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Abstract
Nowadays there exists a wide variety of string instruments that produce various sounds. Al-
though all sounds are produced by strings, the sounds of different instruments can be clearly
distinguished. The main goal of this research is to transform the sound of one string instrument
to the sound of another string instrument. The string instruments that are used for filtering are
the acoustic guitar, the electric guitar, the bass guitar, the violin and the viola. To transform the
sounds of different instruments the sound is filtered by using Fourier transforms. To transform
these sounds accurately the sounds are analysed using Fourier analysis. As sub-goals of this
research it is researched how the tones are produced and whether different ways of producing a
sound have an impact on the tone. A string produces multiple frequencies which are due to the
different possible standing waves on a string. These are called harmonics, the first harmonic
produces the fundamental frequency of the tone. The other harmonics are overtones and have a
frequency that is a multiple of the fundamental frequency. These produce the timbre of a sound
and the difference between the sounds of different string instruments mostly lie in the timbre
of a sound. By filtering, some harmonic are enhanced and others reduced or extinguished.
This way the timbre of the sound of a different instrument is imitated. Because the relative
intensity of harmonics is time dependent multiple filters are used, changing quickly after one
another. These filters are produced using a moving window Fourier transform. The timbre of
an instrument is dependent on the way a string is played. A note has a different timbre when
it is bowed or plucked and whether it is an open or a closed note. Techniques as the flageolet
technique can be used to accentuate some overtones whilst repressing others. Also the location
where a string is struck has a big effect on the produced timbre. For the filter to work properly
the original sound has to contain detectable overtones. This is the case for all instruments but
the bass guitar. The filtering of other string instruments works very accurately but can still be
distinguished from the sound it is trying to mimic. This could be improved by using even more
filters, however creating and implementing these filters takes a lot of computing time. Another
explanation why the filtered sound doesn’t match perfectly with the sound it is trying to mimic
could be that one of the string instruments is not precisely tuned. Finally, the phase of the sound
of an overtone could be adjusted so that it corresponds to the sound that is being imitated. This
improves the matching of the sounds.
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1. Introduction
Music is a big part of our lives. Research shows that people spend an average of 2.5 hours a
day listening to it. Music is important to adolescents, and it helps satisfy their emotional needs
[1]. Nowadays in modern music there is a wide variety of stringed instruments and specifically
string instruments. Stringed instruments have been around for ages. As there is little to no evi-
dence available from prehistoric times it is difficult to date the first instruments. The first string
instrument is probably the harp. Some scholars have suggested that the harp was derived from
hunting bows. Perhaps old bows where retired and put to recreational use. There are pictures
from ancient Egypt and Babylonia that depict these harps. The harp evolves to the lyre. Old
Greek mythology credits the god Hermes with the invention of the lyre. A lyre was found in
the burial chambers in the ancient Mesopotamian city of Ur. The so called lyre of Ur is accred-
ited to be the oldest surviving instrument, as the city of Ur was founded in the 4th millennium
BC. The next instrument is a zither and consists of a flat wooden soundbox with numerous
strings stretched across it. Versions of the trapezoidal zither is struck with 2 light hammers and
evolve in eastern Europe to the piano. Another instrument from Mesopotamia and Egypt is the
plucked lute. The lute is widely used and is spread across the ancient Mediterranean and Asia.
With an intermediate step of the fiddle, the lute gives the origin for the violin family and with
an intermediate step of the vilhuela, the lute evolves into a guitar. Much later in the 1950s as
technology makes remarkable changes the guitar family is expanded with electric guitars [2].

All these different string instruments can be roughly divided into a group of guitars, the
violin family and pianos. These different instruments produce a wide variety of music. Al-
though all sounds are produced by strings, the sounds of different instruments can be clearly
distinguished. Centuries of development in various directions result in great differences in the
sounds. This raises the question of whether it is possible to overcome the differences between
the instruments. This leads to the main goal of this research; How can the sound of one string
instrument be transformed to another string instrument. Or, to be more precise; How to trans-
form a guitar to a violin.

To transform the sounds of different instruments Fourier transforms are used and filtered.The
string instruments that are used for filtering are the acoustic guitar, the electric guitar, the bass
guitar, the violin and the viola. In order to better transform the sounds, it is important to get
a thorough understanding of the sounds these instruments produce. Using Fourier analysis the
different components of sound are analysed. As sub-goals of this research it is researched how
the tones are produced and whether different ways of producing a sound have an impact on the
tone. These different ways of producing sound have an effect on the timbre of tones and are
therefore important to understand for transforming sounds.

The structure of this project is as follows: Chapter 2, Theory, describes the theoretical
concept of sound and how it is perceived. It describes properties of sound and musical theory of
how sound is produced on string instruments. Different components of the timbre of sound are
explained it is explained how these sounds originate from the different harmonics. In chapter
3 the Fourier transform and the Fast Fourier Transform algorithm, which is used to analyse the
sound, are discussed. Chapter 4, outlines the experimental setup and how sound is stored and
filtered. In Chapter 5, Results and discussion, the most important results of this analysis are
presented and these results are interpreted. Chapter 6, Conclusion, contains the most important
conclusions of this research.
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Figure 1: Images of different string instruments, namely the acoustic guitar, the bass guitar, the
violin, the electric guitar and the viola.
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2. Theory
In the following chapters more and more will be discussed on how sound filters are created.
These filters are based on the Fourier analysis of sound. The sounds of different string instru-
ments are recorded and analysed in order to create those filters. However in order to understand
that, first a greater understanding is needed about what sound is and how it is produced and
perceived. In this chapter the concepts of sound, tempo, frequency and timbre are explained.
Afterwards the differences between the string instruments and how they produce sound are dis-
cussed in more detail. Fourier analysis is used for analysing and filtering the sound, those will
be explained afterwards.

2.1. Sound and hearing
Sound exists of waves that are mechanically created by a moving, or to be more precise by a
vibrating object. Sound is created by all kinds of vibrating material and objects, these will be
referred to as the source. The physical definition of sound is that it is the transmission of kinetic
energy from particles in the source to particles in the medium through which the sound moves.
In the case of sound, the medium in which it moves is mostly air and sometimes water. As the
kinetic energy from the source is transmitted to the medium, the particles in the medium start
to vibrate as well. This causes the pressure of the particles in the medium to fluctuate. Sound
travels as a longitudinal wave, meaning that the propagation of energy is parallel to the way
the sound moves. The variations of air pressure are detected by their mechanical effect on the
tympana (ear drums) of our auditory system. Through a series of small bones the motion of
the tympana reach the fluid of a spiral cavity called the cochlea. Here it induces impulses that
are sent to the brain. Further details on how these vibrations induce impulses and how those
impulses reach our brain is not part of the focus of the research. The important point is that the
variations of air pressure are dominant in the hearing process. There are other ways vibrations
can be detected. Vibrations can reach the cochlea through the bones in the head if they are
in direct contact with the bones. Intense vibrations of low frequencies can be perceived by
nerve transducers in other parts of the body. However both of these are not part of the primary
sense of hearing. [3] As said before, sound travels as a longitudinal wave. This wave has a
certain frequency that is measured in terms of the variation in pressure over a unit of time of
air molecules. This means that the frequency is the number of waveform periods, or cycles,
that occur in one second. The human sense of hearing can detect waves between 20 Hz and
20 kHz, but it is not as sensitive to the whole width of this spectrum. The sensitivity drops
substantially for frequencies below 200 Hz and for frequencies above 10 kHz. Unsurprisingly,
these frequencies are reasonably well matched with the human speech. The majority of the
frequency content of our speech (approximately 300 Hz - 3 kHz) lies in the spectrum where the
human hearing is sensitive. A sound wave has a certain intensity, which relates to its loudness
but should not be mistaken for it. The intensity of a sound wave can be measured in various
ways. The relative intensity between two sound waves can be measured by comparing the peak-
to-peak value (twice the amplitude of a wave). However real life sound rarely consists of a pure
sine wave that does not decay over time and therefore it is not easy to define the peak-to-peak
value. Another way to define the intensity of a wave is by using the rms-value. This is obtained
by squaring the values of a waveform over a given period, taking the average and of these values
and squaring them. The intensity of sound can be measured in W

m2 . When it comes to sound
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Figure 2: Equal loudness contours. The contours show, for a given dB, how equal loudness
levels vary as a function of frequency.

however, most of the time the intensity is measured as a relative intensity on a logarithmic scale
in decibel (dB). On this scale, the intensity of a sound is taken relative to the typical intensity
where sound is (barely) audible for the human hearing, I0 = 10−12. The sound intensity is
then calculated as L = 10 log10

I
I0

dB. The use of the scale where the logarithm is taken of
the relative intensity with the minimum audible intensity I0 is not arbitrary. This reflects that
the human hearing seems to perceive sound logarithmic as well. This can be understood in
a way that human senses are better in perceiving relative changes than in perceiving absolute
changes. Human hearing is much better in detecting relative changes in air pressure than in
perceiving absolute changes in air pressure. As said before there is also another distinction to
be made when it comes to human hearing. Loudness and intensity relate to each other but are
not the same. Intensity can be taken on the logarithmic scale dB relative to I0 = 10−12. The
perceived loudness of a sound is measured in dB(A). This scale also accounts for the varying
sensitivity of our hearing for sounds of different frequency. It is calculated almost the same but
the minimum audible intensity I0 is specified for each frequency.

In figure 2 it can be seen how loudness in dB(A) and intensity in dB differ. Sounds with the
same intensity but different frequencies are perceived as louder or less loud depending on their
frequency. A sound of 20 dB is not detected when it has a frequency of 200 Hz or less, and a
sound of 0 dB is perceived as approximately 10 dB when it has a frequency of 3000-4000 Hz.
This and other effects make our perception and experience of sound very complex. It is worth
here to also make a notion about the phase of a sound wave. For a long time it was believed
that people could not tell that there was a phase-shift in the sound. Such a phase-shift would
have a negligible effect on the perception of sound, the human auditory system was considered
"Phase deaf". Recent studies however have disproved this and shown that humans can detect
changes in the phase spectrum. The phase spectrum of a sound effects how the timbre of a
sound is perceived. Nonetheless the human hearing can only detect these changes in some
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cases. The sensibility to changes in the phase spectrum greatly depends on the type of sound
and its frequency [4]. There is much more to be discussed on how the human auditory system
detects sound waves and converts them to impulses. There is also much more to say about how
those impulses are perceived. For example, it is believed that sound with a pitch of around 4000
Hz is perceived as louder because it resonates in our middle ear canal. To frame the research,
the main part of the research will be focused on the pitch and timbre of sound [5].

2.2. Properties of sound
After having gained some basic understanding as to what sound is, it is time to look into what
kind of properties sound has. It comes from a source, that source transmits energy to a medium
through which the sound travels. Sound is a longitudinal wave which has a certain range of
frequencies. First we will categorise complex sound and make more and more distinctions.

2.2.1. Travelling wave

Because sound is a wave it also has the basic properties of a wave. It has a certain amplitude
which correlates to the amount of energy and the intensity of the sound. A sound wave has a
frequency and a wavelength. The period of time in which a wave completes a cycle is called
the period and at a specific time and position the wave has a specified phase. The velocity at
which this wave propagates is dependent on the medium through which it travels. The speed

of sound in an ideal gas is given by v =
√

γRT
M

where γ is the adiabatic index, R is the gas
constant, T the absolute temperature and M the molecular mass of the gas. In a fluid the speed
of sound is different. Then it is given by v =

√
B
ρ

, where B is the bulk modulus of the fluid
and ρ its density [6]. The velocity of a wave is also given by v = f/λ, thus sound with a higher
frequency has a shorter wavelength.

To examine a travelling wave on a string some properties of the string have to be taken into
account. Consider a uniform string with linear density µ(kg

m
) that is stretched with tension T

(in Newtons). There is a net force dF applied on segment ds of the string to restore it to its
equilibrium position. This force equals the difference between the y components of the tension
on both sides of the string. Then this segment is calculated as

dFy = (T sin(θ))x+dx − (T sin(θ))x, (1)

where θ is the angle of the direction of the string and the x axis. By applying Taylor expansion
to the second order on the first term of equation (1) this changes to

dFy = [(T sin(θ)x +
∂(T sin(θ))

∂x
dx]− (T sin(θ))x =

∂(T sin(θ))

∂x
dx. (2)

Because we are considering a small displacement in y, sin(θ) can be replaced by tan(θ) which
in turn is equal to ∂y

∂x
. Then the restoring force is calculated as

dFy =
∂(T ∂y

∂x
)

∂x
dx = T

∂2y

∂x2 . (3)

The net force from equation (3) is used in the Newton’s second law of motion. The mass of the
line segment is µds and since dy is small, ds can be approximated with dx. The equation of
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motion then becomes

µ
∂2y

∂t2
= T

∂2y

∂x2 ,
∂2y

∂t2
=

T

µ

∂2y

∂x2 . (4)

Equation (4) can be solved using the general solution from d’Alembert:

y = f1(ct− x) + f2(ct+ x), (5)

where f1 and f2 represent waves that are travelling to the right and to the left, respectively.
Both waves in this equation have velocity c [3].

2.2.2. Rhythm, pitch and timbre

The first important distinction to be made is about how frequent a sound repeats itself. Rhythm,
pitch and the timbre of a sound are all related to different frequencies within a sound and
how often they repeat themselves. Rhythm and pitch are most alike of those properties. The
distinction between those properties is whether or not we can easily distinguish the different
impulses of a specific sound. In music for example when an instrument produces the same note
a few times following each other the human hearing can distinguish those impulses. On the
other hand, when we can’t tell the difference between different impulses it is called the pitch of
a sound. A violin is perhaps the best example for this; While it is played continuously in one
bowing of the violin there is no distinction to be made between different impulses. Although
the rhythm is of great importance in music, the analysis of the sound of string instruments is
focused on pitch and timbre. To discuss pitch we take a pure tone as an example. The pitch of a
sound is determined by the frequency of a sound wave, thus by the frequency of the tone. This
is perceived as the so called "height" of a tone. However in reality sounds rarely consist of a
pure tone. Usually there are various waves of different frequency combined in one sound wave.
How these tones of different frequencies are produced and relate to each other will be discussed
in more detail in section 2.3.2. In the case of string instruments, different string instruments
produce sound with a different timbre. Sounds with a different timbre can have the same ’main’
frequency, that is the lowest frequency produced and mostly that main frequency will be heard.
A fuller timbre can make a sound more interesting. Some timbres are perceived as ’full’ or
’interesting’ and other can be perceived as ’thin’ or ’empty’. These terms sound subjective but
have everything to do with very detectable overtones.

2.2.3. Distinguishing different sounds

The human hearing is quite good in recognising the difference between frequencies. This
recognition is also by determining the relative frequency instead of the absolute frequency. It
is said that most people can hear the difference in frequency if this differs by 0, 03%. Some
people are able to even identify and recreate a given musical note without a reference tone.
This is a rare ability though and is called having perfect pitch. However, when two sounds with
a small difference in frequency are played together then those sounds are perceived together.
Mathematically, this means the following;

sin((f +∆f)t) + sin((f −∆f)t) = 2 sin(ft) cos(∆ft), (6)

with f + δf the frequency of the first source and f − δf the sound of the second source [7].
The sound that is perceived has a frequency that is the mean of the original frequencies and has

6



an amplitude of 2 cos(∆ft). Therefore the intensity of the sound fluctuates, this phenomenon
is called the beating of a sound.

2.2.4. Consonance and dissonance

Different notes can go well together or clash with each other. Notes that sound good when
played together are called consonant. A chord, which is a concordance of multiple notes,
that is built up of consonances sounds pleasant and "stable". Conversely, when a chord has
dissonance in it it may feel "unstable" or unpleasant and harsh. Obviously whether sound is
perceived as pleasant or unpleasant is partly a matter of opinion but there is a clear concept
behind consonance and dissonance which is crucial in music and our tuning system. In ancient
Greece the Greek scholar Pythagoras already discovered the concept of consonance and dis-
sonance. Pythagoras divided a string into 2 parts by a placing a movable block between the
bridges where the string was held. Then the ratio of the frequency of both parts of the string
is equal to the ratio of the length of both parts of the string. As a simple rule, when the ratio
can be expressed as a fraction of two low integers R = m

n
the tones are consonant. In that case

the waveform of the higher frequency harmonic lines up with the other harmonic after a few
periods. That has the effect that the phase relation of the higher frequency is time dependent
on the lower frequency. The resulting waveform is stationary with the repeat time of the wave
that is shorter. This makes the tone relatively easy to recognise and to analyse for the brain. Of
course there are more tones that have a non-integer ratio between the frequencies. The human
brain perceives these tones as less special and harder to recognise. Recent fMRI studies have
shown that the human brain in fact has separate centres for analysing consonant and dissonant
tones. This would explain why consonant tones are perceived as pleasant and dissonant as un-
pleasant. This plays a key role in musical theory, as dissonance is used to build op tension in a
musical play [8].

2.3. Muscial theory

2.3.1. Standing wave

Now let’s go into more detail about how a sound is created by zooming in on string instruments.
The excitation of a string sends energy to both sides of the string. That energy travels in the
form of a travelling wave. If the string would be infinitely long those travelling waves would
move to opposing sides and not meet each other again. However strings are not infinitely long,
a string on an instrument is fixed at both sides. When a travelling wave meets a fixed point it is
reversed with opposite phase. The travelling waves from both directions meet each other and
interfere. When two waves of identical frequency interfere with one another while travelling in
opposite directions it creates a standing wave. A standing wave is characterised by locations on
the string where the string doesn’t move and locations on the string where there is a maximum
displacement from the equilibrium. Such a place where the string has no displacement from
the equilibrium is called a node and a location with maximum displacement is called an anti-
node. The amount of nodes and anti-nodes and their location on the string are specified for
each standing wave [9] [10].
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Figure 3: The first 3 harmonics of a string that is bound on both sides.

2.3.2. Harmonics

A mode of a standing wave that is possible on a string is called a harmonic. The simplest type
harmonic is the first harmonic and can be seen in figure 3.

For a string without stiffness, the wavelength of the fundamental is twice the length of the
string. How the frequency of a harmonic changes with the stiffness of a string is specified in
2.3.3 but for now assume there is no stiffness. In the middle of the string there is a node. The
sound that the first harmonic produces is referred to as the keynote of a string. The second
harmonic has a node in the middle of the string as can also be seen in figure 3. The length
of the string is equal to the wavelength of the standing wave. The frequency is calculated by
equation (7).

f = v/λ (7)

Both modes have the same velocity v but the wavelength of the first harmonic is twice as
big. Thus the second harmonic has twice the frequency of the keynote. This is called the first
overtone. The third harmonic has 2 nodes and gives the second overtone that has thrice the fre-
quency of the keynote. This goes on and on. The keynote is heard and the overtones combined
give a sound its timbre. A full set of overtones usually makes a sound more interesting and
"full". The same string on an instrument can also create another, higher keynote. As the fre-
quency is calculated with equation (7), this would imply that either speed of sound increases or
the wavelength λ decreases. Because the speed of sound is determined by the medium through
which it travels it is not possible to alter. Decreasing the wavelength of the sound is possible.
This is done by using a smaller part of the string by holding a finger somewhere on the string.
By clamping the string it effectively makes the string shorter. The effective wavelength de-
creases as well and the frequency increases. When a string is used without putting your finger
on it it is called an "open" string or an "open" note. In turn when a note is created by clamping
the string at a specific location it is called a "fretted" note. On guitars the different locations to
create these fretted notes are specified and are called a fret [11].

2.3.3. Vibrations of a stiff string

Thus far we have assumed a string has no stiffness. In that case the frequency of strings would
only depend on the length and the different strings of most instruments would all produce a
sound of the same frequency. Strings in real life however have a certain stiffness and mass
density. When a part of a string is displaced from its equilibrium position then a force applies
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Figure 4: Time analysis of the motion of a string plucked at its midpoints in images a-h to
the left. On the right side a time analysis of a string that is bowed at the left fixed point in a
downward direction.

to return the string to its equilibrium position. This restoring force is partly due to the tension
on the string and partly due to the stiffness of the string. This alters the equation of motion that
was used for travelling waves (equation 4). The new equation of motion for a string now equals

µ
∂2y

∂t2
= T

∂2y

∂x2
− ESK2 ∂

4y

∂x4
, (8)

where µ is the mass per unit length, T is the tension, E is the Young’s modulus, S is the
cross-sectional areas and K is the radius of gyration. This equation is difficult to solve but
when the stiffness of the string is sufficiently small then the mode frequencies can be written
as

fn = nf ◦
1 (1 + β + β2 +

n2π2

8
β2), (9)

where f ◦
1 is the fundamental frequency without stiffness and β = 2K

L

√
ES
T

. Because of the last
term in equation (9) the different frequencies are not exact multiples of each other anymore.
However for string instruments with only a few strings this term is sufficiently small and thus
this problem is negligible. This problem does arise for the piano and it produces beating as is
described in section 2.2.2 between the overtones of a note and the same note in higher octaves.
To tackle the problem the ratios in octaves are stretched to slightly above 2:1 [3].

2.3.4. Plucking and bowing

A string is triggered in different ways in different string instruments. Instruments of the violin
family are played with a bow and strings of instruments like guitars are plucked. When a string
is excited by plucking the vibration (at t = 0) can be considered to be a combination of several
modes of vibration. For example when a string is struck in the middle it can be seen as a
combination of the odd-numbered harmonics [3]. When the string is released 2 waves start to
move in opposite directions as can be seen on the left in figure 4. Both waves travel to the
fixed point of the string and return with opposite phase. The original modes of vibration at the
release of the string quickly get out of phase and the shape of the string changes rapidly after
the plucking. As energy transfers to other modes, the sound of the string changes and becomes
more mellow. Energy is lost and after some time the sound dies out. Bowing the string on the
other hand has a "continuous energy" (as long as the bowing continues). The string does not
just vibrate back and forth. Instead the string forms 2 straight lines with a sharp bend at the
intersection. This bend travels on the curved path, as can be seen in figure 4 on the right. In
this figure the string is bowed in a downwards direction at the left side of the string. The action
of the bow on the string is often described as a stick and slip action. The string "sticks" to the
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horse hairs of the bow by its stationary friction and moves down until the force of the tension in
the string exceeds the stationary friction. Then the string "slips", as it slips the dynamic friction
is way less than the stationary friction. Until that point in the string made a half cycle, then it
sticks to the bow again, thus repeating the process [12] .

2.3.5. Tuning system

Music notes of particular frequencies have been named according to tuning systems. The tuning
system that is used in western culture exists of 12 semitones. After those 12 semitones you get
the first tone again, only then it is an octave higher. That means that the frequency is twice the
frequency of the first tone. Not all of those semitones are used in a scale. Most scales only
use 7 musical tones. The reason that those scales have 7 semitones is that those semitones are
consonant. The first scale was invented by the Greeks, again by Pythagoras. In his experiment
he mostly liked the tones with a frequency ratio of R = 3

2
or R = 2. By dividing or multiplying

1 by 3
2

and 2 he gets 7 tones in the interval from 1 to 2 (2 not included because this is an
octave higher). In that way all the tones are consonant together. A notion here can be made
that on a string instrument the first overtone has the ratio R = 2 with the fundamental and the
second overtone has the ratio R = 3

2
with the first overtone and are therefore consonant. These

scales have been modified to make the scale consequent up to higher octaves. Still the "just
scale", otherwise knows as "harmonic tuning" makes use of tones that are consonant together.
Nowadays the mostly used tuning system is the Equal temperament. This scale is a slight
modification of the just scale and is slightly less consonant in some octaves but works better in
higher octaves. The equal temperament is defined by setting the A4 note to a frequency f = 440
Hz. The 4 means that it refers to the musical note A in the fourth octave. The frequency of a
note in this octave that is m semitones higher is then simply calculated with f = 440 · 2m

12 [13].

2.3.6. The power of timbre

The keynote produced by a string primarily is what we perceive. The overtones produce a
rich or thin timbre which makes the sound more interesting. The timbre of an instrument is
dependent on the ratio of the overtones. It is also referred to as the tone colour. That name
reveals that is has a subjective nature, because how exactly is the colour of a tone defined. The
overtones however have a bigger impact on the sound. It makes all the difference between the
various string instruments. Some instruments have strings that produce a frequency that is way
higher than another instrument, but also when different instruments play a tone of the same
frequency their sound is very different. Instruments with sharper sound like a trumpet and a
trombone have stronger odd overtones while even overtones tend to make sound warmer and
softer. The overtones are also used to identify the keynote. It has been found that the keynote
is still heard even when it is removed from the sound. Even when the first overtone is removed
as well the human hearing still identifies the keynote, even though the sound is completely
different. In case of this psychoacoustic phenomenon the keynote is also called the Tartini
tone. This principle is used in choir singing. Different singers can produce a pitch to produce
the various overtones and so the illusion of the keynote is created although non of the singers
can reach that. This is called overtone singing or throat singing. In non western culture this
throat singing is, unintentionally, used in the meditation of Tibetian monks. The overtones are
created by monks who sing very slowly and deeply while meditating [14] [15].
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Figure 5: The flageolet technique by slight finger touch is demonstrated on an a string with
f = 220 Hz. The audible frequency amounts to a frequency f = 1100 Hz.

2.3.7. Playing the overtones

So the overtones define a large part of a sound. While playing a string instrument there are ways
to change which overtones are contained in the sound. The technique flageolet is common to
elicit specific harmonics on all stringed instruments like guitars, pianos and the violin family.
Flageolet itself literally means overtone and this technique is used to reach high overtones. A
string is divided into 2 parts by the slight touch of the finger. It is important to note here that
the string is only touched slightly and is not clamped. The slight touch prevents the string from
moving at that specific point and therefore creates an artificial node. When the string is touched
at 0 < p

q
< 1 ratio of the string, the overtone with the frequency f = fkeynote ∗ q

gcd(p,q−p)
is

audible. Gcd denotes greatest common divisor. In the example of figure 5 the string is touched
at p

q
= 3

5
. The string is an a string with frequency f = 220 Hz. This means that the overtone

with frequency f = 220 Hz· 5
gcd(3,2)

= 1100 Hz is audible. If the snare was clamped at that
point it would produce a sound of f = 5

3
· 220 Hz ≈ 367 Hz [16].

Besides the flageolet technique, another way of suppressing certain overtones is predicted in the
literature. By striking a string at the point 1/n of the string all nth harmonics can be suppressed.
This is because in this way an artificial antinode is created at a certain place on the string. All
overtones that should have a node in their standing wave at that location are thus suppressed
[3].

2.4. String instruments

2.4.1. Acoustic guitar

The modern classical guitar with 6 strings and its most recent ancestor is the vilhuela, an in-
strument played in the 16th century in Spain. Since then there have been a lot of modification
on the instrument, mostly on the body of the guitar.

An overview of a guitar can be seen in figure 6. The strings of the guitar stretch along
the neck and are fixed at one point on the head of the guitar. The tension on the strings can
be increased by the tuning machine. The other fixed point of the guitar is the bridge. An
acoustic guitar can be considered as a system of coupled vibrators. By plucking one string the
bridge and the top plate begin to vibrate a little as well. In turn those transfer energy to the
air cavity, ribs and the back plate. Sound is radiated efficiently through the air cavity and the
sound hole. The strings of a guitar are tuned to E2, A2, D3, G3, B3 and E4 with frequencies
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Figure 6: A schematic overview of a classic acoustic guitar

f = 82, 110, 147, 196, 246 and 330 Hz. It has quite a sound range as one string is 2 octaves
higher than the "lowest" string [17].

2.4.2. Electric guitars

Electric guitars produce sound in a slightly different way. As the name suggests the main differ-
ence is that these guitars are electrified. An electric guitar is equipped with an electromagnetic
pickup that consists of a coil with a permanent magnet. The steel strings of the guitar vibrates
and causes changes in the magnetic flux through the coil. This produces an electric current
which is sent to an amplifier. Vibrations of the body of the guitar are relatively unimportant
compared to the acoustic guitar. There is also a relatively small energy transfer from the strings
to the body of a guitar. The vibrations of a string of an electric guitar is sustained longer. The
string-induced change in the magnetic field is not very strong. That is why the coil is suscep-
tible to picking up a 60 Hz hum from electric wires. The humbucking mode is used to counter
this problem. It combines 2 coils wound in opposite direction to cancel the effect of electric
wires. An electric guitar has multiples coils and most can switch which are used or if the guitar
uses single coil or humbucking mode. Pickups that are farther from the bridge of the guitar are
more sensitive to higher harmonics and pickups that are closer to the bridge produce a stronger
fundamental. An important type of electric guitar is the bass guitar. The bass guitar has 4
strings with the notes E1, A1, D2 and G2 with frequencies f = 41, 49, 73 and 98 Hz [3].

2.4.3. Violin

The origin of the violin is unclear, the most probable explanation is that the instrument grad-
ually developed from other string instruments throughout the Middle Ages. They developed
in two families, "violins of the leg" and "violins of the arm". The violin has been a subject
for scientific research for ages. In the 1800s Herman von Helmholtz discovered the stick-slip
motion as is discussed in 2.3.7. He deduced the sawtooth waveform of the string displacement
which is now commonly referred to as the Helmholtz motion. The violin has 4 strings that are
very tightly stretched. The total tension on the four strings is 220 N which causes a strong force
downward on the bow of 90 N. This is approximately equivalent to a little more than a weight
of 9 kg. The strings produce the notes G3, D4, A4 and E5 with frequencies f = 196, 294, 440
and 596 Hz. As the vibrational behavior of the body plays a key role in the sound quality of
most string instruments, so it does for the violin. In the last 50 to 60 years it has been found
that the normal modes of a violin are mainly determind by the coupled motion of the top and
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the back plate, together with the air it encloses [3].

2.4.4. Viola

The viola is tuned a perfect fifth below the violin (with the notes C3, G3, D4 and A4. It is the
alto member of the violin family. Nevertheless it is a very different instrument, not a scaled-up
violin. The dimensions of the viola are 15% greater and its principal resonances lie 20 to 40%
below that of a violin. The main resonances of the instrument of the main body and the air
lie between the open snares instead of at the same frequency like the violin. The lowest notes
played on the D and A strings (the strings with the higher frequency) produce more power than
those same notes played on the C and G string. That is because of that the different frequency
of the body resonance [3].
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3. Fourier analysis

3.1. Fourier series
The basic idea behind a Fourier series is that every function that is periodic can be represented
by a series of sine and cosine functions. When a certain function has a period T = 2π, then it
is sufficient to represent the behaviour on the interval [−2π, 2π]. More general, for functions
with periodic boundary conditions on the interval [-L,L] the Fourier series S(x) is obtained by
using the following expression;

S(x) = a0 +
∞∑
n=1

an cos(
nπx

L
) +

∞∑
n=1

bn sin(
nπx

L
) (10)

with constants an and bn this Fourier series doesn’t necessarily converge. However, when
this series converges then the Fourier coefficients an and bn are found by using the orthogonality
relation between the sines and cosines. As a result an and bn are calculated using the following
relations:

a0 =
1

2L

∫ L

−L

f(x)dx,

an =
1

L

∫ L

−L

f(x) cos(
nπx

L
)dx, (11)

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
)dx.

To be able to use the convergence of this Fourier series to a certain function the convergence
theorem 1 is used from Haberman [18]. This theorem is also often referred to as Fouriers
theorem.

Theorem 1 If f(x) is piecewise smooth on the interval −L ≤ x ≤ L,
then the Fourier series of f(x) converges to
1. to the periodic extension of f(x), where the periodic extension is continuous;
2 to the average of the 2 limits,

1

2
[f(x+) + f(x−)]

where the periodic extension has a jump discontinuity

A function f(x) is pieciewise smooth at an interval −L ≤ x ≤ L when the interval of
the function can divided into finitely many intervals on which f and df

dx
are continuous. The

periodic extension of f(x) is obtained by extending the function f(x) at interval −L ≤ x ≤ L
with f(x) = f(x+ n · 2L) and n ∈ Z. If f(x) is a periodic function with period 2L then these
it is equal to its periodic extension. f(x+) and f(x−) denote one-sided limits which are defined
as

f(x+) = lim
x′↑x

f(x′), f(x−) = lim
x′↓x

f(x′). (12)
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The Fourier sine series is the Fourier series where the coefficients an = 0, n ∈ Z. By an
extension of theorem 1, for piecewise smooth functions f(x), the Fourier sine series of f(x) is
continuous and converges to f(x) for 0 ≤ x ≤ L if and only if f(x) is continuous and both
f(0) = 0 and f(L) = 0. As a string is also fixed at both ends, the Fourier sine series is used to
represent the standing waves on a string.

3.2. Fourier transform
In a sound wave it is unknown beforehand which frequencies of waves are present in the signal
and what the relative amplitude is of the frequencies that are present. To find these frequencies
and their relative amplitude a more generalised version of the Fourier series is used, known as
the Fourier transform. The input of the Fourier transform is a function f which denotes the
measurable signal in the time-domain. The Fourier transform equals

C(ω) =
1

2π

∫ ∞

−∞
f(x)e−iωxdx. (13)

The output C(ω) of the Fourier transform is a function in the frequency domain and gives a
continuous spectrum of the frequencies contained in f(x). C(ω) usually consists of complex
values. The absolute value of the function at a certain frequency represents the amplitude of that
frequency and the argument represents the phase of that frequency. The Fourier transform in
equation (13) is possible when the input of the Fourier transform is a continuous function f(x).
Although the original sound signal is a continuous, the sound is measured with discrete points.
Thus the signal that is measured is a discrete function f(x). The discrete fourier transform
(DFT) is calculated as with

F(x) =
N−1∑
n=0

x(n)e−iωnk (14)

where x(n) are the discrete points of the input signal, F(x) is the Fourier transform and ω = 2π
n

.

3.3. Fast Fourier Transform
The discrete Fourier transform could have been essential in the analysis of sounds. This method
has the problem that its computation takes too much time. DFT analysis only became an
important research tool after the introduction of the Fast Fourier Transform (FFT) in 1965 by
Cooley and Tukey. This algorithm decreases the amount of operations required drastically [19].
Where the DFT uses O(2N2) computations for a signal of N points, the FFT uses O(2Nlog2N)
computations. For small N this difference is not important but for signals with a lot of samples
the amount of computations is dropped with several orders of magnitude. To get an idea of
the difference between the amount of computations, when N = 60000 (which is used in this
research) this implies that the DFT needs 3750 as many computations as the FFT. The FFT
approximates C(ω) by taking equidistant points from the input signal f [18]. When N is a
power of 2 the discrete Fourier transform can be computed by an FFT using the Danielson-
Lanczos lemma. When N is not a power of two, a transform can still be performed on sets of
points corresponding to the prime factors of N. When N is not a power of 2 the computation is
however slowed down. Later more complicated fast Fourier transforms have been introduced
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that are even faster then the Cooley-Tukey FFT. The basic idea of their FFT is to break up the
transform of length N into two transforms of length N

2
. This uses the identity that

N−1∑
n=0

ane
−2πin k

N =

N
2
−1∑

n=0

a2ne
−2πi(2n) k

N +

N
2
−1∑

n=0

a2n+1e
−2πi(2n+1) k

N

=

N
2
−1∑

n=0

aevenn e−2πi(2n) 2k
N + e−2πi k

N

N
2
−1∑

n=0

aoddn e−2πi(2n+1) 2k
N

(15)

which is sometimes referred to as the Danielson-Lanczos lemma [20].

3.4. Nyquist frequency
As sound of various frequencies is measured by instruments with a finite sampling rate it is
important to note that is not possible to measure a spectrum of infinite frequencies. With an
instrument with a certain sampling rate frequencies are only measured up until the Nyquist
frequency. The Nyquist frequency is equal to half of the sampling frequency. Signals above
this frequency are misinterpreted as a signal of a lower frequency. This phenomenon is called
aliasing. In figure 7 it is illustrated how aliasing occurs. The blue line is a signal with a

Figure 7: Different waveforms are illustrated in the time domain. The blue dots represent
moments in time when the signal is sampled.

frequency that is higher than the Nyquist frequency. As it is sampled less than twice per period,
there is no difference measured between the red and the blue wave at the sampled points. The
blue waveform is misinterpreted as the red waveform. In order to prevent aliasing the sampling
rate has to be higher than twice the maximum frequency. Of course it is not known beforehand
which frequencies are to be measured. Another way is to use an anti-aliasing filter which filters
out the frequencies that are higher than the Nyquist frequency. Because of the same reason
enough samples have to be taken to make out the difference between different frequencies to
avoid aliasing [21].

This principle explains why the industry standard, a standard that is used for example on
CD’s, is a sampling rate of 44100 Hz, as the human ear can hear frequencies up to around 20
kHz.
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4. Experimental Method
Now we have a greater understanding about the concepts of sound and how these are created
and perceived. In this chapter the experimental method of this research will be discussed. First
up it will be discussed how the sounds of various string arguments are measured. This data will
be stored in wav files and will be read out in jupyter notebook. The data will be analysed and
on the basis of that analysis a filter is created.

4.1. Experimental setup
In order to compare a broad scala of different instruments the sounds of five string instruments
were measured, namely the acoustic guitar, electric guitar, bass guitar, violin and viola. From
all those instruments multiple notes were measured, open and fretted notes. The open strings
of these instruments cover a wide spectrum of notes. To compare the different tones on all
instruments the notes of G3, B3 and E4 with frequencies f = 196, 246 and 330 Hz are measured
on almost all instruments. Not on all instruments, because unfortunately not all instruments can
reach those frequencies. The bass guitar can just barely reach the B3 note. The sounds of all
string instruments but the electric guitar are measured by the same the device; the audio system
of a Pocophone f1. The sounds are recorded on two channels (stereo) and with a sample width
of 2. The sample frequency is set to f = 48 kHz.

The bass guitar is a Fender jazz bass. The bass guitar is tuned using an electronic tuner.
The length of the strings vary between 86 and 90 cm. An amplifier is used with all the filtering
knobs (bass, mid, treble) set to neutral. The temperature in the room is around 17◦C. The bass
guitar is plucked at the "normal" location between the neck and the bridge, in the middle of the
string and at a third and fourth part of a string, taken from the bridge.

The acoustic guitar has a Parlor shape. The strings have a length of 63 cm and are tuned
with an electronic tuner. The temperature in the room is around 22◦C. Like the bass guitar the
strings are plucked at various locations; Between neck and bridge, in the middle of the string
and at a third and fourth part of the string taken from the bridge. There are also measurements
taken where the flageolet technique is used.

The sound of a violin is measured from a full measure violin. The strings are tuned using
an electronic tuner. The temperature in the room is around 18◦C. Sound was measured that
was created by bowing the strings and also by plucking the strings. The effect of the flageolet
technique is measured for some strings.

The viola was tuned beforehand. The temperature in the room is around 18◦C as well.
Sound is measured from every string by bowing and by plucking.

4.1.1. Setup electric guitar

The electric guitar Fender Lead III is used in the experiment. The length of the strings are 645
mm. There are measurements with two different pickup elements. One of them is centred 35
mm from the bridge and the other is centred 140 mm from the bridge. The coils rows are 18
mm apart. Both pickup elements can either be switched to humbucking mode or single coil. As
measurements equipment the guitar is connected to a linear mixing desk directly. No amplifier
is used and all the knobs of the track (filters) are set to neutral. The sound is recorded with
Ardour with a Juli@ soundcard on a linux PC on a single channel with sample width 3. The
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sample frequency is set to f = 96 kHz. The guitar is tuned using an electronic tuner. At the
time of measuring the temperature in the room is about 12◦C

4.2. WAV files
WAV (or WAVE) files are one of the older type file formats that are used today and its file
extension is .wav . It is a subset of Microsoft’s Resourche interchange File Format (RIFF) and is
specified for storing digital audio files. With WAV, the value of each sample is directly encoded
as its bit value, varying between -1 and 1. The data stored in WAV files is not compressed.
In that way no information is lost of the original audio, however the files are very large. The
header of a WAV file is 44 bytes long and contains information about the file. The parameters
of a WAV file are [22]:

• Sample rate or frame rate: This specifies how many samples there are in the time frame
of one second. Industry standard is 44100 Hz but 48 kHz and 96 kHz are popular as well.

• nchannels; This specifies the amount of channels in which the data is stored. 1 is mono
and 2 is stereo. When there are n channels the data is not stored in separate arrays but in
one array where each element is a list of n elements.

• Sample width: This the number of bytes that is used to store the information of one
sample. A byte contains 8 bits which in turn have 2 possible states. Thus n bytes have
28n possible states. The values it contains vary between -1 and +1 and thus n bytes are
specified with an accuracy of 28n−1.

• The total number of frames that are stored in the file.

4.3. Analysis
The data is extracted from the WAV file and read out in jupyter notebook with python 3. To
analyse this data the numerical algorithm FFT which is explained in 3.2 is used. As input
for this algorithm around 40 to 60 thousand samples are given, which is more than twice the
frequency range that we are interested in (see 3.4). This algorithm gives the Fourier spectrum
of a sound. The peaks in this spectrum are the frequencies present in the sound. These peaks
are located and used for further analysis of the signal and to create a filter. To locate the small
peaks of frequencies that are barely present the original peaks are magnified by a factor of 104.

4.3.1. Creating the filter

The filter is created based on the Fourier spectrum of the sound that will be filtered and on
the Fourier spectrum of the sound that is imitated. As it is easier to explain with a concrete
example, take the case where a filter is created to change the sound of an electrical guitar to the
sound of a violin. The peaks in the Fourier spectra of both sounds are located. Every peak in
the spectrum of the guitar is matched with a peak from the spectrum of the violin, if there is one
of course. If there is no peak of that frequency in the spectrum of the violin, the magnification
factor of the filter is 0. If a peak is found of that frequency in the spectrum of the violin, The
magnification factor M =

Ipeakviolin
Ipeakguitar

.
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(a) (b) (c)

Figure 8: A part of the normalised Fourier spectrum is illustrated in plot (a), in plot (b) part of
the normalised Fourier spectrum of an electric guitar is shown. The dashed line is the filter that
is based on the spectra. (c) is the filtered Fourier spectrum of an electric guitar.

This filter can be seen in figure 8 In figure 8a the Fourier spectrum of the violin is illus-
trated. The intensities of the peaks are normalised. In figure 8b the Fourier spectrum of the
electric guitar is illustrated. As described on the basis of both peaks the magnifying factors are
calculated. The magnification factors form the filter, which is the dashed line in the same plot.

4.3.2. Filtering

Finally after the filter is created the original sound of the electric guitar is filtered. The filter
consists of magnification factors, each peak in the Fourier spectrum of the original sound has its
own magnification factor. When filtering the signal, the peaks of the overtones of the original
sound are multiplied by their magnification factors, thus creating peaks of different heights.
The result of these multiplication is the new filtered Fourier spectrum of the electric guitar and
is illustrated in figure 8c. This modified Fourier spectrum can be transformed with the inverse
Fourier transform (IFFT). This returns a sound in the time domain that has as many samples as
the original unfiltered sound signal (and is therefore of the same time duration).

The sound that is being imitated however changes rapidly changes over time, so the filter
should change rapidly as well. For that reason there is a multitude of filters used together for
dynamic and time dependent filtering. As the creation of a filter requires a lot of samples, it
is not enough to take the next 40 to 60 thousand samples. As some original sounds are only
audible for 150 thousand samples, this would imply that only 3 different filters could be used.
To solve this problem filters are created with a moving window.

The operation of the moving window is illustrated in figure 9. A filter is created as described
and filters an X amount of samples. These samples are from a "window" of samples. An IFFT
is used to transform these samples back to the time domain. A few samples dX are taken
after the IFFT. Those are collected and are part of the new signal. After this whole operation
the original window is moved dX samples and the procedure repeats itself. This way a large
number of filters can be used and every few samples are filtered with a new filter.

19



Figure 9: A systematic overview how a moving window is used to produce a new signal.
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5. Results and discussion
In this chapter, the different measurements of the various stringed instruments are analysed.
Because of each instrument the sounds of several strings are measured, it is not possible to
show all the different recordings and how they change over time. Therefore, certain effects
are analysed and how they occur on some instruments. To understand the aspects of a sound,
we will first look in detail at the Fourier spectra of various sounds and into effects that have an
effect on these.. The spectra of the sounds of all instruments will be compared for the tones they
can all produce. Then the difference between open notes and fretted notes and the difference
between bowing and plucking a string will be analysed. The flageolet technique and plucking
a string in different locations will be examined and how these affect the overtones. Finally the
filters of these different sounds are examined.

5.1. Analysis of Fourier spectra

5.1.1. The Fourier spectra of string instruments

First, the Fourier spectra of all sounds are compared. Since the bass guitar has a sound with
a much lower frequency, this instrument does not reach the E3 tone of frequency f = 330
Hz. However, all instruments do reach the tones B3 (f = 246 Hz) and G3 (f = 196 Hz).
The Fourier spectra of all instruments with keynote B3 are illustrated in figure 10. As the bass
guitar had strings of a lower frequency it plays a fretted note. The violin and the viola both play
fretted notes as well because they don’t have a B string. These fretted notes are played on the
G2, G3 and G3 string, respectively.

In figure 11 the Fourier spectra of all instruments are illustrated of the G3 note. These
sounds are (except for the bass guitar) all produced from open strings. As can be seen, the
spectra of different sounds are vastly different. The acoustic guitar had a wide variety of over-
tones that play a role in the timbre of the sound.

Figure 10: The normalised Fourier spectra of different string instruments with keynote B3 with
frequency f = 246 Hz. A frequency range of f = 0 − 5 kHz is shown. Electrical guitar with
pickup 1 on humbucking mode. The bass guitar, violin and viola play fretted notes on the G2,
G3 and G3 string, respectively. The other instruments play open notes. The guitars are plucked
and the violin family bowed.
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Figure 11: The normalised Fourier spectra of different string instruments with keynote G3 with
frequency f = 196 Hz. A frequency range of f = 0 − 4 kHz is shown. Electrical guitar with
pickup 1 on humbucking mode. The bass guitar plays a fretted note on the G2 string, the other
instruments play open notes. The guitars are plucked and the violin family bowed.

Except for one overtone that is more dominant, most overtones have around the same in-
tensity. This gives a full timbre. In the sound of the electric guitar also multiple overtones play
a role. An important difference here is that the sound of the acoustic guitar also contains a lot
of overtones of higher frequencies whereas the relative intensity of the overtones of the electric
guitar rapidly decays. Above a frequency of 3 kHz the overtones play a small to insignificant
role. The bass guitar on the other hand has almost no overtones. The spectrum of the B3 note
has one overtone that plays a role and in the spectrum of the G3 note even the first overtone is
barely visible. The entire sound consists almost exclusively of the fundamental frequency. The
violin and the viola have more overtones that contribute to the timbre of the sound, although
less overtones than the spectrum of the electric and acoustic guitar. The violin is dominated
in the G3 and B3 note by the first overtone. Other overtones, however present, have a relative
intensity below the 0, 2. The spectrum of the viola is most alike the spectrum of the violin.
Difference between the spectra is that overtones of the viola make a greater contribution to the
timbre and have a greater relative intensity.

5.1.2. Open versus fretted notes

When comparing the sounds of different instruments, it is important to bear in mind that an
instrument does not always produce a certain note in exactly the same way. Striking a string
slightly differently or bowing in a different way alters the sound. For instance, a note on
an instrument can sound very different on an open string than on a closed string. Thus it is
important to take the difference between open and fretted notes into account. Although these
different methods all produce the same keynote the tone colour varies.

This difference can be seen clearly in the Fourier spectra of the notes. As an example, figure
12 shows the Fourier spectra of the E3 note as played on an acoustic guitar. In the first plot
this note is played on an open string, next it is played on the closed G string and next to that on
the closed B string. The spectrum of the open string has a lot of overtones with strong relative
intensity. It also has overtones of higher frequencies that the spectra of the fretted notes. The
spectra of these fretted notes also vary a lot. The E note on the G string mostly looks like it has
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Figure 12: The normalised Fourier spectra of the acoustic guitar. The note E4 of frequency
f = 330 Hz is played open on the E string, fretted on the G string and fretted on the B string.
A frequency range of f = 0− 6 kHz is illustrated.

a thinned out timbre relative to the open note. The fretted note has close to no overtones above
4000 Hz. The fretted note on the B string has a fuller timbre. It is noticeable from the spectrum
that there are overtones with greater relative intensity. Also there are peaks to be seen above
the frequency of 4000 Hz, although these are relatively small.

5.1.3. Plucking and bowing

The way a string is struck can also make a difference to the sound of an instrument. Similarly,
whether a string is bowed or plucked has a great deal of influence on the sound. Bowing a string
provides it with a continuous source of energy. As only the violin and the viola are bowed, this
effect will be studies on those instruments. In figure 13 the different sound spectra of plucking
and bowing is illustrated for both the violin and the viola.

(a) (b)

Figure 13: The normalised Fourier spectra of the violin in (a) and the viola in (b) are illustrated
when the instruments are plucked and bowed at keynote G3 with frequency f = 196 Hz. A
frequency range of f = 0− 3 kHz is illustrated.
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Figure 14: The normalised Fourier spectra of the acoustic guitar when it is plucked and when it
is plucked in the first 3 flageolet modes at keynote B3 with frequency f = 246 Hz. A frequency
range of f = 0− 3 kHz is illustrated.

The note that is displayed is the same for all these figures and is G3 (f = 196 Hz). For
the violin the difference between plucking and bowing is the greatest as can be seen in figure
13a. Where the timbre of the bowed violin has a lot of overtones which are relatively small but
present, the timbre of the plucked violin shows virtually no overtones of higher frequencies.
In figure 13b the same effect can be seen for the difference between the bowed and plucked
viola. In the sound spectrum of the viola, more overtones are visible, but there are also fewer
overtones there than in the sound spectrum of the bowed viola. Higher overtones exist but are
relatively small compared to the overtones of a bowed viola. The difference between bowing
and plucking in both instruments is probably due to the continuous influx of energy when
bowing a string. Higher frequencies that lose their energy to distortion from lower frequencies
remain present. To add to this, the sound that is produced by plucking a violin or viola quickly
dies out compared to the guitars. This could be due to the higher tension on the strings or
because less vibrational energy is lost to the surroundings or the body of the instrument.

5.1.4. The flageolet technique

As described earlier, it is possible to influence exactly which overtones you play. The first
possible way is to use the flageolet technique. How this technique works exactly can be read in
section 2.3.7. Here we show the effect that this technique has on the acoustic guitar and on the
violin.

In figure 14 the effect of the flageolet technique on the acoustic guitar is illustrated on note
B3 (246 Hz). In the first plot the normal Fourier spectrum is shown where this technique is not
used. In the second plot the first flageolet mode is depicted. The spectrum is a bit messy with
some small but broad peaks. These broad peaks are also present in the second flageolet mode.
The flageolet essentially gives the string a new fundamental frequency. The first mode would
then have a fundamental frequency of f = 492 Hz. The frequencies that are multiples of that
frequency should be the most visible. In the second flageolet mode the multiples of frequency
f = 738 Hz are clear in the spectrum. However the peaks at f = 246 Hz and f = 984 Hz are
also still present. Thus can be concluded that the other frequencies on the acoustic guitar are
repressed but not completely suppressed. In the last plot the third flageolet mode is illustrated,
this spectrum has a clear peak at f = 984 Hz. The multiples of that frequency are visible
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Figure 15: The normalised Fourier spectra of the violin when it is bowed and when it is bowed
in the first 4 flageolet modes at keynote G3 with frequency f = 196 Hz. A frequency range of
f = 0− 4 kHz is illustrated.

but small. As in the other plots, there is some distortion of small peaks around overtones that
should have been suppressed. These are again respressed but not totally suppressed. A possible
explanation for this is that the energy of the vibrations of the string is transferred through the
bridge to the body of the acoustic guitar. This transfer of energy is relatively large for an
acoustic guitar. because the body of the guitar vibrates more, other modes of the guitar can also
be triggered to a certain extent. Or perhaps some frequencies, like f = 1000 Hz are slightly
preferred by the sound box of a guitar.

In figure 15 a bowed violin and the first 4 flageolet modes are shown for the note G3

(f = 196 Hz). Where the spectrum of the acoustic guitar that is plucked without the flageolet
technique has sharp peaks, the spectrum of the violin is messy and gives and shows distortion at
the bottom of the peaks. At the same time, the peaks in the spectra of the flageolet technique are
very sharp and well defined. The continuous influx of energy by the bowing makes it possible
to determine the exact location where the string should be touched for the maximum effect of
the flageolet technique. The first flageolet mode essentially looks like the spectrum with funda-
mental frequency f = 392 Hz. Even the multiples of this fundamental frequency without large
peaks have a small point that is visible. However this spectrum has some overtones of higher
frequency which are clearly present and audible in the sound. The second flageolet mode has
four clear peaks at frequencies that are multiples of f = 588 Hz. After the fourth peak is some
small distortion. The third mode has clear peaks as well and the same applies for the last mode.
However the last mode has some distortion throughout the spectrum. These spectra give the
impression that they are the Fourier spectra of a note with a different, higher, fundamental tone.
This especially has a large effect on the perception of the sound. The sound that is perceived
is also "higher" with each flageolet mode, in accordance with the new perceived fundamental
frequency. The continuous influx of energy is probably the main reason that the right position
for the flageolet technique can be found more accurately than with the acoustic guitar. Another
reason may be that the shorter strings have less deviation from the equilibrium point. This may
also contribute to finding the exact location more precisely.
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Figure 16: The normalised Fourier spectra of the acoustic guitar when it is plucked next to
the bridge, in the middle of the string and at a 1/3 and 1/4 of the string. The keynote G3 with
frequency f = 196 Hz. A frequency range of f = 0− 2.5 kHz is illustrated.

5.1.5. Locations of plucking

There is also another way in which playing the guitar can affect the overtones of the sound
produced, as described in section 2.3.7. The string is also sensitive to the location where it is
struck. The effect is greatest when the string is struck at location 1

n
, n ∈ Z.

To analyse this, the Fourier spectra of the sounds of an acoustic guitar and a bass guitar
are included, with the instruments being played at specific points. The Fourier spectra of the
acoustic guitar with keynote G3 with frequency (f = 196 Hz) is shown in figure 16. The
"normal" Fourier spectrum has various overtones with similar peaks. In the second plot mostly
the fundamental frequency and the second overtone dominate the spectrum. It is clear in the
spectrum that all the even harmonics are close to cancelled. Only the first overtone (second
harmonic) still has a clear peak. The uneven peaks are small compared to the fundamental
frequency but notable. The effect is perhaps more clear to see in the third plot. Groups of two
peaks repeat each other with some interval as every third peak is almost cancelled. Only the
ninth harmonic still has an undeniable peak. The suppression of every third peak is quite clear.
The last plot also clearly show the same effect. There every fourth peak is cancelled. Groups
of three peaks follow each other on some interval here as well.

Figure 17: The normalised Fourier spectra of the acoustic guitar when it is plucked next to
the bridge, in the middle of the string and at a 1/3 and 1/4 of the string. The keynote E1 with
frequency f = 41 Hz. A frequency range of f = 0− 500 Hz is illustrated.

26



The effect of the locations where a string is struck is also clearly illustrated by the example
of the bass guitar in figure 17 with keynote E1 (f = 41 Hz). The Fourier spectrum of the
instrument only has a few peaks. As can be seen in the first plot, three peaks are clearly visible
and on both sides of those peaks a small peak can be detected. In the second plot all the even
harmonics are suppressed. The large peak in the middle is still detectable but the small peaks
on both sides are complete gone. In the third plot all the third harmonics are suppressed and
thus the large peak at f = 123 Hz is barely visible. In the last plot the effect is also visible but
the fourth harmonic at f = 164 Hz is still visible. The peak is repressed less than it was when
all the second harmonics were repressed in the second plot.

An important observation to make about the Fourier spectrum of the bass guitar is that the
fundamental frequency of the string is missing. Despite the fact that this frequency is missing,
it is still perceived, in contrast to the effect in the flageolet technique. This also clearly shows
that the overtones are very decisive for a sound. In addition to determining the timbre, they can
also determine the fundamental of a sound.

These results combined clearly show that the location where a string is struck has a great
influence on the overtones present in the sound. Probably these are some extreme cases where
certain overtones are almost completely suppressed. As described in the theory, this is because
certain harmonic vibrations together approach the original deviation of the string. By striking
the string at the point 1

n
, all nth harmonic vibrations are then exactly suppressed. According to

Fourier’s theory (1) however, any function can be approximated by a combination of sines. This
means that also every initial deflection of the string can be obtained with a certain combination
of harmonic vibrations, regardless the location where the string is struck. This means that the
location where the string is struck everywhere has a great influence on the harmonic vibrations
in the sound. Striking the string at a different location results in a different set of harmonics
and therefore produces a sound with a different timbre.

A few aspects that influence the sound of stringed instruments have now been discussed.
As has been shown, all these aspects influence the sound produced. Therefore it is not possible
to speak about one exact sound that a certain string from an instrument with a certain funda-
mental tone produces. Sound of an instrument is dependent on how and where a certain note is
produced.

5.2. Filters
By now, the aspects in Fourier spectra that influence the sound have been analysed. These
aspects are the building blocks of the signal. By using the knowledge of these building blocks,
the sound is now filtered with the aim of transforming the sound of one string instrument into
the sound of another string instrument.

This subsection shows for which sounds this process works well and for which sounds
it works less well and where this originates from. An example of how a sound is filtered
successfully is shown in figure 18. In the left plot the Fourier spectrum of the original electric
guitar is shown. This is a measurement of keynote B3 with frequency f = 246 Hz in single
coil mode where the first pickup is used and the guitar is struck at pick up 1. The aim is to filter
this sound in such a way that it mimics the sound of a violin where the same keynote is played
by bowing the instrument. As explained in section 4.3.1 a filter is created based on the height
of the peaks from the guitar spectrum and the height of the peaks from the violin spectrum.
The filter and its magnification factor are also illustrated in the first plot of figure 18 with the
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Figure 18: The filtering of the sound of an electric guitar of a B3 with frequency f = 246 Hz
to the sound of a violin is shown. The first plot shows the Fourier spectrum of the unfiltered
sound together with the magnifying filter. The second plot illustrates the filtered sound and the
third plot is the Fourier spectrum of the sound that is imitated, namely a violin. A frequency
range of f = 0− 3000 Hz is illustrated.

Figure 19: The filtering of the sound of a bass guitar of a B3 with frequency f = 246Hz to the
sound of a violin is shown. The first plot shows the Fourier spectrum of the unfiltered sound
together with the magnifying filter. The second plot illustrates the filtered sound and the third
plot is the Fourier spectrum of the sound that is imitated, namely a violin. A frequency range
of f = 0− 3000 Hz is illustrated.

dashed line. Based on that filter, the Fourier spectrum is filtered. The filtered Fourier spectrum
is showed in the second plot. The Fourier spectrum of the violin that is mimicked is shown in
the third plot. Clearly the second and third plot are very much alike. When these spectra are
examined very closely some slight differences can be found. The peaks in the Fourier spectrum
of the violin are a little broader but otherwise the spectra match very accurately.

The filter works for almost all cases as accurately as in this example. The filtered sound also
is perceived as if it was produced by the instrument it is trying to mimic. Although a notion
has to be made that it does not sound completely the same as the sound it is trying to imitate.
Before evaluating what the possible causes might be, first an example is shown where this way
of creating a filter and filtering is not so accurate.

This way of creating and filtering does not work well for the bass guitar. This is illustrated
in figure 19. Most of the setup here is the same as in the last example. The instrument which
sound will be imitated is the violin at keynote B3 (f = 246 Hz). In the first plot is the Fourier
spectrum of the bass guitar. This spectrum only contains 2 peaks. The filter is shown with the
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dashed line. The magnification factor in this case is way larger, up to a 100. This filter seems
to have four different levels. There are some very high levels for frequencies where no peaks
can be found. The reason for that is that very small peaks are found and that is how the third
and fifth harmonic of the bass guitar are located. These are greatly magnified and as a result the
Fourier spectrum of the filtered signal even has a visible peak at that location. Still the filtered
signal only has four peaks in the Fourier spectrum. For that reason the Fourier spectrum is very
different than the Fourier spectrum of the violin. The produced sound is for that reason quite
different from the sound of the violin. This way of filtering can only create peaks when there is
a small peak detectable, otherwise the filter is unable to produce an overtone at that frequency.

It is evident that the filtering in figure 19 is less than ideal, but also the sound created
in figure 18 is distinguishable from the sound of the violin. Also when the moving window
technique is used the filtered sound is alike but not quite the same as the sound of the violin.
One way to improve sound quality is to use even more filters. However, this has only a limited
effect. Tests have been carried out where up to 200 filters have been used. Since sounds of most
string instruments (when plucked) last 3 seconds, this means that for every 15 milliseconds of
sound a new filter is used. The ideal case is of course that filters could be used for each
sample. However, calculating such an operation takes a lot of time and computing power of the
computer that calculates it. It is also doubtful whether this is much more accurate than using a
new filter every 15 milliseconds. Another possibility why the sounds do not fully match is that
both instruments are not precisely tuned. Perhaps one instrument is off by a few Hertz. The
signals are then still filtered properly because the code recognises that the harmonic vibrations
have approximately the same frequency. However, the end result of the filtering will sound
slightly different. A final and important possibility is that the phase effect is not included in the
filtering. The peaks from the Fourier spectra are only scaled based on their relative intensity.
The phase of a peak in the Fourier spectrum is not considered in this process. As explained
earlier in section 3.2, the Fourier spectrum actually consists of complex numbers where the
norm is correlated with the intensity and the argument of these numbers with the phase of that
frequency. The norm is now increased or decreased but the argument and thus the phase is not
changed. This while research has shown that people are not phase deaf. By adjusting this, the
filtered sound will more accurately mimic the sound that is imitated and these sounds may no
longer be distinguishable.
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6. Conclusion
In this research various string instruments have been analysed and filtered. To conclude the
analysis a sound is defined by its fundamental frequency together with the overtones. Different
string instruments have vastly different Fourier spectra where overtones are present in different
ratios. Even when using the same instrument the same notes vary a lot between open and
fretted notes or when a string is bowed or plucked. Techniques as the flageolet technique can
be used to accentuate some overtones whilst repressing other overtones. The Fourier spectrum
of a sound is also very dependent on the place where a string is struck. These effects combined
make it impossible to speak of one exact sound of an instrument. Nonetheless it is possible to
filter the sound of a string instrument to imitate the sound of another string instrument. One
condition for this is that the original sound has detectable overtones. This causes some tones of
the bass guitar to be improperly filtered.

The filtering of other string instruments works very accurately but is still distinguishable
from the sound it is trying to mimic. One way to improve this is to use even more filters. How-
ever, calculating such an operation takes a lot of time and computing power of the computer
that calculates it. It is also doubtful whether this will provide much improvement compared
to the current situation (where a new filter is used every 15 milliseconds). Another possibility
why the sounds do not fully match is that both instruments are not precisely tuned. Finally, the
phase of the sound of an overtone could be adjusted so that it corresponds to the sound that is
being imitated. This improves the matching of the sounds.
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