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SUMMARY

Monitoring the dynamic properties of railway tracks is essential for the safety of train
operation and the efficiency of track maintenance. Several vibration-based technologies
are available for measuring such properties, but each has its limitations such as low
efficiency and limited frequency band. There is still a lack of train-borne technologies
applicable to extracting the load-response relationship of track structures, especially
when a variety of track components and a wide frequency range are concerned. A laser
Doppler vibrometer (LDV) is a noncontact sensing instrument for vibration
measurement. A train-borne LDV can target its laser spot on tracks, continuously scan
track structures during train operation, and directly measure track vibrations in response
to the moving train. It has the potential to complement existing technologies and monitor
the dynamic properties of railway tracks.

This dissertation develops a new technology based on train-borne LDV for
measuring the vibration and load-response relationship of railway tracks over a wide
frequency range. To address the key challenges discussed in Chapter 1, the developed
technology consists of four interconnected cornerstones, corresponding to Chapter 2~5.

Chapter 2 reduces speckle noise in LDV measurements on a moving platform.
Speckle noise is problematic for such measurements due to the drastic in-plane motion
of the laser spot on target surfaces. It is found that as the moving speed increases, the
speckle noise occurs more frequently with shorter durations, greater amplitudes, and
broader frequency bands. A three-step framework is proposed for removing the speckle
noise in the post-processing stage, which works by detecting and replacing spikes and
then smoothing out residual noise. Specifically, we develop a wavelet-based spike
detection method in Step 1, an autoregressive integrated moving average-based
imputation method in Step 2, and adopt a Butterworth filter in Step 3. The method is
validated in the TU Delft V-Track test rig at different locations along the track and at
different speeds (0.5~20 km/h). The LDV effectively captures the dominant track
vibrations at 500~700 Hz with good repeatability between different laps and good
agreement with trackside measurements in V-Track. In addition to the proposed methods,
different alternative methods can be adapted and used in the three steps of the framework.

Chapter 3 identifies modal parameters from structural vibration response under
operational conditions. Effective analysis of vibration response without load information
is crucial for structural condition monitoring. Time-frequency representation is
necessary for analyzing train-track vibration response due to its nonstationary
characteristics and broadband nature. An operational modal analysis method in time-
frequency representation is developed. Short-time frequency domain decomposition and
a convolution-based strategy are proposed to obtain singular values and local mode
shape similarity, respectively, which are further fused into mode indicators by a fuzzy-
based strategy. The method is an interpretable and explicit tool that provides not only a
global view of the modal characteristics over time and frequency but also estimates of
modal parameters. It is applicable to strongly nonstationary responses under time-
varying loads and conditions and also robust to the length of signals. The method is
validated using sleeper vibrations under train passage at speeds of 8 km/h in V-Track
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and 15~200 km/h in field tests. The rigid-body motions and bending modes of the
sleepers are identified at frequencies up to 6,500 Hz in V-Track and 4,500 Hz in the field
tests, and the identification results are comparable to hammer tests.

Chapter 4 investigates the speed-dependent characteristics of track vibration
measurement with a train-borne LDV. In a train-borne LDV system, the train speed
affects both the intensity of track vibrations and speckle noise. The quality of train-borne
LDV signals is essential to their usability. A holistic methodology for characterizing
train-borne LDV  measurements is proposed combining numerical simulations,
laboratory measurements in V-Track, and field measurements on the CTO measurement
train. Validated models are used to separately simulate sleeper vibrations and speckle
noise at different speeds. A vibration-noise separation method is developed and
validated to separate structural vibration from speckle noise adaptively at different
speeds and robustly under different scenarios. Simulations and measurements show that
as train speed increases (from 2 to 12 km/h in V-Track and from 5 to 30 km/h on the
CTO train), speckle noise increases almost linearly while track vibration (at frequencies
up to 1,500 Hz in V-Track and 300 Hz on the CTO train) increases nonlinearly. This
difference leads to the nonlinear behavior of the signal-to-noise ratio with respect to train
speed. The speeds that yield the highest signal-to-noise ratio are different for different
tack structures, measurement configurations, and operational conditions.

Chapter 5 estimates railway track transfer functions from LDV and accelerometer
measurements on a moving vehicle. Characterizing the load-response relationship of
railway tracks requires both wheel-rail force (input) and track vibration response
(output). Operational modal analysis is applied to vehicle impact response at a joint to
obtain its modal parameters, which further support the estimation of dynamic wheel-rail
forces from vehicle vibrations using a Duhamel integral-based method. Meanwhile, a
speed-adaptive despeckle and compensation method is applied to LDV signals to reduce
speckle noise and extract track vibrations. Railway track transfer functions are then
estimated using the estimated wheel-rail force as input and the extracted track vibrations
as output. The proposed method is validated in laboratory measurements in V-Track at
different track locations (with or without joints) and speeds (8~16 km/h). The estimated
transfer functions are compared with trackside measurements and hammer tests, and
they show good agreement at 200~800 Hz. The differences in the estimated transfer
functions between different track sections reflect the variation of track dynamic
properties.

This dissertation concludes with Chapter 6. In general, this dissertation investigates
the train-borne LDV technology for track vibration measurement at three levels. First,
numerical simulations provide insights into the mechanisms and characteristics of
speckle noise and track vibration. Second, laboratory measurements in V-Track provide
well-controlled and well-observed conditions for testing the train-borne LDV
technology, and the highest speed tested is 20 km/h. Third, field measurements on the
CTO train provide realistic conditions to further test the technology and the associated
methods, and the highest speed tested is 30 km/h. The investigations yield coherent
results and demonstrate the feasibility and usability of the train-borne LDV technology
for measuring track dynamic properties, thus potentially enabling more efficient and
informative rail infrastructure monitoring.



SAMENVATTING

Het monitoren van de dynamische eigenschappen van spoorconstructies is essentieel voor
zowel de veiligheid van railvervoer als de efficiéntie van spooronderhoud. Voor het meten
van deze eigenschappen zijn nu al diverse, op trillingen gebaseerde, technologieén
beschikbaar maar elk heeft zijn beperkingen, zoals een lage efficiency en een beperkte
frequentieband. Het ontbreekt nog altijd aan een systeem voor het meten van trillingen dat
direct onder een railvoertuig kan worden gemonteerd en waarmee de relatie tussen de
dynamische respons en belasting van spoorconstructies kan worden bepaald in een breed
frequentiebereik. Een laser-Doppler-vibrometer (LDV) is een contactloos meetinstrument
voor trillingsmetingen. Een op een trein gemonteerde LDV (trein-gebonden LDV)
kan zijn laserspot op het spoor richten, en tijdens het rijden de spoorconstructie
continu scannen en daarbij direct de trillingen in het spoor meten als reactie op de
bewegende trein. LDV heeft de potentie om de bestaande technologieén voor monitoring
van het spoor aan te vullen en daarbij tevens de dynamische eigenschappen van
spoorconstructies te bepalen.

Dit proefschrift beschrijft de ontwikkeling van nieuwe technologie om met een trein-
gebonden LDV de trillingen en de relatie tussen de respons en de belasting van
spoorconstructies te meten over een breed frequentiebereik. Om de belangrijkste
uitdagingen zoals besproken in Hoofdstuk 1 aan te pakken, bestaat de ontwikkelde
technologie uit vier pijlers, overeenkomend met Hoofdstukken 2~5.

Hoofdstuk 2 behandelt de vermindering van spikkelruis in LDV-metingen vanaf een
bewegend platform. Spikkelruis is problematisch voor dergelijke metingen vanwege de
significante in-plane beweging van de laserspot op doeloppervlakken. In hoofdstuk 2 wordt
aangetoond dat naarmate de treinsnelheid toeneemt, spikkelruis vaker voorkomt met een
kortere duur, grotere amplitudes en bredere frequentiebanden. Er wordt een raamwerk in
drie stappen voorgesteld voor het verwijderen van de spikkelruis in de nabewerkingsfase,
gericht op het detecteren en vervangen van pieken en het vervolgens glad maken van de
resterende ruis. We ontwikkelen hiermee een op wavelet-gebaseerde piek-detectiemethode
in Stap 1, een vervangingstechniek gebaseerd op autoregressieve geintegreerde bewegende
gemiddelden in Stap 2 en het gebruiken van een Butterworth-filter in Stap 3. De methode
is getest met de TU Delft V-Track op verschillende posities op het spoor van de
testopstelling en bij verschillende snelheden (0.5~20 km/u). De LDV legt effectief de
dominante spoorvibraties vast bij 500~700 Hz met goede herhaalbaarheid tussen
verschillende testronden en goede overeenstemming met aparte metingen langs het spoor
van de V-Track. Naast de voorgestelde methoden kunnen verschillende alternatieve
methoden worden aangepast en gebruikt in de drie stappen van het raamwerk.

Hoofdstuk 3 gaat over de identificatie van de modale parameters uit de structurele
trillingsrespons onder operationele omstandigheden. Effectieve analyse van de
trillingsrespons zonder belastingsinformatie is cruciaal voor structural health monitoring.
Een tijd-frequentieweergave is noodzakelijk voor de analyse van trein-spoor trillingen
vanwege de niet-stationaritaire eigenschappent en het brede frequentiebereik van het
signaal. Een methode voor operationele modale analyse in de tijd-frequentieweergave
wordt ontwikkeld. Korte-tijd-frequentiedomein-decompositic en een op convolutie-
gebaseerde benadering worden voorgesteld om singuliere waarden en lokale
modusvormgelijkenis te verkrijgen, die vervolgens worden samengevoegd tot
modusindicatoren met behulp van een fuzzy-gebaseerde aanpak. De methode is een
interpreteerbaar - en expliciet instrument dat niet alleen een algemeen beeld geeft van de
modale kenmerken in de tijd en frequentie, maar die ook schattingen van modale parameters
mogelijk maakt. Het is toepasbaar op sterk niet-stationaire reacties onder tijdsathankelijke
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belastingen en omstandigheden en is ook robuust ten opzichte van de signaallengte. De
methode is getest met dwarsliggertrillingen bij treinpassage onder snelheden van 8 km/u in
V-Track en 15~200 km/u in veldtests. De starre lichaamsbewegingen en buigingsmodussen
van de dwarsliggers zijn herkenbaar bij frequenties tot 6,500 Hz in V-Track en 4,500 Hz in
de veldtests. De resultaten zijn vergelijkbaar met hamertesten.

Hoofdstuk 4 gaat over onderzoek naar de snelheidsafthankelijke kenmerken van
spoortrillingsmetingen met een aan de trein-gebonden LDV. De snelheid van de trein
beinvloedt zowel de intensiteit van spoortrillingen als de spikkelruis. De kwaliteit van het
LDV-signaal is essentieel voor de toepasbaarheid voor monitoring. Een holistische
methodologie voor de karakterisering van trein-gebonden LDV metingen wordt voorgesteld,
waarbij numerieke simulaties, laboratoriummetingen in V-Track en veldmetingen op de
CTO-meettrein worden gecombineerd. Gevalideerde modellen worden gebruikt om
afzonderlijke dwarsliggertrillingen en spikkelruis te simuleren bij verschillende snelheden.
Een methode voor het onderscheiden van structurele trillingen en ruis is ontwikkeld en
gevalideerd, adaptief bij verschillende snelheden en robuust onder verschillende
omstandigheden. Simulaties en metingen tonen aan dat naarmate de snelheid van de trein
toeneemt (van 2 tot 12 km/u in V-Track en van 5 tot 30 km/u op de CTO-trein), het
spikkelruis vrijwel lineair toeneemt, terwijl de spoortrillingen (bij frequenties tot 1,500 Hz
in V-Track en 300 Hz op de CTO-trein) niet-lineair toenemen. Dit onderscheid leidt tot het
niet-lineaire gedrag van de signaal-ruisverhouding in relatie tot de snelheid van de trein. De
snelheden die de hoogste signaal-ruisverhouding opleveren, zijn verschillend voor diverse
spoorconstructies, meetconfiguraties en operationele omstandigheden.

Hoofdstuk 5 betreft een schatting van de overdrachtsfuncties van spoorconstructies van
LDV- en versnellingsmetingen vanaf een bewegend voertuig. Het karakteriseren van de
relatie tussen de respons en de belasting van spoorconstructies vereist zowel een kracht
vanuit het wiel-rail-raakvlak (input) als de trillingsrespons van het spoor (output).
Operationele modale analyse wordt toegepast op de voertuig-impact respons bij een raillas
om de modale parameters te verkrijgen, die vervolgens een schatting van de dynamische
wiel-rail kracht mogelijk maken uit voertuigtrillingen met behulp van een methode op basis
van Duhamel-integraal. Tegelijkertijd wordt een snelheidsadaptieve ontspikkel- en
compensatiemethode toegepast op de LDV-signalen om het spikkelruis te verminderen en
spoorvibraties te extraheren. De overdrachtsfuncties van spoorconstructies worden
vervolgens bepaald met de geschatte wiel-rail kracht als input en de geéxtraheerde
spoorvibraties als output. De voorgestelde methode is getest in laboratoriummetingen met
de V-Track op verschillende posities op de testopstelling, met en zonder raillassen en onder
verschillende snelheden (8~16 km/u). De geschatte overdrachtsfuncties zijn vergeleken met
metingen en hamertesten op de testopstelling en vertonen goede overeenstemming tussen
de 200 Hz en 800 Hz. De verschillen in de geschatte overdrachtsfuncties tussen
verschillende spoorwegsecties weerspiegelen de variatie van de dynamische eigenschappen
van het spoor.

Dit proefschrift wordt afgesloten met Hoofdstuk 6. In het algemeen onderzoekt dit
proefschrift voor trein-gebonden LDV-technologie voor trillingsmetingen van
spoorconstructies op drie niveaus. Ten eerste bieden numerieke simulaties inzicht in de
mechanismen en kenmerken van het spikkelruis en de spoortrillingen. Ten tweede bieden
laboratoriummetingen met de V-Track goed beheersbare en goed meetbare condities voor
het testen van trein-gebonden LDV-technologie, en de hoogst geteste snelheid is 20 km/u.
Ten derde bieden veldmetingen op de CTO-trein realistische omstandigheden om de
technologie en de bijbehorende methoden verder te testen, en de hoogst geteste snelheid is
30 km/u. De onderzoeken leveren coherente resultaten op en tonen de haalbaarheid en
bruikbaarheid aan van LDV-technologie voor het meten van de dynamische eigenschappen
van spoorwegen, hetgeen in potentie meer efficiénte en meer gedetailleerde monitoring van
spoorweginfrastructuur mogelijk maakt.
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1.1. BACKGROUND

Dynamic properties of railway tracks affect the load-bearing capacity of rail
infrastructure, the interaction between trains and tracks, and the safety and ride quality
of train operations. Due to train load and aging, track dynamic properties degrade over
time and deviate over different locations. Thus, monitoring these properties for well-
informed, effective, and efficient track maintenance is essential [1, 2].

Structural vibration measurement is an effective approach to monitoring dynamic
properties [3, 4]. Existing vibration-based technologies for monitoring track dynamic
properties are summarized in Table 1.1. Some examples are shown in Figure 1.1.

Table 1.1: Existing vibration-based technologies for monitoring track dynamic properties.

Technologies Excitation Response sensing Advantages Disadvantages

Impact modal Impact on railhead Accelerometers on Low noise, high Unloaded, labor-

test [5~8] by a hammer or a rails or sleepers repeatability, intensive, need

falling weight with high coherence different hammers,

a force transducer require operation

shutdown
Pass-by Passing trains Accelerometers or Different train  Unknown train load,
measurement geophones on rails loads, low noise cost-prohibitive for
[9~13] or sleepers or large-scale monitoring
track slabs

Vehicle A running train Accelerometers on Low cost, high Less sensitive to
vibration axle boxes or speed, efficient components below
measurement bogie frames or for large-scale  rails
[14~22] car body monitoring
Specialized Periodic load from Accelerometers on Measure A single frequency at a
stiffness an oscillating mass wheels and dynamic time, limited train
measurement oscillating mass stiffness speed

train [23, 24]

(b)

= A v - - * K .. L " | A & A 3
Figure 1.1: Examples of vibration-based technologies for measuring track dynamic properties. (a) Impact
hammer test; (b) Pass-by measurement; (c¢) Vehicle vibration measurement.

Impact modal tests and pass-by measurements are usually applied only at hot spots
due to their high costs. In contrast, train-borne technologies are more efficient for large-
scale monitoring. In vehicle vibration measurements, railway tracks are monitored
indirectly through wheel-rail contact, so the load on tracks and the response of tracks are
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coupled in vehicle vibrations. Stiffness measurement trains excite track structures with
controlled loads at a single frequency. In general, there is still a lack of train-borne
technologies suitable for measuring the dynamic response of track components below
rails and extracting their load-response relationship in a wide range of frequencies.

A laser Doppler vibrometer (LDV) is a laser-based sensing instrument that measures
the vibration velocity of a target based on its Doppler frequency shift, i.e., the change in
laser frequency proportional to the relative velocity between the laser source and the
target. The noncontact sensing nature of LDV has the advantages of accessing places
unsuitable for contact-based sensors, measuring different objects or locations with the
same instrumentation, and avoiding the influence of sensor mass on target dynamics. It
can provide high accuracy and sensitivity for vibration measurements over a wide range
of frequencies and has been applied to many engineering structures for modal
identification and damage detection [25~27]. In most existing applications, LDVs are
set statically for measuring at discrete points or along closed paths [25-~27].
Alternatively, an LDV can be mounted on a train to target its laser spot on tracks, scan
track structures during train operation, and measure track vibrations in response to the
moving train [28]. In a simulation study, train-borne LDVs are used to identify the mode
shapes of a bridge [29]. In experimental studies, train-borne LDV's are used to measure
the rail vibrations in order to identify rail bending modes [30] and detect welds [31].

Train-borne LDV has the potential to complement existing track monitoring
technologies to monitor track dynamic properties. It enables direct and continuous
vibration measurement of various track components and further supports estimating the
load-response relationship of railway tracks. We are unaware of previous research using
this technology to monitor track components below rails, such as sleepers. However,
there are still many challenges in applying train-borne LDV to rail infrastructure
monitoring, and some will be discussed in the next section.

1.2. QUESTIONS AND CHALLENGES

The following research questions are answered in this dissertation.

e How does noise behave in LDV signals? How to mitigate severe speckle noise
at high moving speeds?

e How to interpret vibration response under operational conditions without load
information? How to identify dynamic properties from structural vibrations?

e How does a train-borne LDV perform in measuring railway track vibrations?
How to characterize the influence of train speed on its performance?

e How to define and estimate the load-response relationship of railway tracks from
a moving vehicle?

The challenges behind the above research questions are further discussed as follows.

1.2.1. HOW TO MITIGATE SPECKLE NOISE AT HIGH MOVING SPEEDS?

Speckle noise has been reported as a major noise source in LDV measurements [25~27].
It originates from speckle patterns that appear when a laser beam is scattered on an




4 1. INTRODUCTION

optically rough surface [32]. In signals measured by an LDV, speckle noise appears as
random spikes in time and broadband noise floor in spectra [27]|. The severity of speckle
noise depends not only on laser and target properties but also on the change of speckle
patterns due to the relative motion between laser and target [27, 32]. Therefore, different
measurement setups of LDV usually show different severity of speckle noise. Depending
on the number of measurement locations, this dissertation classifies LDV measurement
setups into discrete measurement and continuous measurement. Table 1.2 summarizes
the influence of speckle noise for different measurement setups from the literature.
Compared to the discrete measurement category, speckle noise is more troublesome for
the continuous measurement category due to more drastic changes in speckle patterns.
Speckle noise is more severe at higher scanning or moving speeds.

Table 1.2: Speckle noise in different LDV measurement setups.

Categories Measurement setups Influence of speckle noise
Discrete Single-point LDV: The laser spot is * Some of the literature encounters the
measurement targeted at a fixed point [33~37]. speckle noise problem.
(at or.le or Stepped scanning LDV: The laser spot . Spe(lzkle noise occurs locally and
multiple . . occasionally.
) scans along selected points stepwise and
discrete dwells at each for a duration [38~40].
locations)

Most setups are used for modal analysis.

Continuous Continuous scanning LDV: The laser * Most of the literature encounters the

measurement spot repeatedly scans an object speckle noise problem.

(along a continuously along a closed path » Speckle noise is quasi-periodic.
continuous [41~49]. Most setups are used for modal <« Speckle noise gets more severe at
path) analysis. higher scanning frequencies.

LDV on moving platform (LDVom): * Most of the literature encounters the

The laser spot scans an object speckle noise problem.
continuously along an open path [28~30, < Speckle noise is highly irregular.
50~53]. Most setups are used for large-  « Speckle noise gets more severe at
scale structures. higher moving speeds.

Over the past years, manufacturers and users have been working on mitigating
speckle noise in LDV measurements. Table 1.3 summarizes the existing approaches for
different measurement setups from the literature. They are classified into three stages —
instrumentation, measurement, and post-processing. The approaches in the three stages
should be combined to achieve the best signal quality, especially in challenging
situations. In the instrumentation stage, innovations in LDV technology enable users to
improve signal quality by properly selecting LDV equipment. In the measurement stage,
users can mitigate speckle noise by optimizing measurement settings or treating target
surfaces. However, an LDV on moving platform (LDVom), such as a train-borne LDV,
is usually intended for measuring large-scale structures. Lowering the moving speed
increases the measurement time, and surface treatment on working surfaces or large-
scale structures is not possible or is expensive. Therefore, many existing approaches in
the measurement stage are incompatible with train-borne LDV.
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Table 1.3: Approaches for mitigating speckle noise.

Setups Mitigation in Mitigation in Mitigation in post-processing
instrumentation stage measurement stage stage

Single- « A tracking LDV with its « Treat the target « Kurtosis ratio-based method

point or laser spot tracking a target surface with [34], Gaussian filter [35],

stepped position [36]. retroreflective tape decorrelation and linear

scanning [33]. prediction [37], median filter

LDV [38].

Continuous (dpplicable to all setups) + Adjust the scanning <« Smooth the identified mode
scanning » Adaptive optics [54, 55]. frequency [41, 44, 45, shapes [45~47].

LDV * High-frequency scanning 48], the measurement < Neglect frequencies related to
average [56]. length [47, 48], and  the scanning frequency [41].
« Signal diversity with the distance between <« Windowing [44], wavelet or
multiple detectors [54, 57, LDV and target [48]. high-pass filter-based spike
58] or laser heads [59, 60]. * Treat the surface removal [49].
* Built-in tracking filter with retroreflective
[30, 61]. tape [46].
LDV on * A mobile LDV with a » Adjust the » Kurtosis and linear prediction
moving large spot size [51]. sensitivity and the [53], empirical wavelet
platform moving speed [52]. transform [62], Fourier analysis

[63], ensemble empirical mode

decomposition [64].

Further, speckle noise can be reduced in the post-processing stage. For continuous
scanning LDV, the availability of repeated measurements allows speckle noise reduction,
such as by averaging multiple measurements or neglecting frequencies related to the
scanning frequency. However, for LDVom measurements on large-scale structures or
structures under time-varying excitations, repeated measurements are not possible or are
expensive. Therefore, signal processing is necessary. Many conventional filtering or
denoising methods are available for this, but they may yield unsatisfactory performance
since they are not tailored to handle speckle noise [62]. For example, low-pass filters
can smooth speckle noise but not remove it [43].

Therefore, specialized signal processing methods have been developed to reduce
speckle noise. For discrete measurements, the ratio of the kurtosis of a raw signal to the
kurtosis of its trimmed version is used to select the undistorted part of a signal [34]. In
[37], speckle noise is detected using short-time energy and kurtosis and then replaced
through linear prediction. A few methods have been developed for continuous LDV
measurements where speckle noise occurs more frequently. In [49], speckle noise is
detected based on high-pass filtering or wavelet transform and removed through
interpolation or curve fitting. In [53], speckle noise is detected based on the kurtosis ratio
and replaced through linear prediction. In [62], speckle noise is reduced using empirical
wavelet transform. These methods are tested at the scanning speed of 0.05 m/s, 0.01 m/s,
and 0.1 m/s, respectively. Reducing speckle noise is more challenging at higher speeds.
In [63], low-pass filtering and oscillation detrending are combined to reduce speckle
noise, and it is tested for a case of harmonic vibrations at speeds up to 20 m/s. In [64],
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an ensemble empirical mode decomposition method is proposed and validated at the
speed of 0.85 m/s and 2.8 m/s in two experiments, respectively. Therefore, further
development and validation of post-processing methods are needed to reduce speckle
noise in non-periodic vibration measurements with LDVom at high speeds.

1.2.2. HOW TO IDENTIFY DYNAMIC PROPERTIES FROM VIBRATIONS?

For vibration-based condition monitoring of large-scale structures, it is usually difficult
or expensive to excite structures with controlled loads or measure operational loads.
Therefore, the interpretation of vibration response without accurate load information is
crucial. Operational modal analysis (OMA) enables modal characteristics of a structure
to be identified solely from the vibration response under operational loads and conditions.
It does not require manual generation and sensing of excitations and has become
increasingly popular in structural health monitoring.

OMA methods are generally classified into time-domain methods and frequency-
domain methods. Time-domain methods are based on the analysis of time histories or
correlation functions, e.g., natural excitation techniques, autoregressive moving average,
stochastic subspace identification, blind source separation, and Bayesian time-domain
approach [65~68]. They are usually computationally demanding and require proper
selection of model order and exclusion of spurious modes [65, 66]. Frequency-domain
methods are based on Fourier spectrum or power spectral density (PSD), which are
naturally more interpretable. The most basic frequency-domain method is the peak-
picking method [65, 66], which considers one mode at a time. Least square frequency
methods [69, 70] identify multiple modes together by iteratively estimating a
parameterized spectrum. Further, Bayes’ theorem is incorporated to infer probability
distributions of modal parameters [71], such as the spectral density approach [72],
Fourier transform approach [73], Markov chain Monte Carlo approach [74], and
expectation-maximization approach [75]. These Bayesian methods provide a rigorous
formulation that makes full use of measurement data, but they face many challenges in
solving ill-conditioned problems and estimating closely-spaced modes [76].

Frequency domain decomposition (FDD) is an extension of the peak-picking method,
which can identify closely-spaced modes and does not require numerical iterations [66].
The method is used for modal analysis in [77] and then systematized to identify natural
frequencies and mode shapes under broadband excitations in [ 78]. Since then, it has been
applied to the health monitoring of many engineering structures [29, 79~81]. Meanwhile,
many variants of the FDD method have been proposed in the literature. The estimation
of damping ratios is achieved by converting the PSD back to the time domain (known
as enhanced FDD) [82, 83] or by fitting the PSD in the narrow frequency band of a mode
[84, 85]. The FDD method is further adapted for nonstationary responses or heavily
damped structures by jointly using two PSD estimates and detrending the correlation
function [86, 87]. Moreover, model errors and measurement noise are considered in the
analysis by estimating the PSD matrix via maximum likelihood [88].

The FDD-based methods can produce a spectrum describing the dominance of
modes in frequency but cannot directly capture the change of modal characteristics over
time. To address this issue, a time-frequency representation is needed. Such methods
based on blind source separation are developed [89, 90], but they may produce spurious
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modes, and the numerical accuracy is sensitive to the number of sensors. In [91~94],
continuous wavelet transform (CWT) is combined with ridge extraction, but the
performance is sensitive to noise. Further, CWT is combined with singular value
decomposition, but the proper selection of the mother wavelet and its parameters can be
tricky because they are not directly related to structural dynamics, and a long
nonstationary signal needs to be split into segments [95, 96]. Thus, spurious modes and
implicit parameter design reduce the physical interpretability of OMA. To our
knowledge, no existing method can produce a time-frequency representation indicating
both the dominance of structural modes and the correlation of their mode shapes.

1.2.3. HOW TO CHARACTERIZE THE INFLUENCE OF TRAIN SPEED?

For track vibration measurements using a train-borne LDV, train speed is a major factor
of concern. To achieve more efficient rail infrastructure monitoring, a higher speed is
pursued, but this results in more severe speckle noise and a shorter length of signals
when measuring a certain track section. To reduce the interference of speckle noise, a
lower speed is preferred according to Section 1.2.1, but it can lead to smaller track
vibrations because track response depends on the dynamic loading condition. Therefore,
train speed affects train-borne LDV measurements in the following aspects.

o Influence of train speed on track dynamics: Track vibrations are excited by
wheel-rail forces, including quasi-static components due to moving loads and
dynamic components due to track irregularities [97]. As the train speed increases,
wheel and sleeper passage frequencies increase linearly, and the corresponding
track response amplitude first increases and then may decrease after resonance
[9, 98, 99]. For the dynamic response due to irregularities, its frequencies
increase linearly with the increasing train speed, while the track vibration
amplitude increases first fast and then slowly [100]. Therefore, the dependency
of track vibrations on train speeds is affected by several different mechanisms
simultaneously, leading to a complex nonlinear behavior. In addition, a train-
borne LDV measures a track component only when the laser spot scans its
surface. As the train speed increases, the signal length becomes shorter, which
may lead to more uncertainties in the measured response.

e Influence of train speed on speckle noise: In LDVom measurements, the severity
of speckle noise highly depends on the speed of the moving platform, such as a
running train. Simulations and experiments show that the amplitude of speckle
noise increases with the increase in the in-plane speed between the laser spot
and the target [48, 52, 101].

Therefore, the variation of track vibration and speckle noise with respect to train
speeds affects the quality and usability of train-borne LDV signals. No published
research has investigated such speed-dependent characteristics. This requires an in-depth
understanding of how train speeds physically affect track vibration and speckle noise.
Meanwhile, track vibration and speckle noise are mixed in real-life measurements.
Therefore, effective methods are needed to separate them at various speeds in order to
analyze their speed-dependent characteristics. Most of the methods for speckle noise
reduction in Section 1.2.1 are developed for low speeds (<0.1 m/s) [49, 53, 62] or
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harmonic vibrations [63]|. The method in [64] is validated in two experiments, each with
a constant speed (0.85 m/s and 2.8 m/s), and selecting parameters, such as the number
of intrinsic mode functions, requires human judgment and can vary for different
experiments and speeds. In the literature, there is a lack of methods capable of separating
structural vibrations from speckle noise adaptively at different speeds.

1.2.4. HOW TO ESTIMATE LOAD-RESPONSE RELATIONSHIP?

A transfer function (TF) characterizes structural dynamics in terms of its load-response
(input-output) relationship, and it is known as a frequency response function (FRF) in
the frequency domain. A TF or FRF of a railway track structure is an effective
representation of its dynamic properties, which is often defined in terms of the load on
rails as input and the response of rails or sleepers as output [102~104]. They can be used
to identify modal characteristics and stiffness of railway tracks and detect damage in
track structures [5~8]. As introduced in Section 1.1, a train-borne LDV can directly
measure the vibration of railway tracks under the moving train load, which has the
potential to complement existing technologies and support the estimation of railway
track TFs from a moving train. No research has been conducted to implement and assess
such a technology. The major challenges are summarized below.

e Obtain dynamic train loads (input) to railway tracks: Railway tracks are loaded
by trains through wheel-rail contact forces, which are broadband in frequency
due to irregularities of wheels and tracks. Such loads can be obtained by
measurement or estimation. In practice, the instrumentation and calibration of
sensors on a vehicle for wheel-rail force measurement are complicated [105,
106]. Since static wheel-rail loads are not a major concern for TF estimation, an
alternative solution is to estimate dynamic wheel-rail forces from vehicle
vibrations. Many methods have been developed on this topic [107~110], most
of which require a vehicle model with known parameters. This may be difficult
or expensive to achieve in real life because of changes and degradation of
vehicle parameters, such as changes in vehicle body mass due to changes in
passenger or good loads and degradation of springs or dampers.

e Measure dynamic responses (output) of railway tracks: A train-borne LDV
enables noncontact and continuous measurement of track vibrations. As
introduced in Section 1.2.1 and 1.2.3, speckle noise in LDV signals must be
effectively mitigated at different train speeds to improve their signal-to-noise
ratio. Since an LDV measures the relative velocity between the laser spot and
the laser head along the laser beam direction, the vibrations of the laser head and
other optical components affecting the laser beam need to be compensated to
avoid their disturbance to track response measurements.

e Estimate railway track TFs with moving load and response: Conventionally, a
TF is defined based on load and response at fixed locations. When measuring
railway track TFs from a running train, the locations of both load and response
move and the input-output relationship varies. Therefore, proper segmentation
is needed to divide a continuous railway track structure into distributed sections
and estimate an average input-output relationship from measurements on each
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track section. Meanwhile, non-parametric methods for estimating a TF from
load and response signals have been studied for decades [111~114]. Essentially,
they smooth the ratio of the output spectrum to the input spectrum using different
strategies, such as windowing and averaging, for the purpose of reducing errors
caused by noise, transient, and leakage. Their performance under the disturbance
of segmentation and speckle noise remains to be assessed.

1.3. OBJECTIVES

This dissertation aims to address the above challenges that hinder train-borne LDV from
measuring the dynamic properties of railway tracks. The objectives corresponding to
these challenges are given as follows.

e To develop and validate a post-processing method for reducing speckle noise in
LDVom measurements at high speeds.

e To develop and validate an OMA method in time-frequency representation for
identifying modal parameters of a structure from its nonstationary vibration
response under operational conditions.

e To develop a holistic method based on simulations and measurements for
characterizing track vibration measurements with a train-borne LDV and
investigate its speed-dependent characteristics.

e To develop and validate a method for estimating dynamic wheel-rail forces and
TFs of railway tracks from LDV and accelerometer measurements on a moving
vehicle.

1.4. CONTRIBUTIONS

The overall contribution of this dissertation is the development and validation of a
new technology based on train-borne LDV for measuring the vibration and load-
response relationship of railway tracks over a wide frequency range. Figure 1.2
shows the testing of the technology in the TU Delft V-Track test rig, and Figure 1.3
shows such a train-borne LDV system instrumented on the CTO measurement train of
TU Delft. This dissertation demonstrates the applicability of the train-borne LDV
technology for more efficient and informative rail infrastructure monitoring.

- =3 _ oA

Figure 1.2: LDV on the moving platform of the TU Delft V-Track test rig.
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Figure 1.3: Train-borne LDV on the CTO measurement train of TU Delft.

Specifically, the developed technology consists of the following four cornerstones
with their validity experimentally proved within a certain scope.

Based on the characteristics of the speckle noise from LDVom measurements, a
three-step framework for speckle noise reduction is developed. A wavelet-
based spike detection method, an autoregressive integrated moving average-
based imputation method, and a Butterworth filter are used at the three steps,
respectively. The method is validated in V-Track at speeds up to 20 km/h
through comparisons with trackside measurements.

By extending the FDD method, an interpretable OMA method in time-
frequency representation is developed. It provides not only a global view of
modal characteristics over time and frequency but also estimates of modal
parameters. It is applicable to strongly nonstationary responses under time-
varying loads and conditions and robust to the length of signals. The method is
validated using sleeper vibrations under train passage in V-Track and in the field.

By combining numerical simulations, laboratory measurements, and field
measurements, a holistic methodology for characterizing train-borne LDV
measurements is developed. Speckle noise is separated from structural
vibrations adaptively at different speeds and robustly under different scenarios.
The speed-dependent characteristics of sleeper vibration measurements are
determined. As sleeper vibrations compete with speckle noise at different speeds,
an optimal speed range yields the highest signal-to-noise ratio.

Based on the above methods, a methodology for estimating railway track TFs
from LDV and accelerometer measurement on a moving vehicle is
developed. OMA of a vehicle passing over joints is combined with contact force
estimation from vehicle vibrations, which eliminates the need to define vehicle
parameters for wheel-rail force estimation. The proposed method is validated in
V-Track at different track locations and speeds (8~16 km/h). The estimated TFs
are compared with trackside measurements and hammer tests, and they show
good agreement at 200~800 Hz. The differences in the estimated TFs between
different track sections reflect the variation of track dynamic properties.
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1.5. DISSERTATION OUTLINE

The structure of this dissertation is shown in Figure 1.4. Chapter 2 presents the
development and validation of the speckle noise reduction method, which focuses more
on the processing of signals measured by LDV. Chapter 3 presents the development and
validation of the operational modal analysis method in time-frequency representation,
which focuses more on the interpretation of track vibrations under passing trains.
Chapter 4 further combines the understanding of the speckle noise and track vibration to
investigate the speed-dependent characteristics of track vibration measurements using a
train-borne LDV. Chapter 5 incorporates the knowledge from the previous chapters and
presents the development and validation of the TF estimation method from LDV and
accelerometer measurements on a moving vehicle.

Chapter 2 Chapter 3
Speckle noise reduction for Operational modal identification
LDV on moving platform in time-frequency representation

[ S S Il /. fu

1

v v

Chapter 4
Speed-dependent characteristics of
train-borne LDV measurement

Chapter 5
Railway track transfer function estimation using
LDV and accelerometers on a moving vehicle

Trazk sesizn (@)

Fracpueescy {Hel

Figure 1.4: Structure of this dissertation.
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SPECKLE NOISE REDUCTION FOR
LDV ON MOVING PLATFORM

Speckle noise is a major problem for structural vibration measurements with a laser Doppler
vibrometer on moving platform (LDVom) due to its highly random, frequent, and broadband
nature, especially at high moving speeds. This chapter develops a new post-processing
framework to reduce speckle noise based on a case study of LDVom measurements on railway
tracks. First, the characteristics of the speckle noise from LDVom measurements in a vehicle-
track test rig are studied. As the speed increases, the speckle noise occurs more frequently, with
shorter intervals, shorter durations, larger amplitudes, and broader frequency bands. Then, a
three-step despeckle framework is proposed, consisting of spike detection, imputation, and
smoothing. This framework works by detecting and replacing spikes, recovering false positives,
and smoothing false negatives and residual noise. To showcase this framework, we use a
wavelet-based method for Step 1, an autoregressive integrated moving average-based method
for Step 2, and a Butterworth filter for Step 3. Besides, the parameter selection strategies and
the alternative methods are discussed. Next, the methods are validated through qualitative
comparison and quantitative evaluation using a Monte Carlo-based strategy. We demonstrate
that the proposed methods effectively reduce the speckle noise at speeds of at least 20 km/h while
avoiding the pseudo vibrations. Finally, we show that the LDVom successfully captures the track
vibrations at dominant frequencies of 500~700 Hz with good repeatability between different laps
and good agreement with trackside measurements.

Apart from minor updates, this chapter has been published as: Zeng Y, Nunez A, Li Z. (2022). Speckle noise
reduction for structural vibration measurement with laser Doppler vibrometer on moving platform.
Mechanical Systems and Signal Processing, 178: 109196.
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2.1. INTRODUCTION

Speckle noise is problematic for structural vibration measurements with a laser Doppler
vibrometer on moving platform (LDVom) at high speeds. Specialized signal processing
methods are needed to reduce speckle noise in such challenging situations. This chapter
studies the time and frequency characteristics of speckle noise and develops a new post-
processing framework for speckle noise reduction. The LDVom measurement in the TU
Delft V-Track test rig is used as a case study, and the proposed methods are adaptable
to different kinds of structural vibration measurements.

The remainder of this chapter is organized as follows. In Section 2.2, speckle noise
samples are collected from LDVom measurements, and their characteristics are
investigated. In Section 2.3, a three-step despeckle framework is proposed. To showcase
this framework, we develop a wavelet-based spike detection method for Step 1, an
autoregressive integrated moving average-based imputation method for Step 2, and a
traditional smoothing filter for Step 3. Moreover, the alternative methods at different
steps are discussed. In Section 2.4 and Section 2.5, stepwise validation and verification
are performed, respectively. Finally, the conclusions are summarized in Section 2.6.

2.2. CHARACTERISTICS OF THE SPECKLE NOISE

2.2.1. LDVOM MEASUREMENTS IN THE LABORATORY

Figure 2.1 shows the experimental setup of LDVom measurements in the V-Track test
rig that resembles train-track interaction [115, 116]. The scaled track structure consists
of rails, sleepers, and track slabs. Rails are supported by sleepers through fasteners and
rail pads, and sleepers are assembled on track slabs through bolts and sleeper pads. The
vehicle system consists of an upper mass suspended on a lower mass with a wheel. The
suspension provides not only stiffness and damping but also a static vertical load to place
the wheel in contact with the rail. The upper mass of the vehicle is connected to a beam,
which is driven by a motor to rotate around the central axis of the test rig.

Figure 2.1: LDVom measurement setup in the V-Track test rig. The green arrows represent the laser beam,
and the green dashes represent the path of the laser spot.

A one-dimensional LDV (Polytec RSV-150) is mounted on the beam near its rotation
axis. A mirror is fixed on the end of the beam to direct the laser onto the track. As the
beam rotates, the wheel rolls along the rail, and the laser spot scans along the track
structure. This enables the track vibration to be excited by the moving vehicle and then
measured by the LDVom. Besides, there are four joints in the test rig connecting
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different rail pieces. When the wheel rolls over the joints, impacts occur. This chapter
uses the sampling frequency of 102,400 Hz and the static wheel load of 4,000 N.

2.2.2. CHARACTERISTICS IN THE TIME DOMAIN

Gaining insights into the speckle noise is the first step towards reducing it. In the time
domain, speckle noise appears as random spikes. First, we manually label more than one
thousand spike samples from LDVom measurements at three speeds — 0.5 km/h, 5 km/h,
and 20 km/h. This method is reliable when spikes behave differently from genuine
vibrations. Figure 2.2 shows a sample of LDVom measurement with seven spikes
labeled. We defined three features to characterize the spikes in the time domain — interval,
duration, and amplitude. A spike interval is the time difference between two adjacent
spikes, denoted as b. A spike duration is the time difference between the boundaries of
a spike (e.g., Points A and B), denoted as /. A spike amplitude, denoted as 4, is the
difference between the local peak or valley of a spike (e.g., Point C) and the average
amplitude of its boundaries (e.g., Points A and B). Spike amplitude is positive for a peak
whereas negative for a valley.
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Figure 2.2: A sample of LDVom measurement with labeled spikes (0.5 km/h).
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The distribution of each feature is estimated based on the relative frequency of its
values in consecutive and non-overlapping bins within the total number of samples. As
shown in Figure 2.3 (a)~(c), the distributions of spike intervals, durations, and
amplitudes at different speeds reflect the randomness of the speckle noise. At higher
moving speeds, spikes occur more frequently with shorter durations and larger
amplitudes. The amplitude distributions of the peaks are similar to those of the valleys.
In addition, the duration of each spike is plotted against its amplitude in Figure 2.3 (d).
The hyperbolic shape shows that a spike is more likely to be shorter in duration if it is
greater in amplitude and vice versa.

2.2.3. CHARACTERISTICS IN THE FREQUENCY DOMAIN

Considering the discreteness and nonstationarity of the speckle noise, we adopt
continuous wavelet transform (CWT) with Morlet wavelet [117] to study its
characteristics in the frequency domain. Figure 2.4 shows the spectrograms for the three
samples of LDVom signals at different speeds. It shows that spikes are discrete in time
and broadband in frequency. As the speed increases, the frequency band is broader since
the spike duration is shorter and the spike amplitude is larger. Additionally, the low-
frequency parts of a spike may overlap with genuine vibrations or adjacent spikes.
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Figure 2.4: Frequency-domain characteristics of the speckle noise. (a) Sample at 0.5 km/h; (b) Sample at 5
km/h; (c) Sample at 20 km/h.

The above characteristics of speckle noise in time and frequency domains account
for the limited performance of conventional filters and motivate us to develop new
methods for reducing speckle noise (despeckle). The parameter selection in the proposed
despeckle methods requires some prior estimates of spike characteristics. Instead of
manual spike collection, a fast approach is to directly observe an LDV signal and roughly
estimate the features of spikes, e.g., the average spike duration [ and the minimum spike
amplitude /min.

2.3. DESPECKLE METHODOLOGY

When applying conventional methods to despeckle, such as a low-pass filter, both spikes
and genuine vibrations are affected, and the amplitude of spikes can be shortened but
not eliminated. It is more problematic when speckle noise overlaps with genuine
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vibrations in the frequency band of interest, leading to severe residual noise and causing
confusion in signal interpretation. Therefore, we propose a new despeckle framework,
which consists of three steps:

Step 1. Spike detection: distinguish spikes from genuine vibrations.
Step 2. Imputation: replace spikes based on time series modeling and predictions.
Step 3. Smoothing: filter out residual noise.

The main feature of this framework is that spikes are detected and replaced before
being filtered. To showcase how these steps work, we propose a specific method for
each of the three steps. Although these methods are used in the case study on railway
tracks, they are adaptable to other structural vibration measurements. Moreover, the
alternative methods at different steps and their pros and cons are discussed.

2.3.1. STEP 1: SPIKE DETECTION

Step 1 aims to detect spikes in LDV signals based on their characteristics. In this section,
we propose a wavelet-based spike detection method.

2.3.1.1. WAVELET DECOMPOSITION AND RECONSTRUCTION

As a tool for processing nonstationary signals, wavelet transform breaks up a signal into
shifted and scaled wavelets. The discrete wavelet decomposition (DWT) of a time series
u consists of convolving u# with two orthogonal filters (a low-pass filter LoF and a high-
pass filter HiF) and downsampling the results by two [118], as expressed by the
following operator pair,

{DWTA(u§=(u*LOF)‘L2 @.1)

DWT, (u) = (u* HiF ) 4 2

where DWTa and DWTb correspond to the outputs of the low-pass filter and the high-
pass filter, respectively, * denotes the convolution operator, and | denotes the
downsampling operator. Based on Eq. (2.1), the DWT of a signal x produces two series
of wavelet coefficients,

{(:A1 =DWT, (x) 2.2)

¢D,=DWT,(x)

where cA1 are the approximation coefficients and ¢D: are the detail coefficients [118].
The approximation coefficients can be further decomposed through DWT as follows,

k=12

5 Ligans

{CAA»H =DWT, (CAk) (2.3)

¢D,,, =DWT,(c4,)

where cAr and c¢Dy are wavelet coefficients at the k-th level. Based on Eq. (2.3), DWT
can be performed in a cascading process. The black paths in Figure 2.5 indicate the
process of cascading DWT applied to a signal x.
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Level 1 Level 2 Level 3

Figure 2.5: Block diagram of cascading DWT (black paths) and IDWT (blue paths).

Reversely, inverse discrete wavelet transform (IDWT) represents the inverse process
of DWT [118], and the corresponding operator pair is,

IDWT, () :((u) 0 2)*L0F—1 04
IDWT, () = ((u) T 2)  HiF !

where LoF*! and HiF"! are the inverse filters of LoF and HiF, respectively, and 1 denotes
the upsampling operator. The signal x and its approximation coefficients cAx at any level
can be reconstructed from the IDWT of wavelet coefficients at the next level, as
expressed below.

{x =IDWT, (c4,)+IDWT, (cD,) 2.5)

cd, = IDWT, (¢4,, )+ IDWT, (cD,,,) k=12,..

The cascading reconstruction process of x is shown by the blue paths in Figure 2.5.
Therefore, when the signal x is decomposed to the n-th level (#>1), it can be exactly
reconstructed as follows.

x=R, (cAn)JriRk (eDy,) (2.6)

where Ru(cAx) is the n-step reconstruction of c4, and Ri(cDyk) is the k-step reconstruction
of ¢Dx:

R,(c4,)=IDWT,"(c4,)
R/ (cD,)=IDWT,(cD,) 2.7)
R, (cD,)=IDWT,*'[IDWT, (cD,)] k=2,...n

where IDWTX(") represents repeating IDWT k times. Eq. (2.6) shows that a signal can
be represented as the superposition of a term related to approximation coefficients and
n terms related to detail coefficients, describing the deterministic component and the
noise, respectively.

2.3.1.2. WAVELET-BASED SPIKE DETECTION

Detail coefficients are sensitive to nonsmooth features in a signal, e.g., jumps and spikes,
and have been used to detect spikes or outliers [49, 119~121]. Instead of directly using
detail coefficients, we propose a new method as follows.
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Step Al. Perform n-level DWT of a signal x according to Eq. (2.2) and (2. 3) to
obtain a series of detail coefficients ¢D1, cD>, ..., ¢Dn.

Step A2. Perform k-step reconstruction of ¢Dk (k=1, ..., n) according to Eq. (2.7) to
obtain a series of reconstructed signals Ri(cD1), R2(cD32), ..., Ru(cDn).

Step A3. Calculate a spike indicator based on the reconstructed signals Ri(cDx) as
follows.

Ry =Y |R. (D)) 2.8)

k=1
Step A4. Label the locations at which Rp is greater than a threshold 71 as spikes.

Using the reconstructed signals Ri(cDk) to indicate spikes has the following
advantages over using the detail coefficients ¢Dx.

e The detail coefficients are scaling factors of DWT, so detecting spikes based on

them requires some prior estimates or assumptions, e.g., in [119, 120]. In
contrast, the reconstructed signals directly represent the amplitude of the noise
in a signal.

e Each level of DWT reduces the size of the detail coefficients by half, which
needs to be handled when labeling spikes, e.g., in [119, 120]. In contrast, the
reconstructed signals are of the same length as the original signal and do not
require special treatment.

2.3.1.3. PARAMETER SELECTION

There are three important parameters to select in the proposed method.

Wavelet type. Haar wavelet is recommended because it has shown effectiveness in
producing large detail coefficients at locations of outliers [ 119, 120].

Decomposition level n. It determines the depth to which the noise is decomposed.
As n increases, the spike indicator Rp increases, getting closer to the spike amplitude,
but the temporal resolution of R.(cD») deteriorates. Therefore, we recommend using
n that meets the following criterion so that the resolution of R.(cD») is sufficiently
higher compared to the average spike duration.

n<log,(I-f.) (2.9)

where [ is a rough estimate of the average spike duration, and fs is the sampling
frequency.

Threshold T71. It can be selected based on the cumulative frequency distribution of
Rp above different values, denoted as P(Rp>R). Ideally, as R increases from O to
infinity, P(Rp>R) decreases from 1 to O, first sharply and then slowly. The critical
point is a good balance between fewer false positives (genuine vibrations are labeled
as spikes) and fewer false negatives (spikes are missed), so the value of the critical
point can be selected as the threshold 7. In the absence of a significant critical point
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(usually when speckle noise occurs very frequently), 71 can be set to a value
providing a reasonable proportion of labeled points, e.g., P(Rp>71)=0.5. This leaves
some small-amplitude spikes unlabeled to reduce the amount of imputation in Step
2, and these false negatives can be reduced in Step 3.

2.3.2. STEP 2: IMPUTATION

Step 2 aims to replace the detected spikes with estimates based on nearby unlabeled
points. This process is known as imputation and is commonly used to handle missing
data or outliers [ 122, 123]. Generally, missing points or outliers occur occasionally [ 124,
125], whereas, in our case, spikes occur more frequently, especially at high speeds.
Meanwhile, false positives may occur during spike detection, i.e., genuine vibrations are
labeled as spikes, and their original values should not be discarded.

The basic idea of imputation is to build a time series model and make predictions at
locations labeled as spikes. A widely-used time series model is the autoregressive
integrated moving average (ARIMA) model. For example, in [124], an ARIMA model
with exogenous inputs is used for outlier imputation, and in [126], a seasonal ARIMA
model is used for missing data imputation. In this section, we use a non-seasonal
ARIMA model because the LDVom measurements on large-scale structures do not
follow a seasonal pattern.

2.3.2.1. TRAINING AND REPLACEMENT WITH AN ARIMA MODEL

A non-seasonal ARIMA model is defined as a three-tuple ARIMA(p, d, q). The
autoregressive order p defines the number of past points used to regress the evolving
point. The differencing order d defines the times of differencing applied to the original
series. The moving average order g defines the number of past regression errors used to
regress the evolving error. The ARIMA model for a time series x; indexed by #is [127],

[l—iaiL’](l—L)dx, =(1+Zq:9jy'jg, (2.10)

i=1

where & is the regression error indexed by ¢, a: is the coefficient for the i-th
autoregressive term (=1, ..., p), 6; is the coefficient for the j-th moving average term
(=1, ..., q), L'is the i-step lag operator, and (1-L)? represents the d-th order differencing.

The regression coefficients of an ARIMA model with defined orders can be
estimated based on a time series from measurements, named the training process.
Considering the presence of speckle noise, we list three training strategies in Table 2.1,
including their advantages and disadvantages.

A trained ARIMA model can predict the values of the future points X, X,

412 = Mg

based on the past points xrp-4+1, ..., x: through differencing, forecasting, and reversing.
For example, the process of one-step (s=1) prediction in the case of d=1 is as follows.

y,=x,—Lx,
p-1 ) q-1 )
j>z+1 :zah»]Llyt +zgj+1LJ‘9, (211)

i=0 Jj=0

xt+1 = y1+1 + xt



2.3. DESPECKLE METHODOLOGY 21

Table 2.1: Different training strategies for imputation.

Strategies Descriptions Advantages Disadvantages
Direct e Train the model using all data  « The most » The participation of
training points, including spikes, through straightforward. spikes may skew the
a traditional method, e.g., the regression coefficients of
Box-Jenkins method [127]. the model [124].
Training with « Train the model using only * Only genuine * Loss of information in
unlabeled unlabeled data through the vibrations (except case of false positives.
points methods in [128, 129]. false negatives)  * Problematic when speckle
are used for noise affects most parts of
training. the signal.
Training after < Replace the detected spikes * Maintain the * Manipulation may induce
manipulation with local means or other data size for extra dynamics or eliminate
[124, 130] statistics. training. important dynamics.
 Train the model using the * Reduce the
manipulated signal through a disturbance of
traditional method. spikes.

As mentioned above, false positives may exist in the time series after spike detection.
To reduce the influence of imputation on false positives, we apply the following
replacement strategy after making predictions at the locations of labeled points.

x, if|% —x|<A-h @12)

t ‘min

i {x if £ —x|> A Ay,
X, =
where x; is the original value, ¥, is the predicted value, A is a scaling factor, smin is a
rough estimate of the minimum spike amplitude, and x'; is the point after replacement.
This strategy detects a false positive and trusts its original value when the difference
between the predicted and original values is sufficiently small.

2.3.2.2. MULTI-OFFSET AND BI-DIRECTIONAL IMPUTATION

Based on the above fundamentals, we propose the following steps of bi-directional
training and replacement to involve data points on both sides of a spike in the imputation
process.

Step B1. Train a time series model along the forward direction using a strategy in
Table 2.1.

Step B2. Make predictions for each segment of labeled points along the forward
direction and make replacements according to Eq. (2.12). Use the replaced segments
for future predictions.

Step B3. Perform Step B1 and B2 along the backward direction.
Step B4. Average the forward and backward replacement results.

Based on the bi-directional training and replacement process, we further propose a
multi-offset imputation method, as shown in Figure 2.6. The major steps are as follows.
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Step C1. Pad the original signal on both ends with d+p points that are equal to the
first and the last points, respectively.

Step C2. Downsample the padded signal by a factor of ».

Step C3. For each downsampled signal with a certain offset, perform bi-directional
training and replacement (Step B1~B4) to produce an imputation result.

Step C4. Upsample each imputation result by the factor of » through interpolation
and average all the imputation results with different offsets.
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\
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Forward Forward :
I
|
1
1

training replacement -
Weighted
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Backward Backward i
|

\ training replacement
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Figure 2.6: Flowchart of multi-offset imputation with bi-directional training and replacement.

Padding the signal in Step B1 allows the imputation process to cover the entire signal.
Downsampling in Step B2 reduces the model order. Using downsampled signals with
different offsets in Step B3 and B4 can improve the imputation accuracy. Additionally,
the proposed imputation method is applicable not only to ARIMA models but also to
other time series models.

2.3.2.3. PARAMETER SELECTION

There are several parameters to select in the proposed imputation method. First, the
ARIMA model orders (d, p, g) need to be selected depending on the choice of the training
strategy. For training with unlabeled data or after manipulation, spikes are excluded, so
the model orders can be selected through traditional methods, e.g., the autocorrelation
function (ACF)-based method [127] and the Akaike information criterion [131]. For the
direct training strategy, selecting the model orders is tricky due to the involvement of
spikes in regression. We propose the following strategy to deal with this situation.

Differencing order d. Appropriate differencing is necessary to treat the
nonstationarity caused by spikes. A good choice of d should provide a differenced
time series with an ACF that rapidly decays with respect to the lag [ 127]. Therefore,
we recommend increasing d from 1 until the ACF meets this criterion.

Moving average order g. Since the ACF usually turns from positive to negative
after differencing, an appropriate g is needed. Meanwhile, ¢ should not be too large
so as to limit the influence of regression errors due to spikes, e.g., g=1 can be
sufficient.
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Autoregressive order p. It should be selected properly to capture the dynamics of
genuine vibrations. We recommend initially setting p based on the average spike
duration [ as follows and then adjusting it by evaluating the imputation performance.

A

7

P (2.13)

Downsampling is recommended in Step B2 when the sampling frequency fs is high
enough. According to Eq. (2.13), a larger downsampling factor » can reduce the
autoregressive order p of the ARIMA model, thereby reducing the computational cost.
Meanwhile, the integer » should be restricted so that fi/r is sufficiently higher than the
highest frequency of interest.

The scaling factor A in Eq. (2.12) determines the boundary between trusting the
original point and the predicted value. It should be set to a small value, e.g., at least
below 0.2, so that false positives are recovered but not real spikes. In this case, the
imputation performance is not sensitive to A, since only predicted points with small
deviations from the original points are affected.

Finally, for each segment of labeled points, we recommend predicting additional ¢
points ahead in both directions in Step B2 and calculating the weighted average of the
bi-directional results in Step B4 based on the following weighting functions.

ﬁf.ﬂ O<x<£ 26[x OSX<£
B ‘e/.‘+‘eb‘l B 3 eslt+ie, l 214
wf(x)— _2‘%‘ . / Wb(x)_ 2‘6‘ . ‘e ‘_‘eb‘ ; (2.14)
7[7—1J Z<x<l ol 2~ 1Y Z<x<l
‘e‘/‘ﬂeb‘ / 2 ‘e/.‘ﬂe‘h‘ / ‘e/.‘ﬂe‘b‘ 27

where / is the length of labeled points, wi(x) (or ws(x)) is the weight for the forward (or
backward) replacement result at position x, and er (or ep) is the forward (or backward)
terminal error, i.e., the average prediction error for the additional ¢ points. The parameter
c can be set to a small integer, such as 3~5. The above averaging strategy is illustrated
in Figure 2.7, in which both the distance to the boundary and the terminal error contribute
to the determination of weights. The following properties hold for the weighting
functions in Eq. (2.14).

o wAx)twa(x)=1; wA0)=1; wp()=1.
e wy(x) is a decreasing function of x, and ws(x) is an increasing function of x.
e If |ej/|es| decreases, wy(x) will increase and wp(x) will decrease, and vice versa.

e At the midpoint (x=//2), the weights depend only on the terminal errors:

D el (LJ_L
WI(ZJ_|6,-|;|€[,| w, 5 —|ef|+|eb| (2.15)
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Figure 2.7: Weighting functions.

2.3.3. STEP 3: SMOOTHING
The signal processed after Step 1 and Step 2 may still contain undesired noise, such as
false negatives in spike detection that remain untreated, errors induced in the imputation
process, and abrupt changes due to switching between the two options in Eq. (2.12).
Step 3 aims to reduce the residual noise while preserving the genuine vibration. It is
implemented by applying a classical smoothing or denoising method because the
residual noise is no longer as broadband as the raw speckle noise. In this chapter, we use
a low-pass filter. The gain of an m-order low-pass Butterworth filter is [132]:

Gz(m)zGioz (2.16)

o\
1+ [/wj
Jjo,
where Go is the gain at zero frequency and wc is the cut-off frequency. The amplitude-
frequency response of a Butterworth filter is monotonic, being maximally flat in the

passband while rolling off toward zero in the stopband [ 133]. The cut-off frequency can
be set equal to the highest frequency of interest.

2.3.4. DIFFERENT OPTIONS AT DIFFERENT STEPS

e - - - oo
Step 1 Step 2 Step 3

signal m m m despeckle
S B I R

[ ) Fal 1 Residual —L—
alse esidual
| Unlabeled H negatives —>|\Unchanged }—b noise —P{\ Smoothed l_

Speckle i I ‘ Speckle
noise I . 1 . Rosidual P B, poise,
. esidual
| Labnve\ed %blm'—b{ Rep\‘aced }—D noise —ﬂ Smo?lhed I—

I | | >
( ‘ 1 Fal ( : 1 Residual ——
alse esidual .

) | Labeled }—D positives —>| Recovered }—b noise —P{ Smoothed I— Qenu_lne
Genuine 1 i | vibration
vibration PR T - S - —_

Unlabeled %b E::;;;: —>| Unchanged }—b \Si;t?rnali\lg: —b{ Unchanged If

Figure 2.8: Signal flow in the three-step despeckle framework.
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Figure 2.8 illustrates the signal flow in the proposed despeckle framework. Spikes are
detected in Step 1 and replaced in Step 2. False positives are recovered in Step 2. False

negatives and residual noise are smoothed in Step 3.

Table 2.2: Different options in Step 1 (Spike detection).

Methods Descriptions Advantages Disadvantages
Wavelet-based « Calculate a spike indicator » The spike * Require multi-level
(Section 2.3.1) through wavelet decomposition indicator reflects DWT and IDWT.
and reconstruction. the noise
amplitude.
Wavelet-based « Calculate the detail * No IDWT * Thresholding requires
[49, 119, 120] coefficients through wavelet required. prior estimates or
decomposition. assumptions.
* Size reduction due to
downsampling.
High-pass filter- e Filter the raw signal with a * Easy to » Frequency-dependent

based [49]

Local statistics-
based [34, 37,
53]

Short-time
energy-based
[37]
Residual-based
[124]

high-pass filter.

 Calculate the local

variance/kurtosis in a sliding

window.

« Calculate the average short-

time energy in a sliding
window.

* Build a time series model for

the raw signal.

implement in

frequency domain.

* Easy to
implement in time
domain.

« Sensitive to
spikes of long
duration.

 Independent of
frequency

time delay.

* Spike boundaries are
difficult to determine.

* Spike boundaries are
difficult to determine.

* Outliers degrade the
regression

« Calculate residuals to indicate characteristics. performance.
outliers.

Table 2.3: Different options in Step 2 (Imputation).

Methods Descriptions Advantages Disadvantages

ARIMA-based
(Section 2.3.2)

ARIMA-based
[124]

* Model the time series by
ARIMA models.

» Replace spikes through
multi-offset and bi-
directional imputation.

 Outliers are replaced by
local means.

* Model the manipulated
time series by an ARIMA

model and make predictions.

« Fitting an ARIMA
model is
deterministic and
fast.

« Fitting an ARIMA
model is
deterministic and
fast.

* The disturbance of
outliers is reduced.

* Only linear dynamics is
captured.

* Spikes degrade the
training performance.

* Only linear dynamics is
captured.

* Manipulation may
induce extra dynamics or
eliminate important
dynamics.
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Linear
prediction-
based [37, 53]

Support vector
machine
(SVM)-based
[130]

Artificial neural

network
(ANN)-based
[134]

Kalman filter-
based [ 125,
135]

Interpolation-

based [49, 136]

* Model the time series by a

linear prediction model.
» Replace spikes through
linear prediction.

* Replace outliers or missing

values with temporal
information.

* Model the time series by an
SVM and make predictions.

« Optimization is usually
required to improve
accuracy.

* Model the signal by a
Kalman filter and make
predictions.

« Interpolate based on
adjacent points.

* Model the time series by an
ANN and make predictions.

« Fitting a linear

prediction model is

fast.

« Capture nonlinear
dynamics by a kernel

method.

dynamics.

» Capture dynamic

trends.

* No modeling
required.

* The disturbance of
outliers is reduced.

« Capture nonlinear

* Only linear dynamics is
captured.

» Non-explicit
interpretability.

* Manipulation may
induce extra dynamics or
eliminate important
dynamics.

« Computationally
demanding.

« Non-explicit
interpretability.

« Sensitive to model
design.

« Difficult to capture
dynamic behaviors.

Table 2.4: Different options in Step 3 (Smoothing).

Methods Descriptions Advantages Disadvantages
Low/band- « Filter the signal with a * Clear physical * Sensitive to the cut-off
pass filter low/band-pass filter. meaning. frequency.

(Section * Preserve genuine * Frequency-dependent
2.3.3) vibrations. time delay.

Mean filter
[137]

Median filter
[138, 139]

Lee filter
[140]

Sigma filter
[141]

Wavelet
denoise [62,
142, 143]

« Calculate the weighted

average in a sliding window.

« Calculate the local median
in a sliding window.

» Calculate local statistics in
a sliding window.

« Calculate the local mean
within a certain deviation.

* Perform wavelet transform.

« Filter out large wavelet
coefficients.
* Reconstruct the signal.

« Easy to implement in

time domain.

« Easy to implement in

time domain.

* Balance between
original values and
local statistics.

* Exclude outliers.

« Easy to implement in

time domain.

« Suitable for

nonstationary changes.

* Reduce genuine
vibrations.

* Sensitive to window
design.

* Reduce genuine
vibrations.

* Sensitive to window
design.

* Reduce genuine
vibrations.

* Sensitive to window
design.

* Reduce genuine
vibrations.

« Sensitive to wavelet
type and decomposition
level.
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In the proposed despeckle framework, we use a wavelet-based method for Step 1, an
ARIMA-based method for Step 2, and a Butterworth filter for Step 3. A significant
advantage of the proposed framework is that other different methods can also be adapted
and used at different steps. Table 2.2~2 .4 lists some other alternative methods from our
literature survey, including some post-processing methods mentioned in Section 1.2.1.
These tables are intended to provide some potential options for each step and discuss
their pros and cons.

2.4. STEPWISE VALIDATION
In this section, the proposed despeckle framework is validated following a stepwise
process.

2.4.1. VALIDATION OF STEP 1

Taking the signal in Figure 2.4 (a) as an example, we show the reconstructed signal
Ri(cDx) at different level k in Figure 2.9 (a), where as k increases, the temporal resolution
of Ri(cDr) deteriorates, while its size remains the same as the original signal. Further,
we show the spike indicator Rp for different » in Figure 2.9 (b), where as n increases, Rp
gets larger at the locations of spikes, and the amplitude of Rp is correlated with the
corresponding spike amplitude.

According to Eq. (2.9), the decomposition level of n=3 is selected. Then, the
cumulative frequency distribution of Rp is plotted in Figure 2.10 (0.5 km/h). A critical
point can be observed, so the threshold of 71=0.1 mm/s is selected. The corresponding
detection result in Figure 2.9 (c) shows that all the manually selected spikes in Figure
2.4 (a) are automatically detected.
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Figure 2.9: Wavelet-based spike detection at 0.5 km/h. (a) Reconstructed signal Ri(cD;) at different k; (b)
Spike indicators R, for different #; (c) Spike detection result.
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Figure 2.10: Cumulative frequency of spike indicators R, at different speeds.
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Figure 2.11: Wavelet-based spike detection at 5 km/h and 20 km/h. (a) Spike indicator Rp at 5 km/h; (b)
Spike indicator Rp at 20 km/h; (c) Spike detection result at 5 km/h; (d) Spike detection result at 20 km/h.

Similarly, Figure 2.10 and 2.11 show the spike detection results for the two samples
in Figure 2.4 (b) and (c), respectively. For the higher speeds, the selected »n is smaller
due to the shorter spike duration, and the selected 71 is larger due to the larger spike
amplitude. It is noteworthy that in Figure 2.10 no critical point is observed at 20 km/h,
so we select 71=2 mm/s to label approximately half of the points as spikes. Compared
with the manual selection in Figure 2.4, most of the spikes are detected. Meanwhile,
some false negatives can be observed, e.g., the points labeled in Figure 2.9 (c) and Figure
2.11 (c) and (d). They will be addressed through the replacement strategy in Step 2 and
the smoothing method in Step 3, respectively.

2.4.2. VALIDATION OF STEP 2

In our case study, we use the strategy of direct training in Table 2.1 for imputation. To
showcase the design of ARIMA models following Section 2.3.2.3, we take the above
three samples as examples and show their ACFs at different differencing orders d in
Figure 2.12. The plots for d=0 show slow-decay patterns, the plots for d=1 show rapid-
decay patterns, and the plots for d=2 indicate over-differencing. Meanwhile, the ACFs
turn from positive to negative after differencing. Therefore, we select d=1 and g=1 for
all the three samples.

Since speckle noise masks genuine vibrations in real signals, we propose a Monte
Carlo-based strategy to create artificial noisy signals by superposing the collected spike
samples with base signals free of speckle noise (from non-LDV measurements or
simulations). At each time instant of a base signal, a random number between 0 and 1 is
generated. Once it is smaller than a defined scalar ps, a spike sample is randomly selected,
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and its amplitude is scaled by a factor as. Then, the left and right halves of the spike
sample are scaled separately and superposed with the base signal with smooth transitions.
Afterward, imputation is performed for the artificial signal at the locations of spikes, and
the imputation error is quantified through comparisons with the base signal, as shown in
Figure 2.13. Additionally, the spike occurrence rate and amplitude are adjustable by
changing ps and as, respectively, which allows us to evaluate the imputation accuracy
under different speckle noise severity.
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Figure 2.12: ACF plots for different d. (a) 0.5 km/h; (b) 5 km/h; (c) 20 km/h.
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Figure 2.13: An imputation example based on an artificial signal. ‘Artificial signal—S.2’ represents applying

Step 2 alone to the artificial signal.

Following the above strategy, three artificial signals with different speckle noise
severity are generated. Table 2.5 and 2.6 compare the imputation performance between
different ARIMA model orders, including the mean square error (MSE) at all spike
locations and the total CPU time (on Intel Xeon E5-2643 @3.30 GHz). The influence of
p is small in a certain range (p=20~50) but becomes significant when it is too large or
too small. It shows that the combination of d=1, g=1, and p=40 outperforms the other
choices in terms of imputation errors, demonstrating the effectiveness of the model order

selection strategy in Section 2.3.2.3.
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Table 2.5: Imputation performance under different d and q.

ARIMA models Artificial signal 1 Artificial signal 2 Artificial signal 3
ps=0.002, a~=1 ps—0.004, a~=1 ps—0.004, a=2
P d q MSE CPU MSE CPU MSE CPU
(mm/s) time (s) (mm/s) time (s) (mm/s) time (s)
p=40 d=0 g=1 0.010537 81.843 0.004112  79.97 0.004225 79.11
(acc. to (acc. to
a=2 . 0.002198 101.84 0.002133 110.41 0.001667 107.94
Eq. Figure
(2.13))  a=1 2.12)  0.001373 88.67 0.001571 88.03 0.001240 89.08
(acc. to

. g=0 0.004033 72.11 0.003596 103.88 0.004343 60.44
Figure

2.12)  g=2 0.001390 89.31 0.001572  97.27 0.001336 91.16

Table 2.6: Imputation performance under different p.

ARIMA models Artificial signal 1 Artificial signal 2 Artificial signal 3
¥4 d q MSE CPU MSE CPU MSE CPU
(mm/s) time (s) (mm/s) time (s) (mm/s) time (s)
p=0 da=1 g=1 0.002581 3.23 0.002187 6.52 0.002065 5.36
(acc. to (acc. to
p=5 0.002699 8.03 0.002145 11.05 0.001886 9.95

Figure Figure
p=10 212y 2.12)  0.002812 11.45 0.002128 16.11 0.001846 16.80

p=20 0.001257 35.11 0.002136  33.69 0.001748 34.73
p=30 0.001297 52.27 0.002056 55.27 0.001579 56.39
p=40 0.001373  88.67 0.001571 88.03 0.001240 89.08
(Eq.

(2.13))

p=50 0.002009 114.97  0.001636 130.31  0.001278 118.16
p=60 0.004671 148.22  0.002460 155.94  0.004929 160.08
p=70 0.004438 265.78  0.003492 289.16  0.004598 287.84

Table 2.7: Imputation performance under different downsampling strategies.

Downsampling strategies Artificial signal 1  Artificial signal 2  Artificial signal 3

r P Offset MSE CPU MSE CPU MSE CPU
(mm/s) time (s) (mm/s) time (s) (mm/s) time (s)

r=1 p=40 / 0.001373 88.67 0.001571 88.03 0.001240 89.08

=2 p=20  Single offset 0.001434 24.80 0.001656 29.90 0.001593 28.90
Multiple offsets  0.001429  49.59 0.001643 59.80 0.001243 57.80
=3 p=20  Single offset 0.001425 15.23 0.001672 18.51 0.001359 17.70

Multiple offsets 0.001423  45.69 0.001657 55.53 0.001347 53.11
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Table 2.8: MSE (mm/s) under different averaging strategies.

Averaging strategies Artificial signal 1 Artificial signal 2 Artificial signal 3
Only forward replacement 0.006353 0.005300 0.005774
Only backward replacement 0.005937 0.005342 0.005797
Direct average 0.003723 0.003276 0.003307
Weighted average (Section 2.3.2.3) 0.001373 0.001571 0.001240

Table 2.7 compares the imputation performance under different downsampling
strategies, in which p is adjusted with respect to the downsampling factor » according to
Eq. (2.13). A higher r significantly reduces the computational cost, and averaging the
imputation results from multiple offsets slightly improves the imputation accuracy over
using only one offset.

Table 2.8 compares the imputation accuracy under different averaging strategies in
the bi-directional training and replacement process. Compared to the other strategies, the
proposed weighted averaging strategy reduces the imputation error significantly.

2.4.3. VALIDATION OF STEP 3

In this section, we use real signals to validate the despeckle framework. First, three
samples measured at 0.5 km/h are shown in Figure 2.14. For each sample, the upper plot
compares the raw signal with the product of the first two steps, while the lower plot
compares the final despeckle outcome with the result of applying the filter in Step 3
alone to the raw signal. We adopt a low-pass filter with w.=3 kHz in Step 3, considering
the track vibration is generally below 3 kHz. It shows that the speckle noise is effectively
eliminated by detecting and replacing the spikes, whereas the direct use of the low-pass
filter leaves significant residual noise because the speckle noise at 0.5 km/h contains
components below 3 kHz, as shown in Figure 2.4 (a).

Similarly, Figure 2.15 shows three despeckle samples at 5 km/h. Compared to Figure
2.14, the residual noise after direct filtering becomes lighter since the speckle noise at 5
km/h has a higher frequency band, according to Figure 2.4 (b). However, as the
sharpness of spikes is reduced, the residual noise looks more like vibrations. This pseudo
vibration is not a real structural response but the low-frequency part of the speckle noise
due to insufficient despeckle. The proposed three-step framework can effectively avoid
this problem.

The despeckle performance for signals measured at 20 km/h is shown in Figure 2.16.
Since the speckle noise affects most parts of the signals, the despeckle framework allows
some false negatives (small-amplitude spikes) in Step 1 so as to reduce the amount of
imputation in Step 2. Then, the residual noise is filtered out in Step 3. In this way, the
proposed three-step framework effectively reduces speckle noise while avoiding pseudo
vibrations.
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Figure 2.14: Despeckle samples at 0.5 km/h. ‘Raw’ represents the raw signal, ‘Raw—S.1—S.2’ represents
the product of the first two steps, ‘Raw—S.1—S.2—S.3” represents the final despeckle outcome, ‘Raw—>
S.3’ represents applying Step 3 alone to the raw signal. (a) Sample L1; (b) Sample L2; (c) Sample L3.
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Figure 2.15: Despeckle samples at 5 km/h. (a) Sample M1; (b) Sample M2; (c) Sample M3.
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Figure 2.16: Despeckle samples at 20 km/h. (a) Sample H1; (b) Sample H2; (c) Sample H3.

2.5. COMPARISON WITH TRACKSIDE MEASUREMENTS

To verify the LDVom measurements, we mount two accelerometers (PCB 356B21) near
the laser spot trajectory on one sleeper and one segment of the track slab, as shown in
Figure 2.17. The trackside measurements are performed under the same conditions as
the LDVom measurements. Among the different speeds, we only analyze 20 km/h
because a higher speed is desired for more efficient monitoring and the speckle noise is
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more severe. Besides, to enable comparisons in the same unit, we convert accelerations
to velocities through frequency-domain integration [144].

Running direction

-—
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. Wheel
Joint

Rail pummmmen i [ T S
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Track slab e
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Figure 2.17: Setup of trackside vibration measurements.

First, the track vibration excited by passing the joint in Segment A is analyzed.
Figure 2.18 (a) shows the raw LDVom signals at two laps (rotations of the beam), and
the upper plot in Figure 2.18 (b) shows the corresponding despeckle results using the
proposed methods (a 150~3,000 Hz band-pass filter is adopted in Step 3), which reflects
good repeatability between the two laps. The bottom plot in Figure 2.18 (b) shows the
averaged trackside measurements for two laps. The LDVom measurements after
despeckle have good agreement with the trackside measurements. The dominant
component at around 500 Hz is measured, and some high-frequency behavior related to
sleeper dynamics is captured. The amplitudes of trackside measurements are lower than
the LDVom measurements because the accelerometers are located at a distance from the
joint. In addition, given the fact that the laser irradiates sleepers and track slabs in turn
as the platform moves, we find that the proposed method is effective for the
measurements on both surfaces.
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Figure 2.18: Comparison with trackside measurements (Segment A). (a) Raw LDV signals at different laps;
(b) Despeckle results and trackside signals.

Then, the measurement results on the normal track in Segment B are shown in Figure
2.19, including their time-frequency characteristics (at the same scale) after CWT with
Morlet wavelet [117]. Compared with the trackside measurements, the LDVom
successfully captures the dominant track vibration at 500~700 Hz, and their amplitudes
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are similar. The repeatability and agreement are not as good as those in Figure 2.18 due
to the lower vibration amplitude and the random nature of wheel-track dynamics.

Finally, the computational cost of the proposed methods is evaluated. In our case
study, passing each sleeper segment at 20 km/h takes approximately 22.6 ms, while the
corresponding CPU time for despeckle is 17.5 s on average. Although the despeckle
algorithm cannot be implemented in real-time, it can be applied offline at acceptable
computational costs.
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Figure 2.19: Comparison with trackside measurements (Segment B). (a) Raw LDV signals at different laps;
(b) Despeckle results and trackside signals; (c) Despeckle results in the time-frequency domain; (d) trackside
signals in the time-frequency domain.

2.6. CONCLUSIONS

In this chapter, we study the characteristics of the speckle noise from LDVom
measurements on railway tracks, propose and validate a three-step framework for
speckle noise reduction, and compare the LDVom measurements with the trackside
measurements. Specifically, we develop a wavelet-based spike detection method in Step
1 and an ARIMA-based imputation method in Step 2 and adopt a Butterworth filter in
Step 3. The main conclusions are summarised below.

e In the time domain, the spikes occur discretely with random amplitudes and
durations. In the frequency domain, they are broadband and can overlap with
genuine vibrations. As the moving speed increases, the speckle noise occurs
more frequently with shorter durations, greater amplitudes, and broader
frequency bands.
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e  When applying conventional methods to despeckle, the amplitude of spikes can
be shortened but not eliminated, which can lead to pseudo vibrations. The three-
step framework can avoid this problem by detecting and replacing spikes,
recovering false positives, and smoothing false negatives and residual noise.

e In addition to the proposed methods, different alternative methods can be
adapted and used in the three steps of the despeckle framework. In Step 2,
different training strategies can be selected considering the presence of speckle

noise in time series.

e The proposed methods can effectively reduce the speckle noise at different
speeds, among which the highest speed in this chapter is 20 km/h. The
computational cost of the proposed methods is acceptable for offline
applications.

e In our case study, the LDVom measurements can successfully capture the
dominant components of the track vibrations at around 500~700 Hz with good
repeatability between different laps and good agreement with trackside
measurements.
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OPERATIONAL MODAL
IDENTIFICATION IN TIME-
FREQUENCY REPRESENTATION

Operational modal analysis (OMA) enables the identification of modal characteristics under
operational loads and conditions. Traditional frequency-domain methods cannot directly
capture modal changes over time while existing time-frequency representations are not
sufficiently interpretable due to spurious modes and implicit parameter design. This chapter
develops a new OMA method in time-frequency representation based on frequency domain
decomposition (FDD). Short-time FDD and a convolution-based strategy are proposed to obtain
singular values and local mode shape similarity, respectively, which are further fused into mode
indicators by a fuzzy-based strategy mimicking the modal assurance criterion. The method
provides not only a global view of the modal characteristics over time and frequency but also
estimates of modal parameters. It is applicable to strongly nonstationary responses under time-
varying loads and conditions. All the parameters explicitly affect the time-frequency
representation, and the interpretability is enhanced by including physical information from the
user’s prior knowledge in selecting parameters and peak bands. The proposed method is
validated based on a study of railway sleepers under train passage. The rigid-body motions and
bending modes are identified at frequencies up to 6,500 Hz in laboratory tests and 4,500 Hz in
field tests at speeds up to 200 km/h. The identified natural frequencies and mode shapes agree
with the experimental modal analysis. The proposed method outperforms the experimental modal
analysis in terms of broad frequency range and low measurement cost and can be potentially
applied to structural health monitoring under operational conditions.

Apart from minor updates, this chapter has been published as: Zeng Y, Shen C, Nunez A, Dollevoet R, Zhang
W, Li Z. (2023). An interpretable method for operational modal analysis in time-frequency representation
and its applications to railway sleepers. Structural Control and Health Monitoring, 2023: 6420772.
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3.1. INTRODUCTION

Operational modal analysis (OMA) enables the modal characteristics of a structure to be
identified from its vibration response under operational loads and conditions. OMA
methods in time-frequency representation can capture changes in modal characteristics
over time. This chapter develops an interpretable OMA method suitable for strongly
nonstationary responses by extending the frequency domain decomposition (FDD)
method to a time-frequency representation. A study of railway sleepers under train
passage is used to showcase the proposed method. The characteristics of the train-
induced load on a sleeper vary considerably as the train approaches, passes, and leaves,
which further affects the stiffness and damping of track components [145~147]. As a
result, the sleeper vibration in response to train passage is significantly nonstationary. In
addition, the damping effect from rail pads and ballast makes modal identification more
challenging.

The remainder of this chapter is organized as follows. In Section 3.2, the
fundamentals of FDD are briefly introduced. In Section 3.3, the new OMA method and
the corresponding parameter selection strategy are proposed. In Section 3.4, the
proposed method is validated through theoretical analysis and laboratory experiments.
In Section 3.5, the proposed method is applied to field tests and compared with
experimental modal analysis (EMA). Finally, some discussions are presented in Section
3.6, and the conclusions are summarized in Section 3.7.

3.2. FUNDAMENTALS OF FREQUENCY DOMAIN DECOMPOSITION

Structural responses are usually measured by accelerometers at a sampling frequency fs.
Estimating the PSD matrix of the response is the first step in FDD. Welch modified
periodogram method [148] is widely used owing to its computational efficiency [66].
First, the measured response is divided into #nc overlapped (overlap ratio av) segments of
equal length nb, and a window function tapers each segment to reduce the leakage effect.
The recommended overlap ratio a» and window function are 0.5 and Hanning window,
respectively [148]. Then, the modified periodogram I«(f:) is calculated for each
windowed segment based on fast Fourier transform (FFT), where f, is the n-th discrete
frequency as follows [148].

f, == n=0, ...(n,—1)/2, n,/2 (3.1)

b

Next, the PSD matrix at each frequency f. is estimated by averaging the
periodograms over all nc segments as follows [148].

S, (1) =-~3L(%) 3.2)

n, k=1

¢ k=

Once éyy (/,) is obtained, singular value decomposition (SVD) is applied to obtain
[66],

S, (£)=U(£)V(H)U(s)" (33)
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where V(f») is a diagonal matrix with singular values arranged in descending order and
U(f») is a unitary matrix containing the singular vectors corresponding to the singular
values. At each frequency f», a singular value in V() indicates the contribution of the
corresponding singular vector in U(fs), just as a modal response indicates the
contribution of the corresponding mode shape based on the modal expansion of the
structural response [66].

Mathematically, the number of segments nc in PSD estimation determines the
number of non-zero singular values in V(f,) at each frequency [78], and multiple non-
zero singular values allow for the identification of closely-spaced modes. All non-zero
singular values can be plotted in a spectrum, where a resonance peak indicates the
possible existence of a mode at the corresponding frequency. To further confirm such a
mode, the singular vector of the peak is usually compared with other singular vectors at
its adjacent frequencies. A popular scheme to quantify the similarity between two
vectors is the modal assurance criterion (MAC) [66], denoted as MAC(p, ¢), which is
equal to O (or 1) when the two vectors, p and ¢, are orthogonal (or proportional). If the
singular vectors in the vicinity of a peak are of high similarity (MAC greater than a
threshold), they are identified as belonging to the same dominant mode [66, 86].

Once a mode is confirmed, its modal parameters can be estimated following the
strategy of enhanced FDD [82, 83]. First, an auto PSD function is created using the
identified singular values at the corresponding frequencies, representing an equivalent
single degree of freedom system. Then, inverse FFT is applied to the auto PSD to obtain
an autocorrelation function in the time domain. The zero crossings of the autocorrelation
function can give an estimate of the damped natural frequency, while the extremes can
be used to estimate the logarithmic decrement ¢ through linear regression. Further, the
damping ratio is calculated as follows [82, 83].

o

oA

Finally, a real-valued mode shape vector can be obtained from each of the identified

(3.4)

singular vectors. A simple approach [66] is to normalize the complex singular vector by
the maximum absolute value of its components and then rotate each component to 0°(or
180°) if its phase lies in the first or fourth (or the second or third) quadrant. A mode
shape vector can be displayed with respect to sensor positions in a static plot. It is
noteworthy that the problem of spatial aliasing can occur when the number of sensors is
insufficient. In this case, the identified mode shape should be interpreted carefully.

In general, the validity of FDD is based on the assumptions of white noise excitations,
low structural damping ratios, and orthogonal mode shapes for closely-spaced modes
[86]. If these assumptions are not fully satisfied or measurement noise is present, the
identification result is an approximation to real modal characteristics [86, 149].

3.3. TIME-FREQUENCY REPRESENTATION OF OMA

This chapter develops a new OMA method, named TFOMA, by extending the FDD
method to a time-frequency representation. Figure 3.1 shows its framework. First, short-
time FDD and a convolution-based strategy are proposed to obtain singular values and
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local mode shape similarity, respectively. Then, they are fused into mode indicators by
a fuzzy-based strategy, and modal parameters are further estimated. Section 3.3.1~3.3.3
will introduce these main steps, and Section 3.3.4 will discuss the parameter selection
strategy.

Time-frequency representation of OMA (TFOMA)
Short-time Convolution- Fuzzy-based Modal parameter
FDD :> based strategy ::> strategy :> estimation

1 l i l

-
Local mode shape

similarity (LMSS)
spectrogram

Operational vibration
measurement

Singular value
spectrogram

Mode indicator Modal parameters
(MI) spectrogram .

3.3.1. SHORT-TIME FDD

In FDD, Fourier transform is used to average the frequency information over the entire
signal time, which is theoretically applicable to stationary processes. Short-time Fourier
transform [150] is a modified version of Fourier transform for strongly nonstationary
signals. We apply a similar strategy to FDD as follows and name it short-time FDD
(STFDD),

STFDD{y(s)}(t, /) =FDD{y(s)r(s-1)}(f) 3.5)

where y(s) is the vector of synchronized measurement from multiple sensors at sampling
time s and r(s-#) represents a rectangular window centered at 7.
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Figure 3.2: Short-time FDD and singular value spectrogram.
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As illustrated in Figure 3.2, y(s) is broken into segments of equal length with an
overlap ratio as, and the procedures of PSD estimation and SVD are applied to each
segment, producing a series of singular value matrices V(¢, f) and singular vector
matrices U(#, f). The k-th diagonal term in V(¢ f) is denoted as vi(z, f), and the k-th
singular vector in U(z, f) is denoted as ux(?, f). At the k-th level, a singular value
spectrogram can be obtained by plotting vi(¢, f) over time and frequency with color
mapping. According to Section 3.2, the number of effective spectrograms is equal to the
number of non-zero singular values, which is further equal to nc used in PSD estimation.
It is noteworthy that STFDD also holds the drawbacks of STFT, such as the trade-off
between time and frequency resolutions (discussed in Section 3.3.4).

3.3.2. LOCAL MODE SHAPE SIMILARITY

A peak in a singular value spectrogram indicates the possible existence of a structural
mode. According to MAC, a mode is effectively dominant when the singular vector of
the peak has a high similarity to the singular vectors in its vicinity. To enable
comparisons in both time and frequency dimensions, we propose a convolution-based
strategy to quantify the local similarity of singular vectors. In a two-dimensional
representation, e.g., an image, convolution works by applying a kernel to each location
and evaluating the central element based on all elements in the kernel [151, 152]. In the
time-frequency representation, we adapt it to compute the following scalar, named local
mode shape similarity (LMSS),

a b

L(t.f)=2 Y o(dtdf) -MAC(u,(t.f).u, (t+dt-At, f +df - Af)) (3.6)

dt=—adf=—b

where a, b are the half kernel sizes (number of elements) in time and frequency,
respectively, At, Af are the time and frequency resolutions, respectively, and w(dt, df)
represents the weight at each element of the kernel.

LMSS is a weighted sum of MAC values between the central element and all other
elements in a kernel. In this chapter, a separable kernel with Gaussian functions [152,
153] is used, and its weights are determined as follows,

0 ifdt=0anddf =0

o(drdf)=|— ldedf) otherwise 37

> > o, (dt'df") - w,(0,0)

di'=—adf'=b

where the weight of the central element is zero and wo(d?, df) is the un-normalized weight
calculated based on the following Gaussian functions,

dr’ df? dv,. (dedf )
a)o(dt,df):exp[—zo_zj-exp[—zf2]~exp —(”)72 (3.8)

p o, 20,

v

where dv, p(dt, df) denotes the logarithmic difference in singular values with respect to
the central element, as calculated as follows.
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dv, ,(dt,df ) =log| v, (¢ +dt-At, f +df - Af) | —log[ v, (¢,/)] (3.9)

Further, oy, o7, ov are standard deviations characterizing the decay rates of the weight
as dt, df, dv increase, respectively. We recommend determining them as follows,

a+1 b+1 1 I 2
= 27 = d dt.ds 3.10
o, 3 o, 3 %y \/(2a+1),(zb+1)_1dzﬂdz |: V(.,/)( t, f):| ( )

f==b

Eq. (3.8)~(3.10) reflect that, from the kernel center to the kernel boundary, the
weight decreases from one towards zero as dt or df increases, according to the three-
sigma rule. This property allows comparisons to be made in a localized manner with
smooth transitions at kernel boundaries. Additionally, the weight is lower when an
element’s singular value deviates more from the center’s. This property enhances the
adaptability of LMSS to structural modes with different bandwidths since the weight
decays faster in case of a sharper resonance peak and vice versa. Meanwhile, it allows
LMSS to better capture the shift in resonance frequency over time.

Figure 3.3 illustrates the calculation process of LMSS at the k-th level. An LMSS
spectrogram can be obtained by plotting (¢, f) over time and frequency with color
mapping. The value of each point indicates the similarity of mode shapes between that
point and its vicinity, and a peak region indicates a high local similarity at that time and
frequency, which can help to confirm the dominance of a mode.
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Figure 3.3: Local mode shape similarity and its spectrogram.

3.3.3. MODE INDICATOR

After obtaining the singular value spectrogram and the LMSS spectrogram, structural
modes can be identified from regions with both large singular values and large LMSS.
In this chapter, a fuzzy-based fusion strategy is proposed to fuse vi(z, f) and /i(z, f) at each
time and frequency into a mode indicator (MI), denoted as MIi(t, f). Fuzzy set theory
quantifies the membership of an element in a set through a membership function [154],
which is usually used to handle vague information, e.g., fusing multiple images
[155~157]. It is suitable for computing MI because there is no precise relationship to
determine the existence of modes based on vi(z, f) and /i(¢, f) but rather a soft and flexible
thresholding strategy according to MAC.
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First, all v(z, /) and (¢, f) are normalized as follows.

log(vk (t,f)) - min(log(vk (t,f)))
max(log(vk (tf))) —min(log(vk (tf)))
1,(t,f)-min(Z, (¢, 1))
max (1, (¢, f')) - min(Z, (¢, 1))

V]: (t’f;7) =

(3.11)
L(t.f)=

Then, we use the following membership function to compute the MI,

ML ()=o) [ ()] (3.12)

where A, and A; are the contribution exponents of v’«(z, f) and /’«(z, f), respectively.
Figure 3.4 illustrates the calculation of MI, in which the membership function with
=1 and 4/=3 is shown as an example. It can be seen that MIi(¢, /) approaches 0 when
v'i(t, f) or I'k(¢, f) is small and tends to 1 as v'i(¢, f) and /’k(¢, f) increase. Meanwhile, /’«(¢,
/) is more dominant than v’x(z, f) owing to the selection of 1, and A.. As a consequence,
when [’k(¢, f) is less than 0.45, MIk(¢, f) is lower than 0.1 even if v'i(z, f) is large. The
selection of 1v and A4; enables the proposed fuzzy-based strategy to mimic a thresholding
strategy of MAC and provide a soft and interpretable fusion between vi(z, f) and l(z, f).
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Figure 3.4: Membership function and mode indicator spectrogram.

As shown in Figure 3.4, the computed MIs at the k-th level MIi(, f) can be plotted
as an MI spectrogram with peak regions indicating the presence of structural modes.
Then, a frequency band that peaks continuously over time at physically meaningful
frequencies is selected for each mode. To further estimate the modal parameters of a
mode, the singular values in its frequency band with MIs greater than a threshold are
selected to create auto PSD functions, which can then be used to estimate the natural
frequency and damping ratio at each time instant (see Section 3.2). Meanwhile, the
singular vectors corresponding to the selected singular values can be converted into
mode shape vectors (see Section 3.2). In this way, the proposed TFOMA method
provides not only a global view of the modal characteristics over time and frequency but
also estimates of modal parameters.
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3.3.4. PARAMETER SELECTION STRATEGY

The time-frequency representation of the proposed method depends on the selection of
its parameters. Sufficient time and frequency resolutions are necessary for clear
visualization of modal characteristics and accurate estimation of modal parameters. The
frequency resolution Af'and the time resolution Af are determined as follows.

Af:f—; At_nb(l—ocs)[ncf(l—05b)+ozb] G.13)

We propose the following strategy to select all the parameters of the TFOMA method.

Step 1. Select the number of segments nc in PSD estimation. As mentioned in Section
3.2 and 3.3.1, nc determines the number of non-zero singular values. For structures
with separated modes, nc can be set to 1, whereas in cases of closely-spaced modes,
ne should be greater than the maximum number of physical modes in each identified
frequency band.

Step 2. Select the segment length nv in PSD estimation and the overlap ratio as in
STFDD. According to Eq. (3.13), they directly affect Af'and A¢: larger ny leads to
smaller Af but larger A¢, and larger as leads to smaller Az but higher computational
costs. We recommend first selecting #b to provide sufficient frequency resolution,
e.g., at least five discrete frequencies in the frequency band of a mode. Then, as can
be selected to provide sufficient time resolution, e.g., Ar to be shorter than the
nonstationary behavior of the signal.

Step 3. Select the half kernel sizes a and ». Under defined Ar and Af, the kernel
lengths in time and frequency are (2a+1)-Ar and (2b+1)-Af, respectively. For
comparisons in a localized manner, we recommend setting a and b as small integers,
such as 3~10, to ensure that (2a+1)-A¢ and (2b+1)-Af are shorter than the duration
and bandwidth of each mode, respectively.

Step 4. Select the contribution exponents A, and 4. As exemplified in Section 3.3.3,
we recommend setting />4,=1 to mimic a thresholding strategy of MAC. The larger
A1 is, the greater the influence of LMSS on MI, i.e., a higher LMSS is required to
reach a certain level of MI.

All parameters in the TFOMA method explicitly affect the time-frequency
representation. They can be selected and tuned according to the user’s prior knowledge
of the structural dynamics and goals of analyses.

3.4. VALIDATION VIA LABORATORY TESTS

3.4.1. TFOMA OF AN IN-SITU SLEEPER

We validate the proposed TFOMA method in the V-Track test rig. The introduction of
this test rig can be found in Section 2.2.1. As shown in Figure 3.5, we instrument one
sleeper with eight accelerometers (PCB 356B21) on its top surface. The vertical
accelerations are measured at the sampling frequency of fi=102,400 Hz. The running



3.4. VALIDATION VIA LABORATORY TESTS 45

speed of the wheel is 8 km/h. Figure 3.6 (a) plots the measured sleeper accelerations
with four phases distinguished, which shows significant nonstationarity. Phase A is the
impact response caused by the passage over a joint that is several sleepers away from
the instrumented sleeper. Phase B~D belong to the response caused by the wheel passage,
divided into pre-passage, under-passage, and post-passage phases.
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Figure 3.5: V-Track test rig and the instrumented sleeper.
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Figure 3.6: TFOMA results of laboratory tests. (a) Sleeper accelerations in the time domain; (b) MI
spectrogram; (c) Singular value spectrogram; (d) LMSS spectrogram.

We apply the TFOMA method to the measured data with the parameters listed in
Table 3.1. The spectrograms of singular value, LMSS, and MI are shown in Figure 3.6
at frequencies up to 6,500 Hz. As shown in Figure 3.6 (c¢) and (d), most of the large
singular values are located below 2,000 Hz, while the large LMSS is present throughout




46 3. OPERATIONAL MODAL IDENTIFICATION IN TIME-FREQUENCY REPRESENTATION

the frequency range. By fusing the singular values with the LMSS, we obtain the MI
spectrogram in Figure 3.6 (b), which shows peak regions with sharper edges than those
in Figure 3.6 (¢) and (d), making them easier to identify.

Table 3.1: Selected parameters for laboratory tests.

Parameters Values Parameters Values
Number of segments 7, 1 Segment length 7, 10,240 (0.1 s)
Overlap ratio in PSD estimation oy, 0.5 Overlap ratio in STFDD as 0.95

Half kernel size in time a 10 Half kernel size in frequency b 5

Exponent of singular value 4, 1 Exponent of LMSS 4, 3

Time resolution Af¢ 5 ms Frequency resolution Af’ 10 Hz

In the MI spectrogram, the impact response in Phase A produces a vertical ridge,
along which the MI peaks at some frequencies. In Phase B and D, a number of peak
bands can be observed, which continuously dominate at frequencies close to the peaks
in Phase A. The peaks in Phase C are less clear as they belong to the forced response
phase. We select ten peak bands in Phase A, B, and D, as labeled in Figure 3.6 (b), where
the label height represents the bandwidth. At low (or high) frequencies, the density of
peak bands is high (or low), and their bandwidths are narrow (or wide). In each selected
band, we use points with MI greater than 0.4 for further parameter estimation, and the
identified mode shapes and average natural frequencies are shown in Figure 3.7. Most
identification results are consistent between Phase A, B, and D, though the passage
response suffers more nonstationarity and noise.
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Figure 3.7: Modal identification results of laboratory tests.
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3.4.2. EMA AND THEORETICAL ANALYSIS OF A FREE SLEEPER

To verify the above identification results, we perform hammer tests on a free sleeper of
the same type on an elastic foundation. Since the sleeper is free of rail fasteners, it is
instrumented with more distributed accelerometers (PCB 356B21), as shown in Figure
3.8 (a). We use a small hammer (Briiel & Kjaer 8206-003) to generate the impact at each
of the four locations.

To reduce the effect of leakage and noise, the measured response from each sensor
is tapered by an exponential window, and the measured force is tapered by the same
exponential window and also a force window [158]. Then, for the i-th sensor (=1, ...,
9) in response to the impact at the j-th location (=1, ..., 4), we compute the cross PSD
between the acceleration and the force s, (1) and the PSD of the force s, () using

Welch modified periodogram method [148]. Further, the frequency response function
(FRF), more specifically the receptance function, is calculated as follows [159].

N Sun () 3.14
= ey 19

An FRF is a complex function of frequency that describes the response of a structure
at the sensor position to excitation at the impact location. A resonance peak indicates the
presence of a structural mode at the corresponding frequency. The mode shape vector
can be obtained by combining the imaginary parts of the FRFs from different sensors as
follows [159].

[m(#,(f)). m(H,,(1)). o I, ()] (3.15)

At each impact location, we repeat the test three times and average the FRFs as the
final result. For example, Figure 3.8 (b) plots the magnitude of the FRFs for all sensors
in response to Impact 2. Four resonance peaks are identified from all FRFs at different
impact locations, labeled as PO~P3, and their mode shapes and average frequencies are
shown in Figure 3.8 (c).

Meanwhile, we calculate the theoretical mode shapes by simplifying the sleeper as a
free-free beam, and the n-th order mode shape is given as follows [160],

sin(k,L)—sinh(k,L)
cosh(k,L)—cos(k,L)

w, (x) = sinh (k,x) +sin(k,x) |+ [cosh(k,x)+cos(k,x)]  (3.16)

where L is the beam length, x is the coordinate along the beam (0<x<L), sinh and cosh
are hyperbolic functions, and %» is the n-th solution of the following equation of k.

cosh (kL)cos(kL) =1 3.17)

The mode shapes of a free-free beam with L=25 cm are computed and plotted in
Figure 3.8 (c). Clearly, the mode shapes of P1~P3 are in good agreement with the
theoretical mode shapes of the first three bending modes, respectively, and PO is the
rigid-body motion of the sleeper.
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Figure 3.8: EMA and theoretical analysis of a free sleeper. (a) Test setup; (b) FRFs of all sensors for Impact

2; (¢) Mode shapes and frequencies of the four resonance peaks.
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3.4.3. EMA OF THE IN-SITU SLEEPER
Hammer tests are also performed on the in-situ sleeper in Section 3.4.1 using the same
hammer. The locations of impacts and sensors are shown in Figure 3.9 (a). We repeat
the test five times at each location, which is more than that of the free sleeper due to
lower repeatability. The average FRFs for the first two impact locations are shown in
Figure 3.9 (b) as examples. Seven resonance peaks are identified, labeled as Q1~Q7.
The corresponding natural frequencies and mode shapes are shown in Figure 3.9 (c).
Compared with the free sleeper, the in-situ sleeper shows more resonance peaks
below 2,000 Hz, and their mode shapes deviate for different impact locations. Q1~Q4
correspond to rigid-body motions but are not comparable to PO due to different boundary
conditions. Q5~Q7 correspond to P1~P3 (the first three bending modes), respectively.
The results of Q5 and P1 show significant deviations. The frequencies of Q6 and P2 are
consistent, while those of Q7 and P3 deviate slightly. Besides, the peaks of the in-situ
sleeper are smoother due to the damping effect. The above findings reflect the
differences in modal characteristics due to different boundary conditions and also the
influence of other track components.

3.4.4. COMPARISONS BETWEEN TFOMA AND EMA

By comparing the identification results of TFOMA and EMA for the same in-situ sleeper,
we find that:

e Al/B1/D1~A4/B4/D4 in TFOMA correspond to Q1~Q4 in EMA (the rigid-
body motions). They have similar frequency bands, but the bounce motion is
more dominant in TFOMA, while the roll motion is more dominant in EMA.
This indicates that the rigid-body motions are sensitive to the characteristics of
excitations.

e A5/B5/DS5 in TFOMA correspond to Q5 in EMA (the 1% bending mode) with
the MAC 0£0.92/0.93/0.44. Among the first three bending modes, the 15 bending
mode is the most dominant in both TFOMA and EMA. The frequencies of
TFOMA are lower than that of EMA, and A5/B5 provides a higher MAC than
Ds.

e A8/B8/DS8 in TFOMA correspond to Q6 in EMA (the 2" bending mode) with
the MAC of 0.95/0.98/0.87. Their frequencies are consistent.

e A10/B10/D10 in TFOMA correspond to Q7 in EMA (the 3" bending mode)
with the MAC of 0.98/0.97/0.98. Their frequencies are consistent.

e B6/D6/A7 and A9/B9/D9 in TFOMA belong to extra modes related to other
track components, e.g., rails.

In summary, TFOMA provides comparable identification results to EMA. The
differences in the identified modal parameters reflect the influence of a moving train
load on track dynamics. Among the three phases in TFOMA, the impact response and
the pre-passage phase outperform the post-passage phase in terms of mode shape
consistency with EMA.
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3.5. APPLICATION TO FIELD TESTS

3.5.1. TFOMA OF AN IN-SITU SLEEPER

We test the proposed method using sleeper vibrations measured at Faurei Railway Test
Center in Romania. The track consists of UIC60 El rails, Vossloh W14 fastening
systems, and B70-W60 prestressed concrete sleepers. As shown in Figure 3.10, four
accelerometers (Briiel & Kjeer 4514-004) are mounted on a sleeper. A train passes over
the instrumented sleeper at three different speeds —15 km/h, 80 km/h, and 200 km/h. The
vertical accelerations are recorded at a sampling frequency of 25,600 Hz. We find that
Sensor L2 was not functional, most likely due to a loose installation, so we use the data
from the other three functional sensors for analysis.

w

. O
Sensor L2 |#
£ & - “
- w y

[
-

Figure 3.10: The instrumented sleeper in field tests.

The TFOMA method is applied to the measured data with the parameters listed in
Table 3.2. According to Section 3.4, only the pre-passage phases are studied, while
different lengths of signals are used due to the difference in speeds. The raw data and
the corresponding MI spectrograms up to 4,500 Hz are shown in Figure 3.1 1. Generally,
the patterns of M1 are similar at different speeds. Some peak bands are wide in frequency,
whereas others are narrow. The low-frequency bands are more pronounced at low speeds,
especially when the train is close to the sleeper, whereas the high-frequency bands are
more pronounced at high speeds and continuously dominant even when the train is still
far away from the sleeper. In addition, some peak bands are not horizontal, i.e., their
frequencies change as the train approaches.

Table 3.2: Selected parameters for field tests.

Parameters Values Parameters Values
Number of segments 7, 1 Segment length ny, 5,120 (0.2 s)
Overlap ratio in PSD estimation a, 0.5 Overlap ratio in STFDD o 0.95

Half kernel size in time a 10 Half kernel size in frequency b 5

Exponent of singular value 4, 1 Exponent of LMSS 4, 3

Time resolution Atz 10 ms Frequency resolution Af’ 5 Hz

We select fourteen peak bands at each speed, labeled as O1~0O14. The first four
columns of Table 3.3 present the characteristics of each peak band and also the average
natural frequencies and mode shapes. In each plot, the identified mode shapes at a certain
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speed are plotted in a light color, and their average is plotted in a dark color. In general,
the identified frequencies and mode shapes are similar at different speeds while varying
slightly due to the influence of train speed and noise. More discussion will be provided
in Section 3.5.3.
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Figure 3.11: TFOMA results of field tests. (a) Sleeper accelerations at 15 km/h, 80 km/h, 200 km/h in the
time domain; (b) MI spectrograms at 15 km/h, 80 km/h, 200 km/h.
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Comparisons between the results of TFOMA, EMA, and theoretical analysis.

Table 3.3
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3.5.2. EMA OF THE IN-SITU SLEEPER

For comparison, we perform hammer tests with the same setup in Figure 3.10. All the
four sensors were functional in the tests. We generate impacts at five locations using a
big hammer (PCB 086D50) and a small hammer (PCB 086DO05). At each location, we
repeat the test five times with each hammer. Considering their different excitation
frequencies [8], the results of the big and small hammers are used for analyses below
2,000 Hz and above 500 Hz, respectively. The average FRFs are plotted in Figure 3.12,
and eleven resonance peaks are identified, labeled as E1~E11. Compared to the sleeper
in the test rig, the natural frequencies of the real sleeper are much lower due to its size
and material. Most of the resonance peaks, especially at high frequencies, are smooth,
which is consistent with the finding in Section 3.4.3. The average frequency and mode
shapes for each resonance peak are shown in Table 3.3, where the identified mode shapes
deviate for different hammers and impact locations.

3.5.3. COMPARISONS BETWEEN TFOMA AND EMA

Moreover, we compute the theoretical mode shapes of a free-free beam of length 2.5 m
according to Eq. (3.16) and (3.17). Further, in Table 3.3, we match the identified modes
of TFOMA with those of EMA and theoretical analysis while referring to the
characteristics of sleeper modes reported in [5, 161]. The average MAC in Table 3.3
quantifies the consistency of mode shapes between TFOMA and EMA. The main
findings are summarized below.

e TFOMA identifies the rigid-body motions of the sleeper at frequencies lower
than those of the bending modes, which is consistent with [5, 161]. The bounce
motion is more pronounced, which is consistent with the laboratory test. The
rigid-body motions are not observed in EMA because the impact forces cannot
effectively excite such modes.

e In terms of mode shapes, both TFOMA and EMA consistently (with high MAC
values) identify the 15, 2nd, 4th_5th 7th " Qth and 10% bending modes. However,
neither identifies the 3%, 6™, and 9™ bending modes, probably because these
modes are less dominant or the sensors are close to the nodes.

e The frequencies of E1, E2, and E4 are close to those reported in [5, 161] under
unloaded conditions. For the 1%t and 2"¢ bending, the frequencies of TFOMA
deviate from those of EMA, reflecting the influence of the train load. For high-
order modes, the frequencies of TFOMA and EMA are very close.

e Both TFOMA and EMA identify extra modes probably related to other
components.

Furthermore, the pros and cons of TFOMA and EMA are discussed as follows.

e TFOMA can capture the change of modal characteristics over time and
frequency, whereas EMA cannot.

e TFOMA works under operational loads in a broad frequency range, but the
excitation spectrum is usually not flat, which can cause errors in modal
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identification. EMA works under controlled excitations but requires manual
impacts and also different hammers for different frequency ranges.

e For a complex coupled system (e.g., a train-track system), the response of a
component (e.g., a sleeper) depends not only on its own modal characteristics
but also on the dynamical influence of other components (e.g., trains, rails,
fasteners, and ballast). As a consequence, extra modes can be more pronounced
in OMA than in EMA.

e For each mode, the mode shapes identified by TFOMA spread within a certain
variance, while those identified by EMA are sensitive to impact locations and
may disappear or be distorted when the impact is close to a node or an edge.

e TFOMA can provide informative results from acceleration measurements of
only a few seconds under operational conditions, whereas EMA requires longer
experimental time, more workload, and temporary operation shutdowns.

3.6. DISCUSSIONS

3.6.1. ESTIMATION OF DAMPING RATIO

This chapter mainly focuses on estimating damped natural frequencies and mode shapes.
In this section, the estimation of damping ratios is discussed. First, for the in-situ sleeper
in the laboratory tests, the damping ratio of each peak band is obtained while estimating
the natural frequencies in Section 3.4.1. Besides, we estimate the damping ratios from
the FRFs in Section 3.4.3 using the peak-picking method [ 162]. Then, for all the matched
modes in Section 3.4.4, the estimated damping ratios are plotted against their natural
frequencies in Figure 3.13 (a). For most modes, TFOMA in different phases produces
damping ratio estimates similar to EMA while underestimating those at low frequencies.
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Figure 3.13: Comparison of damping ratio estimation between TFOMA and EMA. (a) Laboratory tests; (b)
Field tests.

Similarly, the damping ratios of the sleeper in the field tests are estimated and plotted
in Figure 3.13 (b). The results of TFOMA are similar between different speeds, but the
estimated damping ratios are lower than those of EMA. These deviations may come from
two sources. First, the different loading conditions can lead to different modal
characteristics, including damping ratios. This effect is pronounced for railway tracks
since the train load is enormous. Second, the estimation based on a truncated spectrum
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(either in TFOMA or EMA) can cause errors, especially when the frequency resolution
is low or adjacent modes affect each other [83, 85]. In summary, TFOMA can provide
accurate damping estimates in cases of well-separated modes, but it needs further
improvement to handle structures with significant nonlinearity and dense modes.

3.6.2. IDENTIFICATION OF CLOSELY-SPACED MODES

In this chapter, the proposed method is applied to the modal identification of railway
sleepers, where the bending modes of different orders are separated. It has the potential
to identify closely-spaced modes by involving multiple non-zero singular values. This
section demonstrates such capability using a simulation example. As shown in Figure
3.14 (a), a rectangular plate suspended by springs and dampers vibrates in the x-y plane
with three degrees of freedom — x, y, 6. External excitation forces are applied at the upper
right corner, and the equations of motion are given as follows.

mx +2k x+2c X =P,
my +2k,y+2c,y =P, (3.18)
16 +2bk 0 + 2ak 0 + 2bc,0 + 2ac,0 = aP, — bP,

Based on the parameters and excitations defined in Table 3.4, Eq. (3.18) is solved
numerically using the Newmark-f method [163] with a time step of 0.2 ms. The
bidirectional accelerations of the four edge centers are fed into the TFOMA method with
the parameters in Table 3.5. The number of segments n.=2 is used to distinguish the two
translational modes, which are closely spaced since they have equal natural frequencies
due to equal stiffness.
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Figure 3.14: TFOMA results of a vibrating plate. (a) Plate model; (b) 1** MI spectrogram; (c) 2" MI
spectrogram; (d) natural frequencies and mode shapes of different peak bands.
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Table 3.4: Parameters and excitations of the plate.

Parameters Values Parameters Values
Mass m 1 kg Moment of inertia / m(a*+b?)/3
Half of the width a 0.2 m Half of the height 0.3 m
Stiffness k., &, 100 kN/m Damping ¢, ¢, 2 N-s/m
Excitation P, (0~2 s) White noise with the  Excitation P, (0~2 s) 0

Excitation P, (2~4 s)

Excitation P, (4~6 s)

power of 10 dBW
0

‘White noise with the

Excitation P, (2~4 s)

Excitation P, (4~6 s)

‘White noise with the
power of 20 dBW

‘White noise with the

power of 10 dBW power of 20 dBW

Table 3.5: Selected parameters for the plate.

Parameters Values Parameters Values
Number of segments 7, 2 Segment length #, 1,250 (0.25 s)
Overlap ratio in PSD estimation a, 0.5 Overlap ratio in STFDD a; 0.95

Half kernel size in time a 5 Half kernel size in frequency b 3
Exponent of singular value 4, 1 Exponent of LMSS 4, 3
Time resolution A¢ 18.75 ms Frequency resolution Af’ 4 Hz

Two MI spectrograms are obtained, as shown in Figure 3.14 (b) and (c), with eight
peak bands (with M7>0.8) identified in different phases of the response. The estimated
natural frequencies and mode shapes are shown in Figure 3.14 (d). In 0~2 s, the
translational mode in the x direction is identified (X1), whereas the one in the y direction
is not identified since the excitation is applied only in the x direction. When the excitation
is applied only in the y direction in 2~4 s, the translational mode in the y direction is
identified (Y1), while the one in the x direction is still identifiable from the decay
response (Y3). When the excitations are applied in both directions, the two translational
modes are identified (XY1 and XY3), and XY (in the 1% spectrogram) is more dominant
than XY3 (in the 2" spectrogram) since the excitation in the y direction has greater
power. Moreover, the rotational mode is identified in all three phases (X2, Y2, and XY2).
For all modes, the estimated frequencies are consistent with the engine frequencies
calculated from the model parameters. The simulation result demonstrates that the
proposed method can distinguish closely-spaced modes under nonstationary excitations
as long as the modes are effectively excited. We expect the validity of this capability to
hold in real scenarios while it remains to be demonstrated.

3.7. CONCLUSIONS

This chapter presents an interpretable OMA method in time-frequency representation.
Short-time FDD and a convolution-based strategy are proposed to obtain singular values
and local mode shape similarity, respectively, which are further fused into mode
indicators by a fuzzy-based strategy. The main conclusions are summarised below.
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e TFOMA is an explicit tool that provides not only a global view of modal
characteristics but also estimates of modal parameters. Its interpretability is
enhanced by including physical information from the user’s prior knowledge in
selecting parameters and peak bands.

e TFOMA is applicable to strongly nonstationary responses under time-varying
loads and conditions and robust to the length of signals due to its discrete and
localized nature.

e TFOMA identifies the rigid-body motions and bending modes of the sleepers at
frequencies up to 6,500 Hz in the laboratory tests and 4,500 Hz in the field tests.
The passage response provides similar results to the impact response, while the

pre-passage phase slightly outperforms the post-passage phase. TFOMA works
effectively at speeds up to 200 km/h by using only three sensors, and some high-
frequency modes are identifiable when the train is 150 m away.

e TFOMA provides identification results comparable to EMA, while their
deviations reflect the dynamical influence of train loading and other track
components.
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SPEED-DEPENDENT
CHARACTERISTICS OF TRAIN-
BORNE LDV MEASUREMENT

A train-borne laser Doppler vibrometer (LDV) measures the vibration response of railway tracks
from a moving train. This chapter proposes a holistic methodology to characterize train-borne
LDV measurements by combining computer-aided approaches and real-life measurements. The
focus is on the speed-dependent characteristics because the train speed affects the intensity of
track vibrations and the intensity of speckle noise, which defines the quality and usability of the
measured signals. First, numerical models are established and validated to simulate sleeper
vibrations and speckle noise separately. Then, we propose a vibration-noise separation method
that can adaptively extract speckle noise and structural vibrations from LDV signals measured
at different speeds. The parameters of the separation method are tuned using simulation signals.
The method is then validated using laboratory measurements in a vehicle-track test rig and
applied to field measurements on a railway track in Rotterdam, The Netherlands. Further, the
speed-dependent characteristics of train-borne LDV measurement are determined by analyzing
the competition between track vibrations and speckle noise at different speeds. Simulation and
measurement results show that an optimal speed range yields the highest signal-to-noise ratio,
which varies for different track structures, measurement configurations, and operational
conditions. The findings demonstrate the potential of train-borne LDV for large-scale rail
infrastructure monitoring.

Apart from minor updates, this chapter has been submitted for publication as: Zeng Y, Nunez A, Li Z. (2023).
Railway sleeper vibration measurement by train-borne laser Doppler vibrometer and its speed-dependent
characteristics.
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4.1. INTRODUCTION

A running train is a natural source to excite the dynamic response of railway tracks over
a broad frequency band. Track vibration measurement enables the dynamic properties
of railway tracks to be assessed under operational conditions. A train-borne LDV can
measure the vibration of track structures as the train moves. The variation of track
vibration and speckle noise with train speed affects the quality and usability of train-
borne LDV signals, which further affects the applicability of train-borne LDV
technology. To investigate the speed-dependent characteristics of train-borne LDV
measurements, this chapter develops a holistic methodology to characterize train-borne
LDV measurements and applies it to vibration measurements of railway sleepers.

The methodology of the research is shown in Figure 4.1. In Part 1, numerical models
of train-track-LDV dynamics and speckle noise are established and validated with
laboratory measurements. This provides insights into the train-borne LDV system prior
to field tests and enables sleeper vibrations and speckle noise to be characterized
separately without interfering with each other. Since structural vibration and speckle
noise are mixed in real-life measurements, Part 2 presents a signal processing method to
separate them effectively at different train speeds. The parameters of the separation
method are tuned using simulation signals, and the method is then validated with
laboratory measurements under well-controlled and well-observed conditions. In Part 3,
field measurements of track vibration using a train-borne LDV are performed in
Rotterdam, The Netherlands, and the validated separation method is applied to the
measured signals. In Part 4, the speed-dependent characteristics are investigated based
on the simulations, laboratory, and field measurements. Section 4.2~4.5 of this chapter
present Part 1~4, respectively. Conclusions are drawn in Section 4.6, and details of the
simulation models are presented in Appendix A.

Computer Simulation Laboratory Measurement
Part1 . o...  |Validation VAW
Laboratory | onoies @ on ) ey 7 e 3
Investigation| ™50 ] "Speckle Train-bome|| Track-side
track-LDV| noise LDV accelerometer|
Parameter Validation
Part2 tuning
Signal - - v -
Processing Vibratu?n-nms_e Separat!on Method
| Effective at different train speeds |
___________________ I - [
Part 3
Field
Application <
Train-borne LDV
Part 4 *
“a . Speed-dependent Characteristics
Analysis and Competition between track
Results vibration and speckle noise

Figure 4.1: Methodology for characterizing train-borne LDV measurements.
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4.2, SIMULATION AND VALIDATION

4.2.1. NUMERICAL MODELING
This research first uses modeling and simulation to characterize train-borne LDV
measurement and generate signals of track vibration and speckle noise. A vertical train-
track-LDV model is built to simulate sleeper vibration measurement using a train-borne
LDV, as shown in Figure 4.2. The train is modeled as a quarter vehicle. An LDV is
rigidly connected to the vehicle, and its laser spot is targeted onto the track. The track is
modeled as a simply-supported Euler-Bernoulli beam discretely supported by sleepers,
and the Ritz method is used to characterize the dynamics of the beam [164]. The contact
force is calculated based on the Hertz theory considering the vertical irregularity of the
rail [164]. All the equations of motion are solved numerically by the Newmark-£ method
[163], while the contact force is updated at each step.

In Figure 4.2, the laser spot has an offset of Ax from the wheel-rail contact point.
Assuming that the vibration of the LDV can be perfectly removed from the LDV signal
[165], the ideal vibration of the i-th sleeper measured by the LDV is expressed as follows.

(1) =2,(¢) whenxsi—%<vt+Ax<xsi +% .1)

where zs; is the displacement of the i-th sleeper, ¢ is the time, d is the sleeper width, v is
the vehicle speed, and xs; is the position of the i-th sleeper.

Details of the model can be found in Appendix A.l. The model is considered
effective and computationally cheap for simulating rigid-body vibrations of sleepers in
a multi-layer track structure under a moving train load. Nevertheless, other models, such
as finite element models, can also be employed in the proposed methodology.
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Figure 4.2: A train-track-LDV model.

Figure 4.3 (a) shows the working principle of an LDV. A laser beam is projected
onto a target surface, and the scattered beam is collected on a photodetector, where
speckle patterns inevitably appear [166]. Each speckle is heterodyned with a reference
beam, and the intensity of the heterodyned beams is converted into a signal with the
following frequency [167].
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5 (1) = + 22 (1) + L0 (1) (42)

where wr is an artificial frequency shift, 1 is the wavelength of the laser, z(7) is the
vibration velocity of the target that causes the Doppler frequency shift, and 6wm is a phase
angle expressed as follows,

K
Zak@sin(ﬁk -65)

6,, = arctan| £ (4.3)
Zak sk €08 (6 —6,)

where K is the total number of speckles, ar is the area of the A-th speckle on the
photodetector, Isx and Osk are the intensity and phase of the k-th speckle, respectively,
and Or is the phase of the reference beam. According to Eq. (4.2), the speckle noise
caused by the phase change rate dfm/dt when measuring z(r) is expressed as follows.

s()=7-

A dHM() (4.4)

For train-borne LDV measurements, speckle translation due to the in-plane motion
between the laser spot and the target surface plays a dominant role in dfm/dt [32]. The
space and time correlation lengths of the speckles, /c and 7c, are two important
parameters depending on the laser properties and measurement setup [168]. The space
correlation length /c characterizes the size of each speckle, within which /st and s« are
constants following a negative exponential distribution and a uniform distribution,
respectively [169]. The time correlation length zc describes the time length for the
speckle pattern to advance by one speckle, which is inversely proportional to v [168].

As shown in Figure 4.3 (b), each speckle is modeled as a square with mxn grids [170].
A full speckle transition is divided into m partial transitions, and different columns are
randomly misaligned along the n grids to account for speckle irregularities. The
photodetector is of size a'/c*xa’lc, and the intensity and phase of the reference beam on
the photodetector, /r and Or, are assumed constant [170]. In the simulation of speckle
translation, the photodetector starts from an initial position and moves at the constant
speed of Ic/tc. At each partial transition, indexed by the j-th step, the overlapping area
between the photodetector and each speckle is obtained, and the phase Om(y) is calculated
according to Eq. (4.3). Then, the phase change rate at the j-th step is estimated as follows,

%(j) = Mzt(j) ! (jg;j; ()j_l) 4.5)

where Afm should be constrained to be less than 7/2.

Based on the simulated phase change rates, the speckle noise &(¢) is obtained
according to Eq. (4.4). A low-pass finite impulse response filter with cut-off frequency
fc is applied to &(?) to resemble the signal acquisition process. More details of the model
can be found in Appendix A.2.
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Figure 4.3: (a) Working principle of an LDV. (b) Simulation of speckle translation.

4.2.2. LABORATORY MEASUREMENT

Laboratory measurements play an important role in this research to validate the
numerical models and the signal processing method under well-controlled and well-
observed conditions. We perform laboratory measurements in the V-Track test rig, as
shown in Figure 4.4. The introduction of this test rig and the instrumentation of the LDV
can be found in Section 2.2.1. At the same time, the angular position of the beam is
measured, which can be used to determine the position of the wheel and the laser spot.
Moreover, we install accelerometers (PCB 356B21) on some sleepers to measure their
vertical accelerations in response to the passing vehicle. An additional accelerometer is
installed on the mirror to capture its effect on the LDV signal. We use the sampling
frequency of 102,400 Hz.

[Suspension g

— IL‘\

LR
{7

g

Figure 4.4: V-Track test rig instrumented with an LDV.

4.2.3. MODEL VALIDATION

The parameters for simulating the vehicle-track dynamics are listed in Appendix A.1.
We generate the vertical irregularity of the rail by applying a low-pass filter to Gaussian
white noise. The spectrum of such artificial spatial noise is smoothly monotonic and
maximally flat in the passband. Though it may not perfectly replicate the track geometry
in V-Track, it resembles the decay pattern of real-life track irregularity spectrum and
enables the dynamic wheel-rail force to cover a wide range of frequencies.

We validate the track dynamics model using the trackside accelerometer
measurements in V-Track. Figure 4.5 shows the vibrations of the center sleeper
simulated at two different vehicle speeds. The trackside measurements are compared
with the simulation results after conversion from acceleration to velocity through
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frequency-domain integration | 144 ]. It can be seen that the amplitude and frequency of
the sleeper vibration are larger at a higher speed. The simulation results are similar to
the measurements in both time and frequency domains, but their amplitudes do not
exactly match, especially at the higher speed, mainly due to the simplification of the
model and the rail irregularity. Despite such differences, the model is considered
applicable for characterizing the rigid-body vibration of the sleepers under the wheel
passage. Using a more complex train-track model and a more accurate rail irregularity
spectrum can potentially provide a better match between simulations and measurements.
This requires more effort for modeling and parameter tuning, which is not the focus of
this dissertation.
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Figure 4.5: Comparison in sleeper vibrations between simulations and measurements. (a) Vehicle speed 2

km/h; (b) Vehicle speed 12 km/h.
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Figure 4.6: Comparison in speckle noise between simulations and measurements. (a) Vehicle speed 2 km/h;

(b) Vehicle speed 12 km/h.

We validate the speckle translation model using speckle noise separated from LDV
signals in laboratory measurements (the separation method will be introduced in Section
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4.3). The simulation parameters are listed in Appendix A.2, and the simulated speckle
noise at two vehicle speeds is compared with the measurements in Figure 4.6. It can be
seen that, at a higher speed, spikes appear more frequently with greater amplitudes and
shorter durations. The simulated speckle noise behaves similarly to the measurements in
terms of the interval, amplitude, and duration of spikes. Meanwhile, good consistency
can be observed over a wide frequency range. It should be noted that the simulation
cannot exactly replicate the measurement due to the extreme randomness of speckle
patterns. Instead, the statistical agreement between them at different speeds
demonstrates the effectiveness of the established model in reproducing the speckle noise.

4.3. VIBRATION-NOISE SEPARATION

4.3.1. A SPEED-ADAPTIVE METHOD

In real-life measurements, structural vibration and speckle noise are mixed. Thus,
effective signal processing is needed to separate them. As introduced in Section 1.2.3,
no existing method can achieve this adaptively at different speeds. In Chapter 2, spikes
are first distinguished through a wavelet-based detection method. Then, the detected
spikes are replaced with estimates through an autoregressive integrated moving average
(ARIMA)-based imputation method. Finally, the residual noise is filtered out using a
band-pass filter. However, the selected parameters of this method vary at different
speeds due to the speed-dependent characteristics of spikes. To address this problem, we
adapt the method to extract speckle noise and target vibration without the need to adjust
its parameters for different speeds.

Step 1. Perform one-level discrete Haar wavelet decomposition and reconstruction
to a raw LDV signal xo(¢) and calculate spike indicators Ra(¢) as follows,

D, (1)=DWT, [ x, ()] (4.6)
R, (1) =[IDWT, [eD, (2)]| 4.7

where DWTp['] and IDWTp['] represent forward and inverse discrete wavelet
transforms, respectively, and cDi(¢) is the detail coefficients. Then, find P%
locations in xo(#) with the largest spike indicators Rd(¢) and label them as large spikes.

Step 2. Define an ARIMA model with an autoregressive order pa, a moving average
order ga, and a differencing order da, denoted as ARIMA(pa, da, ga). Train the
ARIMA model with xo(?) along the forward direction, and replace the labeled points
sequentially with predictions from the ARIMA model. Repeat the above training and
replacement process along the backward direction. Then, average the forward and
backward replacements to obtain the imputed signal xi(#). The noise component
(large spikes) is &1(2)=xo(£)—x1(2).

Step 3. Apply a band-pass filter (with the cut-off frequency of fi. and fi1) and a high-
pass filter (with the same cut-off frequency fi) to xi(#), resulting in the target
vibration x2(#) and the noise component (small spikes) &(7). Finally, superpose &1(¢)
with &(7) as the total noise &(1)=&1(2)+&2(¢).
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The above separation method is illustrated in Figure 4.7. Step 1~2 aim to extract P%
most influential points (large spikes) from xo(#) into £1(¢), which are usually dominant
over a broad frequency range and easier to be separated through time-domain analysis.
Specifically, Step 1 calculates spike indicators Rd(?) that represent the noise component
in xo(?) and then labels P% data points based on their Ra(?). Step 2 then replaces the
labeled spikes with predictions from the ARIMA models and takes the difference
between the imputed signal x1(#) and the original signal xo(#) as the large spikes &1(?).
However, changes in train speed lead to changes in spike characteristics. If the actual
percentage of large spikes is lower than P%, e.g., when the train speed is low, normal
data points may be labeled as spikes in Step 1. These points are then replaced in Step 2
by predictions with similar amplitude, thus not affecting £1(7) significantly. If the actual
percentage of large spikes is higher than P%, e.g., when the train speed is high, some
less influential spikes may be retained in x1(¢). Since small spikes are usually at high
frequencies, they are filtered out through frequency-domain analysis and then included
in &(7) in Step 3. By combining &1(¢) with &(7), speckle noise is eventually obtained.

The effectiveness of the separation method at various speeds requires a proper
selection of its parameters. The most important is the proportion of labeled spikes P%
in Step 1, which affects the labeling of spikes and the number of replacements. The
orders of the ARIMA model (pa, da, ga) affect the performance of imputation in Step 2.
According to Section 2.3.2, we recommend setting da=1 and ga=1 since they provide
good results at different speeds. The parameters P% and pa should be tuned considering
the separation performance and the computational cost at different speeds. This can be
achieved either quantitatively based on simulated signals or qualitatively through trial
and observation based on measured signals. Moreover, the cut-off frequencies fi. and fu
in Step 3 are important for separating structural vibrations from residual noise. We
recommend setting them to the lowest and highest frequencies of interest for the target
structural vibration, respectively. Procedurally, fi. and fi1 can be defined before or after
applying Step 1 and 2.
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Figure 4.7: Flowchart of the vibration-noise separation method.

4.3.2. PARAMETER TUNING WITH SIMULATIONS

The simulation models in Section 4.2 can generate signals of track vibration and speckle
noise at different speeds, which makes it possible to quantify the performance of the
separation method and tune its parameters. For each sleeper under a certain vehicle speed,
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the simulated train-borne LDV signal is obtained by superposing the simulated sleeper
vibration with the simulated speckle noise. Then, we apply the proposed separation
method to the superposed signal and compare the separated vibration and noise
components with the original vibration and noise signals, respectively. The root-mean-
square (RMS) errors and the Pearson correlation coefficient between the separated
components and the original signals are calculated to quantify their deviations.

Figure 4.8 shows the separation performance for a single sleeper using different P%
in Step 1. “Raw signal” represents the result without vibration-noise separation, which
yields the largest error and the lowest correlation. “Direct filtering” represents applying
solely the filter in Step 3 to the raw signal, which separates some noise in the frequency
domain. In cases of P%>0, the involvement of the time-domain separation in Step 1 and
2 further improves the performance, and P% in the range of 10~40% provides low
separation errors and high correlation coefficients for both the vibration and the noise at
different speeds. When P% is too small, large spikes cannot be effectively extracted in
Step 1, so the errors are large. When P% is too large, too many points need to be replaced,
resulting in large imputation errors.
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Figure 4.10: Separation performance at different speeds (P%=25%, pa=20, dx=1, ga=1, fi=0 Hz, f;=2,000
Hz). (a) Sleeper vibration; (b) Speckle noise.

A similar analysis is performed for the order pa in Step 2, as shown in Figure 4.9. It
can be seen that the root mean square (RMS) error and correlation coefficient are not
sensitive to pa as long as pa>5. However, pa significantly affects the computational cost,
and the higher the pa, the longer the CPU time.

In this chapter, we use P%=25% and pa=20 as a balance between the separation
performance and the computational cost. Figure 4.10 plots the separation results for nine
sleepers simulated at different speeds. It shows that the separated vibration and noise
components are highly correlated with the original signals. Such a high correlation holds
at different speeds, and the deviation between the different sleepers is small. This
demonstrates the effectiveness of the separation method at different train speeds.

4.3.3. VALIDATION WITH LABORATORY MEASUREMENTS

In this section, we validate the separation method with measurements in V-Track. We
use the same parameters in Step 1 and 2 as in Section 4.3.2 (P%=25%, pa=20, da=1,
ga=1). In Step 3, we use fi=50 Hz to eliminate the effect of the mirror vibration and
fi=1,500 Hz to capture the rigid-body motion of the sleepers, according to Section 3.4.
The separation results for a typical sleeper at different speeds are shown in Figure
4.11~4.13. As the speed increases, the signal length becomes shorter, and the frequency
resolution becomes lower. By comparing the raw and imputed signals, it can be seen that
large spikes are separated after Step 1 and 2, while the small spikes remain to be
separated in Step 3. Additionally, the mirror vibration dominates at the low frequencies
and is filtered out in Step 3.
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Figure 4.11: Separation result at 2 km/h. (a) Imputed signal; (b) Separated noise; (c) Comparison in the time
domain; (d) Comparison in the frequency domain.
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Figure 4.13: Separation result at 12 km/h. (a) Imputed signal; (b) Separated noise; (c) Comparison in the time
domain; (d) Comparison in the frequency domain.

Generally, the separated noise is very close to that in the raw signals. Meanwhile,
the sleeper vibrations separated from the train-borne LDV signals are consistent with
those measured by the trackside accelerometer in both time and frequency domains.
These results demonstrate the measuring capability of the train-borne LDV and the
effectiveness of the proposed method at different speeds. Some residual noise can be
noticed in the separated sleeper vibration, which is less pronounced at higher speeds due
to increased vibration amplitude and frequency. The deviations between the train-borne
LDV signals and the trackside accelerometer signals are caused by imperfect separation
and the spatial deviations between the laser spot and the accelerometers.

4.4. APPLICATION TO FIELD MEASUREMENT

Since the above simulations and laboratory measurements represent scaled and
simplified vehicle-track systems, field measurements are necessary to further test the
train-borne LDV technology and the vibration-noise separation method in the real world.
We test the train-borne LDV technology on the CTO measurement train of TU Delft, as
shown in Figure 4.14. The same LDV (Polytec RSV-150) is installed in the cabin, and
its laser beam is targeted at sleepers (and ballast) through a hole in the cabin floor. Two
accelerometers (PCB 356B21) are installed on the LDV to measure its vibration, and a
video camera is used to record the trajectory of the laser spot on track structures. The
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wheel-laser offset is around 1.2 m. We use the sampling rates of 102,400 Hz for the LDV
and accelerometers and 240 fps for the camera. Since the vibration signals and the video
are stored separately, they are synchronized before further analysis.

We conduct the measurements on an operational railway track in Rotterdam, The
Netherlands, as shown in Figure 4.15. It is a typical ballasted track with concrete sleepers.
The CTO train is pulled by a locomotive connected to the LDV side. We focus on
measurements at speeds below 30 km/h since higher speeds cause more significant
motion blur, which induces more challenges in accurately positioning the laser spot on
each individual sleeper. Figure 4.16 shows the results measured in two typical sections.
The upper plots show the change in train speeds with respect to sleeper numbers, in
which the speed is estimated by assuming a uniform sleeper spacing. The LDV signal is
cut into segments for each sleeper, and the vibration-noise separation method (with the
same parameters in Step 1 and 2 as in Section 4.3.2 and 4.3.3) is applied to each segment.
The lower plots show by a colored strip the Fourier spectrum of the imputed signal (after
Step 1 and 2) for each sleeper. We can see that the amplitude and dominant frequency
of the sleeper vibration increase with the increase in speed. A higher speed generates
more excitations at higher frequencies, thus leading to larger vibration responses at
higher frequencies.

Accelero-
meters

Rotterdam ‘
Centraal |

Figure 4.15: Train route and two selected sections. (Source of aerial photographs: Geolnformatie Portaal of
ProRail https://maps.prorail.nl/)
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Figure 4.16 shows that the dominant frequency of the sleeper vibration is generally
below 300 Hz. This is consistent with the frequency range of rigid-body motions and
first-order bending of in-situ sleepers in Section 3.5 and [&8]. Therefore, we use =300
Hz in Step 3. It is noteworthy that fu differs significantly between the field and laboratory
measurements due to the different natural frequencies of the sleepers. Additionally, we
use f1.=80 Hz to eliminate the influence of the LDV vibration.

Three sleepers are further selected to showcase the vibration-noise separation
performance, as plotted in Figure 4.17~4.19. Sleeper (1) is measured at 6 km/h, where
the LDV vibration dominates the raw signal and the amplitude of the extracted sleeper
vibration is small. Sleeper (2) and (3) are measured at 21 km/h, and the amplitude and
dominant frequency of the sleeper vibration are significantly higher than those of the
LDV vibration. Meanwhile, the amplitudes of the extracted sleeper vibration and speckle
noise are larger than those of Sleeper (D). In general, the proposed separation method
effectively reduces the speckle noise in the raw signals and captures the dominant sleeper
vibrations at different speeds.

It is worth noting that the same parameters in Step 1 and 2 work effectively under
different scenarios, including simulations (up to 12 km/h), laboratory measurements (up
to 12 km/h), and field measurements (up to 30 km/h). In addition, the performance is not
sensitive to the variation in signal length due to the variation in speed. This reflects the
generalization capability of the proposed method, at least under the tested speeds.
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Figure 4.16: Train speed and spectrum of imputed signal for each sleeper. (a) Section A; (b) Section B.
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Figure 4.17: Separation result of Sample (D). (a) Imputed signal; (b) Separated noise; (c) Sleeper vibration in
the time domain; (d) Sleeper vibration in the frequency domain.
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Figure 4.18: Separation result of Sample (2). (a) Imputed signal; (b) Separated noise; (c) Sleeper vibration in
the time domain; (d) Sleeper vibration in the frequency domain.
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Figure 4.19: Separation result of Sample (3. (a) Imputed signal; (b) Separated noise; (c) Sleeper vibration in
the time domain; (d) Sleeper vibration in the frequency domain.

4.5. SPEED-DEPENDENT CHARACTERISTICS

Signal-to-noise ratio (SNR) is a key indicator representing the quality and usability of a
measured signal. It quantifies how pronounced the real vibration is with respect to the
noise, calculated based on their RMS values as follows.

RMS(2(1))

eV 4.8
RMS(2(0) e

SNR = 20log,,
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To investigate the influence of train speed on track vibrations and speckle noise and
further on the SNR of train-borne LDV measurements, we evaluate the SNRs at different
speeds through simulations, laboratory measurements, and field measurements. In the
simulation scenario, sleeper vibrations and speckle noise are simulated separately, so the
SNRs can be accurately obtained. For the laboratory and field measurements, sleeper
vibrations and speckle noise are separated from the LDV signals using the method in
Section 4.3, and the SNRs can only be an estimation.

4.5.1. SIMULATIONS

In the simulation study, we assume the stiffness and damping of rail pads and ballast
follow Gaussian distributions as a consideration of uncertainties in the track properties.
For each parameter, the mean is its nominal value, and the standard deviation is 5% of
the nominal value. Random numbers following these distributions are generated for each
sleeper. Figure 4.20 (a) shows the simulation results for the nine sleepers in the middle
of the track, in which the RMS value is calculated based on the response of each sleeper
when the wheel is within £1.5 sleeper spacing from it. As the speed increases, the sleeper
vibration becomes larger, with the slope first increasing and then decreasing, and the
deviation between different sleepers also becomes larger. Figure 4.20 (c) shows the
response of the center sleeper at 2 km/h, in which the train-borne LDV captures only a
fragment of the response under the wheel passage. According to Eq. (4.1), the higher the
speed, the shorter the fragment. Figure 4.20 (b) shows the RMS values of the fragments
measured on the nine sleepers. The measured sleeper vibrations increase with speed,
following the same trend as in Figure 4.20 (a), but the deviation between sleepers is more
pronounced, reflecting larger uncertainties due to the shorter length of the measured
sleeper response.
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Figure 4.20: Speed-dependent characteristics of simulated sleeper vibrations. (a) Sleeper responses under
wheel passage; (b) Fragments measured by the train-borne LDV; (¢) An example at 2 km/h.
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Figure 4.21: Speed-dependent characteristics of simulated speckle noise and SNR. (a) Speckle noise; (b)
SNR.

Then, nine simulations of speckle translation are performed at each speed,
corresponding to the measurements on the nine sleepers. The results in Figure 4.21 (a)
show that the RMS value of the speckle noise increases almost linearly with the
increasing speed while its deviation becomes larger. Further, the SNR is calculated for
each sleeper, as shown in Figure 4.21 (b). A significant nonlinear behavior can be
observed as a result of the competition between the linear increase of the speckle noise
and the nonlinear increase of the track vibration with respect to the increasing speed. At
low speeds, the sleeper vibration is too small while the speckle noise increases faster, so
the SNR first decreases and reaches a local minimum at around 4 km/h. Then, as the
sleeper vibration increases more steeply than the speckle noise, the SNR starts to
increase and reaches a local maximum at around 10~15 km/h. Further, as the sleeper
vibration increases more slowly, the SNR drops gradually as the speed increases.

4.5.2. LABORATORY MEASUREMENT

We apply the vibration-noise separation method to measurements in V-Track at different
running laps and calculate the RMS values of the separated vibration, speckle noise, and
the corresponding SNR for each sleeper (excluding those near the joints). Figure 4.22
shows their box plot distributions at different speeds. It can be seen from the data points
and their percentiles that the sleeper vibration and speckle noise exhibit more significant
deviations between sleepers than the simulation results in Figure 4.20 (b). Such deviation
is caused by the uncertainties in sleeper dynamics, track geometry, and laser speckle and
becomes more pronounced as the speed increases.

Despite the uncertainties, the mean, median, and percentiles in Figure 4.22 (a) show
that as the speed increases, the sleeper vibration increases with larger slopes between
4~10 km/h. The measured RMS values are close to the simulation result in Figure 4.20
(b). Meanwhile, Figure 4.22 (b) shows that the speckle noise increases almost linearly
with speed, which is consistent with the simulation result in Figure 4.21 (a). These
agreements reflect that the established models effectively characterize the track
dynamics and the speckle noise in V-Track.

Further, Figure 4.22 (c) shows that, as the speed increases, the SNR first increases
(2~6 km/h), becomes flat (6~10 km/h), and then decreases slightly (10~12 km/h). This
result is similar to the simulated trend above 4 km/h in Figure 4.21 (b), while deviation
occurs at 2 km/h because the RMS values are relatively small and the SNR is sensitive
to slight deviations between simulations and measurements.
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Figure 4.22: Speed-dependent characteristics in laboratory measurements. (a) Sleeper vibrations; (b) Speckle
noise; (¢) SNRs.

4.5.3. FIELD MEASUREMENT

In the field measurements, considering the possible error in synchronizing the LDV
signal with the laser spot position, we cut the measured signal into overlapped segments
with different offsets from the estimated center of each sleeper, as shown in Figure 4.23.
Then, for each segment, we apply the vibration-noise separation method, calculate the
RMS values of the sleeper vibration and speckle noise, and calculate the corresponding
SNR. Finally, we take the weighted average of the results from different segments for
each sleeper. The weights follow the shape of a Gaussian distribution and decrease
toward zero as the segment offsets from the estimated center to the adjacent sleepers.

The results for all the 580 sleepers in Figure 4.16 are plotted in Figure 4.24. It shows
trends similar to the simulation and laboratory measurement results in Figure 4.20~4.22.
As the speed increases, the sleeper vibration increases first slowly (5~10 km/h), then
rapidly (10~20 km/h), then slowly again and even drops slightly (20~30 km/h).
Meanwhile, the speckle noise amplitude increases almost linearly with respect to the
speed. As a consequence of the competition between the sleeper vibration and the
speckle noise, the SNR first drops slightly to reach a local minimum at 7 km/h, then
increases to reach a local maximum at 20 km/h, and then drops gradually. Within the
speed range investigated, the speed of 15~25 km/h provides a higher SNR than others.
The similarity between the simulation, laboratory measurement, and field measurement
results demonstrates that the proposed methodology effectively characterizes the speed-
dependent characteristics of train-borne LDV measurements.

Nevertheless, it should be noted that the change of SNR with respect to speed
depends on the characteristics of sleeper dynamics and speckle noise. Therefore, the
optimal speed with the highest SNR varies for different tack structures, measurement
configurations, and operational conditions.
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Figure 4.24: Speed-dependent characteristics in field measurements. (a) Sleeper vibrations; (b) Speckle noise;
(c) SNRs.

4.6. CONCLUSIONS

This chapter proposes and applies a holistic methodology to characterize train-borne
LDV measurements for sleeper vibrations and investigate their speed-dependent
characteristics. Validated numerical models are used to separately simulate sleeper
vibrations and speckle noise at different speeds and support the parameter tuning of the
developed vibration-noise separation method. The method is then validated with
laboratory measurements and applied to field measurements at different speeds. The
dependence of sleeper vibration, speckle noise, and SNR on train speed is determined
using simulations and measurements. The results demonstrate the potential of train-
borne LDV to be applied to large-scale rail infrastructure monitoring and also provide
us with deeper insights into the quality and usability of signals measured at different
speeds. The main conclusions are summarized below.

e The established train-track-LDV model and speckle translation model
reproduce the sleeper vibrations and speckle noise in V-Track at different
vehicle speeds.
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e The vibration-noise separation method extracts speckle noise by first capturing
large spikes in the time domain and then filtering out the remaining small spikes
in the frequency domain. It can work adaptively at different speeds and robustly
under different scenarios and has the potential to be adapted for other different
kinds of LDV measurements.

e There are significant uncertainties in sleeper vibrations and speckle noise,
which increase with the increase in train speed.

e The RMS value of speckle noise increases almost linearly with speed, whereas
the RMS value of sleeper vibration increases nonlinearly with speed. Their
competition leads to the nonlinear behavior of SNR with respect to train speed.
An optimal speed range yields the highest SNR and varies for different tack
structures, measurement configurations, and operational conditions.
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ESTIMATING RAILWAY
TRACK TRANSFER FUNCTION
ON A MOVING VEHICLE

In view of the gaps in measuring transfer functions (TFs) of railway tracks, we propose a
methodology to estimate railway track TF's over a wide frequency range from a moving vehicle.
Accelerometers are employed to estimate the dynamic train load to railway tracks, and a laser
Doppler vibrometer (LDV) is used to scan railway tracks and measure their vibration response
as the vehicle moves. First, operational modal analysis is applied to vehicle impact response
over a joint to identify its modal parameters, which support the estimation of dynamic wheel-rail
forces from vehicle vibrations. This combination eliminates the need to pre-define the vehicle
stiffness, vehicle damping, and vehicle body mass and enables the vehicle modal parameters to
be updated under operational conditions. Meanwhile, a speed-adaptive despeckle and
compensation method is applied to LDV signals to reduce speckle noise and extract track
vibrations. Then, a continuous railway structure is segmented into distributed sections, and a TF
is estimated for each track section using the estimated wheel-rail force as input and the measured
track vibration as output. We validate the proposed methodology in a vehicle-track test rig in
our laboratory and test its performance on different track sections (with or without joints) and
at different speeds (from 8 km/h to 16 km/h). The results are further compared with trackside
measurements and hammer tests. We demonstrate that the track vibrations extracted from the
LDV signals are consistent with those measured by trackside accelerometers. The TF estimates
from the LDV and accelerometer measurements are close to the frequency response functions
measured from hammer tests at 200~800 Hz. The developed system captures differences in the
resonance frequencies of the TFs between different track sections, suggesting its potential to be
used for structural health monitoring of railway tracks.

Apart from minor updates, this chapter has been submitted for publication as: Zeng Y, Nunez A, Li Z. (2023).
Estimating transfer functions of railway tracks using laser Doppler vibrometer and accelerometer
measurement on a moving vehicle.
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5.1. INTRODUCTION

To tackle the research challenges in train-borne measurement of railway track transfer
functions (TFs), this chapter develops a railway track TF measurement system in the V-
Track test rig. The system consists of an LDV and accelerometers on a moving vehicle.
We estimate a single-input single-output TF for each track section using the vertical
wheel-rail force as the input and the vertical track vibration as the output. The proposed
methodology is validated in the test rig at different locations along the track and at
different speeds through comparisons with trackside measurements and hammer tests.

The remainder of this chapter is organized as follows. Section 5.2 presents the
methodology for estimating railway track TFs using LDV and accelerometer
measurement. Section 5.3 conducts experiments in the V-Track test rig to validate the
proposed methodology. Section 5.4 concludes this chapter.

5.2. METHODOLOGY

Figure 5.1 shows the proposed methodology for estimating railway track TFs using LDV
and accelerometer measurement on a moving vehicle. Accelerometers are mounted on
the main masses of the vehicle, and the laser spot of the LDV can be targeted at track
components of interest, such as rails or sleepers. First, the impact response of the vehicle
when passing over a joint is captured from the accelerometer measurement and then used
to identify the modal parameters of the vehicle (natural frequencies, damping ratios,
mode shape vectors, and modal masses). Based on these parameters, the dynamic wheel-
rail force is then estimated from vehicle vibrations during vehicle running, denoted as
w(t), with ¢ denoting time. Meanwhile, the vibration of railway tracks is extracted from
the LDV measurement by compensating for the effect of vehicle vibration and reducing
the speckle noise, denoted as u(?). Finally, a TF of each railway track section H(f), with
fdenoting frequency, is estimated using the segmented wheel-rail force w(¢) as input and
the segmented track vibration u(¢) as output.

Figure 5.1: Flowchart of the proposed methodology.
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5.2.1. INPUT: MODAL IDENTIFICATION AND FORCE ESTIMATION
The dynamics of a vehicle system (with n degrees of freedom) is usually characterized

by the following equation of motion,
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M (1) + Kx(t)+ Cx (1) = w(z) (5.1

where M, K, and C are the mass, stiffness, and damping matrices, respectively; x(?) is
the displacement vector; w(¢) is the external force vector, including wheel-rail forces.
Eq. (5.1) can be converted to the modal coordinate as follows under the assumption of
modal damping,

MG(1)+K'q(1)+Cq(r)= p(1) (52)

where M*, K*, and C" are the modal mass, stiffness, and damping matrices, respectively;
q(?) and p(¢) are the modal displacement and force vectors, respectively. From Eq. (5.1)
to Eq. (5.2), the following transformation holds,

M=0'"M®P K =®P'K® C =0'Ch x=®g p=D'w (5.3)

where @ is the mode shape matrix, consisting of mode shape vectors @1, ..., @n, and M,
K", C* are diagonal matrices with the diagonal terms of modal mass m1”, ..., m,", modal

stiffness k17, ..., k»", and modal damping c1”, ..., ¢.", respectively.
Eq. (5.2) is equivalent to n single-degree-of-freedom systems as follows (=1, ..., n),
m;G, (1) +k/q,(t)+c;q,(t) = p,(t) (5.4)

where gi(¢) and pi(¢) are the i-th component of ¢(¢) and p(¢), respectively. Further, Eq.
(5.4) is equivalent to the following equation,

pi(t)

q;(t)+w[2qA’(t)+2“’[&'4[0) = o (5.5)

where w; and & are the undamped natural frequency and damping ratio of the i-th mode,
respectively.

As introduced in Section 1.2.4, existing wheel-rail force estimation methods usually
assume that vehicle parameters M, K, and C are known, but this requirement is often
difficult or expensive to fulfill. Therefore, we identify modal parameters (natural
frequencies, damping ratios, mode shape vectors, and modal masses) of the vehicle
under operational conditions so as to eliminate the need to define the vehicle parameters.

5.2.1.1. OPERATIONAL MODAL IDENTIFICATION

As shown in Section 3.4, the passage of a wheel over a joint induces a significant impact
on the vehicle-track system. Such an impact can excite the vehicle modes over a wide
range of frequencies, so the impact response measured by the accelerometers carries the
dynamic characteristics of the vehicle. Other types of rail local irregularities can be used
as alternative sources, such as degraded welds and crossings. We employ the enhanced
frequency domain decomposition method in Section 3.2 to extract these characteristics,
and the main steps are briefly given as follows.

Step Al. Estimate the power spectrum density (PSD) matrix of measured impact
response using Welch’s averaged periodogram method [ 148]. Considering the decay
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pattern of impact response, using an exponential window in this procedure is
recommended.

Step A2. Apply singular value decomposition to the PSD matrix at each discrete
frequency f'to obtain a diagonal matrix V(f) with singular values and a unitary matrix
U(f) containing singular vectors corresponding to the singular values [78].

Step A3. Plot the spectrum of leading singular values and pick up resonance peaks
in the frequency range of interest, which indicate the possible existence of vehicle
modes.

Step A4. For each resonance peak, compare the singular vectors of adjacent
frequencies, for example, using the modal assurance criterion [66]. If they are of high
similarity, a vehicle mode can be confirmed.

Step AS. For the i-th vehicle mode, create an auto PSD using only the singular values
of frequencies near the peak and apply inverse Fourier transform to the auto PSD to
obtain an autocorrelation function. Then, estimate the damped natural frequency wad:
and the logarithmic decrement J; using the zero crossings and extremes of the
autocorrelation function, respectively [82]. Further, calculate the undamped natural
frequency w: and the damping ratio & as follows [82].

f=— (5.6)

: (5.7)

Step A6. For the i-th vehicle mode, normalize each singular vector at frequencies
near the peak and rotate each complex component to 0°(or 180°) if its phase lies in
the first or fourth (or the second or third) quadrant [66]. Average all these real-valued
vectors to obtain the mode shape vector of the i-th vehicle mode, denoted as ¢..

Step A7. Construct the mode shape matrix @ with all ¢;. Construct the mass matrix
M with at least one known mass, such as the mass of an axle box. Determine the
unknown masses by making ®TM® a diagonal matrix, thus ensuring the diagonal
property of M". Calculate the modal mass matrix M" that contains all m;" by
M'=0"M®.

The above method can produce the natural frequencies w; and wd;, damping ratio &,
and mode shape vector ¢; of the n vehicle modes (i=1, ..., n). This eliminates the need
to pre-define the vehicle stiffness, vehicle damping, and part of the vehicle masses (e.g.,
the vehicle body mass) for wheel-rail force estimation. The modal identification results
can be averaged over multiple passages of different joints, and the vehicle modal
parameters can then be updated regularly and used for estimating the wheel-rail force
w(?) from measured vehicle vibrations x(t) This helps reduce force estimation errors
due to variations and uncertainties in the vehicle parameters.
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5.2.1.2. TIME-DOMAIN FORCE ESTIMATION

Based on the identified vehicle modal parameters, we adapt the time-domain method
proposed in [110] for estimating wheel-rail forces. According to the Duhamel integral,
the i-th modal displacement is expressed as follows.

q,(t)=e (q'i(())+a)i§,q,.(0)

@y;

i

—o5t

J[e (e )sin( (1)) de 5.9

0
m; &y,

sin( @)+ g, (O)COS(a’dit)} +

where pi(0) and ¢,(0) are the initial modal displacement and velocity, respectively.

By taking the first-order and second-order derivatives of Eq. (5.8) with respect to ¢,
the modal velocity and acceleration can be obtained, respectively. Then, the modal
displacement, velocity, and acceleration are discretized in the time step from s-1 to s
(At=ts-ts1, s=1, 2, ...) as follows.

q,(t)=e ™ (qi (1) + 084, (4 1) sin (@, At) + q,(z,_, )cos(a)d,.At)]
@a; (5.9)
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+

A .
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The following integrals can be obtained when the modal force is assumed constant
within the time step from s-1 to s.

‘[Ome[”‘é" ) (T)sin(a)d,. (Ar- T))dT = pigsz_l ) (codie(”‘é’“ — o, cos(wyAr) - ¢, sin(a)diAt)) (5.12)

i

d e wbr . Pl o H
o pi(7)sin(e, (At -7))dz = (60,» ')(a)didfie A +a)i(1—§2)31n(a)diAt)—wdic§i cos(a)diAt)) (5.13)
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By substituting Eq. (5.12)~(5.14) to Eq. (5.9)~(5.11), the following relationships can
be obtained.
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q (ts) — oG sin(wd,At)(qi (t.vfl)+ wigiqi (ts—l) _ é‘pi (t.\'fl )j

@y m oo,
o) ) (5.15)
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Eq. (5.17) can be written in the following form.

m; sin(a)d,Az‘)((2a)‘.2§‘.2 - a)f)ql (t,.)+ @ g, (1, ))
@& sin(@,;At) — @y, cos (@, Ar) (5.18)
. m @, cos(a)d,At)(—a),.zqi (t,.)-2w&4,(1,, )) —m @, e, (1))
@& sin(w,;At) — @y, cos (@, Ar)

pi(ts—l):

Further, based on the modal parameters (the natural frequencies w; and wd;, damping
ratio &, mode shape vector @i, and modal mass m;" of the n vehicle modes) obtained in
Section 5.2.1.1, the wheel-rail force on the vehicle w(#) can be estimated from measured
vehicle vibrations x(¢) through the following steps. Since wheel-rail contact forces are
applied on wheels, only the elements in w(¢) corresponding to forces on wheels represent
wheel-rail forces, and the rest are constrained to zero in the estimation process.

Step B1. At the s-th time step, convert the measured acceleration 55(’5) to modal
acceleration §(t) according to Eq. (5.3). For the i-th mode, estimate the i-th element
of the modal force vector pd(zs-1) according to Eq. (5.18) using the current modal
acceleration (¢, ) and the previous modal displacement and velocity ¢(z,_,), ¢(z,_,)
[110]. Use zero initial condition when s=1, i.e., q([o) =0 and q(to) =0.

Step B2. Convert the calculated modal force pd(#s-1) to a force vector wd(Zs-1)
according to Eq. (5.3). Constrain the elements of wa(#s-1) without external forces to
zero, denoted as w(#s-1). Then, convert the corrected force w(#-1) back to the modal
force p(#s-1) according to Eq. (5.3).

Step B3. According to Eq. (5.15)~(5.16), calculate the modal displacement and
velocity at the current step ¢(z,), ¢(z,) using the corrected modal force p(#s-1) [110].

Step B4. Increase s by a time step and repeat the above process till reaching the
signal end.

Step BS. Detrend the estimated force w(z) by filtering it with a high-pass filter.
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5.2.2. OUTPUT: DESPECKLE AND COMPENSATION

In the proposed methodology, the vibration response of track components is
continuously measured by an LDV on the moving vehicle. Speckle noise is inevitable
due to the significant in-plane motion of the laser spot on the track surface, and the
characteristics of speckle noise vary with the vehicle speed. In this chapter, we reduce
speckle noise in a raw LDV signal u:(f) using the speed-adaptive method developed in
Section 4.3. Meanwhile, the vibrations of the LDV and other optical components along

the laser beam affect the relative velocity between the laser head and the target. These
vibrations are measured, denoted as x, (), %, (¢), ..., and their effect on the LDV signal

should be compensated. The despeckle and compensation steps are given as follows.
Step C1. The same as Step 1 in Section 4.3.1.
Step C2. The same as Step 2 in Section 4.3.1. Denote the imputed signal as up(?).

Step C3. Subtract x, (), x, (¢), ... from the imputed signal up(?) as follows.
u (1)=u, (1) =2 % (1) (5.19)
j

Step C4. Apply a band-pass filter with the cut-off frequency of fL and fi1 to u«(?),
resulting in the extracted structural vibration u(%).

The effectiveness of the above method requires a proper selection of its parameters.
According to Section 2.3.4 and 4.3, we recommend using da=1, ga=1 and setting fi. and
fu to the lowest and highest frequencies of interest for railway track vibrations,
respectively. The parameters P% and pa should be tuned considering the despeckle
performance and the computational cost at different speeds, which can be achieved either
quantitatively based on simulated signals or qualitatively through trial and observation
with measured signals. Once these parameters are defined, the method can be applied to
LDV measurements without adjusting its parameters for different vehicle speeds.

5.2.3. TRANSFER FUNCTION ESTIMATION
A railway track is a continuous structure. When measuring its TFs from a running
vehicle, the load and response locations move, and the input-output relationship varies.
Considering the variation in track dynamic properties between different locations, we
divide railway tracks into distributed sections and estimate a TF using measurements on
each track section, representing the average input-output relationship for the track
section. Each track section should not be too long; otherwise, we cannot capture the
variation within it. It should also not be too short; otherwise, insufficient data points can
cause large errors and poor frequency resolution. Once the track section length is defined,
the estimated wheel-rail force w(¢) and the measured track vibration u(?) can be cut for
each track section, which can be used as the input and output for TF estimation,
respectively.

In this chapter, assuming that the noise is uncorrelated with the excitation, we use
the so-called Hi estimator to calculate the TF. The main steps are given as follows.
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Step D1. For each track section, divide w(#) and u(#) into overlapping segments and
taper each segment with a window function.

Step D2. Estimate the cross PSD of w(?) and u(?), denoted as P, (1), and the PSD
of w(?), denoted as P, (f), using Welch’s averaged periodogram method [148].

Step D3. Calculate the TF in terms of a receptance function with the input of the
wheel-rail force and the output of the track displacement, as follows [111, 112].

__ R
H(f)= 77 P ) (5.20)

5.3. LABORATORY VALIDATION

5.3.1. EXPERIMENTAL SETUP

We validate the proposed methodology in V-Track, as shown in Figure 5.2. The details
of this test rig and the instrumentation can be found in Section 2.2.1. The vehicle system
consists of a vehicle body suspended on an axle box with a wheel. The suspension
provides not only stiffness and damping but also a static wheel load. There are two such
vehicle systems (Vehicle A and Vehicle B) assembled symmetrically at the ends of a
rotating beam. Four accelerometers (PCB 356B21) are mounted on the upper and lower
masses of the vehicle to estimate the dynamic wheel-rail forces. An additional
accelerometer is mounted on the mirror to compensate for its effect on the LDV signal.
As shown in Figure 5.2 (b), we instrument some track sections with accelerometers (PCB
356B21) to measure their vertical vibrations for comparisons.

Vehicle s Sl,ls;zpen?ion
2 W -

S8 W

Signal | o
acquisition § Wheel and
+f axle box

Trackside accelerometers

Figure 5.2: Experiment setup and vehicle model. (a) V-Track test rig and the instrumentation; (b) Trackside
sensors; (¢) Model of the vehicle system.
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5.3.2. MODAL IDENTIFICATION AND FORCE ESTIMATION

We use the model in Figure 5.2 (c) to represent the vertical dynamics of the vehicle in
V-Track. Each of the two masses has one degree of freedom of bouncing. The spring
and damper between them represent the suspension, and those on top represent the
combined stiffness and damping from both the connection of the vehicle body on the
rotating beam and the flexibility of the rotating beam. A force is applied on the lower
mass, representing the contact force on the wheel. For Vehicle A and B, the lower mass
represents the wheel and axle box with their total mass known (m2=40 kg), while the
upper mass represents the combination of the vehicle body mass and part of the rotating
beam mass, so the total mass m is unknown. All the stiffness and damping are also
unknown.

According to Section 5.2.1.1, we use the impact response of each vehicle to identify
its modal parameters. Figure 5.3 (a) and (b) show the vibrations of Vehicle A and B
when passing over a joint at 4 km/h, respectively. The impact response caused by the
passage of the joint can be clearly observed. Both masses show attenuated bouncing
motions at relatively low frequencies, while the response of the lower mass contains
more high-frequency components.

In order to reduce the effect of pitching motion and noise, we average the signals of
the two sensors on each mass. Then, for each vehicle, we apply Step A1~A3 to the
averaged signals, and a singular value spectrum can be obtained for each passage over a
joint. Figure 5.3 (c¢) and (d) plot such spectra calculated from different laps of
measurements (at the same speed) for the two vehicles. The results show high
repeatability between the different laps and also similarity between the two vehicles. For
each vehicle, two dominant peaks below 150 Hz are confirmed through Step A4.
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Figure 5.3: Vehicle vibrations and singular value spectra. (a) Impact response of Vehicle A; (b) Impact
response of Vehicle B; (¢) Spectra of Vehicle A; (d) Spectra of Vehicle B.
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Table 5.1: Identified modal parameters of the two vehicles.

Modes Averaged modal parameters Vehicle A Vehicle B

Peak 1 (in-phase bounce) Undamped natural frequency w, 62.0 Hz 62.6 Hz
Damping ratio & 0.15 0.11
Normalized mode shape vector ¢;  [0.83 1]T [0.74 17
Modal mass m;" 170.9 187.8

Peak 2 (anti-phase bounce) Undamped natural frequency w, 98.5 Hz 111.7 Hz
Damping ratio & 0.09 0.14

Normalized mode shape vector ¢,  [-0.25 1]T [-0.2 1]°
Modal mass m>" 52.5 50.8

The modal parameters corresponding to these two peaks are further identified
through Step A5 and A7. After averaging over different speeds (2 km/h, 4 km/h, 6 km/h,
8 km/h), different joints, and different laps, we obtain the result in Table 5.1. It shows
that the two peaks correspond to the in-phase and anti-phase bouncing motions of the
two masses, respectively. Despite the identical design, the identified modal parameters
of the two vehicles deviate slightly, highlighting the value of modal identification under
operational conditions.

According to Section 5.2.1.2, the identified modal parameters in Table 5.1 are further
used to estimate wheel-rail force through Step B1~B5. Figure 5.4 (a) and (b) show the
estimated forces using the accelerations of Vehicle A at a joint at different speeds. The
results contain both positive and negative forces since static wheel loads are not included.
Some residual drifts can also be observed but have little effect on the dynamic
components and the TF estimation. High-frequency P1 force and low-frequency P2 force
can be observed, and their amplitudes become larger as the vehicle speed increases.
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Figure 5.4: Estimated dynamic wheel-rail forces of Vehicle A. (a) Passing over a joint at 8 km/h; (b) Passing
over a joint at 16 km/h; (c) Running on a normal track at 8 km/h; (d) Running on a normal track at 16 km/h.
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Figure 5.4 (c) and (d) plot the estimated wheel-rail forces of Vehicle A using
measurements on a normal track section. The low-frequency components are considered
to be related to the vertical alignment of the track, while the high-frequency components
are considered to be related to the roughness of the wheel and rail. Meanwhile, the
amplitude of the dynamic wheel-rail force becomes larger when the speed is higher.

5.3.3. DESPECKLE AND COMPENSATION

In this section, we validate the despeckle and compensation method in Section 5.2.2. We
divide the track structure of V-Track into overlapping track sections centered at each
sleeper, and each track section has a length of around two sleeper spacings. Such
segmentation enables the track structure to be characterized as a distributed system so
that the estimated TF describes the track dynamic properties near each sleeper. Figure
5.5 shows the measurement configurations of Vehicle A on two typical track sections.
Considering the laser-wheel offset Ax, the wheel passes over the joint when the LDV
measures Track section (1), while the wheel runs on a normal track section when the
LDV measures Track section (4). For comparison, we mount three accelerometers (J1~J3
and T2~T4) on each track section.

(a) Vehicle A (b) ~ Vehicle A
Laser Laser
beam beam
Joint Trackside T i
Laser spot rackside
Laser spot accelero- trajectopry accelero-
trajectory Yy meters meters

Track structure V1 T4 Track structure ¥ 2

< >

Track secton @ N Track section (@)

A
4

Figure 5.5: LDV and trackside measurement on two track sections. (a) Track section (1) with a joint; (b)
Track section () without joints.

First, measurements on Track section (1) at different speeds are studied. The range
of'the speeds is selected considering the speed-dependent signal-to-noise ratio in Section
4.5.2. We use P%=30%, pa=30, fL=50 Hz, and f1=1,000 Hz in Step C1~C4, and the
despeckle and compensation results are shown in Figure 5.6. The two plots on the left
compare the raw LDV signal, the imputed signal (after Step C2), and the mirror vibration
(after integration from acceleration to velocity [144]). It shows that spikes are detected
and replaced with reasonable predictions. The mirror vibration is dominant at low
frequencies, reflecting the necessity to compensate for its effect. The two plots on the
right compare the LDV signal after despeckle and compensation with those measured
by the trackside sensors (after integration from acceleration to velocity), which shows
good agreement in the impact response phase as well as before and after the impact.
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Figure 5.6: Despeckle, compensation, and comparison with trackside measurements on Track section (D). (a)
8 km/h; (b) 16 km/h.

—
&
—

4
.20 .
@ o 2
£ £
Eo E o}
2 E
820t 32
2 24
”m Raw signal  ——Mirror vibration Track-side sensor T2 Track-side sensor T4
—Imputed S'Qnalr -6 Track-side sensor T3 —LDV on moving vehicle
1 1.02 1.04 1.06 1.08 1 1.02 1.04 1.06 1.08
Time (s) Time (s)
(b)so ' ; ]
w o
E E
E 3
ol =
3 8
2 5 2 |
- Raw signal ~ ——Mirror vibration - Track-side sensor T2 Track-side sensor T4
— Imputed signal Track-side sensor T3 —LDV on moving vehicle
0.5 0.51 0.52 0.53 0.54 05 0.51 0.52 0.53 0.54
Time (s) Time (s}

Figure 5.7: Despeckle, compensation, and comparison with trackside measurements on Track section (3. (a)
8 km/h; (b) 16 km/h.

Figure 5.7 presents the despeckle and compensation results for measurements on
Track section (). Although their amplitudes are generally lower than those on Track
section (1), the proposed method is still effective in reducing speckle noise and providing
results consistent with the trackside measurements. The above results demonstrate the
effectiveness of the despeckle and compensation method at different speeds. Slight
deviations between the LDV and trackside signals can be observed, caused by imperfect
despeckle or compensation and spatial deviations between the laser spot and the
accelerometers.
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Additionally, it can be seen from Figure 5.6 and 5.7 that the vibrations of the sleeper
(J2 or T3) and the track slab (J1, J3 or T2, T4) are very close in the frequency range we
are concerned with, as a consequence of the high sleeper pad stiffness in V-Track. This
reflects the rationale for combining measurements on the sleeper and track slab (within
one track section) for TF estimation, which provides more data points than using only
measurement on a single sleeper.

5.3.4. TRANSFER FUNCTION ESTIMATION AND COMPARISON

Based on the measured track vibration and the estimated wheel-rail force on each track
section, a TF of the track structure can be estimated according to Section 5.2.3. We take
several track sections as examples to showcase the estimation performance. In Step D1,
each signal is divided into three overlapping segments of 90% of the section length. In
Step D2, a Hanning window is used. The estimated TFs hold the physical meaning
(receptance) that is consistent with the conventional definition of railway track TFs or
FRFs. This allows the TF measurement system on the moving vehicle to be validated
using conventional trackside technology. Therefore, we perform hammer tests on these
track sections using a PCB 086C03 hammer and the trackside accelerometers to obtain
their FRFs. The estimation of FRFs can be found in Section 3.4.

5.3.4.1. TRACK SECTIONS WITH A JOINT

Figure 5.8 shows the measurement configuration on Track sections (1) and (2). Since
Vehicle A and B have different laser-wheel offsets, they measure different track sections
when passing over the joint. For Vehicle A (or Vehicle B), the laser spot is behind (or
ahead of) the wheel and thereby measures Track section (D) (or (2)) when the wheel
passes over the joint. Additionally, hammer tests are performed, with the impact
locations denoted as 11~I3 and the trackside sensors denoted as J1~J4.
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Figure 5.8: Measurement and hammer tests on track sections with a joint.

Figure 5.9 (or Figure 5.10) shows the TFs of Track section (D) (or (2)) estimated from
the measurements on Vehicle A (or B) at two different speeds, in which the solid black
line and shaded area represent the mean and stand deviation of the estimates from
different laps, respectively. We focus on the frequency range of 200~800 Hz as it
belongs to the rigid-body motions (bouncing and rolling) of the sleepers under the wheel
passage in V-Track, according to Section 3.4, which are more related to the properties
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of the track structure, such as the support stiffness. Meanwhile, the small hammer used
in the hammer tests can effectively excite the track modes in this frequency range. It can
be seen that the frequency resolution decreases at a higher speed due to the shorter signal
length. At frequencies below 600 Hz, the standard deviation is small, indicating good
repeatability at different laps, while at higher frequencies, the standard deviation
becomes larger. The frequency range of small standard deviations is broader at the
higher speed, mainly because the vehicle moving at a higher speed generates larger
excitations at higher frequencies.

The colored solid lines in Figure 5.9 represent the average TFs estimated using
signals from the trackside sensors instead of the LDV signal. The results of using the
LDV and the trackside sensors are close to each other since the LDV signals after
despeckle and compensation are close to the trackside signals. This further demonstrates
the accuracy of the track vibration measurement using the LDV on the moving vehicle.
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Figure 5.9: TF estimation and comparison on Track section (1) (Vehicle A). (a) 8 km/h; (b) 16 km/h; (c)
Hammer tests.
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Figure 5.10: TF estimation and comparison on Track section 2 (Vehicle B). (a) 8 km/h; (b) 16 km/h.

Further, we compare the estimated TFs with FRFs from the hammer tests, where the
impact and sensor locations correspond to the wheel-laser offset. A good agreement in
their shapes and resonance frequencies can be observed, especially below 500 Hz,
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demonstrating the effectiveness of TF estimation on different vehicles and at different
speeds. The two resonance peaks at 300~400 Hz in the FRFs are effectively captured by
the estimated TFs from the moving vehicle. At frequencies above 500 Hz, the FRFs
deviate from each other, representing different dynamic properties for different impact
and sensor locations. Consequently, the estimated TFs show large standard deviations
as the positions of the wheel and laser spot are moving, and the resonance frequencies
of the estimated TFs deviate more from those of the FRFs. Additionally, the FRFs are
smoother than the estimated TFs due to less noise and higher frequency resolution.

5.3.4.2. TRACK SECTIONS WITHOUT JOINTS

Similar measurements and comparisons are performed on three track sections without
joints, as illustrated in Figure 5.11. The TF estimates of Vehicle A and B on Track
section (3) are shown in Figure 5.12 and 5.13, respectively. By comparing them with the
FRFs from the hammer tests, we can see good agreement in their shapes and resonance
frequencies at different speeds. As the vehicle speed increases, their deviation increases
at low frequencies and decreases at high frequencies. Additionally, the differences
between the TF estimates on Vehicles A and B are caused by the different positions of
the wheels when measuring this track section.

By comparing Figure 5.12 and 5.13 with Figure 5.9 and 5.10, we can see that there
is one dominant peak in the frequency range of 300~400 Hz on the track section without
joints whereas there are two on the track sections with a joint. This difference reflects
the variation in track dynamic properties between these sections. Additionally, the
standard deviations of the estimates on the track sections with the joint are generally
smaller than those without joints. This confirms that excitations with large amplitude
and broad frequency bands improve the TF estimation performance.

The TF estimation results on Track sections (#) and (5) are shown in Figure 5.14 and
5.15, respectively. The estimated TFs are in good agreement with the measured FRFs
and capture the dominant resonance peaks. As the vehicle speed increases, their
deviation at high frequencies becomes smaller, whereas that at low frequencies becomes
larger. The results demonstrate the effectiveness of TF estimation on normal track
structures at different speeds.
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Figure 5.11: Measurement and hammer tests on track sections without joints.
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In this chapter, we focus on the shapes and the resonance frequencies of the TFs and
FRFs since they depend strongly on the track dynamic properties, such as the track
stiffness, thus being useful for structural health monitoring. Nevertheless, deviations in
both frequency and amplitude can be observed, and the possible reasons are discussed
as follows.

e The track properties, such as stiffness and damping, can differ from unloaded
conditions to loaded conditions due to the nonlinearity of track components.
The developed system on the moving vehicle has the advantage of measuring
the TFs under loaded conditions, whereas the hammer tests measure the FRFs
without vehicle loads.

e  Errors in the vehicle model for wheel-rail force estimation are considered to be
the main source of errors in the TF estimation. Errors in the vehicle parameters
can be reduced by regularly updating the vehicle model through the operational
modal identification.

e Vehicle A and B are assembled symmetrically on the rotating beam, which
affects each other primarily through the rotating beam and secondarily through
the track structure. This chapter assumes a single input for each vehicle and a
single input for the track structure, so each vehicle is an additional excitation
source for the other vehicle and the track structure, thus affecting the force and
TF estimation. Our vibration measurements show that such influence is
negligible, so decoupling the two vehicles in the TF estimation is still
reasonable.

5.4. CONCLUSIONS

This chapter proposes a methodology for estimating railway track TFs using LDV and
accelerometer measurement on a moving vehicle. Enhanced frequency domain
decomposition is applied to vehicle impact response at a joint to obtain its modal
parameters, which further support the estimation of dynamic wheel-rail forces from
vehicle vibrations using a Duhamel integral-based method. A speed-adaptive despeckle
and compensation method is applied to LDV signals to reduce speckle noise and extract
track vibrations. A TF is then estimated for each railway track section using the
estimated wheel-rail force as input and the measured track vibrations as output. This
methodology is validated on different sections of V-Track at different speeds through
comparisons with trackside measurements and hammer tests. The main conclusions are
summarized as follows.

e The modal identification method eliminates the need to pre-define the vehicle
stiffness, vehicle damping, and vehicle body mass for wheel-rail force
estimation and enables the vehicle modal parameters to be updated under
operational conditions.

e The LDV and accelerometer measurements provide TF estimates that are in
good agreement in terms of the shapes and resonance frequencies with the FRFs
measured from hammer tests at 200~800 Hz. Such effectiveness holds for the
whole vehicle speed range tested, from 8 km/h to 16 km/h.
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e The standard deviation of the TF estimates becomes larger at high frequencies
due to the variation of track dynamics when the wheel and laser spot are moving.
Among the speeds tested, a higher vehicle speed yields smaller standard
deviations of the estimated TFs over different laps and also smaller deviations
between the estimated TFs and the measured FRFs at high frequencies.

e Unlike conventional hammer tests that can only be applied at one location at a
time, usually without vehicle loads, the proposed TF measurement system can
continuously scan track structures and measure their TFs under loaded
conditions.

e The differences in the shapes and resonance frequencies of the estimated TFs
between different track sections reflect the variation of track dynamic properties,
suggesting that the system has the potential to be used for structural health
monitoring of railway tracks.
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6.1. CONCLUSIONS

This dissertation presents a new technology based on train-borne laser Doppler
vibrometer (LDV) for measuring the load-response relationship of railway tracks. The
developed technology consists of four cornerstones that address the key challenges,
including speckle noise mitigation, operational vibration analysis, speed-dependent
characteristics, and transfer function estimation. The interconnections of these
cornerstones in developing the technology are summarized as follows.

e The three-step framework for speckle noise reduction (Chapter 2) plays an
important role in the investigation of the speed-dependent characteristics by
enabling the vibration-noise separation at different speeds (Chapter 4 and 5). It
is further combined with the compensation of the LDV vibration to support the
estimation of the load-response relationship of the track structure (Chapter 5).

e The operational modal analysis method (Chapter 3) supports the identification
of the vehicle modal parameters from the vehicle response under operational
conditions (Chapter 5). The identified modal characteristics of the railway
sleepers further support the selection of the frequency ranges for extracting the
track vibrations from the LDV signals (Chapter 4 and 5).

e The speed-dependent characteristics (Chapter 4) support the selection of the
vehicle speed range for estimating the load-response relationship of the track
structure (Chapter 5).

The main conclusions of the dissertation are summarized as follows.

e The train-borne LDV is capable of directly measuring the track vibrations from
the moving vehicle. The measured vibrations can be combined with the wheel-
rail force estimated from the measured vehicle vibrations to estimate the transfer
function of the track structure over a wide frequency range.

e Among the three stages of speckle noise mitigation (instrumentation,
measurement, and post-processing), post-processing is the only one that allows
speckle noise to (attempt to) be removed. Incorporating knowledge of the
characteristics of structural vibration and speckle noise can improve the
performance of speckle noise reduction.

e As train speed increases, the speckle noise increases almost linearly while the
track vibration increases nonlinearly. The competition between them leads to the
nonlinear behavior of the signal-to-noise ratio with respect to train speed. The
speeds that yield the highest signal-to-noise ratio are different for different track
structures, measurement configurations, and operational conditions.

e  Operational modal identification using the vehicle vibrations passing over joints
eliminates the need to define the vehicle stiffness, vehicle damping, and vehicle
body mass for estimating the wheel-rail force.

e Among the speeds and frequency range tested, a higher vehicle speed provides
smaller deviations in the estimated transfer functions at high frequencies. The
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differences in transfer functions between different track sections reflect the
variation of track dynamic properties.

This dissertation validates the developed technology at the following three levels.

Numerical simulations provide insights into the characteristics of speckle noise
and track vibration. Chapter 4 establishes numerical models that effectively
replicate the sleeper vibration and speckle noise measured in the V-Track test
rig at different speeds. The simulation results further support the parameter
selection and quantitative validation of the vibration-noise separation method.

Laboratory measurements in V-Track provide well-controlled and well-
observed conditions for testing the train-borne LDV technology. Chapter 2, 4,
and 5 demonstrate that the method effectively reduces the speckle noise and
extracts the track vibrations from the LDV signals at speeds of 0.5~20 km/h and
frequencies up to 1,000~3,000 Hz. Chapter 5 demonstrates the effectiveness of
the transfer function estimation at speeds of 8~16 km/h and frequencies up to
800 Hz.

Field measurements provide realistic conditions to further test the technology
and methods. Chapter 4 applies the vibration-noise separation method to the
train-borne LDV measurements on the CTO train and investigates the speed-
dependent characteristics at speeds of 5~30 km/h and frequencies up to 300 Hz.

The above investigations based on numerical simulations, laboratory measurements,

and field measurements yield coherent results. These findings demonstrate the

applicability and usability of the train-borne LDV technology for monitoring track

dynamic properties over a wide frequency range, thus potentially enabling more efficient

and informative rail infrastructure monitoring.

6.2. FURTHER RESEARCH

In the development and validation of train-borne LDV technology for monitoring track
dynamic properties, there are still many challenges to overcome and many possibilities
to explore. Recommendations for future research are given below.

We should pay close attention to state-of-the-art technologies of LDV
instruments (such as signal diversity techniques) and test their performance for
applications of train-borne LDV measurements. This can potentially improve
signal quality, especially when measuring small-amplitude, high-frequency, and
transient structural vibrations.

A benchmark dataset can be created based on train-borne LDV measurements
from different vehicle speeds. An extensive comparison of different options at
each step of the three-step framework for speckle noise reduction is
recommended to obtain the best combination of methods in different situations.

In operational modal identification, structures are usually assumed linear and
slightly damped. However, this cannot hold for railway tracks. Another
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challenge is the movement of wheel loads. Therefore, the operational modal
analysis method needs to be further improved to provide more accurate and
robust identification performance.

e The proposed transfer function estimation method needs to be improved in its
applicability to vehicles with multiple wheels and the robustness to model errors.
Different transfer function estimators with different smoothing strategies should
also be investigated to improve the estimation accuracy.

e  The performance of train-borne LDV measurements needs to be tested at higher
speeds in field measurements, where more severe speckle noise, lower
frequency resolution, and more uncertainties are expected. The quantification of
uncertainties is essential to enhance the confidence level of the results.

e  When more measurement data and deeper understanding are available, machine
learning can be applied to the anomaly detection and health monitoring of
railway tracks. This can contribute to intelligent infrastructure monitoring and
maintenance.

Future development and validation of the train-borne LDV technology should be
closely aligned with its potential application to railway track monitoring and its added
value to railway asset management. Efforts should be made to continuously increase the
validity, usability, and practicality of the monitoring and assessment results for
infrastructure managers and contractors. The ultimate goal is to achieve large-scale
monitoring and assessment from instrumented operational trains on a daily basis, thus
allowing more effective lifespan control and predictive maintenance.
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A.1. TRAIN-TRACK-LDV MODEL

The vehicle and the wheel are modeled as rigid bodies as follows,
miz, (t)+k[z,(t)—z,(t) |+ e[z (1) 2,()]=0 (A.1)
mz, —k,[z,(t) -z, (t)]—c,[ 2, () -z, () |+ F.(t) =0 (A2)

where mv and mw are the masses of the vehicle and the wheel, respectively, kv and ¢y are
the stiffness and damping of the suspension, respectively, zv and zw are the vertical
displacements of the vehicle and the wheel, respectively, and F. is the wheel-rail force.

The sleepers are also modeled as rigid bodies, and the equation of motion of the i-th
sleeper (i=1, .., ns) is:

mzZz; (t) k,; |:Z (xbl,t) ZM( ):I—c” I:z (xM,t) Zg; (t):|+kM z (t)+csiz'si(t)=0 (A3)

where ms is the mass of the sleeper; zs; is the displacement of the i-th sleeper, 4w and cri
are the stiffness and damping of the rail pad above the i-th sleeper, respectively, ks; and
csi are the stiffness and damping of the ballast below the i-th sleeper, respectively, and
xsi is the position of the i-th sleeper, i.e., xsi=(i—1/2)ds with ds the sleeper spacing.

The rail is modeled as a simply-supported Euler-Bernoulli beam of length /=nsxds.
Its displacement at position x and time ¢ is characterized as follows [164],

E164Zr(x’t) (xl‘) (t)g(x X, t)) an[z o) — 2, (7) ]5x xy)

o' or (A4)

—ZCHI:Z X5t Z t):lé(x—xsi)

where E is the elastic modulus of the rail, / is the second area moment of the rail, m: is
the mass of the rail per unit length, () is the Dirac function, xc is the position of the
wheel, i.e., xc(f)=xo+vt with v denoting the train speed and xo denoting the initial position.

According to the Ritz method, the A-th modal coordinate is denoted as g«(¢), and the
k-th modal function is defined as follows [164].

Zo(x)= [ 2 sin 57X (A.5)

The displacement of the rail is approximated as follows,

2 ()= ZZ (x)a, () (A.6)

where nm is the truncated order of modes. Then, Eq. (A.4) can be converted into the
following second-order ordinary differential equations.

g\ (t)+iank (xs,)gzh(xs,)q-,, (;)+%[k7ﬂj“ a0 (1) + ZkZ (xy)gzh (x,)a, (1)
—an 5,(t)Z,((xsi)—:’glcﬁz'si(t)Zk(xS‘)=Fc(t)Zk(xC(t)) k=1,..n.

(A7)
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The wheel-rail contact force is calculated based on Hertz theory as follows [164],

F(1)= [é[zw (t)_zr(xc’t)_zc(xc)]jm 2, ()= z,(x.t) =z, (x.) >0

0 2, () =z (xo1) = z(x) <0

(A.8)

where ze is the rail irregularity, G is a contact coefficient for a conical wheel, i.e.,

G=4.57rw014%x10-® m/N?3, and rw is the wheel radius.
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Figure A.1: Spectrum of rail irregularity.

Table A.1: Parameters for simulating track vibration.

Symbol Parameter Value Symbol Parameter Value

my Mass of vehicle 50 kg d Sleeper width 0.04 m

ky Stiffness of suspension 230 kN/m ds Sleeper spacing 0.1258 m

cy Damping of suspension 100 N/(m/s) & Stiffness of sleeper pad 10 MN/m

My Mass of wheel 40 kg Cs Damping of sleeper pad 860 N/(m/s)
(including axel box)

rw Radius of wheel 0.065 m P Power of Gaussian -120 dBW

white noise for rail
irregularity

m; Mass of rail per unit 3.51 kg/m Apass Passband wavelength of 10 mm
length rail irregularity

I Second area moment of 50,803 mm* Ao Stopband wavelength 0.4 mm
rail of rail irregularity

Am Truncated order of rail 25 hisiop Stopband attenuation 55dB
modes

E Elastic modulus of rail 205.1 GPa Ax Laser-wheel offset 0.063 m

ke Stiffness of rail pad 200 MN/m At Integration step size 1x107 s

Cr Damping of rail pad 1.9 kN/(m/s) y Integration parameter 0.5

ns Number of sleepers 25 p Integration parameter  0.25

m Mass of sleeper 1.15 kg

The rail irregularity ze is generated (with a spatial interval Axn) by applying a low-
pass Butterworth infinite impulse response filter to Gaussian white noise. Figure A.l
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shows the spectrum of such artificial spatial noise, which is defined by a passband
wavelength, a stopband wavelength, and a stopband attenuation.

Eq. (A.1)~(A.3) and (A.7) are solved numerically using the Newmark-f method
[163], while the contact force is updated at each step according to Eq. (A.8). The
parameters used for simulations are listed in Table A.1.

A.2. SPECKLE TRANSLATION MODEL

The electric field of the reference beam on the photodetector is given as follows [167],
(27
E, = A4, exp|i 7t + Wyt + 6, (A.9)

where A is the laser wavelength, wr is an artificial frequency shift, Ar and 6r represent
the amplitude and phase of the reference beam, respectively.

Each speckle is assumed to have its own amplitude and phase, denoted as Asx and
Osk, where k represents the k-th speckle. Given the target vibration z(¢), the electric field
of the k-th speckle is expressed as follows [167].

(2 2
Eg = Ag exp{z(fr—Zfz(tﬁ- as,(ﬂ (A.10)

Then, each speckle on the photodetector is heterodyned with the reference beam, and
the intensity of such a mixed area is derived as follows [169],

L () =[Ex + Eg. | <[ Ex + ESk]H = A7 + A, + 24, A, cos[a)kt + 47”2(1‘) +0 — HSkJ
(A.11)

=1y + 1y + 2T I, cos(a}Rt +47ﬂz(t)+ 0, *HSkj

where " denotes conjugate transpose, Ir and Isk are intensities of the reference beam and
the k-th speckle, respectively.

The last term in Eq. (A.11) carries the phase change due to the target motion and the
laser speckle. After filtering out the DC components and summing up the contributions
of all the K speckles, the output of the photodetector is derived as follows [169],

u(t) o kZ:aAZ I, cos(a)Rt+—z(t)+9 j N cos(a)kt+—z(t)+9 j (A12)

where ax represents the area of the k-th speckle observed on the photodetector, and /m
and Om are expressed as follows [166, 169],

—\/iiapaq,/ I cos p (A.13)

r=1g=1

=

S a Ty sin (6, 0,.)

6,, = arctan| £ (A.14)

K

Zak\/zcos(‘g gsk)
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Therefore, the target vibration z(#) can be measured from the frequency of u(?) as
follows [167],

w, (1) = wy +72(z)+—“"(z) (A.15)

The phase change rate dém/dt depends on the properties of the laser speckles and the
reference beam. Assuming that the laser is well-focused on the target surface, the space
correlation length of the speckles on the photodetector is calculated as follows [168&],

=R (A.16)

W

where w is the diameter of the laser spot and R is the distance between the target surface
and the photodetector. The length /c describes the size of each speckle, within which the
intensity and phase, /s« and &sk, are constant. The intensity and phase of all speckles are
assumed to follow the following negative exponential distribution and uniform
distribution, respectively [169].

P(IS)—<Ils>exp[—<jz>] 1,50 (A.17)

P(0)=5- -w=6=x (A.18)

where </s> denotes the mean speckle intensity. Random samples of /sy and Osk are
generated for each speckle.

Meanwhile, the time correlation length of the speckles on the photodetector is as
follows [168],

(1 1Y"” (A.19)
To=1 74—172 .

V] c

where v is the in-plane speed of the laser spot on the surface.

The parameters used for simulations are listed in Table A.2.

Table A.2: Parameters for simulating speckle noise.

Symbol Parameter Value Symbol Parameter Value

A Wavelength of laser 1,550 nm m Number of grids along 200
the translation direction

w Diameter of laser spot 0.19 mm n Number of grids along 100
the orthogonal direction

a Number of speckles covered 2 fc Cut-off frequency of 100 kHz
by photodetector length low-pass filter
R Distance between target and 2.7 m

photodetector
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