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A B S T R A C T

Water quality is under threat due to the presence of pathogenic and antibiotic-resistant bacteria. Escherichia coli 
(E. coli) serves as an indicator of faecal contamination and the potential presence of other harmful pathogens. 
Understanding E. coli concentrations helps in assessing the overall health risks associated with waterborne dis
eases and developing effective water management strategies. Therefore, we developed the first large-scale model, 
GloWPa-Ecoli C1 to simulate E. coli loads and concentrations in rivers and apply this model to China. The model 
provides the first comprehensive overview of microbial water quality across China’s rivers. The model simulates 
E. coli concentrations in 2020 to range from 10− 1.2 to 106.3 CFU/L, with 45.6 %–78.1 % of rivers exhibiting poor 
microbial water quality. Major hotspots of E. coli pollution are Haihe, Huaihe and Pearl River Basins. Direct 
discharge of human faecal waste contributes 80.2 % of the total E. coli load, while directly discharged livestock 
waste accounts for 13.1 %. To mitigate E. coli pollution in rivers in China, we recommend increasing human 
faecal waste collection rates, expanding wastewater treatment plant (WWTP) coverage, phasing out primary 
treatment WWTPs and eliminating direct livestock faecal waste discharge, particularly from smallholder farms. 
The study underscores the urgent need to improve microbial water quality in China’s rivers. The findings provide 
actionable insights to inform policy development aimed at safeguarding water quality and public health. 
Furthermore, the modelling approach is applicable to other regions and microorganisms, offering a foundation 
for developing models to address antibiotic-resistant bacteria and other emerging water quality challenges.

1. Introduction

Water quality is at risk due to the presence of pathogenic and 
antibiotic-resistant bacteria, as these can pose serious risks to public 
health (Mbanga et al., 2020; Rose et al., 2023). One-third of river 
stretches in Latin America, Africa and Asia are affected by severe 
pathogen pollution (United Nations Environment Programme (UNEP), 
2016). To assess water quality and safeguard human health, Escherichia 
coli (E. coli) has been widely applied as faecal indicator organism (Jang 
et al., 2017). According to the World Health Organization (World Health 
Organization (WHO), 2022), E. coli detection in water indicates recent 
faecal contamination and the potential presence of pathogens such as 

Salmonella, Shigella, and viruses like norovirus and hepatitis A. E. coli 
resistant to third-generation cephalosporins and carbapenem is identi
fied as bacterial priority pathogen of public health importance (World 
Health Organization (WHO), 2024). Additionally, certain E. coli strains 
are pathogenic, such as E. coli O157:H7 (Kaper et al., 2004). As esti
mated by Murray et al. (2022), E. coli is responsible for 900,000 
resistance-associated deaths in 2019 globally. This underscores the 
importance of monitoring E. coli levels to preserve microbial water 
quality, reduce the potential risk of development and transfer of anti
biotic resistance and eventually, protect human health.

Surface waters in China are widely used for various domestic pur
poses, including irrigation, recreation, fishing and as sources for 
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drinking water after treatment (Han et al., 2020; Zhu et al., 2023). 
Nevertheless, there is a lack of overview of E. coli concentrations in 
rivers as well as the overall microbial water quality in China. Despite 
that China’s surface water quality standards (Ministry of Environmental 
Protection (MEP), 2002) have included faecal coliforms (FC) as a 
pathogenic microorganism indicator, the current surface water quality 
in China is still assessed solely by physicochemical indicators. Conse
quently, environmental authorities either do not monitor faecal coliform 
concentrations or withhold the data when monitoring is conducted, 
leading to a scarcity of information on both FC and E. coli 
concentrations.

Given these circumstances and considering that regular monitoring 
of the microbial water quality of rivers is costly and time-consuming, 
process-based modelling can be an efficient way to understand exist
ing pollution dynamics. There are many models available for the 
simulation of E. coli concentrations: the Soil and Water Assessment Tool 
(SWAT) model has been applied in several catchments around the world 
(Coffey et al., 2010; Coffey et al., 2013; Iqbal & Hofstra, 2018); the 
Watershed Assessment Model (WAM) has been used in New Zealand 
(Collins & Rutherford, 2004); and the MIKE 21 FM model with ECOLab 
module has also been applied, for example in Bangladesh (Islam et al., 
2018), to simulate E. coli concentrations. However, these models are 
small-scale, focusing on specific watersheds or river basins and requiring 
detailed input data, making them unsuitable for assessing microbial 
water quality in a large scale. Models for a larger scale have also been 
developed. Reder et al. (2015) adapted the WorldQual model to quantify 
historical FC concentrations in European rivers, and Jones et al. (2023)
and United Nations Environment Programme (UNEP), 2016 simulated 
global FC concentrations. FC concentrations in China are included in 
these models, but a detailed source analysis specific to China is lacking. 
This underscores the need for a water quality model that incorporates 
local data and a more refined calculation methodology, along with a 
comprehensive source assessment to simulate E. coli in rivers in China.

Therefore, the objective of this study is to simulate spatially explicit 
E. coli concentrations in China’s rivers for 2020, identify critical hotspots 
and sources, and explore priorities for E. coli pollution mitigation. We 
adapted and advanced the Global Waterborne Pathogen (GloWPa) 
model, which simulates waterborne pathogen load and concentrations 
at global, regional and national scales (Okaali et al., 2021; Vermeulen 
et al., 2017; Vermeulen et al., 2019), into the GloWPa-Ecoli C1 model. 
The model calculates E. coli load to rivers from humans and 14 livestock 
species and E. coli concentrations in rivers. It accounts for the treatment 
of human faecal waste in wastewater treatment plants (WWTPs) and 
onsite sanitation systems, storage and treatment of livestock manure in 
different breeding systems, the seasonality of livestock manure appli
cation to land and the E. coli concentration attenuation when travelling 
in rivers. Two scenarios were developed to evaluate the impact of direct 
discharge of faecal waste into rivers on in-stream E. coli concentrations. 
Modelled E. coli concentrations in rivers were compared with measured 
data to evaluate the model performance. Model outcomes were used to 
identify hotspots of high E. coli concentrations, evaluate the microbial 
water quality and attribute E. coli to different sources for all of China and 
its nine main river basins. In addition, priorities and opportunities for 
E. coli pollution management were explored. Our findings provide a 
comprehensive understanding of E. coli pollution dynamics in China’s 
rivers and facilitate the development of effective microbial water quality 
control policies.

2. Methodology

The GloWPa-Ecoli C1 model is developed and advanced based on the 
GloWPa-Crypto C1 model (Vermeulen et al., 2019). Fig. S1 presents a 
schematic diagram of the modelling framework. After being excreted, 
E. coli in human faeces reach rivers in four ways: 1) with effluent from 
sewers connected to wastewater treatment plants, 2) with discharge 
from onsite sanitation systems, 3) through direct discharge of untreated 

human faeces and 4) with runoff carrying faeces from land to rivers. For 
livestock, four manure reservoirs are accounted for: manure 1) directly 
applied on land, 2) dropped directly on land during livestock grazing, 3) 
applied on land after storage and 4) directly discharged into rivers after 
treatment. From land, E. coli is brought to rivers by runoff. The decay of 
E. coli during wastewater treatment and manure storage is taken into 
account. E. coli decay in rivers affected by temperature, solar radiation 
and sedimentation is incorporated as well. From the E. coli load in the 
rivers, the concentration of the bacteria in rivers is estimated by dividing 
the E. coli load by river discharge. The GloWPa-Ecoli C1 model has a 
spatial resolution of 0.5◦ × 0.5◦ and represents the year 2020 with a 
monthly time step. The load and concentrations are evaluated for nine 
major river basins in China: Songliao, Haihe, Huaihe, Continental, Pearl, 
Yellow, Yangtze, Southeast and Southwest River Basins. Locations of the 
river basins are shown in Fig. S2. Key input variables and data sources 
are listed in Supplementary Material S1. Detailed calculation processes 
are presented in the following sections.

2.1. E. coli from humans to land and rivers

E. coli excretion from humans within faeces is calculated as follows: 

EhumanE,i = Cfaeces × Ww × Pi × 365 (1) 

where EhumanE,i is the annual E. coli excretion in province i (CFU); Cfaeces 
is the mean E. coli concentration in faeces; Ww is the daily mean faeces 
wet weight and Pi is the population in province i (cap). Cfaeces is 3.83 ×
107 CFU/g, calculated from (Farnleitner et al., 2010; Islam et al., 2019; 
Masters et al., 2015) and Ww is 243 g/cap/day (Rose et al., 2015). 
Population data of China is from WorldPop population density of 2020 
(WorldPop, 2020).

After excretion, faeces enter the environment through various sani
tation systems as in Musaazi (2020). These systems differ between urban 
and rural areas. The method to identify urban and rural areas in China is 
described in Supplementary Material S2. Fractions of human sanitation 
systems in China for 2018 from the WHO/UNICEF Joint Monitoring 
Program (JMP) are applied. The sanitation systems include the 
following categories: “flush to piped sewer system”, “flush to else
where”, pit latrine with slab, composting toilet, open defecation and 
other unimproved sanitation (World Health Organization and United 
Nations Children’s Fund (WHO/UNICEF), 2023). In some of these 
sanitation systems, E. coli removal occurs, as explained in Sections 2.1.1 
and 2.1.2. The E. coli load from each sanitation system is normalized by 
the province’s population and multiplied by the population of each grid 
cell to estimate the human E. coli load for that cell. The monthly human 
E. coli load to land/rivers is calculated by dividing the annual load by 12.

2.1.1. E. coli from WWTPs
Faeces flushed to piped sewer systems are treated in WWTPs and 

discharged to rivers. Associated E. coli load discharged from WWTPs to 
rivers is calculated as follows: 

EWWTP =
( (

EhumanE,i×TWWTP,i×(
fp,i×

(
1 − REp

)
×fEp+fs,i×(1 − REs)×fEs+ft,i×(1 − REt)×fEt

))/
Pi

)
×Pg,i

(2) 

where EWWTP is the annual E. coli load from WWTPs to rivers in a grid 
cell (CFU); TWWTP,i is wastewater treatment rate in province i; fp,i, fs,i, 
and ft,i is the fractions of WWTPs practising primary, secondary or ter
tiary treatment; REp, REs, REt are the removal efficiencies of E. coli by 
primary, secondary and tertiary treatment; fEp, fEs and fEt are percent
ages of E. coli in the effluent as opposed to sludge after primary, sec
ondary and tertiary treatment; Pg,i is the population in a grid cell in 
province i (cap). It is assumed that all the WWTPs in China include a 
disinfection step, according to the Code for Design of Outdoor Waste
water Engineering (Ministry of Housing and Urban-Rural Construction 
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of the People’s Republic of China (MHURC), 2016). Therefore, an 
additional 1.5 log-reduction of E. coli during disinfection is summarized 
from the literature and incorporated into the removal efficiencies. For 
details regarding E. coli load from WWTPs, see Supplementary Material 
S3.

2.1.2. E. coli from onsite sanitation systems and other sanitation types
Onsite sanitation systems (referred to as “toilets” hereafter) include 

pit latrines with slab and composting toilets. Human faeces are initially 
contained in toilets, where E. coli, associated with the solid matter, 
undergoes decay. Part of the waste is treated (ftt,i) or covered and buried 
in the subsurface (ftcb,i), consequently the associated E. coli cannot reach 
rivers. Part of the waste (Rt,dump,i) is dumped on site (Equation (6)), and 
the E. coli associated can be brought to the rivers by runoff (in Section 
2.3). The remaining (Rt,dis,i) is discharged to surface waters due to the 
flushing of pit latrines or illegal toilet emptying (Musaazi, 2020): 

Etoilet =
((

EhumanE,i × ft,i ×
(

1 − ftt,i − ftcb,i

)
× REt × Rt,dis,i

) /
Pi

)
× Pg,i

(3) 

where Etoilet is the annual E. coli emission from toilets to rivers in a grid 
cell (CFU); ft,i is the fraction of people using toilets in province i; ftt,i is 
the fraction of waste from toilets treated in province i; ftcb,i is the fraction 
of waste from toilets covered and buried in province i; REt is the removal 
rate of E. coli in toilets (derived from (Musaazi, 2020), Rt,dis,i is the 
fraction of human waste discharged to rivers from toilets in province i. 
ftt,i, ftcb,i is taken from the input dataset (GWPP, 2020b) of Pathogen 
Flow & Mapping Tool, which is an interactive online platform developed 
by the Global Water Pathogens Project for understanding and visuali
zation of pathogen fate and transport across different sanitation systems 
(GWPP, 2020a).

E. coli from “flush to elsewhere” is assumed to be directly discharged 
into rivers in both urban and rural areas, as this sanitation system is 
categorized as unimproved (World Health Organization and United 
Nations Children’s Fund (WHO/UNICEF), 2018): 

Eflush to elsewhere =
((

EhumanE,i × fflush to elsewhere,i

/
Pi

)
× Pg,i (4) 

where Eflush to elsewhere is the annual E. coli emission from people prac
tising “flush to elsewhere” to rivers in a grid cell (CFU); fflush to elsewhere,i 
is the fraction of people applying “flush to elsewhere” in province i.

Open defecation in urban areas is defined as direct discharge due to 
the lack of space to drop faeces on land (Equation (5)), and in rural 
areas, E. coli from open defecation ends up on land (Equation (6)) 
(Vermeulen et al., 2015). Other unimproved sanitation is defined as 
direct discharge in both urban and rural areas as it is unknown how 
faeces are treated. E. coli load from other direct discharge sources (open 
defecation in urban areas and other unimproved sanitation) to the rivers 
is calculated as follows: 

Eother direct discharge =
((

EhumanE,i ×
(

fopen,u,i + fo,i

)/
Pi

)
× Pg,i (5) 

where Eother direct discharge is the annual E. coli emission from other direct 
discharge sources to rivers in a grid cell (CFU); fopen,u,i is the fraction of 
people practising open defecation in urban areas in province i; fo,i is the 
fraction of people using other unimproved sanitation in province i.

E. coli load from toilets and open defecation in rural areas to land 
constitutes human diffuse sources: 

where Ehuman diffuse land is the annual E. coli emission from human diffuse 
sources to land in a grid cell (CFU); fopen,r,i is the fraction of people 
practising open defecation in rural areas in province i; Rt,dump,i is the 
fraction of human waste dumped on site from toilets in province i, taken 
from (GWPP, 2020b). The transportation of E. coli on land to rivers from 
human diffuse sources is calculated in Section 2.3.

2.2. E. coli from livestock to land and rivers

The calculation of E. coli from livestock to land and rivers is adapted 
from Vermeulen et al. (2017). In brief, manure production and E. coli 
excretion with manure is calculated for 14 main livestock species in 
China: pigs, sheep, goats, dairy cows, beef cattle, horses, donkeys, 
mules, camels, laying hens, broilers, meat ducks, laying ducks and 
rabbits in three livestock breeding systems: smallholder, medium and 
industrial farms. Livestock manure fate depends on storage versus 
grazing. In the grazing seasons, manure from livestock grazing on 
grassland (dairy cows, beef cattle, goats and sheep) is directly dropped 
on land. In other months, livestock is kept in house where the manure is 
collected and stored. In areas where livestock are not usually grazing, it 
is assumed that grazing only happens in smallholder farms and happens 
all year around. The remainder of the manure enters storage systems. 
Manure treatment in different storage systems for the 14 livestock spe
cies in the three livestock breeding systems is considered. To capture the 
seasonality of the E. coli load and concentrations, the timing of the 
application of stored manure on land is accounted for. It is assumed that 
manure is applied on land during the planting season of the three main 
staple crops in China: rice, maize and wheat. Moreover, a portion of the 
manure from livestock is directly discharged into the rivers after treat
ment in Southeast, Pearl, Haihe, Huaihe, Yellow and Yangtze River 
Basins, as it is assumed only in these river basins, livestock farms could 
access rivers to directly discharge livestock waste after treatment. 
Detailed calculation procedures of E. coli from livestock to land (Elive

stock, land, m) and directly discharged into the rivers (ElivestockD) are 
elaborated in Supplementary Material S4.

2.3. E. coli transport from land to rivers

After rainfall, E. coli is released from human faeces and livestock 
manure applied on the field, and is subsequentially brought to rivers via 
runoff (Cho et al., 2016). For simulating the process of E. coli releasing 
from manure, the approach from the WAM model (Collins & Rutherford, 
2004) is applied, which considers the relationship of E. coli released 
from manure with the runoff amount: 

fre =
O
Kt
,when O < Kt 

fre = 1,when O > Kt (7) 

where fre is the E. coli release rate (%); O is the monthly averaged surface 
run-off (mm/d) from the Variable Infiltration Capacity (VIC) model, a 
grid-based macroscale hydrological model (Liang et al., 1994), version 
4.1.2; Kt is the run-off threshold coefficient (mm/d). When O is smaller 
than Kt, the fraction of E. coli released from manure is proportional to the 
run-off amount. When O is greater than K, it is assumed that all E. coli are 
washed out. Kt is set to 25 mm/day as in Collins and Rutherford (2004). 
After E. coli is released from the manure, the residual E. coli remains in 
the manure and dies off and is subsequently flushed away by runoff 

Ehuman diffuse land =
((

EhumanE,i ×
(

ft,i ×
(

1 − ftt,i − ftcb,i

)
× REt × Rt,dump,i + fopen,r,i

)/
Pi

)
× Pg,i (6) 
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during the following months. Therefore, the E. coli released from manure 
(Erelease, m) to runoff and left in manure (Eleftover, m) in month m is 
calculated as: 

Erelease,m =

(
Ehuman diffuse land

12
+ Elivestock,land,m

)

× fre (8) 

Eleftover,m =

(
Ehuman diffuse land

12
+ Elivestock,land,m

)

× (1 − fre) (9) 

Following the release, part of the E. coli is retained in soil, while the 
rest travels with surface run-off and ends up in surface waters. Blaustein 
et al. (2015) found that after the release, E. coli concentrations in surface 
runoff and leachate infiltrating into the soil are similar. Therefore, the 
fraction of E. coli in runoff is calculated as: 

frunoff =
Crunoff × Vrunoff

Crunoff × Vrunoff + Csoil × Vsoil
(10) 

where frunoff is the fraction of E. coli in surface runoff; Crunoff is the 
concentration of E. coli in surface runoff; Vrunoff is the amount of runoff; 
Csoil is the E. coli concentration in leachate going into soil; Vsoil is the 
amount of rainfall that penetrates the soil. As Crunoff is equivalent to Csoil, 
frunoff is equivalent to the runoff coefficient. Therefore, runoff co
efficients from California Water Boards (2011) and land use data in 
China in 2020 (Xu et al., 2018) are combined to calculate frunoff in each 
grid cell. The handling of runoff coefficients and land use data is 
described in Supplementary Material S5. The release of E. coli from the 
soil reservoir is not considered, as it contributes a relatively small load to 
runoff compared to manure (Muirhead & Monaghan, 2012).

Total E. coli load to rivers in a grid cell from land in month m (Ediffuse, 

m) is calculated as: 

Ediffuse,m =
(
Erelease,m + Eleftover,m− 1 × Ra,m− 1

)
× frunoff (11) 

where Ra, m-1 is the survival of E. coli in month m-1, calculated with 
Equation S(5) while ts in Equation S(5) is the number of days in month 
m-1. The calculation of Eleftover,m-1 for December 2019 is described in 
Supplementary Material S6.

2.4. Total E. coli load to the rivers

The total E. coli load to the rivers in a grid cell in month m (Em, CFU/ 
month) is calculated as: 

Em =

(
EWWTP +Etoilet +Eflush to elsewhere +Eother direct discharge

)
+ElivestockD

12
+Ediffuse,m

(12) 

2.5. Survival in stream

E. coli survival during transport in the rivers followed the approach 
from GloWPa-Cryptal C1 (Vermeulen et al., 2019), calculated as: 

Ct = C0 × e− Kr,m× tr,m (13) 

where Ct is the E. coli concentration in rivers (CFU/L) after travel time tr, 
m in month m (days), C0 is the initial E. coli concentration (CFU/L), Kr,m 
is the loss rate coefficient in month m (day− 1). The common pathways 
for E. coli decay in rivers include temperature-dependent decay 
(Blaustein et al., 2013), solar radiation-induced decay (Dean & Mitchell, 
2022) and sedimentation (Pachepsky & Shelton, 2011). Accordingly, Kr, 

m consists of three components: 

Kr,m = KT,m + KR,m + KS,m (14) 

where KT,m is the temperature-dependent decay rate (day− 1), KR,m is the 
solar radiation-dependent decay rate (day− 1), and Ks,m is the loss rate 
due to sedimentation (day− 1) in month m. Detailed calculation of KT,m 

KR,m Ks,m see Supplementary Material S7.
Resuspension of E. coli from riverbed sediments, driven by shear 

stress, can be an important source of E. coli in rivers (Cho et al., 2010). 
However, modelling this process requires accurate data on sediment 
properties and E. coli concentrations in sediments (Pandey et al., 2012), 
which remain scarce in China. To evaluate the impact of incorporating 
resuspension process with limited E. coli sediment concentration data on 
the model, we tested two scenarios in our sensitivity analysis: one 
assuming low E. coli concentrations in sediments and another assuming 
high concentrations. Detailed methods are provided in Supplementary 
Material S8.

2.6. River geometry, water residence time and routing

The E. coli concentrations in rivers are calculated as: 

Cm =
(Em + Lm) × e− Kr,m× tr,m

Qm
(15) 

where Cm is the E. coli concentrations in month m in a grid cell; Lm is the 
E. coli load in month m from upstream grid cells that drain into the 
current grid cell; Qm is the river discharge (m3/s). Grid cells with a 
monthly average discharge <1 m3/s are excluded from the calculation, 
as the model was found to produce unrealistically high E. coli concen
trations for locations with extremely low discharge. River geometry, 
water residence time, routing of E. coli in the rivers are calculated the 
same way as in the GloWPa-Crypto C1 model (Vermeulen et al., 2019).

2.7. Scenario development

Sections 2.1.2 and 2.2 assume that a portion of faecal waste, origi
nating from both humans and livestock, is directly released into the 
environment. However, the presence and fractions of direct discharge 
from humans and livestock are highly uncertain (discussed in Section 
4.1). Given the uncertainty and their potentially significant impact, two 
scenarios have been developed to explore the influence of direct 
discharge on E. coli load and concentrations. Under Scenario 1 (S1), both 
direct discharge of faecal waste from “flush to elsewhere” and livestock 
existed as described in the above sections, while in Scenario 2 (S2), no 
direct discharge of faecal waste from “flush to elsewhere” and livestock 
is assumed. The remaining fractions of human sanitation types and 
manure storage systems in S2 are normalized accordingly.

2.8. Model performance

To assess the model performance, simulated E. coli concentrations 
are compared with measurements obtained from published literature 
and environmental agency monitoring reports. An overview of the 
collected observational data is shown in Table S17. A map displaying the 
locations of the collected observational data is provided in Fig. S3. Some 
of the observational data are concentrations of faecal coliforms (FC). To 
maintain consistency, FC concentrations are transformed to E. coli 
concentrations based on the finding that 77 % of FC in river waters are 
E. coli (Garcia-Armisen et al., 2007). Root mean square error (RMSE) is 
calculated with log values of modelled concentrations for both scenarios 
to assess the model performance. Sensitivity analysis is performed to test 
how the model outcome is affected by input data. S2 is the baseline 
scenario for the sensitivity analysis. An overview of the changes to the 
variables used during the sensitivity analysis is provided in Table S18.

3. Results

3.1. Model performance

When comparing modelled concentration distribution with annual 
average observed concentration distribution, the model results show a 
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generally good performance, while exhibiting both overestimations and 
underestimations, as presented in Fig. 1. Between the two scenarios, S1 
results in higher concentrations compared with S2. S2 displays a closer 
alignment with the observed concentrations, with the majority of the 
modelled concentrations falling within the same grades of water quality 
as the observations. Fig. 2 further demonstrates a reasonably good 
alignment between the model results and the observations, supported by 
the RMSE values: 0.95 for S1 and 0.84 for S2. In both scenarios, the 
model tends to overestimate at low E. coli concentrations but struggles to 
accurately simulate conditions with elevated E. coli levels.

Temporally, monthly variations in E. coli concentrations in rivers are 
both modelled and observed, as depicted in Fig. 3. The monthly 
modelled concentrations vary within 1.5 log10 units between warm 
seasons (spring to summer) and cold seasons (autumn to winter). 
Modelled E. coli concentrations are typically lower in warm seasons and 
higher in cold seasons (Fig. 3 and Fig. S4), with some grid cells showing 
the opposite pattern (Fig. S5). Observations show higher E. coli 

concentrations during warm seasons or cold seasons at some sampling 
sites, while others remain relatively constant or fluctuate without a clear 
trend throughout the year. The E. coli load to rivers generally remains 
relatively constant throughout the year (Fig. S6), while the E. coli load in 
some river stretches, such as Huanggang and Yangtze, displays a minor 
increase in spring and summer, correlating with the application of 
livestock manure (Fig. 3).

3.2. E. coli hotspots in rivers in China

Simulated E. coli concentrations in rivers in China in 2020 range from 
10− 0.4 CFU/L to 106.3 CFU/L in S1 and 10− 1.2 CFU/L to 106.0 CFU/L in 
S2. Hotspots are defined as river sections where the E. coli concentra
tions exceed 7700 CFU/L, corresponding to water quality of Grade IV to 
V- as defined in the Chinese environmental quality standards for surface 
water (Ministry of Environmental Protection (MEP), 2002). The 
threshold for the water quality standards is shown in Table S19. 

Fig. 1. Comparison of modelled E. coli concentrations (each river stretch has 12 modelled concentrations) from S1 and S2 with observed E. coli concentrations 
(collected FC concentrations are converted to E. coli concentrations). The n indicates the number of observations per river stretch (grid cell). Red dashed lines 
represent water quality thresholds from the Chinese Environmental Quality Standards for Surface Water (detailed in 3.2). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Point-to-point comparison of monthly observed and modelled E. coli concentrations for scenarios S1 and S2. Each scatter plot represents the relationship 
between observed and modelled E. coli concentrations, with the black points indicating individual data points from the same river stretch (grid cell). The dashed 
black line represents the 1:1 line and the red line represents the smoothed fit line. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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Spatially, hotspots of high E. coli concentrations mainly reside in Haihe, 
Huaihe, Pearl, middle and downstream areas of Yellow and Yangtze 
River Basins, central and south of Songliao and northwest of Continental 
River Basins in both scenarios, while S1 exhibits higher concentrations 
than S2 (Fig. 4). Northern river basins, particularly the Haihe and 
Huaihe River Basins, tend to exhibit higher concentrations compared 
with southern river basins. This is primarily due to lower river discharge 
in northern China (Fig. S7), which results in reduced dilution capacity, 
leading to elevated E. coli concentrations. It is also found that large rivers 
with high discharge such as Yangtze River and Yellow River, are less 
polluted by E. coli than small rivers around them. This could be attrib
uted to the typically high dilution capacities in these large rivers 

(Fig. S7) and this pattern is also found in Jones et al. (2023).

3.3. Water quality assessment

Water quality in nine main river basins under two scenarios in 2020 
is evaluated using the annual averaged modelled E. coli concentrations. 
This evaluation followed the procedure outlined in the Surface water 
environment quality assessment methods (Ministry of Environmental 
Protection (MEP), 2011), while using E. coli as the sole indicator. The 
water quality assessment reveals that 78.1 % of rivers in S1 exhibit poor 
microbial water quality (Grade IV or worse), compared to 45.6 % in S2. 
In the Haihe, Huaihe, Pearl, Yellow, Yangtze, Songliao, and Southeast 

Fig. 3. Comparison of monthly modelled E. coli concentrations (S1 and S2) with observed E. coli concentrations (collected FC concentrations are converted to E. coli 
concentrations), monthly E. coli load of S2 to the rivers (E. coli load is divided by 1010 to make it fit in same ranges as E. coli concentrations and river discharge) and 
monthly river discharge. Each plot represents a grid cell. Spring lasts from March to May, summer from June to August, autumn from September to November, and 
winter from December to February.

Fig. 4. (a): annual average E. coli concentrations in rivers in S1; (b): annual average E. coli concentrations in rivers in S2 (grid cells in white are either the discharge is 
below the threshold as in Section 2.6 or no data). The small map on the bottom right side represent the Nine-Dash Line in the South China Sea.
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River Basins, 75 %–100 % of the river stretches are classified as Grade IV 
or worse in S1 (Fig. 5). S2 predicts better water quality across all river 
basins compared with S1. The 2020 water quality assessment result from 
the China Ecological Environment Quality Bulletin (Ministry of Ecology 
and Environment of People’s Republic of China (MEE), 2021), which 
assesses water quality using 21 chemical and physical parameters 

without considering microorganisms, reports better water quality as 
compared to the predictions based on modelled E. coli concentrations 
from both S1 and S2. S2 predicted water quality in the Southeast, Son
gliao, and Southwest River Basins aligns roughly with the Bulletin’s 
findings.

Fig. 5. Water quality assessed by E. coli in S1 and S2, and water quality assessment results of 2020 from China Ecological Environment Quality Bulletin (Ministry of 
Ecology and Environment of People’s Republic of China (MEE), 2021).

Fig. 6. (a): annual E. coli load to rivers in S1; (b): E. coli source attribution in nine river basins in S1; (c): Sankey diagram of the flow of E. coli load from source to 
rivers in S1 (the width of each flow is proportional to the relative amount of E. coli load being transported) and overall E. coli source attribution (S1 and S2), the nodes 
in the last column in the Sankey diagram and the bar plot of S1, highlighted in green rectangles, present identical source attribution information for S1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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3.4. Source attribution

The simulated annual E. coli load to rivers in S1 is 1.6 × 1020 CFU and 
2.7 × 1019 CFU in S2. Comparing E. coli load to rivers of S1 (Fig. 6a) with 
the human and livestock population (Fig. S8 and Fig. S9), E. coli load 
hotspots exhibits a similar east-west disparity, which follows the Hu 
Huanyong Line, with denser human and livestock populations concen
trated in eastern China. Despite having lower E. coli loads in S2 
(Fig. S10), the spatial distribution of hotspots is the same as in S1. 
Hotspots of E. coli load also align with the E. coli concentration hotspots 
in rivers. Monthly variation in E. coli load is minimal (Fig. S6).

The flow of E. coli load from source to rivers in S1 and source attri
bution of E. coli load to rivers for the whole of China is shown in Fig. 6c. 
Importantly, E. coli directly discharged from human and livestock ac
count for 80.2 % and 13.1 % of the total E. coli load in rivers in S1, 
respectively, contrasting sharply with their shares of total E. coli 
excretion, 1.3 % (human direct discharge) and 0.2 % (livestock direct 
discharge). Subsequently, emissions from WWTPs emerge as the next 
major contributor (4.5 %), followed by emissions from toilets (1.8 %), 
with diffuse emissions from livestock (0.3 %) and humans (0.1 %) being 
the least significant. In comparison, the breakdown of source contribu
tions in S2 is: human direct discharge contributes 59.1 % (consisting of 
waste from open defecation in urban areas and other unimproved 
sanitation), WWTPs 26.3 %, toilets 12.2 %, livestock diffuse sources 2.1 
%, and human diffuse sources 0.3 %. Fig. 6b presents the distribution of 
E. coli loads from various sources in S1 in the nine river basins, with 
human sources emerging as the principal contributor in all basins.

Among livestock in S1, pigs contribute the most with 43.5 % 
(Fig. S11), followed by broilers at 24.9 % and laying hens at 18.4 %. The 
remaining livestock each account for less than 10 %. Regarding different 
breeding systems, E. coli load from smallholder farms account for 65.2 
%, followed by industrial farms (22.4 %) and medium farms contributed 
the least (12.5 %) in S1. The shares of livestock and breeding systems in 
S1 and S2 are almost identical.

3.5. Sensitivity analysis

The sensitivity analysis indicates that the model is most responsive to 
the changes in human and livestock waste directly discharged into rivers 
(Table S18). Specifically, the introduction of ‘flush to elsewhere’ in S1 
(1.2 % of the human waste directly discharged) results in a dramatic six- 
fold increase in both the mean and median modelled concentrations 
compared with S2 (baseline scenario for sensitivity analysis). For live
stock, direct discharge of treated manure leads to 1.5 times higher 
concentrations than in the baseline scenario, while untreated manure 
discharge elevates the mean concentration to 18.1 times above the 
baseline. The sensitivity analysis also reveals a pronounced response to 
the human excretion rate of E. coli. A one-order-of-magnitude increase in 
the human E. coli excretion rate leads to a 9.9 times rise in the mean 
modelled concentrations. Moreover, the model demonstrates sensitivity 
to variations in the fraction of WWTPs employing diverse technologies. 
Upgrading primary treatment to higher levels of treatment can yield 
around 20 % reduction of E. coli concentrations. During the E. coli 
routing processes in the rivers, fluctuations in hydrological parameters 
such as discharge, river length and river residence time also exhibit a 
considerable impact. The model is not sensitive to resuspension of E. coli 
from the sediment.

4. Discussion

This study presents the first large-scale model to simulate E. coli 
concentrations in rivers and systematically assess the microbial water 
quality across China’s river systems on a national scale for the first time. 
The model allows us to identify hotspots of high E. coli concentrations 
and the relative importance of sources. The modelling results can offer 
valuable insights to protect public health and environmental 

sustainability. Meanwhile, sustainable management of microbial water 
quality in rivers support the achievement of the broader goals of Sus
tainable Development Goal 6 (SDG 6) on clean water and sanitation for 
all (Rose et al., 2023).

4.1. Model performance and uncertainties

Model comparison to observations indicates that the model out
comes overall represent the dynamics of E. coli concentrations in rivers 
in China. The RMSE of the model results is slightly higher compared 
with other large-scale models simulating E. coli/FC concentrations: 
0.44–0.70 (Reder et al., 2015), but still demonstrates a reasonable level 
of accuracy. Discrepancies between the modelled and the observed 
concentrations are likely due to uncertainties to which the model is 
particularly sensitive.

The model is highly sensitive to the direct discharge of human and 
livestock waste (Table S18), significantly impacting E. coli loads and 
concentrations. As the data on direct discharge in China is scarce, to 
adopt a precautionary stance, it is assumed in this study that human 
waste categorized as ‘flushed to elsewhere’, open defecation (in urban 
areas) and other unimproved sanitation is directly discharged, although 
it may also be deposited on land, where the associated E. coli undergo 
decay. For livestock, it has been reported earlier that the direct 
discharge of livestock manure is the main source of pollutants, such as P 
and N (Strokal et al., 2016). Prior studies used varied and inconsistent 
information – with percentages of direct discharge of livestock manure 
varying between 0 and 75 % (see Supplementary Material S9). Never
theless, policies by the State Council of the People’s Republic of China 
aim for a 95 % or higher rate of manure treatment facility imple
mentation in industrial farms by 2020, with the goal of achieving an 
over 75 % reuse rate of livestock manure (General Office of the State 
Council (GOSC), 2017; General Office of the State Council (GOSC), 
2019), but the outcome of the policy implementation is unknown. 
Therefore, it is uncertain whether direct discharge of human faeces and 
livestock manure was still occurring in 2020, and to which extent. To 
minimize the uncertainty, the current study replaces the wastewater 
treatment rates from JMP data with those from the statistical yearbook 
of China (Ministry of Housing and Urban-Rural Construction of the 
People’s Republic of China (MHURC), 2021). In the meantime, fractions 
of the rest of the sanitation systems, including ‘flush to elsewhere’ are 
normalized accordingly (described in Supplementary Material S3). 
Given that the statistical yearbooks are known to be the most reliable 
data source in China, leading us to believe that we have obtained the 
most accurate fractions of human direct discharge possible. Moreover, to 
further understand the uncertainty, two scenarios based on the reason
able range of direct discharge fractions were developed to explore the 
impact of these input data on the model outcome. As demonstrated in 
this study, scenario development serves as an effective methodology for 
handling uncertainty and gaining a holistic understanding regarding the 
response of the model to the variations in critical input data. Nonethe
less, to achieve an optimal model performance and to address this 
potentially highly relevant source of faecal pollution, open, accurate 
data and further research on direct discharge is urgently needed.

Furthermore, the removal efficiency of the disinfection step in the 
WWTPs might be underestimated. Sun et al. (2023) found that in 
WWTPs in rural areas in China, a 6-log reduction can be reached when 
UV is combined with chlorination. Comparatively, a lower removal ef
ficiency summarized from literature – a 1.5-log reduction for disinfec
tion - is applied in the model for both urban and rural areas, while in 
urban areas, the treatment facilities are much more advanced (Ministry 
of Housing and Urban-Rural Construction of the People’s Republic of 
China (MHURC), 2021).

Resuspension processes are not yet included in large-scale models 
simulating E. coli and FC (Jones et al., 2023; Reder et al., 2015; United 
Nations Environment Programme (UNEP), 2016), underscoring the need 
to assess their impacts. Results show that the model is not notably 
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sensitive to E. coli resuspension from sediment: neither low nor high 
sediment concentrations meaningfully increase overall E. coli levels. 
However, this does not imply that resuspension has no effect. Because 
resuspension typically occurs in short bursts following mechanical or 
hydrodynamic disturbances (Pachepsky & Shelton, 2011) a monthly 
time-step model that uses averaged river discharge masks short-term 
variability. Consequently, resuspension’s overall contribution is not 
evident in most areas. An increase in E. coli concentration is observed 
only in regions where human and livestock inputs are minimal. In 
contrast, in areas already subject to high E. coli loading, the effect of 
resuspension is negligible. It is therefore recommended that future 
model setups incorporate resuspension at finer temporal resolutions, 
supported by more data on E. coli concentrations in sediments.

For monthly variation in E. coli concentrations, while observed data 
displayed multiple patterns, the model primarily predicted a single 
trend: elevated concentrations in cold seasons and reduced levels in 
warm seasons. While the monthly E. coli load to rivers is almost identical 
across the year, river discharge, being higher in the warm season, 
dominantly influences the E. coli concentration. Several processes not 
included in the model due to data availability, such as leakage of 
wastewater and sewage overflow, are expected to show seasonality. 
Leakage of wastewater due to low-quality pipes and improper con
struction is likely to happen in warm seasons in China (Xu et al., 2019; 
Zhao et al., 2018). Similarly, strong precipitation, which is more prob
able in warm seasons, can increase the volume of influent flowing into 
WWTPs, exceed the treatment capacity of the WWTPs and lead to 
sewage overflow (Li et al., 2023a; Xu et al., 2019). However, the model 
is not currently able to incorporate such short-term processes. Further 
research and data are needed to incorporate these processes to bring 
more accuracy to the model and better representation of the seasonal 
trend of E. coli load and concentrations.

Uncertainties also exist in the limited measured data used for model 
validation, which can impact the assessment of model accuracy. For 
example, observations of E. coli concentrations are strongly affected by 
rainfall events (Schilling et al., 2009; Xiao et al., 2013), or the samples 
might have been taken in surface waters that are not representative of 
the total modelled cell. In addition, in this study, many FC observations 
are used rather than E. coli data to validate the model. Given the vari
ation in survival rates of FC and E. coli in rivers due to strain charac
teristics and environmental conditions (Anderson et al., 2005; 
Pachepsky & Shelton, 2011), FC may not fully represent E. coli behav
iour. However, these FC data were the only ones available. Despite their 
limitations as proxies for E. coli, these data still allow for an initial un
derstanding of the model’s performance.

4.2. Microbial water quality

This study provides the first overview of microbial water quality in 
rivers across China. The model reveals that 45.6 %–78.1 % of rivers 
exhibit poor microbial water quality. However, microbial water quality 
has not received sufficient attention, as current water quality assess
ments in China do not consider microbial water quality (Ministry of 
Ecology and Environment of People’s Republic of China (MEE), 2021; 
Ministry of Environmental Protection (MEP), 2011). This highlights a 
significant oversight of microbial water quality. Nevertheless, there are 
uncertainties and limitations in using E. coli as FIB to assess water 
quality. Studies have shown that its correlation with pathogens is 
inconsistent, varying by season and location (Pachepsky et al., 2016). 
Additionally, E. coli and pathogens exhibit different environmental 
growth and persistence patterns (Pachepsky et al., 2016). Despite these 
imperfection, E. coli remains the best available tool for monitoring mi
crobial water quality (Pachepsky et al., 2018). Further research is 
needed to enhance our understanding of microbial contamination and 
its health implications in rivers in China. Utilizing modelled E. coli 
concentrations, quantitative microbial risk assessments can be con
ducted as a next step to evaluate health risks, inform policy 

development, and improve water quality to safeguard public health.

4.3. Source attribution and priorities for mitigating microbial water 
quality

Considering the poor microbial water quality in rivers in China, ac
tions need to be taken to reduce E. coli concentrations to protect human 
health. Identifying opportunities to mitigate E. coli emissions and con
centrations based on the relative importance of sources is critical for 
developing effective management strategies.

Human sources are the predominant sources of E. coli in the rivers. 
This finding is consistent with other work modelling microorganism 
concentration in rivers (Jones et al., 2023; Vermeulen et al., 2019). The 
primary source of E. coli in rivers is the direct discharge of waste orig
inating from humans and livestock, which highly impacts E. coli con
centrations. The level of treatment of human waste within urban areas of 
China has reached 96.4 % as shown in Table S21. However, in rural 
regions, the collection and treatment rates average only 56.6 %. Besides, 
the share of WWTPs practising primary treatment is still high in some 
provinces like Xinjiang and Tibet. According to the sensitivity analysis, 
transitioning from secondary to tertiary treatment has limited 
improvement in reducing E. coli concentrations. Thus, enhancing human 
waste collection rates, expanding WWTPs coverage, and upgrading 
wastewater treatment levels, with a particular focus on phasing out 
primary treatment WWTPs, constitute effective measures for reducing 
E. coli concentrations. For livestock, the most important measure is to 
eradicate the direct discharge of manure to rivers, especially in small
holder farms.

Besides, mitigation strategies should be tailored to specific locations, 
prioritizing the primary pollution sources within the local environment 
to ensure efficient and effective management. Moreover, hotspots of 
E. coli also tend to harbour other pollutants including nitrogen, phos
phorus, antibiotics and plastics in China (Li et al., 2024; Li et al., 2023b; 
Wang et al., 2018). Hence, a synergistic approach to pollutant man
agement should be developed.

5. Conclusion

This is the first study simulating spatially explicit E. coli concentra
tions in rivers across China. The modelling approaches developed, such 
as the removal of microorganisms in WWTPs and onsite sanitation sys
tems, the storage and treatment of livestock manure, and the seasonality 
of livestock manure application to land, contribute to a more advanced 
and accurate process-based modelling of pollutants in river systems. 
Moreover, the usage of scenarios capturing critical but uncertain input 
data represents an effective methodology for handling uncertainty.

According to the GloWPa-Ecoli C1 model. 

• 45.6 %–78.1 % of rivers in China exhibit poor microbial water 
quality. E. coli concentrations in rivers in China in 2020 range from 
10− 1.2 to 106.3 CFU/L in two scenarios. Hotspots of high E. coli 
concentrations are Haihe, Huaihe, Pearl, middle and downstream 
areas of Yellow and Yangtze River Basins, central and south of 
Songliao and northwest of Continental River Basins.

• Direct discharge of faecal waste from humans and livestock to rivers 
is the predominant E. coli source, followed by discharge from 
WWTPs. E. coli load from human sources dominate over livestock 
sources.

• E. coli concentrations in rivers in China can be reduced by enhancing 
human waste collection rates, expanding WWTPs coverage, phasing 
out primary treatment WWTPs and eradicating the direct discharge 
of manure to rivers, especially in smallholder farms.

The current modelling approaches can easily be adapted to evaluate 
diverse microorganisms and be applied across global regions. Such 
pathogens for instance include pathogenic E. coli strains, such as E. coli 
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O157:H7, or antibiotic-resistant bacteria. The insights gained from the 
study can inform policymakers and regulators in creating effective 
environmental policies and regulations to protect microbial water 
quality and safeguard public health.
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