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SUMMARY 
Monitoring the dynamic properties of railway tracks is essential for the safety of train 
operation and the efficiency of track maintenance. Several vibration-based technologies 
are available for measuring such properties, but each has its limitations such as low 
efficiency and limited frequency band. There is still a lack of train-borne technologies 
applicable to extracting the load-response relationship of track structures, especially 
when a variety of track components and a wide frequency range are concerned. A laser 
Doppler vibrometer (LDV) is a noncontact sensing instrument for vibration 
measurement. A train-borne LDV can target its laser spot on tracks, continuously scan 
track structures during train operation, and directly measure track vibrations in response 
to the moving train. It has the potential to complement existing technologies and monitor 
the dynamic properties of railway tracks. 

This dissertation develops a new technology based on train-borne LDV for 
measuring the vibration and load-response relationship of railway tracks over a wide 
frequency range. To address the key challenges discussed in Chapter 1, the developed 
technology consists of four interconnected cornerstones, corresponding to Chapter 2~5.  

Chapter 2 reduces speckle noise in LDV measurements on a moving platform. 
Speckle noise is problematic for such measurements due to the drastic in-plane motion 
of the laser spot on target surfaces. It is found that as the moving speed increases, the 
speckle noise occurs more frequently with shorter durations, greater amplitudes, and 
broader frequency bands. A three-step framework is proposed for removing the speckle 
noise in the post-processing stage, which works by detecting and replacing spikes and 
then smoothing out residual noise. Specifically, we develop a wavelet-based spike 
detection method in Step 1, an autoregressive integrated moving average-based 
imputation method in Step 2, and adopt a Butterworth filter in Step 3. The method is 
validated in the TU Delft V-Track test rig at different locations along the track and at 
different speeds (0.5~20 km/h). The LDV effectively captures the dominant track 
vibrations at 500~700 Hz with good repeatability between different laps and good 
agreement with trackside measurements in V-Track. In addition to the proposed methods, 
different alternative methods can be adapted and used in the three steps of the framework. 

Chapter 3 identifies modal parameters from structural vibration response under 
operational conditions. Effective analysis of vibration response without load information 
is crucial for structural condition monitoring. Time-frequency representation is 
necessary for analyzing train-track vibration response due to its nonstationary 
characteristics and broadband nature. An operational modal analysis method in time-
frequency representation is developed. Short-time frequency domain decomposition and 
a convolution-based strategy are proposed to obtain singular values and local mode 
shape similarity, respectively, which are further fused into mode indicators by a fuzzy-
based strategy. The method is an interpretable and explicit tool that provides not only a 
global view of the modal characteristics over time and frequency but also estimates of 
modal parameters. It is applicable to strongly nonstationary responses under time-
varying loads and conditions and also robust to the length of signals. The method is 
validated using sleeper vibrations under train passage at speeds of 8 km/h in V-Track 
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and 15~200 km/h in field tests. The rigid-body motions and bending modes of the 
sleepers are identified at frequencies up to 6,500 Hz in V-Track and 4,500 Hz in the field 
tests, and the identification results are comparable to hammer tests. 

Chapter 4 investigates the speed-dependent characteristics of track vibration 
measurement with a train-borne LDV. In a train-borne LDV system, the train speed 
affects both the intensity of track vibrations and speckle noise. The quality of train-borne 
LDV signals is essential to their usability. A holistic methodology for characterizing 
train-borne LDV measurements is proposed combining numerical simulations, 
laboratory measurements in V-Track, and field measurements on the CTO measurement 
train. Validated models are used to separately simulate sleeper vibrations and speckle 
noise at different speeds. A vibration-noise separation method is developed and 
validated to separate structural vibration from speckle noise adaptively at different 
speeds and robustly under different scenarios. Simulations and measurements show that 
as train speed increases (from 2 to 12 km/h in V-Track and from 5 to 30 km/h on the 
CTO train), speckle noise increases almost linearly while track vibration (at frequencies 
up to 1,500 Hz in V-Track and 300 Hz on the CTO train) increases nonlinearly. This 
difference leads to the nonlinear behavior of the signal-to-noise ratio with respect to train 
speed. The speeds that yield the highest signal-to-noise ratio are different for different 
tack structures, measurement configurations, and operational conditions. 

Chapter 5 estimates railway track transfer functions from LDV and accelerometer 
measurements on a moving vehicle. Characterizing the load-response relationship of 
railway tracks requires both wheel-rail force (input) and track vibration response 
(output). Operational modal analysis is applied to vehicle impact response at a joint to 
obtain its modal parameters, which further support the estimation of dynamic wheel-rail 
forces from vehicle vibrations using a Duhamel integral-based method. Meanwhile, a 
speed-adaptive despeckle and compensation method is applied to LDV signals to reduce 
speckle noise and extract track vibrations. Railway track transfer functions are then 
estimated using the estimated wheel-rail force as input and the extracted track vibrations 
as output. The proposed method is validated in laboratory measurements in V-Track at 
different track locations (with or without joints) and speeds (8~16 km/h). The estimated 
transfer functions are compared with trackside measurements and hammer tests, and 
they show good agreement at 200~800 Hz. The differences in the estimated transfer 
functions between different track sections reflect the variation of track dynamic 
properties. 

This dissertation concludes with Chapter 6. In general, this dissertation investigates 
the train-borne LDV technology for track vibration measurement at three levels. First, 
numerical simulations provide insights into the mechanisms and characteristics of 
speckle noise and track vibration. Second, laboratory measurements in V-Track provide 
well-controlled and well-observed conditions for testing the train-borne LDV 
technology, and the highest speed tested is 20 km/h. Third, field measurements on the 
CTO train provide realistic conditions to further test the technology and the associated 
methods, and the highest speed tested is 30 km/h. The investigations yield coherent 
results and demonstrate the feasibility and usability of the train-borne LDV technology 
for measuring track dynamic properties, thus potentially enabling more efficient and 
informative rail infrastructure monitoring.
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SAMENVATTING 
Het monitoren van de dynamische eigenschappen van spoorconstructies is essentieel voor 
zowel de veiligheid van railvervoer als de efficiëntie van spooronderhoud. Voor het meten 
van deze eigenschappen zijn nu al diverse, op trillingen gebaseerde, technologieën 
beschikbaar maar elk heeft zijn beperkingen, zoals een lage efficiency en een beperkte 
frequentieband. Het ontbreekt nog altijd aan een systeem voor het meten van trillingen dat 
direct onder een railvoertuig kan worden gemonteerd en waarmee de relatie tussen de 
dynamische respons en belasting van spoorconstructies kan worden bepaald in een breed 
frequentiebereik. Een laser-Doppler-vibrometer (LDV) is een contactloos meetinstrument 
voor trillingsmetingen. Een op een trein gemonteerde LDV (trein-gebonden LDV) 
kan zijn laserspot op het spoor richten, en tijdens het rijden de spoorconstructie 
continu scannen en daarbij direct de trillingen in het spoor meten als reactie op de 
bewegende trein. LDV heeft de potentie om de bestaande technologieën voor monitoring 
van het spoor aan te vullen en daarbij tevens de dynamische eigenschappen van 
spoorconstructies te bepalen. 

Dit proefschrift beschrijft de ontwikkeling van nieuwe technologie om met een trein-
gebonden LDV de trillingen en de relatie tussen de respons en de belasting van 
spoorconstructies te meten over een breed frequentiebereik. Om de belangrijkste 
uitdagingen zoals besproken in Hoofdstuk 1 aan te pakken, bestaat de ontwikkelde 
technologie uit vier pijlers, overeenkomend met Hoofdstukken 2~5. 

Hoofdstuk 2 behandelt de vermindering van spikkelruis in LDV-metingen vanaf een 
bewegend platform. Spikkelruis is problematisch voor dergelijke metingen vanwege de 
significante in-plane beweging van de laserspot op doeloppervlakken. In hoofdstuk 2 wordt 
aangetoond dat naarmate de treinsnelheid toeneemt, spikkelruis vaker voorkomt met een 
kortere duur, grotere amplitudes en bredere frequentiebanden. Er wordt een raamwerk in 
drie stappen voorgesteld voor het verwijderen van de spikkelruis in de nabewerkingsfase, 
gericht op het detecteren en vervangen van pieken en het vervolgens glad maken van de 
resterende ruis. We ontwikkelen hiermee een op wavelet-gebaseerde piek-detectiemethode 
in Stap 1, een vervangingstechniek gebaseerd op autoregressieve geïntegreerde bewegende 
gemiddelden in Stap 2 en het gebruiken van een Butterworth-filter in Stap 3. De methode 
is getest met de TU Delft V-Track op verschillende posities op het spoor van de 
testopstelling en bij verschillende snelheden (0.5~20 km/u). De LDV legt effectief de 
dominante spoorvibraties vast bij 500~700 Hz met goede herhaalbaarheid tussen 
verschillende testronden en goede overeenstemming met aparte metingen langs het spoor 
van de V-Track. Naast de voorgestelde methoden kunnen verschillende alternatieve 
methoden worden aangepast en gebruikt in de drie stappen van het raamwerk. 

Hoofdstuk 3 gaat over de identificatie van de modale parameters uit de structurele 
trillingsrespons onder operationele omstandigheden. Effectieve analyse van de 
trillingsrespons zonder belastingsinformatie is cruciaal voor structural health monitoring. 
Een tijd-frequentieweergave is noodzakelijk voor de analyse van trein-spoor trillingen 
vanwege de niet-stationaritaire eigenschappent en het brede frequentiebereik van het 
signaal. Een methode voor operationele modale analyse in de tijd-frequentieweergave 
wordt ontwikkeld. Korte-tijd-frequentiedomein-decompositie en een op convolutie-
gebaseerde benadering worden voorgesteld om singuliere waarden en lokale 
modusvormgelijkenis te verkrijgen, die vervolgens worden samengevoegd tot 
modusindicatoren met behulp van een fuzzy-gebaseerde aanpak. De methode is een 
interpreteerbaar - en expliciet instrument dat niet alleen een algemeen beeld geeft van de 
modale kenmerken in de tijd en frequentie, maar die ook schattingen van modale parameters 
mogelijk maakt. Het is toepasbaar op sterk niet-stationaire reacties onder tijdsafhankelijke 
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belastingen en omstandigheden en is ook robuust ten opzichte van de signaallengte. De 
methode is getest met dwarsliggertrillingen bij treinpassage onder snelheden van 8 km/u in 
V-Track en 15~200 km/u in veldtests. De starre lichaamsbewegingen en buigingsmodussen
van de dwarsliggers zijn herkenbaar bij frequenties tot 6,500 Hz in V-Track en 4,500 Hz in
de veldtests. De resultaten zijn vergelijkbaar met hamertesten.

Hoofdstuk 4 gaat over onderzoek naar de snelheidsafhankelijke kenmerken van 
spoortrillingsmetingen met een aan de trein-gebonden LDV. De snelheid van de trein 
beïnvloedt zowel de intensiteit van spoortrillingen als de spikkelruis. De kwaliteit van het 
LDV-signaal is essentieel voor de toepasbaarheid voor monitoring. Een holistische 
methodologie voor de karakterisering van trein-gebonden LDV metingen wordt voorgesteld, 
waarbij numerieke simulaties, laboratoriummetingen in V-Track en veldmetingen op de 
CTO-meettrein worden gecombineerd. Gevalideerde modellen worden gebruikt om 
afzonderlijke dwarsliggertrillingen en spikkelruis te simuleren bij verschillende snelheden. 
Een methode voor het onderscheiden van structurele trillingen en ruis is ontwikkeld en 
gevalideerd, adaptief bij verschillende snelheden en robuust onder verschillende 
omstandigheden. Simulaties en metingen tonen aan dat naarmate de snelheid van de trein 
toeneemt (van 2 tot 12 km/u in V-Track en van 5 tot 30 km/u op de CTO-trein), het 
spikkelruis vrijwel lineair toeneemt, terwijl de spoortrillingen (bij frequenties tot 1,500 Hz 
in V-Track en 300 Hz op de CTO-trein) niet-lineair toenemen. Dit onderscheid leidt tot het 
niet-lineaire gedrag van de signaal-ruisverhouding in relatie tot de snelheid van de trein. De 
snelheden die de hoogste signaal-ruisverhouding opleveren, zijn verschillend voor diverse 
spoorconstructies, meetconfiguraties en operationele omstandigheden. 

Hoofdstuk 5 betreft een schatting van de overdrachtsfuncties van spoorconstructies van 
LDV- en versnellingsmetingen vanaf een bewegend voertuig. Het karakteriseren van de 
relatie tussen de respons en de belasting van spoorconstructies vereist zowel een kracht 
vanuit het wiel-rail-raakvlak (input) als de trillingsrespons van het spoor (output). 
Operationele modale analyse wordt toegepast op de voertuig-impact respons bij een raillas 
om de modale parameters te verkrijgen, die vervolgens een schatting van de dynamische 
wiel-rail kracht mogelijk maken uit voertuigtrillingen met behulp van een methode op basis 
van Duhamel-integraal. Tegelijkertijd wordt een snelheidsadaptieve ontspikkel- en 
compensatiemethode toegepast op de LDV-signalen om het spikkelruis te verminderen en 
spoorvibraties te extraheren. De overdrachtsfuncties van spoorconstructies worden 
vervolgens bepaald met de geschatte wiel-rail kracht als input en de geëxtraheerde 
spoorvibraties als output. De voorgestelde methode is getest in laboratoriummetingen met 
de V-Track op verschillende posities op de testopstelling, met en zonder raillassen en onder 
verschillende snelheden (8~16 km/u). De geschatte overdrachtsfuncties zijn vergeleken met 
metingen en hamertesten op de testopstelling en vertonen goede overeenstemming tussen 
de 200 Hz en 800 Hz. De verschillen in de geschatte overdrachtsfuncties tussen 
verschillende spoorwegsecties weerspiegelen de variatie van de dynamische eigenschappen 
van het spoor. 

Dit proefschrift wordt afgesloten met Hoofdstuk 6. In het algemeen onderzoekt dit 
proefschrift voor trein-gebonden LDV-technologie voor trillingsmetingen van 
spoorconstructies op drie niveaus. Ten eerste bieden numerieke simulaties inzicht in de 
mechanismen en kenmerken van het spikkelruis en de spoortrillingen. Ten tweede bieden 
laboratoriummetingen met de V-Track goed beheersbare en goed meetbare condities voor 
het testen van trein-gebonden LDV-technologie, en de hoogst geteste snelheid is 20 km/u. 
Ten derde bieden veldmetingen op de CTO-trein realistische omstandigheden om de 
technologie en de bijbehorende methoden verder te testen, en de hoogst geteste snelheid is 
30 km/u. De onderzoeken leveren coherente resultaten op en tonen de haalbaarheid en 
bruikbaarheid aan van LDV-technologie voor het meten van de dynamische eigenschappen 
van spoorwegen, hetgeen in potentie meer efficiënte en meer gedetailleerde monitoring van 
spoorweginfrastructuur mogelijk maakt. 
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1 
INTRODUCTION 

 
  



2 1. INTRODUCTION

1.1. BACKGROUND 
Dynamic properties of railway tracks affect the load-bearing capacity of rail 
infrastructure, the interaction between trains and tracks, and the safety and ride quality 
of train operations. Due to train load and aging, track dynamic properties degrade over 
time and deviate over different locations. Thus, monitoring these properties for well-
informed, effective, and efficient track maintenance is essential [1, 2]. 

Structural vibration measurement is an effective approach to monitoring dynamic 
properties [3, 4]. Existing vibration-based technologies for monitoring track dynamic 
properties are summarized in Table 1.1. Some examples are shown in Figure 1.1. 

Table 1.1: Existing vibration-based technologies for monitoring track dynamic properties. 

Technologies Excitation Response sensing Advantages Disadvantages 

Impact modal 
test [5~8] 

Impact on railhead 
by a hammer or a 
falling weight with 
a force transducer  

Accelerometers on 
rails or sleepers 

Low noise, high 
repeatability, 
high coherence 

Unloaded, labor-
intensive, need 
different hammers, 
require operation 
shutdown 

Pass-by 
measurement 
[9~13] 

Passing trains Accelerometers or 
geophones on rails 
or sleepers or 
track slabs 

Different train 
loads, low noise 

Unknown train load, 
cost-prohibitive for 
large-scale monitoring 

Vehicle 
vibration 
measurement 
[14~22] 

A running train Accelerometers on 
axle boxes or 
bogie frames or 
car body 

Low cost, high 
speed, efficient 
for large-scale 
monitoring 

Less sensitive to 
components below 
rails 

Specialized 
stiffness 
measurement 
train [23, 24] 

Periodic load from 
an oscillating mass  

Accelerometers on 
wheels and 
oscillating mass 

Measure 
dynamic 
stiffness 

A single frequency at a 
time, limited train 
speed 

Figure 1.1: Examples of vibration-based technologies for measuring track dynamic properties. (a) Impact 
hammer test; (b) Pass-by measurement; (c) Vehicle vibration measurement. 

Impact modal tests and pass-by measurements are usually applied only at hot spots 
due to their high costs. In contrast, train-borne technologies are more efficient for large-
scale monitoring. In vehicle vibration measurements, railway tracks are monitored 
indirectly through wheel-rail contact, so the load on tracks and the response of tracks are 
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coupled in vehicle vibrations. Stiffness measurement trains excite track structures with 
controlled loads at a single frequency. In general, there is still a lack of train-borne 
technologies suitable for measuring the dynamic response of track components below 
rails and extracting their load-response relationship in a wide range of frequencies.  

A laser Doppler vibrometer (LDV) is a laser-based sensing instrument that measures 
the vibration velocity of a target based on its Doppler frequency shift, i.e., the change in 
laser frequency proportional to the relative velocity between the laser source and the 
target. The noncontact sensing nature of LDV has the advantages of accessing places 
unsuitable for contact-based sensors, measuring different objects or locations with the 
same instrumentation, and avoiding the influence of sensor mass on target dynamics. It 
can provide high accuracy and sensitivity for vibration measurements over a wide range 
of frequencies and has been applied to many engineering structures for modal 
identification and damage detection [25~27]. In most existing applications, LDVs are 
set statically for measuring at discrete points or along closed paths [25~27]. 
Alternatively, an LDV can be mounted on a train to target its laser spot on tracks, scan 
track structures during train operation, and measure track vibrations in response to the 
moving train [28]. In a simulation study, train-borne LDVs are used to identify the mode 
shapes of a bridge [29]. In experimental studies, train-borne LDVs are used to measure 
the rail vibrations in order to identify rail bending modes [30] and detect welds [31].  

Train-borne LDV has the potential to complement existing track monitoring 
technologies to monitor track dynamic properties. It enables direct and continuous 
vibration measurement of various track components and further supports estimating the 
load-response relationship of railway tracks. We are unaware of previous research using 
this technology to monitor track components below rails, such as sleepers. However, 
there are still many challenges in applying train-borne LDV to rail infrastructure 
monitoring, and some will be discussed in the next section. 

1.2. QUESTIONS AND CHALLENGES 
The following research questions are answered in this dissertation. 

• How does noise behave in LDV signals? How to mitigate severe speckle noise 
at high moving speeds? 

• How to interpret vibration response under operational conditions without load 
information? How to identify dynamic properties from structural vibrations? 

• How does a train-borne LDV perform in measuring railway track vibrations? 
How to characterize the influence of train speed on its performance? 

• How to define and estimate the load-response relationship of railway tracks from 
a moving vehicle? 

The challenges behind the above research questions are further discussed as follows. 

1.2.1. HOW TO MITIGATE SPECKLE NOISE AT HIGH MOVING SPEEDS? 
Speckle noise has been reported as a major noise source in LDV measurements [25~27]. 
It originates from speckle patterns that appear when a laser beam is scattered on an 
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optically rough surface [32]. In signals measured by an LDV, speckle noise appears as 
random spikes in time and broadband noise floor in spectra [27]. The severity of speckle 
noise depends not only on laser and target properties but also on the change of speckle 
patterns due to the relative motion between laser and target [27, 32]. Therefore, different 
measurement setups of LDV usually show different severity of speckle noise. Depending 
on the number of measurement locations, this dissertation classifies LDV measurement 
setups into discrete measurement and continuous measurement. Table 1.2 summarizes 
the influence of speckle noise for different measurement setups from the literature. 
Compared to the discrete measurement category, speckle noise is more troublesome for 
the continuous measurement category due to more drastic changes in speckle patterns. 
Speckle noise is more severe at higher scanning or moving speeds. 

Table 1.2: Speckle noise in different LDV measurement setups. 

Categories Measurement setups Influence of speckle noise 

Discrete 
measurement 
(at one or 
multiple 
discrete 
locations) 

Single-point LDV: The laser spot is 
targeted at a fixed point [33~37]. 

• Some of the literature encounters the 
speckle noise problem. 
• Speckle noise occurs locally and 
occasionally. 

Stepped scanning LDV: The laser spot 
scans along selected points stepwise and 
dwells at each for a duration [38~40]. 
Most setups are used for modal analysis. 

Continuous 
measurement 
(along a 
continuous 
path) 

Continuous scanning LDV: The laser 
spot repeatedly scans an object 
continuously along a closed path 
[41~49]. Most setups are used for modal 
analysis. 

• Most of the literature encounters the 
speckle noise problem. 
• Speckle noise is quasi-periodic. 
• Speckle noise gets more severe at 
higher scanning frequencies. 

LDV on moving platform (LDVom): 
The laser spot scans an object 
continuously along an open path [28~30, 
50~53]. Most setups are used for large-
scale structures. 

• Most of the literature encounters the 
speckle noise problem.  
• Speckle noise is highly irregular. 
• Speckle noise gets more severe at 
higher moving speeds. 

 

Over the past years, manufacturers and users have been working on mitigating 
speckle noise in LDV measurements. Table 1.3 summarizes the existing approaches for 
different measurement setups from the literature. They are classified into three stages – 
instrumentation, measurement, and post-processing. The approaches in the three stages 
should be combined to achieve the best signal quality, especially in challenging 
situations. In the instrumentation stage, innovations in LDV technology enable users to 
improve signal quality by properly selecting LDV equipment. In the measurement stage, 
users can mitigate speckle noise by optimizing measurement settings or treating target 
surfaces. However, an LDV on moving platform (LDVom), such as a train-borne LDV, 
is usually intended for measuring large-scale structures. Lowering the moving speed 
increases the measurement time, and surface treatment on working surfaces or large-
scale structures is not possible or is expensive. Therefore, many existing approaches in 
the measurement stage are incompatible with train-borne LDV. 
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Table 1.3: Approaches for mitigating speckle noise. 

Setups Mitigation in 
instrumentation stage 

Mitigation in 
measurement stage 

Mitigation in post-processing 
stage 

Single-
point or 
stepped 
scanning 
LDV 

• A tracking LDV with its 
laser spot tracking a target 
position [36]. 

• Treat the target 
surface with 
retroreflective tape 
[33]. 

• Kurtosis ratio-based method 
[34], Gaussian filter [35], 
decorrelation and linear 
prediction [37], median filter 
[38]. 

Continuous 
scanning 
LDV 

(Applicable to all setups) 
• Adaptive optics [54, 55].  
• High-frequency scanning 
average [56].  
• Signal diversity with 
multiple detectors [54, 57, 
58] or laser heads [59, 60]. 
• Built-in tracking filter 
[30, 61]. 

• Adjust the scanning 
frequency [41, 44, 45, 
48], the measurement 
length [47, 48], and 
the distance between 
LDV and target [48]. 
• Treat the surface 
with retroreflective 
tape [46]. 

• Smooth the identified mode 
shapes [45~47]. 
• Neglect frequencies related to 
the scanning frequency [41]. 
• Windowing [44], wavelet or 
high-pass filter-based spike 
removal [49]. 

LDV on 
moving 
platform 

• A mobile LDV with a 
large spot size [51]. 

• Adjust the 
sensitivity and the 
moving speed [52]. 

• Kurtosis and linear prediction 
[53], empirical wavelet 
transform [62], Fourier analysis 
[63], ensemble empirical mode 
decomposition [64]. 

 
Further, speckle noise can be reduced in the post-processing stage. For continuous 

scanning LDV, the availability of repeated measurements allows speckle noise reduction, 
such as by averaging multiple measurements or neglecting frequencies related to the 
scanning frequency. However, for LDVom measurements on large-scale structures or 
structures under time-varying excitations, repeated measurements are not possible or are 
expensive. Therefore, signal processing is necessary. Many conventional filtering or 
denoising methods are available for this, but they may yield unsatisfactory performance 
since they are not tailored to handle speckle noise [62]. For example, low-pass filters 
can smooth speckle noise but not remove it [43]. 

Therefore, specialized signal processing methods have been developed to reduce 
speckle noise. For discrete measurements, the ratio of the kurtosis of a raw signal to the 
kurtosis of its trimmed version is used to select the undistorted part of a signal [34]. In 
[37], speckle noise is detected using short-time energy and kurtosis and then replaced 
through linear prediction. A few methods have been developed for continuous LDV 
measurements where speckle noise occurs more frequently. In [49], speckle noise is 
detected based on high-pass filtering or wavelet transform and removed through 
interpolation or curve fitting. In [53], speckle noise is detected based on the kurtosis ratio 
and replaced through linear prediction. In [62], speckle noise is reduced using empirical 
wavelet transform. These methods are tested at the scanning speed of 0.05 m/s, 0.01 m/s, 
and 0.1 m/s, respectively. Reducing speckle noise is more challenging at higher speeds. 
In [63], low-pass filtering and oscillation detrending are combined to reduce speckle 
noise, and it is tested for a case of harmonic vibrations at speeds up to 20 m/s. In [64], 
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an ensemble empirical mode decomposition method is proposed and validated at the 
speed of 0.85 m/s and 2.8 m/s in two experiments, respectively. Therefore, further 
development and validation of post-processing methods are needed to reduce speckle 
noise in non-periodic vibration measurements with LDVom at high speeds. 

1.2.2. HOW TO IDENTIFY DYNAMIC PROPERTIES FROM VIBRATIONS? 
For vibration-based condition monitoring of large-scale structures, it is usually difficult 
or expensive to excite structures with controlled loads or measure operational loads. 
Therefore, the interpretation of vibration response without accurate load information is 
crucial. Operational modal analysis (OMA) enables modal characteristics of a structure 
to be identified solely from the vibration response under operational loads and conditions. 
It does not require manual generation and sensing of excitations and has become 
increasingly popular in structural health monitoring. 

OMA methods are generally classified into time-domain methods and frequency-
domain methods. Time-domain methods are based on the analysis of time histories or 
correlation functions, e.g., natural excitation techniques, autoregressive moving average, 
stochastic subspace identification, blind source separation, and Bayesian time-domain 
approach [65~68]. They are usually computationally demanding and require proper 
selection of model order and exclusion of spurious modes [65, 66]. Frequency-domain 
methods are based on Fourier spectrum or power spectral density (PSD), which are 
naturally more interpretable. The most basic frequency-domain method is the peak-
picking method [65, 66], which considers one mode at a time. Least square frequency 
methods [69, 70] identify multiple modes together by iteratively estimating a 
parameterized spectrum. Further, Bayes’ theorem is incorporated to infer probability 
distributions of modal parameters [71], such as the spectral density approach [72], 
Fourier transform approach [73], Markov chain Monte Carlo approach [74], and 
expectation-maximization approach [75]. These Bayesian methods provide a rigorous 
formulation that makes full use of measurement data, but they face many challenges in 
solving ill-conditioned problems and estimating closely-spaced modes [76]. 

Frequency domain decomposition (FDD) is an extension of the peak-picking method, 
which can identify closely-spaced modes and does not require numerical iterations [66]. 
The method is used for modal analysis in [77] and then systematized to identify natural 
frequencies and mode shapes under broadband excitations in [78]. Since then, it has been 
applied to the health monitoring of many engineering structures [29, 79~81]. Meanwhile, 
many variants of the FDD method have been proposed in the literature. The estimation 
of damping ratios is achieved by converting the PSD back to the time domain (known 
as enhanced FDD) [82, 83] or by fitting the PSD in the narrow frequency band of a mode 
[84, 85]. The FDD method is further adapted for nonstationary responses or heavily 
damped structures by jointly using two PSD estimates and detrending the correlation 
function [86, 87]. Moreover, model errors and measurement noise are considered in the 
analysis by estimating the PSD matrix via maximum likelihood [88]. 

The FDD-based methods can produce a spectrum describing the dominance of 
modes in frequency but cannot directly capture the change of modal characteristics over 
time. To address this issue, a time-frequency representation is needed. Such methods 
based on blind source separation are developed [89, 90], but they may produce spurious 
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modes, and the numerical accuracy is sensitive to the number of sensors. In [91~94], 
continuous wavelet transform (CWT) is combined with ridge extraction, but the 
performance is sensitive to noise. Further, CWT is combined with singular value 
decomposition, but the proper selection of the mother wavelet and its parameters can be 
tricky because they are not directly related to structural dynamics, and a long 
nonstationary signal needs to be split into segments [95, 96]. Thus, spurious modes and 
implicit parameter design reduce the physical interpretability of OMA. To our 
knowledge, no existing method can produce a time-frequency representation indicating 
both the dominance of structural modes and the correlation of their mode shapes. 

1.2.3. HOW TO CHARACTERIZE THE INFLUENCE OF TRAIN SPEED? 
For track vibration measurements using a train-borne LDV, train speed is a major factor 
of concern. To achieve more efficient rail infrastructure monitoring, a higher speed is 
pursued, but this results in more severe speckle noise and a shorter length of signals 
when measuring a certain track section. To reduce the interference of speckle noise, a 
lower speed is preferred according to Section 1.2.1, but it can lead to smaller track 
vibrations because track response depends on the dynamic loading condition. Therefore, 
train speed affects train-borne LDV measurements in the following aspects. 

• Influence of train speed on track dynamics: Track vibrations are excited by 
wheel-rail forces, including quasi-static components due to moving loads and 
dynamic components due to track irregularities [97]. As the train speed increases, 
wheel and sleeper passage frequencies increase linearly, and the corresponding 
track response amplitude first increases and then may decrease after resonance 
[9, 98, 99]. For the dynamic response due to irregularities, its frequencies 
increase linearly with the increasing train speed, while the track vibration 
amplitude increases first fast and then slowly [100]. Therefore, the dependency 
of track vibrations on train speeds is affected by several different mechanisms 
simultaneously, leading to a complex nonlinear behavior. In addition, a train-
borne LDV measures a track component only when the laser spot scans its 
surface. As the train speed increases, the signal length becomes shorter, which 
may lead to more uncertainties in the measured response. 

• Influence of train speed on speckle noise: In LDVom measurements, the severity 
of speckle noise highly depends on the speed of the moving platform, such as a 
running train. Simulations and experiments show that the amplitude of speckle 
noise increases with the increase in the in-plane speed between the laser spot 
and the target [48, 52, 101].  

Therefore, the variation of track vibration and speckle noise with respect to train 
speeds affects the quality and usability of train-borne LDV signals. No published 
research has investigated such speed-dependent characteristics. This requires an in-depth 
understanding of how train speeds physically affect track vibration and speckle noise. 
Meanwhile, track vibration and speckle noise are mixed in real-life measurements. 
Therefore, effective methods are needed to separate them at various speeds in order to 
analyze their speed-dependent characteristics. Most of the methods for speckle noise 
reduction in Section 1.2.1 are developed for low speeds (<0.1 m/s) [49, 53, 62] or 
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harmonic vibrations [63]. The method in [64] is validated in two experiments, each with 
a constant speed (0.85 m/s and 2.8 m/s), and selecting parameters, such as the number 
of intrinsic mode functions, requires human judgment and can vary for different 
experiments and speeds. In the literature, there is a lack of methods capable of separating 
structural vibrations from speckle noise adaptively at different speeds. 

1.2.4. HOW TO ESTIMATE LOAD-RESPONSE RELATIONSHIP? 
A transfer function (TF) characterizes structural dynamics in terms of its load-response 
(input-output) relationship, and it is known as a frequency response function (FRF) in 
the frequency domain. A TF or FRF of a railway track structure is an effective 
representation of its dynamic properties, which is often defined in terms of the load on 
rails as input and the response of rails or sleepers as output [102~104]. They can be used 
to identify modal characteristics and stiffness of railway tracks and detect damage in 
track structures [5~8]. As introduced in Section 1.1, a train-borne LDV can directly 
measure the vibration of railway tracks under the moving train load, which has the 
potential to complement existing technologies and support the estimation of railway 
track TFs from a moving train. No research has been conducted to implement and assess 
such a technology. The major challenges are summarized below. 

• Obtain dynamic train loads (input) to railway tracks: Railway tracks are loaded 
by trains through wheel-rail contact forces, which are broadband in frequency 
due to irregularities of wheels and tracks. Such loads can be obtained by 
measurement or estimation. In practice, the instrumentation and calibration of 
sensors on a vehicle for wheel-rail force measurement are complicated [105, 
106]. Since static wheel-rail loads are not a major concern for TF estimation, an 
alternative solution is to estimate dynamic wheel-rail forces from vehicle 
vibrations. Many methods have been developed on this topic [107~110], most 
of which require a vehicle model with known parameters. This may be difficult 
or expensive to achieve in real life because of changes and degradation of 
vehicle parameters, such as changes in vehicle body mass due to changes in 
passenger or good loads and degradation of springs or dampers. 

• Measure dynamic responses (output) of railway tracks: A train-borne LDV 
enables noncontact and continuous measurement of track vibrations. As 
introduced in Section 1.2.1 and 1.2.3, speckle noise in LDV signals must be 
effectively mitigated at different train speeds to improve their signal-to-noise 
ratio. Since an LDV measures the relative velocity between the laser spot and 
the laser head along the laser beam direction, the vibrations of the laser head and 
other optical components affecting the laser beam need to be compensated to 
avoid their disturbance to track response measurements.  

• Estimate railway track TFs with moving load and response: Conventionally, a 
TF is defined based on load and response at fixed locations. When measuring 
railway track TFs from a running train, the locations of both load and response 
move and the input-output relationship varies. Therefore, proper segmentation 
is needed to divide a continuous railway track structure into distributed sections 
and estimate an average input-output relationship from measurements on each 
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track section. Meanwhile, non-parametric methods for estimating a TF from 
load and response signals have been studied for decades [111~114]. Essentially, 
they smooth the ratio of the output spectrum to the input spectrum using different 
strategies, such as windowing and averaging, for the purpose of reducing errors 
caused by noise, transient, and leakage. Their performance under the disturbance 
of segmentation and speckle noise remains to be assessed. 

1.3. OBJECTIVES 
This dissertation aims to address the above challenges that hinder train-borne LDV from 
measuring the dynamic properties of railway tracks. The objectives corresponding to 
these challenges are given as follows. 

• To develop and validate a post-processing method for reducing speckle noise in 
LDVom measurements at high speeds. 

• To develop and validate an OMA method in time-frequency representation for 
identifying modal parameters of a structure from its nonstationary vibration 
response under operational conditions. 

• To develop a holistic method based on simulations and measurements for 
characterizing track vibration measurements with a train-borne LDV and 
investigate its speed-dependent characteristics. 

• To develop and validate a method for estimating dynamic wheel-rail forces and 
TFs of railway tracks from LDV and accelerometer measurements on a moving 
vehicle. 

1.4. CONTRIBUTIONS 
The overall contribution of this dissertation is the development and validation of a 
new technology based on train-borne LDV for measuring the vibration and load-
response relationship of railway tracks over a wide frequency range. Figure 1.2 
shows the testing of the technology in the TU Delft V-Track test rig, and Figure 1.3 
shows such a train-borne LDV system instrumented on the CTO measurement train of 
TU Delft. This dissertation demonstrates the applicability of the train-borne LDV 
technology for more efficient and informative rail infrastructure monitoring.  

 
Figure 1.2: LDV on the moving platform of the TU Delft V-Track test rig. 
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Figure 1.3: Train-borne LDV on the CTO measurement train of TU Delft. 

Specifically, the developed technology consists of the following four cornerstones 
with their validity experimentally proved within a certain scope. 

• Based on the characteristics of the speckle noise from LDVom measurements, a 
three-step framework for speckle noise reduction is developed. A wavelet-
based spike detection method, an autoregressive integrated moving average-
based imputation method, and a Butterworth filter are used at the three steps, 
respectively. The method is validated in V-Track at speeds up to 20 km/h 
through comparisons with trackside measurements. 

• By extending the FDD method, an interpretable OMA method in time-
frequency representation is developed. It provides not only a global view of 
modal characteristics over time and frequency but also estimates of modal 
parameters. It is applicable to strongly nonstationary responses under time-
varying loads and conditions and robust to the length of signals. The method is 
validated using sleeper vibrations under train passage in V-Track and in the field. 

• By combining numerical simulations, laboratory measurements, and field 
measurements, a holistic methodology for characterizing train-borne LDV 
measurements is developed. Speckle noise is separated from structural 
vibrations adaptively at different speeds and robustly under different scenarios. 
The speed-dependent characteristics of sleeper vibration measurements are 
determined. As sleeper vibrations compete with speckle noise at different speeds, 
an optimal speed range yields the highest signal-to-noise ratio.  

• Based on the above methods, a methodology for estimating railway track TFs 
from LDV and accelerometer measurement on a moving vehicle is 
developed. OMA of a vehicle passing over joints is combined with contact force 
estimation from vehicle vibrations, which eliminates the need to define vehicle 
parameters for wheel-rail force estimation. The proposed method is validated in 
V-Track at different track locations and speeds (8~16 km/h). The estimated TFs 
are compared with trackside measurements and hammer tests, and they show 
good agreement at 200~800 Hz. The differences in the estimated TFs between 
different track sections reflect the variation of track dynamic properties. 



1.5. DISSERTATION OUTLINE  11 
 

1.5. DISSERTATION OUTLINE 
The structure of this dissertation is shown in Figure 1.4. Chapter 2 presents the 
development and validation of the speckle noise reduction method, which focuses more 
on the processing of signals measured by LDV. Chapter 3 presents the development and 
validation of the operational modal analysis method in time-frequency representation, 
which focuses more on the interpretation of track vibrations under passing trains. 
Chapter 4 further combines the understanding of the speckle noise and track vibration to 
investigate the speed-dependent characteristics of track vibration measurements using a 
train-borne LDV. Chapter 5 incorporates the knowledge from the previous chapters and 
presents the development and validation of the TF estimation method from LDV and 
accelerometer measurements on a moving vehicle. 

 
Figure 1.4: Structure of this dissertation. 
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2 
SPECKLE NOISE REDUCTION FOR 

LDV ON MOVING PLATFORM 
 

 
 
 
 
 
Speckle noise is a major problem for structural vibration measurements with a laser Doppler 
vibrometer on moving platform (LDVom) due to its highly random, frequent, and broadband 
nature, especially at high moving speeds. This chapter develops a new post-processing 
framework to reduce speckle noise based on a case study of LDVom measurements on railway 
tracks. First, the characteristics of the speckle noise from LDVom measurements in a vehicle-
track test rig are studied. As the speed increases, the speckle noise occurs more frequently, with 
shorter intervals, shorter durations, larger amplitudes, and broader frequency bands. Then, a 
three-step despeckle framework is proposed, consisting of spike detection, imputation, and 
smoothing. This framework works by detecting and replacing spikes, recovering false positives, 
and smoothing false negatives and residual noise. To showcase this framework, we use a 
wavelet-based method for Step 1, an autoregressive integrated moving average-based method 
for Step 2, and a Butterworth filter for Step 3. Besides, the parameter selection strategies and 
the alternative methods are discussed. Next, the methods are validated through qualitative 
comparison and quantitative evaluation using a Monte Carlo-based strategy. We demonstrate 
that the proposed methods effectively reduce the speckle noise at speeds of at least 20 km/h while 
avoiding the pseudo vibrations. Finally, we show that the LDVom successfully captures the track 
vibrations at dominant frequencies of 500~700 Hz with good repeatability between different laps 
and good agreement with trackside measurements. 

 
Apart from minor updates, this chapter has been published as: Zeng Y, Nunez A, Li Z. (2022). Speckle noise 
reduction for structural vibration measurement with laser Doppler vibrometer on moving platform. 
Mechanical Systems and Signal Processing, 178: 109196. 



14            2. SPECKLE NOISE REDUCTION FOR LDV ON MOVING PLATFORM 
 

2.1. INTRODUCTION 
Speckle noise is problematic for structural vibration measurements with a laser Doppler 
vibrometer on moving platform (LDVom) at high speeds. Specialized signal processing 
methods are needed to reduce speckle noise in such challenging situations. This chapter 
studies the time and frequency characteristics of speckle noise and develops a new post-
processing framework for speckle noise reduction. The LDVom measurement in the TU 
Delft V-Track test rig is used as a case study, and the proposed methods are adaptable 
to different kinds of structural vibration measurements. 

The remainder of this chapter is organized as follows. In Section 2.2, speckle noise 
samples are collected from LDVom measurements, and their characteristics are 
investigated. In Section 2.3, a three-step despeckle framework is proposed. To showcase 
this framework, we develop a wavelet-based spike detection method for Step 1, an 
autoregressive integrated moving average-based imputation method for Step 2, and a 
traditional smoothing filter for Step 3. Moreover, the alternative methods at different 
steps are discussed. In Section 2.4 and Section 2.5, stepwise validation and verification 
are performed, respectively. Finally, the conclusions are summarized in Section 2.6. 

2.2. CHARACTERISTICS OF THE SPECKLE NOISE 

2.2.1. LDVOM MEASUREMENTS IN THE LABORATORY 
Figure 2.1 shows the experimental setup of LDVom measurements in the V-Track test 
rig that resembles train-track interaction [115, 116]. The scaled track structure consists 
of rails, sleepers, and track slabs. Rails are supported by sleepers through fasteners and 
rail pads, and sleepers are assembled on track slabs through bolts and sleeper pads. The 
vehicle system consists of an upper mass suspended on a lower mass with a wheel. The 
suspension provides not only stiffness and damping but also a static vertical load to place 
the wheel in contact with the rail. The upper mass of the vehicle is connected to a beam, 
which is driven by a motor to rotate around the central axis of the test rig. 

 
Figure 2.1: LDVom measurement setup in the V-Track test rig. The green arrows represent the laser beam, 
and the green dashes represent the path of the laser spot.  

A one-dimensional LDV (Polytec RSV-150) is mounted on the beam near its rotation 
axis. A mirror is fixed on the end of the beam to direct the laser onto the track. As the 
beam rotates, the wheel rolls along the rail, and the laser spot scans along the track 
structure. This enables the track vibration to be excited by the moving vehicle and then 
measured by the LDVom. Besides, there are four joints in the test rig connecting 
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different rail pieces. When the wheel rolls over the joints, impacts occur. This chapter 
uses the sampling frequency of 102,400 Hz and the static wheel load of 4,000 N. 

2.2.2. CHARACTERISTICS IN THE TIME DOMAIN 
Gaining insights into the speckle noise is the first step towards reducing it. In the time 
domain, speckle noise appears as random spikes. First, we manually label more than one 
thousand spike samples from LDVom measurements at three speeds – 0.5 km/h, 5 km/h, 
and 20 km/h. This method is reliable when spikes behave differently from genuine 
vibrations. Figure 2.2 shows a sample of LDVom measurement with seven spikes 
labeled. We defined three features to characterize the spikes in the time domain – interval, 
duration, and amplitude. A spike interval is the time difference between two adjacent 
spikes, denoted as b. A spike duration is the time difference between the boundaries of 
a spike (e.g., Points A and B), denoted as l. A spike amplitude, denoted as h, is the 
difference between the local peak or valley of a spike (e.g., Point C) and the average 
amplitude of its boundaries (e.g., Points A and B). Spike amplitude is positive for a peak 
whereas negative for a valley. 

 
Figure 2.2: A sample of LDVom measurement with labeled spikes (0.5 km/h).  

 
Figure 2.3: Time-domain characteristics of the speckle noise. , , ,v v v vb l h h+ − denote the means of spike intervals, 
spike durations, peak amplitudes, and valley amplitudes at speed v, respectively; σbv and σlv denote the 
standard deviations of spike intervals and spike durations at speed v, respectively. (a) Distributions of spike 
intervals; (b) Distributions of spike durations; (c) Distributions of spike amplitudes; (d) Relationship between 
durations and amplitudes. 
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The distribution of each feature is estimated based on the relative frequency of its 

values in consecutive and non-overlapping bins within the total number of samples. As 
shown in Figure 2.3 (a)~(c), the distributions of spike intervals, durations, and 
amplitudes at different speeds reflect the randomness of the speckle noise. At higher 
moving speeds, spikes occur more frequently with shorter durations and larger 
amplitudes. The amplitude distributions of the peaks are similar to those of the valleys. 
In addition, the duration of each spike is plotted against its amplitude in Figure 2.3 (d). 
The hyperbolic shape shows that a spike is more likely to be shorter in duration if it is 
greater in amplitude and vice versa. 

2.2.3. CHARACTERISTICS IN THE FREQUENCY DOMAIN 
Considering the discreteness and nonstationarity of the speckle noise, we adopt 
continuous wavelet transform (CWT) with Morlet wavelet [117] to study its 
characteristics in the frequency domain. Figure 2.4 shows the spectrograms for the three 
samples of LDVom signals at different speeds. It shows that spikes are discrete in time 
and broadband in frequency. As the speed increases, the frequency band is broader since 
the spike duration is shorter and the spike amplitude is larger. Additionally, the low-
frequency parts of a spike may overlap with genuine vibrations or adjacent spikes. 

 
Figure 2.4: Frequency-domain characteristics of the speckle noise. (a) Sample at 0.5 km/h; (b) Sample at 5 
km/h; (c) Sample at 20 km/h. 

The above characteristics of speckle noise in time and frequency domains account 
for the limited performance of conventional filters and motivate us to develop new 
methods for reducing speckle noise (despeckle). The parameter selection in the proposed 
despeckle methods requires some prior estimates of spike characteristics. Instead of 
manual spike collection, a fast approach is to directly observe an LDV signal and roughly 
estimate the features of spikes, e.g., the average spike duration l  and the minimum spike 
amplitude hmin.  

2.3. DESPECKLE METHODOLOGY 
When applying conventional methods to despeckle, such as a low-pass filter, both spikes 
and genuine vibrations are affected, and the amplitude of spikes can be shortened but 
not eliminated. It is more problematic when speckle noise overlaps with genuine 
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vibrations in the frequency band of interest, leading to severe residual noise and causing 
confusion in signal interpretation. Therefore, we propose a new despeckle framework, 
which consists of three steps: 

Step 1. Spike detection: distinguish spikes from genuine vibrations. 

Step 2. Imputation: replace spikes based on time series modeling and predictions. 

Step 3. Smoothing: filter out residual noise. 

The main feature of this framework is that spikes are detected and replaced before 
being filtered. To showcase how these steps work, we propose a specific method for 
each of the three steps. Although these methods are used in the case study on railway 
tracks, they are adaptable to other structural vibration measurements. Moreover, the 
alternative methods at different steps and their pros and cons are discussed. 

2.3.1. STEP 1: SPIKE DETECTION 
Step 1 aims to detect spikes in LDV signals based on their characteristics. In this section, 
we propose a wavelet-based spike detection method. 

2.3.1.1. WAVELET DECOMPOSITION AND RECONSTRUCTION 
As a tool for processing nonstationary signals, wavelet transform breaks up a signal into 
shifted and scaled wavelets. The discrete wavelet decomposition (DWT) of a time series 
u consists of convolving u with two orthogonal filters (a low-pass filter LoF and a high-
pass filter HiF) and downsampling the results by two [118], as expressed by the 
following operator pair,  

( ) ( )
( ) ( )

A

D

DWT 2
DWT 2

u u LoF
u u HiF

 = ∗ ↓
 = ∗ ↓

 (2.1) 

where DWTA and DWTD correspond to the outputs of the low-pass filter and the high-
pass filter, respectively, * denotes the convolution operator, and ↓ denotes the 
downsampling operator. Based on Eq. (2.1), the DWT of a signal x produces two series 
of wavelet coefficients, 

    ( )
( )

1 A

1 D

=DWT
=DWT

cA x
cD x


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 (2.2) 

where cA1 are the approximation coefficients and cD1 are the detail coefficients [118]. 
The approximation coefficients can be further decomposed through DWT as follows, 
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DWT
k k

k k

cA cA
k

cD cA
+

+

 = = =
 (2.3) 

where cAk and cDk are wavelet coefficients at the k-th level. Based on Eq. (2.3), DWT 
can be performed in a cascading process. The black paths in Figure 2.5 indicate the 
process of cascading DWT applied to a signal x. 
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Figure 2.5: Block diagram of cascading DWT (black paths) and IDWT (blue paths). 

Reversely, inverse discrete wavelet transform (IDWT) represents the inverse process 
of DWT [118], and the corresponding operator pair is, 

( ) ( )( )
( ) ( )( )

1
A

1
D

IDWT 2

IDWT 2

u u LoF

u u HiF

−

−

 = ↑ ∗


= ↑ ∗
 (2.4) 

where LoF-1 and HiF-1 are the inverse filters of LoF and HiF, respectively, and ↑ denotes 
the upsampling operator. The signal x and its approximation coefficients cAk at any level 
can be reconstructed from the IDWT of wavelet coefficients at the next level, as 
expressed below.  

( ) ( )
( ) ( )

A 1 D 1

A 1 D 1

IDWT IDWT
IDWT IDWT 1,2,...k k k

x cA cD
cA cA cD k+ +

 = +
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                      (2.5) 

The cascading reconstruction process of x is shown by the blue paths in Figure 2.5. 
Therefore, when the signal x is decomposed to the n-th level (n>1), it can be exactly 
reconstructed as follows. 

( ) ( )
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n

n n k k
k

x R cA R cD
=

= ∑                                                (2.6) 

where Rn(cAn) is the n-step reconstruction of cAn and Rk(cDk) is the k-step reconstruction 
of cDk:  
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                     (2.7) 

where IDWTk(·) represents repeating IDWT k times. Eq. (2.6) shows that a signal can 
be represented as the superposition of a term related to approximation coefficients and 
n terms related to detail coefficients, describing the deterministic component and the 
noise, respectively. 

2.3.1.2. WAVELET-BASED SPIKE DETECTION 
Detail coefficients are sensitive to nonsmooth features in a signal, e.g., jumps and spikes, 
and have been used to detect spikes or outliers [49, 119~121]. Instead of directly using 
detail coefficients, we propose a new method as follows. 
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Step A1. Perform n-level DWT of a signal x according to Eq. (2.2) and (2. 3) to 
obtain a series of detail coefficients cD1, cD2, …, cDn. 

Step A2. Perform k-step reconstruction of cDk (k=1, …, n) according to Eq. (2.7) to 
obtain a series of reconstructed signals R1(cD1), R2(cD2), …, Rn(cDn). 

Step A3. Calculate a spike indicator based on the reconstructed signals Rk(cDk) as 
follows. 

( )D
1

n

k k
k

R R cD
=

= ∑                                                   (2.8) 

Step A4. Label the locations at which RD is greater than a threshold T1 as spikes. 

Using the reconstructed signals Rk(cDk) to indicate spikes has the following 
advantages over using the detail coefficients cDk. 

• The detail coefficients are scaling factors of DWT, so detecting spikes based on 
them requires some prior estimates or assumptions, e.g., in [119, 120]. In 
contrast, the reconstructed signals directly represent the amplitude of the noise 
in a signal. 

• Each level of DWT reduces the size of the detail coefficients by half, which 
needs to be handled when labeling spikes, e.g., in [119, 120]. In contrast, the 
reconstructed signals are of the same length as the original signal and do not 
require special treatment. 

2.3.1.3. PARAMETER SELECTION 
There are three important parameters to select in the proposed method. 

Wavelet type. Haar wavelet is recommended because it has shown effectiveness in 
producing large detail coefficients at locations of outliers [119, 120]. 

Decomposition level n. It determines the depth to which the noise is decomposed. 
As n increases, the spike indicator RD increases, getting closer to the spike amplitude, 
but the temporal resolution of Rn(cDn) deteriorates. Therefore, we recommend using 
n that meets the following criterion so that the resolution of Rn(cDn) is sufficiently 
higher compared to the average spike duration. 

( )2 slogn l f⋅                                                    (2.9) 

where l is a rough estimate of the average spike duration, and fs is the sampling 
frequency.  

Threshold T1. It can be selected based on the cumulative frequency distribution of 
RD above different values, denoted as P(RD>R). Ideally, as R increases from 0 to 
infinity, P(RD>R) decreases from 1 to 0, first sharply and then slowly. The critical 
point is a good balance between fewer false positives (genuine vibrations are labeled 
as spikes) and fewer false negatives (spikes are missed), so the value of the critical 
point can be selected as the threshold T1. In the absence of a significant critical point 
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(usually when speckle noise occurs very frequently), T1 can be set to a value 
providing a reasonable proportion of labeled points, e.g., P(RD>T1)≈0.5. This leaves 
some small-amplitude spikes unlabeled to reduce the amount of imputation in Step 
2, and these false negatives can be reduced in Step 3. 

2.3.2. STEP 2: IMPUTATION 
Step 2 aims to replace the detected spikes with estimates based on nearby unlabeled 
points. This process is known as imputation and is commonly used to handle missing 
data or outliers [122, 123]. Generally, missing points or outliers occur occasionally [124, 
125], whereas, in our case, spikes occur more frequently, especially at high speeds. 
Meanwhile, false positives may occur during spike detection, i.e., genuine vibrations are 
labeled as spikes, and their original values should not be discarded. 

The basic idea of imputation is to build a time series model and make predictions at 
locations labeled as spikes. A widely-used time series model is the autoregressive 
integrated moving average (ARIMA) model. For example, in [124], an ARIMA model 
with exogenous inputs is used for outlier imputation, and in [126], a seasonal ARIMA 
model is used for missing data imputation. In this section, we use a non-seasonal 
ARIMA model because the LDVom measurements on large-scale structures do not 
follow a seasonal pattern. 

2.3.2.1. TRAINING AND REPLACEMENT WITH AN ARIMA MODEL 
A non-seasonal ARIMA model is defined as a three-tuple ARIMA(p, d, q). The 
autoregressive order p defines the number of past points used to regress the evolving 
point. The differencing order d defines the times of differencing applied to the original 
series. The moving average order q defines the number of past regression errors used to 
regress the evolving error. The ARIMA model for a time series xt indexed by t is [127], 
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= =

  
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   
∑ ∑                                     (2.10) 

where εt is the regression error indexed by t, αi is the coefficient for the i-th 
autoregressive term (i=1, …, p), θj is the coefficient for the j-th moving average term 
(j=1, …, q), Li is the i-step lag operator, and (1-L)d represents the d-th order differencing.  

The regression coefficients of an ARIMA model with defined orders can be 
estimated based on a time series from measurements, named the training process. 
Considering the presence of speckle noise, we list three training strategies in Table 2.1, 
including their advantages and disadvantages.  

A trained ARIMA model can predict the values of the future points 1ˆtx + , …, ˆt sx +  

based on the past points xt-p-d+1, …, xt through differencing, forecasting, and reversing. 
For example, the process of one-step (s=1) prediction in the case of d=1 is as follows. 
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Table 2.1: Different training strategies for imputation. 

Strategies Descriptions Advantages Disadvantages 

Direct 
training 

• Train the model using all data 
points, including spikes, through 
a traditional method, e.g., the 
Box-Jenkins method [127]. 

• The most 
straightforward. 

• The participation of 
spikes may skew the 
regression coefficients of 
the model [124]. 

Training with 
unlabeled 
points 

• Train the model using only 
unlabeled data through the 
methods in [128, 129]. 

• Only genuine 
vibrations (except 
false negatives) 
are used for 
training. 

• Loss of information in 
case of false positives. 
• Problematic when speckle 
noise affects most parts of 
the signal. 

Training after 
manipulation 
[124, 130] 

• Replace the detected spikes 
with local means or other 
statistics. 
• Train the model using the 
manipulated signal through a 
traditional method. 

• Maintain the 
data size for 
training. 
• Reduce the 
disturbance of 
spikes. 

• Manipulation may induce 
extra dynamics or eliminate 
important dynamics. 

 
As mentioned above, false positives may exist in the time series after spike detection. 

To reduce the influence of imputation on false positives, we apply the following 
replacement strategy after making predictions at the locations of labeled points. 

min

min

ˆ ˆif 
ˆif 

t t tr
t

t t t

x x x h
x

x x x h
λ
λ

 − ≥ ⋅=  − < ⋅
                                          (2.12) 

where xt is the original value, ˆtx  is the predicted value, λ is a scaling factor, hmin is a 
rough estimate of the minimum spike amplitude, and xrt is the point after replacement. 
This strategy detects a false positive and trusts its original value when the difference 
between the predicted and original values is sufficiently small.  

2.3.2.2. MULTI-OFFSET AND BI-DIRECTIONAL IMPUTATION 
Based on the above fundamentals, we propose the following steps of bi-directional 
training and replacement to involve data points on both sides of a spike in the imputation 
process. 

Step B1. Train a time series model along the forward direction using a strategy in 
Table 2.1. 

Step B2. Make predictions for each segment of labeled points along the forward 
direction and make replacements according to Eq. (2.12). Use the replaced segments 
for future predictions. 

Step B3. Perform Step B1 and B2 along the backward direction. 

Step B4. Average the forward and backward replacement results.   

Based on the bi-directional training and replacement process, we further propose a 
multi-offset imputation method, as shown in Figure 2.6. The major steps are as follows. 
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Step C1. Pad the original signal on both ends with d+p points that are equal to the 
first and the last points, respectively. 

Step C2. Downsample the padded signal by a factor of r. 

Step C3. For each downsampled signal with a certain offset, perform bi-directional 
training and replacement (Step B1~B4) to produce an imputation result. 

Step C4. Upsample each imputation result by the factor of r through interpolation 
and average all the imputation results with different offsets.  

 
Figure 2.6: Flowchart of multi-offset imputation with bi-directional training and replacement. 

Padding the signal in Step B1 allows the imputation process to cover the entire signal. 
Downsampling in Step B2 reduces the model order. Using downsampled signals with 
different offsets in Step B3 and B4 can improve the imputation accuracy. Additionally, 
the proposed imputation method is applicable not only to ARIMA models but also to 
other time series models. 

2.3.2.3. PARAMETER SELECTION 
There are several parameters to select in the proposed imputation method. First, the 
ARIMA model orders (d, p, q) need to be selected depending on the choice of the training 
strategy. For training with unlabeled data or after manipulation, spikes are excluded, so 
the model orders can be selected through traditional methods, e.g., the autocorrelation 
function (ACF)-based method [127] and the Akaike information criterion [131]. For the 
direct training strategy, selecting the model orders is tricky due to the involvement of 
spikes in regression. We propose the following strategy to deal with this situation. 

Differencing order d. Appropriate differencing is necessary to treat the 
nonstationarity caused by spikes. A good choice of d should provide a differenced 
time series with an ACF that rapidly decays with respect to the lag [127]. Therefore, 
we recommend increasing d from 1 until the ACF meets this criterion.  

Moving average order q. Since the ACF usually turns from positive to negative 
after differencing, an appropriate q is needed. Meanwhile, q should not be too large 
so as to limit the influence of regression errors due to spikes, e.g., q=1 can be 
sufficient.  
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Autoregressive order p. It should be selected properly to capture the dynamics of 
genuine vibrations. We recommend initially setting p based on the average spike 
duration l as follows and then adjusting it by evaluating the imputation performance. 

sl fp
r
⋅

=                                                         (2.13) 

Downsampling is recommended in Step B2 when the sampling frequency fs is high 
enough. According to Eq. (2.13), a larger downsampling factor r can reduce the 
autoregressive order p of the ARIMA model, thereby reducing the computational cost. 
Meanwhile, the integer r should be restricted so that fs/r is sufficiently higher than the 
highest frequency of interest.  

The scaling factor λ in Eq. (2.12) determines the boundary between trusting the 
original point and the predicted value. It should be set to a small value, e.g., at least 
below 0.2, so that false positives are recovered but not real spikes. In this case, the 
imputation performance is not sensitive to λ, since only predicted points with small 
deviations from the original points are affected. 

Finally, for each segment of labeled points, we recommend predicting additional c 
points ahead in both directions in Step B2 and calculating the weighted average of the 
bi-directional results in Step B4 based on the following weighting functions. 
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      (2.14) 

where l is the length of labeled points, wf(x) (or wb(x)) is the weight for the forward (or 
backward) replacement result at position x, and ef (or eb) is the forward (or backward) 
terminal error, i.e., the average prediction error for the additional c points. The parameter 
c can be set to a small integer, such as 3~5. The above averaging strategy is illustrated 
in Figure 2.7, in which both the distance to the boundary and the terminal error contribute 
to the determination of weights. The following properties hold for the weighting 
functions in Eq. (2.14). 

• wf(x)+wb(x)=1; wf(0)=1; wb(l)=1. 

• wf(x) is a decreasing function of x, and wb(x) is an increasing function of x. 

• If |ef|/|eb| decreases, wf(x) will increase and wb(x) will decrease, and vice versa.  

• At the midpoint (x=l/2), the weights depend only on the terminal errors: 
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Figure 2.7: Weighting functions. 

2.3.3. STEP 3: SMOOTHING 
The signal processed after Step 1 and Step 2 may still contain undesired noise, such as 
false negatives in spike detection that remain untreated, errors induced in the imputation 
process, and abrupt changes due to switching between the two options in Eq. (2.12). 

Step 3 aims to reduce the residual noise while preserving the genuine vibration. It is 
implemented by applying a classical smoothing or denoising method because the 
residual noise is no longer as broadband as the raw speckle noise. In this chapter, we use 
a low-pass filter. The gain of an m-order low-pass Butterworth filter is [132]: 

( )
2

2 0
2

1
m

c

GG
j
j

ω
ω
ω

=
 

+  
 

                                               (2.16) 

where G0 is the gain at zero frequency and ωc is the cut-off frequency. The amplitude-
frequency response of a Butterworth filter is monotonic, being maximally flat in the 
passband while rolling off toward zero in the stopband [133]. The cut-off frequency can 
be set equal to the highest frequency of interest. 

2.3.4. DIFFERENT OPTIONS AT DIFFERENT STEPS 

 
Figure 2.8: Signal flow in the three-step despeckle framework. 
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Figure 2.8 illustrates the signal flow in the proposed despeckle framework. Spikes are 
detected in Step 1 and replaced in Step 2. False positives are recovered in Step 2. False 
negatives and residual noise are smoothed in Step 3.  

Table 2.2: Different options in Step 1 (Spike detection). 

Methods Descriptions Advantages Disadvantages 

Wavelet-based 
(Section 2.3.1) 

• Calculate a spike indicator 
through wavelet decomposition 
and reconstruction. 

• The spike 
indicator reflects 
the noise 
amplitude. 

• Require multi-level 
DWT and IDWT. 

Wavelet-based 
[49, 119, 120] 

• Calculate the detail 
coefficients through wavelet 
decomposition. 

• No IDWT 
required. 

• Thresholding requires 
prior estimates or 
assumptions. 
• Size reduction due to 
downsampling. 

High-pass filter-
based [49] 

• Filter the raw signal with a 
high-pass filter. 

• Easy to 
implement in 
frequency domain. 

• Frequency-dependent 
time delay. 

Local statistics-
based [34, 37, 
53] 

• Calculate the local 
variance/kurtosis in a sliding 
window. 

• Easy to 
implement in time 
domain. 

• Spike boundaries are 
difficult to determine. 

Short-time 
energy-based 
[37] 

• Calculate the average short-
time energy in a sliding 
window. 

• Sensitive to 
spikes of long 
duration. 

• Spike boundaries are 
difficult to determine. 

Residual-based 
[124] 

• Build a time series model for 
the raw signal. 
• Calculate residuals to indicate 
outliers. 

• Independent of 
frequency 
characteristics. 

• Outliers degrade the 
regression 
performance. 

Table 2.3: Different options in Step 2 (Imputation).  

Methods Descriptions Advantages Disadvantages 

ARIMA-based 
(Section 2.3.2) 

• Model the time series by 
ARIMA models. 
• Replace spikes through 
multi-offset and bi-
directional imputation. 

• Fitting an ARIMA 
model is 
deterministic and 
fast. 

• Only linear dynamics is 
captured. 
• Spikes degrade the 
training performance. 

ARIMA-based 
[124] 

• Outliers are replaced by 
local means. 
• Model the manipulated 
time series by an ARIMA 
model and make predictions. 

• Fitting an ARIMA 
model is 
deterministic and 
fast. 
• The disturbance of 
outliers is reduced. 

• Only linear dynamics is 
captured. 
• Manipulation may 
induce extra dynamics or 
eliminate important 
dynamics. 
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Linear 
prediction-
based [37, 53] 

• Model the time series by a 
linear prediction model. 
• Replace spikes through 
linear prediction. 

• Fitting a linear 
prediction model is 
fast. 

• Only linear dynamics is 
captured. 

Support vector 
machine 
(SVM)-based 
[130] 

• Replace outliers or missing 
values with temporal 
information.  
• Model the time series by an 
SVM and make predictions. 

• Capture nonlinear 
dynamics by a kernel 
method. 
• The disturbance of 
outliers is reduced. 

• Non-explicit 
interpretability.  
• Manipulation may 
induce extra dynamics or 
eliminate important 
dynamics. 

Artificial neural 
network 
(ANN)-based 
[134] 

• Model the time series by an 
ANN and make predictions. 
• Optimization is usually 
required to improve 
accuracy. 

• Capture nonlinear 
dynamics. 

• Computationally 
demanding. 
• Non-explicit 
interpretability. 

Kalman filter-
based [125, 
135] 

• Model the signal by a 
Kalman filter and make 
predictions. 

• Capture dynamic 
trends. 

• Sensitive to model 
design. 

Interpolation-
based [49, 136] 

• Interpolate based on 
adjacent points. 

• No modeling 
required. 

• Difficult to capture 
dynamic behaviors. 

Table 2.4: Different options in Step 3 (Smoothing). 

Methods Descriptions Advantages Disadvantages 

Low/band-
pass filter 
(Section 
2.3.3) 

• Filter the signal with a 
low/band-pass filter. 

• Clear physical 
meaning. 
• Preserve genuine 
vibrations. 

• Sensitive to the cut-off 
frequency. 
• Frequency-dependent 
time delay. 

Mean filter 
[137] 

• Calculate the weighted 
average in a sliding window. 

• Easy to implement in 
time domain. 

• Reduce genuine 
vibrations. 
• Sensitive to window 
design. 

Median filter 
[138, 139] 

• Calculate the local median 
in a sliding window. 

• Easy to implement in 
time domain. 

• Reduce genuine 
vibrations. 
• Sensitive to window 
design. 

Lee filter 
[140] 

• Calculate local statistics in 
a sliding window. 

• Balance between 
original values and 
local statistics. 

• Reduce genuine 
vibrations. 
• Sensitive to window 
design. 

Sigma filter 
[141] 

• Calculate the local mean 
within a certain deviation. 

• Exclude outliers. 
• Easy to implement in 
time domain. 

• Reduce genuine 
vibrations. 

Wavelet 
denoise [62, 
142, 143] 

• Perform wavelet transform. 
• Filter out large wavelet 
coefficients. 
• Reconstruct the signal. 

• Suitable for 
nonstationary changes. 

• Sensitive to wavelet 
type and decomposition 
level. 
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In the proposed despeckle framework, we use a wavelet-based method for Step 1, an 

ARIMA-based method for Step 2, and a Butterworth filter for Step 3. A significant 
advantage of the proposed framework is that other different methods can also be adapted 
and used at different steps. Table 2.2~2.4 lists some other alternative methods from our 
literature survey, including some post-processing methods mentioned in Section 1.2.1. 
These tables are intended to provide some potential options for each step and discuss 
their pros and cons.  

2.4. STEPWISE VALIDATION 
In this section, the proposed despeckle framework is validated following a stepwise 
process.  

2.4.1. VALIDATION OF STEP 1 
Taking the signal in Figure 2.4 (a) as an example, we show the reconstructed signal 
Rk(cDk) at different level k in Figure 2.9 (a), where as k increases, the temporal resolution 
of Rk(cDk) deteriorates, while its size remains the same as the original signal. Further, 
we show the spike indicator RD for different n in Figure 2.9 (b), where as n increases, RD 
gets larger at the locations of spikes, and the amplitude of RD is correlated with the 
corresponding spike amplitude. 

According to Eq. (2.9), the decomposition level of n=3 is selected. Then, the 
cumulative frequency distribution of RD is plotted in Figure 2.10 (0.5 km/h). A critical 
point can be observed, so the threshold of T1=0.1 mm/s is selected. The corresponding 
detection result in Figure 2.9 (c) shows that all the manually selected spikes in Figure 
2.4 (a) are automatically detected. 

 
Figure 2.9: Wavelet-based spike detection at 0.5 km/h. (a) Reconstructed signal Rk(cDk) at different k; (b) 
Spike indicators RD for different n; (c) Spike detection result. 
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Figure 2.10: Cumulative frequency of spike indicators RD at different speeds. 

 
Figure 2.11: Wavelet-based spike detection at 5 km/h and 20 km/h. (a) Spike indicator RD at 5 km/h; (b) 
Spike indicator RD at 20 km/h; (c) Spike detection result at 5 km/h; (d) Spike detection result at 20 km/h.

Similarly, Figure 2.10 and 2.11 show the spike detection results for the two samples 
in Figure 2.4 (b) and (c), respectively. For the higher speeds, the selected n is smaller 
due to the shorter spike duration, and the selected T1 is larger due to the larger spike 
amplitude. It is noteworthy that in Figure 2.10 no critical point is observed at 20 km/h, 
so we select T1=2 mm/s to label approximately half of the points as spikes. Compared 
with the manual selection in Figure 2.4, most of the spikes are detected. Meanwhile, 
some false negatives can be observed, e.g., the points labeled in Figure 2.9 (c) and Figure 
2.11 (c) and (d). They will be addressed through the replacement strategy in Step 2 and 
the smoothing method in Step 3, respectively. 

2.4.2. VALIDATION OF STEP 2 
In our case study, we use the strategy of direct training in Table 2.1 for imputation. To 
showcase the design of ARIMA models following Section 2.3.2.3, we take the above 
three samples as examples and show their ACFs at different differencing orders d in 
Figure 2.12. The plots for d=0 show slow-decay patterns, the plots for d=1 show rapid-
decay patterns, and the plots for d=2 indicate over-differencing. Meanwhile, the ACFs 
turn from positive to negative after differencing. Therefore, we select d=1 and q=1 for 
all the three samples. 

Since speckle noise masks genuine vibrations in real signals, we propose a Monte 
Carlo-based strategy to create artificial noisy signals by superposing the collected spike 
samples with base signals free of speckle noise (from non-LDV measurements or 
simulations). At each time instant of a base signal, a random number between 0 and 1 is 
generated. Once it is smaller than a defined scalar ps, a spike sample is randomly selected, 
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and its amplitude is scaled by a factor as. Then, the left and right halves of the spike 
sample are scaled separately and superposed with the base signal with smooth transitions. 
Afterward, imputation is performed for the artificial signal at the locations of spikes, and 
the imputation error is quantified through comparisons with the base signal, as shown in 
Figure 2.13. Additionally, the spike occurrence rate and amplitude are adjustable by 
changing ps and as, respectively, which allows us to evaluate the imputation accuracy 
under different speckle noise severity.  

 
Figure 2.12: ACF plots for different d. (a) 0.5 km/h; (b) 5 km/h; (c) 20 km/h.

 
Figure 2.13: An imputation example based on an artificial signal. ‘Artificial signal→S.2’ represents applying 
Step 2 alone to the artificial signal. 

Following the above strategy, three artificial signals with different speckle noise 
severity are generated. Table 2.5 and 2.6 compare the imputation performance between 
different ARIMA model orders, including the mean square error (MSE) at all spike 
locations and the total CPU time (on Intel Xeon E5-2643 @3.30 GHz). The influence of 
p is small in a certain range (p=20~50) but becomes significant when it is too large or 
too small. It shows that the combination of d=1, q=1, and p=40 outperforms the other 
choices in terms of imputation errors, demonstrating the effectiveness of the model order 
selection strategy in Section 2.3.2.3.  
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Table 2.5: Imputation performance under different d and q. 

ARIMA models Artificial signal 1 
ps=0.002, as=1 

Artificial signal 2 
ps=0.004, as=1 

Artificial signal 3 
ps=0.004, as=2 

p d q MSE 
(mm/s) 

CPU 
time (s) 

MSE 
(mm/s) 

CPU  
time (s) 

MSE 
(mm/s) 

CPU  
time (s) 

p=40 
(acc. to 
Eq. 
(2.13)) 

d=0 q=1 
(acc. to  
Figure 
2.12) 

0.010537 81.843 0.004112 79.97 0.004225 79.11 

d=2 0.002198 101.84 0.002133 110.41 0.001667 107.94 

d=1 
(acc. to  
Figure 
2.12) 

0.001373 88.67 0.001571 88.03 0.001240 89.08 

q=0 0.004033 72.11 0.003596 103.88 0.004343 60.44 

q=2 0.001390 89.31 0.001572 97.27 0.001336 91.16 

Table 2.6: Imputation performance under different p.  

ARIMA models Artificial signal 1 Artificial signal 2 Artificial signal 3 

p d q MSE 
(mm/s) 

CPU 
time (s) 

MSE 
(mm/s) 

CPU  
time (s) 

MSE 
(mm/s) 

CPU  
time (s) 

p=0 d=1 
(acc. to  
Figure 
2.12) 

q=1 
(acc. to  
Figure 
2.12) 

0.002581 3.23 0.002187 6.52 0.002065 5.36 

p=5 0.002699 8.03 0.002145 11.05 0.001886 9.95 

p=10 0.002812 11.45 0.002128 16.11 0.001846 16.80 

p=20 0.001257 35.11 0.002136 33.69 0.001748 34.73 

p=30 0.001297 52.27 0.002056 55.27 0.001579 56.39 

p=40 
(Eq. 
(2.13)) 

0.001373 88.67 0.001571 88.03 0.001240 89.08 

p=50 0.002009 114.97 0.001636 130.31 0.001278 118.16 

p=60 0.004671 148.22 0.002460 155.94 0.004929 160.08 

p=70 0.004438 265.78 0.003492 289.16 0.004598 287.84 

Table 2.7: Imputation performance under different downsampling strategies.  

Downsampling strategies Artificial signal 1 Artificial signal 2 Artificial signal 3 

r p Offset MSE 
(mm/s) 

CPU 
time (s) 

MSE 
(mm/s) 

CPU  
time (s) 

MSE 
(mm/s) 

CPU  
time (s) 

r=1 p=40 / 0.001373 88.67 0.001571 88.03 0.001240 89.08 

r=2 p=20 Single offset 0.001434 24.80 0.001656 29.90 0.001593 28.90 

Multiple offsets 0.001429 49.59 0.001643 59.80 0.001243 57.80 

r=3 p=20 Single offset 0.001425 15.23 0.001672 18.51 0.001359 17.70 

Multiple offsets 0.001423 45.69 0.001657 55.53 0.001347 53.11 
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Table 2.8: MSE (mm/s) under different averaging strategies. 

Averaging strategies Artificial signal 1 Artificial signal 2 Artificial signal 3 

Only forward replacement 0.006353 0.005300 0.005774 

Only backward replacement 0.005937 0.005342 0.005797 

Direct average 0.003723 0.003276 0.003307 

Weighted average (Section 2.3.2.3) 0.001373 0.001571 0.001240 

 
 
Table 2.7 compares the imputation performance under different downsampling 

strategies, in which p is adjusted with respect to the downsampling factor r according to 
Eq. (2.13). A higher r significantly reduces the computational cost, and averaging the 
imputation results from multiple offsets slightly improves the imputation accuracy over 
using only one offset.  

Table 2.8 compares the imputation accuracy under different averaging strategies in 
the bi-directional training and replacement process. Compared to the other strategies, the 
proposed weighted averaging strategy reduces the imputation error significantly.  

2.4.3. VALIDATION OF STEP 3 
In this section, we use real signals to validate the despeckle framework. First, three 
samples measured at 0.5 km/h are shown in Figure 2.14. For each sample, the upper plot 
compares the raw signal with the product of the first two steps, while the lower plot 
compares the final despeckle outcome with the result of applying the filter in Step 3 
alone to the raw signal. We adopt a low-pass filter with ωc=3 kHz in Step 3, considering 
the track vibration is generally below 3 kHz. It shows that the speckle noise is effectively 
eliminated by detecting and replacing the spikes, whereas the direct use of the low-pass 
filter leaves significant residual noise because the speckle noise at 0.5 km/h contains 
components below 3 kHz, as shown in Figure 2.4 (a). 

Similarly, Figure 2.15 shows three despeckle samples at 5 km/h. Compared to Figure 
2.14, the residual noise after direct filtering becomes lighter since the speckle noise at 5 
km/h has a higher frequency band, according to Figure 2.4 (b). However, as the 
sharpness of spikes is reduced, the residual noise looks more like vibrations. This pseudo 
vibration is not a real structural response but the low-frequency part of the speckle noise 
due to insufficient despeckle. The proposed three-step framework can effectively avoid 
this problem.  

The despeckle performance for signals measured at 20 km/h is shown in Figure 2.16. 
Since the speckle noise affects most parts of the signals, the despeckle framework allows 
some false negatives (small-amplitude spikes) in Step 1 so as to reduce the amount of 
imputation in Step 2. Then, the residual noise is filtered out in Step 3. In this way, the 
proposed three-step framework effectively reduces speckle noise while avoiding pseudo 
vibrations. 
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Figure 2.14: Despeckle samples at 0.5 km/h. ‘Raw’ represents the raw signal, ‘Raw→S.1→S.2’ represents 
the product of the first two steps, ‘Raw→S.1→S.2→S.3’ represents the final despeckle outcome, ‘Raw→ 
S.3’ represents applying Step 3 alone to the raw signal. (a) Sample L1; (b) Sample L2; (c) Sample L3.  

 
Figure 2.15: Despeckle samples at 5 km/h. (a) Sample M1; (b) Sample M2; (c) Sample M3. 

 
Figure 2.16: Despeckle samples at 20 km/h. (a) Sample H1; (b) Sample H2; (c) Sample H3. 

2.5. COMPARISON WITH TRACKSIDE MEASUREMENTS 
To verify the LDVom measurements, we mount two accelerometers (PCB 356B21) near 
the laser spot trajectory on one sleeper and one segment of the track slab, as shown in 
Figure 2.17. The trackside measurements are performed under the same conditions as 
the LDVom measurements. Among the different speeds, we only analyze 20 km/h 
because a higher speed is desired for more efficient monitoring and the speckle noise is 
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more severe. Besides, to enable comparisons in the same unit, we convert accelerations 
to velocities through frequency-domain integration [144]. 

 
Figure 2.17: Setup of trackside vibration measurements.  

First, the track vibration excited by passing the joint in Segment A is analyzed. 
Figure 2.18 (a) shows the raw LDVom signals at two laps (rotations of the beam), and 
the upper plot in Figure 2.18 (b) shows the corresponding despeckle results using the 
proposed methods (a 150~3,000 Hz band-pass filter is adopted in Step 3), which reflects 
good repeatability between the two laps. The bottom plot in Figure 2.18 (b) shows the 
averaged trackside measurements for two laps. The LDVom measurements after 
despeckle have good agreement with the trackside measurements. The dominant 
component at around 500 Hz is measured, and some high-frequency behavior related to 
sleeper dynamics is captured. The amplitudes of trackside measurements are lower than 
the LDVom measurements because the accelerometers are located at a distance from the 
joint. In addition, given the fact that the laser irradiates sleepers and track slabs in turn 
as the platform moves, we find that the proposed method is effective for the 
measurements on both surfaces.  

 
Figure 2.18: Comparison with trackside measurements (Segment A). (a) Raw LDV signals at different laps; 
(b) Despeckle results and trackside signals. 

Then, the measurement results on the normal track in Segment B are shown in Figure 
2.19, including their time-frequency characteristics (at the same scale) after CWT with 
Morlet wavelet [117]. Compared with the trackside measurements, the LDVom 
successfully captures the dominant track vibration at 500~700 Hz, and their amplitudes 
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are similar. The repeatability and agreement are not as good as those in Figure 2.18 due 
to the lower vibration amplitude and the random nature of wheel-track dynamics.  

Finally, the computational cost of the proposed methods is evaluated. In our case 
study, passing each sleeper segment at 20 km/h takes approximately 22.6 ms, while the 
corresponding CPU time for despeckle is 17.5 s on average. Although the despeckle 
algorithm cannot be implemented in real-time, it can be applied offline at acceptable 
computational costs. 

 
Figure 2.19: Comparison with trackside measurements (Segment B). (a) Raw LDV signals at different laps; 
(b) Despeckle results and trackside signals; (c) Despeckle results in the time-frequency domain; (d) trackside 
signals in the time-frequency domain. 

2.6. CONCLUSIONS 
In this chapter, we study the characteristics of the speckle noise from LDVom 
measurements on railway tracks, propose and validate a three-step framework for 
speckle noise reduction, and compare the LDVom measurements with the trackside 
measurements. Specifically, we develop a wavelet-based spike detection method in Step 
1 and an ARIMA-based imputation method in Step 2 and adopt a Butterworth filter in 
Step 3. The main conclusions are summarised below. 

• In the time domain, the spikes occur discretely with random amplitudes and 
durations. In the frequency domain, they are broadband and can overlap with 
genuine vibrations. As the moving speed increases, the speckle noise occurs 
more frequently with shorter durations, greater amplitudes, and broader 
frequency bands. 
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• When applying conventional methods to despeckle, the amplitude of spikes can 

be shortened but not eliminated, which can lead to pseudo vibrations. The three-
step framework can avoid this problem by detecting and replacing spikes, 
recovering false positives, and smoothing false negatives and residual noise. 

• In addition to the proposed methods, different alternative methods can be 
adapted and used in the three steps of the despeckle framework. In Step 2, 
different training strategies can be selected considering the presence of speckle 
noise in time series.  

• The proposed methods can effectively reduce the speckle noise at different 
speeds, among which the highest speed in this chapter is 20 km/h. The 
computational cost of the proposed methods is acceptable for offline 
applications.  

• In our case study, the LDVom measurements can successfully capture the 
dominant components of the track vibrations at around 500~700 Hz with good 
repeatability between different laps and good agreement with trackside 
measurements. 
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3 
OPERATIONAL MODAL 

IDENTIFICATION IN TIME-
FREQUENCY REPRESENTATION 

 
 
 
Operational modal analysis (OMA) enables the identification of modal characteristics under 
operational loads and conditions. Traditional frequency-domain methods cannot directly 
capture modal changes over time while existing time-frequency representations are not 
sufficiently interpretable due to spurious modes and implicit parameter design. This chapter 
develops a new OMA method in time-frequency representation based on frequency domain 
decomposition (FDD). Short-time FDD and a convolution-based strategy are proposed to obtain 
singular values and local mode shape similarity, respectively, which are further fused into mode 
indicators by a fuzzy-based strategy mimicking the modal assurance criterion. The method 
provides not only a global view of the modal characteristics over time and frequency but also 
estimates of modal parameters. It is applicable to strongly nonstationary responses under time-
varying loads and conditions. All the parameters explicitly affect the time-frequency 
representation, and the interpretability is enhanced by including physical information from the 
user’s prior knowledge in selecting parameters and peak bands. The proposed method is 
validated based on a study of railway sleepers under train passage. The rigid-body motions and 
bending modes are identified at frequencies up to 6,500 Hz in laboratory tests and 4,500 Hz in 
field tests at speeds up to 200 km/h. The identified natural frequencies and mode shapes agree 
with the experimental modal analysis. The proposed method outperforms the experimental modal 
analysis in terms of broad frequency range and low measurement cost and can be potentially 
applied to structural health monitoring under operational conditions. 

 
Apart from minor updates, this chapter has been published as: Zeng Y, Shen C, Nunez A, Dollevoet R, Zhang 
W, Li Z. (2023). An interpretable method for operational modal analysis in time-frequency representation 
and its applications to railway sleepers. Structural Control and Health Monitoring, 2023: 6420772. 
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3.1. INTRODUCTION 
Operational modal analysis (OMA) enables the modal characteristics of a structure to be 
identified from its vibration response under operational loads and conditions. OMA 
methods in time-frequency representation can capture changes in modal characteristics 
over time. This chapter develops an interpretable OMA method suitable for strongly 
nonstationary responses by extending the frequency domain decomposition (FDD) 
method to a time-frequency representation. A study of railway sleepers under train 
passage is used to showcase the proposed method. The characteristics of the train-
induced load on a sleeper vary considerably as the train approaches, passes, and leaves, 
which further affects the stiffness and damping of track components [145~147]. As a 
result, the sleeper vibration in response to train passage is significantly nonstationary. In 
addition, the damping effect from rail pads and ballast makes modal identification more 
challenging. 

The remainder of this chapter is organized as follows. In Section 3.2, the 
fundamentals of FDD are briefly introduced. In Section 3.3, the new OMA method and 
the corresponding parameter selection strategy are proposed. In Section 3.4, the 
proposed method is validated through theoretical analysis and laboratory experiments. 
In Section 3.5, the proposed method is applied to field tests and compared with 
experimental modal analysis (EMA). Finally, some discussions are presented in Section 
3.6, and the conclusions are summarized in Section 3.7. 

3.2. FUNDAMENTALS OF FREQUENCY DOMAIN DECOMPOSITION 
Structural responses are usually measured by accelerometers at a sampling frequency fs. 
Estimating the PSD matrix of the response is the first step in FDD. Welch modified 
periodogram method [148] is widely used owing to its computational efficiency [66]. 
First, the measured response is divided into nc overlapped (overlap ratio αb) segments of 
equal length nb, and a window function tapers each segment to reduce the leakage effect. 
The recommended overlap ratio αb and window function are 0.5 and Hanning window, 
respectively [148]. Then, the modified periodogram Ik(fn) is calculated for each 
windowed segment based on fast Fourier transform (FFT), where fn is the n-th discrete 
frequency as follows [148]. 

( )s
b b
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= = −              (3.1) 

Next, the PSD matrix at each frequency fn is estimated by averaging the 
periodograms over all nc segments as follows [148]. 
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where V(fn) is a diagonal matrix with singular values arranged in descending order and 
U(fn) is a unitary matrix containing the singular vectors corresponding to the singular 
values. At each frequency fn, a singular value in V(fn) indicates the contribution of the 
corresponding singular vector in U(fn), just as a modal response indicates the 
contribution of the corresponding mode shape based on the modal expansion of the 
structural response [66].  

Mathematically, the number of segments nc in PSD estimation determines the 
number of non-zero singular values in V(fn) at each frequency [78], and multiple non-
zero singular values allow for the identification of closely-spaced modes. All non-zero 
singular values can be plotted in a spectrum, where a resonance peak indicates the 
possible existence of a mode at the corresponding frequency. To further confirm such a 
mode, the singular vector of the peak is usually compared with other singular vectors at 
its adjacent frequencies. A popular scheme to quantify the similarity between two 
vectors is the modal assurance criterion (MAC) [66], denoted as MAC(p, q), which is 
equal to 0 (or 1) when the two vectors, p and q, are orthogonal (or proportional). If the 
singular vectors in the vicinity of a peak are of high similarity (MAC greater than a 
threshold), they are identified as belonging to the same dominant mode [66, 86]. 

Once a mode is confirmed, its modal parameters can be estimated following the 
strategy of enhanced FDD [82, 83]. First, an auto PSD function is created using the 
identified singular values at the corresponding frequencies, representing an equivalent 
single degree of freedom system. Then, inverse FFT is applied to the auto PSD to obtain 
an autocorrelation function in the time domain. The zero crossings of the autocorrelation 
function can give an estimate of the damped natural frequency, while the extremes can 
be used to estimate the logarithmic decrement δ through linear regression. Further, the 
damping ratio is calculated as follows [82, 83]. 

            
2 24
δξ

δ π
=

+
 (3.4) 

Finally, a real-valued mode shape vector can be obtained from each of the identified 
singular vectors. A simple approach [66] is to normalize the complex singular vector by 
the maximum absolute value of its components and then rotate each component to 0°(or 
180°) if its phase lies in the first or fourth (or the second or third) quadrant. A mode 
shape vector can be displayed with respect to sensor positions in a static plot. It is 
noteworthy that the problem of spatial aliasing can occur when the number of sensors is 
insufficient. In this case, the identified mode shape should be interpreted carefully. 

In general, the validity of FDD is based on the assumptions of white noise excitations, 
low structural damping ratios, and orthogonal mode shapes for closely-spaced modes 
[86]. If these assumptions are not fully satisfied or measurement noise is present, the 
identification result is an approximation to real modal characteristics [86, 149]. 

3.3. TIME-FREQUENCY REPRESENTATION OF OMA 
This chapter develops a new OMA method, named TFOMA, by extending the FDD 
method to a time-frequency representation. Figure 3.1 shows its framework. First, short-
time FDD and a convolution-based strategy are proposed to obtain singular values and 
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local mode shape similarity, respectively. Then, they are fused into mode indicators by 
a fuzzy-based strategy, and modal parameters are further estimated. Section 3.3.1~3.3.3 
will introduce these main steps, and Section 3.3.4 will discuss the parameter selection 
strategy. 

 
Figure 3.1: Framework of TFOMA.  

3.3.1. SHORT-TIME FDD 
In FDD, Fourier transform is used to average the frequency information over the entire 
signal time, which is theoretically applicable to stationary processes. Short-time Fourier 
transform [150] is a modified version of Fourier transform for strongly nonstationary 
signals. We apply a similar strategy to FDD as follows and name it short-time FDD 
(STFDD), 

( ){ }( ) ( ) ( ){ }( ),s t f s r s - t f=STFDD y FDD y                             (3.5) 

where y(s) is the vector of synchronized measurement from multiple sensors at sampling 
time s and r(s-t) represents a rectangular window centered at t. 

 
Figure 3.2: Short-time FDD and singular value spectrogram.  



 41 
 

3.3. TIME-FREQUENCY REPRESENTATION OF OMA 

As illustrated in Figure 3.2, y(s) is broken into segments of equal length with an 
overlap ratio αs, and the procedures of PSD estimation and SVD are applied to each 
segment, producing a series of singular value matrices V(t, f) and singular vector 
matrices U(t, f). The k-th diagonal term in V(t, f) is denoted as vk(t, f), and the k-th 
singular vector in U(t, f) is denoted as uk(t, f). At the k-th level, a singular value 
spectrogram can be obtained by plotting vk(t, f) over time and frequency with color 
mapping. According to Section 3.2, the number of effective spectrograms is equal to the 
number of non-zero singular values, which is further equal to nc used in PSD estimation. 
It is noteworthy that STFDD also holds the drawbacks of STFT, such as the trade-off 
between time and frequency resolutions (discussed in Section 3.3.4). 

3.3.2. LOCAL MODE SHAPE SIMILARITY 
A peak in a singular value spectrogram indicates the possible existence of a structural 
mode. According to MAC, a mode is effectively dominant when the singular vector of 
the peak has a high similarity to the singular vectors in its vicinity. To enable 
comparisons in both time and frequency dimensions, we propose a convolution-based 
strategy to quantify the local similarity of singular vectors. In a two-dimensional 
representation, e.g., an image, convolution works by applying a kernel to each location 
and evaluating the central element based on all elements in the kernel [151, 152]. In the 
time-frequency representation, we adapt it to compute the following scalar, named local 
mode shape similarity (LMSS), 

( ) ( ) ( ) ( )( ), , , , ,
a b

k k k
dt a df b

l t f dt df MAC t f t dt t f df fω
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where a, b are the half kernel sizes (number of elements) in time and frequency, 
respectively, Δt, Δf are the time and frequency resolutions, respectively, and ω(dt, df) 
represents the weight at each element of the kernel.  

LMSS is a weighted sum of MAC values between the central element and all other 
elements in a kernel. In this chapter, a separable kernel with Gaussian functions [152, 
153] is used, and its weights are determined as follows, 
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where the weight of the central element is zero and ω0(dt, df) is the un-normalized weight 
calculated based on the following Gaussian functions, 
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where dv(t, f)(dt, df) denotes the logarithmic difference in singular values with respect to 
the central element, as calculated as follows. 
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Further, σt, σf, σv are standard deviations characterizing the decay rates of the weight 
as dt, df, dv increase, respectively. We recommend determining them as follows, 
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Eq. (3.8)~(3.10) reflect that, from the kernel center to the kernel boundary, the 
weight decreases from one towards zero as dt or df increases, according to the three-
sigma rule. This property allows comparisons to be made in a localized manner with 
smooth transitions at kernel boundaries. Additionally, the weight is lower when an 
element’s singular value deviates more from the center’s. This property enhances the 
adaptability of LMSS to structural modes with different bandwidths since the weight 
decays faster in case of a sharper resonance peak and vice versa. Meanwhile, it allows 
LMSS to better capture the shift in resonance frequency over time.  

Figure 3.3 illustrates the calculation process of LMSS at the k-th level. An LMSS 
spectrogram can be obtained by plotting lk(t, f) over time and frequency with color 
mapping. The value of each point indicates the similarity of mode shapes between that 
point and its vicinity, and a peak region indicates a high local similarity at that time and 
frequency, which can help to confirm the dominance of a mode. 

 
Figure 3.3: Local mode shape similarity and its spectrogram.  

3.3.3. MODE INDICATOR 
After obtaining the singular value spectrogram and the LMSS spectrogram, structural 
modes can be identified from regions with both large singular values and large LMSS. 
In this chapter, a fuzzy-based fusion strategy is proposed to fuse vk(t, f) and lk(t, f) at each 
time and frequency into a mode indicator (MI), denoted as MIk(t, f). Fuzzy set theory 
quantifies the membership of an element in a set through a membership function [154], 
which is usually used to handle vague information, e.g., fusing multiple images 
[155~157]. It is suitable for computing MI because there is no precise relationship to 
determine the existence of modes based on vk(t, f) and lk(t, f) but rather a soft and flexible 
thresholding strategy according to MAC. 
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First, all vk(t, f) and lk(t, f) are normalized as follows. 
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Then, we use the following membership function to compute the MI, 
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where λv and λl are the contribution exponents of v’k(t, f) and l’k(t, f), respectively.  
Figure 3.4 illustrates the calculation of MI, in which the membership function with 

λv=1 and λl=3 is shown as an example. It can be seen that MIk(t, f) approaches 0 when 
v’k(t, f) or l’k(t, f) is small and tends to 1 as v’k(t, f) and l’k(t, f) increase. Meanwhile, l’k(t,  
f) is more dominant than v’k(t, f) owing to the selection of λv and λl. As a consequence, 
when l’k(t, f) is less than 0.45, MIk(t, f) is lower than 0.1 even if v’k(t, f) is large. The 
selection of λv and λl enables the proposed fuzzy-based strategy to mimic a thresholding 
strategy of MAC and provide a soft and interpretable fusion between vk(t, f) and lk(t, f). 

 
Figure 3.4: Membership function and mode indicator spectrogram.  

As shown in Figure 3.4, the computed MIs at the k-th level MIk(t, f) can be plotted 
as an MI spectrogram with peak regions indicating the presence of structural modes. 
Then, a frequency band that peaks continuously over time at physically meaningful 
frequencies is selected for each mode. To further estimate the modal parameters of a 
mode, the singular values in its frequency band with MIs greater than a threshold are 
selected to create auto PSD functions, which can then be used to estimate the natural 
frequency and damping ratio at each time instant (see Section 3.2). Meanwhile, the 
singular vectors corresponding to the selected singular values can be converted into 
mode shape vectors (see Section 3.2). In this way, the proposed TFOMA method 
provides not only a global view of the modal characteristics over time and frequency but 
also estimates of modal parameters. 
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3.3.4. PARAMETER SELECTION STRATEGY 
The time-frequency representation of the proposed method depends on the selection of 
its parameters. Sufficient time and frequency resolutions are necessary for clear 
visualization of modal characteristics and accurate estimation of modal parameters. The 
frequency resolution Δf and the time resolution Δt are determined as follows. 

( ) ( )b s c b bs

b s

1 1n nff t
n f

α α α−  − +  ∆ = ∆ =                              (3.13) 

We propose the following strategy to select all the parameters of the TFOMA method. 

Step 1. Select the number of segments nc in PSD estimation. As mentioned in Section 
3.2 and 3.3.1, nc determines the number of non-zero singular values. For structures 
with separated modes, nc can be set to 1, whereas in cases of closely-spaced modes, 
nc should be greater than the maximum number of physical modes in each identified 
frequency band. 

Step 2. Select the segment length nb in PSD estimation and the overlap ratio αs in 
STFDD. According to Eq. (3.13), they directly affect Δf and Δt: larger nb leads to 
smaller Δf but larger Δt, and larger αs leads to smaller Δt but higher computational 
costs. We recommend first selecting nb to provide sufficient frequency resolution, 
e.g., at least five discrete frequencies in the frequency band of a mode. Then, αs can 
be selected to provide sufficient time resolution, e.g., Δt to be shorter than the 
nonstationary behavior of the signal. 

Step 3. Select the half kernel sizes a and b. Under defined Δt and Δf, the kernel 
lengths in time and frequency are (2a+1)·Δt and (2b+1)·Δf, respectively. For 
comparisons in a localized manner, we recommend setting a and b as small integers, 
such as 3~10, to ensure that (2a+1)·Δt and (2b+1)·Δf are shorter than the duration 
and bandwidth of each mode, respectively. 

Step 4. Select the contribution exponents λv and λl. As exemplified in Section 3.3.3, 
we recommend setting λl>λv=1 to mimic a thresholding strategy of MAC. The larger 
λl is, the greater the influence of LMSS on MI, i.e., a higher LMSS is required to 
reach a certain level of MI.  

All parameters in the TFOMA method explicitly affect the time-frequency 
representation. They can be selected and tuned according to the user’s prior knowledge 
of the structural dynamics and goals of analyses. 

3.4. VALIDATION VIA LABORATORY TESTS 

3.4.1. TFOMA OF AN IN-SITU SLEEPER 
We validate the proposed TFOMA method in the V-Track test rig. The introduction of 
this test rig can be found in Section 2.2.1. As shown in Figure 3.5, we instrument one 
sleeper with eight accelerometers (PCB 356B21) on its top surface. The vertical 
accelerations are measured at the sampling frequency of fs=102,400 Hz. The running 
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speed of the wheel is 8 km/h. Figure 3.6 (a) plots the measured sleeper accelerations 
with four phases distinguished, which shows significant nonstationarity. Phase A is the 
impact response caused by the passage over a joint that is several sleepers away from 
the instrumented sleeper. Phase B~D belong to the response caused by the wheel passage, 
divided into pre-passage, under-passage, and post-passage phases. 

 
Figure 3.5: V-Track test rig and the instrumented sleeper.  

 
Figure 3.6: TFOMA results of laboratory tests. (a) Sleeper accelerations in the time domain; (b) MI 
spectrogram; (c) Singular value spectrogram; (d) LMSS spectrogram.  

We apply the TFOMA method to the measured data with the parameters listed in 
Table 3.1. The spectrograms of singular value, LMSS, and MI are shown in Figure 3.6 
at frequencies up to 6,500 Hz. As shown in Figure 3.6 (c) and (d), most of the large 
singular values are located below 2,000 Hz, while the large LMSS is present throughout 
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the frequency range. By fusing the singular values with the LMSS, we obtain the MI 
spectrogram in Figure 3.6 (b), which shows peak regions with sharper edges than those 
in Figure 3.6 (c) and (d), making them easier to identify. 

Table 3.1: Selected parameters for laboratory tests. 

Parameters Values Parameters Values 

Number of segments nc 1 Segment length nb 10,240 (0.1 s) 

Overlap ratio in PSD estimation αb 0.5 Overlap ratio in STFDD αs 0.95 

Half kernel size in time a 10 Half kernel size in frequency b 5 

Exponent of singular value λv 1 Exponent of LMSS λl 3 

Time resolution Δt 5 ms Frequency resolution Δf 10 Hz 
 
In the MI spectrogram, the impact response in Phase A produces a vertical ridge, 

along which the MI peaks at some frequencies. In Phase B and D, a number of peak 
bands can be observed, which continuously dominate at frequencies close to the peaks 
in Phase A. The peaks in Phase C are less clear as they belong to the forced response 
phase. We select ten peak bands in Phase A, B, and D, as labeled in Figure 3.6 (b), where 
the label height represents the bandwidth. At low (or high) frequencies, the density of 
peak bands is high (or low), and their bandwidths are narrow (or wide). In each selected 
band, we use points with MI greater than 0.4 for further parameter estimation, and the 
identified mode shapes and average natural frequencies are shown in Figure 3.7. Most 
identification results are consistent between Phase A, B, and D, though the passage 
response suffers more nonstationarity and noise. 

 
Figure 3.7: Modal identification results of laboratory tests.  
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3.4.2. EMA AND THEORETICAL ANALYSIS OF A FREE SLEEPER 
To verify the above identification results, we perform hammer tests on a free sleeper of 
the same type on an elastic foundation. Since the sleeper is free of rail fasteners, it is 
instrumented with more distributed accelerometers (PCB 356B21), as shown in Figure 
3.8 (a). We use a small hammer (Brüel & Kjær 8206-003) to generate the impact at each 
of the four locations.  

To reduce the effect of leakage and noise, the measured response from each sensor 
is tapered by an exponential window, and the measured force is tapered by the same 
exponential window and also a force window [158]. Then, for the i-th sensor (i=1, …, 
9) in response to the impact at the j-th location (j=1, …, 4), we compute the cross PSD 
between the acceleration and the force ( )

i ja pS f and the PSD of the force ( )
j jp pS f  using 

Welch modified periodogram method [148]. Further, the frequency response function 
(FRF), more specifically the receptance function, is calculated as follows [159]. 

( )
( )

( )( )22
i j

j j

a p
i

p
j

p

S f

S
H

f
f

fπ
=                                               (3.14) 

An FRF is a complex function of frequency that describes the response of a structure 
at the sensor position to excitation at the impact location. A resonance peak indicates the 
presence of a structural mode at the corresponding frequency. The mode shape vector 
can be obtained by combining the imaginary parts of the FRFs from different sensors as 
follows [159]. 

( )( ) ( )( ) ( )( ) T

1 2 9Im Im ...,, , Imj j jH f H f H f                           (3.15) 

At each impact location, we repeat the test three times and average the FRFs as the 
final result. For example, Figure 3.8 (b) plots the magnitude of the FRFs for all sensors 
in response to Impact 2. Four resonance peaks are identified from all FRFs at different 
impact locations, labeled as P0~P3, and their mode shapes and average frequencies are 
shown in Figure 3.8 (c). 

Meanwhile, we calculate the theoretical mode shapes by simplifying the sleeper as a 
free-free beam, and the n-th order mode shape is given as follows [160], 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )sin sinh

sinh sin cosh cos
cosh cos

n n
n n n n n

n n

k L k L
w x k x k x k x k x

k L k L
−

=  +  +  +    −
       (3.16) 

where L is the beam length, x is the coordinate along the beam (0≤x≤L), sinh and cosh 
are hyperbolic functions, and kn is the n-th solution of the following equation of k.  

( ) ( )cosh cos 1kL kL =                                               (3.17) 

The mode shapes of a free-free beam with L=25 cm are computed and plotted in 
Figure 3.8 (c). Clearly, the mode shapes of P1~P3 are in good agreement with the 
theoretical mode shapes of the first three bending modes, respectively, and P0 is the 
rigid-body motion of the sleeper. 
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Figure 3.8: EMA and theoretical analysis of a free sleeper. (a) Test setup; (b) FRFs of all sensors for Impact 
2; (c) Mode shapes and frequencies of the four resonance peaks.  

 
Figure 3.9: EMA results of the in-situ sleeper in laboratory tests. (a) Test setup; (b) FRFs of all sensors for 
Impact 1 and 2; (c) Mode shapes and frequencies of the seven resonance peaks.   
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3.4.3. EMA OF THE IN-SITU SLEEPER 
Hammer tests are also performed on the in-situ sleeper in Section 3.4.1 using the same 
hammer. The locations of impacts and sensors are shown in Figure 3.9 (a). We repeat 
the test five times at each location, which is more than that of the free sleeper due to 
lower repeatability. The average FRFs for the first two impact locations are shown in 
Figure 3.9 (b) as examples. Seven resonance peaks are identified, labeled as Q1~Q7. 
The corresponding natural frequencies and mode shapes are shown in Figure 3.9 (c). 

Compared with the free sleeper, the in-situ sleeper shows more resonance peaks 
below 2,000 Hz, and their mode shapes deviate for different impact locations. Q1~Q4 
correspond to rigid-body motions but are not comparable to P0 due to different boundary 
conditions. Q5~Q7 correspond to P1~P3 (the first three bending modes), respectively. 
The results of Q5 and P1 show significant deviations. The frequencies of Q6 and P2 are 
consistent, while those of Q7 and P3 deviate slightly. Besides, the peaks of the in-situ 
sleeper are smoother due to the damping effect. The above findings reflect the 
differences in modal characteristics due to different boundary conditions and also the 
influence of other track components. 

3.4.4. COMPARISONS BETWEEN TFOMA AND EMA 
By comparing the identification results of TFOMA and EMA for the same in-situ sleeper, 
we find that: 

• A1/B1/D1~A4/B4/D4 in TFOMA correspond to Q1~Q4 in EMA (the rigid-
body motions). They have similar frequency bands, but the bounce motion is 
more dominant in TFOMA, while the roll motion is more dominant in EMA. 
This indicates that the rigid-body motions are sensitive to the characteristics of 
excitations. 

• A5/B5/D5 in TFOMA correspond to Q5 in EMA (the 1st bending mode) with 
the MAC of 0.92/0.93/0.44. Among the first three bending modes, the 1st bending 
mode is the most dominant in both TFOMA and EMA. The frequencies of 
TFOMA are lower than that of EMA, and A5/B5 provides a higher MAC than 
D5. 

• A8/B8/D8 in TFOMA correspond to Q6 in EMA (the 2nd bending mode) with 
the MAC of 0.95/0.98/0.87. Their frequencies are consistent. 

• A10/B10/D10 in TFOMA correspond to Q7 in EMA (the 3rd bending mode) 
with the MAC of 0.98/0.97/0.98. Their frequencies are consistent. 

• B6/D6/A7 and A9/B9/D9 in TFOMA belong to extra modes related to other 
track components, e.g., rails.  

In summary, TFOMA provides comparable identification results to EMA. The 
differences in the identified modal parameters reflect the influence of a moving train 
load on track dynamics. Among the three phases in TFOMA, the impact response and 
the pre-passage phase outperform the post-passage phase in terms of mode shape 
consistency with EMA.  



50         3. OPERATIONAL MODAL IDENTIFICATION IN TIME-FREQUENCY REPRESENTATION 
 

3.5. APPLICATION TO FIELD TESTS 

3.5.1. TFOMA OF AN IN-SITU SLEEPER 
We test the proposed method using sleeper vibrations measured at Faurei Railway Test 
Center in Romania. The track consists of UIC60 E1 rails, Vossloh W14 fastening 
systems, and B70-W60 prestressed concrete sleepers. As shown in Figure 3.10, four 
accelerometers (Brüel & Kjær 4514-004) are mounted on a sleeper. A train passes over 
the instrumented sleeper at three different speeds –15 km/h, 80 km/h, and 200 km/h. The 
vertical accelerations are recorded at a sampling frequency of 25,600 Hz. We find that 
Sensor L2 was not functional, most likely due to a loose installation, so we use the data 
from the other three functional sensors for analysis. 

 
Figure 3.10: The instrumented sleeper in field tests. 

The TFOMA method is applied to the measured data with the parameters listed in 
Table 3.2. According to Section 3.4, only the pre-passage phases are studied, while 
different lengths of signals are used due to the difference in speeds. The raw data and 
the corresponding MI spectrograms up to 4,500 Hz are shown in Figure 3.11. Generally, 
the patterns of MI are similar at different speeds. Some peak bands are wide in frequency, 
whereas others are narrow. The low-frequency bands are more pronounced at low speeds, 
especially when the train is close to the sleeper, whereas the high-frequency bands are 
more pronounced at high speeds and continuously dominant even when the train is still 
far away from the sleeper. In addition, some peak bands are not horizontal, i.e., their 
frequencies change as the train approaches. 

Table 3.2: Selected parameters for field tests. 

Parameters Values Parameters Values 

Number of segments nc 1 Segment length nb 5,120 (0.2 s) 

Overlap ratio in PSD estimation αb 0.5 Overlap ratio in STFDD αs 0.95 

Half kernel size in time a 10 Half kernel size in frequency b 5 

Exponent of singular value λv 1 Exponent of LMSS λl 3 

Time resolution Δt 10 ms Frequency resolution Δf 5 Hz 
 
We select fourteen peak bands at each speed, labeled as O1~O14. The first four 

columns of Table 3.3 present the characteristics of each peak band and also the average 
natural frequencies and mode shapes. In each plot, the identified mode shapes at a certain 
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speed are plotted in a light color, and their average is plotted in a dark color. In general, 
the identified frequencies and mode shapes are similar at different speeds while varying 
slightly due to the influence of train speed and noise. More discussion will be provided 
in Section 3.5.3. 

 
Figure 3.11: TFOMA results of field tests. (a) Sleeper accelerations at 15 km/h, 80 km/h, 200 km/h in the 
time domain; (b) MI spectrograms at 15 km/h, 80 km/h, 200 km/h. 

 
Figure 3.12: EMA results of field tests. (a) FRFs for Impact 1; (b) FRFs for Impact 2; (c) FRFs for Impact 3; 
(d) FRFs for Impact 4; (e) FRFs for Impact 5. 



52         3. OPERATIONAL MODAL IDENTIFICATION IN TIME-FREQUENCY REPRESENTATION 
 

Table 3.3: Comparisons between the results of TFOMA, EMA, and theoretical analysis. 
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3.5. APPLICATION TO FIELD TESTS 

3.5.2. EMA OF THE IN-SITU SLEEPER 
For comparison, we perform hammer tests with the same setup in Figure 3.10. All the 
four sensors were functional in the tests. We generate impacts at five locations using a 
big hammer (PCB 086D50) and a small hammer (PCB 086D05). At each location, we 
repeat the test five times with each hammer. Considering their different excitation 
frequencies [8], the results of the big and small hammers are used for analyses below 
2,000 Hz and above 500 Hz, respectively. The average FRFs are plotted in Figure 3.12, 
and eleven resonance peaks are identified, labeled as E1~E11. Compared to the sleeper 
in the test rig, the natural frequencies of the real sleeper are much lower due to its size 
and material. Most of the resonance peaks, especially at high frequencies, are smooth, 
which is consistent with the finding in Section 3.4.3. The average frequency and mode 
shapes for each resonance peak are shown in Table 3.3, where the identified mode shapes 
deviate for different hammers and impact locations. 

3.5.3. COMPARISONS BETWEEN TFOMA AND EMA 
Moreover, we compute the theoretical mode shapes of a free-free beam of length 2.5 m 
according to Eq. (3.16) and (3.17). Further, in Table 3.3, we match the identified modes 
of TFOMA with those of EMA and theoretical analysis while referring to the 
characteristics of sleeper modes reported in [5, 161]. The average MAC in Table 3.3 
quantifies the consistency of mode shapes between TFOMA and EMA. The main 
findings are summarized below. 

• TFOMA identifies the rigid-body motions of the sleeper at frequencies lower 
than those of the bending modes, which is consistent with [5, 161]. The bounce 
motion is more pronounced, which is consistent with the laboratory test. The 
rigid-body motions are not observed in EMA because the impact forces cannot 
effectively excite such modes. 

• In terms of mode shapes, both TFOMA and EMA consistently (with high MAC 
values) identify the 1st, 2nd, 4th, 5th, 7th, 8th, and 10th bending modes. However, 
neither identifies the 3rd, 6th, and 9th bending modes, probably because these 
modes are less dominant or the sensors are close to the nodes.  

• The frequencies of E1, E2, and E4 are close to those reported in [5, 161] under 
unloaded conditions. For the 1st and 2nd bending, the frequencies of TFOMA 
deviate from those of EMA, reflecting the influence of the train load. For high-
order modes, the frequencies of TFOMA and EMA are very close. 

• Both TFOMA and EMA identify extra modes probably related to other 
components. 

Furthermore, the pros and cons of TFOMA and EMA are discussed as follows. 

• TFOMA can capture the change of modal characteristics over time and 
frequency, whereas EMA cannot. 

• TFOMA works under operational loads in a broad frequency range, but the 
excitation spectrum is usually not flat, which can cause errors in modal 
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identification. EMA works under controlled excitations but requires manual 
impacts and also different hammers for different frequency ranges. 

• For a complex coupled system (e.g., a train-track system), the response of a 
component (e.g., a sleeper) depends not only on its own modal characteristics 
but also on the dynamical influence of other components (e.g., trains, rails, 
fasteners, and ballast). As a consequence, extra modes can be more pronounced 
in OMA than in EMA. 

• For each mode, the mode shapes identified by TFOMA spread within a certain 
variance, while those identified by EMA are sensitive to impact locations and 
may disappear or be distorted when the impact is close to a node or an edge.  

• TFOMA can provide informative results from acceleration measurements of 
only a few seconds under operational conditions, whereas EMA requires longer 
experimental time, more workload, and temporary operation shutdowns.  

3.6. DISCUSSIONS 

3.6.1. ESTIMATION OF DAMPING RATIO 
This chapter mainly focuses on estimating damped natural frequencies and mode shapes. 
In this section, the estimation of damping ratios is discussed. First, for the in-situ sleeper 
in the laboratory tests, the damping ratio of each peak band is obtained while estimating 
the natural frequencies in Section 3.4.1. Besides, we estimate the damping ratios from 
the FRFs in Section 3.4.3 using the peak-picking method [162]. Then, for all the matched 
modes in Section 3.4.4, the estimated damping ratios are plotted against their natural 
frequencies in Figure 3.13 (a). For most modes, TFOMA in different phases produces 
damping ratio estimates similar to EMA while underestimating those at low frequencies. 

 
Figure 3.13: Comparison of damping ratio estimation between TFOMA and EMA. (a) Laboratory tests; (b) 
Field tests. 

Similarly, the damping ratios of the sleeper in the field tests are estimated and plotted 
in Figure 3.13 (b). The results of TFOMA are similar between different speeds, but the 
estimated damping ratios are lower than those of EMA. These deviations may come from 
two sources. First, the different loading conditions can lead to different modal 
characteristics, including damping ratios. This effect is pronounced for railway tracks 
since the train load is enormous. Second, the estimation based on a truncated spectrum 
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3.6. DISCUSSIONS 

(either in TFOMA or EMA) can cause errors, especially when the frequency resolution 
is low or adjacent modes affect each other [83, 85]. In summary, TFOMA can provide 
accurate damping estimates in cases of well-separated modes, but it needs further 
improvement to handle structures with significant nonlinearity and dense modes. 

3.6.2. IDENTIFICATION OF CLOSELY-SPACED MODES 
In this chapter, the proposed method is applied to the modal identification of railway 
sleepers, where the bending modes of different orders are separated. It has the potential 
to identify closely-spaced modes by involving multiple non-zero singular values. This 
section demonstrates such capability using a simulation example. As shown in Figure 
3.14 (a), a rectangular plate suspended by springs and dampers vibrates in the x-y plane 
with three degrees of freedom – x, y, θ. External excitation forces are applied at the upper 
right corner, and the equations of motion are given as follows.  

2 2                                        
2 2                                        

2 2 2 2

x x x

y y y

x y x y y x

mx k x c x P
my k y c y P
I bk ak bc ac aP bPθ θ θ θ θ

 + + =
 + + =
 + + + + = −

 

 

  

                         (3.18) 

Based on the parameters and excitations defined in Table 3.4, Eq. (3.18) is solved 
numerically using the Newmark-β method [163] with a time step of 0.2 ms. The 
bidirectional accelerations of the four edge centers are fed into the TFOMA method with 
the parameters in Table 3.5. The number of segments nc=2 is used to distinguish the two 
translational modes, which are closely spaced since they have equal natural frequencies 
due to equal stiffness.  

 
Figure 3.14: TFOMA results of a vibrating plate. (a) Plate model; (b) 1st MI spectrogram; (c) 2nd MI 
spectrogram; (d) natural frequencies and mode shapes of different peak bands. 
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Table 3.4: Parameters and excitations of the plate. 

Parameters Values Parameters Values 

Mass m 1 kg Moment of inertia I m(a2+b2)/3 

Half of the width a 0.2 m Half of the height b 0.3 m 

Stiffness kx, ky 100 kN/m Damping cx, cy 2 N·s/m 

Excitation Px (0~2 s) White noise with the 
power of 10 dBW 

Excitation Py (0~2 s) 0 

Excitation Px (2~4 s) 0 Excitation Py (2~4 s) White noise with the 
power of 20 dBW 

Excitation Px (4~6 s) White noise with the 
power of 10 dBW 

Excitation Py (4~6 s) White noise with the 
power of 20 dBW 

Table 3.5: Selected parameters for the plate. 

Parameters Values Parameters Values 

Number of segments nc 2 Segment length nb 1,250 (0.25 s) 

Overlap ratio in PSD estimation αb 0.5 Overlap ratio in STFDD αs 0.95 

Half kernel size in time a 5 Half kernel size in frequency b 3 

Exponent of singular value λv 1 Exponent of LMSS λl 3 

Time resolution Δt 18.75 ms Frequency resolution Δf 4 Hz 
 
Two MI spectrograms are obtained, as shown in Figure 3.14 (b) and (c), with eight 

peak bands (with MI>0.8) identified in different phases of the response. The estimated 
natural frequencies and mode shapes are shown in Figure 3.14 (d). In 0~2 s, the 
translational mode in the x direction is identified (X1), whereas the one in the y direction 
is not identified since the excitation is applied only in the x direction. When the excitation 
is applied only in the y direction in 2~4 s, the translational mode in the y direction is 
identified (Y1), while the one in the x direction is still identifiable from the decay 
response (Y3). When the excitations are applied in both directions, the two translational 
modes are identified (XY1 and XY3), and XY1 (in the 1st spectrogram) is more dominant 
than XY3 (in the 2nd spectrogram) since the excitation in the y direction has greater 
power. Moreover, the rotational mode is identified in all three phases (X2, Y2, and XY2). 
For all modes, the estimated frequencies are consistent with the engine frequencies 
calculated from the model parameters. The simulation result demonstrates that the 
proposed method can distinguish closely-spaced modes under nonstationary excitations 
as long as the modes are effectively excited. We expect the validity of this capability to 
hold in real scenarios while it remains to be demonstrated. 

3.7. CONCLUSIONS 
This chapter presents an interpretable OMA method in time-frequency representation. 
Short-time FDD and a convolution-based strategy are proposed to obtain singular values 
and local mode shape similarity, respectively, which are further fused into mode 
indicators by a fuzzy-based strategy. The main conclusions are summarised below. 



 59 
 

3.7. CONCLUSIONS 

• TFOMA is an explicit tool that provides not only a global view of modal 
characteristics but also estimates of modal parameters. Its interpretability is 
enhanced by including physical information from the user’s prior knowledge in 
selecting parameters and peak bands. 

• TFOMA is applicable to strongly nonstationary responses under time-varying 
loads and conditions and robust to the length of signals due to its discrete and 
localized nature.  

• TFOMA identifies the rigid-body motions and bending modes of the sleepers at 
frequencies up to 6,500 Hz in the laboratory tests and 4,500 Hz in the field tests. 
The passage response provides similar results to the impact response, while the 
pre-passage phase slightly outperforms the post-passage phase. TFOMA works 
effectively at speeds up to 200 km/h by using only three sensors, and some high-
frequency modes are identifiable when the train is 150 m away.  

• TFOMA provides identification results comparable to EMA, while their 
deviations reflect the dynamical influence of train loading and other track 
components.  
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4 
SPEED-DEPENDENT 

CHARACTERISTICS OF TRAIN-
BORNE LDV MEASUREMENT 

 
 
 
A train-borne laser Doppler vibrometer (LDV) measures the vibration response of railway tracks 
from a moving train. This chapter proposes a holistic methodology to characterize train-borne 
LDV measurements by combining computer-aided approaches and real-life measurements. The 
focus is on the speed-dependent characteristics because the train speed affects the intensity of 
track vibrations and the intensity of speckle noise, which defines the quality and usability of the 
measured signals. First, numerical models are established and validated to simulate sleeper 
vibrations and speckle noise separately. Then, we propose a vibration-noise separation method 
that can adaptively extract speckle noise and structural vibrations from LDV signals measured 
at different speeds. The parameters of the separation method are tuned using simulation signals. 
The method is then validated using laboratory measurements in a vehicle-track test rig and 
applied to field measurements on a railway track in Rotterdam, The Netherlands. Further, the 
speed-dependent characteristics of train-borne LDV measurement are determined by analyzing 
the competition between track vibrations and speckle noise at different speeds. Simulation and 
measurement results show that an optimal speed range yields the highest signal-to-noise ratio, 
which varies for different track structures, measurement configurations, and operational 
conditions. The findings demonstrate the potential of train-borne LDV for large-scale rail 
infrastructure monitoring. 
 
 

 
Apart from minor updates, this chapter has been submitted for publication as: Zeng Y, Nunez A, Li Z. (2023). 
Railway sleeper vibration measurement by train-borne laser Doppler vibrometer and its speed-dependent 
characteristics. 



62         4. SPEED-DEPENDENT CHARACTERISTICS OF TRAIN-BORNE LDV MEASUREMENT 
 

4.1. INTRODUCTION 
A running train is a natural source to excite the dynamic response of railway tracks over 
a broad frequency band. Track vibration measurement enables the dynamic properties 
of railway tracks to be assessed under operational conditions. A train-borne LDV can 
measure the vibration of track structures as the train moves. The variation of track 
vibration and speckle noise with train speed affects the quality and usability of train-
borne LDV signals, which further affects the applicability of train-borne LDV 
technology. To investigate the speed-dependent characteristics of train-borne LDV 
measurements, this chapter develops a holistic methodology to characterize train-borne 
LDV measurements and applies it to vibration measurements of railway sleepers.  

The methodology of the research is shown in Figure 4.1. In Part 1, numerical models 
of train-track-LDV dynamics and speckle noise are established and validated with 
laboratory measurements. This provides insights into the train-borne LDV system prior 
to field tests and enables sleeper vibrations and speckle noise to be characterized 
separately without interfering with each other. Since structural vibration and speckle 
noise are mixed in real-life measurements, Part 2 presents a signal processing method to 
separate them effectively at different train speeds. The parameters of the separation 
method are tuned using simulation signals, and the method is then validated with 
laboratory measurements under well-controlled and well-observed conditions. In Part 3, 
field measurements of track vibration using a train-borne LDV are performed in 
Rotterdam, The Netherlands, and the validated separation method is applied to the 
measured signals. In Part 4, the speed-dependent characteristics are investigated based 
on the simulations, laboratory, and field measurements. Section 4.2~4.5 of this chapter 
present Part 1~4, respectively. Conclusions are drawn in Section 4.6, and details of the 
simulation models are presented in Appendix A. 

 
Figure 4.1: Methodology for characterizing train-borne LDV measurements. 
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4.2. SIMULATION AND VALIDATION 

4.2. SIMULATION AND VALIDATION 

4.2.1. NUMERICAL MODELING 
This research first uses modeling and simulation to characterize train-borne LDV 
measurement and generate signals of track vibration and speckle noise. A vertical train-
track-LDV model is built to simulate sleeper vibration measurement using a train-borne 
LDV, as shown in Figure 4.2. The train is modeled as a quarter vehicle. An LDV is 
rigidly connected to the vehicle, and its laser spot is targeted onto the track. The track is 
modeled as a simply-supported Euler-Bernoulli beam discretely supported by sleepers, 
and the Ritz method is used to characterize the dynamics of the beam [164]. The contact 
force is calculated based on the Hertz theory considering the vertical irregularity of the 
rail [164]. All the equations of motion are solved numerically by the Newmark-β method 
[163], while the contact force is updated at each step. 

In Figure 4.2, the laser spot has an offset of Δx from the wheel-rail contact point. 
Assuming that the vibration of the LDV can be perfectly removed from the LDV signal 
[165], the ideal vibration of the i-th sleeper measured by the LDV is expressed as follows. 

( ) ( )s s swhen 
2 2i i itd dz t z t xv xx= − < <+ ∆ +                          (4.1) 

where zsi is the displacement of the i-th sleeper, t is the time, d is the sleeper width, v is 
the vehicle speed, and xsi is the position of the i-th sleeper. 

Details of the model can be found in Appendix A.1. The model is considered 
effective and computationally cheap for simulating rigid-body vibrations of sleepers in 
a multi-layer track structure under a moving train load. Nevertheless, other models, such 
as finite element models, can also be employed in the proposed methodology. 

 
Figure 4.2: A train-track-LDV model. 

Figure 4.3 (a) shows the working principle of an LDV. A laser beam is projected 
onto a target surface, and the scattered beam is collected on a photodetector, where 
speckle patterns inevitably appear [166]. Each speckle is heterodyned with a reference 
beam, and the intensity of the heterodyned beams is converted into a signal with the 
following frequency [167]. 
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            ( ) ( ) ( )M
D R

4 dt z t t
dt

π θω ω
λ

= + +                              (4.2) 

where ωR is an artificial frequency shift, λ is the wavelength of the laser, ( )z t  is the 
vibration velocity of the target that causes the Doppler frequency shift, and θM is a phase 
angle expressed as follows, 
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where K is the total number of speckles, ak is the area of the k-th speckle on the 
photodetector, ISk and θSk are the intensity and phase of the k-th speckle, respectively, 
and θR is the phase of the reference beam. According to Eq. (4.2), the speckle noise 
caused by the phase change rate dθM/dt when measuring ( )z t  is expressed as follows. 

            ( ) ( )M

4
dt t
dt

λ θξ
π

= ⋅             (4.4) 

For train-borne LDV measurements, speckle translation due to the in-plane motion 
between the laser spot and the target surface plays a dominant role in dθM/dt [32]. The 
space and time correlation lengths of the speckles, lC and τC, are two important 
parameters depending on the laser properties and measurement setup [168]. The space 
correlation length lC characterizes the size of each speckle, within which ISk and θSk are 
constants following a negative exponential distribution and a uniform distribution, 
respectively [169]. The time correlation length τC describes the time length for the 
speckle pattern to advance by one speckle, which is inversely proportional to v [168].  

As shown in Figure 4.3 (b), each speckle is modeled as a square with m×n grids [170]. 
A full speckle transition is divided into m partial transitions, and different columns are 
randomly misaligned along the n grids to account for speckle irregularities. The 
photodetector is of size a·lC×a·lC, and the intensity and phase of the reference beam on 
the photodetector, IR and θR, are assumed constant [170]. In the simulation of speckle 
translation, the photodetector starts from an initial position and moves at the constant 
speed of lC/τC. At each partial transition, indexed by the j-th step, the overlapping area 
between the photodetector and each speckle is obtained, and the phase θM(j) is calculated 
according to Eq. (4.3). Then, the phase change rate at the j-th step is estimated as follows, 

            ( ) ( ) ( ) ( )
( )

M M MM

C

1j j jd j
dt t m

θ θ θθ
τ

∆ − −
= =

∆
                                 (4.5) 

where ΔθM should be constrained to be less than π/2.  
Based on the simulated phase change rates, the speckle noise ξ(t) is obtained 

according to Eq. (4.4). A low-pass finite impulse response filter with cut-off frequency 
fC is applied to ξ(t) to resemble the signal acquisition process. More details of the model 
can be found in Appendix A.2. 
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4.2. SIMULATION AND VALIDATION 

 
Figure 4.3: (a) Working principle of an LDV. (b) Simulation of speckle translation. 

4.2.2. LABORATORY MEASUREMENT 
Laboratory measurements play an important role in this research to validate the 
numerical models and the signal processing method under well-controlled and well-
observed conditions. We perform laboratory measurements in the V-Track test rig, as 
shown in Figure 4.4. The introduction of this test rig and the instrumentation of the LDV 
can be found in Section 2.2.1. At the same time, the angular position of the beam is 
measured, which can be used to determine the position of the wheel and the laser spot. 
Moreover, we install accelerometers (PCB 356B21) on some sleepers to measure their 
vertical accelerations in response to the passing vehicle. An additional accelerometer is 
installed on the mirror to capture its effect on the LDV signal. We use the sampling 
frequency of 102,400 Hz. 

 
Figure 4.4: V-Track test rig instrumented with an LDV. 

4.2.3. MODEL VALIDATION 
The parameters for simulating the vehicle-track dynamics are listed in Appendix A.1. 
We generate the vertical irregularity of the rail by applying a low-pass filter to Gaussian 
white noise. The spectrum of such artificial spatial noise is smoothly monotonic and 
maximally flat in the passband. Though it may not perfectly replicate the track geometry 
in V-Track, it resembles the decay pattern of real-life track irregularity spectrum and 
enables the dynamic wheel-rail force to cover a wide range of frequencies.  

We validate the track dynamics model using the trackside accelerometer 
measurements in V-Track. Figure 4.5 shows the vibrations of the center sleeper 
simulated at two different vehicle speeds. The trackside measurements are compared 
with the simulation results after conversion from acceleration to velocity through 
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frequency-domain integration [144]. It can be seen that the amplitude and frequency of 
the sleeper vibration are larger at a higher speed. The simulation results are similar to 
the measurements in both time and frequency domains, but their amplitudes do not 
exactly match, especially at the higher speed, mainly due to the simplification of the 
model and the rail irregularity. Despite such differences, the model is considered 
applicable for characterizing the rigid-body vibration of the sleepers under the wheel 
passage. Using a more complex train-track model and a more accurate rail irregularity 
spectrum can potentially provide a better match between simulations and measurements. 
This requires more effort for modeling and parameter tuning, which is not the focus of 
this dissertation. 

   
Figure 4.5: Comparison in sleeper vibrations between simulations and measurements. (a) Vehicle speed 2 
km/h; (b) Vehicle speed 12 km/h. 

 
Figure 4.6: Comparison in speckle noise between simulations and measurements. (a) Vehicle speed 2 km/h; 
(b) Vehicle speed 12 km/h.  

We validate the speckle translation model using speckle noise separated from LDV 
signals in laboratory measurements (the separation method will be introduced in Section 
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4.3. VIBRATION-NOISE SEPARATION 

4.3). The simulation parameters are listed in Appendix A.2, and the simulated speckle 
noise at two vehicle speeds is compared with the measurements in Figure 4.6. It can be 
seen that, at a higher speed, spikes appear more frequently with greater amplitudes and 
shorter durations. The simulated speckle noise behaves similarly to the measurements in 
terms of the interval, amplitude, and duration of spikes. Meanwhile, good consistency 
can be observed over a wide frequency range. It should be noted that the simulation 
cannot exactly replicate the measurement due to the extreme randomness of speckle 
patterns. Instead, the statistical agreement between them at different speeds 
demonstrates the effectiveness of the established model in reproducing the speckle noise.  

4.3. VIBRATION-NOISE SEPARATION 

4.3.1. A SPEED-ADAPTIVE METHOD 
In real-life measurements, structural vibration and speckle noise are mixed. Thus, 
effective signal processing is needed to separate them. As introduced in Section 1.2.3, 
no existing method can achieve this adaptively at different speeds. In Chapter 2, spikes 
are first distinguished through a wavelet-based detection method. Then, the detected 
spikes are replaced with estimates through an autoregressive integrated moving average 
(ARIMA)-based imputation method. Finally, the residual noise is filtered out using a 
band-pass filter. However, the selected parameters of this method vary at different 
speeds due to the speed-dependent characteristics of spikes. To address this problem, we 
adapt the method to extract speckle noise and target vibration without the need to adjust 
its parameters for different speeds. 

Step 1. Perform one-level discrete Haar wavelet decomposition and reconstruction 
to a raw LDV signal x0(t) and calculate spike indicators Rd(t) as follows, 

( ) ( )1 D 0=DWTcD t x t                                                   (4.6) 

( ) ( )d D 1IDWTR t cD t=                                                  (4.7) 

where DWTD[·] and IDWTD[·] represent forward and inverse discrete wavelet 
transforms, respectively, and cD1(t) is the detail coefficients. Then, find P% 
locations in x0(t) with the largest spike indicators Rd(t) and label them as large spikes. 

Step 2. Define an ARIMA model with an autoregressive order pA, a moving average 
order qA, and a differencing order dA, denoted as ARIMA(pA, dA, qA). Train the 
ARIMA model with x0(t) along the forward direction, and replace the labeled points 
sequentially with predictions from the ARIMA model. Repeat the above training and 
replacement process along the backward direction. Then, average the forward and 
backward replacements to obtain the imputed signal x1(t). The noise component 
(large spikes) is ξ1(t)=x0(t)−x1(t). 

Step 3. Apply a band-pass filter (with the cut-off frequency of fL and fH) and a high-
pass filter (with the same cut-off frequency fH) to x1(t), resulting in the target 
vibration x2(t) and the noise component (small spikes) ξ2(t). Finally, superpose ξ1(t) 
with ξ2(t) as the total noise ξ(t)=ξ1(t)+ξ2(t). 
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The above separation method is illustrated in Figure 4.7. Step 1~2 aim to extract P% 

most influential points (large spikes) from x0(t) into ξ1(t), which are usually dominant 
over a broad frequency range and easier to be separated through time-domain analysis. 
Specifically, Step 1 calculates spike indicators Rd(t) that represent the noise component 
in x0(t) and then labels P% data points based on their Rd(t). Step 2 then replaces the 
labeled spikes with predictions from the ARIMA models and takes the difference 
between the imputed signal x1(t) and the original signal x0(t) as the large spikes ξ1(t). 
However, changes in train speed lead to changes in spike characteristics. If the actual 
percentage of large spikes is lower than P%, e.g., when the train speed is low, normal 
data points may be labeled as spikes in Step 1. These points are then replaced in Step 2 
by predictions with similar amplitude, thus not affecting ξ1(t) significantly. If the actual 
percentage of large spikes is higher than P%, e.g., when the train speed is high, some 
less influential spikes may be retained in x1(t). Since small spikes are usually at high 
frequencies, they are filtered out through frequency-domain analysis and then included 
in ξ2(t) in Step 3. By combining ξ1(t) with ξ2(t), speckle noise is eventually obtained. 

The effectiveness of the separation method at various speeds requires a proper 
selection of its parameters. The most important is the proportion of labeled spikes P% 
in Step 1, which affects the labeling of spikes and the number of replacements. The 
orders of the ARIMA model (pA, dA, qA) affect the performance of imputation in Step 2. 
According to Section 2.3.2, we recommend setting dA=1 and qA=1 since they provide 
good results at different speeds. The parameters P% and pA should be tuned considering 
the separation performance and the computational cost at different speeds. This can be 
achieved either quantitatively based on simulated signals or qualitatively through trial 
and observation based on measured signals. Moreover, the cut-off frequencies fL and fH 
in Step 3 are important for separating structural vibrations from residual noise. We 
recommend setting them to the lowest and highest frequencies of interest for the target 
structural vibration, respectively. Procedurally, fL and fH can be defined before or after 
applying Step 1 and 2. 

 
Figure 4.7: Flowchart of the vibration-noise separation method. 

4.3.2. PARAMETER TUNING WITH SIMULATIONS 
The simulation models in Section 4.2 can generate signals of track vibration and speckle 
noise at different speeds, which makes it possible to quantify the performance of the 
separation method and tune its parameters. For each sleeper under a certain vehicle speed, 
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4.3. VIBRATION-NOISE SEPARATION 

the simulated train-borne LDV signal is obtained by superposing the simulated sleeper 
vibration with the simulated speckle noise. Then, we apply the proposed separation 
method to the superposed signal and compare the separated vibration and noise 
components with the original vibration and noise signals, respectively. The root-mean-
square (RMS) errors and the Pearson correlation coefficient between the separated 
components and the original signals are calculated to quantify their deviations. 

Figure 4.8 shows the separation performance for a single sleeper using different P% 
in Step 1. “Raw signal” represents the result without vibration-noise separation, which 
yields the largest error and the lowest correlation. “Direct filtering” represents applying 
solely the filter in Step 3 to the raw signal, which separates some noise in the frequency 
domain. In cases of P%>0, the involvement of the time-domain separation in Step 1 and 
2 further improves the performance, and P% in the range of 10~40% provides low 
separation errors and high correlation coefficients for both the vibration and the noise at 
different speeds. When P% is too small, large spikes cannot be effectively extracted in 
Step 1, so the errors are large. When P% is too large, too many points need to be replaced, 
resulting in large imputation errors. 

 
Figure 4.8: Separation performance with different P% (pA=20, dA=1, qA=1, fL=0 Hz, fH=2,000 Hz). (a) RMS 
errors; (b) Correlation coefficient. 

 

 
Figure 4.9: Separation performance with different pA (P%=25%, dA=1, qA=1, fL=0 Hz, fH=2,000 Hz). (a) 
RMS errors; (b) Correlation coefficient; (c) CPU time (on Intel Xeon E5-2643 with 32 GB RAM). 
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Figure 4.10: Separation performance at different speeds (P%=25%, pA=20, dA=1, qA=1, fL=0 Hz, fH=2,000 
Hz). (a) Sleeper vibration; (b) Speckle noise. 

A similar analysis is performed for the order pA in Step 2, as shown in Figure 4.9. It 
can be seen that the root mean square (RMS) error and correlation coefficient are not 
sensitive to pA as long as pA>5. However, pA significantly affects the computational cost, 
and the higher the pA, the longer the CPU time. 

In this chapter, we use P%=25% and pA=20 as a balance between the separation 
performance and the computational cost. Figure 4.10 plots the separation results for nine 
sleepers simulated at different speeds. It shows that the separated vibration and noise 
components are highly correlated with the original signals. Such a high correlation holds 
at different speeds, and the deviation between the different sleepers is small. This 
demonstrates the effectiveness of the separation method at different train speeds. 

4.3.3. VALIDATION WITH LABORATORY MEASUREMENTS 
In this section, we validate the separation method with measurements in V-Track. We 
use the same parameters in Step 1 and 2 as in Section 4.3.2 (P%=25%, pA=20, dA=1, 
qA=1). In Step 3, we use fL=50 Hz to eliminate the effect of the mirror vibration and 
fH=1,500 Hz to capture the rigid-body motion of the sleepers, according to Section 3.4. 
The separation results for a typical sleeper at different speeds are shown in Figure 
4.11~4.13. As the speed increases, the signal length becomes shorter, and the frequency 
resolution becomes lower. By comparing the raw and imputed signals, it can be seen that 
large spikes are separated after Step 1 and 2, while the small spikes remain to be 
separated in Step 3.  Additionally, the mirror vibration dominates at the low frequencies 
and is filtered out in Step 3. 

 
Figure 4.11: Separation result at 2 km/h. (a) Imputed signal; (b) Separated noise; (c) Comparison in the time 
domain; (d) Comparison in the frequency domain. 
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4.4. APPLICATION TO FIELD MEASUREMENT 

 
Figure 4.12: Separation result at 8 km/h. (a) Imputed signal; (b) Separated noise; (c) Comparison in the time 
domain; (d) Comparison in the frequency domain.  

 
Figure 4.13: Separation result at 12 km/h. (a) Imputed signal; (b) Separated noise; (c) Comparison in the time 
domain; (d) Comparison in the frequency domain. 

Generally, the separated noise is very close to that in the raw signals. Meanwhile, 
the sleeper vibrations separated from the train-borne LDV signals are consistent with 
those measured by the trackside accelerometer in both time and frequency domains. 
These results demonstrate the measuring capability of the train-borne LDV and the 
effectiveness of the proposed method at different speeds. Some residual noise can be 
noticed in the separated sleeper vibration, which is less pronounced at higher speeds due 
to increased vibration amplitude and frequency. The deviations between the train-borne 
LDV signals and the trackside accelerometer signals are caused by imperfect separation 
and the spatial deviations between the laser spot and the accelerometers. 

4.4. APPLICATION TO FIELD MEASUREMENT 
Since the above simulations and laboratory measurements represent scaled and 
simplified vehicle-track systems, field measurements are necessary to further test the 
train-borne LDV technology and the vibration-noise separation method in the real world. 
We test the train-borne LDV technology on the CTO measurement train of TU Delft, as 
shown in Figure 4.14. The same LDV (Polytec RSV-150) is installed in the cabin, and 
its laser beam is targeted at sleepers (and ballast) through a hole in the cabin floor. Two 
accelerometers (PCB 356B21) are installed on the LDV to measure its vibration, and a 
video camera is used to record the trajectory of the laser spot on track structures. The 
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wheel-laser offset is around 1.2 m. We use the sampling rates of 102,400 Hz for the LDV 
and accelerometers and 240 fps for the camera. Since the vibration signals and the video 
are stored separately, they are synchronized before further analysis. 

We conduct the measurements on an operational railway track in Rotterdam, The 
Netherlands, as shown in Figure 4.15. It is a typical ballasted track with concrete sleepers. 
The CTO train is pulled by a locomotive connected to the LDV side. We focus on 
measurements at speeds below 30 km/h since higher speeds cause more significant 
motion blur, which induces more challenges in accurately positioning the laser spot on 
each individual sleeper. Figure 4.16 shows the results measured in two typical sections. 
The upper plots show the change in train speeds with respect to sleeper numbers, in 
which the speed is estimated by assuming a uniform sleeper spacing. The LDV signal is 
cut into segments for each sleeper, and the vibration-noise separation method (with the 
same parameters in Step 1 and 2 as in Section 4.3.2 and 4.3.3) is applied to each segment. 
The lower plots show by a colored strip the Fourier spectrum of the imputed signal (after 
Step 1 and 2) for each sleeper. We can see that the amplitude and dominant frequency 
of the sleeper vibration increase with the increase in speed. A higher speed generates 
more excitations at higher frequencies, thus leading to larger vibration responses at 
higher frequencies. 

 
Figure 4.14: CTO measurement train instrumented with an LDV. 

 
Figure 4.15: Train route and two selected sections. (Source of aerial photographs: GeoInformatie Portaal of 
ProRail https://maps.prorail.nl/) 

https://maps.prorail.nl/
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4.4. APPLICATION TO FIELD MEASUREMENT 

Figure 4.16 shows that the dominant frequency of the sleeper vibration is generally 
below 300 Hz. This is consistent with the frequency range of rigid-body motions and 
first-order bending of in-situ sleepers in Section 3.5 and [8]. Therefore, we use fH=300 
Hz in Step 3. It is noteworthy that fH differs significantly between the field and laboratory 
measurements due to the different natural frequencies of the sleepers. Additionally, we 
use fL=80 Hz to eliminate the influence of the LDV vibration.  

Three sleepers are further selected to showcase the vibration-noise separation 
performance, as plotted in Figure 4.17~4.19. Sleeper ① is measured at 6 km/h, where 
the LDV vibration dominates the raw signal and the amplitude of the extracted sleeper 
vibration is small. Sleeper ② and ③ are measured at 21 km/h, and the amplitude and 
dominant frequency of the sleeper vibration are significantly higher than those of the 
LDV vibration. Meanwhile, the amplitudes of the extracted sleeper vibration and speckle 
noise are larger than those of Sleeper ①. In general, the proposed separation method 
effectively reduces the speckle noise in the raw signals and captures the dominant sleeper 
vibrations at different speeds. 

It is worth noting that the same parameters in Step 1 and 2 work effectively under 
different scenarios, including simulations (up to 12 km/h), laboratory measurements (up 
to 12 km/h), and field measurements (up to 30 km/h). In addition, the performance is not 
sensitive to the variation in signal length due to the variation in speed. This reflects the 
generalization capability of the proposed method, at least under the tested speeds.  

 
Figure 4.16: Train speed and spectrum of imputed signal for each sleeper. (a) Section A; (b) Section B. 
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Figure 4.17: Separation result of Sample ①. (a) Imputed signal; (b) Separated noise; (c) Sleeper vibration in 
the time domain; (d) Sleeper vibration in the frequency domain. 

 
Figure 4.18: Separation result of Sample ②. (a) Imputed signal; (b) Separated noise; (c) Sleeper vibration in 
the time domain; (d) Sleeper vibration in the frequency domain. 

 
Figure 4.19: Separation result of Sample ③. (a) Imputed signal; (b) Separated noise; (c) Sleeper vibration in 
the time domain; (d) Sleeper vibration in the frequency domain. 

4.5. SPEED-DEPENDENT CHARACTERISTICS 
Signal-to-noise ratio (SNR) is a key indicator representing the quality and usability of a 
measured signal. It quantifies how pronounced the real vibration is with respect to the 
noise, calculated based on their RMS values as follows. 
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4.5. SPEED-DEPENDENT CHARACTERISTICS 

To investigate the influence of train speed on track vibrations and speckle noise and 
further on the SNR of train-borne LDV measurements, we evaluate the SNRs at different 
speeds through simulations, laboratory measurements, and field measurements. In the 
simulation scenario, sleeper vibrations and speckle noise are simulated separately, so the 
SNRs can be accurately obtained. For the laboratory and field measurements, sleeper 
vibrations and speckle noise are separated from the LDV signals using the method in 
Section 4.3, and the SNRs can only be an estimation. 

4.5.1. SIMULATIONS 
In the simulation study, we assume the stiffness and damping of rail pads and ballast 
follow Gaussian distributions as a consideration of uncertainties in the track properties. 
For each parameter, the mean is its nominal value, and the standard deviation is 5% of 
the nominal value. Random numbers following these distributions are generated for each 
sleeper. Figure 4.20 (a) shows the simulation results for the nine sleepers in the middle 
of the track, in which the RMS value is calculated based on the response of each sleeper 
when the wheel is within ±1.5 sleeper spacing from it. As the speed increases, the sleeper 
vibration becomes larger, with the slope first increasing and then decreasing, and the 
deviation between different sleepers also becomes larger. Figure 4.20 (c) shows the 
response of the center sleeper at 2 km/h, in which the train-borne LDV captures only a 
fragment of the response under the wheel passage. According to Eq. (4.1), the higher the 
speed, the shorter the fragment. Figure 4.20 (b) shows the RMS values of the fragments 
measured on the nine sleepers. The measured sleeper vibrations increase with speed, 
following the same trend as in Figure 4.20 (a), but the deviation between sleepers is more 
pronounced, reflecting larger uncertainties due to the shorter length of the measured 
sleeper response. 

 
Figure 4.20: Speed-dependent characteristics of simulated sleeper vibrations. (a) Sleeper responses under 
wheel passage; (b) Fragments measured by the train-borne LDV; (c) An example at 2 km/h. 
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Figure 4.21: Speed-dependent characteristics of simulated speckle noise and SNR. (a) Speckle noise; (b) 
SNR. 

Then, nine simulations of speckle translation are performed at each speed, 
corresponding to the measurements on the nine sleepers. The results in Figure 4.21 (a) 
show that the RMS value of the speckle noise increases almost linearly with the 
increasing speed while its deviation becomes larger. Further, the SNR is calculated for 
each sleeper, as shown in Figure 4.21 (b). A significant nonlinear behavior can be 
observed as a result of the competition between the linear increase of the speckle noise 
and the nonlinear increase of the track vibration with respect to the increasing speed. At 
low speeds, the sleeper vibration is too small while the speckle noise increases faster, so 
the SNR first decreases and reaches a local minimum at around 4 km/h. Then, as the 
sleeper vibration increases more steeply than the speckle noise, the SNR starts to 
increase and reaches a local maximum at around 10~15 km/h. Further, as the sleeper 
vibration increases more slowly, the SNR drops gradually as the speed increases.  

4.5.2. LABORATORY MEASUREMENT 
We apply the vibration-noise separation method to measurements in V-Track at different 
running laps and calculate the RMS values of the separated vibration, speckle noise, and 
the corresponding SNR for each sleeper (excluding those near the joints). Figure 4.22 
shows their box plot distributions at different speeds. It can be seen from the data points 
and their percentiles that the sleeper vibration and speckle noise exhibit more significant 
deviations between sleepers than the simulation results in Figure 4.20 (b). Such deviation 
is caused by the uncertainties in sleeper dynamics, track geometry, and laser speckle and 
becomes more pronounced as the speed increases. 

Despite the uncertainties, the mean, median, and percentiles in Figure 4.22 (a) show 
that as the speed increases, the sleeper vibration increases with larger slopes between 
4~10 km/h. The measured RMS values are close to the simulation result in Figure 4.20 
(b). Meanwhile, Figure 4.22 (b) shows that the speckle noise increases almost linearly 
with speed, which is consistent with the simulation result in Figure 4.21 (a). These 
agreements reflect that the established models effectively characterize the track 
dynamics and the speckle noise in V-Track. 

Further, Figure 4.22 (c) shows that, as the speed increases, the SNR first increases 
(2~6 km/h), becomes flat (6~10 km/h), and then decreases slightly (10~12 km/h). This 
result is similar to the simulated trend above 4 km/h in Figure 4.21 (b), while deviation 
occurs at 2 km/h because the RMS values are relatively small and the SNR is sensitive 
to slight deviations between simulations and measurements. 
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4.5. SPEED-DEPENDENT CHARACTERISTICS 

 
Figure 4.22: Speed-dependent characteristics in laboratory measurements. (a) Sleeper vibrations; (b) Speckle 
noise; (c) SNRs.  

4.5.3. FIELD MEASUREMENT 
In the field measurements, considering the possible error in synchronizing the LDV 
signal with the laser spot position, we cut the measured signal into overlapped segments 
with different offsets from the estimated center of each sleeper, as shown in Figure 4.23. 
Then, for each segment, we apply the vibration-noise separation method, calculate the 
RMS values of the sleeper vibration and speckle noise, and calculate the corresponding 
SNR. Finally, we take the weighted average of the results from different segments for 
each sleeper. The weights follow the shape of a Gaussian distribution and decrease 
toward zero as the segment offsets from the estimated center to the adjacent sleepers. 

The results for all the 580 sleepers in Figure 4.16 are plotted in Figure 4.24. It shows 
trends similar to the simulation and laboratory measurement results in Figure 4.20~4.22. 
As the speed increases, the sleeper vibration increases first slowly (5~10 km/h), then 
rapidly (10~20 km/h), then slowly again and even drops slightly (20~30 km/h). 
Meanwhile, the speckle noise amplitude increases almost linearly with respect to the 
speed. As a consequence of the competition between the sleeper vibration and the 
speckle noise, the SNR first drops slightly to reach a local minimum at 7 km/h, then 
increases to reach a local maximum at 20 km/h, and then drops gradually. Within the 
speed range investigated, the speed of 15~25 km/h provides a higher SNR than others. 
The similarity between the simulation, laboratory measurement, and field measurement 
results demonstrates that the proposed methodology effectively characterizes the speed-
dependent characteristics of train-borne LDV measurements. 

Nevertheless, it should be noted that the change of SNR with respect to speed 
depends on the characteristics of sleeper dynamics and speckle noise. Therefore, the 
optimal speed with the highest SNR varies for different tack structures, measurement 
configurations, and operational conditions. 
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Figure 4.23: Weight assignment for segments with different offsets. 

 
Figure 4.24: Speed-dependent characteristics in field measurements. (a) Sleeper vibrations; (b) Speckle noise; 
(c) SNRs. 

4.6. CONCLUSIONS 
This chapter proposes and applies a holistic methodology to characterize train-borne 
LDV measurements for sleeper vibrations and investigate their speed-dependent 
characteristics. Validated numerical models are used to separately simulate sleeper 
vibrations and speckle noise at different speeds and support the parameter tuning of the 
developed vibration-noise separation method. The method is then validated with 
laboratory measurements and applied to field measurements at different speeds. The 
dependence of sleeper vibration, speckle noise, and SNR on train speed is determined 
using simulations and measurements. The results demonstrate the potential of train-
borne LDV to be applied to large-scale rail infrastructure monitoring and also provide 
us with deeper insights into the quality and usability of signals measured at different 
speeds. The main conclusions are summarized below. 

• The established train-track-LDV model and speckle translation model 
reproduce the sleeper vibrations and speckle noise in V-Track at different 
vehicle speeds. 
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4.6. CONCLUSIONS 

• The vibration-noise separation method extracts speckle noise by first capturing 
large spikes in the time domain and then filtering out the remaining small spikes 
in the frequency domain. It can work adaptively at different speeds and robustly 
under different scenarios and has the potential to be adapted for other different 
kinds of LDV measurements. 

• There are significant uncertainties in sleeper vibrations and speckle noise, 
which increase with the increase in train speed.  

• The RMS value of speckle noise increases almost linearly with speed, whereas 
the RMS value of sleeper vibration increases nonlinearly with speed. Their 
competition leads to the nonlinear behavior of SNR with respect to train speed. 
An optimal speed range yields the highest SNR and varies for different tack 
structures, measurement configurations, and operational conditions. 
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5 
ESTIMATING RAILWAY 

TRACK TRANSFER FUNCTION 
ON A MOVING VEHICLE 

 
 
In view of the gaps in measuring transfer functions (TFs) of railway tracks, we propose a 
methodology to estimate railway track TFs over a wide frequency range from a moving vehicle. 
Accelerometers are employed to estimate the dynamic train load to railway tracks, and a laser 
Doppler vibrometer (LDV) is used to scan railway tracks and measure their vibration response 
as the vehicle moves. First, operational modal analysis is applied to vehicle impact response 
over a joint to identify its modal parameters, which support the estimation of dynamic wheel-rail 
forces from vehicle vibrations. This combination eliminates the need to pre-define the vehicle 
stiffness, vehicle damping, and vehicle body mass and enables the vehicle modal parameters to 
be updated under operational conditions. Meanwhile, a speed-adaptive despeckle and 
compensation method is applied to LDV signals to reduce speckle noise and extract track 
vibrations. Then, a continuous railway structure is segmented into distributed sections, and a TF 
is estimated for each track section using the estimated wheel-rail force as input and the measured 
track vibration as output. We validate the proposed methodology in a vehicle-track test rig in 
our laboratory and test its performance on different track sections (with or without joints) and 
at different speeds (from 8 km/h to 16 km/h). The results are further compared with trackside 
measurements and hammer tests. We demonstrate that the track vibrations extracted from the 
LDV signals are consistent with those measured by trackside accelerometers. The TF estimates 
from the LDV and accelerometer measurements are close to the frequency response functions 
measured from hammer tests at 200~800 Hz. The developed system captures differences in the 
resonance frequencies of the TFs between different track sections, suggesting its potential to be 
used for structural health monitoring of railway tracks. 
 
Apart from minor updates, this chapter has been submitted for publication as: Zeng Y, Nunez A, Li Z. (2023). 
Estimating transfer functions of railway tracks using laser Doppler vibrometer and accelerometer 
measurement on a moving vehicle. 
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5.1. INTRODUCTION 
To tackle the research challenges in train-borne measurement of railway track transfer 
functions (TFs), this chapter develops a railway track TF measurement system in the V-
Track test rig. The system consists of an LDV and accelerometers on a moving vehicle. 
We estimate a single-input single-output TF for each track section using the vertical 
wheel-rail force as the input and the vertical track vibration as the output.  The proposed 
methodology is validated in the test rig at different locations along the track and at 
different speeds through comparisons with trackside measurements and hammer tests.  

The remainder of this chapter is organized as follows. Section 5.2 presents the 
methodology for estimating railway track TFs using LDV and accelerometer 
measurement. Section 5.3 conducts experiments in the V-Track test rig to validate the 
proposed methodology. Section 5.4 concludes this chapter. 

5.2. METHODOLOGY 
Figure 5.1 shows the proposed methodology for estimating railway track TFs using LDV 
and accelerometer measurement on a moving vehicle. Accelerometers are mounted on 
the main masses of the vehicle, and the laser spot of the LDV can be targeted at track 
components of interest, such as rails or sleepers. First, the impact response of the vehicle 
when passing over a joint is captured from the accelerometer measurement and then used 
to identify the modal parameters of the vehicle (natural frequencies, damping ratios, 
mode shape vectors, and modal masses). Based on these parameters, the dynamic wheel-
rail force is then estimated from vehicle vibrations during vehicle running, denoted as 
w(t), with t denoting time. Meanwhile, the vibration of railway tracks is extracted from 
the LDV measurement by compensating for the effect of vehicle vibration and reducing 
the speckle noise, denoted as u(t). Finally, a TF of each railway track section H(f), with 
f denoting frequency, is estimated using the segmented wheel-rail force w(t) as input and 
the segmented track vibration u(t) as output.  

 
Figure 5.1: Flowchart of the proposed methodology. 

5.2.1. INPUT: MODAL IDENTIFICATION AND FORCE ESTIMATION 
The dynamics of a vehicle system (with n degrees of freedom) is usually characterized 
by the following equation of motion, 
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5.2. METHODOLOGY 

( ) ( ) ( ) ( )t t t t+ + =M K C x x x w                                          (5.1) 

where M, K, and C are the mass, stiffness, and damping matrices, respectively; x(t) is 
the displacement vector;  w(t) is the external force vector, including wheel-rail forces. 
Eq. (5.1) can be converted to the modal coordinate as follows under the assumption of 
modal damping,  

( ) ( ) ( ) ( )* * *t t t t+ + =M K C q q q p                                     (5.2)  

where M*, K*, and C* are the modal mass, stiffness, and damping matrices, respectively; 
q(t) and p(t) are the modal displacement and force vectors, respectively. From Eq. (5.1) 
to Eq. (5.2), the following transformation holds, 

* T * T * T T= = = = =M Φ MΦ K Φ KΦ C Φ CΦ Φ Φx q p w                (5.3) 

where Φ is the mode shape matrix, consisting of mode shape vectors φ1, …, φn, and M*, 
K*, C* are diagonal matrices with the diagonal terms of modal mass m1*, …, mn*, modal 
stiffness k1*, …, kn*, and modal damping c1*, …, cn*, respectively.  

Eq. (5.2) is equivalent to n single-degree-of-freedom systems as follows (i=1, …, n), 

( ) ( ) ( ) ( )* * *
i i i i i i im q t k q t c q t p t+ + =                                      (5.4) 

where qi(t) and pi(t) are the i-th component of q(t) and p(t), respectively. Further, Eq. 
(5.4) is equivalent to the following equation, 

( ) ( ) ( ) ( )2
*2 i

i i i i i i
i

p t
q t q t q t

m
ω ωξ+ + =                                         (5.5) 

where ωi and ξi are the undamped natural frequency and damping ratio of the i-th mode, 
respectively.  

As introduced in Section 1.2.4, existing wheel-rail force estimation methods usually 
assume that vehicle parameters M, K, and C are known, but this requirement is often 
difficult or expensive to fulfill. Therefore, we identify modal parameters (natural 
frequencies, damping ratios, mode shape vectors, and modal masses) of the vehicle 
under operational conditions so as to eliminate the need to define the vehicle parameters. 

5.2.1.1. OPERATIONAL MODAL IDENTIFICATION 
As shown in Section 3.4, the passage of a wheel over a joint induces a significant impact 
on the vehicle-track system. Such an impact can excite the vehicle modes over a wide 
range of frequencies, so the impact response measured by the accelerometers carries the 
dynamic characteristics of the vehicle. Other types of rail local irregularities can be used 
as alternative sources, such as degraded welds and crossings. We employ the enhanced 
frequency domain decomposition method in Section 3.2 to extract these characteristics, 
and the main steps are briefly given as follows. 

Step A1. Estimate the power spectrum density (PSD) matrix of measured impact 
response using Welch’s averaged periodogram method [148]. Considering the decay 
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pattern of impact response, using an exponential window in this procedure is 
recommended. 

Step A2. Apply singular value decomposition to the PSD matrix at each discrete 
frequency f to obtain a diagonal matrix V(f) with singular values and a unitary matrix 
U(f) containing singular vectors corresponding to the singular values [78]. 

Step A3. Plot the spectrum of leading singular values and pick up resonance peaks 
in the frequency range of interest, which indicate the possible existence of vehicle 
modes. 

Step A4. For each resonance peak, compare the singular vectors of adjacent 
frequencies, for example, using the modal assurance criterion [66]. If they are of high 
similarity, a vehicle mode can be confirmed. 

Step A5. For the i-th vehicle mode, create an auto PSD using only the singular values 
of frequencies near the peak and apply inverse Fourier transform to the auto PSD to 
obtain an autocorrelation function. Then, estimate the damped natural frequency ωdi 
and the logarithmic decrement δi using the zero crossings and extremes of the 
autocorrelation function, respectively [82]. Further, calculate the undamped natural 
frequency ωi and the damping ratio ξi as follows [82]. 
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Step A6.  For the i-th vehicle mode, normalize each singular vector at frequencies 
near the peak and rotate each complex component to 0°(or 180°) if its phase lies in 
the first or fourth (or the second or third) quadrant [66]. Average all these real-valued 
vectors to obtain the mode shape vector of the i-th vehicle mode, denoted as φi. 

Step A7.  Construct the mode shape matrix Φ with all φi. Construct the mass matrix 
M with at least one known mass, such as the mass of an axle box. Determine the 
unknown masses by making ΦTMΦ a diagonal matrix, thus ensuring the diagonal 
property of M*. Calculate the modal mass matrix M* that contains all mi* by 
M*=ΦTMΦ. 

The above method can produce the natural frequencies ωi and ωdi, damping ratio ξi, 
and mode shape vector φi of the n vehicle modes (i=1, …, n). This eliminates the need 
to pre-define the vehicle stiffness, vehicle damping, and part of the vehicle masses (e.g., 
the vehicle body mass) for wheel-rail force estimation. The modal identification results 
can be averaged over multiple passages of different joints, and the vehicle modal 
parameters can then be updated regularly and used for estimating the wheel-rail force 
w(t) from measured vehicle vibrations ( )tx . This helps reduce force estimation errors 
due to variations and uncertainties in the vehicle parameters. 

 



 85 
 

5.2. METHODOLOGY 

5.2.1.2. TIME-DOMAIN FORCE ESTIMATION 
Based on the identified vehicle modal parameters, we adapt the time-domain method 
proposed in [110] for estimating wheel-rail forces. According to the Duhamel integral, 
the i-th modal displacement is expressed as follows. 
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where pi(0) and ( )0iq are the initial modal displacement and velocity, respectively.  
By taking the first-order and second-order derivatives of Eq. (5.8) with respect to t, 

the modal velocity and acceleration can be obtained, respectively. Then, the modal 
displacement, velocity, and acceleration are discretized in the time step from s-1 to s 
(∆t=ts-ts-1, s=1, 2, …) as follows. 
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The following integrals can be obtained when the modal force is assumed constant 
within the time step from s-1 to s. 
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By substituting Eq. (5.12)~(5.14) to Eq. (5.9)~(5.11), the following relationships can 
be obtained. 
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Eq. (5.17) can be written in the following form. 
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Further, based on the modal parameters (the natural frequencies ωi and ωdi, damping 
ratio ξi, mode shape vector φi, and modal mass mi* of the n vehicle modes) obtained in 
Section 5.2.1.1, the wheel-rail force on the vehicle w(t) can be estimated from measured 
vehicle vibrations ( )tx  through the following steps. Since wheel-rail contact forces are 
applied on wheels, only the elements in w(t) corresponding to forces on wheels represent 
wheel-rail forces, and the rest are constrained to zero in the estimation process. 

Step B1. At the s-th time step, convert the measured acceleration ( )stx  to modal 
acceleration ( )stq  according to Eq. (5.3). For the i-th mode, estimate the i-th element 
of the modal force vector pd(ts-1) according to Eq. (5.18) using the current modal 
acceleration ( )stq  and the previous modal displacement and velocity ( )1st −q , ( )1st −q  
[110]. Use zero initial condition when s=1, i.e., ( )0 0t =q  and ( )0 0t =q . 

Step B2. Convert the calculated modal force pd(ts-1) to a force vector wd(ts-1) 
according to Eq. (5.3). Constrain the elements of wd(ts-1) without external forces to 
zero, denoted as w(ts-1). Then, convert the corrected force w(ts-1) back to the modal 
force p(ts-1) according to Eq. (5.3). 

Step B3. According to Eq. (5.15)~(5.16), calculate the modal displacement and 
velocity at the current step ( )stq , ( )stq  using the corrected modal force p(ts-1) [110].  

Step B4. Increase s by a time step and repeat the above process till reaching the 
signal end. 

Step B5. Detrend the estimated force w(t) by filtering it with a high-pass filter. 
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5.2. METHODOLOGY 

5.2.2. OUTPUT: DESPECKLE AND COMPENSATION 
In the proposed methodology, the vibration response of track components is 
continuously measured by an LDV on the moving vehicle. Speckle noise is inevitable 
due to the significant in-plane motion of the laser spot on the track surface, and the 
characteristics of speckle noise vary with the vehicle speed. In this chapter, we reduce 
speckle noise in a raw LDV signal ur(t) using the speed-adaptive method developed in 
Section 4.3. Meanwhile, the vibrations of the LDV and other optical components along 
the laser beam affect the relative velocity between the laser head and the target. These 
vibrations are measured, denoted as ( ) ( )

1 2c c,  ,  ...x t x t 
, and their effect on the LDV signal 

should be compensated. The despeckle and compensation steps are given as follows. 

Step C1. The same as Step 1 in Section 4.3.1.  

Step C2. The same as Step 2 in Section 4.3.1. Denote the imputed signal as up(t). 

Step C3. Subtract ( ) ( )
1 2c c,  ,  ...x t x t 

 from the imputed signal up(t) as follows.  

( ) ( ) ( )t p c=
j

j
u t u t x t−∑                                               (5.19) 

Step C4. Apply a band-pass filter with the cut-off frequency of fL and fH to ut(t), 
resulting in the extracted structural vibration u(t). 

The effectiveness of the above method requires a proper selection of its parameters. 
According to Section 2.3.4 and 4.3, we recommend using dA=1, qA=1 and setting fL and 
fH to the lowest and highest frequencies of interest for railway track vibrations, 
respectively. The parameters P% and pA should be tuned considering the despeckle 
performance and the computational cost at different speeds, which can be achieved either 
quantitatively based on simulated signals or qualitatively through trial and observation 
with measured signals. Once these parameters are defined, the method can be applied to 
LDV measurements without adjusting its parameters for different vehicle speeds. 

5.2.3. TRANSFER FUNCTION ESTIMATION 
A railway track is a continuous structure. When measuring its TFs from a running 
vehicle, the load and response locations move, and the input-output relationship varies. 
Considering the variation in track dynamic properties between different locations, we 
divide railway tracks into distributed sections and estimate a TF using measurements on 
each track section, representing the average input-output relationship for the track 
section. Each track section should not be too long; otherwise, we cannot capture the 
variation within it. It should also not be too short; otherwise, insufficient data points can 
cause large errors and poor frequency resolution. Once the track section length is defined, 
the estimated wheel-rail force w(t) and the measured track vibration u(t) can be cut for 
each track section, which can be used as the input and output for TF estimation, 
respectively.  

In this chapter, assuming that the noise is uncorrelated with the excitation, we use 
the so-called H1 estimator to calculate the TF. The main steps are given as follows. 
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Step D1. For each track section, divide w(t) and u(t) into overlapping segments and 
taper each segment with a window function.  

Step D2. Estimate the cross PSD of w(t) and u(t), denoted as ( )uwP f , and the PSD 
of w(t), denoted as ( )wwP f , using Welch’s averaged periodogram method [148].  

Step D3. Calculate the TF in terms of a receptance function with the input of the 
wheel-rail force and the output of the track displacement, as follows [111, 112]. 

( ) ( )
( )2

uw

ww

P f
H f

f P fπ
=

⋅
                                                  (5.20) 

5.3. LABORATORY VALIDATION 

5.3.1. EXPERIMENTAL SETUP 
We validate the proposed methodology in V-Track, as shown in Figure 5.2. The details 
of this test rig and the instrumentation can be found in Section 2.2.1. The vehicle system 
consists of a vehicle body suspended on an axle box with a wheel. The suspension 
provides not only stiffness and damping but also a static wheel load. There are two such 
vehicle systems (Vehicle A and Vehicle B) assembled symmetrically at the ends of a 
rotating beam. Four accelerometers (PCB 356B21) are mounted on the upper and lower 
masses of the vehicle to estimate the dynamic wheel-rail forces. An additional 
accelerometer is mounted on the mirror to compensate for its effect on the LDV signal. 
As shown in Figure 5.2 (b), we instrument some track sections with accelerometers (PCB 
356B21) to measure their vertical vibrations for comparisons. 

 
Figure 5.2: Experiment setup and vehicle model. (a) V-Track test rig and the instrumentation; (b) Trackside 
sensors; (c) Model of the vehicle system. 
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5.3.2. MODAL IDENTIFICATION AND FORCE ESTIMATION 
We use the model in Figure 5.2 (c) to represent the vertical dynamics of the vehicle in 
V-Track. Each of the two masses has one degree of freedom of bouncing. The spring 
and damper between them represent the suspension, and those on top represent the 
combined stiffness and damping from both the connection of the vehicle body on the 
rotating beam and the flexibility of the rotating beam. A force is applied on the lower 
mass, representing the contact force on the wheel. For Vehicle A and B, the lower mass 
represents the wheel and axle box with their total mass known (m2=40 kg), while the 
upper mass represents the combination of the vehicle body mass and part of the rotating 
beam mass, so the total mass m1 is unknown. All the stiffness and damping are also 
unknown. 

According to Section 5.2.1.1, we use the impact response of each vehicle to identify 
its modal parameters. Figure 5.3 (a) and (b) show the vibrations of Vehicle A and B 
when passing over a joint at 4 km/h, respectively. The impact response caused by the 
passage of the joint can be clearly observed. Both masses show attenuated bouncing 
motions at relatively low frequencies, while the response of the lower mass contains 
more high-frequency components.  

In order to reduce the effect of pitching motion and noise, we average the signals of 
the two sensors on each mass. Then, for each vehicle, we apply Step A1~A3 to the 
averaged signals, and a singular value spectrum can be obtained for each passage over a 
joint. Figure 5.3 (c) and (d) plot such spectra calculated from different laps of 
measurements (at the same speed) for the two vehicles. The results show high 
repeatability between the different laps and also similarity between the two vehicles. For 
each vehicle, two dominant peaks below 150 Hz are confirmed through Step A4. 

 
Figure 5.3: Vehicle vibrations and singular value spectra. (a) Impact response of Vehicle A; (b) Impact 
response of Vehicle B; (c) Spectra of Vehicle A; (d) Spectra of Vehicle B. 
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Table 5.1: Identified modal parameters of the two vehicles. 

Modes Averaged modal parameters Vehicle A Vehicle B 

Peak 1 (in-phase bounce) Undamped natural frequency ω1 62.0 Hz 62.6 Hz 

 Damping ratio ξ1 0.15 0.11 

 Normalized mode shape vector φ1 [0.83  1]T [0.74  1]T 

 Modal mass m1
* 170.9 187.8 

Peak 2 (anti-phase bounce) Undamped natural frequency ω2 98.5 Hz 111.7 Hz 

 Damping ratio ξ2 0.09 0.14 

 Normalized mode shape vector φ2 [-0.25  1]T [-0.2  1]T 

 Modal mass m2
*  52.5 50.8 

 

The modal parameters corresponding to these two peaks are further identified 
through Step A5 and A7. After averaging over different speeds (2 km/h, 4 km/h, 6 km/h, 
8 km/h), different joints, and different laps, we obtain the result in Table 5.1. It shows 
that the two peaks correspond to the in-phase and anti-phase bouncing motions of the 
two masses, respectively. Despite the identical design, the identified modal parameters 
of the two vehicles deviate slightly, highlighting the value of modal identification under 
operational conditions.  

According to Section 5.2.1.2, the identified modal parameters in Table 5.1 are further 
used to estimate wheel-rail force through Step B1~B5. Figure 5.4 (a) and (b) show the 
estimated forces using the accelerations of Vehicle A at a joint at different speeds. The 
results contain both positive and negative forces since static wheel loads are not included. 
Some residual drifts can also be observed but have little effect on the dynamic 
components and the TF estimation. High-frequency P1 force and low-frequency P2 force 
can be observed, and their amplitudes become larger as the vehicle speed increases.  

 
Figure 5.4: Estimated dynamic wheel-rail forces of Vehicle A. (a) Passing over a joint at 8 km/h; (b) Passing 
over a joint at 16 km/h; (c) Running on a normal track at 8 km/h; (d) Running on a normal track at 16 km/h. 
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Figure 5.4 (c) and (d) plot the estimated wheel-rail forces of Vehicle A using 
measurements on a normal track section. The low-frequency components are considered 
to be related to the vertical alignment of the track, while the high-frequency components 
are considered to be related to the roughness of the wheel and rail. Meanwhile, the 
amplitude of the dynamic wheel-rail force becomes larger when the speed is higher. 

5.3.3. DESPECKLE AND COMPENSATION 
In this section, we validate the despeckle and compensation method in Section 5.2.2. We 
divide the track structure of V-Track into overlapping track sections centered at each 
sleeper, and each track section has a length of around two sleeper spacings. Such 
segmentation enables the track structure to be characterized as a distributed system so 
that the estimated TF describes the track dynamic properties near each sleeper. Figure 
5.5 shows the measurement configurations of Vehicle A on two typical track sections. 
Considering the laser-wheel offset ∆x, the wheel passes over the joint when the LDV 
measures Track section ①, while the wheel runs on a normal track section when the 
LDV measures Track section ④. For comparison, we mount three accelerometers (J1~J3 
and T2~T4) on each track section.  

 
Figure 5.5: LDV and trackside measurement on two track sections. (a) Track section ① with a joint; (b) 
Track section ④ without joints. 

First, measurements on Track section ① at different speeds are studied. The range 
of the speeds is selected considering the speed-dependent signal-to-noise ratio in Section 
4.5.2. We use P%=30%, pA=30, fL=50 Hz, and fH=1,000 Hz in Step C1~C4, and the 
despeckle and compensation results are shown in Figure 5.6. The two plots on the left 
compare the raw LDV signal, the imputed signal (after Step C2), and the mirror vibration 
(after integration from acceleration to velocity [144]). It shows that spikes are detected 
and replaced with reasonable predictions. The mirror vibration is dominant at low 
frequencies, reflecting the necessity to compensate for its effect. The two plots on the 
right compare the LDV signal after despeckle and compensation with those measured 
by the trackside sensors (after integration from acceleration to velocity), which shows 
good agreement in the impact response phase as well as before and after the impact.  
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Figure 5.6: Despeckle, compensation, and comparison with trackside measurements on Track section ①. (a) 
8 km/h; (b) 16 km/h. 

 
Figure 5.7: Despeckle, compensation, and comparison with trackside measurements on Track section ④. (a) 
8 km/h; (b) 16 km/h. 

Figure 5.7 presents the despeckle and compensation results for measurements on 
Track section ④. Although their amplitudes are generally lower than those on Track 
section ①, the proposed method is still effective in reducing speckle noise and providing 
results consistent with the trackside measurements. The above results demonstrate the 
effectiveness of the despeckle and compensation method at different speeds. Slight 
deviations between the LDV and trackside signals can be observed, caused by imperfect 
despeckle or compensation and spatial deviations between the laser spot and the 
accelerometers. 
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Additionally, it can be seen from Figure 5.6 and 5.7 that the vibrations of the sleeper 
(J2 or T3) and the track slab (J1, J3 or T2, T4) are very close in the frequency range we 
are concerned with, as a consequence of the high sleeper pad stiffness in V-Track. This 
reflects the rationale for combining measurements on the sleeper and track slab  (within 
one track section) for TF estimation, which provides more data points than using only 
measurement on a single sleeper. 

5.3.4. TRANSFER FUNCTION ESTIMATION AND COMPARISON 
Based on the measured track vibration and the estimated wheel-rail force on each track 
section, a TF of the track structure can be estimated according to Section 5.2.3. We take 
several track sections as examples to showcase the estimation performance. In Step D1, 
each signal is divided into three overlapping segments of 90% of the section length. In 
Step D2, a Hanning window is used. The estimated TFs hold the physical meaning 
(receptance) that is consistent with the conventional definition of railway track TFs or 
FRFs. This allows the TF measurement system on the moving vehicle to be validated 
using conventional trackside technology. Therefore, we perform hammer tests on these 
track sections using a PCB 086C03 hammer and the trackside accelerometers to obtain 
their FRFs. The estimation of FRFs can be found in Section 3.4.  

5.3.4.1. TRACK SECTIONS WITH A JOINT 
Figure 5.8 shows the measurement configuration on Track sections ① and ②. Since 
Vehicle A and B have different laser-wheel offsets, they measure different track sections 
when passing over the joint. For Vehicle A (or Vehicle B), the laser spot is behind (or 
ahead of) the wheel and thereby measures Track section ① (or ②) when the wheel 
passes over the joint. Additionally, hammer tests are performed, with the impact 
locations denoted as I1~I3 and the trackside sensors denoted as J1~J4.  

 
Figure 5.8: Measurement and hammer tests on track sections with a joint. 

Figure 5.9 (or Figure 5.10) shows the TFs of Track section ① (or ②) estimated from 
the measurements on Vehicle A (or B) at two different speeds, in which the solid black 
line and shaded area represent the mean and stand deviation of the estimates from 
different laps, respectively. We focus on the frequency range of 200~800 Hz as it 
belongs to the rigid-body motions (bouncing and rolling) of the sleepers under the wheel 
passage in V-Track, according to Section 3.4, which are more related to the properties 
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of the track structure, such as the support stiffness. Meanwhile, the small hammer used 
in the hammer tests can effectively excite the track modes in this frequency range. It can 
be seen that the frequency resolution decreases at a higher speed due to the shorter signal 
length. At frequencies below 600 Hz, the standard deviation is small, indicating good 
repeatability at different laps, while at higher frequencies, the standard deviation 
becomes larger. The frequency range of small standard deviations is broader at the 
higher speed, mainly because the vehicle moving at a higher speed generates larger 
excitations at higher frequencies. 

The colored solid lines in Figure 5.9 represent the average TFs estimated using 
signals from the trackside sensors instead of the LDV signal. The results of using the 
LDV and the trackside sensors are close to each other since the LDV signals after 
despeckle and compensation are close to the trackside signals. This further demonstrates 
the accuracy of the track vibration measurement using the LDV on the moving vehicle. 

Figure 5.9: TF estimation and comparison on Track section ① (Vehicle A). (a) 8 km/h; (b) 16 km/h; (c) 
Hammer tests. 

Figure 5.10: TF estimation and comparison on Track section ② (Vehicle B). (a) 8 km/h; (b) 16 km/h. 

Further, we compare the estimated TFs with FRFs from the hammer tests, where the 
impact and sensor locations correspond to the wheel-laser offset. A good agreement in 
their shapes and resonance frequencies can be observed, especially below 500 Hz, 
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demonstrating the effectiveness of TF estimation on different vehicles and at different 
speeds. The two resonance peaks at 300~400 Hz in the FRFs are effectively captured by 
the estimated TFs from the moving vehicle. At frequencies above 500 Hz, the FRFs 
deviate from each other, representing different dynamic properties for different impact 
and sensor locations. Consequently, the estimated TFs show large standard deviations 
as the positions of the wheel and laser spot are moving, and the resonance frequencies 
of the estimated TFs deviate more from those of the FRFs. Additionally, the FRFs are 
smoother than the estimated TFs due to less noise and higher frequency resolution.  

5.3.4.2. TRACK SECTIONS WITHOUT JOINTS 
Similar measurements and comparisons are performed on three track sections without 
joints, as illustrated in Figure 5.11. The TF estimates of Vehicle A and B on Track 
section ③ are shown in Figure 5.12 and 5.13, respectively. By comparing them with the 
FRFs from the hammer tests, we can see good agreement in their shapes and resonance 
frequencies at different speeds. As the vehicle speed increases, their deviation increases 
at low frequencies and decreases at high frequencies. Additionally, the differences 
between the TF estimates on Vehicles A and B are caused by the different positions of 
the wheels when measuring this track section.  

By comparing Figure 5.12 and 5.13 with Figure 5.9 and 5.10, we can see that there 
is one dominant peak in the frequency range of 300~400 Hz on the track section without 
joints whereas there are two on the track sections with a joint. This difference reflects 
the variation in track dynamic properties between these sections. Additionally, the 
standard deviations of the estimates on the track sections with the joint are generally 
smaller than those without joints. This confirms that excitations with large amplitude 
and broad frequency bands improve the TF estimation performance. 

The TF estimation results on Track sections ④ and ⑤ are shown in Figure 5.14 and 
5.15, respectively. The estimated TFs are in good agreement with the measured FRFs 
and capture the dominant resonance peaks. As the vehicle speed increases, their 
deviation at high frequencies becomes smaller, whereas that at low frequencies becomes 
larger. The results demonstrate the effectiveness of TF estimation on normal track 
structures at different speeds.   

 
Figure 5.11: Measurement and hammer tests on track sections without joints. 
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Figure 5.12: TF estimation and comparison on Track section ③ (Vehicle A). (a) 8 km/h; (b) 10 km/h; (c) 14 
km/h; (d) 16 km/h; (e) Hammer tests. 

 
Figure 5.13: TF estimation and comparison on Track section ③ (Vehicle B). (a) 8 km/h; (b) 10 km/h; (c) 14 
km/h; (d) 16 km/h. 
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5.3. LABORATORY VALIDATION 

 
Figure 5.14: TF estimation and comparison on Track section ④ (Vehicle A). (a) 8 km/h; (b) 10 km/h; (c) 14 
km/h; (d) 16 km/h; (e) Hammer tests. 

 
Figure 5.15: TF estimation and comparison on Track section ⑤ (Vehicle B). (a) 8 km/h; (b) 10 km/h; (c) 14 
km/h; (d) 16 km/h; (e) Hammer tests. 
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In this chapter, we focus on the shapes and the resonance frequencies of the TFs and 
FRFs since they depend strongly on the track dynamic properties, such as the track 
stiffness, thus being useful for structural health monitoring. Nevertheless, deviations in 
both frequency and amplitude can be observed, and the possible reasons are discussed 
as follows. 

• The track properties, such as stiffness and damping, can differ from unloaded
conditions to loaded conditions due to the nonlinearity of track components.
The developed system on the moving vehicle has the advantage of measuring
the TFs under loaded conditions, whereas the hammer tests measure the FRFs
without vehicle loads.

• Errors in the vehicle model for wheel-rail force estimation are considered to be
the main source of errors in the TF estimation. Errors in the vehicle parameters
can be reduced by regularly updating the vehicle model through the operational
modal identification.

• Vehicle A and B are assembled symmetrically on the rotating beam, which
affects each other primarily through the rotating beam and secondarily through
the track structure. This chapter assumes a single input for each vehicle and a
single input for the track structure, so each vehicle is an additional excitation
source for the other vehicle and the track structure, thus affecting the force and
TF estimation. Our vibration measurements show that such influence is
negligible, so decoupling the two vehicles in the TF estimation is still
reasonable.

5.4. CONCLUSIONS 
This chapter proposes a methodology for estimating railway track TFs using LDV and 
accelerometer measurement on a moving vehicle. Enhanced frequency domain 
decomposition is applied to vehicle impact response at a joint to obtain its modal 
parameters, which further support the estimation of dynamic wheel-rail forces from 
vehicle vibrations using a Duhamel integral-based method. A speed-adaptive despeckle 
and compensation method is applied to LDV signals to reduce speckle noise and extract 
track vibrations. A TF is then estimated for each railway track section using the 
estimated wheel-rail force as input and the measured track vibrations as output. This 
methodology is validated on different sections of V-Track at different speeds through 
comparisons with trackside measurements and hammer tests. The main conclusions are 
summarized as follows. 

• The modal identification method eliminates the need to pre-define the vehicle
stiffness, vehicle damping, and vehicle body mass for wheel-rail force
estimation and enables the vehicle modal parameters to be updated under
operational conditions.

• The LDV and accelerometer measurements provide TF estimates that are in
good agreement in terms of the shapes and resonance frequencies with the FRFs
measured from hammer tests at 200~800 Hz. Such effectiveness holds for the
whole vehicle speed range tested, from 8 km/h to 16 km/h.
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5.4. CONCLUSIONS 

• The standard deviation of the TF estimates becomes larger at high frequencies 
due to the variation of track dynamics when the wheel and laser spot are moving. 
Among the speeds tested, a higher vehicle speed yields smaller standard 
deviations of the estimated TFs over different laps and also smaller deviations 
between the estimated TFs and the measured FRFs at high frequencies. 

• Unlike conventional hammer tests that can only be applied at one location at a 
time, usually without vehicle loads, the proposed TF measurement system can 
continuously scan track structures and measure their TFs under loaded 
conditions. 

• The differences in the shapes and resonance frequencies of the estimated TFs 
between different track sections reflect the variation of track dynamic properties, 
suggesting that the system has the potential to be used for structural health 
monitoring of railway tracks.  
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6.1. CONCLUSIONS  
This dissertation presents a new technology based on train-borne laser Doppler 
vibrometer (LDV) for measuring the load-response relationship of railway tracks. The 
developed technology consists of four cornerstones that address the key challenges, 
including speckle noise mitigation, operational vibration analysis, speed-dependent 
characteristics, and transfer function estimation. The interconnections of these 
cornerstones in developing the technology are summarized as follows.  

• The three-step framework for speckle noise reduction (Chapter 2) plays an 
important role in the investigation of the speed-dependent characteristics by 
enabling the vibration-noise separation at different speeds (Chapter 4  and 5). It 
is further combined with the compensation of the LDV vibration to support the 
estimation of the load-response relationship of the track structure (Chapter 5). 

• The operational modal analysis method (Chapter 3) supports the identification 
of the vehicle modal parameters from the vehicle response under operational 
conditions (Chapter 5). The identified modal characteristics of the railway 
sleepers further support the selection of the frequency ranges for extracting the 
track vibrations from the LDV signals (Chapter 4 and 5). 

• The speed-dependent characteristics (Chapter 4) support the selection of the 
vehicle speed range for estimating the load-response relationship of the track 
structure (Chapter 5). 

The main conclusions of the dissertation are summarized as follows. 

• The train-borne LDV is capable of directly measuring the track vibrations from 
the moving vehicle. The measured vibrations can be combined with the wheel-
rail force estimated from the measured vehicle vibrations to estimate the transfer 
function of the track structure over a wide frequency range. 

• Among the three stages of speckle noise mitigation (instrumentation, 
measurement, and post-processing), post-processing is the only one that allows 
speckle noise to (attempt to) be removed. Incorporating knowledge of the 
characteristics of structural vibration and speckle noise can improve the 
performance of speckle noise reduction.  

• As train speed increases, the speckle noise increases almost linearly while the 
track vibration increases nonlinearly. The competition between them leads to the 
nonlinear behavior of the signal-to-noise ratio with respect to train speed. The 
speeds that yield the highest signal-to-noise ratio are different for different track 
structures, measurement configurations, and operational conditions. 

• Operational modal identification using the vehicle vibrations passing over joints 
eliminates the need to define the vehicle stiffness, vehicle damping, and vehicle 
body mass for estimating the wheel-rail force. 

• Among the speeds and frequency range tested, a higher vehicle speed provides 
smaller deviations in the estimated transfer functions at high frequencies. The 
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6.2 FUTURE RESEARCH 

differences in transfer functions between different track sections reflect the 
variation of track dynamic properties. 

This dissertation validates the developed technology at the following three levels.  

• Numerical simulations provide insights into the characteristics of speckle noise 
and track vibration. Chapter 4 establishes numerical models that effectively 
replicate the sleeper vibration and speckle noise measured in the V-Track test 
rig at different speeds. The simulation results further support the parameter 
selection and quantitative validation of the vibration-noise separation method. 

• Laboratory measurements in V-Track provide well-controlled and well-
observed conditions for testing the train-borne LDV technology. Chapter 2, 4, 
and 5 demonstrate that the method effectively reduces the speckle noise and 
extracts the track vibrations from the LDV signals at speeds of 0.5~20 km/h and 
frequencies up to 1,000~3,000 Hz. Chapter 5 demonstrates the effectiveness of 
the transfer function estimation at speeds of 8~16 km/h and frequencies up to 
800 Hz. 

• Field measurements provide realistic conditions to further test the technology 
and methods. Chapter 4 applies the vibration-noise separation method to the 
train-borne LDV measurements on the CTO train and investigates the speed-
dependent characteristics at speeds of 5~30 km/h and frequencies up to 300 Hz.  

The above investigations based on numerical simulations, laboratory measurements, 
and field measurements yield coherent results. These findings demonstrate the 
applicability and usability of the train-borne LDV technology for monitoring track 
dynamic properties over a wide frequency range, thus potentially enabling more efficient 
and informative rail infrastructure monitoring. 

6.2. FURTHER RESEARCH 
In the development and validation of train-borne LDV technology for monitoring track 
dynamic properties, there are still many challenges to overcome and many possibilities 
to explore. Recommendations for future research are given below. 

• We should pay close attention to state-of-the-art technologies of LDV 
instruments (such as signal diversity techniques) and test their performance for 
applications of train-borne LDV measurements. This can potentially improve 
signal quality, especially when measuring small-amplitude, high-frequency, and 
transient structural vibrations. 

• A benchmark dataset can be created based on train-borne LDV measurements 
from different vehicle speeds. An extensive comparison of different options at 
each step of the three-step framework for speckle noise reduction is 
recommended to obtain the best combination of methods in different situations.  

• In operational modal identification, structures are usually assumed linear and 
slightly damped. However, this cannot hold for railway tracks. Another 
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challenge is the movement of wheel loads. Therefore, the operational modal 
analysis method needs to be further improved to provide more accurate and 
robust identification performance. 

• The proposed transfer function estimation method needs to be improved in its
applicability to vehicles with multiple wheels and the robustness to model errors.
Different transfer function estimators with different smoothing strategies should
also be investigated to improve the estimation accuracy.

• The performance of train-borne LDV measurements needs to be tested at higher
speeds in field measurements, where more severe speckle noise, lower
frequency resolution, and more uncertainties are expected. The quantification of
uncertainties is essential to enhance the confidence level of the results.

• When more measurement data and deeper understanding are available, machine
learning can be applied to the anomaly detection and health monitoring of
railway tracks. This can contribute to intelligent infrastructure monitoring and
maintenance.

Future development and validation of the train-borne LDV technology should be 
closely aligned with its potential application to railway track monitoring and its added 
value to railway asset management. Efforts should be made to continuously increase the 
validity, usability, and practicality of the monitoring and assessment results for 
infrastructure managers and contractors. The ultimate goal is to achieve large-scale 
monitoring and assessment from instrumented operational trains on a daily basis, thus 
allowing more effective lifespan control and predictive maintenance. 
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A.1.  TRAIN-TRACK-LDV MODEL
The vehicle and the wheel are modeled as rigid bodies as follows, 

( ) ( ) ( ) ( ) ( )v v v v w v v w 0m z t k z t z t c z t z t+  −  +  −  =     

       (A.1) 

( ) ( ) ( ) ( ) ( )w w v v w v v w c 0m z k z t z t c z t z t F t−  −  −  −  + =     

         (A.2) 

where mv and mw are the masses of the vehicle and the wheel, respectively, kv and cv are 
the stiffness and damping of the suspension, respectively, zv and zw are the vertical 
displacements of the vehicle and the wheel, respectively, and Fc is the wheel-rail force. 

The sleepers are also modeled as rigid bodies, and the equation of motion of the i-th 
sleeper (i=1, .., ns) is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )s s r r s s r r s s s s s s, , 0i i i i i i i i i i im z t k z x t z t c z x t z t k z t c z t−  −  −  −  + + =      

   (A.3) 

where ms is the mass of the sleeper; zsi is the displacement of the i-th sleeper, kri and cri 
are the stiffness and damping of the rail pad above the i-th sleeper, respectively, ksi and 
csi are the stiffness and damping of the ballast below the i-th sleeper, respectively, and 
xsi is the position of the i-th sleeper, i.e., xsi=(i–1/2)ds with ds the sleeper spacing. 

The rail is modeled as a simply-supported Euler-Bernoulli beam of length l=ns×ds. 
Its displacement at position x and time t is characterized as follows [164], 
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     (A.4)

where E is the elastic modulus of the rail, I is the second area moment of the rail, mr is 
the mass of the rail per unit length, δ(·) is the Dirac function, xc is the position of the 
wheel, i.e., xc(t)=x0+vt with v denoting the train speed and x0 denoting the initial position. 

According to the Ritz method, the k-th modal coordinate is denoted as qk(t), and the 
k-th modal function is defined as follows [164].
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The displacement of the rail is approximated as follows, 

( ) ( ) ( )
m

r
1

,
n

h h
h

z x t Z x q t
=

= ∑        (A.6) 

where nm is the truncated order of modes. Then, Eq. (A.4) can be converted into the 
following second-order ordinary differential equations. 
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The wheel-rail contact force is calculated based on Hertz theory as follows [164], 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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  − −  − − >  =  
 − − <

   (A.8) 

where ze is the rail irregularity, G is a contact coefficient for a conical wheel, i.e., 
G=4.57rw–0.149×10–8 m/N2/3, and rw is the wheel radius. 

Figure A.1: Spectrum of rail irregularity. 

Table A.1: Parameters for simulating track vibration. 

Symbol Parameter Value Symbol Parameter Value 

mv Mass of vehicle 50 kg d Sleeper width 0.04 m 

kv Stiffness of suspension 230 kN/m ds Sleeper spacing 0.1258 m 

cv Damping of suspension 100 N/(m/s) ks Stiffness of sleeper pad 10 MN/m 

mw Mass of wheel 
(including axel box) 

40 kg cs Damping of sleeper pad 860 N/(m/s) 

rw Radius of wheel 0.065 m Pr Power of Gaussian 
white noise for rail 
irregularity 

-120 dBW

mr Mass of rail per unit 
length 

3.51 kg/m λpass Passband wavelength of 
rail irregularity 

10 mm 

I Second area moment of 
rail 

50,803 mm4 λstop Stopband wavelength 
of rail irregularity 

0.4 mm 

nm Truncated order of rail 
modes 

25 hstop Stopband attenuation 55 dB 

E Elastic modulus of rail 205.1 GPa Δx Laser-wheel offset 0.063 m 

kr Stiffness of rail pad 200 MN/m Δt Integration step size 1×10-5 s 

cr Damping of rail pad 1.9 kN/(m/s) γ Integration parameter 0.5 

ns Number of sleepers 25 β Integration parameter 0.25 

ms Mass of sleeper 1.15 kg 

The rail irregularity ze is generated (with a spatial interval ΔxN) by applying a low-
pass Butterworth infinite impulse response filter to Gaussian white noise. Figure A.1 
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shows the spectrum of such artificial spatial noise, which is defined by a passband 
wavelength, a stopband wavelength, and a stopband attenuation.  

Eq. (A.1)~(A.3) and (A.7) are solved numerically using the Newmark-β method 
[163], while the contact force is updated at each step according to Eq. (A.8). The 
parameters used for simulations are listed in Table A.1. 

A.2.  SPECKLE TRANSLATION MODEL
The electric field of the reference beam on the photodetector is given as follows [167], 

R R R R
2expE A i t tπ ω θ
λ

  = + +    
       (A.9) 

where λ is the laser wavelength, ωR is an artificial frequency shift, AR and θR represent 
the amplitude and phase of the reference beam, respectively.  

Each speckle is assumed to have its own amplitude and phase, denoted as ASk and 
θSk, where k represents the k-th speckle. Given the target vibration z(t), the electric field 
of the k-th speckle is expressed as follows [167]. 

( )S S S
2 2exp 2k k kE A i t z tπ π θ
λ λ
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  (A.10) 

Then, each speckle on the photodetector is heterodyned with the reference beam, and 
the intensity of such a mixed area is derived as follows [169],  
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     (A.11) 

where H denotes conjugate transpose, IR and ISk are intensities of the reference beam and 
the k-th speckle, respectively.  

The last term in Eq. (A.11) carries the phase change due to the target motion and the 
laser speckle. After filtering out the DC components and summing up the contributions 
of all the K speckles, the output of the photodetector is derived as follows [169], 
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where ak represents the area of the k-th speckle observed on the photodetector, and IM 
and θM are expressed as follows [166, 169], 
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Therefore, the target vibration z(t) can be measured from the frequency of u(t) as 
follows [167],  

( ) ( ) ( )M
D R

4 dt z t t
dt

π θω ω
λ

= + +

         (A.15) 

The phase change rate dθM/dt depends on the properties of the laser speckles and the 
reference beam. Assuming that the laser is well-focused on the target surface, the space 
correlation length of the speckles on the photodetector is calculated as follows [168], 

C
Rl
w

λ
π

=       (A.16) 

where w is the diameter of the laser spot and R is the distance between the target surface 
and the photodetector. The length lC describes the size of each speckle, within which the 
intensity and phase, ISk and θSk, are constant. The intensity and phase of all speckles are 
assumed to follow the following negative exponential distribution and uniform 
distribution, respectively [169]. 
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where <IS> denotes the mean speckle intensity. Random samples of ISk and θSk are 
generated for each speckle.  

Meanwhile, the time correlation length of the speckles on the photodetector is as 
follows [168], 
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−
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where v is the in-plane speed of the laser spot on the surface. 
The parameters used for simulations are listed in Table A.2. 

Table A.2: Parameters for simulating speckle noise. 

Symbol Parameter Value Symbol Parameter Value 

λ Wavelength of laser 1,550 nm m Number of grids along 
the translation direction 

200 

w Diameter of laser spot 0.19 mm n Number of grids along 
the orthogonal direction 

100 

a Number of speckles covered 
by photodetector length 

2 fC Cut-off frequency of 
low-pass filter 

100 kHz 

R Distance between target and 
photodetector 

2.7 m 
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