development (Kane et al.,
2025).

The widespread adoption of such uncoordinated approaches across the industry highlights the urgent need
for systematic optimization methodologies that can guide more strategic geothermal development.

1



Chapter 1. Introduction 1.2. Research Gap and Opportunity

1.2. Research Gap and Opportunity
Two critical factors influencing the success of conduction-dominated geothermal systems are the placement
of wells (Y. Wang et al., 2021) and their control strategies (Daniilidis, Nick, et al., 2020). These factors directly
impact key performance indicators such as the Net Present Value (NPV) of projects and the system lifetime
(Daniilidis, 2024). Despite recent advances in geothermal system optimization, achieving an optimal balance
between maximizing economic returns and preserving long-term reservoir performance remains challenging,
with several critical issues unresolved:

1. Thermal Breakthrough and Pressure Decline: Improper well placement can lead to early thermal
breakthrough, where reinjected cooler fluid prematurely reaches production wells (S. Zhang et al.,
2021). This thermal interference can significantly reduce energy output and, in severe cases, may cause
system shutdown (Kong et al., 2017). Additionally, the injection of cold water triggers strongly coupled
thermo-hydro-mechanical processes that can affect both reservoir pressure management and system
stability (L. Zhang et al., 2025). These interconnected effects highlight the critical need for optimized
well placement and controls.

2. Economic Viability vs. Reservoir Longevity: Current optimization studies typically focus on single
objectives, making it challenging to balance short-term economic returns with long-term reservoir
performance, especially in conduction-dominated systems with narrow profit margins (Daniilidis, Khait,
et al., 2020). Without coordinated optimization, operational strategies may accelerate reservoir depletion
or reduce economic returns (Kane et al., 2025). Advanced optimization frameworks are needed to strike
a balance between these competing objectives.

Addressing these interconnected challenges requires moving beyond conventional approaches that optimize
well placement and operational controls separately. While recent research has demonstrated effectiveness in
optimizing either spatial configurations with fixed operational parameters (Kane et al., 2025) or operational
controls for predetermined well layouts (Daniilidis, Khait, et al., 2020), integrated optimization of both
elements remains largely unexplored. Multi-objective optimization approaches, particularly Non-Dominated
Sorting Genetic Algorithm-II (NSGA-II), offer a framework for simultaneously addressing well placement
and operational strategies while balancing competing objectives such as economic performance and system
longevity (Deb et al., 2002).
This study aims to address this gap by developing a comprehensive optimization framework that integrates
well placement and control strategies using NSGA-II, applied to a model incorporating geological features
representative of the WNB.

1.3. Research Objectives and Questions
The primary goal of this research is to develop a comprehensive optimization framework for conduction-
dominated geothermal systems, using the WNB as a case study. The research will address the following main
question:

How canMulti-Objective Optimization (MOO) with NSGA-II be applied to determine the optimal placement
and control of multi-well geothermal systems to maximize both NPV and system lifetime?

To address this question comprehensively, the following sub-questions are defined:
1. What makes well placement and operational controls critical decision variables in optimizing multi-well

geothermal systems in the WNB?
2. What constraints are necessary for balancing economic and operational performance in geothermal

system optimization?
3. How can NSGA-II be applied to balance the competing objectives of maximizing NPV and system lifetime

in geothermal systems?
4. How can trade-offs between NPV and system lifetime be quantified and analyzed using the Pareto front

generated by NSGA-II?
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5. What practical design and operational insights can be derived from the optimized solutions, and how
can these insights inform improvements to the current "first-come, first-served" deployment strategies in
large reservoirs like the WNB?

1.4. Scope and Approach
This thesis develops a generalizable optimization framework for conduction-dominated geothermal systems,
using the WNB as a case study with a representative geological model of the Delft Sandstone formation.
The research develops a MOO framework using NSGA-II, targeting well placement and control strategies to
maximize NPV and system lifetime.
During the development phase, a smaller, computationally efficient model with heterogeneous fluvial char-
acteristics was used for initial testing and debugging. The final optimization results are based on a larger,
geologically detailed model that better captures the regional characteristics of the WNB. The framework inte-
grates reservoir simulation with economic modeling, enabling a systematic evaluation of trade-offs between
economic and operational performance through Pareto-optimal solutions. These results provide actionable
insights to support more strategic geothermal deployment.

1.5. Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2: Provides theoretical background on geothermal systems in the WNB, reservoir simulation
fundamentals, MOO concepts, and the NSGA-II algorithm.

• Chapter 3: Describes the methodology, including the development of the optimization framework, the
reservoir simulation approach, economic modeling, and the application of the NSGA-II algorithm.

• Chapter 4: Presents the validation of the optimization framework and the resulting outcomes, including
Pareto fronts and optimal well configurations.

• Chapter 5: Interprets key findings by answering the research questions, compares results to literature,
and discusses methodological contributions and limitations.

• Chapter 6: Summarizes the key findings, conclusions, and recommendations for future work.
This research contributes to the sustainable development of geothermal energy systems by providing a sys-
tematic approach to enhancing economic performance while ensuring long-term reservoir sustainability.
The findings can inform more effective resource management policies and support the broader adoption of
geothermal energy as part of the energy transition.
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2
Background
This chapter provides the foundational knowledge necessary to understand the research context, methods,
and significance of this study. It begins with an overview of the WNB’s geothermal characteristics, followed
by the fundamentals of reservoir simulation as applied to geothermal systems. The chapter then introduces
multi-objective optimization concepts and explores NSGA-II, which serves as the primary optimization method
in this research.

2.1. West Netherlands Basin Geothermal Context
The WNB represents one of the most promising areas for geothermal energy development in the Netherlands,
characterized by its favorable geological conditions and proximity to population centers with high heat demand
(Mijnlieff, 2020). This section examines the geological characteristics of the region, introduces the geological
model used in this study, and reviews the current exploitation status.

2.1.1. Geological Characteristics
The WNB is a Mesozoic rift basin characterized by thick sedimentary sequences formed during Jurassic
and Early Cretaceous extensional phases. The primary geothermal targets lie within the Lower Cretaceous
Nieuwerkerk Formation, with the Delft Sandstone Member representing the most prolific target (Mijnlieff,
2020). Detailed reservoir architecture studies reveal that the Delft Sandstone Member consists of stacked fluvial
sandstones deposited by meandering rivers, interbedded with claystone, lignite, and coal layers (Donselaar,
2016).
These formations offer favorable porosity and permeability conditions for geothermal energy production. The
Delft Sandstone, in particular, features laterally amalgamated, vertically stacked channel bodies that enhance
reservoir connectivity (Donselaar, 2016). Reservoir depths typically range from 1.7 to 2.5 km, with production
temperatures between 60°C and 95°C, suitable for direct-use heating applications (Willems & M. Nick, 2019).
However, the subsurface is structurally complex, with faults that can act as flow barriers or conduits. These
features, along with heterogeneity in reservoir architecture, introduce uncertainties in flow behavior and
thermal breakthrough, necessitating detailed geological characterization in development planning (Daniilidis,
Nick, et al., 2021).

2.1.2. Geological Model of theWNB
Subsurface data from the geothermal doublet on the campus of Delft University of Technology and the
surrounding area served as the foundation for the geological model of the WNB employed in this study (Chen
et al., 2025). An Object-Based Modeling (OBM) approach was applied to represent the fluvial depositional
architecture, specifically to simulate channel structures and associated facies. OBMmakes use of parameterized
geometric objects—such as sinuous channels and related levee and crevasse features—that are stochastically
positioned within the simulation grid (Deutsch & Wang, 1996). The shape and spatial organization of these
structures are controlled by statistical distributions of parameters such as channel width, thickness, sinuosity,
and orientation.
The placement and geometry of these objects were refined through an iterative optimization procedure to
produce realizations that respect global facies proportions and well data. This approach enables the model to
reproduce realistic sedimentary structures which are consistent with conceptual geological understanding
and observed data. The target aquifer, the Delft Sandstone Member, has been interpreted as meandering river
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deposits (Chen et al., 2025) with a reservoir thickness of approximately 120 m.
Subsequent to the facies modeling, porosity was simulated using Sequential Gaussian Simulation (SGS),
conditioned on the facies realizations. SGS generates spatially correlated continuous properties by drawing
values from a Gaussian random field that honors the statistical distribution and spatial continuity inferred
from data (Deutsch & Journel, 1997). To guarantee consistency between the petrophysical characteristics and
depositional architecture, each simulation is limited by the geological structure specified by the facies model
as well as the known porosity values at well locations. Permeability was subsequently distributed using the
porosity-permeability relationship derived fromWillems et al. (2020).
This study employs the enhanced geological model developed by Chen et al. (2025), which uses Corner-Point
Geometry (CPG) to discretize the spatial domain and incorporates data from the Delft campus geothermal
wells (DEL-GT-01 and DEL-GT-02-S2) and eight additional wells from the WNB region. The CPG approach
enables better alignment with geological structures compared to conventional Cartesian grids, particularly
for the heterogeneous fluvial architecture of the Delft Sandstone Member. For computational efficiency, this
study uses a slightly smaller and coarser version of Chen et al.’s original model, while maintaining essential
geological characteristics. The model was generated with a net-to-gross ratio of 50%, and a total of three
realizations were created using identical parameters to account for stochastic variability while maintaining
consistent geological properties.

2.1.3. Current Exploitation Status
Geothermal development in the WNB has progressed steadily since 2007, making the region a focal point for
Dutch geothermal activity. By 2018, over a dozen geothermal doublets were operational, predominantly target-
ing the Lower Cretaceous Nieuwerkerk Formation for direct-use heating applications, with heat production
capacities between 7 and 21 MWth per doublet (Willems & M. Nick, 2019).
Operational data reveal increasing trends in production rates and injection capacities. Older doublets typically
produced at 150–200 m3/h, while more recent installations have reached flow rates up to 360 m3/h (Vardon
et al., 2024). The producer-injector spacing varies from 1.0 to 2.1 km, and the thermal recovery areas range
from approximately 2 to 7.2 km2 (Willems & M. Nick, 2019).
This study contributes to ongoing efforts to develop more coordinated, optimization-based approaches to
geothermal development in the WNB.

2.1.4. Technical Challenges in Geothermal Development
Geothermal development in the WNB faces several technical challenges relevant to this optimization study:

1. Geological uncertainties: Subsurface uncertainty regarding reservoir properties presents challenges for
accurate prediction of system performance and optimal development planning. Y. Wang et al. (2023)
highlighted how heterogeneity in fluvial sandstone reservoirs affects geothermal performance, while
Compernolle et al. (2023) and Schulte et al. (2020) emphasized the need for integrated optimization
approaches under geological uncertainty.

2. Thermal and hydraulic interference: The proximity of geothermal installations creates risks of thermal
breakthrough and pressure interference. Daniilidis, Nick, et al. (2021) demonstrated that interference
effects can significantly impact system performance, particularly near geological structures such as faults.

3. Economic-technical trade-offs: The high upfront investment costs for geothermal projects, combined
with relatively long payback periods, create economic pressures that must be balanced against long-term
reservoir sustainability (Kane et al., 2025).

These technical challenges highlight the need for integrated optimization frameworks that can balance compet-
ing objectives while accounting for geological uncertainty.

2.2. Reservoir Simulation Fundamentals
Accurate modeling of subsurface processes is critical for optimizing geothermal energy production, particularly
in systems where heat is extracted via fluid circulation and cold water reinjection. Numerical reservoir
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simulation provides a predictive tool to analyze heat transport, optimize well operations, and assess the
long-term sustainability of geothermal fields. This section provides an overview of the governing principles of
geothermal reservoir simulation and introduces the Delft Advanced Research Terra Simulator (DARTS), the
numerical simulator employed in this study.

2.2.1. Governing Principles of Geothermal Reservoir Simulation
Geothermal reservoir simulation involves solving the conservation equations for mass and energy to describe
fluid flow and heat transport in porous media. The primary physical processes include convective flow of
multiphase fluids, conductive heat transfer between fluids and the rock matrix, and gravitational effects on
fluid flow. These processes are coupled through the thermodynamic properties of the fluid-rock system, with
fluid properties varying significantly with pressure and temperature.
The conservation equations, as implemented in DARTS, are formulated for fully coupled multiphase systems
and typically solved using a fully-implicit finite volume method (Voskov et al., 2024):

• Mass conservation over all fluid phases:
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• Energy conservation for the fluid-rock system:
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In these equations, 𝜙 is porosity, 𝑛𝑝 is the total number of phases existing in the geothermal system, 𝜌 𝑗 is the
density of phase 𝑗 , 𝑠 𝑗 the saturation, 𝑣 𝑗 the Darcy velocity,𝑈 𝑗 and𝑈𝑟 the specific internal energies of phase
𝑗 and the rock matrix, ℎ 𝑗 the specific enthalpy of phase 𝑗 , 𝑇 the temperature, and 𝜅 the thermal conduction
coefficient. The source/sink term 𝑞̃ 𝑗 represents mass injection or production per unit volume.
The thermal conduction coefficient 𝜅 is defined as a volume-weighted average of fluid and rock contributions:

𝜅 = 𝜙

𝑛𝑝∑︁
𝑗=1

𝑠 𝑗𝜅 𝑗 + (1 − 𝜙)𝜅𝑟 (2.3)

where 𝜅 𝑗 is the conduction coefficient of phase 𝑗 , and 𝜅𝑟 is the conduction coefficient of the rock matrix.
Fluid motion is governed by Darcy’s law, accounting for gravity:

𝑣 𝑗 = 𝐾
𝑘𝑟 𝑗

𝜇 𝑗

(
∇𝑝 − 𝛾𝑝∇𝐷

) (2.4)

where 𝐾 is the permeability of the porous media, 𝑘𝑟 𝑗 the phase relative permeability, 𝜇 𝑗 the viscosity of phase
𝑗 , 𝑝 pressure, 𝛾𝑝 the specific weight, and 𝐷 depth.
For compressible rock, porosity can be updated based on:

𝜙 = 𝜙0 (1 + 𝑐𝑟 (𝑝 − 𝑝ref)) (2.5)

where 𝜙0 is the initial porosity of the rock, 𝑐𝑟 is rock compressibility, and 𝑝ref is the reference pressure.
Similarly, fluid compressibility is accounted for through pressure and temperature-dependent fluid properties.
The fluid is compressible, and its properties (density, viscosity, enthalpy) are evaluated using thermodynamic
correlations such as IAPWS-97 (Y. Wang et al., 2020).
Due to the nonlinear coupling of pressure, temperature, and fluid properties, geothermal simulators typically
employ fully implicit numerical schemes with Newton-Raphson solvers to ensure numerical stability and
convergence across time steps.
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2.2.2. Delft Advanced Research Terra Simulator
DARTS is a high-performance geothermal reservoir simulator developed to accurately and efficiently model
coupled mass and energy transport in porous media (Y. Wang et al., 2020). It uses a molar formulation with
pressure and enthalpy as primary variables whichmakes it particularly suitable formulti-phase, non-isothermal
geothermal systems.
By using a fully-implicit finite-volume discretization on unstructured grids, DARTS enables detailed represen-
tation of geological heterogeneity, including faults and fractures. Its core innovation lies in the Operator-Based
Linearization (OBL) approach, which reformulates nonlinear terms—such as fluxes and accumulations—into
state-dependent operators. These operators are pre-tabulated in physical space and interpolated during
simulation. This reduces the need for frequent recomputation of thermodynamic derivatives.
This strategy improves computational performance and convergence robustness, particularly in large-scale
or uncertainty quantification studies. Benchmark comparisons show that DARTS matches the accuracy of
established simulators such as TOUGH2 and AD-GPRS while offering substantial gains in efficiency (Y. Wang
et al., 2020).

2.2.3. Key Performance Indicators
Reservoir simulation enables the evaluation of Key Performance Indicators (KPIs) that serve as objective
functions in the optimization process:

1. SystemLifetime: This is defined as the period duringwhich a geothermal system canmaintain production
temperature above a specified threshold (e.g., initial production temperature minus 15% of the difference
between initial temperature and injection temperature)(Daniilidis, Saeid, et al., 2021). It is a critical
indicator of long-term system sustainability.

2. Net Present Value (NPV): NPV is a key economic performance indicator that accounts for the time
value of money by discounting future cash flows to their present value (Daniilidis, Khait, et al., 2020). It
incorporates Capital Expenditure (CapEx), Operational Expenditure (OpEx), and revenue from heat
production:

NPV =

𝑇∑︁
𝑡=0

𝑅𝑡 − 𝐶𝑡

(1 + 𝑟)𝑡 (2.6)

where 𝑅𝑡 denotes the revenue at time 𝑡, 𝐶𝑡 the corresponding costs, 𝑟 the discount rate, and 𝑇 the total
project duration (Daniilidis, Khait, et al., 2020).

These KPIs provide a basis for evaluating and comparing different design and operational strategies in the
MOO framework.

2.3. Multi-Objective Optimization Concepts
MOO forms themethodological foundation of this research. This section introduces the key concepts, principles,
and approaches in MOO, with particular emphasis on their relevance to geothermal system design and
operation.

2.3.1. Fundamentals of Multi-Objective Optimization
Unlike single-objective optimization, which seeks to find a solution that maximizes or minimizes a single
objective function, MOO addresses problems with multiple, often conflicting, objectives (Emmerich & Deutz,
2018). These problems can be formally expressed as:

Minimize (or Maximize) 𝐹 (x) = [ 𝑓1 (x), 𝑓2 (x), . . . , 𝑓𝑚 (x)]𝑇
subject to 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝

ℎ 𝑗 (x) = 0, 𝑗 = 1, 2, . . . , 𝑞
x𝐿 ≤ x ≤ x𝑈

(2.7)
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Where:
• x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 is the vector of decision variables
• 𝑓𝑘 (x) are the objective functions to be optimized
• 𝑔𝑖 (x) and ℎ 𝑗 (x) represent inequality and equality constraints, respectively
• x𝐿 and x𝑈 are the lower and upper bounds of the decision variables

In the context of geothermal system optimization, typical objectives include maximizing NPV (Daniilidis,
Khait, et al., 2020; Kane et al., 2025), maximizing energy generation (Daniilidis, Khait, et al., 2020), maximizing
system lifetime, or maximizing heat recovery factor. Decision variables commonly include well locations, well
spacing, production and injection rates, and operational controls over time.

2.3.2. Pareto Optimality
A central concept in MOO is Pareto optimality. A solution is considered Pareto optimal if no other solution
can improve at least one objective without degrading at least one other objective (Emmerich & Deutz, 2018).
Mathematically, a solution x∗ is Pareto optimal if there exists no other feasible solution x such that:

𝑓𝑖 (x) ≤ 𝑓𝑖 (x∗) ∀𝑖 ∈ {1, 2, . . . , 𝑚}
𝑓 𝑗 (x) < 𝑓 𝑗 (x∗) for at least one 𝑗 ∈ {1, 2, . . . , 𝑚} (2.8)

The set of all Pareto optimal solutions forms the Pareto front, which represents the trade-off surface between
competing objectives (Coello Coello et al., 2007). In geothermal applications, the Pareto front can provide
valuable insights into the trade-offs between economic performance (e.g., NPV) and sustainability indicators
(e.g., system lifetime or resource depletion rate).

2.3.3. Approaches to Multi-Objective Optimization
Several approaches have been developed to solve MOO problems:

1. Weighted sum method: This classical approach converts the multi-objective problem into a single-
objective problem by assigning weights to each objective and summing them:

𝐹 (x) =
𝑚∑︁
𝑖=1

𝑤𝑖 𝑓𝑖 (x) (2.9)

While straightforward, this method is sensitive to the choice of weights (Deb et al., 2002) and may not
capture non-convex portions of the Pareto front (Coello Coello et al., 2007).

2. 𝜖-constraint method: This approach optimizes one primary objective while converting other objectives
into constraints:

Minimize 𝑓1 (x)
subject to 𝑓𝑖 (x) ≤ 𝜀𝑖 , 𝑖 = 2, . . . , 𝑚 (2.10)

By systematically varying the values of 𝜀𝑖 , different Pareto optimal solutions can be obtained.
3. Evolutionary algorithms: These population-based stochastic optimization methods maintain multiple

candidate solutions simultaneously and use selection, crossover, and mutation operators to evolve the
population toward the Pareto front (Coello Coello et al., 2007). Unlike single-objective methods, Multi-
Objective Evolutionary Algorithms (MOEAs) employ specialized selection mechanisms that consider
multiple objectives simultaneously, often using dominance-based ranking and diversity preservation
strategies to generate multiple Pareto optimal solutions in a single run (Deb et al., 2002). Examples
include NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2), which uses strength-based fitness
assignment and an external archive (Zitzler et al., 2001), and Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D), which decomposes the multi-objective problem into multiple
single-objective subproblems (Q. Zhang & Li, 2007).

For geothermal system optimization, evolutionary algorithms offer several advantages, including their ability
to handle high-dimensional, discontinuous, and multi-modal optimization problems with complex constraints
(Islam et al., 2020), and their capacity to provide diverse solution sets for decision-makers (Deb et al., 2002).
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These characteristics make them well-suited for addressing the complex interplay between well placement,
operational parameters, and heterogeneous reservoir conditions encountered in geothermal applications (Song
et al., 2021; Wallmeier, 2024).

2.4. Evolutionary Algorithms
Evolutionary Algorithms (EAs) represent a class of nature-inspired optimization techniques that simulate
the process of biological evolution to search for optimal solutions within complex solution spaces (Bäck, 1996;
Coello Coello et al., 2007). These population-based stochastic methods have emerged as particularly effective
tools for problems that are difficult to solve using traditional optimization approaches.

2.4.1. Biological Inspiration and Core Principles
EAs draw inspiration from natural evolutionary processes, where populations of organisms evolve over time
through selection, reproduction, and genetic variation. Fitter individuals have higher chances of survival and
reproduction, passing advantageous traits to their offspring (Emmerich & Deutz, 2018).
In computational terms, EAs translate these biological concepts into optimization frameworks where:

• Individuals represent candidate solutions to the optimization problem
• Population maintains multiple candidate solutions simultaneously
• Fitness measures solution quality through objective function evaluation
• Selection determines which individuals contribute to reproduction
• Genetic operators create new candidate solutions:

– Crossover: Combines information from two parent solutions to create offspring. For continuous
variables, Simulated Binary Crossover (SBX) creates offspring following a probability distribution
around parents (Deb & Agrawal, 1995).

– Mutation: Introduces random variations to maintain diversity and explore new search regions.
Polynomial mutation perturbs continuous variables using controlled probability distributions (Deb
et al., 2002).

• Repair operators ensure solution feasibility by correcting constraint violations after genetic operations.

2.4.2. Key Advantages
Evolutionary algorithms offer several distinctive characteristics that make them suitable for complex optimiza-
tion problems (Deb et al., 2002; Luke, 2013):
Population-based search: EAs maintain multiple candidate solutions simultaneously, enabling parallel explo-
ration of the solution space and reducing the risk of premature convergence to local optima.
Derivative-free operation: No gradient information is required, making EAs applicable to problems with
discontinuous, non-differentiable, or computationally expensive objective functions.
Flexibility: EAs can handle various problem types, including discrete, continuous, mixed-variable, and
constrained optimization problems without requiring significant algorithmic modifications.

2.4.3. Extension to Multi-Objective Problems
The population-based nature of evolutionary algorithmsmakes them particularlywell-suited formulti-objective
optimization, where the goal is to find a set of trade-off solutions rather than a single optimum (Emmerich &
Deutz, 2018). Multi-Objective Evolutionary Algorithms (MOEAs) can generate approximations of the entire
Pareto front in a single run, providing decision-makers with comprehensive insights into available trade-offs.
This capability has led to the development of sophisticated MOEAs that employ specialized selection mecha-
nisms and diversity preservation strategies to simultaneously achieve convergence toward the Pareto front
while maintaining solution diversity—principles exemplified in algorithms such as NSGA-II.
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2.5. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
NSGA-II, introduced by Deb et al. (2002), is one of the most established and widely adopted evolutionary
algorithms in MOO and serves as the primary optimization method in this research. This section explores its
structure, key components, and relevance to geothermal system optimization.

2.5.1. Algorithm Structure and Components
NSGA-II addresses three critical limitations of earlier evolutionary multi-objective algorithms: high computa-
tional complexity and lack of elitism. The algorithm follows a structured process (Fig. 2.1a):

1. Initialization: A population of candidate solutions is randomly generated within the feasible decision
space.

2. Non-dominated sorting: Solutions are ranked based on non-domination levels. Solutions not dominated
by any other solution are assigned rank 1 (forming the first Pareto front). Solutions dominated only by
rank 1 solutions are assigned rank 2, and so on.

3. Crowding distance calculation: Within each non-domination level, solutions are assigned a crowding
distance value, which measures the density of solutions surrounding a particular point (Fig. figure 2.1b).

4. Selection: A binary tournament selection is used, preferring solutions of lower rank or higher crowding
distance. This promotes quality and diversity in the Pareto front.

5. Genetic operators: Crossover and mutation operators are applied to create a new offspring population.
6. Elitism and replacement: Parents and offspring are combined, and the best solutions based on rank and

crowding distance are selected for the next generation.
7. Termination: Steps 2-6 are repeated until a termination criterion (e.g., maximum number of generations)

is met.

(a) Procedure of NSGA-II, including sorting, selection, and elitism.
(b) Crowding distance calculation within a

nondominated front.

Figure 2.1: Key components of the NSGA-II algorithm. From Deb et al. (2002).

The key innovations of NSGA-II include a fast non-dominated sorting approach with O(MN2) computational
complexity (where M is the number of objectives and N is the population size), an elitist strategy that preserves
the best solutions across generations, and a parameter-less crowding distance approach to maintain diversity
(Deb et al., 2002).

2.5.2. Advantages and Limitations
NSGA-II offers several advantages that make it suitable for geothermal system optimization:

• Efficient handling of multiple objectives: The algorithm can effectively handle two or more compet-
ing objectives simultaneously, making it suitable for balancing economic and sustainability goals in
geothermal applications (Schulte et al., 2020).
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• Diverse solution set: The crowding distance mechanism helps maintain diversity in the solution set,
providing decision-makers with a wide range of options on the Pareto front (Coello Coello et al., 2007).

• Constraint handling: NSGA-II incorporates constraint handling through amodified dominance principle
that prioritizes feasible solutions over infeasible ones and ranks infeasible solutions by their constraint
violation levels, eliminating the need for penalty parameters (Deb et al., 2002). These mechanisms are
important for addressing the physical and operational constraints inherent in geothermal systems.

• No derivative information required: Unlike gradient-based methods, NSGA-II does not require deriva-
tive information, making it suitable for problems where the objective functions are complex, non-linear,
or computationally expensive to evaluate (Dey, 2024).

However, NSGA-II also has limitations that must be considered:
• Computational intensity: For problems requiring expensive function evaluations (e.g., reservoir simula-

tions), the large number of evaluations required by NSGA-II can be computationally prohibitive (J. Wang
et al., 2022).

• Parameter tuning: While NSGA-II eliminates the need for a sharing parameter, it still requires tuning of
several parameters, including population size, crossover and mutation rates, and termination criteria
(Luke, 2013).

• Convergence rate: For complex problems, the algorithm may require many generations to converge to
the true Pareto front (Dey, 2024).

2.6. Summary
This chapter established the foundation for the research by first outlining the geothermal potential and de-
velopment challenges in the WNB. It then introduced the principles of geothermal reservoir simulation and
DARTS as the modeling tool used to evaluate system performance.
Key concepts in MOO were presented, including Pareto optimality and solution methods, followed by an
introduction to EAs as a powerful approach formulti-objective problems. Particular focuswas given toNSGA-II,
which is employed in this study to balance economic and sustainability objectives in geothermal system design.
Together, these elements—geological context, simulation framework, and optimization methodology—form
the basis for the integrated research approach presented in the following chapter.
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3
Methodology
This chapter presents the methodology developed for MOO of geothermal systems in the WNB. The approach
integrates reservoir simulation, economic analysis, and MOO to determine optimal well placement and
operational strategies that balance economic returns with system longevity.

3.1. Overall Research Framework
The research framework consists of three main components integrated into a unified optimization workflow
(Figure 3.1). The workflow begins with the definition of optimization parameters, which feed into the NSGA-II
multi-objective genetic algorithm. For each candidate solution, the framework executes a complete geothermal
reservoir simulation using DARTS, followed by an economic evaluation. These simulation results inform both
objective functions: NPV and system lifetime. The process iterates until the optimization algorithm terminates
on a set of Pareto-optimal solutions that represent the trade-off between economic performance and reservoir
longevity.

START: 
Integrated Framework 

for Geothermal System 
Optimization

Decision Variables
Well Locations (i, j)

Multi-Objective 
Optimization (NSGA-II)

Genetic Algorithm Process Fitness Evaluation Process

DARTS 
Simulation

Well Configuration & 
Regulatory Pressure 

Limits

Initial 
Population

Valid Location 
Sampling

Initial Repair

Evaluate 
Population

Non-Dominated 
Sorting

Parent Selection

Crossover

Mutation

Repair Offspring 
Solutions

Termination
Maximum 

generations Objective Function Calculation

System Lifetime 
Determination

Economic 
Analysis

NPV 
Calculation

Pareto Optimal Solutions
• Trade-off between NPV 

and System Lifetime
• Optimal Well 

Configurations

Yes

No

Flow-Weighted 
Average Production 

Temperature

Figure 3.1: Integrated framework for geothermal system optimization. Thicker arrows indicate the main iterative optimization loop, which
is repeated until convergence

The methodology outlined above directly addresses the research questions posed in Section 1.3. The integrated
simulation-optimization framework operationalizes the main research question by implementing NSGA-II to
determine optimal well placement and controls that maximize both NPV and system lifetime. The detailed
reservoir simulation components, with both standard and enhanced models, enable exploration of why well
placement and operational controls are critical variables (RQ 1). The implementation of geological, physical,
and regulatory constraints (RQ 2) ensures realistic solutions. Our custom NSGA-II operators and objective
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function formulations facilitate balancing competing objectives (RQ 3), while the post-processing analysis
provides quantitativemethods to analyze trade-offs through the Pareto front (RQ 4). Finally, the comprehensive
approach yields practical design insights that can inform improvements to current deployment strategies in
the WNB (RQ 5). Each subsequent section elaborates on specific methodological components that contribute
to answering these research questions.

3.2. Reservoir Simulation with DARTS
We implemented the geothermal reservoir simulation using DARTS, a high-performance geothermal simulator.
We developed two model implementations: a simplified structured grid model (standard model) for devel-
opment and testing, and an enhanced CPG model for the main optimization studies. The enhanced model
more accurately represents the complex geological characteristics of the WNB. Each simulation initializes the
reservoir with specified pressure and temperature gradients, applies operational constraints on injection and
productionwells, and runs over a defined period. We determine system lifetime based on thermal breakthrough
criteria and evaluate economic performance by computing NPV from the resulting production and cost profiles.

3.2.1. StandardModel
To facilitate development and algorithmic testing, we implemented a simplified structured grid model with
the following configuration:

Category Parameter Value / Description

Grid Configuration Grid size 60 × 60 × 3
Cell dimensions 30m × 30m × 30m

Geological Properties
Permeability distribution Heterogeneous (Fig. 3.2)
Porosity Uniform, 0.2
Top layer 𝜙 = 𝑘 = 1 · 10−6 (acts as barrier)
𝑘𝑧/𝑘𝑥,𝑦 ratio 𝑘𝑧 = 0.1 · 𝑘𝑥,𝑦

Thermal Properties Heat capacity (rock) 2200 kJ/m3/K
Heat conductivity (rock) 500 kJ/m/day/K

Initial & Boundary Conditions
Temperature 350 K
Pressure 200 bar
Lateral boundaries 1012 m3 (infinite-acting aquifer)

Table 3.1: Standard model: Key simulation parameters

Figure 3.2 illustrates the permeability distribution and histogram of the standard model.

(a) Permeability distribution in the simplified structured grid
model
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(b) Histogram of permeability distribution

Figure 3.2: Visualization of the permeability distribution in the simplified structured grid model.
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This standard model offers computational efficiency and a simplified geometry that enables faster convergence.
We used this model as the primary testbed for adapting the MOO algorithm before applying it to more complex
geological scenarios.

3.2.2. EnhancedModel
The model setup and geological characterization are detailed in Section 2.1.2, incorporating data from the Delft
campus geothermal doublet and regional wells.

Grid and Geometry
The enhanced model leverages industry-standard GRDECL files to define the reservoir geometry:

Parameter Value / Description
Grid dimensions 102 × 102 × 20 cells
Grid size 55 × 55 × (0.25 − 22.55) m
Active cells 205834 cells
Burden layers 4 layers added above and below the reservoir (8 total)

Table 3.2: Enhanced model: Grid and geometry configuration

Reservoir Properties
The enhanced model reservoir properties for the first realization are defined as follows:

Category Parameter Value / Description
Porosity Source Loaded from GRDECL

Threshold Minimum 0.001
Value range 0.001 - 0.354

Permeability Source Calculation based on Willems et al. (2020)
correlation (Eq. 3.1)

Vertical to horizontal ratio 𝑘𝑧 = 0.1 · 𝑘𝑥,𝑦
Threshold Minimum 0.001 mD
Value range 0.001 - 3067 mD

Thermal Properties
Shale heat capacity 2300 kJ/m3/K
Shale heat conductivity 190.8 kJ/m/day/K
Sandstone heat capacity 2450 kJ/m3/K
Sandstone heat conductivity 259.2 kJ/m/day/K

Table 3.3: Enhanced model: Reservoir properties

Permeability 𝑘 is computed from porosity 𝜙 using the empirical relationship:

log10 (𝑘) = (−3.523 · 10−7) · 𝜙5 + 4.278 · 10−5 · 𝜙4 − 1.723 · 10−3 · 𝜙3 + 1.896 · 10−2 · 𝜙2 + 0.333 · 𝜙 − 3.222 (3.1)

where 𝑘 is permeability in mD and 𝜙 is porosity in percent.
Figure 3.3 shows the permeability distributions for three different geological realizations, highlighting the fluvial
channel structures within the enhanced model. The permeability visualization uses partial transparency for
the top five layers to reveal vertical distribution patterns, while the histograms show porosity and permeability
statistics for the first realization (other realizations exhibit similar characteristics).
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(a) 3D visualization of permeability (log10 scale) for three different realizations of the enhanced model. The top five layers are shown with partial
transparency to reveal the heterogeneous channel structures throughout the reservoir layers.
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(b) Histogram of Porosity for the first
realization of the enhanced model.
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(c) Histogram of Permeability for the first
realization of the enhanced model.

Figure 3.3: Spatial distributions and histograms of porosity and permeability in the enhanced CPG grid model.

Figure 3.4 illustrates the structural characteristics of the enhanced reservoir model, showing both the spatial
context and vertical structure of the reservoir. The plan view (Figure 3.4a) displays the cross-section location
overlaid on the depth field, while the north-south cross-section (Figure 3.4b) demonstrates the variable reservoir
thickness and depth distribution across the domain. The thickness map (Figure 3.4c) provides a detailed
visualization of how reservoir thickness varies spatially across the entire model domain. It is clear from this
map that the reservoir is thicker in the northern sections.
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(a) Plan view showing cross-section location
overlaid on the depth field.

(b) North-south cross-section showing reservoir thickness and depth variations.
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(c) Reservoir thickness map showing spatial distribution of reservoir thickness
across the domain.

Figure 3.4: Structural characterization of the enhanced reservoir model: (a) plan view indicating the location of cross-section through the
center of the domain, (b) the corresponding north-south cross-section illustrating increasing reservoir thickness and depth toward the

northern sections, and (c) a reservoir thickness map showing the spatial distribution of reservoir thickness across the domain.

Initial and Boundary Conditions
Non-uniform initial conditions are applied to better represent in-situ reservoir conditions:

Parameter Value / Description
Pressure gradient 100 bar/km (hydrostatic)
Temperature gradient 30 K/km (geothermal)
Lateral boundaries 1018 m3 (infinite-acting aquifer)
Vertical boundaries Heat exchange with overburden and underburden

Table 3.4: Enhanced model: Initial and boundary conditions

3.2.3. Well Implementation
Well Configuration
The framework supports flexible configuration of injection and production wells:

• Well locations are specified as (i, j) coordinates within the grid
• Wells are perforated vertically across all reservoir layers, excluding confining layers
• Well radius is set to 0.16m for all wells
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Well Operation Controls
Two primary well control modes are implemented:

• Rate control: Wells operate at a specified flow rate (m3/day)with BottomHole Pressure (BHP) constraints
• BHP control: Wells operate at a specified BHP (bar)

For injection wells operating under rate control, a maximum BHP constraint is applied based on the Staat-
stoezicht op de Mijnen (Dutch State Supervision of Mines) (SodM) regulations (SodM, 2024), calculated
as:

𝐵𝐻𝑃𝑚𝑎𝑥 = 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 + 0.0135 · 𝑇𝑉𝐷𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 · 10 (3.2)
where 𝐵𝐻𝑃𝑚𝑎𝑥 is the maximum allowed BHP in bar, 𝑇𝑉𝐷𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 is the True Vertical Depth (TVD) in meters
at the top of the reservoir at the well location, and 0.0135 MPa/m is the SodM pressure gradient limit, and 10 is
the conversion factor from MPa to bar.
For production wells, a minimum BHP constraint is implemented to prevent excessively low pressures:

𝐵𝐻𝑃𝑚𝑖𝑛 = 0.7 · 𝐵𝐻𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 (3.3)

where 𝐵𝐻𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 is the initial hydrostatic pressure at the well head depth.

3.2.4. Rate Operating Range Determination
A key feature of the framework is the ability to determine sustainable flow rates that respect BHP constraints:

• Individual capacity assessment through a single BHP-controlled pre-simulation
• Injectors operated at SodM limits and producers at minimum BHP simultaneously
• Measurement of resulting flow rates to determine individual well capacities
• Application of safety factor of 0.65 to account for rate stabilization uncertainty

The safety factor of 0.65 compensates for the limited one-year duration of the BHP pre-simulation, during
which flow rates have not reached steady-state equilibrium. This safety factor of 0.65 was selected based
on preliminary testing to ensure water balance constraints (<2% imbalance) are maintained when rates are
applied to full-duration simulations, preventing overestimation of sustainable well capacity.

3.2.5. Simulation Procedure
The simulation follows these steps:

1. Initialize the reservoir with pressure and temperature gradients
2. Configure injection and production wells at specified locations
3. Apply operational constraints (flow rates and BHP limits)
4. Run time-stepping simulation for the specified duration (typically 100 years)
5. Monitor flow-weighted production temperature at each timestep; when thermal breakthrough is detected

(flow-weighted production temperature drops below threshold), continue for 5 additional timesteps and
terminate simulation

6. Extract system lifetime as the time when thermal breakthrough occurred, or assign maximum simulation
time if no breakthrough detected

7. Verify injection-production fluid balance by comparing total injected and produced volumes

3.2.6. System Lifetime Determination
System lifetime is defined as the time until thermal breakthrough occurs, based on a flow-weighted production
temperature:

𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =

∑𝑛
𝑖=1𝑄𝑖 · 𝑇𝑖∑𝑛

𝑖=1𝑄𝑖

(3.4)
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where 𝑇𝑖 is the production temperature at producer 𝑖, and 𝑄𝑖 is the production flow rate at producer 𝑖.
Thermal breakthrough is detected when:

𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 ≤ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝛼 · (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑖𝑛 𝑗𝑒𝑐𝑡𝑖𝑜𝑛) (3.5)
where 𝑇𝑖𝑛𝑡𝑖𝑎𝑙 is the initial flow-weighted production temperature at year 1 of the simulation, 𝑇𝑖𝑛 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 is the
injection temperature, 𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is the flow-weighted production temperature at the current timestep, and 𝛼 is
the temperature threshold fraction (typically 0.15 or 15%).
System lifetime is calculated as the time until thermal breakthrough occurs. If thermal breakthrough is not
reached within the simulation duration, the system lifetime is set to the maximum simulation time (e.g., 100
years).

3.2.7. Economic Analysis
The economic evaluation of geothermal systems is performed using GTEcon (Akin, 2025), an open-source
economic analysis module developed within the PUSH-IT project (Scholten et al., 2023) that calculates financial
performance metrics of each simulated geothermal system.

Power Calculations
The economic analysis relies on accurate determination of thermal power production and electrical power
consumption, which form the basis for revenue and operational cost calculations.
Heat Power Calculation: Thermal power is computed using the IAPWS97 industrial formulation for water
and steam properties (Wagner & Kretzschmar, 2008). For each well, the heat power is calculated as:

𝑃heat = ¤𝑄 · 𝜌(𝑇, 𝑃) · ℎ(𝑇, 𝑃) (3.6)
where ¤𝑄 is the volumetric flow rate (m3/s), 𝜌(𝑇, 𝑃) is the water density (kg/m3), and ℎ(𝑇, 𝑃) is the specific
enthalpy (kJ/kg), both evaluated at the well temperature 𝑇 and pressure 𝑃 using IAPWS97 correlations. The
calculation yields power in MW, with positive flow rates corresponding to heat injection (injection wells) and
negative flow rates corresponding to heat production (production wells). The total system heat production is
determined by summing contributions from all wells.
Pumping Power Calculation: Electrical power consumption for pumping operations accounts for pressure
differentials between reservoir conditions and surface requirements:

𝑃pump =
|Δ𝑝 | · | ¤𝑄 |
𝜂pump

(3.7)

where Δ𝑝 is the absolute pressure differential (MPa), ¤𝑄 is the volumetric flow rate (m3/s), and 𝜂pump is the
pump efficiency. The pressure differential is calculated as the absolute difference between reservoir pressure
and the required pressure, which includes the hydrostatic head (based on well depth) and surface pipeline
pressure requirements.

Well Drilling Cost
A key contribution is the implementation of depth-based drilling cost calculations in the economic analysis
framework. The model uses the formula from TNO (n.d.) to accurately account for the nonlinear relationship
between well depth and drilling costs:

𝐶𝑜𝑠𝑡𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 = 375, 000 + 1, 150 · 𝑑𝑒𝑝𝑡ℎ + 0.3 · 𝑑𝑒𝑝𝑡ℎ2 (3.8)
where depth is the reservoir depth in meters. The implementation dynamically extracts well depths from the
reservoir model and calculates appropriate drilling costs for each configuration being evaluated.

Cash FlowModel
The economic model implements a simplified cash flow structure focusing on the core trade-off between capital
investment and operational pumping costs:

CF𝑡 = −CapEx𝑡 −OpExpump,𝑡 + Revenue𝑡 (3.9)

where:
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• CapEx𝑡 includes initial drilling costs, equipment purchases, and periodic pump replacements
• OpExpump,𝑡 = 𝑃pump ·Hours · Electricity Price represents pumping electricity costs
• Revenue𝑡 = 𝑃ℎ𝑒𝑎𝑡 ·Hours ·Heat Price from thermal energy sales

NPV Calculation
NPV is calculated by discounting future cash flows to present value:

NPV =

𝑇∑︁
𝑡=0

CF𝑡
(1 + 𝑟)𝑡 (3.10)

where CF𝑡 is the cash flow at time 𝑡, 𝑟 is the discount rate, and 𝑇 is the project lifetime.

Economic Input Parameters
The economic evaluation incorporates several key parameters that influence NPV calculations. Table 3.5 details
the capital cost components, while Table 3.6 presents the financial parameters.

Component Unit Cost (€) Quantity Replacement Interval (years)
VSD 150,000 1 0
Christmas tree 12,500 1 0
Degasser 500,000 1 0
Filter (candle + bag) 2,250 1 0
Heat exchanger 1,000,000 1 0
CHP 800,000 1 0
Pump 350,000 1 1
Drilling Depth-based formula 1 0

Table 3.5: Capital cost components for the geothermal system. Components with a replacement interval of 0 are installed only once at the
beginning of the project. Drilling costs are dynamically calculated based on well depths using the formula from Section 3.2.7.

Parameter Value
Annual discount rate 7%
Heat price 40 €/MWh
Electricity price 125 €/MWh
Pump efficiency 65%

Table 3.6: Economic parameters used in NPV calculations

These parameterswere selected based on typical values for geothermal projects in theNetherlands and represent
the baseline economic scenario.
Economic calculations account for the full project lifetime, with the evaluation period dynamically determined
as either the time of thermal breakthrough or the maximum simulation duration (100 years), whichever
occurs first. This approach ensures that NPV calculations realistically reflect system performance by truncating
economic analysis when production temperatures drop below effective thresholds.

3.3. Optimization with NSGA-II
The optimization framework employs NSGA-II to handle the multi-objective nature of the problem.

3.3.1. Problem Formulation
Decision Variables
The optimization problem includes the following decision variables:
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• Injection well locations: (𝑖𝑎, 𝑗𝑎) for each injector 𝑎
• Production well locations: (𝑖𝑏, 𝑗𝑏) for each producer 𝑏
• Flow rates (conditional): 𝑄𝑎 for each injector 𝑎 when using preserve mode

The variables are encoded as integers for grid coordinates and discrete flow rate values. The problem dimen-
sionality depends on the rate optimization mode:

• Preserve mode: 2(𝑛𝑖𝑛 𝑗 + 𝑛𝑝𝑟𝑜𝑑) + 𝑛𝑖𝑛 𝑗 variables, where:
– 2(𝑛𝑖𝑛 𝑗 + 𝑛𝑝𝑟𝑜𝑑) represents spatial location variables (2 grid coordinates per well)
– 𝑛𝑖𝑛 𝑗 represents flow rate variables (1 rate per injection well)

• Maximize mode: 2(𝑛𝑖𝑛 𝑗 + 𝑛𝑝𝑟𝑜𝑑) location variables only (rates determined through constraint-aware
presimulation)

The problem dimensionality scales with the number of wells, with a total of 2(𝑛𝑖𝑛 𝑗 + 𝑛𝑝𝑟𝑜𝑑) location variables,
and an additional 𝑛𝑖𝑛 𝑗 rate variables when rate optimization is in preserve mode.

Objective Functions
Two competing objectives are simultaneously optimized:

max 𝑓1 (𝑥) = 𝑁𝑃𝑉 (𝑥) (3.11)

max 𝑓2 (𝑥) = 𝐿𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒(𝑥) (3.12)
where 𝑥 represents the decision vector containing well locations and flow rates (if applicable).
As described in Section 3.2, the objective functions are evaluated through reservoir simulations, which provide
the necessary data for calculating NPV and system lifetime.

Constraints
The optimization problem includes several constraints:

• Minimum well distance: 𝑑 (𝑤𝑖𝑛 𝑗 , 𝑤𝑝𝑟𝑜𝑑) ≥ 𝑑𝑚𝑖𝑛 for any injector-producer pair
• Boundary distance: 𝑑 (𝑤𝑖 , boundary) ≥ 𝑑boundary for any well 𝑤𝑖 ; note that different minimum distances

can be applied for injectors and producers.
• Valid location: Wells must be placed in active cells in the enhanced model
• BHP constraints: Well pressures must respect SodM limits
• Flow rate bounds: 𝑄𝑚𝑖𝑛 ≤ 𝑄 ≤ 𝑄𝑚𝑎𝑥 for all flow rates

The implementation enforces constraints hierarchically, with well distance constraints evaluated first to avoid
running simulations for infeasible configurations. BHP constraints are handled through pressure-controlled
pre-simulations to determine maximum allowable rates.

Rate Optimization Strategy
The framework implements two distinct rate optimization modes:

1. PreserveMode: Flow rates are explicit decision variableswithin bounds [𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥], but these optimizer-
controlled rates are adjusted through configuration-aware presimulation to ensure feasibility and well
interference effects are accounted for.

2. Maximize Mode: Flow rates are determined entirely through constraint-aware presimulation that runs
BHP-controlled simulations to find maximum sustainable rates respecting SodM pressure limits and
well interference effects.

Bothmodes use configuration-aware presimulation to account forwell interference effects, with results cached to
avoid redundant calculations. Producer rates in both modes use capacity-based distribution, where individual
well capacities are determined via BHP-controlled presimulations and rates are distributed proportionally to
maintain exact water balance.
Experimental Implementation: This study primarily employed maximize mode due to reduced search space
dimensionality compared to preserve mode and automatic constraint satisfaction.
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3.3.2. Optimization Approach
Custom Operators
Several custom genetic operators were implemented to handle the specific characteristics of geothermal opti-
mization:

Constraint-Aware Sampling Process This operator ensures the initial population contains only feasible well
locations by:

• Enforcing boundary distance constraints
• In the enhanced model, ensuring wells are only placed in active cells
• Creating exclusion zones around injectors when placing producers
• Supporting initial guess inclusion and checkpoint resumption: the framework can initialize the population

from a previous optimization run’s final generation, enabling convergence assessment and extended
optimization without restarting from random solutions

The process is illustrated in Figure 3.5, which demonstrates the steps involved in generating a constraint-aware
initial population.
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Figure 3.5: Constraint-aware sampling process for initial population generation.

Repair Process This repair operator replaces infeasible solutions with feasible alternatives that are then
evaluated by the algorithm. This creates a feedback loop that guides the evolutionary search toward naturally
feasible regions while maintaining the optimization intent. The operator maintains solution feasibility through:

• Projecting invalid well locations to the nearest valid position using combined constraint masks
• Enforcing well ordering to eliminate permutation symmetry (injectors sorted by i-coordinate, producers

by j-coordinate)
• Rate Adjustment:

– Executes configuration-aware presimulations to determine optimal rates for each well placement
– Operates injectors at SodM pressure limits and producers at minimum BHP constraints
– Applies capacity-based rate distribution ensuring exact water balance
– Implements shared caching system to avoid redundant presimulations for identical configurations
– Supports both ’preserve’ and ’maximize’ rate modes
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NSGA-II Configuration
The NSGA-II algorithm is configured with the following parameters:

• Population size and maximum generations: scaled based on the number of wells
• Offspring size: 𝑁𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑁𝑝𝑜𝑝/2
• Crossover probability: 𝑝𝑐 = 0.9 with distribution index 𝜂𝑐 = 10
• Mutation probability: 𝑝𝑚 = 1/𝑛𝑣𝑎𝑟 , where 𝑛𝑣𝑎𝑟 is the number of decision variables; mutation distribution

index: 𝜂𝑚 = 10
• Termination: occurs upon reaching the maximum number of generations. Preliminary experiments with

function tolerance-based convergence criteria (ftol = 0.001) resulted in premature termination due to the
varying scales and normalization of objectives, therefore all subsequent optimization runs rely solely on
generation limits.

The distribution index 𝜂𝑐 controls the spread of offspring around the parents—lower values produce offspring
farther from parents (more exploratory), while higher values keep offspring closer to parents (more exploita-
tive). Similarly, the mutation distribution index 𝜂𝑚 controls the mutation strength—lower values produce
larger perturbations, while higher values result in smaller, localized changes. The mutation probability follows
standard practice (Deb et al., 2002) of 1/𝑛𝑣𝑎𝑟 to ensure that, on average, one variable per solution undergoes
mutation. The specific values 𝜂𝑐 = 10 and 𝜂𝑚 = 10 represent a balanced approach between exploration and
exploitation, commonly used in engineering optimization problems.

Objective Normalization
To ensure a balanced contribution of both objectives—NPV and system lifetime—in the optimization process,
normalization is applied. This step is essential because the two objectives operate on different scales: NPV
typically ranges in millions to billions of euros, while lifetime is measured in years.
The normalization uses the following formulation:

𝑓 ′𝑖 (𝑥) =
𝑓𝑖 (𝑥) − nadir𝑖
ideal𝑖 − nadir𝑖

(3.13)

where 𝑓𝑖 (𝑥) is the raw value of the 𝑖-th objective, and ideal𝑖 and nadir𝑖 represent the best and worst values
respectively.
The ideal and nadir points are predetermined based on conservative estimates and preliminary optimization
studies. For NPV, the nadir point is set to 0€ as a conservative worst-case bound (representing scenarios with
no economic viability), while the ideal point is estimated based on maximumNPV values observed in previous
runs with similar well configurations, typically with some overestimation to ensure adequate range coverage.
For lifetime, the nadir is set to 1 year as a conservative minimum, and the ideal corresponds to the simulation
time horizon (100 years).

Parallelization
To handle the computational demands of reservoir simulation, the optimization framework implements parallel
evaluation of individuals:

• Multiprocessing with a process pool for simulation runs
• Shared memory for efficient data exchange between processes
• Thread-safe rate caching to avoid redundant pre-simulations

3.3.3. Optimization Loop
The optimization process follows a structured loop, iterating through the following steps until termination
criteria are met:

1. Initial Population Generation: Create candidate solutions with valid well locations using the custom
constraint-aware sampling operator.

2. Solution Repair: Apply the custom repair operator to ensure solutions meet spatial constraints and
determine optimal flow rates for each well configuration.
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3. Full Simulation Evaluation: Evaluate the repaired solutions using complete DARTS reservoir simulations
to calculate NPV and system lifetime.

4. Selection and Genetic Operations: Apply NSGA-II’s selection, crossover, and mutation operations to
generate the next population.

5. Repair of New Solutions: Apply the repair operator again to the new population.
6. Evaluation of New Solutions: Run full simulations for the repaired solutions.
7. Repeat: Continue steps 4-6 until convergence criteria are met.

3.4. Experimental Setup
This section describes the comprehensive experimental campaign designed to evaluate the proposed opti-
mization framework. The experiments systematically test optimization performance across different model
complexities and assess result reliability through multiple independent runs with varying random seeds.

3.4.1. StandardModel Experiments
The standard reservoir model experiments established baseline optimization performance and algorithm
validation. Each configuration was executed with nine independent optimization runs using different random
seeds (42, 12, 13, 14, 15, 16, 17, 18, 19) to ensure statistical reliability and assess algorithm stability.
Configuration:

• Well configuration: 2 injection wells, 2 production wells
• Minimum well distance: 10 grid cells (300 m)
• Boundary distances: 15 grid cells (450 m) for injectors, 10 grid cells (300 m) for producers
• Population size: 30 individuals, maximum generations: 60
• NPV normalization: €300M ideal point, €0 nadir point
• Lifetime normalization: 100 years ideal point, 1 year nadir point

3.4.2. EnhancedModel Experiments
The enhanced model experiments utilized the higher-resolution geological model to evaluate optimization
performance under realistic subsurface conditions and assess framework scalability across different well
configurations.
10-Doublet Configuration (seed 42):

• Well configuration: 10 injection wells, 10 production wells
• Minimum well distance: 10 grid cells (550 m)
• Boundary distances: 15 grid cells (825 m) for both injectors and producers
• Population size: 80, maximum generations: 80
• NPV normalization: €1.25B ideal point, €0 nadir point
• Lifetime normalization: 100 years ideal point, 1 year nadir point

12-Doublet Configuration (seeds 0, 1, 2, 3):
• Well configuration: 12 injection wells, 12 production wells
• Minimum well distance: 10 grid cells (550 m)
• Boundary distances: 15 grid cells (825 m) for both injectors and producers
• Population size: 96, maximum generations: 80
• NPV normalization: €1.4B ideal point, €0 nadir point
• Lifetime normalization: 100 years ideal point, 1 year nadir point
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20-Doublet Configuration (seeds 42, 0, 1, 2, 3):
• Well configuration: 20 injection wells, 20 production wells
• Minimum well distance: 10 grid cells (550 m)
• Boundary distances: 15 grid cells (825 m) for both injectors and producers
• Population size: 160, maximum generations: 150
• NPV normalization: €1.8B ideal point, €0 nadir point
• Lifetime normalization: 100 years ideal point, 1 year nadir point

All enhanced model experiments employed 20 parallel processes and used geological realization 1.

3.4.3. Sensitivity and Robustness Analysis
Additional experiments were conducted to assess parameter sensitivity and geological uncertainty:
Temperature Threshold Sensitivity: The 20-doublet configuration (seed 0) was re-executed with a reduced
temperature threshold of 5% to evaluate the impact of stricter lifetime criteria on optimization outcomes.
Geological Realization Analysis: To assess robustness across geological uncertainty, the 20-doublet con-
figuration (seed 0) was executed using alternative geological realizations (realization 2 and realization 3),
complementing the base experiments conducted with realization 1.

3.5. Post-Processing and Analysis
Optimization results underwent comprehensive post-processing to extract insights and evaluate framework
performance through several analytical approaches.
Feasibility Assessment: Solutions were classified as feasible based on water balance maintenance (zero
imbalance) and BHP constraint compliance. Pareto-optimal solutions were identified using dominance-based
filtering to find non-dominated points maximizing both NPV and system lifetime.
Key Solution Identification: From the Pareto front, three representative solutions were identified: (1) the
Best NPV solution with the highest economic performance, (2) the Best Lifetime solution with the maximum
system longevity, and (3) the Best Overall solution determined by normalizing both objectives to [0, 1] scales
and selecting the solution with the highest combined score, representing an optimal compromise between
competing objectives.
Convergence Analysis: Algorithm performance was tracked through cumulative maximum objective values
across generations. Multi-run experiments employed colormap visualization grouped by doublet count to
assess consistency and optimization trends.
Solution Visualization: Scatter plots displayed all solutions colored by generation or injection rate, with Pareto
fronts and best solutions highlighted to reveal trade-off characteristics and optimization space coverage.
Spatial Analysis: Well placement patterns were analyzed using log10-scaled frequency heatmaps across the
reservoir grid. Key solutions were visualized with well configurations overlaid on permeability fields, using
flow rate-proportional marker sizing.

3.6. Technical Implementation Details
The optimization and simulation workflow was implemented in Python. NSGA-II was executed using the
pymoo library, version 0.6.1.3, and geothermal reservoir simulations were carried out using DARTS, version
1.2.1.
To track optimization progress, log hyperparameters, andmonitor system performance across runs, theWeights
& Biases platform was integrated into the workflow. This enabled real-time visualization of convergence
behavior, population evolution, and constraint satisfaction.
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Data visualization was performed using both matplotlib and plotly, with the latter used for interactive explo-
ration of Pareto fronts and well configurations. Paraview was used for advanced 3D visualization of reservoir
models and simulation results. Pre- and post-processing relied on standard Python libraries including NumPy
and Pandas.
Development and testingwere conducted on a Dell Precision Tower 5810 running Ubuntu 22.04.4 LTS, equipped
with an Intel Xeon E5-1620 v3 CPU (8 threads), 32 GB of RAM, and an NVIDIA Quadro K620 GPU. Large-scale
optimization and simulation runs were executed on the DelftBlue supercomputer at TU Delft to handle the
computational intensity of running multiple NSGA-II generations with full reservoir simulations. These runs
primarily utilized compute-p2 nodes, each equippedwith 2× Intel Xeon E5-6448Y CPUs (64 cores per node) and
250 GB RAM. Job scheduling and resource allocation were managed through the SLURM workload manager.
This setup provided the necessary computational efficiency and scalability to explore the optimization space
and support detailed analysis of results.
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4
Results
This chapter presents the results from applying the MOO framework to geothermal well placement in the
WNB. First, the framework is validated using a simplified standard model to demonstrate convergence and
constraint satisfaction. The main findings are then presented using the enhanced WNB model, revealing
optimal trade-offs between economic returns and system longevity.
The results directly address howMOO can balance short-term economic objectives with long-term sustainability
goals in geothermal development.

4.1. Framework Validation and Performance using StandardModel
To validate the proposed MOO framework, we applied it to the standard model described in 3.2.1. This section
presents results across geothermal simulation, economic performance, and optimization behavior, illustrating
the framework’s capability to ensure feasible, convergent solutions while balancing competing objectives.

4.1.1. Simulation Results
Here we present the simulation results of a representative run using the standard model with maximize rate
mode.
Figure 4.1 illustrates the temperature profiles of production wells over time, showing individual well tem-
peratures, the flow-weighted average temperature, breakthrough threshold, and system lifetime. The system
lifetime is defined as the time until the flow-weighted average temperature drops below the breakthrough
threshold, indicating a significant loss in thermal energy production. The gradual temperature decline and
eventual breakthrough at 89 years demonstrates the finite nature of geothermal resources and validates the
importance of lifetime optimization in system design.
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Figure 4.1: Production well temperature profiles over time. Flow-weighted average temperature, individual well temperatures,
breakthrough threshold (dashed line), and system lifetime (dotted line) are shown.

Figure 4.2 shows the pressure and flow rate dynamics for both injection and production wells. The pressure
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profiles remain within operational limits throughout the simulation, as shown by the pressure limits in the
plot. The injection flow rates are lower than the maximum 15,000 m3/day because pre-simulation determined
the maximum sustainable rates at these well locations based on pressure constraints. The equal production
flow rates indicate that both production wells have sufficient capacity to handle the maximum allowable flow
rate under the given conditions, resulting in an even distribution of the total injection flow rate between the
two production wells. While the wells may have different pressure-based capacities (as shown in the pressure
profiles), both exceed the operational limit of 15,000 m3/day, so they are effectively capped at the same level.
This balanced flow distribution, combined with stable pressure profiles, confirms that the constraint-aware
optimization successfully identifies operationally feasible configurations that respect regulatory limits while
maximizing sustainable extraction rates.
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(a) Injection and production well pressures over time.
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(b) Injection and production flow rates over time.

Figure 4.2: Pressure (a) and flow rate (b) dynamics for injection and production wells over time.

4.1.2. Economic Indicators
Figure 4.3 presents the key economic performance indicators that shows the financial viability of the geothermal
system over its operational lifetime.
Figure 4.3a shows the evolution of pumping power consumption for both injection and production operations.
The net power output, presented in Figure 4.3b, represents the useful energy available after accounting for
pumping power consumption. The declining trend depicts both the temperature reduction shown in Figure 4.1
and the increasing power consumption. Figure 4.3c illustrates the cumulative NPV over the project lifetime,
incorporating all capital expenditures, operational costs, and revenue streams. The NPV trajectory shows the
point at which the project becomes profitable and the total financial return at the end of the operational period.
The analysis accounts for the depth-based drilling costs and realistic operational expenses specific to the well
configuration.
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(a) Pumping power consumption for injection and production wells.
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(b) Net power output.
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Figure 4.3: Performance and economic indicators for the geothermal system: (a) pump power consumption, (b) net power output and (c)
Net Present Value.

4.1.3. Optimization Behavior for StandardModel
The optimization framework is applied to a 2-doublet well configuration. This well count was determined
through preliminary optimization studies that evaluated different doublet configurations, with the 2-doublet
configuration demonstrating superior performance for both NPV and system lifetime objectives under the
given reservoir conditions and constraints.
To validate the robustness and convergence behavior of the MOO framework, we conducted nine independent
optimization runs using different random seeds for the initialization. Figure 4.4 demonstrates the convergence
characteristics of both objective functions across generations.
Figure 4.4a shows the evolution of the best NPV values across generations for all runs. In many runs, the
algorithm identifies solutions with NPV values exceeding 200 M€, often converging within 20–30 generations.
However, some runs exhibit slower convergence and achieve lower objective values, reflecting variability in
algorithm performance across different initializations.
Similarly, Figure 4.4b illustrates the progression of the best system lifetime values. While several runs achieve
lifetimes of 80–100 years, others show more gradual improvement. This variation highlights the stochastic
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nature of NSGA-II but also demonstrates its capacity to consistently explore high-performing regions of the
solution space. Overall, the results support the algorithm’s robustness, albeit with some variability across runs.
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(a) Evolution of best NPV values across generations for nine independent
optimization runs.
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(b) Evolution of best system lifetime values across generations for nine
independent optimization runs.

Figure 4.4: Convergence behavior of the MOO algorithm showing (a) NPV convergence and (b) system lifetime convergence across
multiple independent runs.

To further validate convergence behavior, we conducted additional experiments by restarting two high-
performing optimization runs (Run 1 and Run 9). For each case, the 55th generation population from the
original run was used to initialize a continuation run for 20 additional generations. As shown in Figure 4.5, no
improvement in NPV was observed during the continuation phase for both runs. For the system lifetime, there
was no improvement in Run 9, given that it had already reached the maximum lifetime of 100 years. Run 1
did show a small increase in the lifetime of 7 years. These minimal improvements during continuation runs
confirm that the original optimizations had indeed converged to stable solutions, validating the termination
criteria and providing confidence in the final Pareto fronts.
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(a) NPV evolution showing no improvement during continuation from
generation 55 for both Run 1 and Run 9.
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(b) System lifetime evolution confirming convergence plateau during
continuation for both runs.

Figure 4.5: Convergence validation experiments demonstrating (a) NPV plateau and (b) system lifetime plateau when continuing
optimization from the final populations of Run 1 and Run 9, confirming algorithm convergence.

Figure 4.6a presents the final Pareto fronts obtained from all nine independent runs, revealing the fundamental
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trade-off between economic performance and system longevity. While higher NPV solutions can be achieved,
they typically correspond to shorter system lifetimes, and conversely, configurations optimized for longevity
may sacrifice some economic return, confirming the inherent tension between maximizing short-term economic
returns and ensuring long-term resource sustainability.
Figure 4.6b visualizes the results of a comprehensive Pareto analysis across all nine runs, highlighting the Pareto-
optimal frontier and key solution types. The color coding reveals how injection rates influence the objective
trade-offs, with higher injection rates generally favoring NPV at the expense of system lifetime, indicating
that aggressive operational strategies compromise reservoir longevity. Notable solution categories include the
best NPV solution (emphasizing economic returns), the best lifetime solution (prioritizing longevity), and a
compromise solution that balances both objectives.
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(a) Pareto fronts obtained from nine independent optimization runs,
showing the consistency of trade-off relationships.

50M 100M 150M 200M 250M
30

40

50

60

70

80

90

100

Pareto Front Best NPV Best Lifetime Best Overall

4k

6k

8k

10k

12k

14k

Avg Injection
Rate (m³/day)

NPV (€)

Li
fe

tim
e 

(y
ea

rs
)

(b) Aggregated results from nine optimization runs showing individual Pareto
fronts, the global Pareto front, and key solutions, with color indicating average

injection rate.

Figure 4.6: Visualization of Pareto front results from nine optimization runs: (a) illustrates the consistency of trade-off relationships across
runs, and (b) presents the aggregated solution space with the final Pareto-optimal frontier, key solutions, and the influence of injection

rate on objective trade-offs.

Figure 4.7 shows the spatial optimization patterns. Figure 4.7a shows the underlying heterogeneous perme-
ability field, characterized by distinct high-permeability channels (shown in yellow) and lower-permeability
background regions (shown in purple).
Figure 4.7b shows the frequency of injection and production locations of the overall pareto front, revealing
that the optimization consistently favors distinct zones: injectors are preferentially placed in the northeastern
corner of the valid domain, while producers cluster in the southwest. This separation pattern suggests that
optimal configurations maximize distance between injection and production wells while still positioning each
in high-permeability regions that are geologically disconnected from each other. This spatial pattern reveals
the fundamental physical trade-off: the optimization prioritizes high-permeability zones for good flow rates at
each well, but deliberately avoids connected high-permeability pathways between wells to prevent premature
thermal breakthrough, achieving an optimal balance between short-term productivity and long-term resource
sustainability.
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(a) Heterogeneous vertically averaged permeability field of the standard
model reservoir.
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(b) Frequency map of optimal well locations across all Pareto-optimal solutions.

Figure 4.7: Spatial optimization analysis showing (a) the underlying geological constraints and (b) preferred well placement patterns
identified by the optimization algorithm.

Table 4.1 presents a detailed comparison of three representative Pareto-optimal solutions, illustrating distinct
operational strategies for balancing economic returns with system lifetime.
The solutions reveal three distinct strategies: an economically aggressive approach (Best NPV) employing
symmetric maximum injection rates of 15,000 m3/day to achieve 264.9 M€ but limiting lifetime to 54 years; a
resource preservation approach (Best Lifetime) using highly asymmetric injection rates (13,147 vs 5,525 m3/day)
to extend operations to 100 years while generating 157.4 M€; and a balanced approach (Best Overall) capturing
85.4% of maximum NPV while achieving 91% of maximum lifetime through moderate injection asymmetry.
This asymmetric strategy demonstrates that tailored flow allocation, rather than uniform distribution, is key to
extending system lifetime.
All solutions exhibit boundary-constrained placement, with wells positioned at minimum allowable distances
to the boundary (15 cells for injectors, 10 cells for producers). Perfect operational feasibility is confirmed
through zero constraint violations and exact water balance maintenance across all solutions.
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Performance Metric Best NPV Best Lifetime Best Overall
Objective Performance
NPV (M€) 264.9 157.4 226.1
System Lifetime (years) 54 100 91
Well Configuration
Injector 1 Location (15, 42) (15, 44) (15, 44)
Injector 2 Location (15, 39) (17, 43) (15, 43)
Producer 1 Location (47, 10) (48, 10) (48, 10)
Producer 2 Location (44, 10) (49, 10) (49, 10)
Min. Injector-Producer Distance 41.0 45.3 46.7
Operational Parameters
Injector 1 Rate (m3/day) 15,000 13,147 13,147
Injector 2 Rate (m3/day) 15,000 5,525 14,737
Producer 1 Rate (m3/day) 15,000 9,336 13,942
Producer 2 Rate (m3/day) 15,000 9,336 13,942
Total Injection (m3/day) 30,000 18,672 27,884
Constraint Satisfaction
BHP Constraints Triggered None None None
Water Balance Error (%) 0.00 0.00 0.00
Boundary Constraints Violated 0 0 0

Table 4.1: Comparison of representative Pareto-optimal solutions from standard model optimization

The results show that the MOO framework identifies spatially optimized well configurations that balance
economic performance with system longevity under geological and engineering constraints, with consistent
preferred well locations observed across multiple runs.

4.2. EnhancedModel Optimization Results
This section presents the optimization results obtained using the enhanced corner-point geometry model,
which incorporates more detailed geological characteristics and active cell constraints compared to the standard
model discussed previously. The enhanced model provides a more realistic representation of the WNB
reservoir conditions, enabling more accurate evaluation of well placement and operational strategies. The
results demonstrate the performance of the NSGA-II algorithm in identifying Pareto-optimal solutions that
balance NPV maximization and system lifetime extension under the enhanced model’s constraints. The
following subsections analyze convergence behavior, Pareto front development, spatial optimization patterns,
and sensitivity characteristics across multiple well configurations, providing comprehensive insights into
optimal geothermal system configurations for practical implementation.

4.2.1. Single Configuration Analysis: 20 Doublet System
This subsection analyzes the optimization performance for a representative 20-injector, 20-producer configura-
tion using the enhanced model, examining the Pareto front development, spatial well placement patterns, and
solution feasibility characteristics to establish baseline performance metrics for subsequent multi-configuration
comparisons.
Figure 4.8 demonstrates themulti-objective optimization performance for the 20-doublet configuration, showing
both the trade-off relationship between NPV and system lifetime and the temporal evolution of the optimization
process. The optimization process evaluated 8713 feasible solutions over 150 generations, with feasible solutions
(those satisfying water balance constraints) colored by generation to illustrate algorithm improvement over
time. The generational progression clearly shows that early generations (light orange, generations 1-50)
predominantly produce solutions with poor performance in both objectives, clustering in the lower-left region
with NPV values below 1.2 billion euros and lifetimes under 40 years. As the optimization progresses, later
generations (darker orange/red, generations 50-150) successfully identify solutions across the full range of the

32



Chapter 4. Results 4.2. Enhanced Model Optimization Results

trade-off space, including high-NPV solutions approaching 1.6 billion euros and extended-lifetime solutions
reaching 100 years.
The resulting Pareto front (black points) spans this full range, demonstrating that the algorithm effectively learns
from poor initial solutions to discover a set of optimal trade-offs. Notably, the later generations exhibit dense
clustering of solutions near the Pareto front, showing convergence behaviorwhere the algorithm transitions from
exploration and improvement to fine-tuning around optimal solutions. This temporal visualization illustrates
the algorithm’s learning capability and validates NSGA-II’s effectiveness for geothermal optimization: the
progression from poor-performing solutions in early generations to consistently identifying near-optimal
solutions in later stages demonstrates that the algorithm can navigate the complex, multi-modal landscape of
geothermal system design while maintaining solution diversity.
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Figure 4.8: Pareto front analysis showing the trade-off between NPV and system lifetime for the 20-injector, 20-producer optimization run.
Gray points represent all evaluations, colored points show feasible solutions meeting water balance constraints (colored by generation),

and the black points indicate the final Pareto-optimal solutions.

The spatial well placement patterns across all evaluations throughout the optimization process are shown
in Figure 4.9. The injector frequency heatmap (Figure 4.9a) shows concentrated placement preference along
the northern boundary, with logarithmic frequency values reaching up to 3.27, indicating these locations
were tested in over 1,800 evaluated solutions as the algorithm converged toward optimal configurations. The
producer frequency distribution (Figure 4.9b) exhibits a U-shaped configuration along the southern, eastern,
and western boundaries, with frequencies reaching up to 3.37, reflecting the algorithm’s repeated exploration
of these promising locations. The spatial separation between high-frequency injector and producer locations
demonstrates the algorithm’s learning behavior, increasingly focusing on configurations that maximize well
spacing within the placement constraints. The logarithmic scaling indicates comprehensive exploration of the
solution space, with even lower-activity areas evaluated multiple times throughout all generations.
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(a) Injector placement frequency (log10 scale) showing preferred locations for
injection wells across all evaluated solutions.
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(b) Producer placement frequency (log10 scale) showing preferred locations
for production wells across all evaluated solutions.

Figure 4.9: Well placement frequency heatmaps showing the spatial distribution of (a) injector and (b) producer locations across all
optimization evaluations (log10 scale).

4.2.2. Multi-Configuration Comparison and OptimalWell Placement Strategies
This subsection compares optimization results across different well configurations (10-doublet, 12-doublet, and
20-doublet) to evaluate convergence performance, analyze the impact of well count on trade-off relationships,
and identify consistent spatial placement strategies that emerge across multiple optimization scenarios.
The optimization analysis presented in Figure 4.10 reveals distinct performance characteristics across the three
well configurations based on 10 optimization runs (1 run with 10 doublets, 4 runs with 12 doublets, and 5 runs
with 20 doublets). For NPV optimization (Figure 4.10a), the configurations show varying evolution patterns
and final performance. The 20-doublet configuration demonstrates relatively slow initial improvement but
generally achieves the highest economic performance, with most runs reaching 1.4-1.6 billion euros, though
two runs achieve lower values around 1.2 billion euros. The 12-doublet runs show intermediate performance,
typically reaching 1.2-1.4 billion euros, while the 10-doublet configuration achieves approximately 1.1 billion
euros. For the 20-doublet runs, which were extended to 150 generations, NPV improvements appear to plateau
around generation 70, with minimal further gains despite continued evolution.
The lifetime objective evolution (Figure 4.10b) reveals a clear relationship between well count and the speed
of reaching maximum lifetime performance. One of the 12-doublet runs achieves the maximum lifetime of
100 years fastest, with the 10-doublet configuration following as a close second, both reaching this optimum
before generation 20. The remaining 12-doublet runs demonstrate intermediate behavior, typically requiring
40-70 generations to attain maximum lifetime performance. The 20-doublet configuration shows the slowest
progress, with all runs eventually reaching 100 years but the slowest requiring approximately 90 generations.
This pattern reflects the increased spatial complexity introduced by higher well densities: while fewer wells
provide greater spatial flexibility for achieving optimal injection-production spacing and delaying thermal
breakthrough, higher well densities impose tighter spatial constraints that significantly complicate the search
for optimal long-lifetime configurations, despite their superior economic potential through increased heat
extraction capacity.

34



Chapter 4. Results 4.2. Enhanced Model Optimization Results

0 20 40 60 80 100 120 140

0.6B

0.8B

1B

1.2B

1.4B

1.6B

Run ID (Doublets-Seed) 10-42 12-0 12-1 12-2 12-3 20-42 20-0 20-1 20-2 20-3

Generation

B
es

t N
PV

 (€
)

(a) Best NPV convergence
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(b) Best lifetime convergence

Figure 4.10: Convergence comparison of all optimization runs with different injector configurations. Evolution of the Best (a) NPV and
(b) lifetime objectives over generations, comparing 10 optimization runs across three well configurations: 1 run with 10 doublets, 4 runs

with 12 doublets, and 5 runs with 20 doublets. Run labels indicate the number of doublets followed by the random seed

To investigate the potential for further optimization beyond standard termination criteria, a restart experiment
was conducted using one of the 20-doublet runs, extending the optimization from 100 to 250 generations.
Figure 4.11 presents the complete solution space exploration colored by generation, while Figure 4.12 shows
the evolution of both objectives throughout the extended run.
The restart analysis reveals clear evidence of diminishing returns in extended optimization. The objective
evolution (Figure 4.12) demonstrates that while the best NPV continues to improve during the additional
150 generations, achieving approximately 0.1B€ improvement, this represents a substantially reduced rate of
progress compared to the initial 100 generations, which achieved nearly 1.0B€ improvement (from 0.25B€ to
1.2B€). The best lifetime objective shows no improvement during the restart phase, having already reached the
maximum value of 100 years before generation 100.
The Pareto front analysis (Figure 4.11) confirms this pattern, showing that while the front advances slightly in
terms of NPV, the majority of new feasible solutions cluster near the previously established front rather than
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significantly extending it. This demonstrates that continued optimization beyond 100 generations yields only
marginal improvements relative to the computational investment required, with the additional 150 generations
producing limited gains compared to the rapid progress achieved in the initial optimization phase.
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Figure 4.11: Solution space exploration for the 20-doublet restart experiment showing all evaluations and feasible solutions colored by
generation, with Pareto fronts for the original run (generations 1-100) and restart continuation (colored from generation 1 to clearly

indicate the restart location).

0 50 100 150 200 250

0.6B

0.7B

0.8B

0.9B

1B

1.1B

1.2B

1.3B

20-42 Original 20-42 Restart

Generation

B
es

t N
PV

 (€
)

(a) NPV evolution showing convergence during continuation from generation
100.
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(b) System lifetime evolution confirming convergence plateau during
continuation.

Figure 4.12: Convergence validation experiments for the 20-doublet configuration demonstrating (a) NPV plateau and (b) system lifetime
plateau when continuing optimization from generation 100, confirming algorithm convergence.

Figure 4.13 provides a comprehensive comparison of the Pareto fronts and solution characteristics across all
10 optimization runs. The individual Pareto fronts (Figure 4.13a) demonstrate clear performance differences
between well configurations, with most 20-doublet runs achieving the highest NPV values, followed by the
12-doublet runs, and the 10-doublet run showing the lowest economic performance. However, one 20-doublet
run exhibits a notably wide Pareto front positioned toward the left of the plot, though its best NPV still slightly
exceeds that of the 10-doublet run and one of the 12-doublet runs. Figure 4.13b shows the combined solution
space colored by total injection rate, revealing a strong correlation between injection capacity and economic
performance.
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The injection rate analysis clearly demonstrates that the highest NPV solutions are achieved by runs with
the greatest total injection (and production) rates. This relationship reflects the direct link between heat
extraction capacity and economic return. The varying shapes of the Pareto fronts across runs reflect the
interaction between NPV potential and the 100-year lifetime constraint. Runs achieving lower maximum NPV
values exhibit wider Pareto fronts because they can explore a broader range of the NPV-lifetime trade-off
space. In contrast, runs achieving higher NPV values show narrower, more vertical Pareto fronts that appear
to be truncated by the 100-year lifetime ceiling. This pattern suggests that if the lifetime constraint were
higher, these high-performing runs would likely exhibit wider Pareto fronts as well. The global Pareto front is
comprised entirely of solutions from a single high-performing 20-doublet run, indicating that this particular
optimization achieved complete dominance across the entire trade-off spectrum, while other configurations
and runs contribute to different portions of the overall solution space.
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(a) Pareto fronts from 10 optimization runs across three well configurations (1 run with 10 doublets, 4 runs with 12 doublets, and 5 runs with 20 doublets),
showing the impact of well count on trade-off relationships.
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(b) Aggregated results from 10 runs, showing individual Pareto fronts, the global Pareto front, and key solution types colored by total injection rate.

Figure 4.13: Visualization of Pareto front results from 10 enhance model optimization runs: (a) illustrates the impact of well count on
trade-off relationships, and (b) presents the aggregated solution space with the final Pareto-optimal frontier, key solutions, and the

influence of total injection rate on objective trade-offs.

Figure 4.14 presents three optimized well configurations corresponding to the Best NPV, Best Lifetime, and
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Best Overall solutions, all derived from the same optimization run. Marker size in each panel reflects the flow
rate of individual wells, which is key to interpreting spatial performance patterns.
All three configurations exhibit a consistent spatial placement strategy that aligns with the optimization process
preferences identified in the frequency analysis: injectors are positioned along the northern boundary of the
domain, while producers follow a distinctive pattern along the southern, eastern, and western boundaries.
Notably, the eastern and western producer placements extend only to approximately 60% of the edge length,
maintaining strategic distance from the northern injector locations to maximize spacing between injection
and production wells. A slightly higher density of producers is observed along the eastern boundary, likely
reflecting the deeper and warmer reservoir conditions in that region (as shown in Figure 3.4), which enhance
production efficiency.
This spatial arrangement leverages the high-permeability fluvial channels and greater reservoir thickness
in the northern region, where injectors can achieve higher flow rate capacities. The positioning of high-
capacity wells in areas where vertically averaged horizontal permeabilities exceed 500–600mD optimizes
both injection efficiency and thermal management. The U-shaped producer configuration ensures maximum
separation between injection and production points within the placement constraints, thereby delaying thermal
breakthrough and extending system lifetime.
Across all three configurations, a notable clustering pattern emerges where multiple wells are positioned in
close spatial proximity. The consistent appearance of such clusters indicates that similar system performance
could potentially be achieved through fewer wells operating at higher injection or production rates, which
would reduce capital expenditure and operational complexity while maintaining comparable NPV and lifetime
objectives. This clustering is induced by the imposed maximum rate constraint of 15,000 m3/day per well,
which prevents the optimization from achieving higher total rates through fewer, higher-capacity wells.
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(i) Best NPV Configuration (ii) Best Lifetime Configuration (iii) Best Overall Configuration

Figure 4.14: Optimal well configurations for three key solutions overlaid on the vertically averaged horizontal reservoir permeability field.
(i) Best NPV configuration, (ii) Best Lifetime configuration, and (iii) Best Overall configuration. Injectors (blue inverted triangles) and
producers (red triangles) are numbered and sized proportionally to their flow rates, showing how well placement and operational

strategies vary based on optimization objectives.

Table 4.2 provides a quantitative comparison of the three optimal configurations highlighted in Figure 4.14. It
confirms that the Best NPV solution achieves the highest economic return (1.557 B€) but at the cost of a shorter
system lifetime (53 years). Conversely, the Best Lifetime solution sustains operations for the full 100-year
duration but yields the lowest NPV (1.481 B€). The Best Overall solution offers a balanced performance across
both objectives with an NPV of 1.537 B€ and a lifetime of 83 years.
Operational metrics such as flow rate ranges and injector-producer distances further elucidate differences in
system design and efficiency. All configurations satisfy operational constraints, including BHP limits and water
balance. All three solutions utilize the same 20-doublet well configuration, demonstrating that operational
strategies rather than well count drive performance differences. The Best NPV solution achieves higher average
flow rates (8,855.15 m3/day) compared to the Best Lifetime solution (8,063.45 m3/day), indicating that higher
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injection rates maximize economic return but potentially accelerate reservoir depletion. The Best Lifetime
solution operates at lower intensity to extend system longevity while maintaining competitive NPV values.
The Best Overall solution represents a balanced approach, capturing 98.7% of maximum NPV while achieving
83% of maximum lifetime through optimized well placement and moderate flow rate management (8,369.1
m3/day average).

Performance Metric Best NPV Best Lifetime Best Overall
Objective Performance
NPV (B€) 1.557 1.481 1.537
System Lifetime (years) 53 100 83
Well Configuration
Configuration 20-doublet 20-doublet 20-doublet
Min. Injector-Producer Distance 23.1 24.2 19.1
Operational Parameters
Average Injector Rate (m3/day) 8,855.15 8,063.45 8,369.1
Average Producer Rate (m3/day) 8,855.15 8,063.45 8,369.1
Injector Rate Range (m3/day) 2,678 - 13,213 1,738 - 12,840 3,203 - 12,868
Producer Rate Range (m3/day) 1,551 - 15,001 2,706 - 15,000 1,720 - 15,000
Total Injection (m3/day) 177,103 161,269 167,382
Constraint Satisfaction
BHP Constraints Triggered None None None
Water Balance Error (%) 0.00 0.00 0.00
Boundary Constraints Violated 0 0 0

Table 4.2: Comparison of representative Pareto-optimal solutions from enhanced model optimization

The final Pareto solution analysis in Figure 4.15 identifies the most consistently selected well placement
locations across multiple trade-off scenarios. Unlike the broader exploration patterns presented earlier, these
frequency maps include only the final Pareto-optimal solutions, revealing more focused spatial preferences.
The injector frequency distribution (Figure 4.15a) reaches a maximum of 8, indicating repeated selection of
specific locations in 8 out of the 12 Pareto-optimal solutions analyzed. Preferred injector zones are concentrated
along the northern boundary, consistent with the spatial strategy observed in the optimal configurations. The
producer frequency distribution (Figure 4.15b) shows peak frequencies of 8, with favored positions along the
eastern and western edges of the placement area, consisten with the U-shaped producer arrangement that
maximizes injection-production separation. These recurring frequency patterns confirm that the identified
spatial placement strategy—with northern injectors and peripherally distributed producers—consistently
emerges as optimal across different trade-off scenarios.
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(a) Injector frequency in Pareto solutions
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(b) Producer frequency in Pareto solutions

Figure 4.15: Spatial distribution of well placement frequency among final Pareto-optimal solutions for the enhanced model. (a) Injector
frequency and (b) producer frequency show preferred optimal locations, with higher frequencies indicating more consistent placement

across multiple Pareto solutions.

4.2.3. Detailed Analysis of Best Lifetime Solution
This subsection provides a detailed analysis of one of the key Pareto-optimal solutions, specifically the Best
Lifetime solution.
Figure 4.16 presents the production temperature evolution of all production wells over the 100-year operational
period, illustrating the thermal performance of the system. The red line indicates the production temperature
for the well with the highest average production temperature, while the blue line represents the well with the
lowest average production temperature.
It is evident that achieving a long system lifetime requires a strategic balance between wells that maintain high,
stable production temperatureswithout thermal breakthrough and a limited number of wells that do experience
breakthrough. Examining the locations of these producers reveals an optimal spatial configuration within the
reservoir that considers both distance and subsurface connectivity patterns. The lowest performer (PRD20)
(labelled in Figure 4.17) is situated in a shallower part of the reservoir (as shown in Figure 3.4a) and positioned
in a zone of higher permeability that facilitates cold plume propagation, allowing the thermal front to reach
this producer despite not being directly connected by discrete channels. In contrast, the highest performer
(PRD11) is located in a deeper section of the reservoir with naturally higher temperatures and benefits from a
strategic positioning where other producers act as protective barriers, intercepting and diverting the advancing
cold front before it reaches PRD11, effectively shielding this well from early thermal breakthrough.
This optimized well placement strategy creates a sustainable production profile where the majority of wells
maintain temperatures above the economic threshold for extended periods, while a few strategically positioned
wells are allowed to experience breakthrough as an acceptable trade-off that actually enhances overall system
economics. The wells experiencing breakthrough are operated at higher flow rates to maximize NPV during
their productive period, recognizing that increased production intensity can yield significantly higher economic
returns despite reduced longevity. The visualizations of the cold plume development at 10, 50, and 100 years
(Figure 4.17a, 4.17b, and 4.17c) further confirm this interpretation, showing how the thermal front propagates
through zones of enhanced permeability and how the strategic arrangement of producers creates protective
buffers that intercept the advancing cold front, demonstrating the importance of both permeability architecture
and well positioning in determining thermal breakthrough timing.
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Figure 4.16: Temperature evolution of production wells over the 100-year operational period for the Best Lifetime solution. Individual well
temperatures (gray), highest-temperature well (red), lowest-temperature well (blue), flow-weighted average temperature (black), and
breakthrough threshold (dashed) are shown. The optimal solution maintains the flow-weighted average above the threshold throughout

the 100-year period despite some individual wells experiencing breakthrough.

(a) Reservoir temperature at 10 years showing
initial cold plume development (temperature

capped at 345 K).

(b) Reservoir temperature at 50 years with
expanding cold plumes along preferential flow

paths.

(c) Reservoir temperature at 100 years showing
extensive cold plumes with varying degrees of

thermal breakthrough.

Figure 4.17: Temporal evolution of reservoir temperature distribution for the Best Lifetime solution, showing cold plume development at
(a) 10 years, (b) 50 years, and (c) 100 years. PRD20 and PRD11 are labeled to identify the lowest and highest temperature production
wells, respectively. Temperature scale is capped at 345 K to highlight the progression of injection cooling effects through preferential flow

paths.

4.2.4. Effect of Temperature Threshold Fraction
This subsection investigates the impact of reducing the temperature threshold fraction from 15% to 5% on the
optimization results, examining how this change affects optimization evolution, the Pareto front characteristics
and well placement strategies.
Figure 4.18 shows that the 5% threshold produces a Pareto front positioned lower in the objective space
compared to the 15% threshold, with most solutions falling well below the 100-year maximum simulation
time. This downward shift occurs because the stricter 5% threshold causes thermal breakthrough at a smaller
temperature decline, effectively reducing system lifetime and subsequently NPV. However, the 5% threshold
demonstrates a wider NPV range across the Pareto front, suggesting greater diversity in economic performance
under stricter thermal constraints.
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Figure 4.18: Comparison of Pareto fronts for 15% and 5% temperature threshold fractions. Gray points represent all evaluated solutions,
colored points show feasible solutions (colored by generation), and the red and blue points indicate the final Pareto-optimal solutions of

both configurations.

Figure 4.19 illustrates that the 15% threshold consistently enables higher total injection rates across the Pareto
front. This enhanced injection capacity is a key driver of the superior NPV performance observed with the 15%
threshold, as higher injection rates facilitate greater energy extraction and increased revenue generation. With
the stricter 5% threshold, lower injection rates are required to avoid early breakthrough, which reduces energy
production and economic returns.
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Figure 4.19: Comparison of Pareto fronts for different temperature threshold fractions (15% and 5%), with solutions colored by total
injection rate. Key solutions (Best NPV, Best Lifetime, and Best Overall) are highlighted for each threshold configuration.

Figure 4.20 demonstrates consistency in optimal well placement patterns between the two threshold configura-
tions. The spatial distribution of injectors and producers remains largely similar across different optimization
objectives, indicating that fundamental well placement principles are relatively insensitive to the specific
threshold value. The most notable difference is a shift in producer distribution, with the 5% threshold showing
an increase in producer concentration along the western edge compared to the eastern edge.
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Figure 4.20: Comparison of optimal well placement strategies under different temperature threshold criteria.

4.2.5. Sensitivity to Geological Realizations
To assess the robustness of the optimization framework across geological uncertainty, identical experimental
parameters and random seed (seed 0) were applied to three different geological realizations of the enhanced
WNB model. This sensitivity analysis examines how geological structure variations influence Pareto fronts and
optimal well placement strategies.
Figure 4.21 presents the Pareto fronts from three different stochastic realizations of the enhanced WNB model.
Realization 1 represents the best-performing case from the previous analysis (configuration 20-0 from Fig-
ure 4.13a), while realizations 2 and 3 provide different random realizations of the same geological model with
identical parameters but different stochastic positioning of geological features. The resulting Pareto fronts
are similar and closely intertwined across the NPV-lifetime trade-off space. Although realization 3 achieves
the highest NPV solution, all realizations produce solutions within comparable ranges, indicating that the
optimization framework successfully adapts to stochastic geological variability while maintaining consistent
performance characteristics.
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Figure 4.21: Comparison of Pareto fronts obtained from optimizations using three different geological realizations. Each realization’s
Pareto front is shown with a distinct color, with the Best NPV, Best Lifetime, and Best Overall solutions highlighted for each.

Figure 4.22 compares optimal well placement patterns for realizations 2 and 3, complementing the realization

43



Chapter 4. Results 4.2. Enhanced Model Optimization Results

1 configurations from Figure 4.14. All realizations maintain the fundamental spatial strategy established in
the previous analysis: injectors positioned along the northern boundary to exploit both the greatest reservoir
thickness and high-permeability fluvial channels, while producers follow a U-shaped pattern along the
southern, eastern, and western boundaries. The eastern and western producer placements extend only to
approximately 60% of the edge length, balancing two competing objectives: maximizing distance from injectors
to delay thermal breakthrough while positioning wells in the deeper, warmer eastern regions that enhance
production efficiency.
The main difference between geological realizations appears in the Best NPV configurations for realizations 2
and 3, where some injectors move toward the western boundary compared to realization 1. This westward shift
shows the framework can find and use local high-permeability zones specific to each geological realization
while staying within the thick northern reservoir section. However, these are small adjustments rather than
major strategy changes, as the overall approach of using reservoir thickness for injection capacity and balancing
producer placement between thermal protection and reservoir temperature stays the same.
The small differences in optimal configurations across geological realizations show that sensitivity to geological
uncertainty is manageable. This stability comes from the consistent reservoir structure across all realiza-
tions—identical thickness and depth patterns mean that the northern boundary remains best for injection
regardless of specific permeability patterns, while the trade-off between distance and temperature continues
to favor the U-shaped producer arrangement. The observed changes demonstrate the framework’s ability to
adapt to local permeability differences while maintaining a consistent overall strategy, supporting its practical
use under realistic geological uncertainty.
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(a) Optimal well configurations for key solutions in geological realization 2. (a) Best NPV configuration, (b) Best Lifetime configuration, and (c) Best Overall
configuration. Injectors (blue inverted triangles) and producers (red triangles) are numbered and sized proportionally to their flow rates.
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(i) Best NPV Configuration (ii) Best Lifetime Configuration (iii) Best Overall Configuration

(b) Optimal well configurations for key solutions in geological realization 3. (a) Best NPV configuration, (b) Best Lifetime configuration, and (c) Best Overall
configuration. Injectors (blue inverted triangles) and producers (red triangles) are numbered and sized proportionally to their flow rates.

Figure 4.22: Comparison of optimal well placement strategies across different geological realizations, demonstrating how the optimization
framework adapts to geological uncertainty while pursuing consistent economic and lifetime objectives.
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5
Discussion & Limitations
This chapter interprets the key findings of the MOO framework applied to geothermal system design in
the WNB. It examines the implications of optimized well placement and operational strategies, discusses
how constraints influenced performance outcomes, and evaluates the capabilities of NSGA-II in resolving
competing objectives. The discussion also compares the results to relevant literature, highlights methodological
contributions, and outlines the limitations and assumptions that frame the scope and transferability of the
findings. Finally, it identifies promising directions for future research that could extend and enhance the
optimization framework.

5.1. Interpretation of Key Findings

Whatmakes well placement and operational controls critical decision variables in opti-
mizingmulti-well geothermal systems in theWNB?
Well placement and operational control parameters are critical decision variables because they directly control
thermal breakthrough timing and heat extraction efficiency, as demonstrated by the substantial performance
differences observed across optimization runs. The spatial positioning of wells determines thermal front
propagation paths, while injection rates control the velocity of thermal breakthrough and the balance between
economic return and system longevity.
The optimization consistently identified optimal spatial placement patterns that maximize injection-production
separation while exploiting high-permeability zones, favorable reservoir thickness, and optimal temperature
conditions. Flow rate allocation proved equally critical. The 20-doublet Best Lifetime solution achieved 100-year
lifetime with 1.481 B€ NPV, while the Best NPV solution generated 1.557 B€ over 53 years through higher
average injection rates (8,855 vs 8,063 m3/day). This demonstrates that uniform flow distributions severely
limit optimization outcomes.
Together, these findings emphasize the necessity of treating well placement and flow management as interde-
pendent decision variables. Ignoring their spatial and operational interplay risks both economic inefficiency
and premature reservoir degradation.

What constraints are necessary for balancing economic and operational performance
in geothermal system optimization?
The optimization results demonstrate that geological, hydraulic, and operational constraints are essential for
achieving realistic trade-offs. Boundary distance constraints maintained simulation integrity by preventing
artificial enhancement from model edges. Pressure constraints limited bottom-hole pressures to avoid over-
pressurization, ensuring thermal and hydraulic realism while contributing to asymmetric injection strategies.
Water balance constraints guaranteed conservation of volume and improved realism by disallowing solutions
that violated recirculation principles.
Together, these constraints provided essential structural guidance, ensuring that optimization outputs remained
physically interpretable, operationally feasible, and aligned with the geological characteristics of the reservoir
model.
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HowcanNSGA-II be applied tobalance the competingobjectives ofmaximizingNPVand
system lifetime in geothermal systems?
NSGA-II proved effective across multiple well configurations, consistently identifying broad Pareto fronts
spanning from high-NPV solutions (up to 1.6 B€) to extended-lifetime solutions (100 years). Early generations
(1-25) produced poor-performing solutions, while later generations (50-150) successfully identified optimal
trade-offs across the full solution space (Figure 4.8).
The choice of well count significantly influences optimization complexity. While 20-doublet configurations
achieved highest economic performance (1.4-1.6 B€ NPV), they requiredmore generations to achievemaximum
lifetime performance. The 10-doublet configurations demonstrated faster convergence to 100-year lifetimes
due to increased spatial flexibility, while the 20-doublet configurations, despite achieving higher economic
performance, imposed tighter spatial constraints that slowed optimization convergence.
Convergence analysis confirmed rapid discovery of viable solutions within 20-30 generations for the standard
model (Figure 4.4) and varying patterns for different well configurations in the enhanced model (Figure 4.10),
with restart experiments validating robustness (Figure 4.12).
Importantly, NSGA-II’s diverse solution sets allow decision-makers to explore multiple designs rather than
being restricted to single outcomes—essential flexibility given varying policy priorities and risk tolerances in
geothermal development.

How can trade-offs between NPV and system lifetime be quantified and analyzed using
the Pareto front generated by NSGA-II?
The Pareto front provides quantitative analysis of trade-offs, with enhanced model results showing NPV values
ranging from 0.8 to 1.6 B€ and lifetimes spanning 35 to 100 years (Figure 4.13). The front’s shape reveals
the cost of improving each objective: steep slopes indicate that gaining additional NPV requires sacrificing
significant system lifetime, while flatter regions show where economic improvements can be achieved with
minimal impact on longevity.
Solution density analysis offers insight into optimization sensitivity—dense regions suggest many alterna-
tives with similar trade-offs, while sparse regions indicate sensitive zones where small parameter changes
significantly shift outcomes.
Injection rate analysis reveals strong correlation between total injection capacity and economic performance.
Representative solutions serve as decision-making anchors: Best NPV (1.557 B€ over 53 years), Best Lifetime
(1.481 B€ over 100 years), and Best Overall (1.537 B€ over 83 years) demonstrate different operational strategies
while maintaining perfect constraint satisfaction.

What practical design and operational insights can be derived from the optimized solu-
tions, and how can these insights inform improvements to the current "first-come, first-
served" deployment strategies in large reservoirs like theWNB?
Optimized solutions reveal key insights challenging current deployment strategies. An important finding is
that higher total injection capacity directly correlates with superior economic performance, as demonstrated by
the 20-doublet configurations achieving the highest NPV values (1.4-1.6 B€) compared to 12-doublet (1.2-1.4
B€) and 10-doublet ( 1.1 B€) systems. This suggests that coordinated development strategies maximizing total
system capacity could substantially outperform individual doublet deployments.
For this specific model, high-performing configurations consistently placed injection wells along the northern
boundary and producers in the U-shaped pattern, as illustrated in the three key optimal configurations
(Figure 4.14). While these specific spatial patterns are model-dependent, the optimization reveals a consistent
underlying strategy: injection wells are positioned in the thickest reservoir regions with high-permeability
zones, while producers balance maximizing distance from injectors with targeting high-temperature, high-
permeability areas. The temperature evolution analysis demonstrates how this strategic spatial arrangement can
prevent thermal breakthrough, with the Best Lifetime solution maintaining flow-weighted average temperature
above the threshold throughout the 100-year period (Figure 4.16).
The lifetime optimization strategy reveals that maximum longevity involves strategic sacrifice of some wells to
breakthrough while protecting others. This finding suggests significant potential for adaptive control strategies
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where breakthrough wells could be shut down and flow redistributed in real-time.
Implementation requires shifting from "first-come, first-served" approaches to frameworks that systematically
optimize well placement and controls for maximum system-wide capacity while managing thermal interference.
The optimization methodology provides a systematic approach for identifying trade-offs between economic
performance and system longevity, supporting evidence-based planning regardless of the specific reservoir
characteristics.

Main Research Question
How can MOO with NSGA-II be applied to determine the optimal placement and control of multi-well
geothermal systems to maximize both NPV and system lifetime?

NSGA-II, integrated with high-fidelity reservoir simulation and operational constraints, effectively identifies
optimal trade-offs between NPV and system lifetime in geothermal systems. The algorithm consistently
produced Pareto fronts capturing spectra of viable configurations from economically aggressive (up to 1.6 B€
NPV) to longevity-focused designs (100-year lifetimes) across multiple well configurations ranging from 10 to
20 doublets.
Multi-configuration analysis confirmed the framework’s effectiveness across different well counts and ini-
tialization conditions, though performance varied with random seed initialization, demonstrating both the
algorithm’s exploration capability and the importance of multiple optimization runs. The results demonstrate
that the framework adapts to varying geological conditions and well densities while consistently identifying
optimization principles that maximize injection-production separation in high-permeability zones.
This study validates NSGA-II as a foundation for multi-objective geothermal optimization, offering a principled
approach for balancing economic and sustainability goals in complex energy systems. The comprehensive
solution sets provide stakeholders with actionable insights beyond objective values, enabling informed decision-
making for sustainable geothermal development across diverse reservoir conditions.

5.2. Comparison to Literature and Existing Strategies
The findings of this study align with and expand upon previous research on the optimization of geothermal
systems, especially in the context of large-scale deployment in the WNB. Notably, Kane et al. (2025) introduced
a flexible well density framework that adapts well spacing to large-scale geological heterogeneity patterns
(specifically linear and Gaussian trends in porosity and permeability) using synthetic models representing
fluvial channel systems and transitional geological formations. Their work emphasized cashflow optimization
and demonstrated that tailoring well patterns to subsurface variability can improve both thermal sweep and
economic return. However, Kane et al.’s optimization focused solely on spatial configuration, employing fixed
volumetric flow rates (3000 m3/day for the linear model and 2000 m3/day for the Gaussian model) imposed
due to numerical convergence limitations when higher flow rates were applied to low-transmissivity reservoir
zones. Operational controls were not subject to optimization, creating a significant limitation that distinguishes
the present study, which integrates multi-objective optimization (NSGA-II) that simultaneously addresses
spatial well placement and system-level performance trade-offs.
Daniilidis, Khait, et al. (2020) focused on optimizing operational controls, specifically yearly flow rates of
geothermal doublets in a fixed two-doublet configuration over a 30-year period, using the DARTS simulator
coupled with the Sequential Least Squares Programming (SLSQP) method. Their framework emphasized high
computational performance and confirmed that optimizing NPV yields better long-term outcomes compared
to maximizing energy output alone. While their optimization was confined to a fixed spatial configuration
(two doublets with 780 m well spacing in a structured 3D heterogeneous reservoir), our approach integrates
both spatial (well placement) and temporal (control strategies), offering a more comprehensive strategy for
system-wide performance improvement.
Willems and M. Nick (2019) highlighted the shortcomings of the prevailing "first-come, first-serve" strategy in
the WNB, particularly in terms of thermal interference and suboptimal resource utilization. They advocated
for a coordinated approach to field development that considers regional-scale optimization and estimated that
coordinated "masterplan" deployment could increase heat recovery efficiency by tens of percentages compared
to current practices. Our findings directly respond to these concerns by demonstrating that Pareto-optimal
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well configurations can significantly delay thermal breakthrough and enhance overall system resilience. Unlike
their primarily conceptual analysis, our model quantitatively evaluates trade-offs using simulation-based
optimization, contributing practical tools for coordinated geothermal planning.
In summary, this work bridges the methodological gap between spatially adaptive well placement (Kane
et al. (2025)), operational control optimization (Daniilidis, Khait, et al. (2020)), and strategic basin-wide
planning (Willems and M. Nick (2019)), thereby offering a unified and computationally efficient framework
that leverages NSGA-II’s population-based search capabilities to handle the complex, multi-modal optimization
landscape inherent in multi-well geothermal systems in heterogeneous reservoirs.

5.3. Methodological Contributions and Advancements
• Integrated economic and thermal-hydraulic objectives: Simultaneously optimized NPV and system

lifetime using a unified multi-objective framework, enabling explicit trade-off analysis relevant to both
public and private sector stakeholders.

• Constraint-aware optimization: Developed a repair operator that enforces physical constraints (e.g.,
boundary distance, water balance, and pressure limits) during solution generation, improving simulation
feasibility and reducing wasted evaluations.

• Operational realism in objective evaluation: Incorporated bottom-hole pressure constraints and asym-
metric flow allocation into the optimization, enhancing alignment with real-world operational feasibility
and regulatory standards.

• Coupled spatial-operational optimization: Unlike conventional approaches that fix well locations while
optimizing rates or vice versa, this framework enables simultaneous optimization of both variables by
making flow rates capacity-dependent on well locations through pre-simulation-based rate allocation.
This coupled approach captures the interdependency between spatial configuration and operational
performance more effectively than sequential optimization strategies.

• Restart-based convergence validation: Performed restart experiments to confirm convergence behavior
of NSGA-II, improving confidence in Pareto front stability.

• Enhanced geological realism: Used corner-point grid geometry and heterogeneous permeability fields
to better capture subsurface variability typical of the WNB.

5.4. Limitations and Uncertainties
While this study provides valuable insights into MOO of geothermal systems, several limitations and uncer-
tainties must be acknowledged that could influence the applicability and robustness of the results.

5.4.1. Geological andModel Uncertainties
Limited geological uncertainty quantification: While this study tested three geological realizations to assess
sensitivity to subsurface variability, this represents a limited sample for comprehensive geological uncertainty
quantification. Although the results demonstrated consistent spatial optimization patterns across the three
realizations, a more extensive ensemble analysis (e.g., 50-100 realizations) would be required to fully capture
the range of possible subsurface configurations and quantify the robustness of optimization outcomes.
Grid resolution limitations: Computational costs limit the spatial resolution achievable in reservoir models,
particularly for CPG simulations. Higher resolution grids would provide more detailed geological representa-
tion but are currently computationally prohibitive for population-based optimization.
Limited systematic geological parameter analysis: The study transitioned from a simplified synthetic model
to a complex enhanced model without systematically evaluating individual geological parameter effects
(depth/initial temperature, thickness, heterogeneity). This makes it difficult to isolate which factors most
strongly influence optimization outcomes and limits transferability to other geological settings.
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5.4.2. Optimization and Algorithmic Constraints
Algorithm limitations: While NSGA-II is designed to find diverse Pareto-optimal solutions, there is no guaran-
tee that global optima have been identified in the complex, multi-modal optimization landscape characteristic
of geothermal systems.
Temporal constraint limitations: The 100-year simulation horizon creates a fundamental constraint that signif-
icantly influences Pareto front characteristics, particularly for sparse well configurations. When optimization is
constrained to a maximum 100-year operational period, this temporal cutoff becomes binding for configurations
that do not fully saturate the available reservoir space. In such cases, maximum NPV solutions coincide with
maximum allowable lifetime, causing the traditional trade-off between economics and longevity to become
constrained and the Pareto front to degenerate toward a single dominant solution.
Framework computational inefficiencies: The current repair operator performs unnecessary pre-simulation
for rate allocation in maximize mode, where flow rates are not decision variables. In maximize mode, the
pre-simulation could be performed during solution evaluation instead of in the repair operator, which would
eliminate redundant computations and remove the need for rate caching mechanisms. This architectural
change would streamline the optimization process and reduce computational overhead per generation.

5.4.3. Economic and Operational Assumptions
Static economic parameters: The economic evaluation relies on fixed assumptions for heat prices, discount
rates, and costs that may not reflect future market conditions. Sensitivity to these parameters has not been
systematically evaluated, and energy market changes could significantly alter economic viability rankings.
Regulatory assumptions: The study implements current SodM pressure regulations, but future regulatory
changes or operational flexibility in practice could alter the feasible design space.
Fixed operational strategies: Flow rates were optimized as constant values over the entire project lifetime,
without incorporating temporal adaptation or feedback mechanisms that could respond to changing reservoir
conditions.
These limitations highlight important constraints on the current study’s scope and applicability, while identify-
ing critical areas for future research that could enhance the framework’s robustness and practical utility.

5.5. FutureWork Directions
The limitations and scope of the current study point toward several promising research directions that could
significantly enhance the optimization framework’s capabilities and practical applicability.

5.5.1. Alternative Optimization Formulations
Single-objective approaches with constraints: Implement 𝜀-constraint methods with fixed lifetime constraints
(e.g., minimum 40 years) while maximizing NPV as a single objective. This approach would reduce computa-
tional costs, focus optimization on economically relevant timeframes, and avoid the inherent limitations of the
current dual-maximization approach that may force solutions toward unrealistically long operational periods.
Alternative objective functions: Test different optimization objectives such as Heat In Place (HIP) recovery
percentage to assess reservoir efficiency metrics beyond economic and temporal performance. This would
evaluate sweep efficiency - how effectively the well configuration contacts and extracts thermal energy from
the reservoir - providing insights into resource utilization effectiveness and supporting more comprehensive
sustainability assessments.
Regulatory sensitivity analysis: Investigate the impact of removing or relaxing regulatory pressure constraints
on optimization outcomes to understand the trade-offs between operational flexibility and regulatory com-
pliance. This analysis could inform policy discussions about optimal regulatory frameworks for geothermal
development.
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5.5.2. Enhanced Optimization Strategies
Variable well configurations: Develop optimization frameworks where the number of wells becomes a decision
variable rather than a fixed constraint, allowing the optimizer to determine optimal well density for given
geological and economic conditions. This could involve mixed-integer optimization approaches that handle
discrete decisions alongside continuous variables.
Expanded operational ranges: Test highermaximumflow rates andwiderwell spacing constraints to investigate
whether fewer wells operating at higher injection rates can achieve comparable performance while avoiding
the spatial clustering observed in current solutions. This approach would also enable exploration of more
intensive development scenarios within realistic operational limits.
Brownfield development scenarios: Implement optimization frameworks that incorporate existing well
locations as fixed constraints, representing realistic development scenarios where new wells must be optimized
around existing infrastructure. This addresses the practical reality that most geothermal development occurs
in areas with some existing activity.

5.5.3. Dynamic and Adaptive Control
Time-varying operational strategies: Develop dynamic operational frameworks with time-varying flow rates
and adaptive control mechanisms that respond to thermal breakthrough, seasonal demand variations, and
changing economic conditions. This could include automated shutdown and restart protocols for thermal
breakthrough management.
Real-time optimization integration: Investigate frameworks that incorporate real-time monitoring data for
adaptive optimization during operations, allowing continuous refinement of strategies based on actual reservoir
response.

5.5.4. Uncertainty Quantification and Robustness
Ensemble-based optimization: Extend the framework to handle multiple geological realizations simulta-
neously, providing robust solutions that account for geological uncertainty. This ensemble approach could
quantify solution sensitivity to geological assumptions and identify designs that perform well across multiple
scenarios.
Economic sensitivity analysis: Conduct systematic sensitivity analysis of key economic parameters (heat
prices, discount rates, capital costs) to understand their impact on optimization outcomes and develop robust
strategies that perform well under varying economic conditions.

5.5.5. Systematic Geological Parameter Sensitivity
Individual parameter impact assessment: Conduct systematic sensitivity analysis of key geological parameters
(reservoir depth/initial temperature, thickness, heterogeneity levels) by varying single parameters while keep-
ing others constant. This would identify which geological factors most strongly influence optimal placement
strategies and support broader framework application.

5.5.6. Computational and Algorithmic Improvements
Alternative optimization algorithms: Test alternative multi-objective algorithms (MOEA/D, SPEA2) and
hybrid approaches to compare performance with NSGA-II and potentially identify more efficient optimization
strategies for the specific characteristics of geothermal systems.
Framework architecture optimization: Address the framework architecture inefficiencies identified in the
current implementation, particularly the presimulation process for rate allocation. Streamlined architectures
could reduce computational overhead and improve solution quality.
High-resolution modeling: Leverage advancing computational resources to implement higher grid resolution
and more detailed geological representations, potentially through adaptive mesh refinement and parallel
computing strategies.
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5.5.7. Basin-Scale andMulti-Field Applications
Regional optimization: Extend the framework to basin-scale optimization incorporating multiple geothermal
fields and inter-field interactions. This could support coordinated development planning across multiple
operators and reservoir systems.
Priority research directions include ensemble-based optimization for uncertainty quantification, alternative
optimization formulations using 𝜖-constraint methods, and development of dynamic operational frameworks
that can enhance practical applicability of optimization-informed geothermal development.
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6
Conclusion & Recommendations
This study successfully developed and validated a MOO framework for geothermal well placement and
control in the WNB, demonstrating significant potential for improving upon current "first-come, first-served"
deployment strategies.

6.1. Main Conclusions
This research answers the main research question: How can MOO with NSGA-II be applied to determine the optimal
placement and control of multi-well geothermal systems to maximize both NPV and system lifetime?

NSGA-II, integrated with high-fidelity reservoir simulation and constraint-aware optimization, effectively
identifies optimal trade-offs between NPV and system lifetime in geothermal systems. Applied to the enhanced
WNB model, the framework consistently produced Pareto-optimal solutions spanning NPV ranges of 0.8-1.6
billion euros and system lifetimes of 35-100 years across multiple well configurations (10-20 doublets) and
geological realizations.
Key optimization insights reveal both case-specific results and transferable principles. For the WNB model,
the optimization consistently positioned injectors along the northern boundary (thickest reservoir with high-
permeability channels) and producers in a U-shaped configuration balancing separation with access to warmer
zones.
These results demonstrate three generalizable principles: (1) injectors should target zones combiningmaximum
thickness and permeability for optimal injection capacity, (2) producers should balance high-temperature
access with sufficient injector separation, and (3) flow rates must be location-dependent, determined by well
interference effects and pressure constraints rather than uniform allocation across all wells.
The optimization reveals critical operational insights about configuration-aware rate management. The Best
Overall solution achieved 98.7% of maximum NPV (1.537 billion euros) while maintaining 83% of maximum
lifetime (83 years) through rate allocation that accounts for well interference and pressure limitations. Im-
portantly, maximum system longevity is achieved not by uniformly protecting all wells, but through strategic
sacrifice of some producers to thermal breakthrough while maintaining others at stable temperatures—a
finding that suggests significant potential for adaptive control strategies where breakthrough wells could be
shut down and flow redistributed in real-time.

6.2. Contributions and Impact
Methodological Innovation: This work presents an integrated framework combining NSGA-II MOO with
geothermal reservoir simulation (DARTS) and constraint-aware solution generation. A key innovation is
the simultaneous optimization of both well locations and operational rates—rather than the conventional
approach of fixing one while optimizing the other, the framework makes flow rates capacity-dependent on well
locations, enabling true coupled spatial-operational optimization. The constraint-aware repair operators and
this integrated rate optimization strategy represent significant advances in handling the complex, multi-modal
optimization landscape of geothermal systems.
Quantified Benefits of Coordination: The study provides quantitative evidence that coordinated development
strategies can achieve superior performance compared to independent optimization. The consistent spatial
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patterns identified across multiple runs and geological realizations demonstrate that strategic planning can
overcome the limitations of current "first-come, first-served" approaches.
Practical Design Guidelines: The research delivers actionable spatial design principles and operational
strategies directly applicable to heterogeneous reservoirs. The identified clustering patterns suggest that similar
system performance could be achieved through fewer, strategically placed wells, potentially reducing capital
expenditure while maintaining performance.

6.3. Recommendations
For Industry: Implement pre-development multi-objective optimization studies, adopt configuration-aware
rate allocation that respects well interference and pressure constraints, and develop collaborative planning
mechanisms for basin-wide resource utilization.
For Regulators: Establish spatial zoning guidelines informed by optimization studies, transition from "first-
come, first-served" to coordinated development frameworks, and develop incentive structures that reward
long-term sustainability over short-term gains.
For Future Research: Priority directions include 𝜖-constraint methods with fixed lifetime constraints, dynamic
operational frameworks with adaptive control systems, and ensemble-based optimization for uncertainty
quantification.

6.4. Final Remarks
This research demonstrates that optimization-informed geothermal development can significantly enhance
both economic performance and resource sustainability. The framework provides essential tools for strategic
resource management during the expansion phase of geothermal energy deployment.
The constraint-aware multi-objective optimization approach is applicable beyond geothermal to other subsur-
face energy systems requiring spatial-operational trade-offs. By providing quantitative methods for evaluating
NPV-lifetime trade-offs, this framework supports the evidence-based decision-making needed to maximize
geothermal energy’s contribution to renewable energy transition while ensuring long-term resource sustain-
ability.
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