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Abstract
Dielectric shimming is proven to be very useful in increasing the homogeneity of the 𝐵ዄኻ field in high
field MRI. Current optimization and design techniques for dielectric pad parameters are slow. The goal
of this thesis is to find a fast and accurate pad design and optimization technique. Two new techniques
are proposed. The first, a method that simply uses inspection by solving the forward problem in a
relatively fast way. The other proposed technique follows a more analytical approach to find the optimal
permittivity and conductivity of a pad in a couple of iterative steps with a Gauss-Newton method. This
last technique uses a new proposed approach to predict the phase of the 𝐵ዄኻ field in a direct fashion.

These techniques provide fast and accurate simulation results for a two-dimensional abdominal
body slice placed in a 3T MRI scanner for different pad scenarios. From these results it can be con-
cluded that both proposed techniques generate comparable pads, which are able to increase the ho-
mogeneity of the 𝐵ዄኻ field.

A comparison between the two techniques is made. The Gauss-Newton method provides a fast,
robust and accurate optimization technique for large scale problems, but offers less flexibility and insight
to the data compared to the method via inspection.

The flexibility of the method via inspection and the insight it provides is shown for different scenarios
(pad location, multiple pads, pad shape, pad thickness), where the effect of the optimal permittivity and
conductivity on the homogeneity of the resulting 𝐵ዄኻ field is simulated. Even the maximum allowed SAR
can be incorporated in this pad optimization technique.

iii





Preface
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1
Introduction

1.1. MRI
Magnetic Resonance Imaging (MRI) is widely used for medical diagnosis and laboratory research.
Unlike other imaging techniques such as x-ray, MRI does not make use of harmful ionizing radiation.
Another advantage is the sensitivity of Magnetic Resonance (MR) to a wide variety of tissue parameters
and hence it can provide more information by using different pulse sequences [19]. MRI is able to
produce high resolution and high contrast images through the body without any risk, which made it the
fastest growing imaging modality in recent years. Extensive research is done to further improve the
Signal to Noise Ratio (SNR), resulting in increased image quality or reduction in scanning time for the
same image quality. Therefore the field strength is increased over the years which leads to high-field
MRI systems [23].

Themagnetic field inMRI is created by a strongmainmagnet provided by a superconductingmagnet
that creates a uniform static magnetic field directed in the longitudinal direction, the 𝐵ኺ field oriented by
convention in the z-direction of a Cartesian reference frame. Nowadays, superconducting magnets of
1.5 T up to even 7 T are commonly used as main magnet. Hydrogen protons are present in a very high
density within the human body (the human body contain a lot of water), and since the hydrogen proton
has a small magnetic moment it will align to this static field. These protons spin around their axes
with the Larmor frequency, which is known as precession [16]. When a secondary circularly polarized
Radio Frequency (RF) field is applied at this particular frequency the protons can be flipped in the plane
perpendicular to the 𝑧-direction, the transverse 𝑥𝑦-plane. When the RF-field is released the protons fall
back in their former equilibrium position while emitting energy. This energy is picked up and converted
into a detailed MR scan.1

However, only a specific part of the RF field is able to flip the magnetization out of its equilibrium
towards the 𝑥𝑦-plane where it can be measured [8]. Such field is called the left-handed circularly
polarized RF field, the 𝐵ዄኻ field. To obtain high-quality images this field needs to be as homogeneous
as possible with a sufficient field strength, although the maximum field strength is related to the electric
field strength which is bounded by the allowed Specific Absorption Rate (SAR) [27].

The Larmor frequency of the 𝐵ዄኻ field is linearly related to the static field strength, hence for higher
field strengths the resonance frequency increases. At some point, the wavelength of the 𝐵ዄኻ field be-
comes comparable to the dimensions of the human body. This causes a major problem in high-field
MRI, namely the inhomogeneity of the 𝐵ዄኻ field due to interference effects [1][5]. An example of this
effect is given in Figure 1.1a where signal drop-outs are clearly visible as black spots in the image due
to destructive interference. Also the opposite is possible, constructive interference that leads to very
bright spots in the image with related so-called hot spots in the electric field, which might exceed the
allowed SAR and therefore becomes problematic as well.

1For a more thorough but still easy (as the title implies) explanation I suggest reading http://www.stat.columbia.edu/
~martin/Tools/MRI_Made_Easy.pdf.

1
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2 1. Introduction

(a) Scan without pad (b) Scan with pad

Figure 1.1: Abdominal scans of a patient in a 3T MRI system. (a) clearly shows the signal drop-outs due to the
interference effects. These effects are removed in (b) by making use of dielectric material (pads), placed anterior
and posterior of the patient.

1.2. RF shimming with dielectric pads
By using shimming techniques the interference problem can be overcome by tailoring the field to com-
pensate for these effects. This can be done via placing and tuning antennas, often referred to as active
shimming [28] or by placing dielectric objects close to the region of interest (ROI), called passive shim-
ming [9]. Passive shimming is a more practical solution because no hardware additions to an existing
MR system are needed. Dielectrics in the form of high-permittivity pads are used instead, which are
relatively cheap and easy to fabricate. The pads induce a secondary magnetic field which is able to
overcome the signal drop-outs due to interference effects, only when designed correctly. Figure 1.1b
shows the resulting image when pads with carefully selected parameters are placed. These parame-
ters are location of the pad, the material properties (permittivity and conductivity), the shape and the
number of pads. Selecting the right parameters is however challenging and also patient specific unfor-
tunately [3]. Therefore, finding the right pad parameters quickly and accurately is of great interest so
that the right pads for a patient can be selected immediately, without several hospital visits and multiple
scans.

There are several materials and compositions used to fabricate pads, having typically relative per-
mittivity values of 80 up to 1000. Water and aqueous solutions are one of the frequent used materials
with a relative permittivity of approximately 60 to 80 [24]. Another possible material for example is
calcium titanate with a typical relative permittivity around 150 [14]. Recent research has shown that
barium titanate can be used for even higher relative permittivities up to 300 [17], and there are even
materials with a permittivity of 800 and 1200 [21], those materials are sealed together in a pad, which
is most of the time rectangular shaped. The pad will follow the contour of the subject where it is placed,
because of the flexibility of the material. Small compartments in the pad can be used to prevent for spa-
tial variation in the pad itself due to mechanical stress [25], however spatial variation can be a design
criteria as well.

1.3. Problem definition
To find the influence of a specific dielectric pad in a specific configuration (human subject, coils, etc.)
we need to find the magnetic fields. To this end we solve the Maxwell’s equations to obtain the elec-
tromagnetic fields. As mentioned before, it is of importance to do this as quickly as possible. However,
with the traditional solvers it will take a significant amount of time to calculate the fields for the large
amount of possible pad configurations and hence, to select the optimal pad (the pad that results in the
most homogeneous 𝐵ዄኻ field). For example, solving for a pad placed on 5 different possible locations,
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with 5 different dimensions and 2 different permittivity values results already in 50 simulations. Alter-
natively, the problem size can be reduced by dividing the domain into a stationary background domain
(the body in the MR-scanner), which can be calculated offline and a field of small dimension which is
induced by the pad only [4]. Therefore, the 𝐵ዄኻ field inside the body can be computed efficiently by
making use of Sherman-Morrison-Woodbury formula [26], where we have exploited the fact that the
pad forms a small perturbation with respect to the background configuration. This is the approach that
we will follow in this thesis.

Outline
The approach described above is shown in more detail in Chapter 2. In Chapter 3 the optimal pad
parameters are experimentally determined by solving an optimization problem. In Chapter 4 we de-
termine the optimal pad parameters in a more analytical way, in combination with our proposed new
method for phase updating. Some conclusions are drawn in chapter 5.





2
An integral equation approach

In this chapter we discuss an integral equation approach that shows that the 𝐵ዄኻ -field inside the human
body can be calculated efficiently by noticing that a pad introduces only a low-rank perturbation of the
original system. Since we have to deal with electromagnetic fields, a good starting point is obvious
Maxwell’s equations. With these equations we compute first the electromagnetic fields present in ab-
sence of the human body, the background field. Next, the scattered field can be calculated, which let
us compute the total transmitted electric field when the human body is present, under the assumption
that the contrast is known. We use the Sherman-Morrison-Woodbury formula to compute the total
transmitted electric field efficiency in a discretized form, which leads us finally to the 𝐵ዄኻ field in a single
step.

2.1. Maxwell’s equations
The behaviour of the electromagnetic field is described by Maxwell’s time-harmonic field equations

−∇∇∇ × Ĥ+ 𝜎Ê+ j𝜔𝜖Ê = −Ĵext, (2.1)

and
∇∇∇ × Ê+ j𝜔𝜇Ĥ = 0. (2.2)

Equation 2.1 is known as the Maxwell-Ampere equation, where Ĥ is the magnetizing field (A/m), Ê the
electric field (V/m), and Ĵext is the external electric-current density (A/m2). Furthermore, Equation 2.2
is also known as Faraday’s law. We cannot solve the above equations since only Ĵext is known, so
the number of unknowns is larger than the number of known quantities. Fortunately, the medium
parameters in vacuum are also known where the permeability of vacuum 𝜇 = 𝜇ኺ = 4𝜋 ⋅ 10ዅ዁ (H/m) and
the permittivity 𝜖 = 𝜖ኺ = 1/𝑐ኼኺ𝜇ኺ (F/m), with 𝑐ኺ = 299792458 (m/s) the electromagnetic wave speed in
vacuum. The conductivity 𝜎 = 0 (S/m) in vacuum.

A background model with a so-called scattering formalism is introduced to find the electromagnetic
field in the transmit state of the MRI scanner. Therefore we exploit the linearity of Maxwell’s equations
and simply add the background and scattered fields to arrive at a explicit integral representations for the
total electromagnetic field. The background field (Ĥb;tr and Êb;tr) is defined as the electromagnetic field
that would be present if the human body is absent and the scattered field (Ĥsc;tr and Êsc;tr) for which
the human body acts as a source. The used configuration is depicted in Figure 2.1, where the external
electric-current density Ĵext is given by RF antennas that occupies a bounded source domain 𝔻src in
ℝኽ. This generates an electromagnetic field that is incident upon the human body, which occupies the
bounded object domain 𝔻obj, when we are not only looking at the background field and is embedded
in vacuum for simplicity.

Note that the medium parameters for vacuum hold for both the background field as for the total elec-
tromagnetic field (Ĥtr and Êtr) outside the bounded object domain 𝔻obj, since this domain is embedded
in vacuum. There is obvious no external electric-current density inside the object domain, so Ĵext = 0
in that case. Also the medium inside the object domain differ, the conductivity 𝜎 in Equation 2.1 exists

5
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Figure 2.1: The electromagnetic transmit field generated by external sources located in the source domain 𝔻ᑤᑣᑔ
and if the human body is present the bounded object domain 𝔻obj occupied by the human body, surrounded by
vacuum.

and the permittivity 𝜖 = 𝜖፫𝜖ኺ. We assume that the permeability of the medium, given in Equation 2.2
remains the same as the permeability for vacuum, 𝜇ኺ.

If we subtract the background field equations from the total field equations, we obtain

−∇∇∇ × Ĥsc;tr + j𝜔𝜖ኺÊsc;tr = −Ĵsc;tr(r, 𝜔) (2.3)

and
∇∇∇ × Êsc;tr + j𝜔𝜇ኺĤsc,tr = 0, (2.4)

with the scattering fields as

Ĥsc;tr = Ĥtr − Ĥb;tr, Êsc;tr = Êtr − Êb;tr,

and the scattering source as

Ĵsc;tr(r, 𝜔) = {
0 if r ∉ 𝔻፨፛፣
{𝜎(r) + j𝜔[𝜖(r) − 𝜖ኺ]}Êtr(r, 𝜔) if r ∈ 𝔻obj.

Now equation 2.3 and equation 2.4 are of the same form as the time-harmonic field equation we had
before. The magnetizing field can be eliminated by combining these two equations. This gives

∇ኼÊsc;tr − 𝛾ኼÊsc;tr = 𝑗𝜔𝜇ኺĴsc;tr − (j𝜔𝜖ኺ)ዅኻ∇∇∇∇∇∇ ⋅ Ĵsc;tr,

where 𝛾 = 𝑗𝜔/𝑐ኺ is the propagation coefficient. We introduce Green’s function 𝐺̂ in order to solve this
differential equation

𝐺̂(r, 𝜔) = exp(−𝛾|r|)
4𝜋|r| for |r| ≠ 0.

The solution for the electric field strength of the scattered field can be written by the following integral
representation

Êsc;tr(r, 𝜔) = − j𝜔𝜇ኺ∫
rᖤ∈𝔻ᑠᑓᑛ

𝐺̂(r− rᖣ, 𝜔)Ĵsc;tr(rᖣ, 𝜔)𝑑𝑉

+ (j𝜔𝜖ኺ)ዅኻ∇∇∇∇∇∇ ⋅ ∫
rᖤ∈𝔻ᑠᑓᑛ

𝐺̂(r− rᖣ, 𝜔)Ĵsc;tr(rᖣ, 𝜔)𝑑𝑉. (2.5)
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By using the definition of the scattered field this results in the integral equation

Êtr(r, 𝜔) − (
𝜔
𝑐ኺ
)
ኼ
∫
rᖤ∈𝔻ᑠᑓᑛ

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)Êtr(rᖣ, 𝜔)𝑑𝑉

−∇∇∇∇∇∇ ⋅ ∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)Êtr(rᖣ, 𝜔)𝑑𝑉 = Êb;tr(r, 𝜔), (2.6)

with r ∈ 𝔻obj and where we have introduced the contrast function as

𝜒̂(r, 𝜔) = 𝜖፫(r) − 1 − j
𝜎(r)
𝜔𝜖ኺ

. (2.7)

We can write this integral equation more compactly by introducing an operator L which yields

ℒÊtr = Êtr(r, 𝜔) − (
𝜔
𝑐ኺ
)
ኼ
∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)Êtr(rᖣ, 𝜔)𝑑𝑉

−∇∇∇∇∇∇ ⋅ ∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)Êtr(rᖣ, 𝜔)𝑑𝑉, (2.8)

and now write Equation 2.6 as follow

ℒÊtr = Êb;tr with r ∈ 𝔻obj. (2.9)

2.2. Sherman-Morrison-Woodbury
Furthermore, the continuous integral equation is discretized for the 2D case in Appendix B, resulting in
the following equation

(I−GXbody −GXpad)ẽtr = eb;tr, (2.10)

where ẽtr contains the total electric field and eb;tr is the background electric field. Furthermore, I is the
identity matrix,X is a diagonal matrix with the contrast function values for the body and pad respectively,
and matrix G is the Green’s matrix. This matrix is constructed by making use of a uniform grid to
discretize the integral equation, so the product of a vector with this matrix G can be calculated in a fast
way via Fast Fourier Transform (FFT) [12].

By comparing Xbody of size 𝐾-by-𝐾 and Xpad of size 𝐿-by-𝐿, where 𝐿 is the number of voxels/pixels
occupied by the pad, we notice that 𝐿 is much smaller than 𝐾 as already mentioned before. By making
use of Sherman-Morrison-Woodbury we can write the total electric field with pads in terms of the total
electric field without pads, where the pads introduce a rank 𝐿 perturbation of the system without any
pads. Using matrix algebra we have GXpad = UVፓ with

U = GS

and
V = SXpad,

where S is a 𝐾-by-𝐿 support matrix as

S = [ejኻ,ejኼ, ...,ejፏ],

with ej the jth canonical basis vector. Apply the Sherman-Morrison-Woodbury formula, we find

ẽtr = etr + Z(I− VፓZ)ዅኻVፓetr, where Z = (I−GXbody)ዅኻU, (2.11)

where etr contains the total electric field without pad. Notice that only V depends on the contrast of
the pad, therefore matrix Z can be calculated offline with a iterative solver, for example GMRES. The
inverse (I−VፓZ)ዅኻ is easily computed, since the number of perturbations 𝐿 is usually small. Therefore,
different pads can be calculated very efficiently with Equation 2.11 by making use of the offline library
matrix Z.
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2.3. The RF field
The calculation of the left-handed and circularly polarized time-harmonic RF field inside the human
body defined as

B̂ዄኻ = 𝐵̂ዄኻ (i፱ − ji፲) with 𝐵̂ዄኻ =
𝐵̂፱ + j𝐵̂፲

2 , (2.12)

is straightforward now by applying Faradays’s law, Equation 2.2 for both components separately. From
Appendix B we have

𝜕
𝜕𝑦 𝐸̂፳ + j𝜔𝜇𝐻̂፱ = 0, (2.13)

and
− 𝜕
𝜕𝑥 𝐸̂፳ + j𝜔𝜇𝐻̂፲ = 0. (2.14)

Rewriting this in terms of its magnetic field component bymaking use of the constitutive relation B̂ = 𝜇Ĥ,
results in the following equations

j𝜔𝐵̂፱ = −
𝜕
𝜕𝑦 𝐸̂፳ , (2.15)

and
j𝜔𝐵̂፲ =

𝜕
𝜕𝑥 𝐸̂፳ . (2.16)

The above expressions are approximated by centered finite-differences to solve them in the discretized
domain, where E፳ denotes the 𝑀-by-𝑁 electric field matrix of values of the discretization cells. There-
fore, we introduce the (𝑀 − 2)-by-𝑀 differentiation matrix

X = 1
2𝛿𝑥 (

−1 0 1
−1 0 1

−1 0 1
) , (2.17)

and the (𝑁 − 2)-by-𝑁 differentiation matrix

Y = 1
2𝛿𝑦 (

−1 0 1
−1 0 1

−1 0 1
) . (2.18)

We overcome difficulties in calculating the finite-difference approximation on the boundary of our grid
domain by removing the outer boundary cells by introducing the (𝑀 − 2)-by-𝑀 restriction matrix

RM = (0 IM 0) , (2.19)

where IM is the identity matrix of order 𝑀 − 2, and the (𝑁 − 2)-by-𝑁 restriction matrix

RN = (0 IN 0) , (2.20)

where IN is the identity matrix of order 𝑁−2. Finally, with the introduction of all these matrices, we can
write the finite-difference approximation of Equation 2.15 and 2.16 as

B፱ =
−1
j𝜔 R፱E፳Yፓ , (2.21)

and
B፲ =

1
j𝜔XE፳R

ፓ
፲ . (2.22)

Eventually, we apply the vec-operation to both equations to write these equations in matrix-vector form
as

b፱ =
−1
j𝜔 (Y⊗R፱) ẽtr, (2.23)
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and
b፲ =

1
j𝜔 (R፲⊗X) ẽtr, (2.24)

where we used the linearity of the vec-operator and the property [15]

vec (AXBፓ) = (B⊗ A) vec (X) , (2.25)

where⊗ denotes the Kronecker (tensor) product.





3
Optimal pad design via inspection

In this chapter we will apply the method described in Chapter 2 to calculate the total 𝐵ዄኻ field for different
pad designs. The optimal permittivity and conductivity are determined via inspection where other pad
parameters are assumed to be given, for example, the pad location is fixed. These fields are simulated
and evaluated in MATLAB.

The simulation configuration is described in Section 3.1. In Section 3.2 two different methods for
measuring the homogeneity of the 𝐵ዄኻ are given. These two methods are tested by simulation for a
single fixed pad in Section 3.3, where also the influence of the permittivity and conductivity values
of this pad on the SAR are simulated. In Section 3.4 the influence of the position of the pad on the
homogeneity of the 𝐵ዄኻ is tested and in Section 3.5 the simulation results for multiple pads are given.
In Section 3.6 the influence of different pad shapes on the homogeneity of 𝐵ዄኻ is simulated. Finally, the
effect of the pad thickness on the optimal permittivity and conductivity is simulated in Section 3.7.

3.1. Simulation configuration
We make use of a male body model called Duke, member of the virtual family provided by IT’IS foun-
dation [6]. This model is placed in a birdcage coil driven by 16 line sources that operates at a frequency
of 128 MHz, corresponding to the frequency of a 3T MRI-system. For simplicity, we restrict ourselves
to two-dimensional models by taking a transverse slice through the abdominal region of the body and
place this slice at the midplane of the birdcage coil. This approach is justified, since the electromag-
netic field essentially has a two-dimensional E-polarized field structure at the transverse midplane of a
birdcage antenna.

Figure 3.1: The uniform grid used for the discretization, where the number of grid cells (ፌፍ) with middle point
(፱ᑞ, ፲ᑟ) can vary depending on the size of the grid and the size of each grid cell.

11
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For comparison we compute the electric field strength on both a 4 mm and an 1 mm uniform grid
within the slice at the scatter domain with an area of respectively 40 cm-by-40 cm and 33 cm-by-33
cm, defined by the side length 𝑙፱ and 𝑙፲. The region where a pad can be placed is the joint region
around the body. For the 4 mm grid we take 7 layers (thickness of the pad is up to 28 mm) and for the
1 mm grid we take 25 possible layers around the body (thickness up to 25 mm). The grid is illustrated
in Figure 3.1, where for every voxel/pixel the midpoint 𝑥፦ is calculated with respect to the origin as
follows

𝑥፦ =
1
2𝛿𝑥 + (𝑚 − 1)𝛿𝑥 for 𝑚 = 1, 2, … ,𝑀,

with 𝛿𝑥 = 𝑙፱/𝑀, where the total number of points in the x-direction, denoted by 𝑀 is 330 for the 1 mm
grid (𝛿𝑥 = 0.001 m) and 99 for the 4 mm grid (𝛿𝑥 = 0.004 m). Since the grid is square, we have the
same number of points and steps in the y-direction

𝑦፧ =
1
2𝛿𝑦 + (𝑛 − 1)𝛿𝑦 for 𝑛 = 1, 2, … , 𝑁,

with 𝛿𝑦 = 𝑙፲/𝑁. The scattering domain is divided into 𝑀𝑁 non overlapping discretization cells

𝑆።፣ = {𝑖𝛿𝑥 < 𝑥 < (𝑖 + 1)𝛿𝑥 , 𝑗𝛿𝑦 < 𝑦 < (𝑗 + 1)𝛿𝑦}

for 𝑖 = 1, 2, … ,𝑀 and 𝑗 = 1, 2, … , 𝑁.
The increase in resolution for the 1mm grid compared to the 4mm grid is clearly visible in Figure 3.2,

where the contrast of a transverse slice through the abdominal region of Duke is plotted for both cases.
However, the differences between the resulting fields are very small as shown in Figure 3.3.

(a) Resolution of 4 mm

(b) Resolution of 1 mm

Figure 3.2: The contrast of slice 550 of Duke’s torso model. The conductivity (left) and permittivity (right) are
plotted for 4 mm in (a) and 1 mm in (b).



3.2. Pad optimization methods via inspection 13

Electric field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 
[m

]

0

10

20

30

40

50

60

 [V
/m

]

B1+ field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 
[m

]

0

0.2

0.4

0.6

0.8

1

[T
]

×10-6

(a) Resolution of 4 mm
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(b) Resolution of 1 mm

Figure 3.3: The z-component of the resulting total electric field (left) and ፁᎼᎳ field (right) for 4 mm resolution in (a)
and 1 mm resolution in (b). The solid contour lines mark the region where a pad can be placed in between.

3.2. Pad optimization methods via inspection
In section 2.2 we have reduced the computational domain to that of the pad. Therefore the effect of
a pad can be found relatively quickly. In this section we fix the pad domain and vary the conductivity
and permittivity of the pad for a wide range of values and evaluate the resulting magnetic field. By
selecting the best field (the field with the least inhomogeneities) we find the corresponding optimal
permittivity and conductivity. Different methods can be used to measure the homogeneity of the total
𝐵ዄኻ field, hence the minimum value can be easily determined by plotting the functional and observe
where the minimum is reached or by just calculating the minimum value itself. One commonly used
method to describe the field homogeneity is by looking at the coefficient of variation (CV) [9]. This is
done in subsection 3.2.1. A different method is by describing a desired 𝐵ዄኻ field and measure the error
compared to the resulting 𝐵ዄኻ fields, as done in subsection 3.2.2. Subsequently, in subsection 3.3.3 we
determine the optimal pad parameters based on the electric field instead of the 𝐵ዄኻ field by using the
resulting SAR-values. This method is introduced in section 3.3, since it is only used once.

3.2.1. Coefficient of Variation Method
The CV describes the degree of variation in the data by making use of the ratio of standard deviation
(𝑆𝐷) to mean (𝑀)

𝐶𝑉(𝜖፫ , 𝜎) = 100
𝑆𝐷(|Bዄ1

inside(𝜖፫ , 𝜎)|)
𝑀(|Bዄ1

inside(𝜖፫ , 𝜎)|)
, (3.1)

since we want to measure ’how homogeneous the resulting field is’ we can use the CV for this purpose.
Therefore, we determine the total electric field and the corresponding 𝐵ዄኻ field for different pad values.
For each𝐵ዄኻ field the CV can be calculated bymaking use of Equation 3.1. Hence we are only interested
in the field inside the body, we only have to calculate the CV for the field inside and we ignore possible
variations outside the ROI. The pad that results in the 𝐵ዄኻ field with the lowest CV value for the 𝐵ዄኻ field
inside is the so called optimal pad, with an optimal permittivity 𝜖∗፫ and an optimal conductivity 𝜎∗.
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3.2.2. Target Field Method
Instead of calculating the variation of the field itself we can describe a desired field and use this field
as a target field. For all different pad parameters we again determine the total electric fields and the
corresponding 𝐵ዄኻ fields and subtract the target field from the 𝐵ዄኻ field which results in an error field

errB(𝑥፦ , 𝑦፧ , 𝜖፫ , 𝜎) =
1
𝑁𝑀

|Bዄ1(𝑥፦ , 𝑦፧ , 𝜖፫ , 𝜎)| − |Bዄ1
desired(𝑥፦ , 𝑦፧)|

|Bዄ1
desired(𝑥፦ , 𝑦፧)|

(3.2)

for 𝑚 = 1, 2, … ,𝑀 and 𝑛 = 1, 2, … , 𝑁. Only the magnitude of the magnetic field is used, since we are
only interested in a homogeneous 𝐵ዄኻ field in its magnitude. From the error field we can now calculate
the total error by taking the vector norm as follows

𝑒𝑟𝑟ፁ(𝜖፫ , 𝜎) = ‖vec (errB(𝑥፦ , 𝑦፧ , 𝜖፫ , 𝜎))‖፩ , (3.3)

for 𝑚 = 1, 2, … ,𝑀 and 𝑛 = 1, 2, … , 𝑁, where different p-norms can be used. The pad that results in the
smallest 𝑒𝑟𝑟ፁ is the optimal pad, with an optimal permittivity 𝜖∗፫ and an optimal conductivity 𝜎∗.

Challenging in this approach is describing a good desired 𝐵ዄኻ field, which will leads to good pad de-
sign. As mentioned before, good imaging quality requires a 𝐵ዄኻ field that is homogeneous in magnitude.
Therefore, the desired 𝐵ዄኻ field is a homogeneous field inside the ROI created by calculating the mean
value for the magnitude of the magnetic field without pad inside the subject area and replacing those
values by this mean value. Figure 3.4 shows the magnetic field where no pad is present and the created
homogeneous target field based on the field without any pad present.

|B1+|-field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

x 
[m

]

0

0.2

0.4

0.6

0.8

1

[T
]

×10-6 Desired |B1+|-field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

x 
[m

]

0

0.2

0.4

0.6

0.8

1

[T
]

×10-6

Figure 3.4: The magnitude of the ፁᎼᎳ field in case no pad is present and the desired ፁᎼᎳ field respectively.

Alternatively, we can prescribe the magnetic field in the ROI instead of describing the whole desired
𝐵ዄኻ field, since we are not interested in the field outside the subject. Furthermore, we can even reduce
the size of the target field by looking at the region of influence of the pad and only use this region, so
Equation 3.2 becomes

errBpart(𝑥፦ , 𝑦፧ , 𝜖፫ , 𝜎) =
1

𝑁part
|Bዄ1

part(𝑥፦ , 𝑦፧ , 𝜖፫ , 𝜎)| − |Bዄ1
desired;part(𝑥፦ , 𝑦፧)|

|Bዄ1
desired;part(𝑥፦ , 𝑦፧)|

, (3.4)

for all 𝑥፦ and 𝑦፧ elements of the ROI and where 𝑁part denotes the total number op points inside the
ROI.
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3.3. Results of single pad optimization
We fix the location and dimension of the pad, by placing one 4 mm thick rectangular pad with a length of
124 mm on the anterior of the abdomen as shown in Figure 3.5. Hence, the permittivity and conductivity
are the only free parameters so the total electric field and its corresponding 𝐵ዄኻ field can be determined
easily for different permittivity and conductivity values. This is done for a relative permittivity of 1 to
1000 with steps of 20 and a conductivity in the range from 0 S/m to 5 S/m with steps of 0.05 S/m on
both a 4 mm and 1 mm grid.
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(a) 4 mm resolution
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(b) 1 mm resolution

Figure 3.5: The electric field where black circles are plotted on the grid point occupied by the same pad for both
4 mm and 1 mm grid respectively.

3.3.1. CV method for optimal pad selection
In Table 3.1 the results for the optimal permittivity and conductivity are given. We notice that the results
for the CVmethod on the 4 mm grid are very similar to the results on the 1 mm grid as we expected from
the resulting fields in Figure 3.3, which are almost identical as we have mentioned before. The 𝐶𝑉 for
all possible permittivity and conductivity values are made visible in a so called permittivity-conductivity
plot as shown in Figure 3.6. From this plot the similarity between the 4 mm and 1 mm grid can also be
seen.

4 mm 1 mm
𝜖∗፫ 𝜎∗ [S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗ [S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗)
540 2.55 14.914% 580 2.60 15.0178%

Table 3.1: CV results for 4 mm and 1 mm resolution, where the ፂፕ value is without pad present 19.5073% and
20.1509% respectively.

Furthermore, we can see that the homogeneity of the resulting magnetic field depends mostly on
the permittivity, the conductivity is almost invariant to the optimal 𝐶𝑉. Figure 3.7 shows the resulting
fields for the optimal permittivity and conductivity for both 4 mm and 1 mm. The resulting 𝐵ዄኻ fields
are similar, since the optimal pad parameters are almost the same. When we compare these fields
with the field without a pad in Figure 3.3 we clearly see that the field becomes more smooth at the
anterior region of the abdomen, the pad makes the field more homogeneous in this region, while the
field outside the object become less homogeneous. This corresponds with the CV values (measured
inside the object) for the optimal pad, which decreases from 19.5073% to 14.914% for the 4 mm grid
and from 20.1509% to 15.0178% for the 1 mm grid.
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Figure 3.6: Permittivity-conductivity plot for the coefficient of variance method.

B1+ field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 
[m

]

0

0.2

0.4

0.6

0.8

1

[T
]

×10-6Electric field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 
[m

]

0

10

20

30

40

50

60

[V
/m

]

(a) 4 mm resolution
B1+ field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

x 
[m

]

0

0.2

0.4

0.6

0.8

1
[T

]
×10-6Electric field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

x 
[m

]

0

10

20

30

40

50

60

[V
/m

]
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Figure 3.7: The resulting ፄ and ፁᎼᎳ field respectively for ፂፕ(Ꭸ∗ᑣ, ᎟).
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3.3.2. Target field method for optimal pad selection
Known field
To test our method in a secure way, we set the permittivity to 200 and the conductivity to 0.2 S/m of the
fixed pad described above. The 𝐵ዄኻ field corresponding to these parameters (the known field) is used
in our approach as the desired field. This means our approach should recover the parameters exactly.
This is tested first and we also test the robustness of this method by adding white Gaussian noise to
the electric field. Hence, disturbance is added to the resulting magnetic field.
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Figure 3.8: The ፄ field with additive white Gaussian noise (SNR of 20 dB) and the resulting ፁᎼᎳ field respectively
for a pad placed (black line) with ᎟ = 0.2 S/m, Ꭸᑣ=200.

The permittivity and conductivity can be perfectly found for the known field, as expected. Even the
original permittivity and conductivity can be almost fully recovered for different norms for an electric
field with an SNR of 20 dB due to additive white Gaussian noise, as shown in Table 3.2. Instead of
only looking at the magnitude of the magnetic field, we also take a look at the total field since the target
field is known and so is the phase. From the results we see that the phase introduces a larger error,
while the results do not improve significantly.

|𝐵ዄኻ | 𝐵ዄኻ
𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎፨፩፭።፦ፚ፥[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗)

p=1 200 0.25 3.4875 200 0.20 5.3571
p=2 180 0.05 0.7614 180 0.25 1.0363
p=∞ 220 0.15 3.4230 200 0.35 4.8275

Table 3.2: Results for a known target field with noise created by a pad with Ꭸᑣ=200 and ᎟ = 0.2 S/m. The results
are given for the magnitude of the ፁᎼᎳ field and the full complex field respectively.

Desired field
The error will increase when using the desired field instead of a known field created with a pad as we did
above, since this field can never be fully reached with a single fixed pad. This desired field contains only
magnitude data as described in section 3.2.2, since we are only looking for a homogeneous magnitude
of the 𝐵ዄኻ field. The phase does not play an important role in finding the optimal pad and is hard to use
due to phase shifts and incorrect measurements [4]. Therefore, only the absolute value of the 𝐵ዄኻ field
is used, as already defined in Equation 3.2.

In table 3.3 the results are given for respectively the 4 mm and 1 mm grid, where different norms are
used. We normalized the error for the 1-norm and 2-norm by dividing the error by the total number of
points, in order to compare the error between the different grids. For the infinity norm this is not needed,
since the infinity norm gives a single value, the maximum. For now we have looked at the field inside
the subject only, like we did for the CV method. We notice that the results for the 2-norm are similar to
the CV method, hence, the resulting field will be very similar as well. Also, the permittivity-conductivity
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plots for the different norms are similar for the 1-norm and 2-norm as can be seen in Figure 3.9, which
corresponds with the similar optimal permittivity and conductivity for these norms. Optimizing for the
maximum difference between the desired field and the simulated field by using the infinity norm results
in much lower optimal permittivity values and also by looking at the permittivity-conductivity plot we can
see a much wider valley of values close to the optimal parameters for the infinity norm.

4 mm grid 1 mm grid
𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗)

p=1 620 3.25 0.1148 660 3.35 0.1159
p=2 560 2.85 0.0029 600 2.95 7.2684 10ዅኾ
p=∞ 220 2.75 0.4625 300 2.75 0.4730

Table 3.3: Optimal pad parameters for the target field method on both the 4 mm and 1 mm grid.

p=1

0 500 1000
permittivity

0

2

4co
nd
uc
tiv
ity

0.15

0.2

0.25
p=2

0 500 1000
permittivity

0

2

4co
nd
uc
tiv
ity

3
4
5
6
7
×10-3 p=inf

0 500 1000
permittivity

0

2

4co
nd
uc
tiv
ity

2

3

4

×10-4

Figure 3.9: Permittivity-conductivity plot for target field method for the 1-norm, 2-norm and infinity norm respec-
tively.

We see again very similar results for a 4 mm and 1 mm grid. Therefore, we choose to do most
of the following simulations at the 4 mm grid only for computational time reasons. In order to give an
indication of the simulation time we measure the time by running the 2-norm target field simulation in
Matlab for the 2 different grid resolutions. The 4 mm grid (the pad occupies 31 cells out of a total of 9801
discretization cells) took 14.4 seconds to run, while the 1 mm grid (the pad occupies 496 discretization
cells out of a total of 108900) took 1378.1 seconds to run. All the computation times are measured on
a Windows 7 64-bit computer with an Intel Core i5-4690 CPU @ 3.50 GHz and 8 GB of RAM.

As a general remark, note that the use of Matlab’s save (v-7.3) function used to read and write
columns of the library matrix Z is much slower than using high-level HDF5 functions. Using a HDF5
dataset with no compression and the chunk size equal to one column of Z improve the read/write
speed with a factor 10. Unfortunately, complex numbers are not supported for a HDF5 dataset, hence
by splitting Z in its real and imaginary part we can still improve read/write speed with a factor 5.

Partial desired field
From the resulting 𝐵ዄኻ fields in Figure 3.7 we have noticed that a pad placed on a patient affects only
the region close to the pad. Therefore, we do not need to prescribe the total desired field inside the
subject, instead we can prescribe only the region of the field the pad influences. On the other hand,
we can restrict the influence of a pad on the field outside the human body by using the total field as a
desired field.

The region a pad influences can be determined by calculating the field induced by a chosen pad
only as shown in Figure 3.10 and set a threshold on the field strength. This approach is shown in
Figure 3.11 where 3 different thresholds are set with accordingly 3 different regions. The results for
these regions and for the field inside the subject and the total field are given in Table 3.4, where the
target field error is calculated with the 2-norm. From these results we can see that a partial field gives
the same results as a desired field that describes the entire field inside the body, as long as the area
of the field does not become smaller than the region the pad influences. The optimal pad parameters
for the total field are limited due to negative field effects outside the ROI.

From Figure 3.12 we can see that the magnitude of the resulting 𝐵ዄኻ fields for the different optimal
pad parameters are very similar since the optimal pad parameters are also very similar for the different
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target fields. All fields are improved compared to the field without pad, but for the small partial field we
see a drop in signal due to the high conductivity and for the total field we see less improvement due to
the lower optimal permittivity value.
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Figure 3.10: The magnitude of the ፁᎼᎳ field induced by the pad only.

𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗)
Partial field 660 3.60 8.0794 10ዅኾ
Small partial field 540 5.40 0.0018
Large partial field 620 2.95 7.7739 10ዅኾ
Inside field 600 2.95 7.2684 10ዅኾ
Total field 360 1.55 7.3465 10ዅኾ

Table 3.4: Optimal pad parameters for different regions of the field, where the error is calculated by the target field
method with the 2 norm.
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(a) Partial field
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(b) Smal partial field
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(c) Large partial field

Figure 3.11: The selected regions based on the region a pad influences for 3 different thresholds sets.
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(a) No pad present
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(b) Partial field
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(c) Small partial field
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(d) Large partial field
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(e) Inside field
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(f) Total field

Figure 3.12: The resulting ፁᎼᎳ field in case no pad is present (a) and for the different optimal pad parameters from
table 3.4 (b-f).
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3.3.3. SAR
SAR is an important safety measure in MRI [7], therefore it is of interest to look for the SAR values for
different pad parameters and optimize these parameters according to minimum SAR value inside the
patient. This is done by minimizing the following equation

𝑒𝑟𝑟SAR(𝜖፫ , 𝜎) = sup
፱ᑞ ,፲ᑟ∈𝔻body

(12𝜎(𝑥፦ , 𝑦፧) |Ẽtr(𝑥፦ , 𝑦፦ , 𝜖፫ , 𝜎)|
ኼ) . (3.5)

From the equation it is easy to see that this method acts on the electric field instead of the magnetic
field. Therefore, the calculation of the 𝐵ዄኻ field from the electric field for every possible pad parameter
is not required.

Using only the SAR as an error measure is not desirable, since optimizing for this error result in a
decrease in the signal of the electric field due to the quadratic term in equation 3.5. Hence, it results
in very high optimal permittivity and conductivity values, so the pad become a shield for the electric
field as can be seen in the permittivity-conductivity plot as shown in Figure 3.13 and for the resulting
fields in Figure 3.14 where the drop in field strength for the electric field at the location close to the pad
is clearly visible. However, the maximum allowed SAR value can be used as secondary optimization
criteria in order to prevent hot spots in the resulting electric field. In Figure 3.15 the SAR values for
three different configurations are shown.
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Figure 3.13: Permittivity-conductivity plot for ፞፫፫SAR(Ꭸᑣ, ᎟).
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Figure 3.14: The resulting electric and magnetic field respectively for a pad with a high relative permittivity (1000)
and conductivity (5 S/m) on a 4 mm grid.
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Figure 3.15: The SAR inside the body in (a) for a pad with high permittivity and no conductivity, in (b) for a pad
with high permittivity and high conductivity, and in (c) when no pad is present.

No need to calculate the 𝐵ዄኻ field speeds up the optimization procedures a little bit, therefore, we
start asking ourselves if we cannot describe a desired electrical field and use this instead of the desired
𝐵ዄኻ field. Also, this will make it more easy to incorporate the SAR value as a criteria in our approach
of selecting the optimal pad. By comparing the electric field of Figure 3.3 with Figure 3.7, we can
see the effect a pad has on the 𝐸 field. In Figure 3.16 we make this effect more clear by plotting
the total 𝐸 field without a pad placed and with 2 pads placed, in order to modify the shape of the 𝐸
field, such that it will result in a more homogeneous 𝐵ዄኻ field. In Section 2.3 we have seen that the 𝐵ዄኻ
field is calculated by taking centered finite-differences of the total electric field in the 𝑥 and 𝑦-direction,
therefore, it is clear that a more constant change in both directions leads to a more homogeneous 𝐵ዄኻ
field. This can also be visualized by looking at the contour levels for the 2 different total electric fields
and compare this with the incident field (which results in a homogeneous 𝐵ዄኻ field), as can be seen
from Figure 3.17. Unfortunately, we came to the conclusion that describing a desired 𝐸 field is done
by prescribing constant centered finite-differences, which is the same as calculating the 𝐵ዄኻ field and
prescribe a homogeneous desired 𝐵ዄኻ field. Hence, using the 𝐸 field does not simplify or speed up our
pad selecting procedure.
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Figure 3.16: The total electric field with no pad present and the total electric field when 2 pads are placed respec-
tively.
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E field no pad E field with pads Incident E field

Figure 3.17: The contour levels for the total electric field with no pad present (left), the total electric field with 2
pads present (middle) and the electric incident field (right).

3.4. Influence of pad location on the optimal field
In this section we look furthermore at the effect of the location on the optimal permittivity and conduc-
tivity of the pad, and hence on the homogeneity of the resulting 𝐵ዄኻ field. Figure 3.18 shows possible
locations A,B,C and D where a pad can be placed. For each location we will determine the optimal
pad parameters for an 1 layer pad with a grid resolution of 4 mm. We can see from the results for the
different pad locations given in Table 3.5 that only pads close to inhomogeneities, like dark spots in the
𝐵ዄኻ field, are able to reduce the error and make the field more homogeneous. This is in line with the
small region a pad has influence on, as mentioned before and is also clearly visible at the permittivity-
conductivity plots for the different pad locations as shown in Figure 3.19 and for the resulting fields in
Figure 3.20, where we can see that the 𝐵ዄኻ field is improved for pad locations A and C. Location A has
the smallest error, hence, location A is the best location to place a pad. On the other hand, we can see
from the results that it makes no sense to place a pad on locations B and D.
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Figure 3.18: Location A, B, C and D are possible locations where a pad can be placed.

𝜖∗፫ 𝜎∗ [S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗[S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗)
Location A 460 2.60 0.0030 480 2.9 15.6496%
Location B 0 1.30 0.0037 0 1.15 19.3697%
Location C 400 1.85 0.0034 300 0.7 17.4374%
Location D 0 1.15 0.0037 0 0.40 19.4870%

Table 3.5: The optimal permittivity and conductivity for pads on different locations, ፂፕ is 19.5073% in case no
pad present.



24 3. Optimal pad design via inspection

0 500 1000
permittivity

0

1

2

3

4

5

co
nd
uc
tiv
ity

4

5

6

7

8

×10-3

0 500 1000
permittivity

0

1

2

3

4

5

co
nd
uc
tiv
ity

0.2

0.25

0.3

0.35

(a) Pad location A

0 500 1000
permittivity

0

1

2

3

4

5

co
nd
uc
tiv
ity

4

5

6

7

8

9
×10-3

0 500 1000
permittivity

0

1

2

3

4

5

co
nd
uc
tiv
ity

0.2

0.25

0.3

0.35

0.4

(b) Pad location B
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(c) Pad location C
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Figure 3.19: Permittivity-conductivity plot for the different locations for both the TFmethod (left) and the CVmethod
(right).
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(b) Pad location B
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(c) Pad location C
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(d) Pad location D

Figure 3.20: The resulting ፁᎼᎳ field for the different pad positions with the optimal pad parameters from table 3.4,
based on the target field method.
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3.5. The usage of multiple pads
From previous results we have already seen that pads influence only small regions of the field and
this can also be seen from Figure 3.21, where we subtracted the 𝐵ዄኻ field with a pad from the 𝐵ዄኻ field
without a pad, in order to show the region a pad influences. Consequently, there will be almost no
influence between pads placed far apart. So using multiple pads far apart can be useful to improve the
homogeneity of the magnetic field without influencing each other. We place 2 pads opposite each other
at location A and C (further denoted as AC), as given in the previous section and calculate the optimal
pad parameters for the combined setup. We can see that the target field error and CV drops even
more from the results given in Table 3.6 and the resulting field shown in Figure 3.22, becomes more
homogeneous. The permittivity-conductivity plot shown in Figure 3.23 has almost the same invariance
to the conductivity as the plot for a single pad for the CV method, however, for the target field method
we see some larger influence of the conductivity as well.

Region A and C

0 0.1 0.2 0.3

0

0.1

0.2

0.3

Region A

0 0.1 0.2 0.3

0

0.1

0.2

0.3

Region C

0 0.1 0.2 0.3

0

0.1

0.2

0.3

Figure 3.21: The region of influence a pad has, showed by subtracting the ፁᎼᎳ field with a pad from the ፁᎼᎳ field
without a pad for pad locations AC, A and C respectively.

𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗ [S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗)
Location A and C 460 1.75 0.0025 400 1.00 12.7424%

Table 3.6: The optimal pad parameters for the different methods. The ፂፕ value for no pad present is 19.5073%

B1+ field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 
[m

]

0

0.2

0.4

0.6

0.8

1
[T

]
×10-6Electric field

0 0.1 0.2 0.3
y [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x 
[m

]

0

10

20

30

40

50

60

[V
/m

]

Figure 3.22: The resulting E and ፁᎼᎳ field respectively for the optimal pad parameters for the target field approach,
where a pad is placed on location A and C. The resulting fields for the CV method are similar, since the optimal
pad parameters are similar.



3.6. Influence of pad shapes on the optimal pad parameters 27

Target field error

0 500 1000
permittivity

0

1

2

3

4

5

co
nd
uc
tiv
ity

3

4

5

6

×10-3 CV

0 500 1000
permittivity

0

1

2

3

4

5

co
nd
uc
tiv
ity

0.15

0.2

0.25

0.3

Figure 3.23: Permittivity-conductivity plot for pads placed at location A and C

Since there is almost no interaction between the 2 pads, we can also allow the 2 pads to have
different permittivity and conductivity by simply select the 2 optimal pads from the previous section and
use these to generate the 𝐵ዄኻ field, instead of optimizing the pad parameters for the different pads in a
single configuration, as done in [9]. This can also be seen when we compare the results from Table 3.6
with the results from Table 3.5. The optimal pad parameters for the 2 pads on location AC are similar
to the optimal pad parameters for the individual pad A and pad C. Notice that the optimal permittivity
of pad AC is close to pad A, while the optimal conductivity of pad AC is close to pad C.

3.6. Influence of pad shapes on the optimal pad parameters
In all previous simulations we have used a rigid rectangular shaped pad. However, in practice the pad
is really flexible, and hence follows the contour of the body it is placed on. Figure 3.24 shows such
deformable pad following the contour lines of the human body, were we made use of the 1 mm grid to
get some more detail. We see very similar results for such a deformable pad, hence, the assumption
the pad is rigid and rectangular shaped can be made for our simulations due to the close position of
the rectangular pad to the subject. A comparison between the results for the rigid pad, as used before
and the deformable pad is made in Table 3.7.
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(a) Rigid rectangular shaped pad
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(b) Deformable pad

Figure 3.24: The electric field on an 1 mm grid for more detail with a rigid pad (a) and a deformable pad following
the contour lines of the body (b).
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𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗[S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗)
Rigid pad 600 2.95 7.2684 10ዅኾ 580 2.60 15.0178%
Deformable pad 580 2.85 7.3319 10ዅኾ 560 2.45 15.1410%

Table 3.7: Results for a deformable pad compared to the results we had before for a rigid pad, ፂፕ is 20.1509%
in case no pad present.

Another option is to divide the pad in separate parts to prevent all effects of induced currents in
the pad itself. The results of the different pad shapes as shown in Figure 3.25 are given in Table 3.8.
From the results for the CV method we can see that pad 1 (a pad without holes) has the lowest error.
Obviously, induction currents in the pad are not likely in a 2D simulation where the field is invariant in
the z-direction. Therefore, these pad shapes can only be of use in 3D.

The target field method where the 2-norm is taken shows a more robust error measure and is
therefore not changing for the different pad shapes. Notice the increase in optimal pad parameters to
compensate for pads with larger gaps, this property will be explored in further detail in the next section.
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Figure 3.25: Different pad designs, where pad 1 is the same pad as used before.

𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗[S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗)
Pad 1 540 2.55 0.0029 540 2.55 14.9140%
Pad 2 580 2.95 0.0029 560 2.65 14.9411%
Pad 3 600 3.05 0.0029 580 2.8 14.9545%
Pad 4 840 4.2 0.0029 820 3.85 15.0306%

Table 3.8: Results for different pad designs, ፂፕ ዆ ኻዃ.኿ኺ዁ኽ% in case no pad present.
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3.7. The influence of the pad thickness
We will use the 1 mm grid again to simulate the effect of the number of layers on the optimal permittivity
and conductivity, so we can compare the optimal pad parameters for a pad of 1 mm thickness up to 25
mm in steps of 1 mm. The results of this comparison for both target field method (the field inside the
human body is used as target field with the 2-norm error) and CV are given in Table 3.9.

Target Field method CV
#Layers 𝜖∗፫ 𝜎∗[S/m] 𝑒𝑟𝑟ፁ(𝜖∗፫ , 𝜎∗) 𝜖∗፫ 𝜎∗[S/m] 𝐶𝑉(𝜖∗፫ , 𝜎∗)
1 2260 10.50 7.3617 10ዅኾ 2140 8.65 15.1668%
2 1140 5.35 7.3553 10ዅኾ 1080 4.45 15.1625%
3 760 3.60 7.3513 10ዅኾ 720 3.00 15.1612%
4 580 2.80 7.3479 10ዅኾ 540 2.30 15.1622%
5 460 2.25 7.3465 10ዅኾ 440 1.90 15.1638%
6 400 1.95 7.3473 10ዅኾ 360 1.55 15.1719%
7 340 1.70 7.3470 10ዅኾ 320 1.45 15.1752%
8 300 1.50 7.3485 10ዅኾ 280 1.25 15.1833%
9 260 1.30 7.3511 10ዅኾ 260 1.20 15.1991%
10 240 1.20 7.3547 10ዅኾ 220 1.00 15.2087%
11 220 1.15 7.3598 10ዅኾ 200 0.95 15.2225%
12 200 1.05 7.3638 10ዅኾ 200 0.95 15.2433%
13 180 0.95 7.3709 10ዅኾ 180 0.90 15.2531%
14 180 0.95 7.3827 10ዅኾ 180 0.90 15.3043%
15 160 0.85 7.3840 10ዅኾ 160 0.80 15.2914%
16 160 0.85 7.4012 10ዅኾ 140 0.70 15.3088%
17 140 0.75 7.4027 10ዅኾ 140 0.70 15.3290%
18 140 0.75 7.4147 10ዅኾ 120 0.60 15.3700%
19 120 0.70 7.4318 10ዅኾ 120 0.60 15.3759%
20 120 0.65 7.4347 10ዅኾ 120 0.65 15.4046%
21 120 0.65 7.4475 10ዅኾ 120 0.65 15.4492%
22 120 0.65 7.4719 10ዅኾ 100 0.55 15.4672%
23 100 0.60 7.4764 10ዅኾ 100 0.55 15.4805%
24 100 0.60 7.4853 10ዅኾ 100 0.55 15.5093%
25 100 0.55 7.5005 10ዅኾ 100 0.55 15.5527%

Table 3.9: Optimal permittivity and conductivity values for both target field method and CV for varying thickness.

Notice from the results that the optimal parameter values drop when increasing the number of layers
and accordingly the thickness of the pad. Both, permittivity and conductivity drop with an exponential
decay, where the steepness is similar between permittivity and conductivity and also for the target field
method and CV. This is shown for each parameter separately in Figure 3.26-3.27. When we take a
closer look into the effect of the error, we see that the number of layers does not influence the error
much as shown in Figure 3.28-3.29. For the target field method we see the smallest error for a five
millimeter-thick pad and for the CV method we see the smallest CV for a three millimeter-thick pad.
Around this optimum the error and CV are almost constant, but for a much thicker pad we again see
an increase in the error and CV, resulting in a less homogeneous field. However, the increase in error
for each extra layer is relatively small.

In practice, due to the almost invariance of the error and CV for different thicknesses the curves
describing the optimal permittivity and conductivity with respect to the number of layers can be used
in the process of designing and building an optimal pad. When an optimal pad is developed, however
the designed permittivity is unreachable, the pad can be adapted easily in thickness so that the pad is
still optimal for a reachable permittivity.
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Figure 3.26: Plot of permittivity vs #layers for target field method and Coefficient of Variation method.

Figure 3.27: Plot of conductivity vs #layers for target tield method and Coefficient of Variation method.
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Figure 3.28: Plot of error vs #layers for target field method.
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Figure 3.29: Plot of ፂፕ vs #layers for Coefficient of Variation method.





4
Analytical Optimization Approach

Using the approach in the previous chapter we have to solve a forward problem for every possible
dielectric pad. This can be quite cumbersome and time consuming when scaling the problem to 3D or
when adding more degrees of freedom (such as thickness, location, dimensions etc.). In this chapter
we will use a more analytical approach in order to find the optimal permittivity and conductivity for
a given pad, so we do not have to calculate all possible outcomes. A common used algorithm for
this purpose is Gauss-Newton [13][11]. This algorithm follows an iterative approach where the model
parameters are updated every iteration, such that the misfit between the desired field and the predicted
field is minimized. We use a similar approach to describe the data mismatch, given by an objective
function as we did in the previous chapter for the target field method. Furthermore, we can adjust the
iterative step by using a backtracking algorithm in order to smooth the behaviour of the algorithm.

4.1. The objective Function
The objective function can be defined by a similar functional as the previously described functional for
the target field method in Equation 3.2. The derivative of the objective function is needed in order to
solve this nonlinear optimization problem, therefore, the 2-norm of the target field error will suit best.
Taking this into account, the objective function results in

𝐹(𝜒) =
‖Bዄdesiredኻ − Bዄኻ (𝜒)‖

ኼ

ኼ

‖Bዄdesiredኻ ‖
ኼ

ኼ

, (4.1)

where 𝜒 is the parameter that needs to be optimized and describes the contrast of the pad, which can
be written as a 2 parameter problem by noticing that the contrast of the pad in Equation 2.7 is given by
a real and imaginary part and therefore 𝜒 can be written as

𝜒 = 𝜒፫ + j𝜒። . (4.2)

Let us introduce the operator 𝒦, independent of 𝜒 which transforms the electric 𝐸 field to the 𝐵ዄኻ field.
This operator can easily be defined by Equation 2.15 and Equation 2.16, and furthermore, calculate
the 𝐵ዄኻ field with Equation 2.12. Accordingly, we write the objective function in terms of the electric field
and calculate the gradient by introducing a first order distortion, with distortion term 𝛿𝜒 as

𝐹(𝜒 + 𝛿𝜒) =
‖𝒦Edesired −𝒦E(𝜒 + 𝛿𝜒)‖

ኼ

ኼ

‖𝒦Edesired‖
ኼ

ኼ

. (4.3)

4.2. The Phase Information
Notice that we do not only use the magnitude of the desired field and measured field given in Equa-
tion 4.1 as we did for the target field method in Chapter 3. The phase is also taken into account, so

33
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that the derivative of the objective function can easily be calculated. This introduces a new problem,
namely how to find a desired phase for the target field.

4.2.1. Backward Phase Update Method
The above described problem is already solved by updating the phase of the desired field iteratively,
since the phase is slowly varying for different pad permittivity and conductivity values [22]. For the first
iteration the phase of the background field is taken and the phase is updated iterative by taking the
phase of the previous iteration of the predicted field as follows

𝐹(𝜒፤) =
‖ |Bዄdesiredኻ | 𝑒j𝝋(ᎤᑜᎽᎳ) − Bዄኻ (𝜒፤) ‖

ኼ

ኼ

‖ |Bዄdesiredኻ | 𝑒j𝝋(ᎤᑜᎽᎳ)‖
ኼ

ኼ

, (4.4)

where the subscript 𝑘 labels the iteration. The phase of the desired field is the phase from the previous
iteration of the measured field denoted as

𝝋(𝜒፤ዅኻ) = phase (Bዄኻ (𝜒፤ዅኻ)) , (4.5)

with 𝝋(𝜒ኺ) = phase (Bዄኻ;b) for the first iteration. For convenience, we call this method the Backward
Phase Update (BPU) method from now on.

4.2.2. Forward Phase Update Method
In our proposed Forward Phase Update (FPU) method we calculate the phase of the initial field, Bዄኻ (𝜒ኺ)
or later the predicted field, Bዄኻ (𝜒፤) of the current iteration first and use this instead of taking the phase
of the previous iteration, as follows

𝐹(𝜒፤) =
‖ |Bዄdesiredኻ | 𝑒j𝝋(Ꭴᑜ) − Bዄኻ (𝜒፤) ‖

ኼ

ኼ

‖ |Bዄdesiredኻ | 𝑒j𝝋(Ꭴᑜ)‖
ኼ

ኼ

=
‖ |Bዄdesiredኻ | − |Bዄኻ (𝜒፤)| ‖

ኼ

ኼ

‖ |Bዄdesiredኻ | ‖
ኼ

ኼ

, (4.6)

where 𝝋(𝜒፤) is the phase of Bዄኻ (𝜒፤). Hence, the phase of the current 𝐵ዄኻ field has to be determined
before the objective function can be calculated, therefore, an extra calculation has to be made. On the
other hand, we expect that the extra phase information will let the minimization procedure converge
faster, since no alternate updating occurs between the phase and the magnetic field.

4.3. The Gauss-Newton Minimization Approach
To solve the above nonlinear optimization problem, we use a Gauss-Newton minimization approach
which makes use of a local quadratic model of the objective function. The model is obtained by taking
the terms up to the second order of the Taylor-series expansion of the objective function as follows

𝐹(𝜒፫ + 𝛿𝜒፫ , 𝜒። + 𝛿𝜒።) = 𝐹(𝜒፫ , 𝜒።) + gፓᎤ𝛿z+
1
2𝛿zHᎤ𝛿z+ higher order terms, (4.7)

where 𝛿z = [𝛿𝜒፫ , 𝛿𝜒።]ፓ. The gradient is given by

g = −𝑐Re [Jፇr(𝜒፫ , 𝜒።)] , (4.8)

where 𝑐 = 2 |𝒦E፝፞፬|ዅኼ is a scaling factor and r(𝜒፫ , 𝜒።) = 𝒦Edesired −𝒦E(𝜒፫ , 𝜒።) denotes the residual.
Furthermore, the reduced Hessian is written as

H = 𝑐JፇJ. (4.9)

with J = (I+ 𝜒ZAዅኻSፓ)ZAዅኻSፓe. The derivations are given in more detail in Appendix C. The Gauss-
Newton update direction is now given by

𝛿z = −Hዅኻg = (JፇJ)ዅኻ Re [Jፇ(𝜒፫ , 𝜒።)] . (4.10)



4.4. Backtracking 35

4.4. Backtracking
We introduce a step length 𝜈 in order to obtain a sufficient decrease in the objective function in the
direction 𝛿m. So the update is given by

z፤ = z፤ዅኻ + 𝜈𝛿z፤ . (4.11)

A sufficient decrease of the objective function is described by the so-called Armijo condition as

𝐹(z+ 𝜈𝛿z) ≤ 𝐹(z) + 𝛼𝜈gፓ𝛿z, (4.12)

where 𝛼 is a small positive number (usually one sets 𝛼 = 10ዅኾ). We follow the standard backtracking
algorithm to calculate the update of the step length iteratively until the Armijo condition is satisfied
[18][2][13].

4.5. Results
First, we will again use a known target field created by a pad placed on a fixed position with a relative
permittivity, 𝜖pad፫ = 500 and a conductivity, 𝜎pad = 3 S/m. We use the magnitude of this field to test
the Gauss Newton method where we choose the starting parameters close to the parameter values of
the target field. Initially, we assume the phase is known, hence we use the actual phase of the target
field. From Figure 4.1a we see that the pad parameters converge quickly to the true values. After 2
iterations the algorithm is already converged and after 6 iterations it has reached the stopping criteria

|𝜒፤ − 𝜒፤ዅኻ| < 10ዅዂ,

we denote 𝜖∗፫ and 𝜎∗ as the optimal pad parameters found after reaching the stopping criteria.
Now that we have shown that theGauss Newtonmethod converges to the optimal solution (𝜖pad፫ = 𝜖∗፫

and 𝜎pad = 𝜎∗), we can test the algorithm for a more realistic case where the phase of the desired field
is not known. We test the methods proposed in Section 4.2 in combination with the backtracking proce-
dure as described in Section 4.4. The BPUmethod is not converging when we do not use backtracking,
as can be seen from the results in Table 4.1 and Figure 4.1b. The algorithm lost track in the first iter-
ation already due to the mismatch of the phase of the background field (chosen to be the initial phase
of the desired field) and the actual phase of the predicted field.

By using the backtracking procedure we prevent the algorithm to loose track as shown in Figure 4.1c.
Still, we can notice the effect of the phase mismatch in the first iteration and after every odd number
of iterations where the parameter values are pushed back due to the lagging phase. Notice that this
procedure does not converge to the optimal pad parameters after 10 iterations, since, the area around
the optimal pad parameters forms a valley as already shown in Chapter 3. Therefore, the gradient
becomes very small and so does the step length 𝜈. We have to guard against too small values for
𝜈 by setting 𝜈፦።፧ = 0.1 to prevent from excessively slowing down the iterative process. There is still
very little progress towards the minimum, even with setting 𝜈 to 𝜈፦።፧ when it decreases below 0.1 and
proceeds with the iteration, hence the stopping criterion is already reached after 10 iterations and the
process is terminated.

Method # iterations 𝜖∗፫ 𝜎∗ [S/m] 𝐹(𝜖∗፫ , 𝜎∗)
Actual phase 6 500.00 3.00 5.9135 10ዅኽኻ
BPU 30 10217.14 -38.22 0.1557
BPU + backtracking 10 479.31 2.91 4.4626 10ዅ኿
FPU 30 499.97 2.99 1.7110 10ዅኻኺ

Table 4.1: The results for ᎨᑣᎲ ዆ ኾ኿ኺ and ᎟Ꮂ ዆ ኼ.዁ S/m after maximum 30 iterations, with the target field created
by a pad with Ꭸpadᑣ ዆ ኿ኺኺ and ᎟pad ዆ ኽ S/m.

Based on these results we came up with our own proposed FPUmethod, as described above, which
smoothly converges to the true values as shown in Figure 4.1d. In this case the algorithm decreases
sufficiently, the Armijo condition is already satisfied with 𝜈 = 1 for every iteration, so the backtracking
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(a) Actual phase
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(b) BPU method
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(c) BPU method + backtracking
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(d) FPU method

Figure 4.1: The permittivity and conductivity at every iteration for the different methods, where ᎨᑣᎲ ዆ ኾ኿ኺ and
᎟Ꮂ ዆ ኼ.዁. The target field is created by a pad with Ꭸpadᑣ ዆ ኿ኺኺ and ᎟pad ዆ ኽ S/m.
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algorithm will never be used. The process is terminated when it reaches 30 iterations, the maximum
number of iterations set.

When we use a pad with different dimensions we more clearly see the effect of backtracking, since
the pad parameter values stay positive for each iteration, hence the Gauss Newton method keeps more
or less track and converges. An example is shown in Figure 4.2.
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(a) Backtracking disabled
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(b) Backtracking enabled

Figure 4.2: An illustration of the effect of backtracking.

Instead of an initial guess close to the optimal values, we now assume that we do not know where
the optimal values are located. Therefore, we start with initial values of 𝜖፫ኺ = 1 and 𝜎ኺ = 0 S/m, those
values are equal to the case no pad present (background field only). Again, we first look at the scenario
when the actual phase is known. We can see from the results in Table 4.2 and from Figure 4.3a that
the method needs one extra iteration to converge and 2 extra iterations to reach the stopping criteria.
This is in line with our expectations, more steps are needed since the starting position is located further
away from the optimal values.

Method # iterations 𝜖∗፫ 𝜎∗ [S/m] 𝐹(𝜖∗፫ , 𝜎∗)
Actual phase 8 500.00 3.00 2.1824 10ዅኽኻ
BPU 30 479.14 2.91 4.6500 10ዅ኿
BPU + backtracking 30 479.53 2.91 4.4567 10ዅ኿
FPU 30 499.51 3.00 4.0781 10ዅዂ

Table 4.2: The results for ᎨᑣᎲ ዆ ኻ and ᎟Ꮂ ዆ ኺ S/m after maximum 30 iterations, with the target field created by a
pad with Ꭸpadᑣ ዆ ኿ኺኺ and ᎟pad ዆ ኽ S/m.

Since the initial values are equal to the contrast of the background field, backtracking is not nec-
essary for the BPU method, hence no mismatch between the phase of the desired and measured 𝐵ዄኻ
occurs in the first iteration. The process keeps track as can be seen in Figure 4.3b, which is similar
to Figure 4.3c, the case where backtracking is used. We still can see the fallback introduced by the
lagging phase update every alternating iteration step. When we compare both results we can see that
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backtracking prevents for fall backs, however the convergence is still slowing down every second it-
eration step, therefore the overall convergence speed is not increasing. For our proposed method we
again see a smooth convergence as shown in Figure 4.3d and from Table 4.2 we see that the final
result approximates more closely the target field values.

In practice the target field is not a field generated by a pad. Instead, we create a desired field that
describes a homogeneous field with a field strength useful in practice and an unknown phase. We
use the same target field as described in Section 3.3.2 and for the phase we use the 2 different phase
update methods. From the results in Table 4.3 we see similar results for the different approaches after
30 iterations. Figure 4.4 shows the difference between the two methods and the effect of backtracking
again, which are similar to to the previous results. Notice that those results are for a homogeneous field
defined over the full grid instead of a homogeneous field inside the object only. In practice however,
we are only interested in a homogeneous field inside the subject. The norm of objective function given
in Equation 4.1, can defined for points inside the subject only.

Method # iterations 𝜖∗፫ 𝜎∗ [S/m] 𝐹(𝜖∗፫ , 𝜎∗)
BPU 30 320.68 1.79 0.0073
BPU + backtracking 30 321.20 1.80 0.0073
FPU 30 330.02 1.87 0.0073

Table 4.3: Results for a homogeneous target field after maximum 30 iterations with ᎨᑣᎲ ዆ ኻ and ᎟Ꮂ ዆ ኺ S/m.

The results for the field inside the subject only are given in Table 4.4. Those results show that the
BPU method converges to the same value with and without backtracking. For our proposed method
we see for the first time that the Armijo conditions are not always satisfied, hence the backtracking
routine is used. The optimization routine converges as well to similar values as the values we had
for the BPU method, but the stopping criteria are reached in already 16 iterations. The FPU method
without backtracking converges to higher parameter values after 30 iterations. Furthermore, we relax
the stopping criteria in order to test if the Gauss Newton method has reached the optimum after 30
iterations already, what seems to be from the plotted results in Figure 4.5. Therefore, the maximum
number of iterations is increased to 60. For the FPU method this results in optimal pad values very
similar to the values we had after 30 iterations, namely 𝜖∗፫ = 561.96 and 𝜎∗ = 2.84S/m. However, for the
BPU method we see that the pad further converges towards the same values of our proposed method,
namely 𝜖∗፫ = 561.08 and 𝜎∗ = 2.83 S/m. While for both methods with backtracking we obviously do not
see further convergence.

Method # iterations 𝜖∗፫ 𝜎∗ [S/m] 𝐹(𝜖∗፫ , 𝜎∗)
BPU 30 535.79 2.70 0.0219
BPU + backtracking 30 532.39 2.68 0.0219
FPU 30 561.19 2.83 0.0283
FPU + backtracking 16 532.41 2.68 0.0219

Table 4.4: Results for a homogeneous target field inside the human body after maximum 30 iterations with ᎨᑣᎲ ዆ ኻ
and ᎟Ꮂ ዆ ኺ S/m.

Finally, we can compare these results with the result we got by inspection, as described in Chapter 3.
We see very similar results when we compare the optimal pad values form Table 4.4 with the optimal
permittivity and conductivity for the 2-norm target field error for a pad located at the same position and
with the same size, as denoted in Table 3.3 (𝜖∗፫ = 560 and 𝜎∗ = 2.85 S/m). Especially, the results for
our proposed FPU method without backtracking converge to the same values. That the method with
backtracking converges earlier to lower values can be explained from the results obtained by inspection.
There we have noticed that the optimal permittivity and conductivity are found in a valley, hence the
gradient is almost zero and the backtracking procedure achieves very little process. For the BPU we
see similar results, hence with a much slower convergence speed.

The total number of iterations, mostly determines the amount of time needed to reach the optimal
pad parameter values. To give some indication of time, we measured the executing time of our Matlab



4.5. Results 39

0 2 4 6 8
Iteration

0

100

200

300

400

500

600

700

Pe
rm

itt
iv

ity

0 2 4 6 8
Iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
on

du
ct

iv
ity

 [S
/m

]

(a) Actual phase

0 10 20 30
Iteration

0

100

200

300

400

500

Pe
rm

itt
iv

ity

0 10 20 30
Iteration

0

0.5

1

1.5

2

2.5

3

C
on

du
ct

iv
ity

 [S
/m

]

(b) BPU method

0 10 20 30
Iteration

0

100

200

300

400

500

Pe
rm

itt
iv

ity

0 10 20 30
Iteration

0

0.5

1

1.5

2

2.5

3

C
on

du
ct

iv
ity

 [S
/m

]

(c) BPU method + backtracking
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(d) FPU method

Figure 4.3: The permittivity and conductivity at every iteration for the different methods, where ᎨᑣᎲ ዆ ኻ and ᎟Ꮂ ዆ ኺ.
The target field is created by a pad with Ꭸpadᑣ ዆ ኿ኺኺ and ᎟pad ዆ ኽ S/m.
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(a) BPU method
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(b) BPU method + backtracking
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(c) FPU method

Figure 4.4: The permittivity and conductivity at every iteration for the different methods, where ᎨᑣᎲ ዆ ኻ and ᎟Ꮂ ዆ ኺ.
The target field is homogeneous.

script for the results in Table 4.4 on a Windows 7 64-bit computer with an Intel Core i5-4690 CPU @
3.50 GHz and 8 GB of RAM. We noticed no significant difference in run time between the BPU and FPU
method after 30 iterations, which took 79.9 seconds and 79.7 seconds respectively. When backtracking
is enabled it took 77.1 seconds for the BPU method with 30 iterations and only 39.7 seconds for the
FPUmethod, because it already converged after 16 iterations. From this results we can see that indeed
the number of iterations determine the run time.
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(a) BPU method inside subject
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(b) BPU method inside subject + backtracking
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(c) FPU method inside subject
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(d) FPU method + backtracking

Figure 4.5: The permittivity and conductivity at every iteration for the different methods, where ᎨᑣᎲ ዆ ኻ and ᎟Ꮂ ዆ ኺ.
The target field is homogeneous inside the human body.





5
Conclusions

Some final conclusions can be drawn from the results we obtained for the two different approaches
we used to determine the optimal permittivity and conductivity for a dielectric pad. This is done by
comparing the method via inspection with the Gauss-Newton method in Section 5.1, furthermore, we
will give some general pad designing remarks in Section 5.2. Finally, in Section 5.3 we will give some
suggestions for future work that can be done.

5.1. Comparison
One fundamental difference between the two techniques is that the Gauss-Newton method needs a
functional that is differentiable, hence the choice of objective function we want to to minimize is limited.
For the method via inspection this is not necessary, therefore we could use the CV and the target field
method with different norms and desired fields, as functional. One of the largest difficulties in finding
the optimal pad parameters is to measure the homogeneity of the 𝐵ዄኻ field and accordingly, prescribing
a desired field. The method via inspection gives us more freedom in selecting a best suited manner to
measure the homogeneity of the 𝐵ዄኻ field, since we are able to select a different functional. Therefore,
this method is more flexible compared to the Gauss-Newton method.

The desired field for the Gauss-Newton method consists of both magnitude and phase information,
in order to make the objective function for the Gauss-Newton method easily differentiable. Describing a
desired phase is hard, however, the phase is slowly changing for different permittivity and conductivity
values of the pad. Hence, the phase can be updated iteratively due to the iterative scheme of the
Gauss-Newton method. Updating the phase with the common used BPU method slows down the
Gauss-Newton method and phase mismatches can occur. Our proposed FPU method overcomes
these problems by calculating the phase forwards. The method via inspection does not rely on any
phase information, hence this method is more robust.

When we compare the speed of both methods, we have noticed that the method via inspection is
very fast for a small pad and a few grid points, however, for an increased grid resolution to 1 mm,
resulting in 16 times more grid points we already have seen a significant increase in the amount of time
to find the optimal permittivity and conductivity. Therefore, expanding this method to a 3D scenario,
hence resulting in more grid points will slow down this method even more drastically. On the other
hand, increasing the number of points affects the Gauss-Newton method less since it will converge in
the same number of iterations. Only the computation time of each iteration will increase due to the in-
creased number of points, which will affect the time needed to calculate the inverse of the approximated
Hessian.

This leads us to another difference between the two methods. Where the method via inspection
fully profits from the Sherman-Morrison-Woodbury approach formulated by Equation 2.11, namely all
the calculated inverses are of the size defined by the number of grid points occupied by the pad. While
we see for Gauss-Newton in Equation 4.10 that the size of the inverse of the reduced Hessian is
determined by the total number of grid points. Hence, the usage of Sherman-Morrison-Woodbury is
more beneficial for the method via inspection.

The method via inspection (with the 2-norm target field method) and the Gauss-Newton method
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result in very similar optimal pad permittivity and conductivity values as we already mentioned in Sec-
tion 4.5, however, the approaches are fundamentally different. Themethod via inspection gives a better
insight in how the permittivity and conductivity of a dielectric pad effects the homogeneity of the 𝐵ዄኻ field
and how permittivity and conductivity are related to each other, since the effect on the homogeneity of
the 𝐵ዄኻ field is plotted for a range of permittivity and conductivity values. Therefore, most remarks in the
next section are based on the results obtained by simulations we did for different pad configurations
with the method via inspection.

We can conclude that both optimization techniques for dielectric pads are able to find an optimal
pad for a given location much faster since we reduced the order of the problem to great extent.

5.2. Pad Design Remarks
During our work we have developed some insight in pad design due to the different simulations we
have done. We have seen that it is only useful to place pads close to regions with low signal in order
to increase the homogeneity of the 𝐵ዄኻ field and that pads placed far apart do not effect each other
significantly.

Another interesting observation is the relation between the thickness of the pad and the optimal
permittivity and conductivity. This relation can be described by a curve with an exponential decay,
where thin pads have very high permittivity and conductivity values. Pad designers can benefit from this
curve by selecting the optimal permittivity and conductivity values that are desirable for a pad and adapt
the thickness, since the homogeneity of the 𝐵ዄኻ field is almost the same for all pad thickness levels.
Furthermore, a relation between the permittivity and conductivity can be seen from all the different
permittivity-conductivity plots we have made in Chapter 3, from which we can see that a variation in
permittivity affects more the homogeneity of the 𝐵ዄኻ field than a variation in conductivity around the
optimum.

From the simulation results for both the 1 mm grid and 4 mm grid we have seen that there are no
benefits in pad design due to an increase in resolution. Therefore, we can conclude that a 4 mm grid
is the preferred resolution, since the reduced number in points, and hence the gain in speed.

5.3. Future Work
Due to the limited time there is still work that needs to be done. First of all, the described methods need
to be tested on different transverse body slices, for example a slice through the brain. The dimensions
and electric properties of the brain are different from the abdominal region, therefore, probably different
relations between permittivity and conductivity can be found. The effect of the frequency on the optimal
pad parameters can also be examined, since all the simulations are made for a 3T MRI scanner.

As we have seen in Chapter 3, there are more pad parameters that affect the homogeneity of the
𝐵ዄኻ field, e.g. pad location and dimensions, where we can take a look upon instead of permittivity and
conductivity values only.

Furthermore, we can look if pads with varying permittivity and conductivity instead of using ho-
mogeneous pads, can increase the homogeneity of the 𝐵ዄኻ even more. Besides that, we live in a
three-dimensional world, a pad will have three dimensions placed on a three-dimensional human body.
Therefore, the methods need to be extended to 3D such that simulations can be used in practice, where
also SAR values need to be simulated for safety. The Gauss-Newton is the most suitable method for
this extension, since the speed of this method depends less on the number of points.

However, the speed of the method via inspection can further improved by using a coarse-to-fine
approach. A coarse scale of only permittivity values can be used first to find the optimal permittivity
value. Subsequently, fine tune the scale in the range of the coarse optimal permittivity and determine
the optimal permittivity and conductivity on the fine scale. This approach can reduce the number of
calculations, since the 𝐵ዄኻ field has to be calculated for less permittivity and conductivity values.

Our proposed FPU method needs some mathematical proof why the algorithm still converge when
we take the phase of the current predicted 𝐵ዄኻ field. The Rytov approximation [10] could be a good
starting point for future research on this topic.



A
Abbreviations

BPU Backward Phase Update

CV coefficient of variation

FFT Fast Fourier Transform

FPU Forward Phase Update

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

RF Radio Frequency

ROI region of interest

SAR Specific Absorption Rate

SNR Signal to Noise Ratio

45





B
The 2D discretization of the

electromagnetic field
The discretization is done in the frequency domain, so the time-harmonic Maxwell’s equations are again
used as starting point

−∇∇∇ × Ĥ+ 𝜎Ê+ j𝜔𝜖ኺÊ = −Ĵext, (B.1)

and
∇∇∇ × Ê+ j𝜔𝜇Ĥ = 0. (B.2)

Let the configuration of interest be invariant in the z-direction and E-polarized, since it has been shown
that this corresponds well to the field in the midplane of a MRI body coil.

These fields are governed by the equations

− 𝜕
𝜕𝑥 𝐻̂፲ +

𝜕
𝜕𝑦𝐻̂፱ + 𝜎𝐸̂፳ + j𝜔𝜖𝐸̂፳ = − ̂𝐽ext፳ , (B.3)

𝜕
𝜕𝑦 𝐸̂፳ + j𝜔𝜇𝐻̂፱ = 0, (B.4)

and
− 𝜕
𝜕𝑥 𝐸̂፳ + j𝜔𝜇𝐻̂፲ = 0. (B.5)

We use a scattering formalism to determine this electromagnetic field. Let the background field be the
field in absence of the human body, the scatter source. The background field satisfies the equations

− 𝜕
𝜕𝑥 𝐻̂፲;b +

𝜕
𝜕𝑦𝐻̂፱;b + j𝜔𝜖𝐸̂፳;b = − ̂𝐽ext፳ , (B.6)

𝜕
𝜕𝑦 𝐸̂፳;b + j𝜔𝜇𝐻̂፱;b = 0, (B.7)

and
− 𝜕
𝜕𝑥 𝐸̂፳;b + j𝜔𝜇𝐻̂፲;b = 0. (B.8)

Now the scatter source occupies the bounded object domain 𝔻obj in the (𝑥,𝑦)-plane. Inside the scat-
terer, the total field satisfies

− 𝜕
𝜕𝑥 𝐻̂፲ +

𝜕
𝜕𝑦𝐻̂፱ + 𝜎𝐸̂፳ + j𝜔𝜖𝐸̂፳ = 0, (B.9)

𝜕
𝜕𝑦 𝐸̂፳ + j𝜔𝜇𝐻̂፱ = 0, (B.10)
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and
− 𝜕
𝜕𝑥 𝐸̂፳ + j𝜔𝜇𝐻̂፲ = 0 (B.11)

while outside the scatterer we have,

− 𝜕
𝜕𝑥 𝐻̂፲ +

𝜕
𝜕𝑦𝐻̂፱ + j𝜔𝜖𝐸̂፳ = − ̂𝐽ext፳ , (B.12)

𝜕
𝜕𝑦 𝐸̂፳ + j𝜔𝜇𝐻̂፱ = 0, (B.13)

and
− 𝜕
𝜕𝑥 𝐸̂፳ + j𝜔𝜇𝐻̂፲ = 0. (B.14)

Subtracting the background field form the total field equations and introducing the scattered field as

𝐸̂፳;sc = 𝐸̂፳ − 𝐸̂፳;b, 𝐻̂፱;sc = 𝐻̂፱ − 𝐻̂፱;b, and 𝐻̂፲;sc = 𝐻̂፲ − 𝐻̂፲;b, (B.15)

we find that this scattered field satisfies the equations

− 𝜕
𝜕𝑥 𝐻̂፲;sc +

𝜕
𝜕𝑦𝐻̂፱;sc + j𝜔𝜖𝐸̂፳;sc = − ̂𝐽፳;sc, (B.16)

𝜕
𝜕𝑦 𝐸̂፳;sc + j𝜔𝜇𝐻̂፱;sc = 0, (B.17)

and
− 𝜕
𝜕𝑥 𝐸̂፳;sc + j𝜔𝜇𝐻̂፲;sc = 0, (B.18)

where we have introduced the scattering source

̂𝐽፳;sc = {
0 if r ∉ 𝔻obj
[𝜎 + j𝜔𝜖ኺ(𝜖፫ − 1)]𝐸̂፳(r, 𝑤) if r ∈ 𝔻obj.

(B.19)

Equations B.16-B.18 holds for all r ∈ ℝኼ and from these equations we obtain an equation for the electric
field strength by first multiplying Equation B.16 by 𝑗𝜔𝜇, results in

− 𝜕
𝜕𝑥 j𝜔𝜇𝐻̂፲;sc +

𝜕
𝜕𝑦 j𝜔𝜇𝐻̂፱;sc − 𝑘

ኼ
b 𝐸̂፳;sc = −j𝜔𝜇 ̂𝐽፳;sc, (B.20)

where we used 𝑐ኼ = 1/(𝜖𝜇) and 𝑘b = 𝜔ኼ/𝑐ኼ. Subsequently, substituting Equations B.17 and B.18, we
get

( 𝜕
𝜕𝑥ኼ +

𝜕
𝜕𝑦ኼ + 𝑘

ኼ
b) 𝐸̂፳;sc = j𝜔𝜇 ̂𝐽፳;sc. (B.21)

Now let 𝐺̂(r, 𝜔) satisfy
( 𝜕
𝜕𝑥ኼ +

𝜕
𝜕𝑦ኼ + 𝑘

ኼ
b) 𝐺̂ = −𝛿(r), (B.22)

where the delta function is the Dirac distribution operative at r = 0. In addition, let 𝐺̂ satisfy the radiation
condition at infinity. Obviously, 𝐺̂ is the scalar Green’s function for our homogeneous background
medium. An expression for 𝐺̂ will be presented below.

Given this Green’s function 𝐺̂, the scattered electric field strength is given by

𝐸̂፳;sc(r, 𝜔) = j𝜔𝜇∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔) ̂𝐽፳;sc(rᖣ, 𝜔)𝑑𝐴. (B.23)

This integral representation holds for any r ∈ ℝኼ. Using the definition of the scattering source, the
above result can be written as

𝐸̂፳;sc(r, 𝜔) = 𝑘ኼb 𝐴̂(r, 𝜔), ∀r ∈ ℝኼ, (B.24)
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where we have introduced the vector potential as

𝐴̂(r, 𝜔) = ∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)𝐸̂፳(rᖣ, 𝜔)𝑑𝐴, (B.25)

and 𝜒̂ is the contrast function defined as

𝜒̂(rᖣ, 𝜔) = 𝜖፫(r) − 1 − j
𝜎(r)
𝜔𝜖ኺ

. (B.26)

If we restrict the observation vector to the scattering domain, then Equation B.24 becomes an integral
equation for the total electric field strength inside the scatterer, Written out in full, we have

𝐸̂፳(rᖣ, 𝜔) − 𝑘ኼb ∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)𝐸̂፳(rᖣ, 𝜔)𝑑𝐴 = 𝐸̂፳;b(rᖣ, 𝜔), ∀r ∈ 𝔻obj. (B.27)

This integral equation needs to be discretized to solve it for 𝐸̂፳ on a computer. Therefore, let the
scatterer occupy a rectangular domain with side length 𝑙፱ in the x-direction and side length 𝑙፲ in the
y-direction. Furthermore, let the origin of our reference frame coincide with the upper left corner of the
scattering domain as indicated in Figure B.1.

Figure B.1: The uniform grid used for the discretization, where the number of grid cells (ፌፍ) with middle point
(፱ᑞ, ፲ᑟ) can vary depending of the size on the grid and the size of each grid cell.

We introduce the grid coordinates

𝑥፦ =
𝛿𝑥
2 +𝑚𝛿𝑥 for 𝑚 = 1, 2, … ,𝑀, (B.28)

with 𝛿𝑥 = 𝑙፱/𝑀, and
𝑦፧ =

𝛿𝑦
2 + 𝑛𝛿𝑦 for 𝑛 = 1, 2, … , 𝑁, (B.29)

with 𝛿𝑦 = 𝑙፲/𝑁.
The scattering domain is divided into discretization cells

𝑆።፣ = {𝑖𝛿𝑥 < 𝑥 < (𝑖 + 1)𝛿𝑥 , 𝑗𝛿𝑦 < 𝑦 < (𝑗 + 1)𝛿𝑦} (B.30)

for 𝑖 = 1, 2, … ,𝑀 and 𝑗 = 1, 2, … , 𝑁. Obviously, these cells do not overlap and the total number of cells
is 𝑀𝑁.
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Let us start with Equation B.24 (repeated here for convenience), where the observation vector is
placed in the scatterer

𝐸̂፳;sc(r, 𝜔) = 𝑘ኼb 𝐴̂(r, 𝜔), ∀r ∈ 𝔻obj, (B.31)

We require that this equation holds for all grid points located within the scatterer. Dropping the 𝜔-
dependence in our notation, we have

𝐸̂፳;sc(𝑥፦ , 𝑦፧) = 𝑘ኼb 𝐴̂(𝑥፦ , 𝑦፧), (B.32)

for 𝑚 = 1, 2, … ,𝑀 and 𝑛 = 1, 2, … , 𝑁. We can simplify this by introducing a matrix notation

E፳ − 𝑘ኼbA = E፳;b, (B.33)

with matrices E፳, E፳;b, and A as

(E፳)|፦፧ = 𝐸̂፳(𝑥፦ , 𝑦፧) 𝑚 = 1, 2, … ,𝑀
𝑛 = 1, 2, … , 𝑁 (B.34)

(E፳;b)|፦፧ = 𝐸̂፳;b(𝑥፦ , 𝑦፧) 𝑚 = 1, 2, … ,𝑀
𝑛 = 1, 2, … , 𝑁 (B.35)

A ∶= ⎛

⎝

𝐴̂(𝑥ኻ, 𝑦ኻ) 𝐴̂(𝑥ኻ, 𝑦ኼ) ⋯ 𝐴̂(𝑥ኻ, 𝑦ፍ)
𝐴̂(𝑥ኼ, 𝑦ኻ) 𝐴̂(𝑥ኼ, 𝑦ኼ) ⋯ 𝐴̂(𝑥ኼ, 𝑦ፍ)

⋮ ⋮ ⋱ ⋮
𝐴̂(𝑥ፌ , 𝑦ኻ) 𝐴̂(𝑥ፌ , 𝑦ኼ) ⋯ 𝐴̂(𝑥ፌ , 𝑦ፍ)

⎞

⎠

(B.36)

Furthermore, we can use vector notation by applying the vec-operation as

e፳ = vec(E፳), e፳;b = vec(E፳;b), a = vec(A). (B.37)

Finally, we can write Equation B.33 in vector notation

e፳ − 𝑘ኼba = e፳;b. (B.38)

The only thing left is to relate the vector potential a to the electric field strength e፳ using the definition
of the vector potential. In continous form, the relation between the vector potential and the electric field
strength is given by Equation B.25 (repeated here)

𝐴̂(r, 𝜔) = ∫
rᖤ∈𝔻obj

𝐺̂(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)𝐸̂፳(rᖣ, 𝜔)𝑑𝐴, (B.39)

where 𝐺̂ is the Green’s function satisfying Equation B.22 and the radiation condition. This function is
given by

𝐺̂(r, 𝑤) = − j
4𝐻

(ኼ)
ኺ (𝑘b|r|), (B.40)

where 𝐻(ኼ)ኺ is the Hankel function of the second kind and order zero.
Notice that with r ∈ 𝔻obj, the argument of the Green’s function becomes zero when the integration

vector r’ is equal to r. We cannot discretize Equation B.39 in a straightforward manner, since the Hankel
function has a logarithmic singularity at the origin.

A solution is to work with a so-called ’weak’ Green’s function instead of the original Green’s function.
This weakened Green’s function satisfies

(𝛿𝑥ኼ + 𝛿𝑦ኼ + 𝑘ኼb) 𝐺̂፰ = −𝑓(r), (B.41)

and the radiation condition at infinity. The function f has a bounded circular support 𝔻circ centered at
the origin and is given by

𝑓(r) = {
ኻ
᎝ፚᎴ if r ∈ 𝔻circ,
0 if r ∉ 𝔻circ,

(B.42)
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where 𝑎 = ኻ
ኼmin{𝛿𝑥, 𝛿𝑦} is the radius of the circular disc 𝔻circ. Note that

∫
r∈ℝᎴ

𝑓(r)𝑑𝐴 = 1
𝜋𝑎ኼ ∫rᖤ∈𝔻circ

𝑑𝐴 = 1, (B.43)

and f approaches the Dirac distribution when the radius of the circular disc goes to zero. The solution
of Equation B.41 can now be written as

𝐺̂፰(r, 𝜔) = ∫
rᖤ∈𝔻circ

𝐺̂(r− rᖣ, 𝜔)𝑓(rᖣ)𝑑𝐴

= 1
𝜋𝑎ኼ ∫rᖤ∈𝔻circ

𝐺̂(r− rᖣ, 𝜔)𝑑𝐴

= 1
4𝜋𝑎ኼ ∫rᖤ∈𝔻circ

𝐻(ኼ)ኺ (𝑘b|r− rᖣ|, 𝜔)𝑑𝐴. (B.44)

After evaluating this integral outside the 𝔻circ and at the center (r = 0) of the disc, done in [20], we have

𝐺̂፰(r, 𝜔) = {
ዅj
ኼ፤bፚ [𝐻

(ኼ)
ኻ (𝑘b𝑎)− ኼj

᎝፤bፚ ] if r = 0,
ዅj
ኼ፤bፚ 𝐽ኻ(𝑘b𝑎)𝐻

(ኼ)
ኺ (𝑘b|r|) if r ∉ 𝔻circ.

(B.45)

Finally, with the above expression for the weakened Green’s function we are able to discretize the
vector potential

𝐴̂(r, 𝜔) = ∫
rᖤ∈𝔻obj

𝐺̂፰(r− rᖣ, 𝜔)𝜒̂(rᖣ, 𝜔)𝐸̂፳(rᖣ, 𝜔)𝑑𝐴. (B.46)

The vector potential 𝐴̂ needs to be calculated at the grid nodes (𝑥፦ , 𝑦፧) 𝑚 = 1, 2… ,𝑀 and 𝑛 = 1, 2, … , 𝑁.
Introducing the position vector

r፦፧ = 𝑥፦i፱ + 𝑦፧i፲ 𝑚 = 1, 2, … ,𝑀,
𝑛 = 1, 2, … ,𝑁. (B.47)

We write
𝐴̂(𝑥፦ , 𝑦፧) = ∫

rᖤ∈𝔻obj
𝐺̂፰(r፦፧ − rᖣ)𝜒̂(rᖣ)𝐸̂፳(rᖣ)𝑑𝐴, (B.48)

for 𝑚 = 1, 2, … ,𝑀 and 𝑛 = 1, 2, … , 𝑁 and we have dropped the 𝜔-dependence of 𝐴̂ as well. Further-
more, a piecewise constant contrast function is introduced, such that 𝜒̂ is equal to a constant 𝜒።፣ in the
discretization cell 𝑆።፣. Now, we can write

𝐴̂(𝑥፦ , 𝑦፧) =
ፌ

∑
።዆ኻ

ፍ

∑
፣዆ኻ
𝜒።፣∫

rᖤ∈ዼᑚᑛ
𝐺̂፰(r፦፧ − rᖣ)𝐸̂፳(rᖣ)𝑑𝐴, (B.49)

for 𝑚 = 1, 2, … ,𝑀 and 𝑛 = 1, 2, … , 𝑁. Finally, approximating the integral by the midpoint rule, we arrive
at

𝐴̂(𝑥፦ , 𝑦፧) ≈ 𝛿𝑥𝛿𝑦
ፌ

∑
።዆ኻ

ፍ

∑
፣዆ኻ
𝐺̂፰(r፦፧ − r።,፣)𝜒።፣𝐸̂፳(r።፣)𝑑𝐴, (B.50)

for 𝑚 = 1, 2, … ,𝑀 and 𝑛 = 1, 2, … , 𝑁. Using Equation B.45, we have

𝐺̂፰(r፦፧ − r።,፣) = {
ዅj
ኼ፤bፚ [𝐻

(ኼ)
ኻ (𝑘b𝑎)− ኼj

᎝፤bፚ ] if 𝑖 = 𝑚 and 𝑗 = 𝑛,
ዅj
ኼ፤bፚ 𝐽ኻ(𝑘b𝑎)𝐻

(ኼ)
ኺ (𝑘b|r፦፧ − r።፣|) if 𝑖 ≠ 𝑚 and 𝑗 ≠ 𝑛.

(B.51)

The discretized equation for the electric field strength can be given by introducing the contrast matrix

x = vec(𝜒።፣) and X = diag(x), (B.52)
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and matrices Ĝ፣፧ , 𝑗, 𝑛 = 1, 2, … , 𝑁, of order 𝑀 with elements

(Ĝ፣፧)።,፦ = 𝛿𝑥𝛿𝑦𝐺̂፰(r፦፧ − r።፣), (B.53)

with 𝑖, 𝑚 = 1, 2, … ,𝑀. Matrix G is now given by

G = 𝑘ኼb
⎛
⎜

⎝

Ĝኻኻ Ĝኻኼ ⋯ Ĝኻፍ
Ĝኼኻ Ĝኼኼ ⋯ Ĝኼፍ
⋮ ⋮ ⋱ ⋮

Ĝፍኻ Ĝፍኼ ⋯ Ĝፍፍ

⎞
⎟

⎠

. (B.54)

It can easily be verified that matrix G is block Toeplitz and each block is a Toeplitz matrix as well.
Furthermore, matrix G is symmetric (but not Hermitian) and all self patch elements are located on the
diagonal. Now, the final result becomes

(I−GX)e፳ = e፳;b, (B.55)

and this discretized integral equation can easily be with an iterative solver since the actions of G on a
vector can be computed efficiently via FFT.



C
Gauss-Newton

To arrive at Newton-type updating schemes, we start with a Taylor expansion of the objective function.
We have

𝐹(𝜒 + 𝛿𝜒) = 𝐹(𝜒) + gፓᎤ𝛿z+
1
2𝛿zHᎤ𝛿z+ higher order terms, (C.1)

where we have the objective function with distortion term 𝛿𝜒 defined as

𝐹(𝜒 + 𝛿𝜒) =
|𝒦Edesired −𝒦E(𝜒 + 𝛿𝜒)|ኼ

|𝒦Edesired|ኼ
. (C.2)

We can write E in the Sherman-Morrison-Woodbury form, as defined in Equation 2.11. This results in

𝐹(𝜒 + 𝛿𝜒) = |𝒦Edesired|ዅኼ {𝒦Edesired −𝒦 [e+ Z(I− (𝜒 + 𝛿𝜒)SፓZ)ዅኻ(𝜒 + 𝛿𝜒)Sፓe]}ፇ

{𝒦Edesired −𝒦 [e+ Z(I− (𝜒 + 𝛿𝜒)SፓZ)ዅኻ(𝜒 + 𝛿𝜒)Sፓe]} , (C.3)

by introducing a scaling factor 𝑐 = 2 |𝒦Edesired|ዅኼ and A = I − 𝜒SፓZ the objective function can be
rewritten as

𝐹(𝜒 + 𝛿𝜒) =12𝑐 {𝒦E
desired −𝒦 [e+ Z (A (I− 𝛿𝜒AዅኻSፓZ))ዅኻ (𝜒Sፓe+ 𝛿𝜒Sፓe)]}

ፇ

{𝒦Edesired −𝒦 [e+ Z (A (I− 𝛿𝜒AዅኻSፓZ))ዅኻ (𝜒Sፓe+ 𝛿𝜒Sፓe)]} . (C.4)

A Taylor expansion now gives

𝐹(𝜒+𝛿𝜒) = 1
2𝑐 {𝒦E

desired −𝒦 [e+ Z (I+ 𝛿𝜒Aዅኻ𝑆ፓZ+ 𝛿𝜒ኼ (Aዅኻ𝑆ፓZ)ኼ +…)Aዅኻ (𝜒Sፓe+ 𝛿𝜒Sፓe)]}
ፇ

{𝒦Edesired −𝒦 [e+ Z (I+ 𝛿𝜒Aዅኻ𝑆ፓZ+ 𝛿𝜒ኼ (Aዅኻ𝑆ፓZ)ኼ +…)Aዅኻ (𝜒Sፓe+ 𝛿𝜒Sፓe)]} , (C.5)

rearranging all terms up to and including second order, we have

𝐹(𝜒 + 𝛿𝜒) =12𝑐{𝒦E
desired −𝒦[e+ 𝜒ZAዅኻSፓe+ 𝛿𝜒 (ZAዅኻSፓe+ 𝜒ZAዅኻSፓZAዅኻSፓe)

+ 𝛿𝜒ኼ (ZAዅኻSፓZAዅኻSፓe+ 𝜒Z (AዅኻSፓZ)ኼ AዅኻSፓe) ]}
ፇ
{… }. (C.6)

Furthermore, simplify the objective function by noticing that E(𝜒) = e + 𝜒ZAዅኻSፓe and by introducing
J as follows

J = ZAዅኻSፓe+ 𝜒ZAዅኻSፓZAዅኻSፓe, (C.7)

and G as follows
G = ZAዅኻSፓZAዅኻSፓe+ 𝜒Z (AዅኻSፓZ)ኼ AዅኻSፓe, (C.8)
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so we get

𝐹(𝜒 + 𝛿𝜒) =12𝑐 {𝒦E
desired −𝒦 [E(𝜒) + 𝛿𝜒J+ 𝛿𝜒ኼG]}ፇ {𝒦Edesired −𝒦 [E(𝜒) + 𝛿𝜒J+ 𝛿𝜒ኼG]} , (C.9)

where we can define the residual r(𝜒) = 𝒦Edesired−𝒦E(𝜒), work out the multiplication and rearranging
all terms up to and including second order again. This results in

𝐹(𝜒 + 𝛿𝜒) = 𝐹(𝜒) − 𝑐Re [𝛿𝜒Jፇr(𝜒)] + 12𝑐 |𝛿𝜒|
ኼ |J|ኼ − 𝑐Re [𝛿𝜒ኼGፇr(𝜒)] , (C.10)

which is now in the same form as the general form given in Equation C.1. Furthermore, we can rewrite
this equation by splitting the contrast 𝜒 in a real and imaginary part as follows

𝐹(𝜒፫ + 𝛿𝜒፫ , 𝜒። + 𝛿𝜒።) = 𝐹(𝜒፫ , 𝜒።) + gፓᎤ𝛿z+
1
2𝛿zHᎤ𝛿z+ higher order terms. (C.11)

The second term on the right-hand side of Equation C.10 can be compared with this general form by
writing it in terms of a real and imaginary part of 𝜒. By further exploring the actual pad parameters 𝜖፫
and 𝜎 this becomes

−𝑐Re [𝛿𝜒Jፇr(𝜒)] = −𝑐 {𝛿𝜒፫Re [Jፇr(𝜒)] + 𝛿𝜒።Im [Jፇr(𝜒)]}

= −𝑐 {𝛿𝜖፫Re [Jፇr(𝜒)] + 𝛿𝜎Re [
1

𝑗𝜔𝜖ኺ
Jፇr(𝜒)]}

= −𝑐Re [aJፇr(𝜖፫ , 𝜎)] 𝛿m = gፓ𝛿m, (C.12)

where we use
𝛿z = a𝛿m, (C.13)

with 𝛿z = [𝛿𝜒፫ , 𝛿𝜒።]ፓ, 𝛿m = [𝛿𝜖፫ , 𝛿𝜎]ፓ and

a = (1 0
0 ኻ

፣ᎦᎨᎲ
) .

For the third and fourth term on the right-hand side, we have

1
2𝑐 |𝛿𝜒|

ኼ |J|ኼ − 𝑐Re [𝛿𝜒ኼGፇr(𝜒)] =12𝑐 [(𝛿𝜒፫)
ኼ + (𝛿𝜒።)ኼ] |J|ኼ

=12𝑐𝛿m
ፇaፇJፇJa𝛿m

=12𝛿m
ፇH𝛿m, (C.14)

where we have neglected the fourth term under the assumption that the first-order term (third term) will
dominate the second-order term (fourth term) [11]. This assumption is justified when the residual term
is small, so when the initial guess is close to the optimal value. This method is called the Gauss-Newton
method.
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