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Abstract—Many tasks in machine learning for software engi-
neering rely on prominent NLP metrics, such as the BLEU or
ROUGE score. The metrics are under heavy criticism themselves
within the NLP community, but the SE community adapted them
for lack of better alternatives. Within this paper, we summarize
some of the problems with common metrics at the examples of
code and look for alternatives. We argue that our only hope is
the worst of all possible options: Humans.

I. INTRODUCTION

In ancient Greece, Hephaistos was accompanied by servant
automatons to help around his forge, freeing him to spent his
time on true masterpieces. This hellenic ideal of automation
lives up to this day and has its renaissance with software
engineers: Tedious tasks such as writing tests[1] or documen-
tation [2] are shifted towards automation to give room for the
developers creativity. The narrative is great — the results are
often humbling. Presentations for Githubs CoPilot [3] pick
cherries, but thorough investigations usually lead to disturbing
or amusing results. How did we end up here ?

One issue are the metrics. For this paper we focus on Docu-
mentation Generation [2], which is lately often interpreted as
a translation task from source code to human language (i.e.
english) and draws a lot from NLP research, such as sequence-
to-sequence models [4] but also the most common metric
BLEU [5]. In recent work, Gehrmann et al. [6] criticised the
metric driven approaches and publications in NLP (specifically
generation tasks). Among their primary findings are that (@)
people blindly use existing datasets without manual inspection,
sampling, etc. @ people rarely inspect output manually or
involve end-users (c) all publications use BLEU for lack of
better options or for acceptance at a venue. Gehrmann et al.
proposition is as compelling as it is easy: Instead of using big
data and arguably weak metrics, center the evaluation around
a group of expert users.

The remainder of this paper first highlights some flaws with
BLEU in documentation generation in Section II and elabo-
rates on the proposed solution in Section III. While we cover
only one domain briefly, we consider this to be a general
critique applicable for most domains. We close in Section IV
by arguing that we need to change the course of SE-ML-
Metrics, and while the proposal might not be perfect, it is
one we haven’t tried in a long time.

II. THE FLAWS

BLEU [5] is a metric to evaluate quality of translation and
text-generation techniques. It compares the overlap of n-grams

in a produced text compared to one or more reference texts,
where commonly a four-gram is used, as it correlates closest to
human acceptance[7]. There is wide criticism on BLEU[8],[9],
but we highlight issues specific to the domain of software
engineering:

@ While BLEU takes n-grams into account, many pieces
of programming language and documentation will produce a
solid score despite sometimes contrary meaning. With com-
mon tokenization, return ( a + b) == ( b - a ); and return
(a-b) == (Db + a ) scores near perfect in BLEU. Some
publications opt for one-gram BLEU, for which the above
example gives an optimal match.

(2) Eghbali et al. [?] investigated the BLEU-Scores of
randomly chosen samples from within different corpora. In
a corpus of english literature there was a BLEU of ~20%,
comparing two random elements from Javas scores ~40%.
This is stunning insofar as these numbers form the expected
baseline if we could produce random elements that follow
the same distribution. In their initial publication, CodeBERT
produces a BLEU-Score of 17.65% [2], which is 2.4% worse
than drawing random elements.

@ Unlike natural language, programming languages
(and their documentation) invent new words frequently.
This is known as the open vocabulary problem [10] and
is addressed in SE mostly by encodings. Prominent are
BytePairEncoding[10] and Subword-Splitting [11]. Both in-
crease the number of tokens - hitherto they benefit the
BLEU score. It poses two primary issues: it is harder to
evaluate and compare the metric if evermore strings become
attached. the research field itself becomes overburdened
in experiment-complexity only for the sake of metrics.

III. THE OPTIONS

One approach to address the issues is to blame the metric;
The BLEU is dead, long live the BLEU. One can easily
stitch together "MetaBLEU” that combines normal BLEU
for language-representation and stopword-cleaned BLEU for
content-coverage. Similar fixes for BLEU have been proposed
[12][?][13], mostly ductaping the underlying problems. These
are not done in bad faith, on the contrary they fit perfectly
in the current paradigm of ML publications — more data,
more features and better tuned models can be used with the
same benchmark and promise a safe academic voyage. But as
a research field, we will hit dead ends by the need for ever
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Fig. 1. Proposed Pipeline for SE Model Training

more data, a cacophony of metrics and incredible computation
times.

Apart from these issues, another question remains: Is a
model with good BLEU score useful? The only way to answer
this is to ask real humans, real users. Gehrmann et al. [6] come
to a similar conclusion and argue for model-cards based on
expert-based qualitative analysis. Theoretically there are few
fields easier to change evaluations than Software Engineering;
Software Engineers produce the data, ML-libraries, models,
metrics and are the final users.

The concrete suggestion (shown in Figure 1) is to start
models with metrics, and produce proto models that cover
a basic understanding of vocabulary and distributions. The
downstream-tasks should be tuned with humans in the loop, by
rating various aspects of the specific task (content, quality of
language, feedback time, inter-prediction quality, etc.). Rating-
Criteria should be derived from and with the final users, in a
fashion like requirements engineering. This pipeline is similar
to e.g. CodeBERT [14], which learns general perplexity on
Code and then is fine-tuned for the specific task and language.
The BERT-Core and the Code-Addition would form the proro
model and the downstream-task of documentation generation
would be done in active learning with experts rating samples,
instead of blind metrics. Pieces for this novel pipeline are
available and tested [15][16], and could themselves make great
use-cases for reinforcement learning and federated learning.

IV. CONCLUSION

Following metrics down the rabbit hole lead us into a ML
wonderland of free publications — but for outsiders we are
just kids in an asylum. If our goal is to make models that
are useful to developers and help them in their business, the
only metric we really have to maximize is their feedback. No
developer tries to write documentation with a certain BLEU
score, hence we should turn our back on these proxy-metrics.
We should trust our users that they know what they want, and
change our own research to accomodate for their needs.
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