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From Deterministic to Generative: Multimodal
Stochastic RNNs for Video Captioning

Jingkuan Song , Yuyu Guo, Lianli Gao , Xuelong Li , Fellow, IEEE, Alan Hanjalic, Fellow, IEEE,

and Heng Tao Shen

Abstract— Video captioning, in essential, is a complex natural
process, which is affected by various uncertainties stemming from
video content, subjective judgment, and so on. In this paper,
we build on the recent progress in using encoder–decoder frame-
work for video captioning and address what we find to be a crit-
ical deficiency of the existing methods that most of the decoders
propagate deterministic hidden states. Such complex uncertainty
cannot be modeled efficiently by the deterministic models. In this
paper, we propose a generative approach, referred to as multi-
modal stochastic recurrent neural networks (MS-RNNs), which
models the uncertainty observed in the data using latent stochas-
tic variables. Therefore, MS-RNN can improve the performance
of video captioning and generate multiple sentences to describe
a video considering different random factors. Specifically, a mul-
timodal long short-term memory (LSTM) is first proposed to
interact with both visual and textual features to capture a
high-level representation. Then, a backward stochastic LSTM
is proposed to support uncertainty propagation by introducing
latent variables. Experimental results on the challenging data
sets, microsoft video description and microsoft research video-
to-text, show that our proposed MS-RNN approach outperforms
the state-of-the-art video captioning benchmarks.

Index Terms— Recurrent neural network (RNN), uncertainty,
video captioning.

I. INTRODUCTION

IN RECENT years, various fields of computer vision have
developed rapidly, including image recognition [1]–[3],

facial recognition [4], [5], action recognition [6]–[8], and other
tasks [9]–[11]. With the explosive growth of online videos
over the past decade, video captioning has become a hot
research topic. In a nutshell, video captioning is the prob-
lem of translating a video into meaningful textual sentences
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describing its visual content. As such, solving this problem has
the potential to help various applications from video indexing
and search [12]–[16] to human–robot interaction.

Building on the pioneering work of Kojima et al. [17],
a series of studies has been conducted to come up with
the first generation of video captioning systems [18]–[20].
Recently, however, the development of these systems has
more and more relied on deep neural networks (DNNs)
that have been proven effective in both computer vision
(e.g., image classification and object detection) and natural
language understanding (e.g., machine translation and lan-
guage modeling), forming two technological pillars of video
captioning solutions. In particular, deep convolutional neural
networks (CNNs) (e.g., VggNet [21] and ResNet [22]) have
been widely deployed to extract representative visual fea-
tures, while recurrent neural networks (RNNs) (e.g., long
short-term memory (LSTM) [23] and gate recurrent unit [24])
have been deployed to translate sequential term vectors to
natural language sentences. Despite the significant conceptual
and computational complexity of these DNN-based models,
their effectiveness has given rise to the so-called encoder–
decoder scheme as a popular modern approach for video cap-
tioning. In this scheme, typically a CNN is used as an encoder
and an RNN as a decoder. This approach has shown better
performance than the traditional video captioning methods
with hand-crafted features.

Recent efforts toward developing and implementing an
encoder–decoder scheme for video captioning have mainly
focused on solving the following questions.

1) How to help an encode–decoder framework to more
efficiently and effectively bridge the gap between video
and language [25]?

2) How to facilitate video captioning using semantic
information [26]?

3) How to deploy an attention mechanism to help
decide what visual information to extract from
video [27], [28]?

4) How to extract attributes/key concepts from sentences to
enhance video captioning? [29]–[31].

Numerous approaches have been proposed to address these
questions [26]–[28], [32], [33].

However, the above-mentioned approaches have been
deterministic without incorporating uncertainties (i.e., both
subjective judgment and model uncertainty) into the model
calculations at all stages of the modeling. First, in essential,
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Fig. 1. In real-life scenario, a video can be described by different sentences
because the providers have different intents, experiences, and so on. However,
if we use deterministic model for video captioning, only one sentence is
predicted with the highest probability, which conflicts with the real scenario.
By taking different hidden factors (e.g., intention and experience) into
consideration, a trained model should be able to output different sentences.
P1, P2, and P3 indicates three persons.

video captioning is a complex process and involves many
factors, such as video itself, description intents, personal
characteristics, and experiences. Except for the video content,
other factors are inherently random and unpredictable. For
example, in Fig. 1, we asked three people to describe two
videos separately, and they provided different descriptions for
each video. This indicates that video captioning is subjective
and uncertain. Second, video captioning models are always
abstractions of the natural video captioning processes by
leaving out some less important components and keeping only
relevant and prominent components, thus modeling uncertainty
arises. However, both uncertainties are ignored in the previous
work.

Therefore, in this paper, we are focusing on dealing with
the above-mentioned uncertainties. All our attempts are to
ascertain the true nature about video captioning. We propose a
novel approach, namely multimodal stochastic RNN networks
(MS-RNNs), which model the uncertainty observed in the
data using latent stochastic variables. Our method is inspired
by variational autoencoder (VAE) [34], which uses a set of
latent variables to capture the latent information. This paper
makes the following contributions. 1) We propose a novel
end-to-end MS-RNN approach for video captioning. To the
best of our knowledge, this is the first approach to video
captioning that takes the uncertainty, both subjective judgment
and model uncertainty, into consideration. Therefore, for each
video, our model can generate multiple sentences to describe
it from different aspects. 2) We propose a multimodal LSTM
(M-LSTM) layer, which incorporates the features from dif-
ferent information sources (i.e., visual and word) into a set

of higher level representation by adjusting the weights on
each individual source for improving the video captioning
performance. 3) We develop a novel backward stochastic
LSTM (S-LSTM) mechanism to model uncertainty in a latent
process through latent variables. With S-LSTM, the uncer-
tainty is expressed in the form of probability distribution of
latent variables. The uncertainty can be model into a prior
distribution by making use of the consistency between prior
distribution and posterior distribution. 4) The proposed model
is evaluated on two challenging data sets, microsoft video
description (MSVD) and Microsoft Research (MSR) video-
to-text (MSR-VTT). The experimental results show that our
method achieves superior performance in video captioning.
Note that our model only utilizes the appearance features of
videos, and no attention mechanism is incorporated.

II. RELATED WORK

A. Recurrent Neural Networks

RNNs [35] form a directed cycle to connect units. This
mechanism allows them to process arbitrary sequential data
streams; thus, RNNs have been widely used in computational
linguistics and achieved great success. Taking language model
as an example, RNNs model a sequential data streams (e.g.,
a sentence) s = {s1, . . . , sT } by decomposing the probability
distribution over outputs

P(s) =
T∏

t=2

P(st |s<t )P(s1). (1)

At each time step, an RNN observes an element and
updates its internal states, ht = fθ (ht−1, st ), where f is
a deterministic nonlinear function and θ indicates a set of
parameters. The probability distribution over st is parame-
terized as: P(st |s<t ) = Pθ (st |ht−1). The RNN language
model (RNNLM) [36] parameterized the output distribution
by applying a softmax function onto the previous hidden state
ht−1. To learn the model’s parameters, RNNLM maximizes
the log-likelihood by adopting the gradient descent. However,
most existing RNNs models propagate deterministic hidden
states.

B. Visual Captioning

The study of visual captioning problem has been going on
for many years. In 2002, the video captioning system [17]
was proposed for describing human behavior; the method first
detects visual information (i.e., position of head, direction
of head, and positions of hands) to find the position where
the person is and the gesture what the person does and then
selects appropriate predicate, object, and so on with domain
knowledge. Finally, the method applies syntactic rules to
generate a whole sentence. Following this work, a series of
studies is conducted to utilize such a technique to enhance
different multimedia applications [18]–[20]. And there are
some works that tackle the problem with the probabilistic
graphical model. Farhadi et al. [37] introduce the meaning
space, which is represented as triplets of 〈object; action; scene〉
in the form of a Markov random field, and map the images and
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sentence to the meaning space to find the relationship between
images and sentences. Rohrbach et al. [38] try to model
the relationship between different components of the visual
information with a conditional random field and then tackle
the captioning problem as a machine translation problem to
generate sentences.

Inspired by the recent advances in image classification using
CNN networks (e.g., VggNet [21], GoogLeNet [39], and
ResNet [22]), and in machine translation utilizing RNN, there
have been a few attempts [26], [27], [32], [33], [40]–[42] to
address video caption generation by first adopting an efficient
CNN network to extract video appearance features and sec-
ond utilizing an RNN to take video features and the previ-
ous predicted words to infer a new word with a softmax.
In order to further improve the performance, more com-
plex approaches [26], [27], [33] are proposed from different
aspects. Specifically, Yao et al. [27] adopted a spatio-temporal
CNN (3-D CNN) for capturing video motion information
and a soft attention mechanism to select relevant frame-level
features for video captioning. Pan et al. [26] incorporated the
semantic relationship between sentence and visual content for
video captioning, while Yu et al. [33] proposed a hierarchical
framework consisting of a sentence generator to describe a
specific short video internal and a paragraph generator to
capture the intersentence dependence. However, all of them
treat video captioning as a deterministic problem, which can
only generate one output, which violate the nature of video
captioning. By taking different hidden factors (e.g., intention
and experience) into consideration, a trained model should
be able to output different sentences. Note that the model
introduced in [43] can also generate diverse sentences for
image captioning, because it uses different LSTMs to generate
different sentences (the number of LSTMs is equal to the
number of different sentences), so their model has no uncertain
factors and does not capture the uncertainty in captioning
problem.

C. What Is Uncertainty

From the management point of view, uncertainty is the lack
of exact knowledge, regardless of what is the cause of this
deficiency [44]–[46]. Models provide us a solution to clarify
our understanding of our knowledge gap, but in real life,
understanding the average processes is often not sufficient and
it is impossible to predict with certain results [47]. In general,
besides language uncertainty, uncertainty can be classified into
six major types [44], [47]: 1) measurement errors resulting
from imperfections in measuring devices and observational
techniques; 2) systematic error, which occurs as the results
of bias in the measuring devices or the sampling process;
3) natural variation, which occurs in a system that changes,
with respect to time, space, or other variations, in ways;
4) inherent randomness, which results from a system that
is irreducible to a deterministic one; 5) model uncertainty,
which mainly arises because the mathematical and computer
models that are used for predicting future events or for
answering question under specific scenarios; and 6) subjective
judgment, which occurs as a result of interpretation of data.

Without sufficient data, the experts’ judgment will be based
on observations and experience. All of these uncertainties are
hidden factors affecting the results of video captioning, and
we propose to model these uncertainties using latent stochastic
variables.

D. Variational Autoencoder

As mentioned earlier, we know that we should find a method
to capture the uncertainty in the video captioning problem. But
how can we model the uncertainty? VAE [34] model gives us
a good way to solve this problem. For capturing the variations
in the observed variables x, the VAE model introduces a set of
latent random variables z and rewrites the objective function
log P(x) as follows:

log P(x) ≥ EQ [log P(x|z)] − KL[Q(z|x)||P(z)] := L (2)

where KL[Q||P] is the Kullback–Leibler divergence between
two distributions Q and P , which measures the nonsymmetric
difference between two probability distributions. And Q(z|x)
is an approximate posterior distribution, which avoids to solve
the intractable true posterior distribution. In [34], the VAE
model was used to paint the digits, so it needs to decide
not just which number is written but the angle, the stroke
width, and also abstract stylistic properties, so the model
uses a set of latent random variables to capture the latent
information. Inspired by this, we also use latent variables with
a stochastic layer to capture the uncertainty information in
the video captioning. Different with painting digits, the video
captioning task needs to generate different sentences based
on the content of the video, so our objective function is a
conditional probability and we use the loss function introduced
in conditional VAE (CVAE) [48], which extend the VAE
to dispose conditional probability distribution. And Krishnan
et al. [49] compared the different variational models, and they
guide us to choose an effective variational model. And there
are some works that extend the VAE model to RNN [50]–[52]
for generating speech or music signal. All these works inspire
us to extend the captioning problem to an uncertainty problem.

III. PROPOSED APPROACH

In this section, we introduce our approach for video caption-
ing, and we follow the conventional encoder–decoder frame-
work. The encoder is based purely on neural networks to gen-
erate video descriptions, and the decoder, named MS-RNNs
(see Fig. 2), is our major contribution. We first introduce the
architecture of our proposed network and then devise the loss
function and optimization.

A. Problem Formulation

Given a video v with N frames, we extract their
frame-level features, and v can be represented as v =
{v1, v2, . . . , vi , . . . , vN }, where vi ∈ R

Dv×1 and Dv is the
dimension of the frame-level features. For each v, we also have
a textual sentence a to describe it, and a includes T words,
which can be represented as a = {a1, a2, . . . , at , . . . , aT }.
Specifically, at ∈ R

Da×1 is the one-hot vector, where Da is the
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Fig. 2. End-to-end multimodal RNNs stochastic architecture for video captioning. The S-LSTM is proposed to introduce latent variables to propagate
uncertainty. During the training phase, S-LSTM enables the consistency between prior distribution and posterior distribution. Therefore, during the test phase,
we only need the learned prior distribution to support video caption generation. It is a common strategy in the VAE model. And we use the B-LSTM to infer the
posterior distribution over latent variables, so the B-LSTM layer is removed during the test phase. Our MS-RNN model uses an embedding layer for mapping
the one-hot word vectors to low-dimensional vectors (st ) and then adds the LSTM layer to explore the temporal information between the low-dimensional
vectors and generates sentence features (s′

t ). We mix the visual feature (v) and sentence features (s′
t ) with the M-LSTM layer. The latent variables (zt ) are

generated by the S-LSTM layer, which includes a backward-LSTM and a stochastic layer. Finally, the word probabilities are generated by the softmax layer
with latent variables (zt ) and mixed features (lt ). During the testing phase, the model generates words one by one with the beam search algorithm.

dimension of the vocabulary. Therefore, we have v ∈ R
Dv×N

and a ∈ R
Da×T . Given a video, our model will predict one

word at a time until we generate a textual sentence to describe
the input video. In detail, in the tth time step, our model
utilizes v and the previous words a<t to predict a word at with
the maximal probability P(at |a<t , v) until we reach the end
of the sentence. In addition, we set a mark aT+1 =< eos >
as the end of sentence.

B. Encoder

The goal of an encoder is to compute feature vectors that are
compact and representative and can capture the most related
visual information for the decoder. Specifically, it encodes
the input v into a continuous representation, which may be
a variable-sized set v = {v1, v2, . . . , vi , . . . , vN }. Thanks to
the rapid development of deep CNNs, which have made a
great success in a large-scale image recognition task [22],
object detection [53], and visual captioning [25], high-level
features can be extracted from upper or intermediate layers
of a deep CNN network. Therefore, a set of well-tested
CNN networks, such as the ResNet-152 model [22] which has
achieved the best performance in ImageNet Large-Scale Visual

Recognition Challenge, can be used as candidate encoders
for our framework. With a pretrained deep CNN (ResNet-
152 or GoogLeNet in our experiments) on the ImageNet data
set, we can apply it to each frame to extract representative
frame-level features.

For encoding the sentence, because of the sparsity of
one-hot vectors a = {a1, a2, . . . , at , . . . , aT }, like previous
works [27] and [28], we process one-hot vector with an
"embedding" method. We set a parameter matrix Us ∈ R

Ds×Da

to map the one-hot vectors a to s as follows:

s = Usa. (3)

The s ∈ R
Ds×T and s = {s1, s2, . . . , st , . . . , sT } will be input

to the next step. In addition, the end of sentence aT +1 =<
eos > is mapped to sT +1.

C. Decoder With MS-RNN

The MS-RNN consists of three core components as shown
in Fig. 2: a basic LSTM layer for extracting word-level fea-
tures, an M-LSTM layer for encoding multiview information
(visual and textual features) simultaneously and chronologi-
cally, and a backward S-LSTM layer to adequately introduce
latent variables.
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1) LSTM for Word Features: In our MS-RNN model, we use
a basic LSTM layer to take s = {s1, s2, . . . , st , . . . , sT } as
input and output word features s′ = {s′

1, s′
2, . . . , s′

t , . . . , s′
T }

with encoded temporal information

s′
t = LSTM

(
st , s′

t−1

)
, t ∈ {1, 2, . . . , T } (4)

where s′
0 = 0. More specifically, a standard LSTM unit

consists of three gates: a “forget gate” ( ft ) that decides what
information we are going to throw away from an LSTM unit;
an “input gate” (it ) that decides what new information we are
going to store in the cell state; and an “output gate” ot that
controls the extent to which the value in memory is used to
compute the output activation of the block. A standard LSTM
can be defined as

ft = σ
(
Wx f st + Wh f s′

t−1 + b f
)

it = σ
(
Wxi st + Whi s

′
t−1 + bi

)

ot = σ
(
Wxost + Whos′

t−1 + bo
)

gt = φ
(
Wxgst + Whgs′

t−1 + bg
)

ct = ft � ct−1 + it � gt

s′
t = ot � φ(ct ) (5)

where σ(·) is a sigmoid function, φ(·) denotes a hyperbolic
tangent function, ct is a cell state vector, s′

t is an output vector,
gt is a sigmoid gate, W∗ is a set of parameters, � denotes
the elementwise multiplication, and b∗ is a set of bias values.
Then, for each word st , we extracted its word features as s′

t .
2) Multimodal LSTM Layer: Next, an M-LSTM layer takes

s′ and a video-level feature v as inputs to fuse a high-level
features lt

lt = M_LSTM
(
s′

t , v, lt−1
)

t ∈ {1, 2, . . . , T }. (6)

Here, instead of using advanced but complex temporal or spa-
tial attention mechanism to select a video-level feature, we use
the basic mean pooling strategy to obtain one v

v = 1

N

N∑

i=1

vi , vi ∈ v. (7)

The motivation is that if our model using the basic way to
utilize the visual features can improve the performance of
video captioning, the advantages of our MS-RNN are manifest.
However, as shown in [28] and [29], the attention mechanism
can further boost the performance of video captioning.

M-LSTM is a novel variant of LSTM, and it not only
inherits the numerical stability of LSTM but also gener-
ates plausible features from multiview sources. We choose
LSTM as our basic RNN unit due to the following reasons:
1) it achieved great success in machine translation, speech
recognition, and image and video caption [25], [54], [55] and
2) compared with basic RNN units, it is absolutely capable of
handing the “long-term dependences” problem.

Given two modalities s′ = {s′
1, s′

2, . . . , s′
t , . . . , s′

T } and v as
the inputs, and two initialized vectors l0 and c0, an M-LSTM
can be used to fuse them and extract a higher level feature.
An M-LSTM unit can be described as follows:

lt = M_LSTM
(
s′

t , v, lt−1
)

= LSTM
([s′

t , v], lt−1
)

(8)

Fig. 3. Stochastic cell of S-LSTM. The cell receives information from rt ,
lt , and zt−1, uses rt and zt−1 to generate μqt and σqt , uses lt and zt−1 to
generate μpt and σpt through fully connected layers, and finally generates zt
from μqt , σqt , μpt , σpt , and random variables εt .

where [s′
t , v] is a concatenation vector between s′

t and v .
To obtain an abstract concept from two modalities, the M-
LSTM needs to first project s′

t and v into a common feature
space, and then, the inside gates can add them together with
an activation function. Then, in each time step t , we extracted
a higher level feature lt .

3) Backward Stochastic LSTM: In this section, we introduce
our backward S-LSTM to take the output of M-LSTM to
approximate the posterior distributions over latent variables
defined as z = {z1, z2, . . . , zT }, where zt ∈ R

Dz . The S-LSTM
consists of two units: a backward LSTM unit and a stochastic
unit. We define the output of the backward LSTM as rt .

For the backward LSTM unit in time step t , its output is
defined as

rt = B_LSTM(st+1, lt , rt+1) t ∈ {1, 2, . . . , T } (9)

where lt is the output of M-LSTM at time step t , st+1 is
the output of embedding layer, and rt+1 is initialized to zero
vector. The form of B_LSTM is similar to M_LSTM, but
it processes sequence with backward direction. We can see
that the output of backward LSTM in time step t depends
on the present input lt and st+1, and future output rt+1. This
is because in the stochastic units, the posterior distribution
of zt , which is calculated with (15), does not depend on the
past outputs and deterministic states but depend on the present
and future ones. Therefore, we propose to use the backward
LSTM to extract the future information and incorporate it with
a stochastic layer to achieve our goal.

Fig. 3 demonstrates the stochastic unit structure. To
obtain zt , we utilize an “reparameterization trick” introduced
in [34]. This trick randomly samples a set of values εt ∈
R

Dz from a standard Gaussian distribution. Therefore, εt ∼
N (0, 1). If we assume zt ∼ N (μt , diag(σ 2

t )), we can use
zt = μt + σt � εt to calculate zt . Next, we need to solve the
problem of how to learn μt and σt for zt .

In detail, the stochastic unit takes lt and zt−1 as input to
approximate μpt and σpt by two feedforward networks (i.e.,
FCp1 and FCp2). In addition, each of them contains two fully



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

connected layers

μpt = FCp1([zt−1, lt ])
σpt = exp(0.5 × FCp2([zt−1, lt ])). (10)

[zt−1, lt ] is a concatenation operation. In addition, the sto-
chastic unit also takes rt and zt−1 to approximate μqt and σqt

by two feedforward networks (i.e., FCq1 and FCq2)

μqt = FCq1([zt−1, rt ])
σqt = exp(0.5 × FCq2([zt−1, rt ])). (11)

For training, we set zt = μqt + μpt + σqt � εt , and
this method, introduced in [51], can improve the posterior
approximation by using the prior mean, while for testing,
we set zt = μpt +σpt �εt , and we set z0 as zero vector at the
beginning. To output a symbol at , a probability distribution
over a set of possible words is obtained using Up and zt

P(at+1|zt , lt ) = softmax
(
Up[zt , lt ] + b

)
(12)

where Up and b are the parameters to be learned. Next, we can
interpret the output of the softmax layer P(at+1|zt , lt ) as a
probability distribution over words.

D. Loss Function

Based on the variational inference and CVAE proposed
in [48], we define the following loss function:
log P(a|l) ≥ EQ [log P(a|z, l)] − KL[Q(z|a, l)||P(z|l)] := L

(13)

where L is the evidence lower bound of the log likelihood. The
distribution Q(z|a, l) is an approximate posterior distribution,
which aims to approximate the intractable true posterior distri-
bution. The first term EQ[log P(a|z, l)], which is an expected
log likelihood under Q(z|a, l), is written as

EQ[log P(a|z, l)]

= EQ

[
T∑

t=1

log P(at+1|zt , lt )

]

=
T∑

t=1

log P(at+1|zt , lt ). (14)

Here, we process the concatenation vector [zt , lt ] with a soft-
max layer, mentioned by (12), to approximate P(at+1|zt , lt ).

The second term KL[Q(z|a, l)||P(z|l)], namely KL term,
is the Kullback–Leibler divergence, which measures the non-
symmetric difference between two probability distributions
(i.e., Q(z|a, l) and P(z|l)). And in this paper, we choose the
variational model introduced in [49] to factorize the posterior
distribution. The posterior and prior distributions are factorized
as follows:

Q(z|a, l) =
T∏

t=1

Q(zt |zt−1, a>t , l≥t )Q(z0|a>0, l≥0) (15)

P(z|l) =
T∏

t=1

P(zt |zt−1, lt )P(z0|l0). (16)

For approximating Q(zt |zt−1, a>t , l≥t ) and P(zt |zt−1, lt ),
we first use a backward LSTM layer to encode st+1 [we have
encoded at+1 to st+1 mentioned in (3)] and lt to rt , and then
utilize the method, mentioned in Section III-C3, to approx-
imate the means and the variances of Q(zt |zt−1, a>t , l≥t )
and P(zt |zt−1, lt ). So, we can use the following function to
calculate the Kullback–Leibler divergence at the tth time step:

KL[Qt ||Pt ]

=
Dz∑

i=1

log Q(zti |zt−1, a>t , l≥t )
P(zti |zt−1, lt )

Q(zti |zt−1, a>t , l≥t )

=
Dz∑

i=1

log
σpti

σqti

+
σ 2

qti
+ (μqti

− μpti
)2

2σ 2
pti

− 1

2
. (17)

For the whole sentence generation, we calculate the global
Kullback–Leibler divergence KL[Q(z|a, l)||P(z|l)] by

KL[Q(z|a, l)||P(z|l)] =
T∑

t=1

KL[Qt ||Pt ]. (18)

In this paper, we maximize the above-proposed loss function
to learn all the parameters. More specifically, we use a back-
propagation through time algorithm to compute the gradients
and conduct the optimization with ADADELTA [56].

IV. EXPERIMENT

We evaluate our model on two standard video captioning
benchmark data sets: the widely used MSVD [58] and the
large-scale MSR-VTT [59].

MSVD: This data set consists of 1970 short video clips
collected from YouTube, with an average length of about 9 s.
In addition, this data set contains about 80 000 clip-description
pairs labeled by Amazon Mechanical Turkers (AMT). In other
words, each clip has multiple sentence descriptions. In total,
all the descriptions contain nearly 16 000 unique vocabularies.
Following previous works [27], [33], and [34], we split this
data set into a training, a validation, and a testing data set with
1200, 100, and 670 video clips, respectively.

MSR-VTT: This data set was proposed by Xu et al. [59]
in 2016. They aim to provide a new large-scale video bench-
mark for supporting video understanding, especially for the
task of translating videos into text. In total, this data set con-
tains 10k Web video clips and 200k clip-sentence pairs in total.
Each clip is annotated with 20 natural sentences by 1327 AMT
workers. This data set is collected from a commercial video
search engining, and so far, it covers the most comprehensive
categories and diverse visual content, representing the largest
data set in terms of sentences and vocabularies. We run our
experiments on their updated version with sentence quality
control. This data set is divided into three subsets: 65% for
training, 5% for validating, and 30% for testing.

A. Evaluation Metrics
To evaluate the performance of our model, we utilize the

following four evaluation metrics: bilingual evaluation under-
study [59], Metric for Evaluation of Translation with Explicit
ORdering (METEOR) [60], consensus-based image descrip-
tion evaluation (CIDEr) [61], and Recall-Oriented Understudy
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Fig. 4. Demonstration of our results, which are generated by repeatedly inputting each video five times into our trained model on the MSVD data set. Our
model is able to generate different captions based on the different hidden stochastic variables.

for Gisting Evaluation [62]. In addition, Microsoft COCO
evaluation server [63] has implemented these metrics, so we
directly call such evaluation functions to test the performance
of video captioning.

B. Experimental Settings

1) Video Appearance Feature Extraction: The experimental
results obtained by Xu et al. [59] show that applying different
pooling methods (i.e., single frame, meaning pooling, and soft

attention) obtains different performance. Both mean pooling
and soft attention perform significantly better than the single
frame. The soft attention performs slightly better than mean
pooling with 0.6% BULE@4 and 0.6% METEOR increase,
but it involves more operations. Therefore, we apply a mean
pooling to a set of frame-level features to generate a repre-
sentative video-level feature. In addition, we follow previous
work [27] to uniformly sample K = 28 frames from each clip
for controlling video frames duplication. Deep CNNs achieved
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a great success in image feature extraction. Therefore, in this
paper, we, respectively, use the ResNet-1521 and GoogLeNet,2

the two state-of-the-art CNNs, to extract video-frame level
features to analyze our model.

About GoogLeNet, Szegedy et al. [39] introduced an incep-
tion module, an optimal local sparse structure in convolutional
vision networks, and stacked these modules to construct a
22-layer inception network. The inception module is made up
of 1 × 1 convolutions, 3 × 3 convolutions, 5 × 5 convolutions,
and 3×3 max pooling layers. They used asynchronous stochas-
tic gradient descent (SGD) with 0.9 momentum and decreased
the learning rate by 4% every 8 epochs to learn the parameters
in GoogLeNet. About ResNet, He et al. [22] introduced a deep
residual learning framework, which is constructed by building
blocks, to solve the degradation problem of training accuracy.
A building block is made up of three convolutions layer: 1×1,
3 ×3, and 1 ×1 convolutions. They trained the entire network
by SGD with backpropagation. They set the learning rate as
0.1 and divided it by 10 when the error plateaus. In this paper,
we used the 152-layer ResNet with 5.7% validation top-5 error
on ImageNet.

Like most previous works on video captioning
[25], [27], [33], we extract the video-frame level features
with pretrained deep CNNs and store these features on disks
first and then feed them into the MS-RNN model both for
training and testing. We did not fine-tune or retrain these
deep CNNs but directly extract features from the pool5 layer
with parameters shared at GitHub. The results show that
ResNet-152 features perform well.

2) Sentence Preprocessing: For the MSVD data set, we tok-
enize it by first converting all words to lowercases and second
utilizing the WordPunct function from NLTK toolbox to
tokenize sentences and remove punctuations. As a result, we
obtain a vocabulary with 13 010 words from the MSVD train-
ing data set. For the MSR-VTT data set, after tokenization,
we obtain a 23 662 size vocabulary from its training data set.
For each data set, we use the one-hot vector (1-of-N encoding,
where N is the vocabulary size) to represent each word.

3) Training Details: For dealing with sentences with an
arbitrary size, we add a begin-of-sentence tag 〈bos〉 to start
each sentence and an end-of-sentence tag 〈eos〉 to end each
sentence. During training, we maximize the loss function by
taking the video and its corresponding ground-truth sentence
label as the inputs.

In addition, in our experiments, we use ADADELTA, which
can dynamically adjust the learning rate, to learn parameters
and set the beam search size as 5. Empirically, we set all
the M-LSTM unit sizes as 512, all the B-LSTM unit sizes
as 512, the dimension of latent variables as 256, and the
word embedding size as 512. Our objective function (13)
is optimized over the whole training video sentence pairs
with mini-batch 64 in size of MSVD and 256 in size of
MSR-VTT. We stop training our model until 500 epochs are
reached or until the evaluation metric does not improve on the
validation set at the patience of 20. In addition, we multiply

1https://github.com/KaimingHe/deep-residual-networks
2https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

TABLE I

PERFORMANCES OF OUR MS MODEL OBTAINED BY REPEATEDLY
INPUTTING TEST VIDEOS INTO OUR MODEL FIVE TIMES

the KL term by a scalar, which starts at 0.01 and linearly
increases to 1 over the first 20 epochs.

4) Testing Details: During testing, our model takes the
video and a begin-of-sentence tag 〈bos〉 as the inputs to gener-
ate sentences to describe the input video. After the parameters
are learned, we perform the generation with beam search [64].
All experiments are conducted on Ubuntu 14.04 with an
Intel(R) Core(TM) i7-5930K CPU, a GeForce GTX TITAN
Z GPU, and 64-GB memory cards. And Theano [65] library
is utilized to construct models.

In addition, our model incorporates latent variables for
ascertaining the true nature about video caption and has poten-
tial to describe video from different aspects. Thus, we have
repeatedly input the test videos into our trained model five
times. Each time we obtain a performance showing in Table I.
Finally, we obtain an average performance. Moreover, Fig. 4
shows some output examples.

C. Results on MSVD Data Set

In this paper, we propose to utilize the probability distrib-
ution of latent variables to depict uncertainty; thus, for each
time, our model may generate different descriptions. In this
section, we run the testing five times and report the results
in Table I. The performance of each testing is quite stable
and reasonable. By checking the generated sentences (see
Fig. 4), we can see that our model can describe a video from
various aspects, and likely in real life, human provides various
sentences to describe one video to fit their intents.

D. Component Analysis

In this paper, we design two core components: an M-LSTM
layer and an S-LSTM layer, which affect the performance
of our algorithm. In this section, we study their performance
variance with the following two settings:

1) only using M-LSTM for video captioning (M);
2) incorporating M-LSTM and S-LSTM for video caption-

ing (M+S).

In this subexperiment, we first conduct the experiments on
the MSVD data set and use ResNet to extract frame features.

Table II lists the results, which demonstrate that our
MS-RNN model with both M-LSTM and S-LSTM outper-
forms M-LSTM only on all evaluation metrics, with a 1.3%
M, 3.3% C, and 1% RL performance increase.

In Fig. 4, we show some example sentences generated by
our approach, with only M-LSTM and with both M-LSTM
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TABLE II

EXPLORING MS-RNN. THE TOP MODEL USES ONLY M-LSTM, WHILE
THE BOTTOM MODEL INTEGRATES M-LSTM AND S-LSTM. B, M, C,

AND RL ARE SHORT FOR BLUE, METEOR, CIDER, AND

ROUGE-L, RESPECTIVELY. ALL VALUES ARE

REPORTED AS PERCENTAGE (%)

TABLE III

COMPARISON OF THE COMPUTATIONAL COST. THE TOP MODEL

USES ONLY M-LSTM, WHILE THE BOTTOM MODEL INTEGRATES

M-LSTM AND S-LSTM. THE TIME COSTS OF AVERAGE
FORWARD-BACKPROPAGATION AND AVERAGE FORWARD ARE

CALCULATED DURING ONE UPDATE (BATCH SIZE = 64).
THE TESTING DURATION IS CALCULATED WITH THE

BEAM SEARCH ALGORITHM (BEAMWIDTH = 5) ON
THE MSVD TESTING DATA SET

and S-LSTM, respectively. From Fig. 4, we have the following
observations.

1) Both M-LSTM and M-LSTM+S-LSTM are able to
generate accurate descriptions for a video. In addi-
tion, the results generated by M-LSTM+S-LSTM are
generally better than the M-LSTM method, which is
consistent with the results reported in Table II.

2) M-LSTM is deterministic, and it can only generate
one sentence, while M-LSTM+S-LSTM can produce
different sentences.

3) In general, M-LSTM+S-LSTM can provide more spe-
cific, comprehensive, and accurate descriptions than
M-LSTM. For example, in the top-left example,
M-LSTM generates “a women is playing a guitar,” while
M-LSTM+S-LSTM provides “a girl is singing” and
“a women is playing with a guitar.” From the middle
bottom, we can see that M-LSTM provides a wrong
description “cucumber,” while M-LSTM+S-LSTM gen-
erates “vegetables” and a set of verbs “slicing, chopping,
and cutting.”

4) Our MS-RNN model may produce duplicate and com-
prehensive results, which is consistent with the nature
of video captioning.

5) The last column shows some wrong examples. For the
top-right example, both the methods provide wrong
descriptions, “cutting a cucumber” and “slicing a car-
rot.” This is mainly because the MSVD data set contains
many videos about cooking and few videos about folding
paper, which leads to an overfitting problem, In addition,
the right middle is also inaccurate. This is because
both our models only take video appearance features
as inputs and ignores the motion features. For the right
bottom example, our model does not correctly identify
the number of objects in some cases.

TABLE IV

COMPARING THE QUALITY OF SENTENCE GENERATION ON DIFFERENT
VIDEO SPATIAL REPRESENTATIONS ON THE MSVD DATA SET. (V),

(G), AND (R) STANDS FOR THE VGGNET, GOOGLENET, AND

RESNE, RESPECTIVELY. THIS EXPERIMENT IS CONDUCTED ON

THE MSVD DATA SET. ALL THE VALUES ARE REPORTED
AS PERCENTAGE (%)

E. Comparison of Computational Cost

In this section, we compare computational time cost
between M-LSTM and M-LSTM+S-LSTM and show the
results in Table III. The training time cost of M-LSMT+S-
LSTM is longer than M-LSTM, and the testing time cost is
close to that of M-LSTM. The results are reasonable because
there are three LSTM layers in MS-RNN during the training
phase, but two LSTM layers during the testing phase.

F. Comparison Results on MSVD Data Set

In this section, we conduct experiments to examine how dif-
ferent video representations work on video captioning, as well
as comparing our model with existing approaches. In addition,
all the approaches in these subexperiments only take one type
video representation extracting from VggNet (V), GoogleNet
(G), or ResNet (R). We conduct our experiments on the MSVD
data set.

Table IV lists the experimental results. From Table IV,
we have following observations.

1) With only appearance features, our MS-RNN (R) model
achieves the best performance on all evaluation metrics.
Compared with the state-of-the-art method MFA-LSTM
(R), our model achieves significantly better performance
with 1.6%, 2.8%, 3%, 2.9%, 1.6%, and 5% increase on
B@1, B@2, B@3, B@4, M, and C, respectively.

2) For video captioning task, the RestNet-based video
representation performs better than both VggNet-based
and GoogleNet-based video features. Specifically,
our model RestNet feature performs better than
GoogleNet features. For the whole experimental results,
the approaches (SCN-LSTM and MFA-LSTM) with
ResNet-based features perform better than the methods
with GoogleNet or VggNet-based features.

3) Compared with the methods using attention mecha-
nisms, e.g., temporal attention [27], our MS-RNN (R)
achieves even better results with 3.8%, 9.4%, 12.3%,
12.7%, and 4.8% increase on B@1, B@2, B@3, B@4,
and M by using a simple mean pooling strategy. This
indicates the advantages of our proposed MS-LSTM.

We also compare our methods with the others using multiple
features. Specifically, in this section, we compare our model
using only appearance features with six state-of-the-art
methods: LSTM-E(V+C) [26], spatial attention (SA) (G+3-
DCNN) [27], HRNE-AT(G+C) [32], h-RNN(V+C) [33],
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TABLE V

PERFORMANCE COMPARISON WITH METHODS USING BOTH
APPEARANCE AND MOTION VIDEO FEATURES. THIS

EXPERIMENT IS CONDUCTED

ON THE MSVD DATA SET

TABLE VI

EXPERIMENT RESULTS ON THE MSR-VTT DATA SET. SA-LSTM RUNS
EMPLOY SOFT ATTENTION OVER THE FRAME-LEVEL FEATURES

EXTRACTED FROM DEEP NETWORK, WHILE MP-LSTM AND OUR

METHOD UTILIZE MEAN POOLING OVER THE FRAME-LEVEL
VIDEO FEATURES

MFA-LSTM(R+C) [29], and SCN-LSTM(R+C) [66], which
make use of both appearance and motion video features.
Here, V and R are short for VggNet and ResNet, which are
used to extract appearance features. 3-D and C are short for
3-DCNN and C3D, which are used to generate video motion
features.

The experimental results are shown in Table V. Although
our model only uses appearance features, it performs better
than the existing methods on B@2 (72.6%), B@3 (63.5%),
B@4 (53.3%), and M (33.8%) and achieves comparable results
on B@1 (82.9%) and C (74.8%).

G. Comparison Results on MSR-VTT Data Set

In this section, we compare our method with MP-LSTM
[40] and SA-LSTM [27] on the MSR-VTT data set. In addi-
tion, to obtain the appearance features, the MP-LSTM and
our MS-RNN are based on the mean pooling strategy, while
SA-LSTM is based on a soft-attention mechanism. In theory,
soft attention is more complex than mean pooling but usually
provides better visual features. The experimental results are
shown in Table VI, and we have the following observations.

MS-RNN
1) gains a promising performance with 39.8% B@4, 26.1%

M, 40.9% C, and 59.3% RL on the MSR-VTT data set.
2) Overall with the same visual input (VGG-19, VGG-

19+C3D, or C3D), SA-LSTM performs better than
MP-LSTM. However, SA is based on the soft atten-
tion. In other words, in theory, SA-LSTM takes better
visual features as inputs. Compared with MP-LSTM, our
MS-RNN (R) outperforms MP-LSTM (VGG-19+C3D)
with 4% B@4 and 0.8% M increase. Compared

with SA-LSTM, our MS-RNN (R) outperforms SA-
LSTM(VGG-19+C3D) with 3.2% B@4. Compared
with MFA-LSTM(R+C), our model achieves compa-
rable results on B@4, M, and RL by using single
feature (R).

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an MS-RNN framework for video
captioning. This paper has shown how to extend the modeling
capabilities of RNN by approximating both prior distribution
and true posterior distribution with a nonlinear latent layer
(S-LSTM). In addition, MS-RNN achieves the state-of-the-
art performance with only mean video appearance features
and is comparable with the counterparts, which take both
video appearance and motion features. Last but not least,
the proposed model can be applied to a wide range of video
analysis applications.

In the future, we will integrate the state-of-the-art attention
mechanism [27] with our model to further improve the video
captioning performance. Moreover, the motion feature will be
considered.

REFERENCES

[1] L. Zhang, Y. Han, Y. Yang, M. Song, S. Yan, and Q. Tian, “Discovering
discriminative graphlets for aerial image categories recognition,” IEEE
Trans. Image Process., vol. 22, no. 12, pp. 5071–5084, Dec. 2013.

[2] J. Song, L. Gao, F. Nie, H. T. Shen, Y. Yan, and N. Sebe, “Optimized
graph learning using partial tags and multiple features for image
and video annotation,” IEEE Trans. Image Process., vol. 25, no. 11,
pp. 4999–5011, Nov. 2016.

[3] S. Cai, W. Zuo, and L. Zhang, “Higher-order integration of hierarchical
convolutional activations for fine-grained visual categorization,” in Proc.
ICCV, Oct. 2017, pp. 511–520.

[4] D. Tao, Y. Guo, Y. Li, and X. Gao, “Tensor rank preserving discriminant
analysis for facial recognition,” IEEE Trans. Image Process., vol. 27,
no. 1, pp. 325–334, Jan. 2018.

[5] X. Zhu, X.-Y. Jing, X. You, W. Zuo, S. Shan, and W.-S. Zheng, “Image
to video person re-identification by learning heterogeneous dictionary
pair with feature projection matrix,” IEEE Trans. Inf. Forensics Security,
vol. 13, no. 3, pp. 717–732, Mar. 2018.

[6] D. Tao, Y. Wen, and R. Hong, “Multicolumn bidirectional long short-
term memory for mobile devices-based human activity recognition,”
IEEE Internet Things J., vol. 3, no. 6, pp. 1124–1134, Dec. 2016.

[7] X. Wang, L. Gao, P. Wang, X. Sun, and X. Liu, “Two-stream
3-D convNet fusion for action recognition in videos with arbitrary size
and length,” IEEE Trans. Multimedia, vol. 20, no. 3, pp. 634–644,
Mar. 2018.

[8] X. Wang, L. Gao, J. Song, X. Zhen, N. Sebe, and H. T. Shen, “Deep
appearance and motion learning for egocentric activity recognition,”
Neurocomputing, vol. 275, pp. 438–447, Jan. 2018.

[9] D. Tao, Y. Guo, M. Song, Y. Li, Z. Yu, and Y. Y. Tang, “Person re-
identification by dual-regularized kiss metric learning,” IEEE Trans.
Image Process., vol. 25, no. 6, pp. 2726–2738, Jun. 2016.

[10] T. Liu, D. Tao, M. Song, and S. J. Maybank, “Algorithm-dependent
generalization bounds for multi-task learning,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 2, pp. 227–241, Feb. 2017.

[11] X. Liu, D. Tao, M. Song, L. Zhang, J. Bu, and C. Chen, “Learning to
track multiple targets,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 5, pp. 1060–1073, May 2015.

[12] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe, “Quantization-based
hashing: A general framework for scalable image and video retrieval,”
Pattern Recognit., vol. 75, pp. 175–187, Mar. 2018.

[13] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 769–790, Apr. 2017.

[14] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-
supervised video hashing with hierarchical binary auto-encoder,” IEEE
Trans. Image Process., vol. 27, no. 7, pp. 3210–3221, Jul. 2018.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: FROM DETERMINISTIC TO GENERATIVE: MS-RNNs FOR VIDEO CAPTIONING 11

[15] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen, “Unsuper-
vised deep hashing with similarity-adaptive and discrete optimization,”
IEEE Trans. Pattern Anal. Mach. Intell., to be published.

[16] M. Hu, Y. Yang, F. Shen, N. Xie, and H. T. Shen, “Hashing with angular
reconstructive embeddings,” IEEE Trans. Image Process., vol. 27, no. 2,
pp. 545–555, Feb. 2018.

[17] A. Kojima, T. Tamura, and K. Fukunaga, “Natural language description
of human activities from video images based on concept hierarchy of
actions,” Int. J. Comput. Vis., vol. 50, no. 2, pp. 171–184, Nov. 2002.

[18] M. W. Lee, A. Hakeem, N. Haering, and S.-C. Zhu, “SAVE: A frame-
work for semantic annotation of visual events,” in Proc. Comput. Vis.
Pattern Recognit., Jun. 2008, pp. 1–8.

[19] M. U. G. Khan, L. Zhang, and Y. Gotoh, “Human focused
video description,” in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 1480–1487.

[20] P. Hanckmann, K. Schutte, and G. J. Burghouts, “Automated textual
descriptions for a wide range of video events with 48 human actions,”
in Proc. ECCV, 2012, pp. 372–380.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2014, pp. 1–14.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 770–778.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[24] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” CoRR, 2014.

[25] S. Venugopalan, M. Rohrbach, J. Donahue, R. J. Mooney, T. Darrell,
and K. Saenko, “Sequence to sequence—Video to text,” in Proc. Int.
Conf. Comput. Vis., 2015, pp. 4534–4542.

[26] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui, “Jointly modeling embedding
and translation to bridge video and language,” in Proc. Comput. Vis.
Pattern Recognit., Jul. 2016, pp. 4594–4602.

[27] L. Yao et al., “Describing videos by exploiting temporal structure,” in
Proc. Int. Conf. Comput. Vis., Dec. 2015, pp. 4507–4515.

[28] Z. Guo, L. Gao, J. Song, X. Xu, J. Shao, and H. T. Shen, “Attention-
based LSTM with semantic consistency for videos captioning,” in Proc.
ACM MM, 2016, pp. 357–361.

[29] X. Long, C. Gan, and G. de Melo, “Video captioning with multi-faceted
attention,” CoRR, 2016.

[30] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with
semantic attention,” in Proc. Comput. Vis. Pattern Recognit., Jul. 2016,
pp. 4651–4659.

[31] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting image captioning
with attributes,” CoRR, 2016.

[32] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang, “Hierarchical recurrent
neural encoder for video representation with application to captioning,”
in Proc. Comput. Vis. Pattern Recognit., Jul. 2016, pp. 1029–1038.

[33] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video paragraph cap-
tioning using hierarchical recurrent neural networks,” in Proc. Comput.
Vis. Pattern Recognit., Jul. 2016, pp. 4584–4593.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. ICLR, 2014.

[35] J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179–211, Mar. 1990.

[36] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc.
INTERSPEECH, 2010, pp. 1045–1048.

[37] A. Farhadi et al., “Every picture tells a story: Generating sentences from
images,” in Proc. ECCV, 2010, pp. 15–29.

[38] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and B. Schiele,
“Translating video content to natural language descriptions,” in Proc.
Int. Conf. Comput. Vis., Dec. 2013, pp. 433–440.

[39] C. Szegedy et al., “Going deeper with convolutions,” in Proc. Comput.
Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[40] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. J. Mooney, and
K. Saenko, “Translating videos to natural language using deep recurrent
neural networks,” in Proc. NAACL HLT, 2015, pp. 1494–1504.

[41] L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen, “Video captioning
with attention-based LSTM and semantic consistency,” IEEE Trans.
Multimedia, vol. 19, no. 9, pp. 2045–2055, Sep. 2017.

[42] J. Song, Z. Gao, L. Guo, W. Liu, D. Zhang, and H. T. Shen, “Hierarchical
LSTM with adjusted temporal attention for video captioning,” in Proc.
IJCAI, 2017, pp. 2737–2743.

[43] Z. Wang et al., “Diverse image captioning via grouptalk,” in Proc. IJCAI,
2016, pp. 2957–2964.

[44] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?” in Proc. NIPS, 2017, pp. 5580–5590.

[45] Y. Li and Y. Gal, “Dropout inference in Bayesian neural networks with
alpha-divergences,” in Proc. ICML, 2017, pp. 2052–2061.

[46] Y. Gal, R. McAllister, and C. E. Rasmussen, “Improving PILCO with
Bayesian neural network dynamics models,” in Proc. Data-Efficient
Mach. Learn. Workshop (ICML), 2016, pp. 1–7.

[47] L. Uusitalo, A. Lehikoinen, I. Helle, and K. Myrberg, “An overview
of methods to evaluate uncertainty of deterministic models in decision
support,” Environ. Model. Softw., vol. 63, pp. 24–31, Jan. 2015.

[48] K. Sohn, H. Lee, and X. Yan, “Learning structured output representa-
tion using deep conditional generative models,” in Proc. NIPS, 2015,
pp. 3483–3491.

[49] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep Kalman filters,” CoRR,
2015.

[50] I. V. Serban et al., “A hierarchical latent variable encoder-decoder model
for generating dialogues,” in Proc. AAAI, 2017, pp. 3295–3301.

[51] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther, “Sequen-
tial neural models with stochastic layers,” in Proc. NIPS, 2016,
pp. 2199–2207.

[52] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio,
“A recurrent latent variable model for sequential data,” in Proc. NIPS,
2015, pp. 2980–2988.

[53] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS,
2015, pp. 91–99.

[54] X. Chen and C. L. Zitnick, “Learning a recurrent visual representation
for image caption generation,” CoRR, 2014.

[55] H. Fang et al., “From captions to visual concepts and back,” in Proc.
Comput. Vis. Pattern Recognit., 2015, pp. 1473–1482.

[56] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” CoRR,
2012.

[57] D. L. Chen and W. B. Dolan, “Collecting highly parallel data for
paraphrase evaluation,” in Proc. ACL HLT, 2011, pp. 190–200.

[58] J. Xu, T. Mei, T. Yao, and Y. Rui, “MSR-VTT: A large video description
dataset for bridging video and language,” in Proc. Comput. Vis. Pattern
Recognit., Jun. 2016, pp. 5288–5296.

[59] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proc. ACL, 2002,
pp. 311–318.

[60] M. J. Denkowski and A. Lavie, “Meteor universal: Language specific
translation evaluation for any target language,” in Proc. Workshop Statist.
Mach. Transl., 2014, pp. 376–380.

[61] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: Consensus-based
image description evaluation,” in Proc. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 4566–4575.

[62] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Proc. Workshop Text Summarization Branches Out, 2004, p. 10.

[63] X. Chen et al., “Microsoft COCO captions: Data collection and evalu-
ation server,” Comput. Sci., 2015.

[64] D. Furcy and S. Koenig, “Limited discrepancy beam search,” in Proc.
IJCAI, Jul. 2005, pp. 125–131.

[65] J. Bergstra et al., “Theano: A CPU and GPU math expression compiler,”
in Proc. Python Sci. Comput. Conf. (SciPy), Austin, TX, USA, Jun. 2010.

[66] Z. Gan et al., “Semantic compositional networks for visual captioning,”
CoRR, 2016.

Jingkuan Song received the Ph.D. degree in infor-
mation technology from The University of Queens-
land, Brisbane, QLD, Australia, in 2014.

He was with Columbia University, New York,
NY, USA, as a Post-Doctoral Research Scientist,
from 2016 to 2017, and the University of Trento,
Trento, ON, Canada, as a Research Fellow, from
2014 to 2016. He is currently a Professor with the
University of Electronic Science and Technology
of China, Chengdu, China. His current research
interests include large-scale multimedia retrieval,

image/video segmentation, and image/video annotation using hashing, graph
learning, and deep learning techniques.

Dr. Song is a Guest Editor of IEEE TRANSACTIONS ON MULTIMEDIA and
World Wide Web Journal and the Area Chair of ACM Multimedia 2018.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Yuyu Guo is currently pursuing the master’s degree
with the School of Computer Science and Engineer-
ing, University of Electronic Science and Technol-
ogy of China, Chengdu, China.

He is currently involved in image/video under-
standing and image/video captioning.

Lianli Gao received the Ph.D. degree in informa-
tion technology from The University of Queensland,
Brisbane, QLD, Australia.

She is currently an Associate Professor in com-
puter science with the Future Media Center and
the School of Information Technology and Electrical
Engineering, University of Electronic Science and
Technology of China, Chengdu, China. Her current
research interests include machine learning, deep
learning, and computer vision.

Xuelong Li (M’02–SM’07–F’12) is currently a Full Professor with the Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,
Xi’an, China.

Alan Hanjalic (M’99–SM’08–F’16) is currently a
Professor and the Head of the Multimedia Comput-
ing Group, Delft University of Technology, Delft,
The Netherlands. His current research interests
include multimedia search, recommender systems,
and social media analytics.

Dr. Hanjalic was the Chair of the Steering Com-
mittee of the IEEE TRANSACTIONS ON MULTIME-
DIA. He was a Keynote Speaker at the IEEE Inter-
national Workshop on Multimedia Signal Processing
2013, the International Multimedia Modeling Con-

ference 2012, and the Pacific-Rim Conference on Multimedia 2007. He has
also been a General or Program (Co-)Chair of the organizing committees
of multimedia conferences, such as ACM Multimedia, ACM International
Conference on Content-Based Image and Video Retrieval/ACM International
Conference on Multimedia Retrieval, and IEEE International Conference on
Multimedia and Expo. He has been a member of the Editorial Board of several
scientific journals in the multimedia field, including the IEEE TRANSACTIONS

ON MULTIMEDIA, the IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,
the ACM Transactions on Multimedia, and the International Journal of
Multimedia Information Retrieval. He is an Associate Editor-in-Chief of the
IEEE Multimedia Magazine.

Heng Tao Shen received the B.Sc. degree (Hons.)
and the Ph.D. degree from the Department of Com-
puter Science, National University of Singapore,
Singapore, in 2000 and 2004, respectively.

He then joined The University of Queensland,
Brisbane, QLD, Australia, as a Lecturer, a Senior
Lecturer, a Reader, and became a Professor in 2011.
He is currently a Professor of the National Thousand
Talents Plan, the Dean of the School of Computer
Science and Engineering, and the Director of the
Center for Future Media, University of Electronic

Science and Technology of China, Chengdu, China. He is also an Hon-
orary Professor with The University of Queensland. His current research
interests include multimedia search, computer vision, artificial intelligence,
and big data management. He has made continuous contributions to big
data indexing and retrieval and developed the first real-time near-duplicate
video retrieval system. He has published over 200 peer-reviewed papers,
among which over 140 appeared in Chinese Computing Federation a ranked
publication venues, such as ACM Multimedia, IEEE Conference on Computer
Vision and Pattern Recognition, International Conference on Computer Vision,
AAAI Conference on Artificial Intelligence, International Joint Conference
on Artificial Intelligence, The ACM Special Interest Group on Management
of Data, International Conference on Very Large Data Bases, International
Conference on Data Engineering, ACM Transactions on Information Systems,
IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, and VLDB Journal.


