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Abstract

Research into constructing reduced-order models (ROM) to reduce computational cost or to interpret com-
plex datasets from numerical or experimental sources has steadily been gaining popularity over the past few
years. Many methods currently exist to construct ROMs. The proper orthogonal decomposition (POD) is one
of the most widely adopted methods used for these purposes in the field of fluid dynamics. The POD modes
favor high-energy structures due to the formulation of the POD however. This may result in an inaccurate
ROM, as it might be possible that dynamically relevant, yet low-energy structures are truncated in favor of
higher-energy structures. In recent years, an alternative goal-oriented method has been proposed. This goal-
oriented method not only has less limits on the goal function that is optimally represented relative to the POD,
the resulting reconstruction of the flow field is model constrained as well. Both these properties are conjec-
tured to lead to more dynamically relevant modes. This goal-oriented, reduced-order modeling (GOROM)
technique has been formalized for the advection, Burger’s and incompressible Navier-Stokes equations in
1D and the Stokes equations in 2D, all with homogeneous boundary conditions. This work extends the for-
mulation to the 3D incompressible Navier-Stokes equations with inhomogeneous boundary conditions and
provides a parallel implementation. The method is applied to a DNS dataset of a 2D transitional bound-
ary layer with and without a forward-facing step present and compared to the performance of the POD. It is
found that the GOROM modes provide a basis which is numerically more accurate than the POD modes for
most cases, yet do not provide additional insight into the flow physics. The results presented nevertheless
show promise for further applications to construct more accurate and goal-oriented ROMs with the GOROM
technique, especially for problems with nonlinear interactions and nonlinear goal functions.
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several times in the report.
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1
Introduction, Literature Review and

Objectives

Reduced-order models have widely been utilized to interpret high-dimensional datasets produced by numer-
ical or experimental simulations of fluid flows. Most notably, proper orthogonal decomposition (POD) has
been used with success (Lumley, 1967). The POD provides spatial structures of the flowfield that optimally
represent the L2 norm of the flow variables. This optimality makes the POD biased towards high energy struc-
tures. A more advanced technique developed by Bui-Thanh et al. (2007) and extended by Cheng et al. (2015),
allows for a chosen goal function to be taken into account while also model constraining the resulting recon-
struction of the flow field. These two properties of the method aim to provide a more general and dynamically
relevant set of modes which could lead to a more suitable basis for interpretation or reduced-order modeling.

One topic where this technique could prove to be useful is the investigation into transitional flow. Gener-
ally speaking, transitional flow describes an area of the flow field in which the flow does remain laminar, yet
small perturbations are able to grow in size, eventually leading to turbulent breakdown. Ever since the discov-
ery of laminar-to-turbulent transition by Reynolds (1883), researchers have tried understanding the physical
processes leading to this phenomenon. This has lead to the emergence of a field called hydrodynamic stabil-
ity (Schmid & Henningson, 2001).

The investigation of transitional boundary layers is a particularly relevant application of the field of hy-
drodynamic stability. Usually the boundary layer over a surface is initially laminar and at some point down-
stream transitions to turbulent. It is generally advantageous for slender bodies to maintain laminar flow over
as much of its surface as possible due to the increased skin-friction produced by a turbulent boundary layer
(see e.g. Anderson (2017, ch.15)). The wing of an aircraft is one such surface on which reducing the skin-
friction could increase the energy efficiency of an aircraft substantially. According to Torenbeek (2013, p.110),
it is theoretically possible to achieve a 30% reduction in fuel usage if the transition of the boundary layer from
laminar to turbulent on both sides of the wing and tail surfaces is delayed sufficiently. Although the practical
implementation to achieve such a delay in transition still remains a challenge, there is a considerable poten-
tial for fuel savings. With the goal of the aviation industry to reach a reduction in net CO2 emissions of 50%
by 2050 relative to emissions produced in 20051, the large potential of increasing fuel efficiency by reducing
the extent of turbulent flow over an aircraft motivates further research into methods to achieve this potential.

Although recent research into reducing the skin-friction of a turbulent boundary layer by means of small
dimples on the surface is gaining popularity (e.g. Nesselrooij et al., 2016), the techniques Torenbeek (2013)
refers to aim to limit the extent to which small perturbations in the transitional region of the boundary layer
grow and are called laminar-flow control. In order to devise successful techniques and active flow control
schemes, a thorough understanding and accurate reduced-order models of the transitional region in bound-
ary layers are required. On smooth surfaces the transition process is understood quite well. In practice how-
ever, wings of an aircraft show steps and gaps introduced during the manufacturing process, which affect the
transition behaviour of the boundary layer (see e.g. Drake et al., 2010).

1See: https://www.iata.org/en/programs/environment/climate-change/, date accessed: 10th of December 2020
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To investigate the effect surface imperfections have on growth of perturbations in a boundary layer, a
research group at the TU Delft is performing direct numerical simulations (DNS) of transitional flow over a
forward-facing step. The conjecture is that applying the advanced dimension reduction technique described
by Cheng et al. (2015) to the problem of a transitional boundary layer with a step can aid in interpreting the
data produced by the DNS. Additionally, recent advancements in machine learning can also reduce the di-
mensions of the flow problem (see e.g. Brunton et al. (2020) for a review). The physical interpretation using
these techniques will be lost, however. Therefore, this work will only focus on so-called projection-based di-
mension reduction techniques that provide structures to project the governing equations on.

The remaining part of this chapter is structured as follows. First, some popular projection-based tech-
niques are reviewed. The second section reviews the standard methods used in boundary-layer stability the-
ory, the review is closed by considering some of the challenges faced by traditional modeling techniques
when including a step in the boundary layer. This lays the connection between both sections and provides
the motivation for this thesis. The third section then introduces the research objectives and questions for this
work and finally, the chapter is closed by introducing the structure of the remaining report. 2

1.1. Projection-Based Reduced-Order Modeling
This section reviews the literature on projection-based reduced-order modeling. Many methods exist in this
field, thus only a few key methods that relate to the flow problem of interest are discussed here. For exactly
that reason the popular method Balanced POD (Rowley, 2005; Willcox & Peraire, 2002) is excluded in the up-
coming detailed discussions. This method is particularly aimed at control problems and thus requires a set
of input variables, which are not readily available in the context of this problem.

The first section deals with classical POD, after which another popular decomposition technique called
the Dynamic Mode Decomposition is treated. The following section discusses Spectral POD, which is fol-
lowed by a thorough investigation in a more advanced goal-oriented reduced-order modeling (GOROM) tech-
nique. Finally, this section is concluded with a table providing a very broad summary of the pros and cons of
using these methods.

1.1.1. Classical POD
The (POD) is in fluid dynamics the projection-based technique most often used to reduce the degrees of free-
dom of a particular flow problem. The POD finds a set of orthonormal modes that optimally represent the
flowfield with the least amount of modes possible. Each mode has a corresponding weight that quantifies the
importance of the mode.

Although usually referred to as the POD in fluid dynamics, the method is known by many names in other
fields like: principle component analysis or the Karhunen–Loève decomposition (Berkooz et al., 2003). Lum-
ley (1967) first introduced this method to a fluid-dynamics problem. From there, the method has was suc-
cessfully applied to a variety of problems, including: aeroelastic, design optimization and control problems.
See the review article by Lu et al. (2019) for a recent and extensive overview of the many applications of POD.

The POD aims to find spatial modes (φφφ(x)) that maximize:

max
φφφ

〈∣∣∣∣(u,φφφ
)
Ω

∣∣∣∣〉 (1.1)

where u represents the flowfield in time, 〈.〉 is an averaging operator in time and (a,b)Ω = ∫
Ω abdΩ is the inner

product. The POD modes are constraint to be orthonormal, that is:

(
φφφi ,φφφ j

)
Ω

{
0, if i 6= j

1, if i = j
(1.2)

Of these spatial modes, m modes can be chosen such that the lower order representation of the system can
be reconstructed as in equation 1.3 (Berkooz et al., 2003).

û =
m∑

j=1
α j (t )φφφ j (x) (1.3)

2Do note, some of this chapter reprints some sections from an assignment performed by this author as part of this project. The reader
might find some similarities from a document handed in on the 29th of January, 2021.
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where the temporal coefficients can be found using the inner product, as in equation 1.4, or through the
eigenanalysis used to construct the modes. Alternatively, the governing equations can be projected onto
the POD basis functions to obtain a ROM that can be evaluated for a reduced cost. When this is done for
a nonlinear system like the Navier-Stokes equations, truncated smaller scales might result in an unstable
model. Modeling their effect on the resolved scales through a sub-grid scale (SGS) model might be required
to obtain a robust ROM (see e.g. Bergmann et al., 2009)

α j (t ) = (
u(t ),φφφ j

)
Ω

(1.4)

The method initially introduced by Lumley (1967) is a method which later is referred to as the spatial POD. To
perform the spatial POD, the formulation from the review paper by Taira et al. (2017) is briefly described here.
First a snapshot matrix is attained through a numerical simulation or experimental measurements. Usually
the mean value of the velocity is subtracted from the velocity field such that the decomposition is performed
on a zero-mean flowfield. This snapshot matrix is a nxm matrix X ∈Rnxm in which each column corresponds
to a ‘snapshot’ of the flow stacked in 1 n-dimensional vector.

When this snapshot matrix is multiplied by its transpose, the spatial covariance matrix is obtained as a
nxn matrix, i.e. R = X X T ∈Rnxn .3 Performing the eigenvalue decomposition of this correlation matrix yields
n eigenvectors and eigenvalues. The eigenvectors describe the spatial modes and the corresponding eigen-
value the mean energy of the mode. To achieve order reduction, the first r modes can be chosen based on
their energy content.

Although this method of computing the POD modes is relatively straightforward, problems arise when
considering very large datasets. The eigenvalue decomposition is performed on the matrix R ∈Rnxn , where n
is the number of degrees of freedom in the dataset. Since CFD computations are usually performed on large
spatial grids with several flow variables, this decomposition becomes computationally expensive to perform.

Sirovich (1987) introduced the method of snapshots, which greatly increased the applicability of the method
to large datasets. The method of snapshots is applied by performing the eigenvalue decomposition on the
temporal covariance of the snapshot matrix as opposed to the spatial covariance (i.e. R = X T X ∈ Rmxm ,4

where m is the number of snapshots). The spatial POD modes can be recovered with the eigenvalues, eigen-
vectors and the original snapshot matrix (see Taira et al. (2017) for the details). Since the number of snapshots
is usually much smaller than the number of spatial degrees of freedom, the resulting eigenvalue problem is
less computationally expensive and (when neglecting round-off errors) returns exactly the same set of eigen-
vectors and values for a reduced cost.

The aforementioned methods to calculate the POD are also connected to a method called singular value
decomposition (SVD), which can be viewed as a more general eigenvalue decomposition also applicable to
rectangular matrices (Taira et al., 2017). The SVD of the snapshot matrix is defined as in equation 1.5.

X =ΦΣΨT (1.5)

where the matrices Φ and Ψ correspond to the left and right singular vectors respectively and the diagonal
matrix Σ contains the so-called singular values. The left singular vectors are analogous to the eigenvectors of
the spatial correlation matrix and the right singular vectors are analogous to the eigenvectors of the temporal
correlation matrix previously discussed. The squares of the singular values correspond to the eigenvalues
found using the eigenvalue decomposition of both the correlation matrices. This makes it possible to directly
perform the SVD on the snapshot matrix to find the POD modes and their associated temporal behaviour.

Although these modes can be found at a reduced cost, one disadvantage is still present when the number
of snapshots is high. Part of the problem stems from the inability of the SVD to be computed in parallel. This
disadvantage can be reduced by using incremental SVD (Sarwar et al., 2002). Incremental SVD allows for a
calculation of the POD modes in part of the domain, which can then be used to calculate the rest of these
modes in chunks in the rest of the domain by a fold-in technique. These calculations can be spread out over
multiple processors, allowing for shorter computation times.

It should be noted that the POD requires two modes with similar energy and a phase shift of 180◦ to
capture convecting structures fully due to the orthonormal spatial constraint. This can, for example, be seen
when Serpieri and Kotsonis (2016) use the POD to identify convecting structures in a transitional boundary

3The authors of the review mention that this formulation assumes an equally spaced grid. When the velocity is defined on a non-uniform
grid, the formulation should be augmented with volumetric weights of the grid points to simulate the integration in the inner product
that stands at the base of this correlation matrix.

4The footnote that was placed by the spatial correlation matrix holds here too, i.e. to simulate the inner product, this formulation should
be augmented with volumetric weights on a non-uniform grid.
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layer. Thus, when interpreting data using the POD, this should be taken into account.
Finally, through the maximization goal discussed in the beginning of this section, POD modes are optimal

in representing the time-averaged square of the velocity field. This implies that the modes found optimally
represent the mean energy of the flowfield, which is disadvantageous if the phenomenon under investigation
is only present on a small part of the domain, or is dominated by low energy structures.

1.1.2. Dynamic Mode Decomposition
Dynamic Mode Decomposition (DMD) is a technique introduced by Schmid (2010). DMD modes are eigen-
modes with their corresponding eigenvalues of the best-fit linear operator that advance the snapshots one
step in time (Taira et al., 2017). Several formulations to find the DMD modes are available. See Tu et al. (2014)
for a comparison of several algorithms and the resulting DMD modes for a few sample problems. Regardless
of the algorithm chosen to compute the modes, the result is a set of spatial modes with corresponding (pos-
sibly complex) eigenvalues. These eigenvalues can be related to the dynamic behaviour of the spatial mode,
e.g. whether the mode is growing or decaying in time.

This final property makes the technique advantageous in the context of boundary layer stability prob-
lems. DMD results in modes oscillating at one frequency with a growth rate. As seen in section 1.2, this is
similar to the general ansatz used in the temporal approach of stability theory.

Furthermore, as Rowley et al. (2009) showed, the DMD can provide an approximation of the behaviour
of the Koopman operator. The Koopman operator is an infinite dimensional linear operator that represents
the nonlinear dynamics of a system. Therefore, investigating the eigenmodes and eigenvalues of the leading
terms in this linear operator can give insight into the dynamic behaviour of even a nonlinear system.

These properties make DMD a good candidate for investigating the behaviour of perturbations in a bound-
ary layer. However, several disadvantages still exist. Nonlinear behaviour can only be captured if care is taken
in the snapshot selection. Furthermore, the modes found do not provide any selection criterion as with POD.
This is disadvantageous, especially when considering interpretation of large datasets (Taira et al., 2017).

1.1.3. Spectral POD
Spectral POD (SPOD) can refer to two methods. The method recently introduced by Sieber et al. (2016) uses a
band-pass filter on the temporal covariance of the snapshot matrix before performing the POD. By changing
the width of the filter, the method shifts between being analogous to a regular POD and a Discrete Fourier
Transform (DFT). This way, the most advantageous properties of both methods can be combined.

Another method bearing the name Spectral POD was already introduced in the previously discussed pa-
per by Lumley (1967). According to Towne et al. (2018) this method has been largely overlooked due to the
popularity of the spatial POD and the extra computational expense that was not available in the early days
of the POD. One of the disadvantages of the spatial POD is that it finds modes optimal in representing the
spatial correlation matrix. This has as a consequence that the resulting modes might not evolve coherently
in time. In other words, a ‘coherent’ flow structure might be divided over several POD modes. SPOD finds
modes that optimally represent the two-point correlation tensor in both space and time, thus alleviating (part
of) this problem. The method performs the POD on snapshot matrices that are constructed from the Fourier
components at one particular frequency. At each frequency, the result is a set of orthonormal modes.

Towne et al. (2018) connected DMD with SPOD. The authors conclude that SPOD modes are DMD modes
that optimally represent the average flow statistics. This connection seems to be most relevant in turbulent
flows, which will not be the focus of this work. Since there will also not be stochastic noise due to measure-
ment equipment, SPOD and DMD modes will result in very similar structures and therefore are treated as if
they share the same advantages and disadvantages.

1.1.4. Goal-Oriented Reduced-Order Modeling
As mentioned before, one disadvantage of the POD is that the average energy content might not be the best
norm to use to describe a certain phenomenon of interest (for example, growth of an instability). Therefore,
finding modes that minimize an error in some quantity of interest (QoI) could provide results that better rep-
resent the dynamics of a particular phenomenon.

One of the techniques developed using this line of reasoning can be found in Bui-Thanh et al. (2007).
Instead of solving the optimization problem directly (as is done with the POD), the authors first define a min-
imization problem of the error in the QoI with two constraints. The first constraint forces the resulting modes
to be orthonormal, similar to the POD modes. The second is a constraint referred to as a ‘model constraint’.
This constraint projects the governing equations on the resulting modes and forces them to satisfy the ob-
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tained reduced-order representation of the governing equations.

The above formulation also has some issues as pointed out by Cheng et al. (2015). First of all, the govern-
ing equations used for the model constraint are defined for large linear time-invariant systems of the form:
Mu̇ +K u = F , where u(t ) ∈ Rn is the state vector and M ∈ Rnxn , K ∈ Rnxn and F ∈ Rn are discrete representa-
tions of the model. This representation requires these matrices to be able to be constructed, which is difficult
when considering experimental data or when the user is interested in using alternative boundary conditions
for a ROM. Finally, extending this formulations to nonlinear PDEs and possibly a nonlinear goal function is
not possible.

For this reason, Cheng et al. (2015) introduced the Semi-Continuous Formulation (SCF) of the GOROM
approach. The dataset is still defined at discrete points, but the ROM and the optimization problem are de-
fined within a continuous framework.

A deficiency in both goal-oriented formulations is that the optimality of a set of goal-oriented modes is
found by performing numerical optimization. As Bui-Thanh et al. (2007) mentions, the objective functional
surface is not necessarily convex and, depending on the initial guess, the numerical optimization might con-
verge to a local minimum. Therefore, choosing a suitable initial guess is important. Assuming that the result-
ing GOROM modes are close to the POD modes, Bui-Thanh et al. (2007) propose two strategies:

1. Use POD modes as the initial guess.

2. Find the GOROM modes for the problem with m − 1 modes and add the mth POD mode to this set
of modes for the initial guess of the minimization for m GOROM modes. This approach can then be
iterated until required number of modes m is large enough.

These two approaches are applied by Cheng et al. (2015) for both linear and nonlinear models and goal func-
tions. Depending on the goal function and the model used, the authors indeed find different optimal solu-
tions underlining the need for a suitable initial guess.

The major advantage of the goal-oriented framework is connected to the model constraint. The result-
ing modes are better at representing the QoI, which can be some quantity in a small part of the domain, but
also are forced to adhere to the reduced governing equations in the rest of the domain. This is shown by
Bui-Thanh et al. (2007) to result in larger errors in representing the flowfield outside of the domain of interest
compared to POD, but smaller errors within the domain of interest. The addition of this model constraint
allows focusing the attention on this small and more interesting part of the domain without completely ig-
noring the behaviour of the modes in the rest of the domain.

The addition of the model constraint does increase the computational cost, however. At each step in the
minimization problem, the reduced model constructed using the current modes needs to be integrated over
the domain. Fortunately, this process can quite easily be computed in parallel, similar to how regular finite-
element models are parallelized.

The final advantage for this formulation stems from the flexibility of the minimization formulation. For
example, the model constraint can be removed completely or only applied partially to reduce computational
cost. By selecting the norm of the entire velocity field as the goal function and removing the model con-
straint, the POD minimization can also be recovered. If desired, adding additional dynamical constraints is
also a possibility.

Finally, Borggaard et al. (2016) altered the formulation by Bui-Thanh et al. (2007) by introducing goal-
oriented POD (GOPOD). The authors note that the optimization is performed on the goal function integrated
over the full time interval, even though some of the relevant dynamics might only be present on a small time
interval. Finding so-called global modes can result in smoothing out these short-term important structures.

With this in mind, the authors propose performing POD on the dataset and fixing the resulting modes as
global modes. The residual of the flow field in time can be calculated using the temporal evolution of the POD
modes. This temporal residual field is then divided into smaller time intervals and a minimization problem
for finding goal-oriented modes is solved in each time interval on the residual field. The resulting flow field
can be reconstructed using the global POD modes and the short-term goal-oriented structures.

The GOPOD formulation does have some other distinct advantages over classical GOROM. For example,
the method doesn’t require the integration of the projected model at each iteration step, greatly reducing
the cost of constructing the model. A downside however is that this GOPOD formulation can not be directly
extrapolated to the SCF as proposed by Cheng et al. (2015) as estimating the effect of the residual on the rep-
resentation of the QoI assumes a linear goal function. Nevertheless, the general principle of defining global
modes before performing the optimization on a smaller time interval is at least a possible extension.
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1.1.5. Projection-based Reduced-Order Modeling Comparison
A very broad comparison and summary between the different techniques can be found in table 1.1.

Table 1.1: Overview of the Pros and cons for different projection based methods.

Method Pros Cons

Classical POD (spatial, snapshots
and SVD based)

POD basis vectors are orthonor-
mal.
Tractable to compute, even for a
very high-dimensional dataset.

Temporal correlation and higher
order spatial correlations are ig-
nored.
POD modes are selected and or-
dered based on the energy of the
mode.

DMD/SPOD DMD gives specific dynamic
structures with just one frequency
and one growth rate.
If the data is chosen properly,
DMD can give an approximation
of the Koopman operator.

The dynamic relevance of an in-
dividual mode is more difficult to
determine.
The modes found by DMD are
not necessarily orthogonal, which
complicates constructing a ROM.

Goal-Oriented ROM Modes can be found to represent
a quantity of interest, which could
lead to modes that are dynami-
cally more important.
Formulation of the minimization
problem is flexible to adding or re-
moving constraints

Constructing the optimised
modes is computationally expen-
sive.
Dynamically important structures
that appear for short periods of
time might get smoothed out due
to time integration.

1.2. Boundary layer stability
Reynolds (1883) performed an experiment with a dye streak introduced in a glass tube with flowing water.
The author found that the streak remained laminar when the velocity was sufficiently low. Somewhere in the
pipe the streak started to break down and mix the dye with the remaining water in the cross section once the
velocity reached a critical value however. This phenomenon is called laminar-to-turbulent transition and has
remained a subject of investigation ever since those early experiments.

The result has been the emergence of a field called hydrodynamic stability. The methods applied in this
field model the effect of small disturbances on the stability of the laminar flow solution to the Navier-Stokes
equations (Schmid & Henningson, 2001). The different processes that a small perturbation can go through to
cause transition is presented in a graphical (yet simplified) manner in figure 1.1 .

As seen from figure 1.1, all external disturbances first go through a receptivity process. Generally speak-
ing, the receptivity process describes excitation of boundary layer instabilities through external perturbations
(e.g. sound waves or freestream turbulence), see Saric et al. (2002) for a review. Although the eventual tran-
sition behaviour is dependent on this phenomenon, for the remainder of this work, it is assumed that all
perturbations have gone through this process and thus that the relevant boundary layer instabilities are al-
ready present.

After the external environmental perturbations have been introduced into the boundary layer through re-
ceptivity, several paths can be followed leading to turbulent breakdown. In general, the path the perturbation
follows moves further to the right in figure 1.1 with higher amplitudes of the freestream perturbations. Dur-
ing cruise flight of an aircraft, the freestream turbulence is generally low, which can be used to justify limiting
the research to path A in figure 1.1 (Reed et al., 1996). This has an advantage in that the reasonably low-cost
and simple linear stability theory (LST) can in some cases predict the local growth rate of the primary modes
accurately. This theory is further discussed in section 1.2.1. However, as Saric et al. (2002) pointed out: when
not much is known about the receptivity process leading up to the specific disturbances investigated, care
should be taken in deriving causal relations between two seemingly similar environments.

Following path A, the block called ‘Primary Modes’ is encountered first. These primary modes grow un-
til they saturate and a new base-flow profile is reached. With this new profile, additional perturbations can
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Forcing Environmental Disturbance
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Figure 1.1: Simplified visual representation of the processes that a perturbation can go through to cause transition in a boundary layer,
redrawn from Saric et al. (2002).

become unstable and grow (Herbert, 1988). These perturbations eventually lead to turbulent breakdown and
are called secondary instabilities which close path A in figure 1.1.

Alternatively, some perturbations might first go through transient growth (path B through D in figure 1.1).
This is a mechanism in which some perturbations might decay when t →∞, but temporarily show growth
on shorter time intervals. Transient growth mechanisms might lead to faster growth of primary instabilities,
appearance of secondary instabilities or something called bypass transition. Bypass transition is a general
term for the observation that, for some cases, the boundary layer transitions without first passing through a
growth mechanism. This historical view of bypass transition is under pressure of more research in transient
growth mechanisms (see Reshotko (2001) for more details). The main focus of this work is on path A and
therefore, these mechanisms are not treated in more detail.

The remainder of this section is structures as follows: firstly, subsection 1.2.1 treats the general approach
to model problems constrained to path A in figure 1.1. The next subsection then discusses a particular type
of instability that can be found from applying these models to a 2D boundary layer. This section is then con-
cluded with a brief discussion of a field of research that has gained recent interest. This research is focused
on including a step in the boundary layer to better understand what happens to the stability of the bound-
ary layer when a manufacturing imperfection is introduced. In what follows, unless otherwise specified, the
procedure for deriving the stability equations follows Schmid and Henningson (2001).

1.2.1. Stability Theory
The general approach used by stability theory is to divide the flow into a base flow and a total flow. The base
flow is a laminar flow solution to the Navier-Stokes equations of which the components are denoted as fol-
lows: (U i

b ,Pb). The total flow is equally a solution to the Navier-Stokes equations, however, it is assumed a
perturbation is added to the state. This total flowfield is then assumed a linear combination of the base flow
and a perturbation, i.e. (U i

b+ui ,Pb+p), where a lowercase letter denotes the perturbation. Note that the base
and total flow are both a solution to the Navier-Stokes equations (albeit with slightly different initial and/or
boundary conditions). However, the perturbation flow is not necessarily a solution of the Navier-Stokes equa-
tion.
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Using this notation, the total flow can be substituted into the incompressible Navier-Stokes equations.
When just the base flow is substituted into the same Navier-Stokes equations and subtracted from the substi-
tution of the total flow, the nonlinear disturbance equations are obtained as seen in equation 1.6 and equation
1.7.

∂ui

∂t
=−U j

b

∂ui

∂x j
−u j

∂U i
b

∂x j
− ∂p

∂xi
+ 1

Re
∇2ui −u j ∂ui

∂x j
(1.6)

∂ui

∂xi
= 0 (1.7)

where the Einstein summation convention over repeated indices is used.5 These equations can then further
be simplified based on the case under consideration. When assuming a parallel base flow (that is: Ub =[
Ub(y),0,0

]
) and neglecting the u j ∂ui

∂x j term, the Orr-Sommerfeld (OS) equations can be recovered. These can
be solved by inserting the following ansatz in the equations:

q(x, y, z, t ) = q̂(y)e i (αx+βz−ωt ) + c.c. (1.8)

where q denotes a component of the perturbation field,α the spatial wavelength,β the spanwise wavelength,
ω the temporal frequency and q̂ the shape function of the particular perturbation. As the equations are not
as relevant for this work, the interested reader can find a more thorough discussion in appendix A.

Alternatively it is possible to account for a slowly varying base flow, increasing the fidelity of the model.
This results in the parabolized stability equations (PSE), which can be found in appendix A.3. A discussion
of a nonlinear version of the PSE equations is also present in appendix A.3. This nonlinear PSE (NPSE) also

accounts for the nonlinear u j ∂ui

∂x j term.

1.2.2. Tollmien-Schlichting Problem
Tollmien (1929) and Schlichting (1933) first managed to solve the OS equations for a boundary layer on a
flat plate. A typical shape function that results from following their analysis can be found in figure 1.2. In
honor of the work done by Tollmien and Schlichting, these structures are called Tollmien-Schlichting Waves
and are characterized by two maxima of the streamwise perturbation with a phase shift at the location of the
maximum perturbation in y. When inserting the ansatz defined in equation 1.8 into the continuity equation
for u and v , it can be concluded that the streamwise perturbation shape function û needs to go to zero at the
location of the maximum value for v̂ . The sign of the real part of the shape function above this y-coordinate is
flipped with respect to below this y-coordinate through the same line of reasoning. Because of the wave-like
nature of the perturbation, this is treated as a 180◦ shift in phase. A few extra notes related to TS waves that
are not as relevant for the remainder of this work can be found appendix A.4.

Figure 1.2: Typical shape of the v component (a) and u component (b) of a TS wave. The thin lines are the imaginary and real parts of
the shape function. Taken from Schmid and Henningson (2001).

5That is for example: u j ∂ui

∂x j =∑3
i=1 u j ∂ui

∂x j .
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1.2.3. Boundary layers with steps
The above mentioned research has (mostly) been focused on boundary layers with smooth surfaces. On a
wing, manufacturing imperfections can lead to small gaps or steps on the surface of the wing. The aerody-
namics group at Delft University of Technology is actively researching the effect of a forward facing step on
the growth of perturbations. This subsection does not give an overview of the current findings in literature,
but merely show some of the challenges the established methods have in analysing these complex flow prob-
lems.

Figure 1.3 shows the streamwise component of the base flow over a step (Shahzad, 2020) for a 2D bound-
ary layer. Not surprisingly, the base flow exerts a considerably larger wall-normal component around the
step than in the rest of the domain, as the flow has to convect over the step. This in itself already raises
concerns in trying to apply the OS equations, PSE and NPSE for analysing the flow near the step, as the OS
equations assume no wall-normal component and PSE and NPSE both assume a slowly-varying wall-normal
component. Furthermore, as seen from figure 1.3, the base flow adjusts to the step already before the step is
actually reached, insinuating the existense of elliptic effects. This begs the question of whether a parabolized
assumption for determining the perturbations is valid, or if these perturbations themselves also show signs
of ellipticity around the step.

180 190 200 210 220 230 240 250
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Base flow
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Figure 1.3: Streamwise velocity of the base flow of the highest step considered from Shahzad (2020) along with isolines of the
streamfunction.

With these notes in mind, it is highly likely that only DNS can be used (from a computational modeling per-
spective) to be able to accurately investigate the physics around the step, although current research is being
conducted to see if NPSE also provides accurate results. DNS data provides an additional challenge however,
as it is very high-dimensional and complex.

As discussed in section 1.1, the GOROM approach is specifically designed to find a low-order represen-
tation of the system that focuses on representing a certain goal function as best as possible. If this physical
interaction of the step can be translated to a goal function, the GOROM approach might be able to find a
few modes representing the physics using the DNS data. These optimal modes can then be used when try-
ing to interpret the physical interaction the step has with the perturbation field. Seeing as GOROM has not
been widely applied, at least not in the field of boundary-layer stability theory with a forward facing step, this
method might prove useful in interpreting this complex, nonlinear and possibly elliptic behaviour of stability
problems. The work done in this thesis will therefore bridge some of the gap between these complex stabil-
ity problems and this advanced mode identification technique. Currently however, the GOROM technique
has only been formalized for the 1D advection and Burger’s equation Cheng et al. (2015), 1D incompressible
Navier-Stokes equations Shajahan (2016) and the 2D Stokes equations Cheng (2017), all with homogeneous
boundary conditions. The formulation should thus first be extended to the multi-dimensional, incompress-
ible Navier-Stokes equations with inhomogeneous boundary conditions.
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1.3. Research Objectives and Questions
With the above discussion in mind, the research objectives can be formalized. The research objectives of this
work are:

1. Verify the applicability of the goal-oriented, reduced-order modeling technique to the multidimen-
sional, incompressible Navier-Stokes equations by solving the optimization problem for cases using
manufactured solutions.

2. Demonstrate the applicability of the goal-oriented, reduced-order modeling technique for practical
problems by solving the optimization problem for a 2D transitional boundary layer with and without a
forward-facing step.

3. Investigate the computational cost of solving the goal-oriented optimization problem.

(a) Investigate the parallel scaling of the goal-oriented, reduced-order modeling technique.

(b) Investigate the effect of the number of basis functions on the computational cost.

The questions this work aims to answer are:

1. How do the modes produced by the goal-oriented, reduced-order modeling technique compare to the
modes produced by the proper orthogonal decomposition for a 2D transitional boundary layer on a flat
plate?

(a) Does the GOROM technique result in a basis that is numerically more accurate in a ROM than a
basis constructed using the POD?

(b) Can the GOROM modes help in interpreting the underlying physics of the flow problem?

2. How do the modes produced by the goal-oriented, reduced-order modeling technique compare to the
modes produced by the proper orthogonal decomposition for a 2D transitional boundary layer on a flat
plate with a forward-facing step?

(a) Does the GOROM technique result in a basis that is numerically more accurate in a ROM than a
basis constructed using the POD?

(b) Can the GOROM modes help in interpreting the underlying physics of the flow problem?

3. How does the parallel implementation of the goal-oriented, reduced-order modeling technique scale
against the number of processors used?

4. How is the computational cost affected by the choice of the number of basis functions used?

The remainder of this work is structured as follows. Chapter 2 treats the general formulation of the GOROM
technique as specified in literature (Cheng et al., 2015). Chapter 3 applies the GOROM technique to the
general-dimensional, incompressible Navier-Stokes equations with inhomogeneous boundary conditions.
Chapter 4 and chapter 5 apply the GOROM technique to a 2D, transitional boundary layer in the absence
(chapter 4) and presence (chapter 5) of a forward-facing step. Chapter 6 then discusses the stong parallel
scaling and computational cost of the problem with the step present. And finally, the report is concluded in
chapter 7 and recommendations for future work are presented.



2
Semi-Continuous Formulation of

Goal-Oriented Reduced-Order Modeling

This chapter will treat the semi-continuous formulation (SCF) of the goal-oriented reduced-order model-
ing (GOROM) technique as specified in literature (Cheng, 2017; Cheng et al., 2015). The derivation of the
terms as seen here is more extensively treated in appendix B and as such, only the results and motivation
behind the method are discussed in this chapter. The chapter is structured as follows: firstly, the problem the
GOROM technique solves is introduced by means of the model equations. Following the model equations,
the optimization problem will be formulated, after which the approach to solving the optimization problem is
discussed. The succeeding section treats the numerical optimization technique used in this work and finally,
the concept of secondary basis functions will be introduced.

2.1. Model Equations
The GOROM technique assumes that the reference data satisfies the following equations:

L(u) = f (2.1)

u(0) = u0 (2.2)

whereL is a (possibly nonlinear) differential operator, f is a source term and u0 denotes the initial conditions.
Appropriate boundary conditions should also be specified to close the model. To construct a ROM of the
above differential equations, the following separation of variables is utilized:

û =
m∑

i=1
αi (t )φi (x) (2.3)

where φ denotes a mode, α a temporal amplitude, m the number of modes employed to solve the system of
equations and û the approximation of the solution. Galerkin projection can then be used to create a weak
form of the differential equations (equations 2.1 and 2.2), leading to:∫

Ω
φk

(
L(û)− f

)
dΩ= 0 (2.4)∫

Ω
φk (û0 −u0)dΩ= 0 (2.5)

When the separation of variables employed in equation 2.3 is substituted in equation 2.4, a system of m ordi-
nary differential equations in time emerge for the amplitudes α. These can then consequently be discretized
further and solved by marching in time. The resulting ROM solution can be reconstructed by recombining
the modes and amplitudes using equation 2.3. This reconstruction can be used to estimate the fitness of the
set of modes for a given goal function, which can consequently be optimized. This is the subject of the next
section.

11
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2.2. Formulation of the Optimization Problem
The goal of the GOROM technique is to represent the L2 norm of some (possibly nonlinear) goal function
g (û) optimally. Furthermore, the technique penalizes deviations from an orthonormal set of basis functions,
that is: 1

min
φ,α

G =
∫
Ω

(
1

2

∫ t f

0

(
g − ĝ

)2 d t

)
dΩ+ β

2

m∑
i , j=1

(δi j −
∫
Ω
φiφ j dΩ)2 (2.6)

The choice of α in equation 2.6 is not independent of the choice of φ. That is, the optimization problem is
constrained to solely use values for α that satisfy the model equations in equations 2.4 and 2.5. Solving min-
imization problems with such external constraints can be problematic for standard numerical optimization
techniques. Therefore, the constrained minimization problem specified by equation 2.4 can be converted to
an unconstrained one by using the ideas of calculus of variations (see e.g. the textbook by Lanczos (1952)).

The optimal functions α and φ that minimize equation 2.6 and satisfy equations 2.4 & 2.5 are also the
functions that minimize the following functional:

min
φ,α

L =
∫
Ω

(
1

2

∫ t f

0
E d t +

m∑
k=1

∫ t f

0
λkGk

2 d t +
m∑

k=1
µkGk

3

)
dΩ+ β

2
G1 (2.7)

with:

E = (
g − ĝ

)2 (2.8)

G1 =
m∑

i , j=1

(
δi j −

∫
Ω
φiφ j dΩ

)2

(2.9)

Gk
2 =φk

(
L (û)− f

)
(2.10)

Gk
3 =φk (û0 −u0) (2.11)

where the Lagrange multipliers are defined by λ(t ) ∈ Rm and µ ∈ Rm and β is a regularization parameter.
Solving this optimization problem is the subject of the next section.

2.3. Gradient Calculation
A given set of modes satisfies the optimality of equation 2.7 if the following three conditions are met:

1. δLλq = 0 & δLµq = 0

2. δLαq = 0

3. δLφq = 0

The first of these three conditions recovers a set of equations referred to as the state equations. When perform-
ing the corresponding functional derivatives, the model equations (equation 2.10) are recovered for δLλq = 0
and the initial conditions (equation 2.11) for δLµq = 0. When evaluating δLαq = 0, the adjoint equations are
recovered along with final conditions on λ and µ, which can be found in equations 2.12-2.14.

∫
Ω

[
1

2

∂E

∂αq
+

m∑
k=1

λk
∂Gk

2

∂αq
− d

d t

(
m∑

k=1
λk

∂Gk
2

∂α̇k

)]
dΩ= 0 (2.12)

λ(t f ) = 0 (2.13)

µ=λ(0) (2.14)

Finally, when evaluating δLφq = 0, the gradient expression can be found to be:

∫ t f

0

[
1

2

∂E

∂φq
+

m∑
i=1

λi
∂G i

2

∂φq
− d

d x

(
m∑

i=1
λi

∂G i
2

∂φqx

)]
d t +

m∑
i=1

µi
∂G i

3

∂φq
+2β

m∑
i=1

(∫
Ω
φiφq dΩ−δi q

)
φi = 0 (2.15)

1Note that ĝ = g (û) is the approximation of the goal using equation 2.3 and g = g (u) is the goal evaluated using reference data. In the
following, this shortened notation for the goal will be used as well.
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In practise, these equations are resolved using a segregated approach. This approach is summarized in figure
2.1. That is, initially a guess is made on the optimal modes. The state equation (equation 2.10 and 2.11)
can be resolved for the temporal amplitudes α with this first guess of modes. Using both the modes and
state amplitudes, the adjoint equations (equation 2.12-2.14) can be resolved for the adjoint amplitudes λ and
µ. With the values for α, λ and µ found, the gradient can consequently be calculated. This gradient is not
necessarily zero for a given guess of optimal modes, however, it can be used to update the current guess of
the modes with a numerical optimization technique. This procedure can then be iterated until a set of modes
is found that does satisfy all the required conditions.

State Equations

Adjoint
Equations

Gradient
Equations

Numerical
Optimization
Technique

Initial Guess ϕ0

α(t)

λ(t)

α(t)
Updated
Guess ϕn

Figure 2.1: Basic Flow chart of the procedure followed to solve the optimization procedure.

2.4. Optimization Technique
An extensive amount of literature is available on solving unconstrained minimization problems like equation
2.7. The optimization technique used in previous applications is a trust-region method (Bui-Thanh et al.,
2007; Cheng, 2017; Cheng et al., 2015). According to Cheng (2017) a trust-region method is chosen over a line-
search algorithm since trust-region algorithms are more efficient with a close-to-singular Hessian matrix. For
this reason this work will use this optimization technique as well.

The trust-region algorithm assumes that the shape of the objective function can be approximated using a
quadratic model (referred to here as mk ) within a certain circular trust region around the current guess of the
optimal coefficients. The guess of the optimal coefficients will then be updated in the next iteration by setting
a step toward the combination of coefficients that minimize mk within the trust region. As it is unknown if
the quadratic model is a good approximation of the objective function within the trust region, this step is first
referred to as the candidate step pk . To optimize the value of the objective function, a subproblem now first
needs to be solved. That is, the minimum of mk needs to be found within the trust region. In other words:

min
pk

mk (pk ) = f (xk )+pT
k ∇ fk +

1

2
pT

k ∇2 f (xk )pk with ||pk || <∆ (2.16)

where∆ refers to the trust-region size, f refers to the objective function and xk to the current guess of the op-
timization coefficients. Finding the expression for pk that minimizes this problem is rather straightforward.
That is, the candidate step that minimizes mk can be found by solving the Newton equations:

∇2 f (xk )pk =−∇ f (xk ) (2.17)

Although solving this equation exactly is possible through inverting the Hessian, the process can be quite
costly for larger optimization problems. For this reason, inexact-Newton methods are used to resolve the



2.5. Secondary Basis Function 14

Newton equation approximately. That is, the candidate step pk is found by iteratively minimizing the residual
until the residual is below a certain tolerance, that is:

||−∇ f (xk )−∇2 f (xk )pk || < θk (2.18)

where θk is a small tolerance. To achieve this, the conjugate-gradient method by Steihaug (1983) is used. The
algorithm can be found in appendix C. Once the candidate step pk is found for a given trust region, it is still
unknown whether mk is a good representation of fk at the step pk . By defining the ratio ρk to be:

ρk = f (xk )− f (xk +pk )

mk (0)−mk (pk )
(2.19)

the approximation of the objective function made by mk can be tested. That is, if the approximation made
by mk is good, the value for ρk should be close to 1. Similarly, if the approximation is poor, the value of ρk is
close to, or even below 0.

If the trust region is small enough to provide a good approximation of the objective function, it might
be desirable to increase the size of the trust region. After all, the larger the trust region, the larger the step
size can be and consequently the more progress is made within one iteration. On the other hand, if the
approximation is poor, the trust region should reduce in size to increase the accuracy of mk . Throughout this
work, the following strategy is employed:

∆k+1 =


1
4∆k , if ρk < 0.25

2∆k , if ρk > 0.75

∆k , else

(2.20)

The algorithm summarizing these steps can be found in appendix C. Do note that maximum and minimum
trust-region sizes are also defined in the algorithms in appendix C. A convergence criteria is connected to
the minimum trust-region size as well. That is, if the algorithm is not making any notable progress on the
coefficients, the optimization is terminated.

It is undesirable and not necessary to compute the Hessian matrix directly in the case of the conjugate-
gradient method. Instead the product of the Hessian and the candidate step that arises in equation 2.18 is
approximated using:

∇2 f (xk )pk ≈ ∇ f (xk +εpk )−∇ f (xk )

ε
(2.21)

where ε is a small value. With the approximation of the Hessian defined it is only required to be able to
calculate the value of the objective function and its gradient given a set of optimization coefficients.

2.5. Secondary Basis Function
Throughout this work, the primary basis φ will be constructed by using a linear combination of so-called
secondary bases ψ. This will take form of:

φi (x) =
M∑

j=1
ci jψ j (x) (2.22)

The secondary basis ψ will be functions known prior to the optimization. This shifts the overall formulation
of the optimization from finding the optimal functionsφ to finding the optimal coefficients ci j that minimize
the norm of the specific goal function.

Some flexibility is also present in the choice of these secondary basis functions. That is, these basis func-
tions can be chosen globally or locally. Global secondary basis functions are, as the name suggest, functions
defined on the entire domain Ω. Local secondary basis functions, on the other hand, are defined only within
one element in a mesh, similar to how finite-element models (FEM) use local shape functions with corre-
sponding degrees of freedom (DOF) to numerically approximate differential equations.

In the analogy between local secondary basis functions and a FEM, the DOFs from the FEM correspond to
the optimization coefficients of GOROM. This highlights one of the problems with the local secondary basis
functions. Although it provides more freedom with regards to shape of the modes, the number of optimiza-
tion coefficients does increase considerably.
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Finally, do note that Cheng (2017) defines a third way to construct the primary basis functions. This is
framed within a discussion of what the author calls P-type and F-type primary basis functions. The F-type
primary basis functions use a linear combination of known secondary basis functions as discussed within
this section. These thus include both the local and global secondary basis functions, which will be referred to
in this work as local F-type basis functions and global F-type basis functions respectively.

The P-type primary basis functions define the primary basis functions as a vector, where each entry de-
notes the value of the function at a spatial location. The P-type primary basis function can also be seen as
continuous function multiplied by a series of delta functions centred at the spatial locations. The three meth-
ods are summarized in figure 2.2.

The P-type primary basis functions are clearly very similar to the local F-type basis functions and share
the same problems related to the size of the optimization vector. The P-type primary basis functions do al-
low a comparison with the initial discrete formulation of GOROM (Bui-Thanh et al., 2007), see Cheng et al.
(2015) and Cheng (2017) for this comparison. This work will however exclusively use the global F-type basis
functions.

LocalGlobal

F-type P-type

Σ ij j
j

ϕ =   c  Ψ (x)
i Σ ij jj

ϕ =   c  Ψ (x)
i

Ψ
ϕ

Ψ
ϕ

ϕ = 
i

ϕ(x  )

ϕ(x  )

1

N

ϕ(x  )j

x x x

Figure 2.2: Visual representation of the choice of types of basis functions.



3
Goal-Oriented Reduced-Order Modeling of

3D Incompressible Navier-Stokes

This chapter will formalize the SCF of the GOROM technique for the general-dimensional, incompressible
Navier-Stokes equations with inhomogeneous boundary conditions. This chapter is structured as follows:
firstly the choice of basis for the multi-variable formulation of GOROM is discussed. The subsequent sec-
tion discusses the model constraint with the choice of basis present. The section after then formalizes the
optimization problem, after which the state, adjoint and gradient expressions are constructed. The section
afterwards then discusses possible goal functions to use and finally, the verification of the gradient expression
and numerical techniques is presented.

3.1. Choice of Basis
In multivariable problems for the GOROM there is a choice in the approach to the separation of variables and
the secondary basis functions. These discussed in this section starting with the separation of variables and
then treating the secondary basis.

3.1.1. Separation of Variables
As in the general formulation specified in chapter 2, the approximation of the solution u to the model is
represented using the following separation of variables:

u =
N∑
i
αi (t )φi (x) (3.1)

The 3D incompressible Navier-Stokes equations contain four free variables, i.e. 3 velocity components and
pressure. In this multi-variable setting, several choices to achieve the decomposition in equation 3.1 are
available. In the context of GOROM, Cheng (2017) identified the scalar-valued and vector-valued approaches.
The scalar-valued approach allows each variable to have different temporal behaviour. That is, each variable
follows the same separation of variables seen previously in equation 3.1, fully written out in equations 3.2
and 3.3. Note that the superscripts here denote indices rather than powers. This notation will be utilized
throughout this work to be able generalize the equations in arbitrary dimensions.

ur =
N∑
i
αr

i (t )φr
i (x) (3.2)

p =
N∑
i
α

p
i (t )φp

i (x) (3.3)

where r = [1,2,3] denotes the direction of the velocity component.

16
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Alternatively, the vector-valued approach assumes the same temporal behaviour of one mode for all vari-
ables. That is, the separation of variables is achieved by means of equation 3.4.

u
v
w
p

=
N∑
i
αi (t )


φu

i
φv

i
φw

i
φ

p
i

 (3.4)

This work will utilize the scalar-valued primary basis functions. Using this approach does increase the size
of the optimization problem. However, choosing the vector-valued approach does lose flexibility, as modes
for all variables are forced to have the same temporal behaviour, which might not be the case in practical
situations.

3.1.2. Secondary Basis
In multiple dimensions, Cheng (2017) again identifies two possible approaches very similar to the separation
of variables discussed in the previous section to express the primary basis functions in terms of known sec-
ondary basis functions.

The scalar-valued secondary basis functions can be seen in equations 3.5 and 3.6.

φr
i =

M∑
j=1

cr
i jψ

r
j (3.5)

φ
p
i =

M∑
j=1

cp
i jψ

p
j (3.6)

where r = [1,2,3] denotes the spatial direction again. The alternative vector-valued secondary basis functions
can be found in equation 3.7.


φu

i
φv

i
φw

i
φ

p
i

=
M∑

j=1
ci j


ψu

j

ψv
j

ψw
j

ψ
p
j

 (3.7)

Clearly, the size of the optimization problem is reduced when the vector-valued approach is chosen. However,
some flexibility will be lost. This work will utilize the scalar-valued approach for the secondary basis func-
tions. The added flexibility of representing the primary modes with different coefficients is deemed more
relevant than reducing the computational cost.

3.2. Model Constraint
As seen in chapter 2, the resulting modes will be constrained to adhere to a ROM of the governing equations.
In the context of the problems in this work, the governing equations are the non-dimensionalized, incom-
pressible Navier-Stokes equations in conservation form. That is:

u̇ +∇·Fx
i nv (uuu)− 1

Re
∇·Fx

vi sc (uuu)+ ∂p

∂x
= f x (3.8)

v̇ +∇·Fy
i nv (uuu)− 1

Re
∇·Fy

vi sc (uuu)+ ∂p

∂y
= f y (3.9)

ẇ +∇·Fz
i nv (uuu)− 1

Re
∇·Fz

vi sc (uuu)+ ∂p

∂z
= f z (3.10)

∇·uuu = f c (3.11)

with initial conditions: uuu0 = [u0, v0, w0]T and p0. A dot above the variable denotes a derivative with respect
to time, ∇ = [ ∂

∂x , ∂
∂y , ∂

∂z ]T , uuu = [u, v, w]T , p the pressure and the superscript x, y, z of the denotes the spatial

direction of the momentum equation, Fx
i nv (uuu) = uuuu, Fy

i nv (uuu) = vuuu and Fz
i nv (uuu) = wuuu and Fvi sc =∇uuu +∇uuuT .
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To construct a ROM of the governing equations, a Bubnov-Galerkin method is used to project the equations
onto weighting functions. Furthermore, integration by parts is used to lower the order of the derivative. The
resulting weak form of the governing equations can be solved for the amplitudes α. Before the resulting
expressions are shown, both the sub-grid scale model to stabilize the equations and the boundary conditions
to close the problem are discussed.

3.2.1. Sub-Grid Scale Model
A stabilization method is required to be able to solve the ROM using the resulting GOROM modes. This work
will use the Variational-Multiscale Method (VMM), introduced by Hughes et al. (2001). The authors divide
the solution to the governing equations up into the resolved and unresolved scales by means of equation 3.12
and 3.13.

ur = ûr +u′r (3.12)

p = p̂ +p ′ (3.13)

where û and p̂ are the resolved scales, and u′ and p ′ are the unresolved scales in this context. The unresolved
scales are usually modelled through a Sub-Grid Scale (SGS) model. The model used in this work makes use
of the estimations for the unresolved velocity and pressure as seen in equations 3.14 and 3.15.

u′r =−τmRr
m (3.14)

p ′ =−τc Rc (3.15)

where τm and τc are two stabilization parameters and:

Rr
m = ·̂

ur +
Ndi m∑

j=1

∂(ûr û j )

∂x j
− 1

Re

Ndi m∑
j=1

∂

∂x j

(
∂ûr

∂x j
+ ∂û j

∂xr

)
+ ∂p̂

∂xr − f r (3.16)

Rc =
Ndi m∑

j=1

∂û j

∂x j
− f c (3.17)

are the residuals of the momentum equations and continuity equation. To determine τm and τc , expressions
based on Taylor et al. (1997) will be used. These can be found in equations 3.18 and 3.19 in this work.

τm = C√
c1ûi G i j û j + c2ν2G i j G i j + c3

∆t 2

(3.18)

τc =
p

ûi G i j û j

G i i
(3.19)

where the summation over repeated indeces is implied, ν represents the viscosity and G is the metric covari-
ant tensor. The values used for the coefficients are: C = 1, c1 = 1, c2 = 36 and c3 = 4. Finally, the unresolved
viscous terms, the unresolved time derivative terms and all unresolved scales on the boundary will be as-
sumed zero from here on out, greatly simplifying the final expression.

3.2.2. Boundary Conditions
Although it would be possible to attempt to reproduce the boundary conditions applied in the production
of the reference dataset in a form suitable for the ROM, instead a much simpler option is opted for. For all
applications in this work, high-resolution reference data will be available through DNS data or a manufac-
tured solution. For this reason, it is possible to apply Dirichlet-type boundary conditions for the velocity on
all boundaries, as the exact solution is known.

One way of achieving this goal is by enforcing these conditions strongly. That is, replacing equations for
certain DOFs in the overall system of equations for equations that force the sum of all modes to be equal to
the values specified on the boundaries, similar to how strong Dirichlet boundary conditions are applied in a
regular FEM. Enforcing these conditions strongly does create a problem that the model will lose accuracy in
the domain in favour of accuracy on the boundary.
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The alternative is to enforce these conditions using a weak boundary condition. That is, the difference
between the solution to the ROM and the reference data on the boundary is not enforced to be zero, but is
penalized for being larger than zero. The added integral present on the boundary can be found in equation
3.20.

B r
4 =

∫
Γ
σr (ûr −ur

bc )dΓ (3.20)

where σr is a controllable penalty parameter and ur
bc is the boundary condition in direction r and Γ denotes

the boundary. Since the weak method allows for much more flexibility in trading-off accuracy of the solution
at the boundary with accuracy of the solution in the interior of the domain through the penalty parameter σ,
it is chosen to apply the boundary conditions through adding equation 3.20.

3.2.3. Final Model Constraint
For the sake of brevity of the main body of work, the above steps are performed in appendix D for the inter-
ested reader. The final model constraint can be summarized in the following equations:

(φr
k ,

·̂
ur )Ω+B r

1 −
1

Re
B r

2 +B r
3 +B r

4 −Dr
1 +

1

Re
Dr

2 −Dr
3 − (φr

k , f r )Ω = 0 (3.21)

D4 −
(
φ

p
k , f c)

Ω = 0 (3.22)

(φr
k , ûr −ur

0)Ω = 0 (3.23)

(φp
k , p̂0 −p0)Ω = 0 (3.24)

where r = [1,2,3] denotes the direction of the momentum equation1, equations 3.23 and 3.24 are the Galerkin-
projected initial conditions, the boundary terms B can be found in equations 3.25-3.28

B r
1 =

∫
Γ
φr

k ûr
Ndi m∑

j=1
û j n j dΓ (3.25)

B r
2 =

∫
Γ
φr

k

Ndi m∑
j=1

(
∂ûr

∂x j
+ ∂û j

∂xr

)
n j dΓ (3.26)

B r
3 =

∫
Γ
φr

k p̂nr dΓ (3.27)

B r
4 =

∫
Γ
φr

kσ
r (ûr −ur

bc )dΓ (3.28)

and the domain integrals D can be found in equations 3.29-3.32.

Dr
1 =

∫
Ω

Ndi m∑
j=1

∂φr
k

∂x j
(ûr −τmRr

m)(û j −τmR j
m)dΩ (3.29)

Dr
2 =

∫
Ω

Ndi m∑
j=1

∂φr
k

∂x j

(
∂ûr

∂x j
+ ∂û j

∂xr

)
dΩ (3.30)

Dr
3 =

∫
Ω

∂φr
k

∂xr p̂dΩ−
∫
Ω

∂φr
k

∂xr τc Rc dΩ (3.31)

D4 =
∫
Ω
φ

p
k

Ndi m∑
j=1

∂û j

∂x j
dΩ+

∫
Ω

Ndi m∑
j=1

∂φ
p
k

∂x j
τmR j

mdΩ (3.32)

1i.e. 1 denotes the x-direction, 2 the y-direction and 3 the z-direction
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3.3. Lagrangian Formulation
Using the definitions of the model constraint in section 3.2.3, the optimization problem can be constructed:

min
φr ,φp ,αr ,αp

G = 1

2

Ndi m∑
r=1

∫
Ω

∫ t f

0

(
g r − ĝ r )2 d tdΩ+ 1

2

∫
Ω

∫ t f

0

(
g p − ĝ p)2 d tdΩ (3.33)

+ β

2

[
Ndi m∑
r=1

m∑
i , j=1

(δi j −
∫
Ω
φr

i φ
r
j dΩ)2 +

m∑
i , j=1

(δi j −
∫
Ω
φ

p
i φ

p
j dΩ)2

]
(3.34)

where β is a regularization parameter and g is the goal function. This minimization problem is subject to:

M r
k = (φr

k ,
·̂

ur )Ω+B r
1 −

1

Re
B r

2 +B r
3 +B r

4 −Dr
1 +

1

Re
Dr

2 −Dr
3 − (φr

k , f r )Ω = 0 (3.35)

Ck = D4 −
(
φ

p
k , f c)

Ω = 0 (3.36)

Gr
2 = (φr

k , ûr −ur
0)Ω = 0 (3.37)

Gp
2 = (φp

k , p̂0 −p0)Ω = 0 (3.38)

where in practise Ndi m is either 1,2 or 3. The definition for Rr
m and Rc can be found in equations 3.16 and

3.17 respectively. The constrained minimization problem is converted to an unconstrained minimization
problem through the use of calculus of variations to construct the Lagrangian seen in equation 3.39.

L = 1

2
E + β

2
G1 +

∫ t f

0

m∑
k=1

(
λ

p
k Ck +

Ndi m∑
r=1

λr
k M r

k

)
d t +

m∑
k=1

(
µ

p
k Gp

2 +
Ndi m∑
r=1

µr
kGr

2

)
(3.39)

with:

E =
Ndi m∑
r=1

∫
Ω

∫ t f

0

(
g r − ĝ r )2 d tdΩ+

∫
Ω

∫ t f

0

(
g p − ĝ p)2 d tdΩ (3.40)

G1 =
Ndi m∑
r=1

m∑
i , j=1

(δi j −
∫
Ω
φr

i φ
r
j dΩ)2 +

m∑
i , j=1

(δi j −
∫
Ω
φ

p
i φ

p
j dΩ)2 (3.41)

Do note that the goal function can be different for each variable when using this formulation. That is, the
goal function can be written as a vector:

ĝ = [g (û), g (v̂), g (ŵ), g (p̂)]T (3.42)

Alternatively, the formulation can be simplified by considering only one function (e.g. ĝ = û). This loses
flexibility, as no trade-off can be made between representing different variables. On top of the loss of flexibil-
ity, it is possible to reproduce the one function version with the vector-valued version of the goal by zeroing
out all other components of the goal vector. Thus, the vector-valued version can be seen as a more general
approach.

3.4. State Equations
To recover the state equation, a small variation in the adjoint variable λr

q (t ) is applied:

λr
q =λr∗

q +εη(t ) (3.43)

where λr∗
q denotes the value for λr

q that minimizes equation 3.39. Calculus of variations teaches that in order
for λr∗

q to be an optimum, the Lagrangian (equation 3.39) evaluated at ε = 0 needs to be a stationary point,
which means:

dL

dε

∣∣∣
ε=0

= 0 (3.44)

When filling the variation in equation 3.43 into equation 3.39, differentiating according to equation 3.44 and
forcing the variation defined by η(t ) to be an arbitrary function, the momentum part of the ROM from equa-
tion 3.35 is found. Similarly, when a small variation is added to λp

q , µr
q and µp

q and the same line of reasoning
is applied, the continuity ROM (equation 3.36), the initial conditions on the velocity (equation 3.37) and the
initial conditions on the pressure (equation 3.38) are the result respectively. Hence, the state equations are
equivalent to solving the ROM for the state variables αr and αp . To march the state equations in time, use
will be made of the second-order generalized-α time-marching method introduced by Jansen et al. (2000).
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3.5. Adjoint Equations
The expression in equation 3.39 includes terms for the unresolved velocity and pressure of the state equa-
tions. It was found that these are not required in the adjoint to produce an accurate gradient. Therefore, the
terms related to the unresolved velocity and pressure will not be taken into account in what follows.
A similar process used to recover the state equations is used to find the adjoint equations by applying a vari-
ation on one of the temporal coefficients αd or αp . Doing so results in the adjoint equations, the final con-
ditions on λ and the conditions on µ. To shorten the notation of the expression, the adjoint variables are
defined in the following two equations:

v̂ r =
N∑

k=1
λr

kφ
r
k (3.45)

v̂ p =
N∑

k=1
λ

p
kφ

p
k (3.46)

Note that the solution to the state equations is denoted with a u and the solution to the adjoint equations
is denoted with a v , not to be confused with the y-component of the state velocity. When the procedure of
applying a variation on the temporal amplitudes is followed, the following expressions are recovered:

−
∫
Ω
φd

q
·̂

vd dΩ−
∫
Ω
φd

q

Ndi m∑
r=1

ûr

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
dΩ+ 1

Re

∫
Ω

Ndi m∑
r=1

∂φd
q

∂xr

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
dΩ+

∫
Ω

∂φd
q

∂xd
v̂ p dΩ

+
∫
Γ
φd

q

Ndi m∑
r=1

(
v̂d ûr nr +nd v̂ r ûr

)
dΓ− 1

Re

∫
Γ

Ndi m∑
r=1

∂φd
q

∂xr

(
v̂d nr + v̂ r nd

)
dΓ+

∫
Γ
φd

qσ
d v̂d dΓ

=
∫
Ω
φd

q (g d − ĝ d )
∂ĝ d

∂ûd
dΩ (3.47)∫

Γ
φ

p
q

Ndi m∑
r=1

v̂ r nr dΓ−
∫
Ω
φ

p
q

Ndi m∑
r=1

∂v̂ r

∂xr dΩ=
∫
Ω
φ

p
q (g p − ĝ p )

∂ĝ p

∂p̂
dΩ (3.48)

3.5.1. Adjoint Boundary Conditions
The expressions in equations 3.47 and 3.48 represent the integrated-by-parts weak form of the adjoint equa-
tions. To define the boundary conditions and the strong residuals for the stabilization method, the original
strong form of the equations needs to be recovered. To do so, the viscous and pressure domain integrals from
equation 3.47 need to be integrated by parts again to swap the derivative of the test functions to the adjoint
variables. The following expression can then be recovered:

∫
Ω
φd

q

[
− ·̂

vd −
Ndi m∑
r=1

∂v̂d

∂xr ûr −
Ndi m∑
r=1

∂v̂ r

∂xd
ûr − 1

Re

Ndi m∑
r=1

∂

∂xr

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
− ∂v̂ p

∂xd

]
dΩ

+
∫
Γ
φd

q

[
Ndi m∑
r=1

v̂d ûr nr +
Ndi m∑
r=1

v̂ r ûr nd + 1

Re

Ndi m∑
r=1

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
nr + v̂ p nd +σd v̂d

]
dΓ

−
Ndi m∑
r=1

∫
Γ

∂φd
q

∂xr

1

Re

[
v̂d nr + v̂ r nd

]
dΓ=

∫
Ω
φd

q (g d − ĝ d )
∂ĝ d

∂ûd
dΩ (3.49)

The strong form of the adjoint PDE is then recovered by arguing that the weight functions (in this case φd
q )

are arbitrary in the domain. Thus leading to the conclusion that, for the interior solution, the following needs
to hold:

− ·̂
vd −

Ndi m∑
r=1

∂v̂d

∂xr ûr −
Ndi m∑
r=1

∂v̂ r

∂xd
ûr − 1

Re

Ndi m∑
r=1

∂

∂xr

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
− ∂v̂ p

∂xd
= (g d − ĝ d )

∂ĝ d

∂ûd
(3.50)

−
Ndi m∑
r=1

∂v̂ r

∂xr = (g p − ĝ p )
∂ĝ p

∂p̂
(3.51)
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This set of PDEs requires appropriate boundary conditions such that the boundary integrals in equations
3.49 and 3.48 amass to zero. Each boundary requires four conditions (in the case of 3D flow). The first can
be recovered from equation 3.48. Similar to the value in the domain, the weighting function (φd

q ) on the
boundary is arbitrary. It can thus be concluded that, on the boundary, the following needs to hold:

Ndi m∑
r=1

v̂ r nr = 0 (3.52)

This condition on adjoint variables is applied by adding the contributions of the boundary integral as speci-
fied in equation 3.48 to the system of equations. Alternatively, it is also possible to integrate the domain term
of the weak form of equation 3.51 by parts. This results in a natural boundary condition in which the value
from equation 3.52 can be substituted.

The three other conditions that close the adjoint problem are specified by the boundary integrals from
the momentum equations in equation 3.49. It is clear that, similar to the previously discussed condition, the
boundary integrals need to evaluate to zero. That is:∫

Γ
φd

q

[
Ndi m∑
r=1

v̂d ûr nr +
Ndi m∑
r=1

v̂ r ûr nd + 1

Re

Ndi m∑
r=1

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
nr + v̂ p nd +σd v̂d

]
dΓ

−
Ndi m∑
r=1

∫
Γ

∂φd
q

∂xr

1

Re

[
v̂d nr + v̂ r nd

]
dΓ= 0 (3.53)

An equivalent ‘strong’ boundary conditions as in equation 3.52 can not be recovered due to the presence of
both the weighting function and its derivative in the boundary integral. However, the condition in equation
3.53 can be rewritten to:

∫
Γ
φd

q

[
Ndi m∑
r=1

v̂d ûr nr +
Ndi m∑
r=1

v̂ r ûr nd + v̂ p nd +σd v̂d

]
dΓ−

Ndi m∑
r=1

∫
Γ

∂φd
q

∂xr

1

Re

[
v̂d nr + v̂ r nd

]
dΓ

=−
∫
Γ
φd

q

[
1

Re

Ndi m∑
r=1

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
nr

]
dΓ (3.54)

When deriving the weak form of equation 3.50, the viscous term can be integrated by parts. The resulting
weak form of the equations is:

[Domain Integrals]−
∫
Γ
φd

q

[
1

Re

Ndi m∑
r=1

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
nr

]
dΓ= 0 (3.55)

Where, for the sake of brevity, the domain integrals are not completely written out. Finally, the boundary
conditions on the adjoint problem can be applied by realizing that the boundary integral in equation 3.55
can be replaced by the left-hand side of equation 3.54.

3.5.2. Stabilization
Similar to the primal problem, the adjoint requires stabilization as well. The method to achieve this stabiliza-
tion is the same as used by the primal problem, i.e. the variational-multiscale method. That is, the adjoint
variables consists out of a resolved and unresolved scales:

vd = v̂d + v ′d (3.56)

v p = v̂ p + v ′p (3.57)

The unresolved scales are modelled using the strong residual again, i.e.:

v ′d =−τmRd
m (3.58)

v ′p =−τcRc (3.59)

The definitions of τm and τc can be found in equations 3.18 and 3.19. The strong residuals can be derived
from equations 3.50 and 3.51 to be:
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Rd
m =− ·̂

vd −
Ndi m∑

j=1

∂v̂d

∂x j
û j −

Ndi m∑
j=1

∂v̂ j

∂xd
û j − 1

Re

Ndi m∑
j=1

∂

∂x j

(
∂v̂d

∂x j
+ ∂v̂ j

∂xd

)
− ∂v̂ p

∂xd
− (g d − ĝ d )

∂ĝ d

∂ûd
(3.60)

Rc =−
Ndi m∑

j=1

∂v̂ j

∂x j
− (g p − ĝ p )

∂ĝ p

∂p̂
(3.61)

Do note that the unresolved scales of the time derivative and viscous terms are omitted again.

3.5.3. Final Adjoint Equations
Applying the operations discussed in the previous two subsections, results in the final adjoint equations in
3.62 and 3.63.

−
∫
Ω
φd

q
·̂

vd dΩ−Dd
1 + 1

Re
Dd

2 −Dd
3 +Br

1 −
1

Re
Br

2 +Bd
3 +Bd

4 =
∫
Ω
φd

q (g d − ĝ d )
∂ĝ d

∂ûd
dΩ (3.62)

B5 −D4 =
∫
Ω
φ

p
q (g p − ĝ p )

∂ĝ p

∂p̂
dΩ (3.63)

where the definitions of the domain integrals D can be found in equations 3.64-3.67 and the definitions of
the boundary integrals B can be found in equations 3.68-3.72.

Dd
1 =

∫
Ω
φd

q

Ndi m∑
r=1

ûr

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
dΩ+

∫
Ω

Ndi m∑
r=1

∂φd
q

∂xr ûrτmRd
mdΩ+

∫
Ω

∂φd
q

∂xd

Ndi m∑
r=1

ûrτmRr
mdΩ

+
∫
Ω
φd

q

Ndi m∑
r=1

τmRd
m
∂ûr

∂xr dΩ+
∫
Ω
φd

q

Ndi m∑
r=1

τmRr
m
∂ûr

∂xd
dΩ (3.64)

Dd
2 =

∫
Ω

Ndi m∑
r=1

∂φd
q

∂xr

(
∂v̂d

∂xr + ∂v̂ r

∂xd

)
dΩ (3.65)

Dd
3 =

∫
Ω
φd

q
∂v̂ p

∂xd
dΩ+

∫
Ω

∂φd
q

∂xd
τcRc dΩ (3.66)

D4 =
∫
Ω
φ

p
q

Ndi m∑
r=1

∂v̂ r

∂xr dΩ+
∫
Ω

Ndi m∑
r=1

∂φ
p
q

∂xr τmRr
mdΩ (3.67)

Bd
1 =

∫
Γ
φd

q

Ndi m∑
r=1

(
v̂d ûr nr +nd v̂ r ûr

)
dΓ (3.68)

Bd
2 =

∫
Γ

Ndi m∑
r=1

∂φd
q

∂xr

(
v̂d nr + v̂ r nd

)
dΓ (3.69)

Bd
3 =

∫
Γ
φd

q v̂ p nd dΓ (3.70)

Bd
4 =

∫
Γ
φd

qσ
d v̂d dΓ (3.71)

B5 =
∫
Γ
φ

p
q

Ndi m∑
r=1

v̂ r nr dΓ (3.72)

The final conditions on the adjoint variables are:

λd (t f ) = 0 (3.73)

λp (t f ) = 0 (3.74)

µd
q =λd (0) (3.75)

µ
p
q =λp (0) (3.76)
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As final conditions are specified rather than initial conditions, the set of PDEs is marched backward in time.
The marching technique used is the generalized-α timemarch, which is the same marching technique used
as is used in the state equation.

3.6. Gradient Equations
With the definitions of the state and adjoint treated, the formulation can be finalized by considering the gradi-
ent. As the primary modes will be formulated through a linear combination of secondary modes, the gradient
will be determined with respect to the velocity coefficients cd

qs and cp
qs .

In the case of the adjoint, it is sufficient to neglect the effect of the stabilization terms in the primal prob-
lem, simplifying the derivation of the final expression of the adjoint equations. Unfortunately this is not the
case when considering the gradient. The derivatives related to ∂τm

∂cd
qs

are still neglected however. This results in

the rather lengthy expression seen in equation 3.77.

∂L

∂cd
qs

= [Goal Function]+ [Continuity Equation]+ [Time Derivative]+ [Convective Domain Terms]

+ [Viscous Domain Terms]+ [Pressure Domain Terms]+ [Momentum Source]

+ [Convective Boundary Terms]+ [Viscous Boundary Terms]+ [Pressure Boundary Terms]

+ [Initial Conditions]+ [Orthonormality Constraints]+ [Stabilization Terms]

+ [Stabilization Derivative Terms] (3.77)

with:

[Goal Function] =−
∫ t f

0

∫
Ω
αd

qψ
d
s (g d − ĝ d )

∂ĝ d

∂ûd
dΩd t (3.78)

[Continuity Equation] =
∫ t f

0

∫
Ω
αd

q
∂Ψd

s

∂xd

N∑
k=1

λ
p
kφ

p
k dΩd t (3.79)

[Time Derivative] =
∫ t f

0

∫
Ω

[
λd

qΨ
d
s
·̂

ud + α̇d
qΨ

d
s

N∑
k=1

λd
kφ

d
k

]
dΩd t (3.80)

[Convective Domain Terms] =−
∫ t f

0

∫
Ω

[
λd

q

Ndi m∑
j=1

∂Ψd
s

∂x j
ûd û j +αd

qΨ
d
s

Ndi m∑
j=1

û j
N∑

k=1
λd

k

∂φd
k

∂x j

+αd
qΨ

d
s

Ndi m∑
j=1

û j
N∑

k=1
λ

j
k

∂φ
j
k

∂xd

]
dΩd t (3.81)

[Viscous Domain Terms] = 1

Re

∫ t f

0

∫
Ω

[
λd

q

Ndi m∑
j=1

∂Ψd
s

∂x j

∂ûd

∂x j
+αd

q

Ndi m∑
j=1

∂Ψd
s

∂x j

N∑
k=1

λd
k

∂φd
k

∂x j

+λd
q

Ndi m∑
j=1

∂Ψd
s

∂x j

∂û j

∂xd
+αd

q

Ndi m∑
j=1

∂Ψd
s

∂x j

N∑
k=1

λ
j
k

∂φ
j
k

∂xd

]
dΩd t (3.82)

[Pressure Domain Term] =−
∫ t f

0
λd

q

∫
Ω

∂Ψd
s

∂xd
p̂dΩd t (3.83)

[Momentum Source] =−
∫ t f

0
λd

q

∫
Ω
Ψd

s f d dΩd t (3.84)

[Convective Boundary Terms] =
∫ t f

0

∫
Γ

[
λd

qΨ
d
s ûd

Ndi m∑
j=1

û j n j +αd
qΨ

d
s

Ndi m∑
j=1

û j n j
N∑

k=1
λd

kφ
d
k

+αd
qΨ

d
s nd

Ndi m∑
j=1

û j
N∑

k=1
λ

j
kφ

j
k

]
dΓd t (3.85)
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[Viscous Boundary Terms] =− 1

Re

∫ t f

0

∫
Γ

[
λd

qΨ
d
s

Ndi m∑
j=1

∂ûd

∂x j
n j +αd

q

Ndi m∑
j=1

∂Ψd
s

∂x j
n j

N∑
k=1

λd
kφ

d
k

+λd
qΨ

d
s

Ndi m∑
j=1

∂û j

∂xd
n j +αd

q

Ndi m∑
j=1

∂Ψd
s

∂x j
nd

N∑
k=1

λ
j
kφ

j
k

]
dΓd t (3.86)

[Pressure Boundary Terms] =
∫ t f

0
λd

q

∫
Γ
Ψd

s p̂nd dΓd t (3.87)

[Stabilization Terms] =
∫ t f

0

∫
Ω

[
λd

qτmRd
m

Ndi m∑
j=1

∂Ψd
s

∂x j
û j +αd

qΨ
d
s

Ndi m∑
j=1

τmR j
m

N∑
k=1

λ
j
k

∂φ
j
k

∂xd

+αd
qΨ

d
s

Ndi m∑
j=1

τmR j
m

N∑
k=1

λd
k

∂φd
k

∂x j
+λd

q
∂Ψd

s

∂xd
τc Rc

+λd
q

Ndi m∑
j=1

∂Ψd
s

∂x j
(ûd −τmRd

m)τmR j
m

]
dΩd t (3.88)

[Stabilization Derivative Terms] =
∫ t f

0

∫
Ω

[
Ndi m∑

j=1
τm

∂R j
m

∂cd
qs

N∑
k=1

λ
p
k

∂φ
p
k

∂x j
+

Ndi m∑
j ,r=1

τm
∂Rr

m

∂cd
qs

(û j −τmR j
m)

N∑
k=1

λr
k

∂φr
k

∂x j

+
Ndi m∑
j ,r=1

(ûr −τmRr
m)τm

∂R j
m

∂cd
qs

N∑
k=1

λr
k

∂φr
k

∂x j
+τc

∂Rc

∂cd
qs

Ndi m∑
j=1

N∑
k=1

λ
j
k

∂φ
j
k

∂x j

+ ∂τc

∂cd
qs

Rc

Ndi m∑
j=1

N∑
k=1

λ
j
k

∂φ
j
k

∂x j

]
dΩd t

(3.89)

[Initial Condition] =
∫
Ω

[
µd

qΨ
d
s (ûr

0 −ur
0)+αd

q (0)Ψd
s

N∑
k=1

µd
kφ

d
k

]
dΩ (3.90)

[Orthonormality Constraints] = 4
m∑

k=1

∫
Ω

(
φd

kΨ
d
s

∫
Ω
φd

kφ
d
q dΩ−δkq

)
dΩ (3.91)

The terms related to
∂Rr

m

∂cd
qs

, ∂Rc

∂cd
qs

and
∂Rr

m

∂cd
qs

can be found in equations 3.92-3.94.

∂Rr
m

∂cd
qs

= α̇d
qψ

d
s +αd

qψ
d
s
∂ûr

∂xd
+∑

h
αd

q
ψd

s

∂xh
ûh +∑

h
αd

qψ
d
s
∂ûh

∂xh
+αd

q
∂ψd

s

∂xd
ûr − 1

Re

(
αd

q
∂ψd

s

∂xr∂xd
+∑

h
αd

q
∂ψd

s

∂xd∂xh

)
(3.92)

∂Rc

∂cd
qs

=αd
q
∂ψd

s

∂xd
(3.93)

∂τc

∂cd
qs

= 1∑
i G i i

1

2
√∑

i
∑

h ûi G i h ûh

(
αd

qψ
d
s

∑
h

(
Gdh +Ghd

)
ûh

)
(3.94)
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Repeating the above process for the coefficients of the pressure, the following expression is recovered:

∂L

∂cp
qs

= [Goal Term]+ [Continuity Domain Terms]+ [Continuity Source Term]+ [Pressure Boundary Integral]

+[Pressure Domain Term]+ [Initial Condition Terms]+ [Orthonormality Term]

+[Stability Terms]+ [Stability Derivative Terms]
(3.95)

with:

[Goal Term] =−
∫ t f

0
α

p
q

∫
Ω
ψ

p
s (g p − ĝ p )

∂ĝ p

∂p̂
dΩd t (3.96)

[Continuity Domain Terms] =
∫ t f

0
λ

p
q

∫
Ω
Ψ

p
s

Ndi m∑
j=1

∂û j

∂x j
dΩd t (3.97)

[Continuity Source Term] =−
∫ t f

0
λ

p
q

∫
Ω
Ψ

p
s f c dΩd t (3.98)

[Pressure Boundary Integral] =
N∑

k=1

Ndi m∑
r=1

∫ t f

0
λr

k

∫
Γ
φr

kα
p
qΨ

p
s nr dΓd t (3.99)

[Pressure Domain Term] =−
N∑

k=1

Ndi m∑
r=1

∫ t f

0
λr

k

∫
Ω

∂φr
k

∂xr α
p
qΨ

p
s dΩd t (3.100)

[Stability Terms] =
∫ t f

0
λ

p
q

Ndi m∑
j=1

∫
Ω

∂Ψ
p
s

∂x j
τmR j

mdΩd t (3.101)

[Stability Derivatives Terms] =
∫ t f

0

∫
Ω

[
τmα

p
q

Ndi m∑
j=1

∂ψd
s

∂x j

N∑
k=1

λ
p
k

∂φ
p
k

∂x j
+τmα

p
q

Ndi m∑
j ,r=1

∂ψd
s

∂xr (û j −τmR j
m)

N∑
k=1

λr
k

∂φr
k

∂x j

+τmα
p
q

Ndi m∑
j ,r=1

(ûr −τmRr
m)
∂ψd

s

∂x j

N∑
k=1

λr
k

∂φr
k

∂x j

]
dΩd t

(3.102)

[Initial Condition Terms] =
∫
Ω

[
µ

p
qΨ

p
s (p̂ −p0)dΩ+αp

q (0)Ψp
s

N∑
k=1

µ
p
kφ

p
k

]
dΩ (3.103)

[Orthonormality Term] = 4
N∑

k=1

∫
Ω

(
φ

p
kΨ

p
s

∫
Ω
φ

p
kφ

p
q dΩ−δkq

)
dΩ (3.104)

3.7. Possible Goal Functions
Throughout this work, several goal functions will be used for different flow problems. These are summarized
in table 3.1. The motivation behind each goal is discussed more extensively in the rest of this section.

Global U
This goal function is the simplest. When performing a POD of reference data, this is the goal which is min-
imized. Finding GOROM modes from a dataset using this goal thus seems analogous to finding the POD of
that same dataset. However, as the temporal behaviour of the GOROM modes is described by nonlinear dy-
namics rather than the linear projection in the case of POD, the GOROM can in some cases provide a more
optimal basis even for this goal (see e.g. the results from Cheng et al. (2015)).

Local U
This goal function is a copy of the global goal function on Ωs , which is a part of the entire computational
domain Ω. Outside of Ωs , the goal function returns 0. This allows a representation of the goal on part of the
domain that is of particular interest. Alternatively, this goal can be augmented by multiplying by a weighting
function to allow for a smoother transition of the value of the goal between Ωs to the value in the rest of the
domain.
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Table 3.1: Goal functions used throughout this work.

Goal Number Goal Name Mathematical Expression

1 Global U g (ûr ) = ûr

2 Local U g (ûr ) =
{

ûr , f or [x, y, z] ∈Ωs ⊂Ω
0, other wi se

3 Global U2 g (ûr ) = ûr 2

4 Fourier amplitudes g (ûr ) =
{
|ûr ( j ,0)|, f or [x, y, z] ∈Ωs ⊂Ω
0, other wi se

5 Real Fourier amplitudes g (ûr ) =
{

ûr cos( jωt ), f or [x, y, z] ∈Ωs ⊂Ω
0, other wi se

6 nonlinear interaction
perturbation field

g r
(
û, ∂û

∂x

)
=

{(
û j −U j

b

)(
∂ûr

∂x j −
∂U r

b
∂x j

)
, f or [x, y, z] ∈Ωs ⊂Ω

0, other wi se

Global U2

This goal function is a simple nonlinear goal function used for testing nonlinear implementations.

Fourier Amplitudes
In the previously discussed derivations, the goal term of the Lagrangian (equation 3.39) is defined as in equa-
tion 3.105. ∫

Ω

∫ t f

0
(g − ĝ )2d tΩ (3.105)

For this particular goal however, the function does not have an instantaneous time component and is only
integrated in space. That is: ∫

Ω
(g − ĝ )2dΩ (3.106)

To derive g , the following decomposition of the flowfield will be used:

u =
N∑

j=0
|u|( j ,0)eξ( j ,0)e−i jωt + c.c. (3.107)

where i = p−1, ω is the temporal frequency, û( j ,0) is the amplitude belonging to the j th harmonic, ξu
0 is

the corresponding phase and c.c. denotes the complex conjugate. Note that the following discussion applies
to all variables (i.e. all velocity components and the pressure) exactly in the same way. Therefore, in the
following discussions on the goal, the symbol u will be utilized to represent all variables. For simplicity, the
superscripts will therefore also be omitted.

Multiplying both sides of equation 3.107 with e i jωt , integrating in time and assuming that the integration
between t = 0 and t = t f covers an integer multiple of the period of the Fourier modes, the following equation
can be obtained:

|u|( j ,0)eξ
u
0 =

∫ t f

0

u

t f
e i jωt d t =

∫ t f

0

u

t f
cos( jωt )d t + i

∫ t f

0

u

t f
si n( jωt )d t = Tr + i Ti (3.108)

Where Tr and Ti are the real and imaginary parts of the integral respectively. The amplitude can simply be
recovered by using the Euclidean norm of the resulting imaginary number, i.e.:

|u|( j ,0) =
√

T 2
r +T 2

i (3.109)

In equation 3.107 the negative wavenumbers are taken into account in the complex conjugate terms. This
corresponds to a two-sided spectrum. To recover the equivalent one-sided amplitudes, the amplitudes of the
two-sided spectrum are multiplied by two, resulting in the goal function as seen in equation 3.110.
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g = 2|u|( j ,0) = 2
√

T 2
r +T 2

i (3.110)

These alterations to the goal have an effect on the goal terms of both the adjoint and gradient expressions.
Starting with the adjoint, a variation is applied to the temporal amplitudes (αq ). The derivative with respect to
the perturbation ε is taken to find the stationary point. In other words, the following expression is evaluated:

d

dε

∫
Ω

(g − ĝ )2dΩ (3.111)

Ignoring the integral over the domain and applying the chain rule several times, one can conclude that:

d

dε
(g − ĝ )2 =−

∫ t f

0
φq

4(g − ĝ )

t f

√
T 2

r +T 2
i

[
Tr cos( jωt )+Ti si n( jωt )

]
η(t )d t (3.112)

The gradient derivation follows a very similar approach. The gradient expression was found by taking the
following partial derivative:

∂

∂cqs

∫
Ω

(g − ĝ )2dΩ (3.113)

By ignoring the domain integral and following a very similar procedure as done with adjoint term, the deriva-
tive can be written as:

∂

∂cqs
(g − ĝ )2 =

∫ t f

0
αqψs

4(g − ĝ )

t f

√
T 2

r +T 2
i

[
Tr cos( jωt )+Ti si n( jωt )

]
d t (3.114)

Although the formulation is complete, the overall implementation of this goal function turned out to be more
complex than initially expected. For this reason it is recommended that this goal is implemented in the future.
As a stand-in the following goal function is used.

Real Fourier Amplitudes
As the above goal function is relatively difficult to implement in the current tools, an alternative can be found
in this goal function. This function does have an instantaneous time component and thus does fit within
the current infrastructure. The idea of this function stems from the fact that the flowfield is purely real, as
discussed before. This results in complex conjugate amplitudes. Thus when inspecting the decomposition in
equation 3.107, the contribution of the j th harmonic to the instantaneous flowfield is:

u( j ,0)+u(− j ,0) = |u|( j ,0)eξ( j ,0)e−i jωt +|u|(− j ,0)eξ(− j ,0)e i jωt = 2Tr cos( jωt ) (3.115)

This goal function will thus aim to optimally represent the contribution of each timestep to the integral that
makes up Tr .

Nonlinear interaction perturbation field
When inspecting the nonlinear perturbation equations (equation 1.6), a term that is neglected in the PSE and
OS equations is the nonlinear interaction term of the perturbation field. Since there might exist nonlinear
interaction in the perturbation field, representing the norm of these terms could prove a useful goal function
to identify nonlinear effects. As the perturbation field is of interest, the base flow needs to be subtracted first,
that is:

g r (û) =
Ndi m∑

j=1
(û j −U j

b )

(
∂ûr

∂x j
− ∂U r

b

∂x j

)
=

Ndi m∑
j=1

û′ j ∂û′r

∂x j
(3.116)

where u′ is introduced to shorten the notation and Ub is the base flow. This goal is considerably more com-
plex than previously discussed goals. First and foremost, it should be noted that the pressure does not have
a contribution to this goal (i.e. g p = 0). Furthermore, this goal is different for each velocity component and
contains all two (or three) velocity components for each entry in the vector.2

2i.e. where previously the goal vectors looked like: g = [g (û), g (v̂), g (p̂)]T , this goal vector looks like g = [g (û, v̂), g (û, v̂),0]T
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Moreover, this goal poses a problem for the overall formulation. That is, when deriving the goal terms
of the adjoint (see e.g. equation 3.62) and the gradient (see e.g. equation 3.78) it is assumed that the goal
function only depends on û without any of its gradients such that for example:

∂ĝ r

∂αd
q

= ∂ĝ r

∂ûd

∂ûd

∂αd
q

= ∂ĝ d

∂ûd
φd

q (3.117)

However, with the addition of the spatial gradients and the addition of the sum, the goal term of the gradient
becomes more complex. In fact, equation 3.78 becomes:

[Goal Term] =−
Ndi m∑
r=1

[
αd

qψ
d
s
∂û′r

∂xd
(g r − ĝ r )+αd

q
∂ψd

s

∂xr û′r (g d − ĝ d )

]
(3.118)

Since there are no terms related to the pressure, the goal term in equation 3.95 can be omitted. When con-
sidering the adjoint, a similar problem arises. The forcing term in the weak form of the adjoint equation
(equation 3.62) needs to be expanded with:

F d =
∫
Ω

Ndi m∑
r=1

[
φd

q
∂û′r

∂xd
(g r − ĝ r )+

∂φd
q

∂xr û′r (g d − ĝ d )

]
dΩ (3.119)

Moreover, the stabilization of the adjoint requires the strong form of the equations. Originally, the forcing on
the strong form of the adjoint PDE is recovered by arguing that the weighting function φd

q that multiplies the

term (g d − ĝ d ) ∂ĝ
∂û in equation 3.49 is arbitrary, and thus the forcing is simply: (g d − ĝ d ) ∂ĝ

∂û . In equation 3.119
this is unfortunately not so simple due to the presence of the gradient of the weighting function. This deriva-
tive needs to be transferred to the other terms if the strong form of the adjoint equation is to be recovered.

Fortunately, transferring the derivatives can be achieved through integration by parts. When this integra-
tion is performed and the boundary terms are omitted, the following integral arises:

F d =
∫
Ω
φd

q

Ndi m∑
r=1

[
∂û′r

∂xd
(g r − ĝ r )− ∂

∂xr

(
û′r (g d − ĝ d )

)]
dΩ

=
∫
Ω
φd

q

Ndi m∑
r=1

[
∂û′r

∂xd
(g r − ĝ r )− ∂û′r

∂xr (g d − ĝ d )− û′r
(
∂g d

∂xr − ∂ĝ d

∂xr

)]
dΩ (3.120)

with:
∂g d

∂xr =
Ndi m∑

j=1

[
∂u′ j

∂xr

∂u′d

∂x j
+u′ j ∂2u′d

∂xr∂x j

]
(3.121)

which can be used to calculate the forcing needed to make the stabilization of the adjoint consistent.

3.8. Gradient Verification
A manufactured solution is used to verify the implementation of the above gradient calculations, the adjoint
solver and the optimization algorithm. This method starts by assuming a solution to the governing equations.
This manufactured solution can then be substituted into the governing equations (equations 3.8-3.11) to
find the source terms that would reproduce this solution. By applying these source terms in the numerical
approximations of the solution, the numerical methods can be tested and compared to the exact solution.

In the rest of this section, a 1D, 2D and 3D verification case will be discussed. Each case has a different
manufactured solution with a few commonalities. The first commonality is the presence of a constant term
of 1 (see e.g. equations 3.123). Although seemingly obsolete, this term acts as a manufactured mean or
base flow. Since the perturbation field is of interest in the applications discussed in chapters 4 and 5, the
mean or base flow is given and a constrained degree of freedom in the overall system of equations solved
to obtain the solution. The manufactured base flow terms are present to simply test the implementation of
these constraints.

Furthermore, the time dependency of each of the manufactured solutions is the same for all cases and
specified by sin2(t ). Each simulation is run for halve of a period, i.e. t ∈ [0,π/2]. The spatial domain is a
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cube of unit length. That is, x ∈ [0,1], y ∈ [0,1] & z ∈ [0,1].3 The value for viscosity is set to ν= 0.0001, which
corresponds to a Reynolds number of Re = 104 if a dimensional setting was considered. A value for β= 2.0 is
chosen to test the orthonormality constraint.

The final parameter that needs to be determined is the initial trust-region size. In this case it is decided to
utilize the simplest form of the three initial trust-region sizes investigated in Cheng (2017). That is, the initial
trust-region size is specified by equation 3.122.

∆0 = ||∇L || (3.122)

3.8.1. 1D Case
Although the cases of the subsequent chapters will not be 1-dimensional, the manufactured solution case is
included here. This is for both completeness and the advantage that it is tractable to construct the response
surface of the Lagrangian from equation 3.39. This is in term advantageous to verify the stepping direction of
the algorithm. The manufactured solution is specified in equation 3.123.

ui (x, t ) = p(x, t ) = 1+ sin2(t )sin(πx) (3.123)

The secondary basis used here are a set of sines with different wavelengths. The set includes the wavelength
used in equation 3.123, that is:

ψ= [sin(πx) sin(2πx) . . . sin(nπx)]T (3.124)

Only one primary mode is needed to optimally represent the solution as specified by equation 3.123. The
corresponding ‘optimal’ ψ-to-φ coefficients for both velocity and pressure are:

ci j =
{p

2, f or j = 1

0, f or j > 1
(3.125)

where the value for the first coefficient is found by applying the orthonormality constraint from equation 3.41
and solving for the only non-zero coefficient.

The verification case is subsequently defined by considering two wavelengths for the secondary basis
functions. Leading to equation 3.1264 for the primary bases φ. For the goal, a simple global and linear goal is
used. This is the same goal function as used when evaluating the POD and corresponds to goal number 1 in
table 3.1. [

φu
1

φ
p
1

]
=

[
cu

1,1 cu
1,2

cp
2,1 cp

2,2

][
sin(πx)

sin(2πx)

]
(3.126)

The first coefficient of both variables is set and constrained to the optimal value of cu
1,1 = cp

2,1 = p
2. The

second coefficients are then optimized with several starting conditions by defining the initial condition vector
as c0 = [cu

1,2,cp
2,2]. Firstly, the case with starting conditions c0 = [−0.05,0.6] (the blue line in figures 3.1& 3.2)

clearly shows one of the problems highlighted by Bui-Thanh et al. (2007). That is, the shape of the response
surface is not guaranteed to be convex, resulting in the algorithm possibly converging to a local minimum.
This phenomenon is the reason why these coefficients do not converge to the theoretical optimal values as
seen in table 3.2, highlighting the need for a suitable initial guess.

3This is of course dependent on the amount of dimensions in question.
4Note that the equation can be written in this matrix form, because the same secondary basis is used for both variables.
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Figure 3.1: Objective functional history for several starting points
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Figure 3.2: Response surface of the Lagrangian for the 1D MFS case along with the optimization history.

Table 3.2: Resulting values for the optimization variables and objective functional for a 1D manufactured solution case with different
starting conditions.

Initial Coefficients
(
[cu

1,2,cp
2,2]

)
Final cu

1,2 Final cp
2,2 Objective Functional

[0.5,0.5] −9.024 ·10−6 2.882 ·10−5 7.030 ·10−9

[−0.05,0.6] 0.3346 0.4715 0.05954
[−0.2,−0.2] −9.0704 ·10−6 3.0978 ·10−5 6.9980 ·10−9

[0.5,0.2] −1.0881 ·10−5 −1.3220 ·10−5 7.0777 ·10−9

Another interesting observation from these results is the difference in convergence speed of the coefficients
for the velocity and pressure. This is illustrated in figure 3.2a, where it can be seen that the value of the
objective functional is much more sensitive to changes to the coefficients related to the velocity than changes
in the coefficient related to the pressure around the theoretical optimal.

With these two observations in mind, along with the correct convergence behaviour of all four cases, it
can be concluded that the simulation is able to accurately perform calculations of the gradient and correctly
converges to either a local or a global minimum for a 1D case.
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3.8.2. 2D Case
A slightly different manufactured solution is utilized to test the 2D implementation. This manufactured so-
lution is designed to test the applied boundary condition more rigorously, as well as mimic a physical case
more closely. That is, the solution is chosen to be divergence free. This is done by defining a streamfunction
as seen in equation 3.127:

Ψ(x, y) = sin(πx)sin(πy)sin2(t )+ y −x (3.127)

The resulting solution for the variables can then be found in equation 3.128-3.130.

u =πsin(πx)cos(πy)sin2(t )+1 (3.128)

v =−πcos(πx)sin(πy)sin2(t )+1 (3.129)

p = sin(πx)sin(πy)sin2(t )+1 (3.130)

Due to the presence of the cosines and sines in the manufactured solution, a few more modes per variable
are required compared to the 1D case. It is chosen to use the same secondary basis for all variables as seen in
equation 3.131.

ψ=


sin(πx)sin(πy)
sin(πx)cos(πy)
cos(πx)sin(πy)

cos(2πx)cos(2πy)

 (3.131)

The corresponding ψ-to-φ map can be found in equation 3.132.

φu
1

φv
1

φ
p
1

=

cu
1,1 cu

1,2 cu
1,3 cu

1,4
cv

2,1 cv
2,2 cv

2,3 cv
2,4

cp
3,1 cp

3,2 cp
3,3 cp

3,4




sin(πx)sin(πy)
sin(πx)cos(πy)
cos(πx)sin(πy)

cos(2πx)cos(2πy)

 (3.132)

Comparing equation 3.132 to equations 3.128-3.130, it can be seen that the theoretical optimal modes are
present in the secondary basis. Starting away from this set of optimal modes and running an optimization
should then recover the optimal modes for each variable. This theoretical optimal solution is found by apply-
ing the orthonormality constraint (equation 3.41) and solving for the optimal coefficient to arrive at:

c =
{

2, if c = cu
1,2 or c = cv

2,3 or c = cp
1,1

0, otherwise
(3.133)

Each of the optimal coefficients are then initialized to a value of cu
1,2 = cv

2,3 = cp
1,1 = 1 and the coefficient of the

fourth mode (i.e. the cos(2πx)cos(2πy) mode) is set to a value of cu
1,4 = cv

2,4 = cp
3,4 = 0.5 before running the

optimization. The optimization is run for both a linear goal (goal number 1 in table 3.1) and a nonlinear goal
(goal number 3 in table 3.1).
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Figure 3.3: History of the value of the objective functional in the 2D manufactured solution case for a linear and non-linear goal.
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Figure 3.4: Optimization history of the coefficients of the x-velocity components with a linear and non-linear goal.
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Figure 3.5: Optimization history of the coefficients of the y-velocity components with a linear and non-linear goal.
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Figure 3.6: Optimization history of the coefficients of the pressure with a linear and non-linear goal.
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Table 3.3: Resulting values for the optimization variables and objective functional for a 2D manufactured solution case with different
goal functions.

Goal Function Variable copt
∣∣∣∣cnonopt

∣∣∣∣
linear u 1.99998 8.8271 ·10−5

v 1.99997 5.2982 ·10−5

p 1.99993 3.9736 ·10−4

nonlinear u 1.99945 1.5974 ·10−4

v 1.99953 1.9537 ·10−4

p 1.99988 4.9972 ·10−4

For both the linear and nonlinear goal functions the resulting coefficients converge relatively close to their
theoretical minimums as seen in table 3.3. It can be seen from figure 3.3 that the linear goal converges faster
and smoother than the nonlinear counterpart. Both observations seem to suggest that the algorithm con-
verges faster for linear goal functions then for nonlinear goal functions. Aside from this, the linear goal is
able to find a lower value for the objective functional than the linear goal, although the nonlinear goal still
converges sufficiently.

From figures 3.4-3.6 it can be concluded that the velocity coefficients seem to converge more quickly to
the optimum value than the pressure coefficients. This is an observation made for the 1D case as well, show-
ing a larger dependency of the velocity coefficients on the objective functional.

Finally, where the initial trust-region size determined using equation 3.122 seems to be a good value for
the linear goal, for the nonlinear goal the trust-region size is too large, which is the reason why the algorithm
does not make any progress in the first two iterations. Although outside the scope of this work, in the future
it could be possible to look into alternatives for the initial trust-region sizes, such as the one proposed by
Sartenaer (1997).

3.8.3. 3D Case
The transitional flow case considered in chapter 4 will be 2 dimensional. However, the expressions in the
state (equations 3.35- 3.38), the adjoint (equations 3.62 & 3.63) and the gradient (equations 3.77 & 3.95) are
generalized up to 3 dimensions. A 3D manufactured solution case is considered here as well for the sake of
completeness. The manufactured solution case is very similar to the 1D case and is defined by:

ui (x, t ) = p(x, t ) = 1+ sin2(t )sin(πx)sin(πy)sin(πz) (3.134)

The secondary basis consists out of a tensor product, i.e.:

ψ=
[

sin(πx)
sin(2πx)

]
⊗

[
sin(πy)

sin(2πy)

]
⊗

[
sin(πz)

sin(2πz)

]
(3.135)

This tensor product results in 8 secondary basis functions. With one primary mode per variable and 4 vari-
ables, a total of 32 coefficients are optimized. When comparing the solution to the secondary basis, it can
again be seen that the optimal decomposition is present within the secondary basis. The coefficients as-
sociated with the optimal mode (i.e. sin(πx)sin(πy)sin(πz)) are initialized to a value of 1 and coefficients
associated to the mode sin(2πx)sin(2πy)sin(2πz) are initialized to a value of 0.3. To find the theoretically
optimal vectors, the orthonormality constraint is solved to arrive at:

ci j =
{p

8 ≈ 2.828427, for j = 1

0, for j > 1
(3.136)

The resulting optimization histories for a linear and nonlinear goal can be found in figure 3.7. Table 3.4 shows
the final value of the theoretical optimal coefficients (copt ) and the Euclidean norm of the coefficient that in
theory should be zero (cnonopt ). The linear and nonlinear goal functions again correspond to goal 1 and 3
from table 3.1 respectively.
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Figure 3.7: History of the value of the objective functional in the 3D manufactured solution case for a linear and non-linear goal.

Table 3.4: Resulting values for the optimization variables and objective functional for a 2D manufactured solution case with different
goal functions.

Goal Function Variable copt
∣∣∣∣cnonopt

∣∣∣∣
linear u 2.82842 3.6755 ·10−4

v 2.82842 3.6711 ·10−4

w 2.82842 3.6718 ·10−4

p 2.82842 2.2662 ·10−4

nonlinear u 2.82843 3.3401 ·10−4

v 2.82843 3.3401 ·10−4

w 2.82843 3.3402 ·10−4

p 2.82844 6.0340 ·10−4

Similar to the 2D case the method converges to the theoretical optimal values closely. Furthermore, the non-
linear goal converges with a lower rate compared to the linear goal as well. For this 3D case it seems that the
initial trust-region size is more appropriate compared to the 2D case for the nonlinear goal function however.
With these results in mind, it can be concluded that the expressions found in sections 3.2-3.6 can be applied
to problems using the 1D,2D and 3D incompressible Navier-Stokes equations.



4
Tollmien-Schlichting Instability on a Flat

Plate

Much simpler methods are available to accurately describe TS waves convecting over a flat plate. Neverthe-
less, due to the relative simplicity of the problem the GOROM technique will be applied to validate the modal
solution techniques, as well as to validate whether GOROM can recover the optimal decomposition in such a
case as well.

The structure of this chapter is as follows: firstly, the numerical setup of this case will be discussed. The
section after then describes the choice of secondary basis. The subsequent section verifies if the problem is
resolved sufficiently in space and time, after which the performance of the secondary basis for several of the
goal functions from table 3.1 is tested as a benchmark. The results of the optimizations will be presented and
used in the final section to make some concluding remarks on the results.

4.1. Numerical Setup
The integrals from all expressions found in chapter 3 are approximated using numerical quadrature on an in-
tegration mesh. Each cell in this integration mesh has one integration point, which is located in the centroid
of the cell, allowing the contribution of the cell to be estimated using the midpoint rule.

Since the reference data and POD modes will be defined on the mesh used to resolve the DNS, the integra-
tion mesh will be a derivative of this same mesh. The hypothesis is that it is not necessary to use the full DNS
mesh to achieve sufficient accuracy for the integration. Therefore the integration mesh will be downsampled
relative to the DNS mesh. This is achieved by defining downsampling factors, one for each direction. With a
downsampling factor of 1, all vertices in the original DNS mesh will be retained. With a factor of 2, every other
vertex will be retained, and so on. The mesh is a nonuniform, Cartesian, multi-block grid. In the wall-normal
direction, 192 cells are used using uniform spacing between y ∈ [0,3]. Between y ∈ [3,20] hyperbolic stretch-
ing is applied to generate another 192 cells. For the streamwise direction, uniform spacing is used with 4560
cells between x ∈ [0,380]. A plot of the mesh for the flat plate case can be found in figure 4.1.

To reiterate, the mesh as defined here is based on the mesh used by Shahzad (2020) to generate the ref-
erence data. The total size of the domain used in this work is 380x20, which is different from the domain
size of 400x20 from Shahzad (2020). This related to the use of outflow boundary conditions. Shahzad (2020)
used a method called selective-frequency damping to quench the TS waves when flowing out of the domain.
Although it is possible to attempt to mimic these outflow conditions for a ROM, the weak boundary condition
is used as discussed in 3.2.2. Since the associated forcing term is not modelled, the domain needs to be cut off
before the region of selective-frequency damping kicks in. As, without the forcing present, the ROM will have
to solve a nonphysical solution inside this region. The resulting integration mesh contains 1,751,040 domain
integration points.

Finally, the value for the Reynolds number used to normalize the equations, is derived as follows:

Re = U0L̃

ν
(4.1)

where U0 = 10 m/s, L̃ = 0.002533 m and ν= 1.5188 ·10−5 m2/s are taken from Shahzad (2020). The resulting

36
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Figure 4.1: Wireframe of part of the DNS mesh used in the simulations of the flat plate. Only every 8th and 16th point are plotted in the
wall-normal and streamwise direction respectively.

value for Re ≈ 1667.67. The value used for the regularization of the orthornormality constraint is β = 2 and
the penalty parameter for the weak boundary condition is σ= 1.

4.2. POD Reduced-Order Model
The POD modes will be used as the secondary basis and to create a benchmark. The POD is performed on a
zero-mean flow field. That is, the mean flow is subtracted from the reference data and a SVD is performed on
the resulting snapshots of the data. The mean flow will be constraint in the remaining simulations. For the
interested reader, the first four shapes of each variable can be found in appendix E.1.
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Figure 4.2: Normalized singular values of the reference data for the flat plate case.

Two convection dominated structures can be identified from the singular values in figure 4.2. That is, each
convecting structure has a pair of POD modes of similar energy associated with it. Inspecting the first two
POD modes of the x-velocity (figure 4.3), the spatial orientation of the modes seems to suggest a phase shift
between the two modes, further solidifying the conclusion that these modes capture a convecting structure.

Furthermore, inspecting the shape of the modes also seems to suggest that these capture the fundamental
wave convecting over the flat plate. If this is indeed the case, these two modes should also capture most of the
content contained within the data. The combined sum of the normalized singular values for these two modes
is 0.9993, further strengthening the hypothesis that these modes correspond to the fundamental wave. With
this in mind, further analysis of this case will be done with the first two POD modes.
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Figure 4.3: First 2 POD modes of the x-velocity for the flat plate case.

4.2.1. Verification
To verify the modal solver, a spatial refinement test is performed. The value of the objective functional is
used as a metric to test convergence. As seen in table 4.1, using the combination x = 1 and y = 2 results in an
integration error two orders of magnitude lower than the value of the objective functional. With this mind, it
is decided to use those factors for the downsampling to limit the computational cost of integrating the weak
forms.

Table 4.1: Values of the OF for several mesh refinements and number of timesteps. The columns x & y denote the downsampling factor
used. Each simulation is ran for 80 timesteps.

x y Objective Functional

1 1 1.21971 ·10−5

1 2 1.29732 ·10−5

2 1 1.08652 ·10−4

2 2 1.92899 ·10−4

With the spatial integration tested, the temporal refinement is also tested. Each simulation is performed for
one TS period with uniform spacing in time. The simulation is ran for several choices for the total number of
timesteps and again, the value of the objective functional is used as a metric to test convergence. Important to
note is that the reference data is only available for 20 snapshots per TS period. When running the subsequent
simulations with a larger number timesteps, the data is interpolated using linear interpolation between the
two closest snapshots.

By inspecting table 4.2, it is decided to use 80 timesteps in the subsequent simulations, as this results
in a difference three orders of magnitude lower than the value of the objective functional. With the results
from the spatial refinement in mind, this causes the error in the overall discretization to be dominated by the
spatial integration, rather than the temporal refinement.

Table 4.2: Values of the OF for several number of timesteps. The difference column is with respect to case with the largest number of
timesteps.

Time
steps

Objective
Functional

Difference

20 1.54605 ·10−5 3.33254 ·10−6

40 1.29732 ·10−5 8.45252 ·10−7

80 1.21919 ·10−5 6.39702 ·10−8

160 1.21279 ·10−5 0
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4.2.2. Validation of Modal Solver
To validate the state model, the approach by Shahzad (2020) is mirrored. That is, the resulting flowfield from
a simulation of flat plate flow is reconstructed and Fourier transformed in time. The amplitudes of the fun-
damental wave and first harmonic are computed and the maximum for each streamwise location is plotted.
This maximum amplitude plot is compared to the reference data. The resulting streamwise evolution of the
amplitudes can be found in figure 4.4.
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Figure 4.4: Amplitudes of the u(1,0) and u(2,0) component for a flat plate case with different temporal refinements.

The area of selective frequency damping can quite clearly be recognized from figure 4.4, showing the reason
for cutting the domain before this region is reached. Furthermore, the state simulations are able to resolve
the fundamental wave quite accurately using the first two POD modes, as suspected before.

The result for the first harmonic is more problematic. The first harmonic is not introduced in the inflow
boundary conditions, yet grows naturally. This, along with the nature of the problem, does cause the instabil-
ity to have a very low amplitude. Moreover, the modal solver is not be able to resolve this secondary harmonic
sufficiently. This is attributed to the fact that a relatively low number of snapshots of the flow are available
per period of this structure. That is, only 10 snapshots are available from which the boundary conditions are
inferred. This is particularly relevant on the outflow boundary. Furthermore, only two periods are available
in the reference data, which is not perfectly periodic as well. Both these problems might introduce errors in
the decomposition. This is clearly not affecting the performance of the modes with the larger amplitudes as
much, as predicated by the performance of the primary harmonic. However, at the very small amplitudes
observed for the secondary harmonic may lead to errors in the simulation.

4.2.3. ROM Performance
Due to the simplicity of the case in question, the first two POD modes are already able to accurately capture
convecting TS waves. Using these modes as the secondary basis and initializing their coefficients to a value of
one, will thus most likely already perform well in most norms specified in table 3.1. Quite unsurprisingly, this
is indeed the case when evaluating the value of the objective functional for each goal (see table 4.3). Mostly,
the fundamental wave is present in the perturbation field. The real Fourier amplitudes and the nonlinear
interaction of the perturbation field will thus be captured very well, as also predicated by the results from
table 4.3.
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Table 4.3: Values of the OF for several goals from table 3.1.

Goal
Function

Goal Function Name Objective Functional

1 Global U 1.21279 ·10−5

2 Local U 7.74121 ·10−6

3 Global U2 1.531967 ·10−5

5 Real Fourier Amplitudes 5.19806 ·10−6

6 Nonlinear Interaction Per-
turbation Field

5.88058 ·10−6

4.3. Goal-Oriented Reduced-Order Model
With results from table 4.3 in mind, running optimizations for this particular case seems illogical, as the
truncated POD modes seem to already provide an accurate basis. Therefore, to test the applicability of the
GOROM technique in these cases, the optimizations are performed for a set of starting conditions that is
perturbed away from the POD modes as well. That is, a perturbation (ε) is added to theψ− to−φ coefficients
for two of the POD modes per primary mode. For example, the ψ− to −φ map for the x-velocity becomes:

[
φu

1
φu

2

]
=

[
1.0+ε ε 0 0

0 1.0+ε ε 0

]
ψu

1
ψu

2
ψu

3
ψu

4

 (4.2)

From the final values of the objective functional from table 4.4 a few observations can be made. Firstly, the
results from case A and B show that the GOROM technique slightly modifies the modes to a set that behaves
more accurately when used in a ROM. In fact, the GOROM modes outperform the POD modes even when the
goal functions are the same, which is a consequence of the model constraint.

Table 4.4: Optimization parameters and results.

Case
Name

Goal Function
Name

ε POD OF GOROM OF

Case A Global U 0 1.2128 ·10−5 1.4476 ·10−6

Case B Local U 0 7.7412 ·10−6 1.0310 ·10−6

Case C Global U 0.3 1.2128 ·10−5 1.4669 ·10−4

Case D Local U 0.3 7.7412 ·10−6 7.4917 ·10−5

Case C & D from table 4.4 show two cases where the starting conditions are perturbed away from the POD
modes. It can be clearly seen that the GOROM modes both converge to a local minimum. Both sets of GOROM
modes are outperformed by the POD modes with an order of magnitude.

The hypothesis that the modes from case C converge to a local minimum is confirmed when considering
their shape functions and associated amplitudes, which can be found in figure 4.5 & 4.6 respectively. The
resulting shapes seem to be a combination of several harmonics. Moreover, the amplitudes of the modes do
show some problematic results as well. That is, the periodicity of the reference data is not represented in any
of the amplitudes from figure 4.6. Similar conclusions can be drawn when inspecting the modes from case D.

With these considerations in mind, it can quite safely be presumed that these modes do not correspond
to any particular physical instability in the flow, but represent some combination of modes that happens to
be close to orthonormal and performs well in a time-averaged sense for one period of the fundamental wave.
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Figure 4.5: Resulting GOROM shapes for the x-velocity with a perturbed starting condition and the global u goal function.
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Figure 4.6: Amplitudes of the streamwise GOROM modes of case C from table 4.4.

4.4. Concluding Remarks
From the analysis performed here, it can be concluded that the GOROM method is not preferential in these
simple cases. In fact, performing a POD of the reference data seems to already sufficiently recover a set of
modes which can be used to interpret the data from the dataset. Furthermore, the added downside possibly
encountering a local minimum and the additional cost of constructing modes, makes GOROM not an opti-
mal technique to apply for this flat plate case.

These conclusions are true from the perspective of interpretation. However, the GOROM modes did nu-
merically outperform the POD modes when the optimization is started from the POD. If numerical accuracy
of a ROM is important, the GOROM technique can be used to make slight modifications leading to a more
accurate ROM even for this relatively simple case.



5
Tollmien-Schlichting Instability with Step

This chapter discusses the results from the optimizations performed on a DNS dataset from a flat plate
boundary layer. The difference with the boundary layer from chapter 4 is the presence of a forward-facing
step, complicating the flow problem. The DNS is performed and validated by Shahzad (2020). The first sec-
tion discusses the numerical setup and the different optimizations performed in this work. Section 5.2 then
treats the performance of the POD performed on the dataset. The subsequent section then discusses the re-
sults from the optimizations to retrieve the GOROM modes. Finally, section 5.4 concludes the chapter with a
few additional observations.

5.1. Cases and Numerical Setup
The GOROM technique is applied to two datasets of the cases that include a step. Both datasets result from
simulations that use the same inflow amplitude, inflow frequency and step height. These are equivalent to
case 12 from Shahzad (2020).

The two datasets result from two simulations with a different domain. To be more precise, one of the
datasets has a domain height of 20, where the other has a domain height of 100. The motivation for using the
two domain heights can be found when considering the mean-flow distortion of both cases. The definition
of the mean-flow distortion can be found in equation 5.1.

u(0,0) = 〈utot 〉−Ub (5.1)

where u(0,0) is the mean-flow distortion, utot is the total flow1, Ub is the base flow and 〈.〉 is a time-averaging
operation. The mean-flow distortion for both cases in an area around the step is plotted in figure 5.1. Some
mystifying topology is present in the form of spots in the case with a domain height of 20. The hypothesis for
the origin of these ‘spots’ is that they result from discretization errors due to the mesh quality, model errors
due to the top boundary or an interaction between both.

One of these hypotheses can be rejected when considering the mesh of both cases. For clarity, a down-
sampled wireframe of the mesh around the step can be found in figure 5.2. The streamwise spacing of the
cells is exactly the same for both cases. That is, the first 2160 cells are uniformly spaced between x ∈ [0,180].
Approaching the step, the cells are refined with 600 cells between x ∈ [180,212.5]. Uniform spacing and 1440
cells are then used for the area around the step between x ∈ [212.5,242.5]. The streamwise refinement is then
coarsened using hyperbolic stretching with 600 cells between x ∈ [242.5,275]. Finally, uniform cell spacing
is used between x ∈ [275,380] with 1260 cells. The number of streamwise elements per wavelength at two
locations is summarized in table 5.1. The wavelengths are inferred from the flat plate case at the relative
locations.

1As discussed in section 1.2, this is the sum of the base flow and perturbation field.
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Figure 5.1: Plot of the mean-flow distortion around the step of the two datasets considered in this work. The x-velocity is plotted in
these figures.

Table 5.1: The number of streamwise elements in the mesh per wavelength at the step location and at the outflow of the domain. The
wavelengths are inferred from the flat plate case.

Streamwise Location Number of Points per Wavelength

Step Location (x = 222.5) 600
Domain Outflow (x = 350) 161

Some differences in cell spacing can be observed in wall-normal direction, which is visualized in figure 5.3.
The cell index in wall-normal direction is plotted against the y-coordinate of the cell centre. It can be observed
that the same uniform spacing is used for both cases between y ∈ [0,3]. The case with a high top boundary
then stretches faster compared to the lower boundary. That is, there are more cells in wall-normal direction
between y ∈ [3,20] for the case with a low boundary compared to the case with a high boundary. This obser-
vation leads to rejecting the hypothesis that the spots from figure 5.1 are purely a result of discretization error.
It is still possible the spots originate from numerical errors induced by modeling errors however. Running the
DNS of the low boundary case with a refined mesh can be used to definitively show this to be the case. This
is outside of the scope of this work however.

180 190 200 210 220 230 240 250

X [-]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
 [-

]

Mesh

Figure 5.2: Wireframe of part of the DNS mesh used in the simulations of the step case with the lower top boundary. Only every 8th and
16th point are plotted in the wall-normal and streamwise direction respectively
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Figure 5.3: Cell location in the wall-normal direction of the two step datasets compared.

From the perspective of the GOROM technique, the mystifying topology induced by the lower top boundary
provides an opportunity to test the behaviour of the GOROM technique on datasets in the presence of some
of this unnatural topology. The mean or base flow will be constrained during the simulations. This is due to
the fact that the mean flow or base flow are not very interesting from the perspective of interpretation. The
spots are present in the mean flow however. Thus, if the mean flow is used as the constrained mode, the
GOROM technique will not be able to include the topology in the optimizations. Therefore, it is decided to
constrain the base flow for the lower boundary cases, rather than the mean flow. This has as a consequence
that the mean-flow distortion will show up as part of the POD.

The optimization performed for the step cases can be found in table 5.2. A few notes are of importance
before considering the results for these cases. First of all, there is the number of modes present in the GOROM
decomposition (i.e. the column N in table 5.2). Case A and B only include 3 GOROM modes to see the effects
of the mean-flow distortion. Case C has 4 modes such that convection dominated effects can be captured.

Moreover, the parameter ε in this case represents the mode perturbation. This parameter is applied very
similarly to the flat plate case. An example of how these perturbations are applied to the coefficients can be
found in equation 4.2. This allows some more exploration of the overall shape of the objective functional.

Furthermore, case A-C have a larger streamwise domain than case D-H. As mentioned before, the outflow
of the domain uses a technique called selective-frequency damping to quench the TS before flowing out of
the domain. The DNS of cases D-H have a larger area in which selective-frequency damping is applied. Thus,
cases D-H need to be cut-off earlier than cases A-C.

Table 5.2: Cases used in the optimizations. A description of the goal functions can be found in table 3.1.

Case
Name

Domain
Height

Constrained
Mode

Streamwise
Domain

N ε Goal Function

Case A 20 Base flow y ∈ [0,380] 3 0 Global U
Case B 20 Base flow y ∈ [0,380] 3 0.3 Global U
Case C 20 Base flow y ∈ [0,380] 4 0.3 Global U
Case D 100 Mean flow y ∈ [0,350] 4 0.0 Global U
Case E 100 Mean flow y ∈ [0,350] 4 0.1 Global U
Case F 100 Mean flow y ∈ [0,350] 4 0.3 Global U
Case G 100 Mean flow y ∈ [0,350] 4 0.0 Real Fourier Amplitudes
Case H 100 Mean flow y ∈ [0,350] 4 0.3 Real Fourier Amplitudes

Finally, for the cases considered throughout this chapter, the Reynolds number, regularization parameter
β and the weak boundary strength σ all use the same values as used in the flat plate as presented in section
4.1.
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5.2. POD Reduced-Order Model
Similar to the flat plate case, the POD modes will be used as a benchmark to compare the performance of the
GOROM modes to. Inspecting table 5.2, two sets of POD modes are required. One set for cases A-C and one
set for cases D-H. Before performing the SVD to obtain the POD modes, the base flow in cases A-C and the
mean flow in cases D-H are subtracted from the snapshots. The resulting normalized singular values of both
sets of POD modes can be found in figure 5.4.
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Figure 5.4: Normalized singular values of both the datasets considered in this work.

As mentioned before, the convection dominated structures can be identified by pairs of singular values
and shape functions that are phase shifted. An example of which would be the first two modes and the third
and fourth mode from cases D-H. The shape functions of the POD modes show the phase shift as seen in fig-
ure 5.5. Considering their amplitudes plotted in figure 5.6, mode 1 & 2 seem to correspond to the fundamental
wave and mode 3 & 4 to the first harmonic. Do note that the projected amplitudes are found by multiplying
the singular values by the right singular vectors. All other shape functions can be found in appendix E.2.

The third mode from the low boundary case is of particular interest. This third mode is not paired with
any other mode in figure 5.4. Inspecting the shape and projected amplitudes in figure 5.8 reveals the nature
of this mode. That is, the mode barely fluctuates in time and the spots observed in the mean-flow distortion
are present in this mode as well. Furthermore, the overall topology of the mode is very similar to the topology
of the mean-flow distortion. These observation lead to the conclusion that the third mode is equivalent to the
mean-flow distortion obtained by other means. Normally, the POD filters the mean-flow from a given set of
snapshots in the form of a first (or zeroth) mode. In this case however, the amount of energy in the remaining
mean-flow distortion is lower than the amount of energy in the first two modes. This is due to the fact that
most of the mean flow has been subtracted from the snapshots through subtracting the base flow. The lower
amount of energy results in a smaller singular value and thus the ‘mean’ mode shows up further into the set
of modes.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.5: Plot of the first two POD modes used in cases D-H. The modes originate from the x-velocity.
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Figure 5.6: Non-normalized, projected amplitudes of the first four POD modes from case D-H.
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Figure 5.7: Shape function of the third POD mode from the dataset of case A-C.
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Figure 5.8: Non-normalized, projected amplitudes of the first three POD modes from case A-C.

5.2.1. Verification
To select a sufficient number of timesteps and integration mesh for all cases from table 5.2, a temporal refine-
ment test is performed in table 5.3. In the simulations for cases A-C, a ROM with 5 POD modes is constructed
to include the first two convection dominated structures and the mean-flow distortion. In the simulations
for cases D-H, a ROM with 4 POD modes is constructed, as the mean-flow distortion is included in the con-
strained mode. The goal function is the global U goal function, or goal function number 1 from table 3.1. As
with the flat plate case, only 20 snapshots are available per period. The value for the reference data is required
at each timestep for the weak boundary condition. The reference data is interpolated for the timesteps that
are between two snapshots. It is chosen to use a second order Lagrange polynomial for this purpose using
the closest three snapshots.

As computational cost is a concern, a difference in objective functional between two consecutive number
of time steps of two orders of magnitude lower than the value of objective functional is deemed sufficient. As
seen in table 5.3, this achieved for 160 timesteps for case A-C and 320 timesteps for case D-H.
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Table 5.3: Values of the OF for several number of timesteps. The difference columns are with respect to case with the largest number of
timesteps.

Time
steps

Objective Func-
tional Case A-C

Objective Func-
tional Case D-H

40 2.5181 ·10−3 9.9078 ·10−3

80 1.5423 ·10−3 1.1485 ·10−2

160 1.2679 ·10−3 1.2518 ·10−2

320 1.2439 ·10−3 1.3265 ·10−2

640 N/A 1.39169 ·10−2

The mesh discussed in section 5.1 is downsampled to investigate if the spatial discretization can be lower
than the discretization used to obtain the DNS data. This is achieved by means of downsampling factors, see
section 4.1 for an explanation of these factors. From table 5.4 it can be inferred that, counter to the flat plate
case, the mesh can not be downsampled and the full DNS mesh needs to be used as the integration mesh.

Table 5.4: Values of the OF for several mesh refinements and number of timesteps. The columns x & y denote the downsampling factor
used.

x y Objective Func-
tional Case A-C

Objective Func-
tional Case D-H

1 1 1.2679 ·10−3 1.3265 ·10−2

1 2 4.3818 0.27531
2 1 4.1711 2.0574 ·10−2

5.2.2. ROM Performance
Figure 5.9 shows the value of the objective functional plotted against the number of POD modes retained
to evaluate the objective functional for cases A-C and cases D-H. Although adding the first few modes does
increase the performance of the POD modes in both cases, the performance of the POD rather paradoxi-
cally does not increase after 5 and 6 modes for the low and high boundary cases respectively. Increasing the
number of POD modes in the simulation should theoretically result in a more accurate ROM. As previously
mentioned, the number of snapshots available per period is rather limited. Although the interpolation be-
tween snapshots may be sufficient for the fundamental wave, it is questionable whether this holds for the
higher harmonics as well.
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Figure 5.9: Value of the objective functional plotted against the number of POD modes retained in the basis. The goal function is the
global u goal function from table 3.1.
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To create the benchmark to compare the GOROM modes to, the performance of the POD modes in all rele-
vant norms from table 3.1 are presented in table 5.5. Do note that the POD modes for each case are truncated
at the same number of modes as the GOROM modes optimized for from table 5.2.

Table 5.5: Values of the OF for several choices of goal function. The number of POD modes retained in the basis corresponds to the
column N from table 5.2.

Goal
Function

Goal Function Name Objective Func-
tional Case A-B

Objective Func-
tional Case C

Objective Func-
tional Case D-H

1 Global U 1.8221 ·10−3 2.3115 ·10−3 1.3262 ·10−2

2 Local U 4.9312 ·10−5 1.2821 ·10−4 2.6962 ·10−4

3 Global U2 2.3814 ·10−3 3.3126 ·10−3 1.8002 ·10−2

5 Real Fourier Amplitudes 3.9899 ·10−5 1.1648 ·10−4 2.1323 ·10−4

6 Nonlinear Interaction
Perturbation Field

3.0402 ·10−5 1.047 ·10−4 1.6036 ·10−4

Comparing the results from table 5.5 with the results in the flat plate case (table 4.3) shows that the step does
add some more complexity to the problem. That is, the step cases have an objective functional a few orders
of magnitude higher than the equivalent flat plate case for any choice of goal function. This observation pro-
vides a motivation to investigate if the GOROM modes are able to provide a more accurate basis than the POD
modes when constructing a ROM with the global u goal function.

A relevant observation is the accurate performance of goal number 6. Goal function 6 aims to quantify
how well nonlinear effects in the perturbation field are resolved. It is hypothesized that the step causes non-
linear interactions in the perturbation field to such extend that a truncated POD basis would perform poorly
in this norm relative to other norms. This does not seem to be the case however, suggesting that the pertur-
bations grow mostly linear on top of the base flow.

5.3. Goal-Oriented Reduced-Order Model
This section treats the results from the optimizations. First the numerical results from table 5.2 are discussed.
The possible physical interpretation of the modes from the relevant cases are then discussed in the subse-
quent subsection.

5.3.1. Optimizations
The reason for including the mode perturbation ε becomes apparent when considering table 5.6. This table
shows the results from all cases from table 5.2 compared to the POD results. The parameter in the final
column (∆c) is defined as in equation 5.2.

∆c = ||cPOD −cGOROM||
||cPOD||

(5.2)

where cPOD and cGOROM are the coefficient vectors that reproduce the POD and GOROM modes from the
secondary basis. This parameter is a scalar value quantifying the relative difference in optimization param-
eters. This parameter is zero for case A, which thus implies that the GOROM modes are exactly the same as
the POD modes. Case B does show a difference. This difference is observed even though the only difference
with respect to case A is the starting condition of the optimization. Thus, at least two minima of the objective
functional are located relatively close to each other.

Furthermore, the final objective functional for case B is smaller than the final objective functional of case
A. This observation is interesting from a numerical modeling perspective. That is, a perturbation applied to
the starting conditions of the optimization results in a ROM which is more accurate than if started from the
POD modes. This suggests that the shape of objective functional for this case is such that the POD modes do
not reside in or close to the global minimum of the objective functional.

The results from case D-F confirm the hypothesis that the objective functional is relatively complex and
shows several minima in close proximity to each other. That is, the difference in starting conditions of all
three cases is not exceptionally large. Despite this fact, each case converges to a different minimum. The per-
turbed starting conditions do not show improved performance however. Nevertheless, case F is perturbed
further away from the POD modes than case E, yet still results in a set of modes that is numerically more
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accurate than the modes from case E.
The behaviour of the GOROM technique with a different goal function performs considerably better than

the POD modes. Interesting is that in case G only minor changes to the set of coefficients are made. The
changes in case H are much more pronounced and provide an even lower value for the objective functional,
again showing the complexity of the overall shape of the objective functional.

Furthermore, the goal function considered in case G and H is also of note. That is, the objective function is
both a local function (i.e. only nonzero around the area of the step) and aims to optimize the performance of
the ROM to quantify the fundamental wave. The results presented here show the applicability of the GOROM
technique to construct a set of modes better equipped to find ROMs for more relevant goal functions.

Table 5.6: Results of the optimizations defined in table 5.2. Some of the relevant parameters are present here as well for clarity. The goal
function numbers correspond to the numbers found in table 3.1.

Case
Name

Domain
Height

N ε Goal
Function

POD OF GOROM OF ∆c

Case A 20 3 0.0 1 1.8221 ·10−3 1.8221 ·10−3 0.0
Case B 20 3 0.3 1 1.8221 ·10−3 1.5194 ·10−3 0.1535
Case C 20 4 0.3 1 2.3115 ·10−3 1.4555 ·10−3 0.1851
Case D 100 4 0.0 1 1.3262 ·10−2 1.3254 ·10−2 7.5539 ·10−4

Case E 100 4 0.1 1 1.3262 ·10−2 2.1352 ·10−2 0.075351
Case F 100 4 0.3 1 1.3262 ·10−2 1.7346 ·10−2 0.31704
Case G 100 4 0.0 5 2.1323 ·10−4 6.1832 ·10−5 1.4525 ·10−3

Case H 100 4 0.3 5 2.1323 ·10−4 2.2376 ·10−5 0.19426

5.3.2. Mode Shapes and Amplitudes
As seen from table 5.6, case A, D and G do not yield a notable change in coefficients and case E and F are out-
performed in numerical accuracy by the POD modes. Thus, only case B, C and H are of further interest. All
primary shape functions for all variables not discussed in the upcoming discussion can be found in appendix
E.3.

The GOROM shapes of the x-velocity from case B and their associated amplitudes in figure 5.10 show
some interesting behaviour from the third mode. The shape of the third mode seems a combination of the
mean-flow distortion and the first harmonic. With this in mind, the behaviour of the associated amplitudes
seems surprising. That is, the time behaviour of this mode corresponds to the fundamental wave where
the spatial orientation suggests otherwise. This could be a result of a structure that oscillates at the same
frequency as the fundamental harmonic, but has a higher convection velocity compared to the main wave
passing over the step.
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(a) Mode 1 (b) Mode 2

(c) Mode 3
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Figure 5.10: Plot of the GOROM modes of case B and their associated amplitudes. The modes originate from the x-velocity.

This hypothesis can be tested when considering the shapes (figure 5.12) and amplitudes (figure 5.11) from
case C. That is, if the added GOROM mode has a shape with similar topology and an amplitude that is phase
shifted in time, the two modes model a convection dominated structure which would provide evidence for
the physicality of the modes. This does not seem to be the case however. That is, mode 4 does oscillate at the
same frequency as mode 3, yet is not phase shifted in time by 90◦, nor has similar energy. The hypothesis is
that mode 3 in case B and mode 3 & 4 in case C are correcting for the presence of the earlier observed spots,
rather than representing some physical structure.
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Figure 5.11: Amplitudes of the modes plotted in figure 5.12.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.12: Plot of the GOROM modes of case C. The modes originate from the x-velocity.

Case H has a top boundary placed further away, which results in the spots not being present in the mean-
flow distortion. The mode shapes (figure 5.13) and amplitudes (figure 5.14) show some interesting behaviour
of the third and fourth mode. On the surface, mode 3 does not seem to be periodic. However, when a Fourier
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transform of the amplitude is performed in figure 5.15a, it can be seen that the mode amplitudes are a super-
position of the fundamental wave and first harmonic. The same process can be applied to the amplitudes of
mode 4 in figure 5.15b. Again, a fundamental and first harmonic component are present. The fundamental
component of the amplitudes from mode 3 and 4 have a different amount of energy and are phase shifted
by 180◦, similar to the results from case C. The fundamental component of mode 4 from case H is more pro-
nounced than the fundamental component from case C however.

The presence of these fundamental components of the amplitudes in the shapes that have a spatial ori-
entation similar to that of the first harmonic structure seems to suggest the presence of a structure with a
convection velocity higher than that of the main wave. Problematic however, is that the time behaviour is not
necessarily shifted by 90◦ and the discrepancy in the amount of energy in the mode is equally not convincing.
No new conclusions or insights can thus be obtained by inspecting the GOROM modes and their amplitudes
for these particular cases that can not be obtained by inspecting the POD modes.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 5.13: Plot of the GOROM modes of case H. The modes originate from the x-velocity.

5.4. Concluding Remarks
The increase in numerical accuracy of the ROM constructed using GOROM shows the potential of this GOROM
method. Quite a few different minima are found in close proximity to each other through the perturbation
parameter ε. The set of modes found in these minima did not provide a set that is any more interpretable than
the POD modes, yet the presence of the many minima do lower the confidence that the global minimum of
the objective functional has been found. This is relevant for the discussion, as it might be possible that a set
of modes exist that shows a value for the objective functional lower than the value found in any of the cases
here and provide a set of modes that lead to some new insight into the physics of the problem.

If no new physics are captured within the basis however, the increase in numerical accuracy remains
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Figure 5.14: Amplitudes of the modes plotted in figure 5.13.
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Figure 5.15: Amplitudes of the mode 3 and 4 from case H decomposed into their harmonic components.

unexplained. The subgrid-scale (SGS) model may provide the explanation for the increase in numerical ac-
curacy. The SGS model attempts to model the effect of the truncated scales on the resolved scales when
truncating the POD modes. In doing so, the SGS introduces some model error. The current hypothesis is that
the GOROM technique is correcting for this model error by slightly modifying the modes. As the perturba-
tions grow largely linear on top of the base flow, the correction made do not considerably change the result,
yet do result in a slight increase in numerical performance.



6
Computational Cost and Scaling

This chapter evaluates the computational cost of the problem and investigates the scaling of the parallel im-
plementation. The parallel implementation is achieved by dividing the cost of the spatial integrals over the
processors. The case that is investigated to quantify the cost, is the step case with the top boundary at y = 100
and a streamwise domain of x ∈ [0,380]. This totals 2,801,040 domain integration points. As the problem does
not change when increasing the number of processors, this chapter will exclusively deal with strong scaling.
All calculations in this chapter are performed on a Beowulf cluster on one node. This node has a maximum
of 20 Intel(R)Xeon(R) E5-2670v2 processors available.

Furthermore, this chapter also will treat the cost of adding more basis functions, both primary and sec-
ondary. Shajahan (2016) has already performed such an investigation for the 1D incompressible Navier-
Stokes. However, the implementation here is different for two distinct reasons. The first is the fact that the
basis functions and reference data are discrete rather than continuous, adding cost for interpolation. The
second difference results from the fact that prior to the simulation of the state, adjoint and gradient the im-
plementation here will save value of the basis functions and their first and second gradients at the integration
points into memory. No new memory needs to be allocated nor do the basis functions need to be evaluated
during any of the simulations, leading to a substantial increase in performance.

The remainder of this chapter is structured as follows. First the parallel scaling of the problem will be
discussed, after which the influence of the primary and secondary basis functions are treated. These sections
can be used to estimate the order of magnitude of the computational cost for further problems.

6.1. Parallel Scaling
The evaluation time of the total gradient1 shows a linear decrease as the number of cores increases, as seen
in figure 6.1. Do note that the magnitudes of the different lines in figure 6.1 are not directly comparable to
each other, as changing the number of primary basis functions will affect the number of degrees-of-freedom
in the system. Changing the number of degrees-of-freedom in a system of nonlinear equations may lead to
an increased or decreased number of required iterations for one timestep, skewing the comparison. This is
clearly very dependent on the physical problem that is solved and thus no definitive conclusions can be made
from a comparison of the total evaluation time for different cases.

The speedup ratio2 for the total gradient and the three components can be found in figure 6.2. Interest-
ingly the speedup for 2 & 3 primary basis functions seems to be higher than the ideal speedup. The com-
ponents causing this speedup are the state and adjoint rather than the gradient. Furthermore, the speedup
seems to jump around four cores. This behaviour can be explained by considering the cache available for
each core. For the processors used in these calculations this is 6.4 gigabytes. The memory cost for this par-
ticular case is around 20 gigabytes. Aside from the computational cost, the majority of the memory cost will
be divided over the cores as well. Thus, from four cores onward, the memory required for each processor fits
inside the cache of the processor causing a jump in performance.

This hypothesis is confirmed once considering the total speedup between four and twenty cores. For 2 φ,
the total evaluation time is reduced by a factor 4.9 and for 3 φ this factor is 4.4, both below the ideal speedup.

1i.e. the cost of the state, adjoint and gradient integrals combined
2That is, the evaluation time for a given number of cores divided by the evaluation time for one core.
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Figure 6.1: Evaluation time of the total gradient plotted against the number of cores used for several numbers of primary basis
functions. Note that the problem does not change as the number of cores increases, thus strong scaling is investigated here.

The scaling for 1 φ is also interesting. From around 12 cores the performance of the state simulations
seems to start to drop off, implying that the processors are waiting for the other processors to complete.
The adjoint and gradient still continue along the same slope however, implying a better scaling for these two
components.

6.2. Influence of the Number of Basis Functions
The computational cost is also dependent on the choice of basis. That is, increasing the number of primary
and secondary bases will increase the computational cost associated with the problem. The amount by which
changing these parameters influences the cost of the integration, is the subject of this section. First the influ-
ence of the number of primary bases is discussed, after which the influence of the number of secondary bases
is treated. All simulations in this section will be performed using 20 cores on the aforementioned Beowulf-
cluster.

6.2.1. Influence of the number of φ
To test the increase in computational cost for different numbers of primary basis functions, the cost of eval-
uating the gradient terms is estimated. The state and adjoint are left out of this comparison as the number of
degrees-of-freedom change as φ changes, and is thus very case specific. This is not true for the gradient, as
this is simply an integral of space and time without any iterations, which allows for a much fairer comparison.

When inspecting the terms in the gradient expressions, some terms show sums over the number of primary
basis functions. Hence, the number of primary basis functions will increase the number of terms to integrate
per optimization coefficient and thus also the amount of operations that need to be performed to find the
gradient for 1 coefficient. Furthermore, the increase in the number of primary basis functions will also in-
crease the number of secondary basis functions, increasing the number of optimization coefficients. As these
two effects amplify each other, a nonlinear growth in computational cost is expected when increasing the
number of primary basis functions.

Inspecting figure 6.3, the nonlinear trend can indeed be observed. That is, when the first four data points
are used to construct a linear regression line and extrapolated to 9 primary basis functions, the striped red
line emerges. As can be seen, the slowdown ratio diverges from this linear regression line as the number of
primary basis functions increases. It should be noted that this nonlinear effect seems to be relatively weak
however.
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(b) State
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Figure 6.2: Speedup of the gradient, including the individual components that make up the total gradient. This investigation uses strong
scaling.

Figure 6.4 shows a relative breakdown of the components making up the gradient integral. The gradient
is divided up into four components:

1. PDE Terms: These terms are all the terms related to the model equations (i.e. equations 3.79-3.89 &
3.97-3.102)

2. Goal Terms: These terms are related to the total error estimation (i.e. equation 3.78 & 3.96)

3. Orthonormality Terms: As the name suggest, these terms are related to the orthonormality of the
modes (i.e. equation 3.91 & 3.104)

4. Initial Condition Terms: These terms estimate gradient of the initial conditions of the problem (i.e.
equations 3.90 & 3.103)

It was found that the cost for the initial conditions and orthonormality terms are negligable compared to the
PDE and goal terms. This is not unsurprising as both the initial conditions and orthonormality terms are not
integrated in time. Since these two terms are substantially below 1% of the total integration time, they are not
plotted in figure 6.4.
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Figure 6.3: Slowdown ratio plotted against the number of primary basis functions for several choices of the number of secondary basis
functions.
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Figure 6.4: Relative computational cost of the different components making up the gradient integral

The trend of the cost for the PDE terms increasing relative to the cost of the goal terms shown in figure 6.4
can be explained by the considering the reference data. The reference data is defined on a discrete grid. Thus
interpolation is required to estimate the value of the reference data at a given coordinate. This interpola-
tion is only done once per timestep per integration point for all the optimization coefficients. Thus, as the
number of optimization coefficients increases, the cost for interpolation does not. The amount of terms inte-
grated does increase as the number of optimization coefficients increases, causing the asymptotic behaviour
observed in figure 6.4.

6.2.2. Influence of the number ofψ
To estimate the influence of the number of secondary basis functions the total gradient estimation time can
be used again, since the number of degrees-of-freedom in the system does not change, nor does the shape of
the primary basis functions. The slowdown ratio plotted against the number of secondary basis functions for
two different numbers of primary basis functions can be found in figure 6.5.
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Figure 6.5: Slowdown ration plotted against the number of secondary basis functions.

Figure 6.5 shows a linear increase in computational cost when increasingψ for a givenφ. The slope of this in-
crease is dependent on the number ofφ used. The explanation for this difference in slope can be found in the
number of optimization coefficients. That is, when one secondary basis function is added for for 2 primary
basis functions, an additional 2 optimization coefficients will be added. When 3 primary basis functions are
considered however, 3 optimization coefficients are added. The increase in cost is still linear, yet larger due
to the extra added optimization coefficients.



7
Conclusion and Recommendations

7.1. Conclusions
This work extended the semi-continuous formulation of the goal-oriented, reduced-order modeling tech-
nique to the incompressible Navier-Stokes equations with arbitrary dimensions and inhomogeneous bound-
ary conditions. This work verified the expressions using manufactured solutions for a 1D, 2D and 3D case,
with both a linear and nonlinear goal function. Furthermore, this work applied the GOROM technique to two
cases of a 2D transitional boundary layer on a flat plate by recombining a set of modes obtained through the
POD into a new, more optimal basis.

The first of the two cases investigated DNS data of a Tollmien-Schlichting wave convecting over a flat
plate. As expected, the POD modes captured the most relevant structure in the first two modes. Optimizing
starting from these modes lead to a minor numerical improvement, but did not yield considerably different
modes. This is attributed to the low amount of content available in the reference data. Furthermore, the
behaviour of the structure on top of the base flow can mostly be described using linear dynamics. Thus trun-
cating the POD basis does not lead to notable errors in the representation of the flow field constructed using
a ROM of the first two modes.

Still, some optimizations did reach a different set of modes compared to the POD modes. This was only
achieved after starting the optimization away from the POD modes however. Moreover, the resulting modes
reside in a local minimum of the objective functional, as the temporal behaviour of the modes did not show
signs of long-term accurate behaviour and the objective functional was higher compared to the one obtained
through the POD modes.

The second case considered DNS data of the same boundary layer on a flat plate. This case included a
forward-facing step however, complicating the flow problem. The GOROM technique was applied to two
datasets of this problem. Both datasets model the same physical problem, but differ in the height of the do-
main. The lower domain case showed some strange topology occurring in the mean-flow distortion, which
is attributed to either purely model error, or an interaction between model and discretization error. Never-
theless, the GOROM technique was applied and found that starting the optimization from the POD modes
did not yield any improvement in the objective functional. Contrary to the flat plate case, an improvement
was found when using a set of modes started away from the POD modes. This improved set of modes did
not yield any more insights into flow physics, yet it does show the applicability of the GOROM technique to
provide numerically more accurate ROMs.

The case with a higher domain only showed minor improvements in the objective functional over the
POD when using the same goal function as the POD. This minor improvement is attributed to the model con-
straint. It is postulated that algorithm slightly modifies the modes to reduce the model error introduced by the
SGS model. Three different starting conditions were applied to investigate the shape of objective functional
for this combination of goal function and domain height. Each starting condition converged to a different
minimum. The case with the lower domain height showed similar behaviour. These results imply that the
shape of the objective functional is relatively complex and shows several minima in close proximity to each
other.

The GOROM technique did make a much more considerable improvement in accuracy when a different
goal function was used. Both starting from the POD modes and a perturbed set of modes yielded a ROM
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which is more accurate. The largest decrease in objective functional was observed in the perturbed case.
Furthermore, both starting conditions converged to a different minimum, insinuating a complex objective
functional for this choice of goal function as well. The set of modes did not provide new insights, as the be-
haviour of the amplitudes and shape of the newly found modes did not show signs of what would be expected.

Finally, the scaling of the parallel implementation of the GOROM technique was tested. It was found that
the evaluation of the components scale linearly with the number of cores used for a 2D case with 2,801,040
integration points, at least until 20 cores. Some of the terms showed better than ideal scaling, which is at-
tributed to a jump in performance when the required memory per core fits inside the cache of the processor.

Finally, the increase in computational cost was estimated for the same case when increasing the num-
ber of primary and secondary basis functions. It was found that the computational cost of the gradient is
nonlinearly dependent on the number of primary basis functions and linearly dependent on the number of
secondary basis functions.

7.2. Discussion
The results highlight one of the deficiencies of the GOROM technique. That is, the objective functional might
hit a local minimum. Specifically for the flat place case this is quite detrimental for the set of modes that
result. That is, the POD provides a more optimal set of modes for much less computational cost. Further-
more, the POD is much simpler to perform, as the tools to perform the decomposition are readily available
in most popular programming languages. This flat plate case thus provides a very good example that a clear
motivation needs to present before applying the GOROM technique.

The optimizations of the step case similarly found several minima of the objective functional in close
proximity. The perturbation parameter ε was used to enforce different starting conditions in a relatively ar-
bitrary fashion. There many more possibilities to enforce different starting conditions and thus possibly find
different minima. The fact that all practical cases considered in this work converged to different minima is
evidence that the optimization method applied is not sufficient to confidently say that a global minimum has
been found.

Finally, a limitation is present in the reference data. That is, a relatively low number of snapshots per pe-
riod and a low number of periods available from the DNS data results in problems when simulating higher
harmonics. These problems are particularly pronounced for structures with very low amplitudes, as predi-
cated by the results from the first harmonic structure in the flat plate case.

7.3. Recommendations & Future Work
Several recommendations can be made for further applications. Firstly, surrogate models of the objective
functional can be used to approximate the shape of the objective functional and more easily be able to find
the global minimum, which would overcome the observed problems with local minima in this work. This
does come at additional computational cost however.

The limitation regarding the reference data can be solved by adding additional snapshots and periods to
the reference data. Alternatively, it is possible to reconstruct the instantaneous flowfield from the Fourier-
transformed reference data. This requires less memory and would allow for longer simulation times as well.
A downside is that an additional assumption is made that the first few harmonic Fourier components cover
all the relevant content.

Furthermore, the POD has been used as a benchmark in this work. However, other decomposition tech-
niques more applicable to these problems do exist. The dynamic mode decomposition and spectral proper
orthogonal decomposition have been named as possibilities earlier in this work. In the future, the GOROM
modes could be compared to modes from these decomposition techniques to further establish the applica-
bility of the GOROM technique.

Another possible application of the GOROM method can be found in so-called active laminar flow con-
trol techniques. These techniques actively try to lower the growth rate of instabilities in the boundary layer,
delaying turbulent breakdown and extending the range of laminar flow over this same surface. The GOROM
modes could provide a basis for a ROM used to inform the actions of the control scheme. As also observed
in this work however, the online evaluation of the nonlinear terms for a ROM of these types of problems can
still be relatively expensive. To reduce the online computational cost for the nonlinear terms, methods like
discrete empirical interpolation could be used (see e.g. Chaturantabut and Sorensen (2009)).

Furthermore, due to the modeling constraint this method is much more applicable for cases with more
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nonlinear interactions in the perturbation field. An example of such a case would be any of the cases con-
sidered here with a wavepacket introduced at the inflow. The additional nonlinear interactions of the per-
turbation field will likely lead to a set of POD modes with a much less sharp drop-off of the singular values,
increasing the error when using a truncated set of POD modes.

Casacuberta et al. (2021) is investigating a 3D transitional boundary layer with a forward-facing step
where the transitional behaviour is dominated by a different type of instability than considered in this work.
This so-called crossflow instability is more nonlinear in nature, which is a good motivation to study the prob-
lem with the GOROM technique. The terms presented in this work are verified for 3D problems, thus a logical
extension of this work is to investigate this more complex, nonlinear boundary layer. However, as seen in
chapter 6, the computational cost of evaluating the gradient is quite considerable. Moreover, the conjugate-
gradient method requires two gradient calculations per iteration and a few iterations to converge. One itera-
tion of the trust-region algorithm thus already requires several calculations of the gradient. Generally speak-
ing, the optimizations for the cases with the step required around 70 hours of walltime to converge using 20
cores. Assuming the same number of iterations are required to converge for similar cases, a total gradient
evaluation time of roughly 2,000 seconds should be aimed for.

The refined mesh from Casacuberta et al. (2021) contains 200 million cells, roughly a factor of a 100 more
than the case considered here. Making the assumption that the number of timesteps does not need to be al-
tered and the computational cost scales linearly with the number of integration points relative to the 2D case
considered in this work1, the cost for solving the gradient with 1 core can be estimated to be roughly 8.0 ·106

seconds. Assuming the scaling observed in chapter 6 for 3φ can be extrapolated to this case, this would result
in a little over 3,000 cores to have a gradient update every 2,000 seconds and make this case computationally
tractable. According to the author of Casacuberta et al. (2021), data with a coarse mesh of 12 million cells is
also available. A final optimization should be performed on the 200 million cell mesh, however it is recom-
mended that the coarse data is to be used first. This makes it possible to test for different parameters and to
see if it is even useful to apply the GOROM technique to this case before investing the substantial computa-
tional resources on the fine mesh.

Finally, to select a machine architecture the amount of memory required is of importance. It was found
that the bulk of the memory requirement comes from the following three sources:

1. Loading the reference data into memory

2. Loading the discrete basis functions into memory

3. Saving the value of the basis functions and their first & second gradients at the integration points

The first two points in this list can easily be estimated for any given case as this information should be readily
available. Within the current infrastructure, the memory requirement for the third and final point can be
estimated to be:

Required Memory =
(
1+nDim+ nDim · (nDim+1)

2

)
·nVar ·nIP · (N +M) ·d2M+6nIP · i2M

= 40 ·nIP · (N +M) ·d2M+6 ·nIP · i2M (7.1)

where nDi m is the number of dimensions of the flow problem (i.e. 3 in this case), nV ar is the number of
variables (i.e. 4 in this case), nI P is the number of integration points used to integrate the weak forms, N is
the number of primary basis functions, M is the number of secondary basis functions and d2M & i 2M are
the memory requirement for a double and integer value respectively.

1This assumption is faulty due to the fact that adding another dimension increases the number of terms evaluated as well. This is
somewhat compensated by the fact that the number of integration points for the 2D case is rounded down for this analysis.



A
Additional Considerations Stability Theory

This appendix is an additional investigation into the literature of stability theory. In what follows, this work
follows Schmid and Henningson (2001) unless otherwise specified. This appendix starts by considering the
nonlinear perturbation equations as seen below:

∂ui

∂t
=−U j

b

∂ui

∂x j
−u j

∂U i
b

∂x j
− ∂p

∂xi
+ 1

Re
∇2ui −u j ∂ui

∂x j
(A.1)

∂ui

∂xi
= 0 (A.2)

A.1. Orr-Sommerfeld Equations
The simplifications applied to arrive at the Orr-Sommerfeld (OS) equations are the following. First of all, the

nonlinear perturbation term u j ∂ui

∂x j is dropped from equation A.1 as the perturbations are assumed negligible

compared the base flow. Next, the base flow is assumed parallel (that is: Ub = [
Ub(y),0,0

]
). Note that when

considering a spanwise invariant flow, it is also possible to include a z − component in the base flow of the
form Wb(y). For the sake of simplicity however, this is not included here. From these simplifications, the
following fourth-order differential equation for the y perturbation velocity is recovered:[(

∂

∂t
+Ub

∂

∂x

)
∇2 − d 2Ub

d y2

∂

∂x
− 1

Re
∇4

]
v = 0 (A.3)

The normal vorticity is defined as:

η= ∂u

∂z
− ∂w

∂x
(A.4)

The differential equation describing the normal vorticity can be found to be:[
∂

∂t
+Ub

∂

∂x
− ∇2

Re

]
η=−dUb

d y

∂v

∂z
(A.5)

The final step in obtaining the OS-equations is to assume a solution of the following form:

v(x, y, z, t ) = v̂(y)e i (αx+βz−ωt ) + c.c. (A.6)

η(x, y, z, t ) = η̂(y)e i (αx+βz−ωt ) + c.c. (A.7)

whereα, β andω are the streamwise wavenumber, spanwise wavenumber and frequency of the perturbation
respectively and v̂ and η̂ are shape functions of the perturbations which are assumed to only change in the
y-direction. Furthermore, the term c.c. stands for complex conjugate. Substituting these into equation A.3
and equation A.5 yields the Orr-Sommerfeld equation for the wall normal velocity (equation A.8) derived by
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both Orr (1907) and Sommerfeld (1908), and the Squire equation (Squire, 1933) (equation A.9).[
(−iω+ iαU )

(
∂2

∂y2 −k2
)
− iαU ′′− 1

Re

(
∂2

∂y2 −k2
)2]

v̂ = 0 (A.8)[
(−iω+ iαU )− 1

Re

(
∂2

∂y2 −k2
)]
η̂=−iβU ′

b v̂ (A.9)

where k =
√
α2 +β2. Note that it is also possible to derive the Orr-Sommerfeld equations independently for

the spanwise and freestream perturbation by following a similar process for the spanwise perturbation w and
finding the streamwise perturbation u using the continuity equation (c.f. Boiko et al. (2012)). Note also that
the operators acting on v̂ and η̂ are linear, meaning that two (or more) perturbations can develop indepen-

dently from each other, which is a consequence of neglecting the nonlinear u j ∂ui

∂x j term in equation 1.6.
The general approach to solve the OS equations is not as relevant for the remainder of this work. There-

fore, the interested reader can find a discussion of the approach, as well as a few other notes on stability
theory in appendix A.2.

A.2. Solving the Orr-Sommerfeld Equations
Usually either the spatial or temporal approach is taken to solve the OS equations. The first subsection will
discuss these two approaches in more detail. The second subsection briefly treats the concept of inviscid &
viscous instabilities. Finally, the third subsection connects the OS analysis to a popular engineering technique
used to estimate the transition point of an airfoil.

A.2.1. Spatial & Temporal Approach
In solving the OS equations, usually either the temporal or spatial approach is taken. The temporal approach
assumes that the wavenumbers (α and β) are known and are real-valued. The OS-equations can then be
solved as an eigenvalue problem for the complex-valued frequencyω. The real part ofω (denoted byωr ) dic-
tates the value of the frequency of the perturbation, whereas the imaginary part (denoted by ωi ) dictates the
growth rate of the perturbation in time. From equation A.6 and equation A.7 it can be seen that when ωi = 0,
the perturbation neither grows or decays. This is called a neutral perturbation. Whenωi < 0 the perturbation
decays, which is called a decaying perturbation. And finally, in the caseωi > 0, the perturbation grows in time,
which is fittingly called a growing perturbation.

These classifications can be used to construct a so-called neutral stability curve for a given base flow, an
example of which can be seen in figure A.2. The OS equations are solved for a range of spatial wavelengths and
Reynolds numbers. The resulting imaginary parts of the temporal instabilities are used to classify the nature
of each combination. A curve can then be constructed in the α,Re-plane for which ωi = 0 (when a spanwise
wavenumber is included, the domain should be extended with a wavenumber β). This is the neutral stability
curve which separates the region of unstable perturbations from the region of stable perturbations.

The spatial approach reverses this analysis and finds the imaginary spatial growth rate, given a real-valued
temporal frequency. The resulting imaginary wavenumber uses the same classification of neutral, decaying
and growing perturbations, although the sign is switched and the perturbations grow in space rather than in
time.

The approach that best fits the problem of interest can be chosen. It should be noted however, that per-
turbations can grow in both space and time. Thus, an appropriate reference system needs to be chosen as
well when deciding on the approach to take.

Furthermore, solving for the spatial wavelengths (α) is more difficult due to the nonlinear appearance
in the OS-equations (see equation A.6). Gaster (1962) introduced a transformation allowing the problem to
be formulated as a temporal stability problem. The transformation can then recover the spatial growth rates
from the temporal rates as long as the growth rates are small.

Finally, the concept of convective and absolute instabilities are summarized in figure 1.2 from Boiko et al.
(2012) which is reprinted in figure A.1. An absolute instability grows in time in the entire domain, as seen in
figure A.1a, which is analogous to temporal growth. A convective instability grows while it is convected with
the flow, as seen in figure A.1b, which is analogous to spatial growth. One might assume that, when consider-
ing a convective instability, there is no downstream influence of a perturbation that has grown upstream. This
assumption leads to neglecting the elliptic terms in equation 1.6 and can be used to construct the Parabolized
Stability Equations which are discussed in the main body of work.
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Figure A.1: Graphical representation of an absolute and convective instability, from Boiko et al. (2012)

A.2.2. Inviscid & Viscous Instabilities
The OS-equations include a term that is inversely proportional to the Reynolds number. In practice the
Reynolds number can be very high, which can be used as a motivation to simplify equation A.3 and equa-
tion A.5 by Re →∞. In fact, when doing so the inviscid Rayleigh equations can be recovered (Rayleigh, 1880).

Rayleigh showed that the presence of an inflection point in the base flow
(
∂2U
∂y2 = 0

)
is a necessary condition

for a perturbation to grow, to which Fjørtoft (1950) added an additional necessary condition that the inflec-
tion point needs to be maximum of the spanwise mean vorticity. Regardless, the presence of an inflection
point in a base-flow profile is a strong indication of growth of a perturbation.

The instabilities created through these inviscid mechanisms are fittingly called inviscid instabilities. Al-
though maybe counterintuitive, viscosity can have a destabilizing effect on perturbations that are stable ac-
cording to the inviscid equations, which are called viscous stabilities (Reed et al., 1996).

A.2.3. eN Method
The LST forms the basis of the most popular transition prediction method called the eN method developed
by Ingen (1956). The idea behind the method is to relate the ratio of the amplitude of a range of growing
eigenmodes to their corresponding initial amplitudes using the N-factor:

N = ln

(
A

A0

)
(A.10)

If any of the amplitudes of the eigenmodes is above a certain critical value of N , a boundary layer is considered
to transition at that location. The value of this maximum N is found using empirical relations.

A.3. (Nonlinear) Parabolized Stability Equations
In deriving the OS-equations in section 1.2.1, the base flow is assumed to be parallel. This implies that the
velocity component V and possibly W of the base flow are only dependent on the wall-normal direction, and
that there is no base-flow component in the y direction. In other words, streamwise gradients of the base flow
are neglected. Some situations require these streamwise gradients to be taken into account however, which
has led to the development of the Parabolized Stability Equations (Herbert, 1997). These equations assume
the base flow to be of the from:

Ub = [
Ub(ξ, y,ζ),εVb(ξ, y,ζ),Wb(ξ, y,ζ)

]
(A.11)

where ε is a small parameter of the order ε = O(Re−1), ξ = εx and ζ = εz. Thus the assumption is that the
base flow varies slowly in the streamwise and spanwise directions, and that the wall-normal velocity is small
compared to the other two components.

Neglecting nonlinear terms and assuming spanwise invariant flow, the ansatz previously seen in equa-
tion A.6 is extended as seen in equation A.12 (Westerbeek, 2020). Note that here the q denotes a general
perturbation component.

q(x, y, z, t ) = q̂(x, y)e
i
(∫ x

x0
α(x∗)d x∗+βz−ωt

)
+ c.c. (A.12)

Assuming that the shape function slowly varies in the streamwise direction (i.e. q̂(x, y) = q̂(ξ, y)) can together
with an order of magnitude analysis be used to motivate neglecting the elliptic terms. The slow variation of
the shape function is enforced through the normalization condition, which is defined as:∫

q̂† ∂q̂

∂y
= 0 (A.13)
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where the dagger denotes the complex conjugate. With the elliptic terms neglected, the condition for a per-
turbation at the inflow of the domain can be prescribed, which can consequently be marched in the stream-
wise direction.

An even higher-fidelity model of perturbation growth is obtained when the nonlinear terms in equation 1.6
are not neglected. This does come with a cost: the growth of perturbations can not be individually analyzed
and several harmonics of the fundamental perturbation need to be accounted for at the same time. The
perturbation ansatz seen before extends further to equation A.14 (Westerbeek, 2020).

q(x, y, z, t ) =
m=M∑

m=−M

n=N∑
n=−N

q̂m,n(x, y)e
∫ xe

x0
α(x)m,n d x+βm z−ωn t (A.14)

Note that the addition of the complex conjugate is added by summing over the negative wavenumbers as
well. Furthermore, the summations should extend from −∞ to ∞, which in practice is not possible due to the
discrete representations necessary for any practical application. Therefore, usually the finite summations are
shown.

Finally, although not explicitly shown in the above equation, a slowly varying base flow and shape function
are also assumed, the latter implied through the normalization condition.

A.4. Additional Considerations Tollmien-Schlichting Problem
The main body of this work leaves out a few important results from investigations into transitional boundary
layers that are not as relevant for the work performed here, yet are important when discussing Tollmien-
Schlichting problem in general. The first of which is the Squire theorem, discussed here in the first subsection.
The second topic is the neutral stability curve for a flat plate boundary layer, which is on the of the results that
can be attributed to Tollmien (1929) and Schlichting (1933). Finally, the main body of the text only discusses
primary instabilities in the context of path A from figure 1.1. However, a discussion of secondary instabilities
and breakdown are required to encompass the full transition scenario of path A. This is subject of the last
subsection.

A.4.1. Squire Theorem
Squire (1933) proved that for any 3D perturbation, there is a 2D perturbation that has a lower critical Reynolds
number. As pointed out by Reed et al. (1996) however, this theorem only holds for incompressible, parallel
flows near the critical Reynolds number. Nevertheless, this theorem can be used to motivate investigating a
2D case rather than a 3D case in a flat-plate boundary layer, as the 2D waves provide the more ‘critical’ case.
Consequently, for the discussion surrounding the Tollmien-Schlichting problem, the spanwise wavenumber
β is assumed zero.

A.4.2. Neutral Stability Curve
Tollmien and Schlichting managed to calculate the neutral stability curve for a Blasius boundary layer by
solving an OS problem locally for increasing streamwise distances along the boundary layer. An example of a
neutral stability curve using a temporal approach for a Blasius boundary layer can be found in figure A.2.
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Figure A.2: Neutral stability curve of the Blasius boundary layer with contours of the growth rate. The shaded area has positive growth
rates and are thus unstable. Taken from Schmid and Henningson (2001).

The streamwise distance x can be related to the boundary layer (or displacement) thickness and thus to
the local Reynolds number for which the OS-equations is solved. This can all be used in a local streamwise
Reynolds number (Rex ), which uses the x-location as the length scale. This means that the curve in figure A.2
can be interpreted as follows: a perturbation with a given frequency ‘enters’ the boundary layer at Rex = 0.
This perturbation then convects along the flat plate, increasing the Rex (moving to the right in figure A.2). As
Rex is currently smaller than the critical Reynolds number for the given frequency, the perturbation decays.
At some point the perturbation reaches a value for Rex corresponding to the point for which αi = 0. At this
point, the perturbation hits the neutral stability curve. Moving further to the right, the perturbation enters an
unstable area of the boundary layer and starts to grow.

This growth is continued until a Rex is reached that corresponds to αi = 0 again. Moving further to the
right in figure A.2 now corresponds to entering a stable area. From here on out, the perturbation decays. The
first line of the neutral curve that perturbations encounter is called branch I of the neutral stability curve. The
second line is similarly called branch II.

A.4.3. Secondary Instabilities and Breakdown
Clearly the analysis above does not completely encompass the full transition scenario (as also seen in fig-
ure 1.1). If the analysis is followed, the perturbations grow between branch I and II and then decay further
downstream to zero. The final mechanisms causing transition are not captured due to the validity of the as-
sumptions made in the derivation. LST assumes that the perturbations grow by extracting energy from the
base flow (Schmid & Henningson, 2001). The assumption of a parallel base flow implies that this energy ex-
traction does not affect the base flow. This is only valid as long as the perturbations are indeed small. When
the perturbation amplitudes reach high enough values, the perturbations can saturate and cause a ‘new’ base
flow existing out of the original base flow and the saturated perturbations (Herbert, 1988). This new base flow
can be unstable to other 3D perturbations that are present in the boundary layer but have previously not
been unstable or negligibly unstable compared to the primary instabilities. These perturbations are usually
referred to as secondary instabilities.

In case of a flat plate boundary layer with a sufficiently low disturbance environment, the 2D TS waves are
modulated by a spanwise secondary instability whenever the amplitude of the TS reaches a value of around
1% of the freestream velocity (Herbert, 1988). These 3D modulations of the TS waves grow further into Λ-
vortices and eventually lead locally to profiles with inflection points. These profiles are again unstable to
high frequency perturbations that consequently lead to turbulent spots, finally resulting in fully turbulent
breakdown (Herbert, 1988).

This transition scenario is usually referred to as K-type transition (Klebanoff et al., 1962) if the resulting
Λ-vortices show an aligned pattern and H-type transition (Herbert, 1988) if the pattern is staggered. Usu-
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ally, K-type transition is connected to the growth of a fundamental mode1, whereas the H-type transition is
connected to the growth of subharmonic modes2 (Herbert, 1988). Which type of transition is dominant is
dependent on the freestream conditions, as shown using flow visualization by Saric (1986).

1An oblique wave with the same streamwise wavelength and spanwise wavelength as the primary instability’s streamwise wavelength,
see the DNS results by Rist and Fasel (1995) for a detailed discussion

2An oblique wave with the same spanwise and halve the streamwise wavelength of the primary instability’s streamwise wavelength



B
Derivations of the Adjoint and Gradient for

the General Formulation

This appendix has the full derivations of the adjoint and gradient equations. The Lagragian constructed is:

L =
∫
Ω

(
1

2

∫ t f

0
E d t +

m∑
k=1

∫ t f

0
λkGk

2 d t +
m∑

k=1
µkGk

3

)
dΩ+ β

2
G1 (B.1)

With:

E = (
g − ĝ

)2 (B.2)

G1 =
m∑

i , j=1

(
δi j −φiφ j

)2 (B.3)

Gk
2 =φk

(
L (ût )− f

)
(B.4)

Gk
3 =φk

(
ût0 −ut0

)
(B.5)

B.1. Derivation of the Adjoint
The adjoint equations are found by applying a small variation. The variation is applied on one of the temporal
coefficients α, i.e.:

αq =α∗
q +εη(t ) (B.6)

α̇q = α̇∗
q +εη̇(t ) (B.7)

where α∗
q is the value for αq that extremises the Lagrangian. Note that it is assumed the model constraint

only depends on the first time derivative at most. Using calculus of variations it can be argued that for α∗
q to

be the optimum, it is necessary that:
dL

dε

∣∣∣
ε=0

= 0 (B.8)

Using the chain rule, the total derivative of a function that depends on ε only through αq and α̇q can be
calculated to be:

dh(αq , α̇q )

dε
= ∂αq

∂ε

∂h(αq , α̇q )

∂αq
+ ∂α̇q

∂ε

∂h(αq , α̇q )

∂α̇q
= η∂h(αq , α̇q )

∂αq
+ η̇ ∂h(αq , α̇q )

∂α̇q
(B.9)

where the final step comes from calculating the derivatives using Equation B.6 and Equation B.7. Applying
this derivative to each term in equation B.1:
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Goal function term:
The term that includes the goal function is:

d

dε

∫ t f

0
E d t =

∫ t f

0

∂E

∂αq
ηd t (B.10)

Where the derivative with respect to α̇q is omitted by assuming the goal does not depend on a time derivative.

Model constraint:
The term that includes the model constraint is:

d

dε

∫ t f

0
λkGk

2 d t =
∫ t f

0

[
η
∂(λkGk

2 )

∂αq
+ η̇ ∂(λkGk

2 )

∂α̇q

]
d t (B.11)

Using integration by parts, the second term in the above integral can be written as:

∫ t f

0

[
η̇
∂(λkGk

2 )

∂α̇q

]
d t =−

∫ t f

0

[
d

d t

(
λk

∂Gk
2

∂α̇k

)
η

]
d t +λk (t f )η(t f )

∂Gk
2

∂α̇q

∣∣∣
t=t f

−λk (0)η(0)
∂Gk

2

∂α̇q

∣∣∣
t=0

(B.12)

Substituting the result back into equation B.11 leads to:

d

dε

∫ t f

0
λkGk

2 d t =
∫ t f

0

[
∂(λkGk

2 )

∂αq
− d

d t

(
λk

∂Gk
2

∂α̇k

)]
ηd t +λk (t f )η(t f )

∂Gk
2

∂α̇q

∣∣∣
t=t f

−λk (0)η(0)
∂Gk

2

∂α̇q

∣∣∣
t=0

(B.13)

Initial conditions:
The initial condition constraint leads to:

d

dε

(
µkGk

3

)
= ∂

(
µkGk

3

)
∂αq

η
∣∣∣

t=0
=µkη(0)

∂Gk
3

∂αq

∣∣∣
t=0

(B.14)

Where the second part of the total derivative is omitted since the initial condition does not depend on the
time derivative of the state variables.

Combining Everything
Combining equations B.10-B.14 with equation B.1 results in equation B.15. Note that the orthonormality
constraint G1 does not show up, since the constraint does not depend on the temporal coefficients α and
thus drops out during the differentiation.

dL

dε
=

∫
Ω

∫ t f

0

[
1

2

∂E

∂αq
+

m∑
k=1

∂(λkGk
2 )

∂αq
− d

d t

(
m∑

k=1
λk

∂Gk
2

∂α̇k

)]
ηd t+

m∑
k=1

(
λk (t f )η(t f )

∂Gk
2

∂α̇q

∣∣∣
t=t f

−λk (0)η(0)
∂Gk

2

∂α̇q

∣∣∣
t=0

+µkη(0)
∂Gk

3

∂αq

∣∣∣
t=0

)
dΩ= 0 (B.15)

This relation needs to hold for an arbitrary η with arbitrary start- and endpoints. To be able to formalize a
differential equation, conditions on the boundary terms in the final sum of the above expression need to be
applied, that is:

λk (t f )η(t f )
∂Gk

2

∂α̇q

∣∣∣
t=t f

−λk (0)η(0)
∂Gk

2

∂α̇q

∣∣∣
t=0

+µkη(0)
∂Gk

3

∂αq

∣∣∣
t=0

= 0 (B.16)

Collecting terms in front of η(t f ) and η(0) makes it is clear that the following conditions need to hold:

λk (t f ) = 0 (B.17)

µk =λk (0) (B.18)



B.2. Derivation of the Gradient 71

Which leads to the boundary terms being dropped in equation B.15 resulting in:

dL

dε
=

∫
Ω

∫ t f

0

[
1

2

∂E

∂αq
+

m∑
k=1

λk
∂Gk

2

∂αq
− d

d t

(
m∑

k=1
λk

∂Gk
2

∂α̇k

)]
ηd tdΩ= 0 (B.19)

Using the fact that η is an arbitrary function, the term in the square brackets in the above equation needs to
be zero for this relation to hold. The resulting adjoint differential equation that is solved for λ(t ) becomes:∫

Ω

[
1

2

∂E

∂αq
+

m∑
k=1

λk
∂Gk

2

∂αq
− d

d t

(
m∑

k=1
λk

∂Gk
2

∂α̇k

)]
dΩ= 0 (B.20)

With the initial conditions specified by equation B.17. Note that the initial conditions here are in reality final
conditions, causing the adjoint differential equation to be solved backward in time.

B.2. Derivation of the Gradient
With the definitions of the state and adjoint equations, the gradient can be derived. This follows a procedure
very similar to the procedure defined in the adjoint. Problematic is the dependency of the model constraint
on the second spatial derivative. To solve this problem, integration by parts can be utilized to reduce the
order of the spatial differentiation by one. This results in the following when one spatial mode includes a
small variation of the form:

φq =φ∗
q +εη(x)

φqx =φ∗
qx

+εηx (x)

where a subscript x denotes differentiation with respect to x. Due to the boundary conditions, the variation
η(x) on the boundaries is not arbitrary, but can be assumed zero. To find the gradient, the Lagrangian is
differentiated with respect to ε, where again each term will be treated independently in the following:

Goal functional term:
The term that includes the goal is:

d

dε

∫
Ω

E dΩ=
∫
Ω

∂E

∂φq
ηdΩ (B.21)

where it is assumed that the goal does not depend on spatial derivatives.

Model contraint:
The term that includes the model constraint is:

d

dε

∫
Ω
λkGk

2 dΩ=
∫
Ω

[
η
∂(λkGk

2 )

∂φq
+ηx

∂(λkGk
2 )

∂φqx

]
dΩ (B.22)

Using integration by parts, the second term in the above integral can be written as:∫
Ω

[
ηx
∂(λkGk

2 )

∂φqx

]
dΩ=−

∫
Ω

[
d

d x

(
λk

∂Gk
2

∂φqx

)
η

]
dΩ (B.23)

where the variation η is assumed zero on the boundaries. Substituting this back in leads to:

d

dε

∫
Ω
λkGk

2 dΩ=
∫
Ω

[
λk

∂Gk
2

∂φq
− d

d x

(
λk

∂Gk
2

∂φqx

)]
ηdΩ (B.24)

Initial Conditions
The initial condition constraint leads to:

d

dε

(∫
Ω
µkGk

3 dΩ

)
=

∫
Ω
µk

∂Gk
3

∂φq
ηdΩ (B.25)
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Orthonormality Constraint
The orthonormality constraint leads to:

m∑
i , j=1

d

dε

(
δi j −

∫
Ω
φiφ j dΩ

)2

=
m∑

i , j=1
2

(
δi j −

∫
Ω
φiφ j dΩ

)
d

dε

(
δi j −

∫
Ω
φiφ j dΩ

)
(B.26)

Consider the derivative term:

d

dε

(
δi j −

∫
Ω
φiφ j dΩ

)
=


0, if i 6= q & j 6= q

−∫
φ jηdΩ, if i = q & j 6= q

−∫
φiηdΩ, if i 6= q & j = q

−2
∫
φqηdΩ, if i = q & j = q

(B.27)

All terms in equation B.26 not related to φq drop out. With this in mind, the index j can be replaced by q and
the double sum over i and j is replaced by a single sum over i . It can also be shown that the following then
results for the derivative term:

d

dε

(
δi j −

∫
Ω
φiφ j dΩ

)
=−2

∫
Ω
φiηdΩ (B.28)

Combining this result with equation B.26 leads to the following conclusion:

m∑
i , j=1

d

dε

(
δi j −

∫
Ω
φiφ j dΩ

)2

=
m∑

i=1
4

(∫
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φiφq dΩ−δi q

)(∫
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φiηdΩ

)
= 4

m∑
i=1

∫
Ω

(∫
Ω
φiφq dΩ−δi q

)
φiηdΩ

(B.29)

Combining Everything
Combing equation B.1 with equation B.21, B.24, B.25 and B.29 forms the following equation:

dL
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+
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2
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2
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)]
d t +

m∑
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µi
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3

∂φq
+2β
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φiφq dΩ−δi q

)
φi

}
ηdΩ= 0

(B.30)
Arguing again that the variation η is arbitrary, the term inside the curly braces needs to go to zero. The gradi-
ent is thus obtained by finding this expression, i.e. equation B.31.

∂L

∂φq
=

∫ t f

0

[
1

2

∂E

∂φq
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C
Algorithms

C.1. Trust-Region Method
Algorithm 1 shows the algorithm used in the trust-region method. The formulation here mostly follows the
formulation found in Cheng (2017) with a few minor modifications.

Algorithm 1 Trust Region Algorithm. Mostly follows the formulation from Cheng (2017).

Given ∆max > 0, ∆mi n ∈ (0,∆max ), ∆0 ∈ (∆mi n ,∆max ), η ∈ [
0, 1

4

)
for k = 0,1,2,. . . do

Obtain pk by approximately solving equation 2.17
Evaluate ρk using equation 2.19

if ρk < 1
4 then

∆k+1 = 1
4∆k . reduce trust region radius

else
if ρk > 3

4 and ||pk ||2 ≥∆k then
∆k+1 = min(2∆k ,∆max ) . enlarge trust region radius

else
∆k+1 =∆k . keep trust region radius

end if
end if

if ρk > η then
xk+1 = xk +pk . enough reduction made, advance step

else
xk+1 = xk . do not advance

end if
end for

C.2. Conjugate-Gradient Method
To obtain pk approximately by solving equation 2.17, the conjugate-gradient algorithm by Steihaug (1983) is
used. The algorithm can be found in algorithm 2. Note that the formulation of this algorithm is a reprint from
Cheng (2017). In the algorithm d j denotes the search direction of the iteration j .
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Algorithm 2 Steihaug CG Algorithm. Follows the formulation from Cheng (2017).

Given tolerance εk > 0
Set z0 = 0, r0 =−∇ fk −∇2 fk pk =−∇ fk −∇2 fk z0 =−∇ fk ,d0 = r0

if ||r0||2 < εk then
return pk = z0 = 0

end if

for j = 0,1,2,. . . do
if d T

j ∇2 fk d j ≤ 0 then
Compute τ> 0 such that ||z j +τd j ||2 =∆k

return pk = z j +τd j

end if
Compute α j = r T

j r j /d T
j ∇2 fk d j

Compute z j+1 = z j +α j d j

if ||z j+1||2 ≥∆k then
Compute τ> 0 such that ||z j +τd j ||2 =∆k

return pk = z j +τd j

end if
Compute r j+1 = r j −α j∇2 fk d j

if ||r j+1||2 < εk then
return pk = z j+1

end if

Compute β j+1 = r T
j−1r j+1/r T

j r j

Compute d j+1 = r j+1 +β j+1d j

end for



D
Derivation of the Model Constraint

Starting from the governing equations. That is:

u̇ +∇·Fx
i nv (uuu)− 1

Re
∇·Fx

vi sc (uuu)+ ∂p

∂x
= f x (D.1)

v̇ +∇·Fy
i nv (uuu)− 1

Re
∇·Fy

vi sc (uuu)+ ∂p

∂y
= f y (D.2)

ẇ +∇·Fz
i nv (uuu)− 1

Re
∇·Fz

vi sc (uuu)+ ∂p

∂z
= f z (D.3)

∇·uuu = f c (D.4)

To construct a ROM of the governing equations, the equations are projected onto the basis functions using
a Bubnov-Galerkin method. This will be discussed in the first section. Furthermore, the weak form of the
INS equations require stabilization terms, which will be achieved through the Variational-Multiscale Method
introduced by Hughes et al. (2001). This method, along with the model for the unresolved scales, will be
discussed in the second section. The final sections combines the conclusions from both preceding sections
into one final set of equations.

D.1. Projection of Governing Equations
This section discusses the procedure for projecting the governing equations onto the basis functions and
constructing the equivalent weak form.

D.1.1. Momentum equation
First, the x-momentum equation (equation D.1) is projected onto the primary basis function φu

k using a
Galerkin projection. That is:

(φu
k , u̇)Ω+ (φu

k ,∇·Fx
i nv )Ω− 1

Re
(φu

k ,∇·Fx
vi sc )Ω+ (φu

k ,
∂p

∂x
)Ω = (φu

k , f x )Ω (D.5)

Integration by parts (equation D.6) can be used to rewrite some of the terms in equation D.5 into equations
D.7-D.9. ∫

Ω
a∇·bbbdΩ=

∫
Γ

abbb ·nnndΓ−
∫
Ω
∇a ·bbbdΩ (D.6)
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(φu
k ,∇·Fx

i nv )Ω =
∫
Γ
φu

kF
x
i nv ·nnndΓ−

∫
Ω
∇φu

k ·Fx
i nv dΩ (D.7)

(φu
k ,∇·Fx

vi sc )Ω =
∫
Γ
φu

kF
x
vi sc ·nnndΓ−

∫
Ω
∇φu

k ·Fx
vi sc dΩ (D.8)

(φu
k ,
∂p

∂x
)Ω =

∫
Ω
φu

k∇·peeex dΩ=
∫
Γ
φu

k peeex ·nnndΓ−
∫
Ω
∇φu

k ·peeex dΩ

=
∫
Γ
φu

k pnx dΓ−
∫
Ω

∂φu
k

∂x
pdΩ (D.9)

where eeex = [1,0,0]T is the unit vector in x-direction and nnn = [nx ,ny ,nz ]T is the outward-normal unit vector
on the boundary. Substituting equations D.7-D.9 into equation D.5 leads to the following equation:

(φu
k , u̇)Ω+ I x

bound (uuu)+ I x
domai n(uuu) = (φu

k , f x )Ω (D.10)

with:

I x
bound (uuu) =

∫
Γ
φu

kF
x
i nv (uuu) ·nnndΓ− 1

Re

∫
Γ
φu

kF
x
vi sc (uuu) ·nnndΓ+

∫
Γ
φu

k pnx dΓ (D.11)

I x
domai n(uuu) =−

∫
Ω
∇φu

k ·Fx
i nv (uuu)dΩ+ 1

Re

∫
Ω
∇φu

k ·Fx
vi sc (uuu)dΩ−

∫
Ω

∂φu
k

∂x
pdΩ (D.12)

When this procedure is repeated by projecting the y and z momentum equations onto the basis functions φv
k

and φw
k , the expressions can be written as:

(φr
k , u̇r )Ω+ I r

bound + I r
domai n = (φr

k , f r )Ω (D.13)

with:

I r
bound =

∫
Γ
φr

k

Ndi m∑
j=1

Fr
i nv (u j )n j dΓ− 1

Re

∫
Γ
φr

k

Ndi m∑
j=1

Fr
vi sc (u j )n j dΓ+

∫
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φr

k pnr dΓ (D.14)

I r
domai n =−

∫
Ω

Ndi m∑
j=1

∂φr
k

∂x j
Fr

i nv (u j )dΩ+ 1

Re

∫
Ω

Ndi m∑
j=1

∂φr
k

∂x j
Fr

vi sc (u j )dΩ−
(
∂φr

i

∂xr , p

)
Ω

(D.15)

and:

Fr
i nv (u j ) = ur u j (D.16)

Fr
vi sc (u j ) = ∂ur

∂x j
+ ∂u j

∂xr (D.17)

where the superscripts denote the spatial direction of the particular variable1.

D.1.2. Continuity Equation
Applying a similar technique to the continuity equation, the following weak form is recovered:∫

Ω

Ndi m∑
j=1

φ
p
k

∂u j

∂x j
dΩ= (φp

k , f c )Ω (D.18)

D.2. Varitiational-Multiscale Method
To model the effect of unresolved scales on the resolved scales, the variational-multiscale method (VMM) will
be used. The decomposition thus results in resolved and unresolved scales as:

ur = ûr +ur ′ (D.19)

p = p̂ +p ′ (D.20)

1i.e. ur with r = 1 corresponds to the x-velocity, r = 2 corresponds to the y-velocity and r = 3 corresponds to the z-velocity
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with:

ûr =
m∑

i=1
αr

i φ
r
i (D.21)

p̂ =
m∑

i=1
α

p
i φ

p
i (D.22)

Momentum Equations
In this work, both the unresolved viscous and unresolved time derivative will be omitted from here on out,
simplifying the viscous term to:

Fr
vi sc (u j ) =Fr

vi sc (û j ) =Fr
vi sc (û j ) = ∂ûr

∂x j
+ ∂û j

∂xr (D.23)

and the time derivative term to:
(φr

k , u̇r )Ω = (φr
k ,

·̂
ur )Ω (D.24)

Similarly, all unresolved variables on the boundaries will be omitted, allowing similar simplifications to equa-
tion D.14. The momentum terms can then be completed by simply substituting in equations D.19 and D.20
into equation D.15, resulting in equation D.25.

(φr
k ,

·̂
ur )Ω+ I r

bound + I r
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k , f r )Ω (D.25)

with:
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Continuity Equation
Before completing the substitution of the unresolved scales in the continuity equation, the continuity equa-
tion requires some more attention. First of all, it is noted that the term is linear, simplifying the expansions to
be: ∫

Ω
φ

p
k

Ndi m∑
j=1

∂û j
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For the sake of implementation, it is more convenient to remove the spatial derivative in front of the unre-
solved scales. This is again achieved by using integration by parts (equation D.6), resulting in:
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where the boundary integral is omitted. The continuity equation then finally becomes:
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SGS Model
Although it is possible to solve the unresolved scales u′r & p ′ directly, the process is computationally expen-
sive. Therfore, the terms will be modelled through a SGS model of the form seen in equations D.31 and D.32.

u′r =−τmRr
m (D.31)

p ′ =−τc Rc (D.32)
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where τm and τc are two stabilization parameters and:
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Rc =
Ndi m∑

j=1

∂û j

∂x j
− f c (D.34)

are the residuals of the momentum equations and continuity equation respectively.

Boundary Conditions
This work will utilize weak Dirichlet-type boundary conditions for the velocity. This takes the form of a
boundary integral added to the momentum equations of the form seen in equation D.35.

I r
bound ,bc =

∫
Γ
σr (ûr −ur

bc )dΓ (D.35)

D.3. Final Model Constraint
Recombining each term into a final set of equations, the model constraint can be summarized as follows:
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D4 =
(
φ

p
k , f c)

Ω (D.37)

where r = [1,2,3] denotes the direction of the momentum equation.2 The boundary integrals B are defined
from equations D.26 and D.35 and can be found in equations D.38-D.41:
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and the domain integrals are defined from equations D.27 and D.30 and can be found in equations D.42-D.45.
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(ûr −τmRr
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2i.e. 1 denotes the x-direction, 2 the y-direction and 3 the z-direction



E
Shape Functions

This appendix contains the primary and secondary shape functions of the cases considered throughout this
work. The secondary shape functions of the flat plate case can be found on pages 79-81. The secondary
shapes of the step case with the low boundary can be found on pages 82- 84. The secondary shapes of the
step case with the high boundary can be found on pages 85-87. The GOROM modes from case B and C can
be found in pages 88-89 and 90-92. Finally, the GOROM modes from case H can be found on pages 93-95.

E.1. Secondary Shapes Flat Plate

(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

Figure E.1: First 4 POD modes of the x-velocity for the flat plate case.

79



E.1. Secondary Shapes Flat Plate 80

(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

Figure E.2: First 4 POD modes of the y-velocity for the flat plate case.
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(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

Figure E.3: First 4 POD modes of the pressure for the flat plate case.
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E.2. Secondary Shapes Step Case
E.2.1. Secondary Shapes Low Boundary Case

(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

(e) Fifth POD mode (f) Sixth POD mode

Figure E.4: First 6 POD modes of the x-velocity for the step case with a low top boundary.
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(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

(e) Fifth POD mode (f) Sixth POD mode

Figure E.5: First 6 POD modes of the y-velocity for the step case with a low top boundary.
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(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

(e) Fifth POD mode (f) Sixth POD mode

Figure E.6: First 6 POD modes of the pressure for the step case with a low top boundary.
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E.2.2. Secondary Shapes High Boundary Case

(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

(e) Fifth POD mode (f) Sixth POD mode

Figure E.7: First 6 POD modes of the x-velocity for the step case with a high top boundary.
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(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

(e) Fifth POD mode (f) Sixth POD mode

Figure E.8: First 6 POD modes of the y-velocity for the step case with a high top boundary.
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(a) First POD mode (b) Second POD mode

(c) Third POD mode (d) Fourth POD mode

(e) Fifth POD mode (f) Sixth POD mode

Figure E.9: First 6 POD modes of the pressure for the step case with a high top boundary.



E.3. Primary Shapes Step Case 88

E.3. Primary Shapes Step Case
E.3.1. Case B

(a) First GOROM mode u (b) Second GOROM mode u

(c) Third GOROM mode u (d) First GOROM mode v

(e) Second GOROM mode v (f) Third GOROM mode v

Figure E.10: GOROM modes of the velocities for case B.
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(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode

Figure E.11: GOROM modes of the pressure for case B.
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E.3.2. Case C

(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode (d) Fourth GOROM mode

Figure E.12: GOROM modes of the x-velocity for case C.
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(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode (d) Fourth GOROM mode

Figure E.13: GOROM modes of the y-velocity for case C.
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(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode (d) Fourth GOROM mode

Figure E.14: GOROM modes of the pressure for case C.
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E.3.3. Case H

(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode (d) Fourth GOROM mode

Figure E.15: GOROM modes of the x-velocity for case H.
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(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode (d) Fourth GOROM mode

Figure E.16: GOROM modes of the y-velocity for case H.
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(a) First GOROM mode (b) Second GOROM mode

(c) Third GOROM mode (d) Fourth GOROM mode

Figure E.17: GOROM modes of the pressure for case H.
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