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Chapter 1 

 Introduction 

ΕΑΝ ΜΗ ΕΛΠΗΤΑΙ ΑΝΕΛΠΙΣΤΟΝ ΟΥΚ ΕΞΕΥΡΗΣΕΙ 
Εάν δεν ελπίζεις στο ανέλπιστο δεν θα το βρεις 

Ηράκλειτος 
------ 

"If you do not hope for the unexpected you will not find it" 
Heraclitus 
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1.1 Impact of stroke 

Stroke is a leading cause of long-term impairment (WHO World Health 

Organization. Geneva Switzerland, 2003). It is caused by a reduction of the blood 

flow to a part or parts of the brain, that leads to neuro-structural damage. As a 

consequence, one can observe a functional deficit. According to the American 

stroke association, there are two types of stroke: (i) ischemic stroke caused by an 

obstruction within a supplying blood vessel; (ii) hemorrhagic stroke that occurs 

after a rupture of a blood vessel, in the case of a transient ischemic accident (TIA), 

the first one may be temporary. This is also referred to as “mini-stroke” and is 

caused by a temporary clot. “Worldwide in 2010, an estimated 11 569 538 events 

of incident ischaemic stroke took place (63% in low-income and middle-income 

countries), and 5 324 997 events of incident haemorrhagic stroke (80% in low-

income and middle-income countries); furthermore, 2,835,419 individuals died from 

ischaemic stroke (57% in low-income and middle-income countries) and 3,038,763 

from haemorrhagic stroke (84% in low-income and middle-income countries” (page 

e260, Krishnamurthi et al., 2013). 

In the present thesis, I addressed consequences of ischemic stroke, in particular 

motor and sensory impairments in the upper extremities, which have a prevalence 

of approximately 87% in all stroke survivors, immediately after stroke onset (Parker 

et al., 1986). Kwakkel and co-workers, (2006) reported that 16-42% of the 

spontaneous motor recovery occurs at six to ten weeks after stroke onset. The 

maximum possible recovery based on functional assessment might even be higher 

as formulated in the so-called proportional recovery rule formulated by 

Prabhakaran et al. (2008); see also below. Given this early time window, it appears 

that clinical decision about therapy requires likewise timely patient stratification for 

their potential neurobiological recovery. The earlier stroke severity can be 

assessed, e.g., by measuring motor impairment, the sooner patient characteristics 

may be stratified (Winters et al., 2016a). For instance, shoulder abduction and 

finger extension (the SAFE model) measured in the acute phase, i.e. within the first 

72 hours after stroke, are strongly associated with recovery of upper limb function 

six months post-stroke, i.e. in the chronic phase (Nijland et al., 2010b). 
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Physical therapists and neurologists can assess functional impairment and, thus, 

stroke severity and indicate possible recovery based on various clinical tests. One 

example is the Fugl-Meyer test (Fugl-Meyer et al., 1975), which is considered one 

of the most reliable and valid clinical measures of motor recovery post stroke 

(Duncan et al., 1983; Gladstone et al., 2002). The probability of upper limb 

recovery has a largely linear relationship with the Fugl-Meyer scores, when 

recorded from the acute to the chronic phase post stroke. As mentioned above, 

recovery after stoke is proportional: on average patients will recover about 70% of 

their functional deficit (Prabhakaran et al., 2008). Unfortunately, this proportional 

rule comes with exceptions and not all patients can be properly stratified, 

especially those with a low Fugl-Meyer scores in the acute phase (Winters et al., 

2015). Prognosis remains difficult, and models need to be improved when 

searching for better stratification and patient-specific strategies for stroke 

rehabilitation. 

One way of doing might be supplementing these prediction models with 

information about the neurophysiological mechanisms involved in stroke recovery. 

Neuroimaging modalities can indeed provide important information (Boyd et al., 

2017). Blood-oxygen-level-dependent functional magnetic resonance imaging 

(BOLD-fMRI) can help to understand longitudinal metabolic changes after stroke 

onset on group (Ward et al., 2003) and on patient-specific level (Ward et al., 2006). 

The interpretation of BOLD, however, relies on an intact neurovascular coupling, 

which cannot be guaranteed in a large portion of patients (Ward, 2017). Diffusion 

tensor imaging (DTI) can reveal the integrity of large white matter tracts after 

stroke onset (Schulz et al., 2015), which is interesting but thus far less informative 

about functional connections (Ward, 2017). As an alternative to these MRI-based 

imaging techniques, electroencephalography (EEG) might be a suitable modality to 

study ischemic stroke as it is a very sensitive to altered cortical functioning 

resulting from ischemia (van Putten and Hofmeijer, 2016). 

5  

1.2 What is recorded with EEG? 

In 1929, Berger was the first to record human EEG signals. After almost a century 

of his discovery, EEG has become an ambulant and easy-to-use neuroimaging 

method that provides a very high temporal resolution (milliseconds scale). EEG is 

an excellent tool for research and the clinic – it is instrumental in the diagnoses of 

neurological diseases, in particular epilepsy (Niedermeyer and da Silva, 2004). 

EEG measures potential differences as a function of time between electrodes 

placed on the scalp. It maps cortical activity in a non-invasive manner (Michel and 

Murray, 2012). Due to space limitations, EEG employs a fairly limited number of 

electrodes, ranging from 32 to 256. The small voltage differences measured at the 

scalp are a result of excitatory and inhibitory postsynaptic potentials (Kirschstein 

and Kohling, 2009) at the apical dendritic tree of the pyramidal cells located in the 

cerebral cortex. During the formation of an action potential, the potential difference 

between extracellular space and cell soma and the basal dendrite yields a current 

from the non-excited membrane of the soma and the basal dendrites to the apical 

dendritic tree. That current causes an electric field and a potential field inside the 

human head. It flows through the volume conductor, i.e. the cerebrospinal fluid, the 

skull and the scalp (also referred to a ‘leadfield’; see below), and reaches the EEG 

electrodes. Pyramidal cells of the gray matter are thought to be the generators of 

the EEG because the axes of their dendritic tree are spatially aligned and 

perpendicular to the surface of the cortex (Hallez et al., 2007). When numerous 

cortical pyramidal neurons are synchronously active, the electrical activity is 

sufficiently large to be measurable by the EEG; an EEG signal recorded from a 

healthy individual is about 10 to 100 μV in amplitude. Roughly, the electrical 

activity measured by EEG can be modelled by an equivalent current dipole (ECD, 

de Munck et al., 1988). 

1.3 EEG as an imaging modality 

EEG is not often referred to as an imaging modality (Michel and Murray, 2012), in 

contrast to, e.g., fMRI. A primary reason for this lack of notion might be the very 

limited spatial resolution of EEG. EEG measures the activity on the scalp surface, 
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whereas in imaging one is interested in the activity inside the brain, i.e. in the 

location at which pyramidal cortical neurons fire synchronously. 

Using EEG source reconstruction techniques, one can estimate the activity inside 

the cortex. In brief, a so-called ‘forward model’ predicts how the current flows from 

the dipolar sources in the brain to the surface electrodes on the scalp. Such a 

model relies on conventional electro-statics by means of the Poisson’s equation 

which allows for determining potentials on the scalp for any given dipole 

configuration. One can use these forward models to approximate what is called 

‘the inverse problem’. That is, one can infer the strength and location of active 

dipoles or, in brief, sources in the brain that match the recorded activity. This 

process will from here-on referred to as source localization. Due to the large 

number of possible dipoles within the brain volume and the small number of 

electrodes on the scalp surface, the inverse problem is ill-posed (von Helmholtz, 

1853). As a consequence, the inverse problem does not have a unique solution. 

To generate uniqueness, additional assumptions must be made. Over the last 

decades, numerous approaches have been proposed to solve this. Depending on 

the type of assumptions incorporated, three main groups of inverse methods can 

be distinguished: dipole fitting methods, scanning methods, and imaging methods 

(Darvas et al., 2004). Dipole fitting methods assume a limited number of active 

sources and the inverse problem is often addressed by means of least squares 

fitting. Scanning methods use a fine grid to search by brute force for optimal dipole 

positions throughout the source space. EEG imaging methods usually tackle the 

inverse problem in a constrained representation of the cortex and compute a 

unique solution by introducing some regularization methods or priors of the 

solution (Baillet et al., 2001). 

1.4 Event-related potentials, EEG data model, and signal-to-
noise-ratio 

Estimating the brain activity of interest from raw and continuous EEG data is not 

trivial because EEG represents a mixture of a plenitude of neural sources 

(Hämäläinen et al., 1993). Moreover, EEG is contaminated with physiological noise 

including eye-blink artifacts, muscle artifacts and pulsation artifacts caused by 

7  

electrodes placed on top of an artery. Fortunately, there are several ways to 

extract responses associated with specific neural processing, especially in the 

vicinity of isolated events. In 1954, Dawson proposed averaging time-locked 

segments of EEG data to a specific event or stimulus (Dawson, 1954). Ever since 

so-called event-related potentials (ERPs) are a common approach to study 

sensory, motor, and cognitive processing as a response to transient stimuli. 

Experimentally, ERPs are typically obtained using a repetitive presentation of 

stimuli. Think of visual-evoked potentials that can be observed over occipital areas 

when stimulating the visual field. To obtain an ERP, data are typically filtered 

before segmenting them around the consecutive events. This yields time-locked 

epochs from which those with too strong artifacts are removed. Over the remaining 

epochs the data are averaged. ERPs are meaningful under the proviso that 

whenever a specific stimulus is presented, the brain responds in the same manner 

and that the omnipresent noise averages to zero. 

An ERP consists of positive or negative voltage deflections or peaks. Studying 

ERPs hence involves measuring the latencies and amplitudes of these peaks. The 

peaks are categorized in ERP-components where the letters P and N are used to 

indicate positive or negative deflections, respectively. The number in the ERP-

component refers to the latency in (integer) milliseconds and is used to signify in 

which time instant after the presentation of the stimulus the peak appeared (Luck, 

2005). A well-known ERP component is the P300 component elicited when the 

subject is presented with an unexpected visual or auditory stimulus. 

This approach assumes that event-related potentials contain all the ‘relevant’ 

information to describe the response to a stimulus and that the residual activity is 

‘irrelevant’ background noise, which cancels out in the course of the averaging 

procedure. Transferring this to the generating neural sources, the background 

noise should be caused by randomly distributed sources that are not related with 

the sources generating the ERP, i.e. the source of interest (De Munck et al. 1992). 

Background noise is not white and Gaussian but typically correlated in time and 

space with a skewed distribution. It also might differ in every repetition of the 

stimulus (de Munck et al., 2002). Modeling the relationship among the sensor 

recordings, the underlying sources, and specifying the background noise can 
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facilitate the afore-discussed inverse modeling. As an extend it may reveal the 

‘true’ sources of the recorded activity. Let 𝑏𝑏",$ 𝑡𝑡  be the EEG signal at recording 

channel 𝑛𝑛 = 1,… , 𝑁𝑁 during the 𝑘𝑘th repetition of the stimulus. This might be modeled 

by 

𝑏𝑏",$ 𝑡𝑡 = 𝐿𝐿"-𝑗𝑗- 𝑡𝑡
-

+ 𝜀𝜀",$ 𝑡𝑡  (1.1) 

where 𝐿𝐿"- is the so-called leadfield matrix, which is a bio-physically motivated (see 

above) linear matrix mapping source activities 𝑗𝑗-, with 𝑚𝑚 = 1,… ,𝑀𝑀 to channel 

𝑏𝑏",$ 𝑡𝑡 ; note that 𝑀𝑀 ≫ 𝑁𝑁. 𝜀𝜀",$ 𝑡𝑡  denotes background noise picked up at that 

channel during recording 𝑘𝑘. Under the ERP assumption, repetitive activation will 

improve the signal-to-noise ratio (SNR) of the averaged EEG recording 𝑏𝑏",$ 𝑡𝑡  as 

the strength of 𝑗𝑗- 𝑡𝑡  stays constant while 𝜀𝜀",$ 𝑡𝑡  tends to zero – here the over-line 

indicates the average over repetitions 𝑘𝑘. In turn, the higher the SNR the better the 

estimation of the underlying sources 𝑗𝑗- 𝑡𝑡 . 

1.5 Somatosensory evoked potentials 

Somatosensory-evoked potentials (SEPs) are a common way to study the 

somatosensory cortex, especially in patients with somatosensory or motor-related 

deficits. Stimulating the limbs via mechanical or electrical perturbations elicits 

SEPs in the hemisphere contralateral to the stimulation. In my thesis, I employed 

electrical stimulation of the fingers and of the median nerve. The resulting time-

locked responses can be represented by the global field power, i.e. the root mean 

squared across all electrodes, which is a global measure of the electrical field at 

the scalp (Lehmann and Skrandies, 1980). Median nerve SEPs are dominated 

mainly by four ERP-components, the P20 or N20, P50, P100, N120 and a later 

peak after 100 ms P140; cf. Fig. 1.1. Note that the peak around 20 ms is referred 

in the literature as N20 or N20/P25 or as P/N20 but here we will use the term P20. 

The first two peaks are believed to originate from the contralateral S1 cortex and 

the later peaks to correspond to activity in S2 (Hari and Forss, 1999). When fingers 

are stimulated, the peaks arrive some milliseconds later at the cortex. 
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Fig. 1.1 Global field power of the SEP response after electrical stimulation of the 

median nerve. 
 

1.6 Evoked responses recorded with EEG and their relevance 
for stroke rehabilitation monitoring 

Currently, stroke recovery assessment is realized in the clinic by use of different 

clinical tests. As mentioned in Section 1.1, the prognostic value of these clinical 

tests come with limitations. EEG is starting to gain popularity as a monitoring tool 

for stroke recovery (Finnigan and van Putten, 2013; Sheorajpanday et al., 2011, 

2009; de Vos et al., 2008). Since EEG measures extracellular currents resulting 

from the postsynaptic potentials of the cortical pyramidal cells, it is very sensitive to 

detect cerebral ischemia that manifests itself as abnormalities in the EEG signal 

(Jordan, 2004). Early after ischemic stroke onset, finger extension and shoulder 

abduction are considered indicative for proper recovery (Nijland et al., 2010b). The 

involvement of the somatosensory area in these motor behaviors is commonly 

agreed on (Bolognini et al., 2016). Hence, looking for EEG abnormalities in 

contralesional SEPs is expected to add information to the mere observation of 

motor capacities for the prospect of recovery. 

There are a few studies using SEPs and a wealth of studies using somatosensory 

evoked fields (SEFs) that are recorded with the magnetic counterpart of EEG, the 

magneto-encephalogram (MEG). All these studies argue that components at the 
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window from 20 to 200 ms post stimulus, and the characteristics of their underlying 

sources may indicate neural reorganization after stroke in the somatosensory area. 

Changes of SEP or SEF responses at a few weeks post-stroke compared to the 

acute stage are in fact correlated with recovery (Laaksonen et al., 2013). Small 

SEF amplitudes or absence of early SEF responses (20-30 ms) correlate with a 

more severe impairment (Feys et al., 2000; Huang et al., 2004; Keren et al., 1993; 

Oliviero et al., 2004; Tecchio et al., 2007a; Tecchio et al., 2006; Tzvetanov and 

Rousseff, 2003; Wikström et al., 2000, 1999). Interhemispheric latency differences 

of the early peaks correlate with a high level of impairment (Oliviero et al., 2004; 

Tecchio et al., 2001). Hyper-excitability of the unaffected hemisphere can reflect 

changes in the affected hand (Oliviero et al., 2004) associated with physiological 

mechanisms during recovery. The literature disagrees on the causes of dipole 

displacements early post-stroke. Are they due to reorganization, i.e. 

neuroplasticity, (Druschky et al., 2002; Huang et al., 2004) or due to tissue swelling 

(Oliviero et al., 2004; Tecchio et al., 2006; Wikström et al., 2000, 1999)? Recovery 

based on neural reorganization appears evident primarily in the chronic phase as 

spatial shifts of generator sources (Altamura et al., 2007; Huang et al., 2004; 

Rossini et al., 2001, 1998a, 1998b, Tecchio et al., 2007a, 2006) and increased 

hand representations (Oliviero et al., 2004; Roiha et al., 2011; Rossini et al., 2001, 

1998a, 1998b). Tecchio et al., (2007) show that the absence of P20 components is 

associated with reduced recovery of hand function. In general, there are indicators 

that SEPs or SEFs can be used for subject-specific prediction of recovery after 

stroke. Yet, their use as biomarkers is lacking from clinical trials (Boyd et al., 

2017). 

1.7 Problem statement 

Do SEP responses contain subject-specific prognostic information about stroke 

recovery? To answer this question, one has to realize that the changes in the brain 

related to somato-sensation within the first few weeks’ time after stroke are 

confined to a very small area: S1 and S2. This confined location offers the 

opportunity to test whether SEP responses induced by electrical stimulation of the 
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median nerve or the fingers are in fact a proper means to detect and analyze those 

changes as one ‘knows’ where to look at. By proper mean I refer to testing for 

reproducible measurements and increased spatial resolution. 

Studying SEP and SEF responses of chronic or acute stroke patients have already 

been addressed in the literature at group level. As of yet, however, it is an open 

question to what extent the analysis of these signals provides meaningful 

information at the subject level. There is need for well reproducible EEG 

measurements with high enough SNR in order to ensure that the expectedly subtle 

changes are not caused by noise but are due to stroke recovery or physiological 

processes involved with the disease. Additionally, increased spatial resolution is 

required to track expectedly subtle changes in the somatosensory cortex. All this 

requires longitudinal SEP studies with large numbers of EEG channels that explore 

stroke recovery in a substantial number of patients. 

1.8 Aim of this thesis 

Longitudinal changes occurring within the S1 area of the somatosensory cortex are 

the main focus of my thesis. For studying this a high spatial resolution and 

repeatable measurements are required. My goal was to develop a methodology for 

tracking longitudinal changes after stroke within the somatosensory cortex using 

SEP, with the ultimate aim to test for the validity of SEP as a biomarker in the 

clinical assessment of stroke. 

1.9 Research questions 

The overarching objective of this thesis was to investigate to what extent longitudi-

nal changes in the brain that occur post-stroke can be monitored using comparably 

simple electro-physiological measurements. I approached this from experimental, 

analytical, numerical, and clinical perspectives. Along these lines, the following 

specific questions have been addressed: 
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• Is finger stimulation a valid approach for investigating S1? 

o Are SEPs and their topographical distribution induced by stimulation of the 

fingers reproducible? 

o Can we disentangle the activity of adjacent fingers on the somatosensory 

cortex with the use of EEG? 

o Can we set some thresholds and limitations for the community? 

• How can we define EEG’s spatial resolution and what is the resolution? 

o Which is the optimal inverse method to disentangle simultaneously activat-

ed dipoles in close proximity? 

o How is source localization accuracy affected by realistic EEG noise, as 

opposed to synthetic white noise? 

o Is pre-whitening beneficial for the realistic case scenario? 

• Can SEP parameters, early or a few weeks after stroke, be used to improve 

the prediction of the rehabilitation curve of stroke patients? 

o Can we set some guidelines on how to use SEP parameters for monitoring 

stroke recovery? 

• Can SEPs induced by finger stimulation provide useful insights about chronic 

stroke patients? 

o Are there other ways of extracting useful information from SEPs apart from 

looking at ERPs? 

1.10 Outline 

In Chapter 2, the spatial accuracy of EEG was studied using electrical stimulation 

of the fingers with limited success. This called for defining the EEG’s ‘spatial 

resolution’ in Chapter 3 using a simulation study. Subsequently, I applied the 

resulting methodology to ischemic stroke patients both in the acute phase 

(Chapter 4) and in the chronic phase, six months after stroke (Chapter 5). Finally, 

in Chapter 6, the outcomes of this thesis have been discussed including 

recommendations for future research. 
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potentials of the fingers: limitations and 

clinical potential1 

ΑΡΧΗ ΣΟΦΙΑΣ, ΤΗΣ ΑΓΝΟΙΑΣ Η ΓΝΩΣΗ  
Η σοφία αρχίζει από τότε που ο άνθρωπος αντιλαµβάνεται τι δεν γνωρίζει 

Κλεόβουλος ο Ρόδιος 
------ 

Wisdom begins when you realize your ignorance 
Cleobulos of Lindos 
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ABSTRACT 
In searching for predictors for recovery of upper limb function post stroke we 
studied reproducibility of somatosensory potentials (SEP) evoked by finger 
stimulation in healthy subjects. SEPs induced by electrical stimulation and 
especially after median nerve stimulation is a method widely used in the literature. 
It is unclear, however, if EEG recordings after finger stimulation are reproducible 
within the same subject. Therefore, we assessed different stimulation amplitudes 
and durations. Using the stimulation with the maximum response, we tested in 5 
healthy subjects the consistency and reproducibility of responses through 
bootstrapping as well as test-retest recordings. We further evaluated the possibility 
to discriminate activity of different fingers both at electrode and at source level. The 
lack of consistency and reproducibility suggest responses to finger stimulation to 
be unreliable, even with reasonably high signal-to-noise ratio (SNR) and adequate 
number of trials. At sources level, somatotopic arrangement of the fingers 
representation was only found in one of the subjects. Although finding distinct 
locations of the different fingers activation was possible, our optimized protocol did 
not allow for non-overlapping dipole representations of the fingers. We conclude 
that despite its theoretical advantages we cannot recommend the use of 
somatosensory potentials evoked by finger stimulation to extract clinical 
biomarkers, such as predictors of upper limb recovery post stroke. 
  

17  

2.1 Introduction 

Somatosensory impairment is highly associated with stroke severity (Connel et al., 

2008; Meyer et al., 2016). More specifically, regaining individual finger function is 

considered a good predictor for recovery of upper limb function post stroke (Nijland 

et al., 2010b). Whether this marks recovery of efferent or afferent connections from 

motor or somatosensory areas is a matter of dispute. In the current study, we 

focused on the latter and asked whether electric stimulation of the fingers may 

yield reliable responses in sensory areas as assessed by electro-encephalography 

(EEG). We tested for the candidate capacity of responses to finger stimulation as a 

clinical biomarker in general and more specifically for stroke recovery. 

Somatosensory evoked potentials and fields (SEPs and SEFs, respectively) 

induced by electrical or mechanical stimulation on the median nerve is a well-

established approach to investigate the electrophysiological phenomena linked to 

impaired somatosensation occurring, for example, while recovering from a stroke 

(Al-Rawi et al., 2009; Feys et al., 2000; Hari and Forss, 1999; Huang et al., 2004; 

Keren et al., 1993; Oliviero et al., 2004; Péréon et al., 1995; Rossini et al., 2001, 

1998a, Tecchio et al., 2007b, 2006, 2007a; Timmerhuis et al., 1996; Tzvetanov 

and Rousseff, 2003; Wikström et al., 2000, 1999). Early components of median 

nerve SEPs may indicate whether afferent connections arrive at the contralateral 

primary somatosensory cortex (S1). By stimulating directly at the median nerve, 

however, both cutaneous muscle and joint afferents are stimulated and potentially 

efferent fibers intervening (muscles) (Dawson, 1956; Kuiken et al., 2007; 

Mauguiere, 1999). Dependent on the intensity of the stimulus, finger stimulation 

will excite primarily Αβ fibers (Dowman, 1997), followed by Aδ, followed by C fibers 

(Kandel et al., 2000; McAllister et al., 1995) while median nerve stimulation 

includes additionally sensory and motor fibers of larger diameter and partially the 

ulnar nerve. In view of our interest on hand representation, we hence focused on 

activity induced by stimulation of the digits, as assuming this to elicit responses at 
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2.1 Introduction 

Somatosensory impairment is highly associated with stroke severity (Connel et al., 

2008; Meyer et al., 2016). More specifically, regaining individual finger function is 

considered a good predictor for recovery of upper limb function post stroke (Nijland 

et al., 2010b). Whether this marks recovery of efferent or afferent connections from 

motor or somatosensory areas is a matter of dispute. In the current study, we 

focused on the latter and asked whether electric stimulation of the fingers may 

yield reliable responses in sensory areas as assessed by electro-encephalography 

(EEG). We tested for the candidate capacity of responses to finger stimulation as a 

clinical biomarker in general and more specifically for stroke recovery. 

Somatosensory evoked potentials and fields (SEPs and SEFs, respectively) 

induced by electrical or mechanical stimulation on the median nerve is a well-

established approach to investigate the electrophysiological phenomena linked to 
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(Al-Rawi et al., 2009; Feys et al., 2000; Hari and Forss, 1999; Huang et al., 2004; 

Keren et al., 1993; Oliviero et al., 2004; Péréon et al., 1995; Rossini et al., 2001, 

1998a, Tecchio et al., 2007b, 2006, 2007a; Timmerhuis et al., 1996; Tzvetanov 

and Rousseff, 2003; Wikström et al., 2000, 1999). Early components of median 

nerve SEPs may indicate whether afferent connections arrive at the contralateral 
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efferent fibers intervening (muscles) (Dawson, 1956; Kuiken et al., 2007; 

Mauguiere, 1999). Dependent on the intensity of the stimulus, finger stimulation 

will excite primarily Αβ fibers (Dowman, 1997), followed by Aδ, followed by C fibers 

(Kandel et al., 2000; McAllister et al., 1995) while median nerve stimulation 

includes additionally sensory and motor fibers of larger diameter and partially the 

ulnar nerve. In view of our interest on hand representation, we hence focused on 

activity induced by stimulation of the digits, as assuming this to elicit responses at 

a more specified area at the somatosensory cortex. 

Somatotopic arrangement and discrete representation of the fingers in the human 

cortex is well studied in the literature; Penfield and Boldrey (1937) already showed 
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a systematic arrangement of representation of the human fingers on the cortex 

using intraoperative electrocorticography (ECoG), which was later confirmed by 

Penfield and Rasmussen (Penfield and Rasmussen, 1950). Studies using local 

field potential recordings in animals revealed the refined spatial representation 

differentiating the input from different fingers (Kaas, 1983), in particular in area 3b 

of SI. Over the last decade or so, high-resolution fMRI studies confirmed the 

somatotopic arrangement in area BA 3b reporting inter-digit distances that varied 

from 3.7 mm to 15.5 mm (Martuzzi et al., 2014; Pfannmöller et al., 2015; van 

Westen et al., 2004). M/EEG studies concentrated mainly on the representation of 

1st and 5th digit. Using EEG, Baumgartner et al. (1993) revealed a distance of 

12.5 mm between representations of thumb and little finger. Buchner et al. (1994) 

reported a somatotopic arrangement for two of three subjects tested. Barbati et al. 

(2006) found statistically significantly different representations for 1st and 5th finger 

with MEG that Houzé et al. (2011) confirmed with EEG, and the differences 

between ulnar and median nerve representation were found more significant. In 

the MEG studies of Rossini et al. (2001) and Rossini et al. (1998a) discrimination 

of the 1st and 5th digit was shown possible both for healthy controls and stroke 

patients, where enlargement of the hand area occurred. 

Although the somatotopy of evoked responses has been addressed in various 

studies, it is still unclear how reliable and reproducible those responses are within 

and across subjects, both at sensor and at source level. In particular, it is unknown 

whether somatotopy of all the fingers can be demonstrated with EEG in individual 

subjects and in a reproducible way. The heterogeneity in stimulus protocols and 

the lack of datasets where all fingers are stimulated render the findings described 

in the literature difficult to judge. Using a pneumatic stimulation protocol, Schaefer 

et al. (2002) sketched test-rest reliability and reported a mean Euclidean distance 

of 7.42 mm between sources activations revealed by EEG measurements 

separated 1 month in time. However, this study did not address the possibility to 

discriminate non-overlapping representation of all the fingers in the somatosensory 

cortex with the use of EEG. We consider such a discrimination crucial when 

interested in using finger SEPs as potential biomarker. 
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In the present study, we assessed the test-retest variability of the responses. We 

also tested for the number of trials needed to obtain robust topographies and 

examined the possibility of discriminating different fingers at the cortex. Ultimate 

goal was to examine the possibility of using EEG and SEP on the finger as a 

subject-specific biomarker. 

2.2 Materials and methods 

2.2.1 Participants 
Five healthy volunteers participated in the study (1 left handed; mean±SD age: 

34±12; 3 male: 39±13 years; and 2 female: 26±3 years). Measurements were 

scheduled in four consecutive working days. The subjects had no previous or 

current neurological/motor deficits. They provided written informed consent, prior to 

the start of the experiment. The experimental protocol was in compliance with the 

declaration of Helsinki and approved by the institutional ethics committee of the 

Faculty of Human Movement Science, Vrije Universiteit Amsterdam, The 

Netherlands (ECB 2014-72). We note here, that this is an exploratory study and 

therefore we included a rather small sample size of five healthy volunteers. In 

order to suggest SEP induced by electrical stimulation of the finger as a relevant 

patient-specific biomarker, reproducible SEP responses and discrimination of 

finger representations should be possible in all five healthy participants tested. 

2.2.2 Experiment 

Experimental setup 
During the experiment, participants were sitting comfortably with their dominant 

hand and forearm positioned on their lap with the fingers on top (supine position). 

Between forearm and lap a pillow was placed to secure a stable position and 

comfort, as depicted in Fig. 2.1. The experiment was performed within a NEN1010 

approved measurement van, which was equipped with high-density EEG located at 

the VU University Medical Center (Amsterdam, The Netherlands). 

Data were recorded with a 64-channel EEG system (TMSi, Netherlands) with 

ground electrode placed at the left mastoid and referenced to the common average 
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during recording. Sampling rate was 1024 Hz and apart from anti-aliasing filters no 

other filters were applied online. Positions of the EEG electrodes for every sub ect 

were measured with the ANT Neuro ensor system (ANT Neuro, Enschede, 

Netherlands). 

Electric stimuli were delivered to the fingers with a bipolar battery-powered 

electrical stimulator by Micromed (Brain uick) in order to record the 

somatosensory evoked potentials (SEPs) with EEG. Two electrodes (bipolar 

stimulation) were applied to all the fingers. The anodal stimulation was placed at 

the most distal phalange of the finger and the cathode at the second most distal 

phalange of the finger with an inter-electrode distance of approximately 1 cm. A 

monophasic anodic rectangular electrical pulse of 400 s width and a stimulation 

intensity of two times the sensation threshold was chosen. The sensation threshold 

was defined as the level at which the sub ect was able to sense half of the 10 

pulses given. To define the aforementioned parameters, we reviewed the literature 

and we tested for effects of the electrical pulse’s width and intensity on the 

amplitude and reproducibility of the SEP responses on one participant prior to 

conducting the experiment; more information can be found in the Appendix. The 

chosen stimulation did not cause any inconvenience to the participants. 

Experimental protocol 
Participants were instructed to relax neck, shoulder, and face muscles, to blink 

normally, to avoid talking or swallowing, and to fixate their gaze at a cross at a 

computer screen about 60 cm in front of them. All fingers of the dominant hand 

were electrically stimulated in random order. 

The five conditions of the experiment (corresponding to the five different fingers) 

were repeated in two blocks, with approximately 10-15 minutes difference between 

the two blocks. Each condition consisted of 500 trials (repetitions of stimuli). 

Different (random) orders of stimulation were used in both blocks of the 

experiment. The inter-stimulus interval ( S ) was chosen from 250 to 330 ms 

(varied randomly), as the later responses at the somatosensory area are expected 

up to 110 ms (H m l inen et al., 1 0) and S s larger than 150 ms do not affect 

the deflections of P35 and P60 ( ikstr m et al., 1 6). Between every finger’s 
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stimulation there was a break of at least 1 min but not longer than 3 min according 

to participant’s needs. 

 

 

Fig. 2.1 Experimental setup. One participant 

is seated on a wheelchair inside the 

experimental van with his dominant hand 

on a supine position, placed on a pillow. 

Here, the electrodes are attached on his 

index finger. 

 

2.2.3 Pre-processing of the data  
The data were pre-processed offline using Matlab (R2013b; The Mathworks, 

Natick, MA) with the Fieldtrip (Oostenveld et al., 2011) and EEGlab toolboxes 

(Delorme and Makeig, 2004). After linear interpolation of the stimulation artefact 

(lasting for approximately 6 ms after stimulus onset), data were band-pass filtered 

between 1 and 250 Hz using a bi-directional 4th order Butterworth filter. The data 

were segmented in 250 ms stimulus-locked epochs including a 50-ms pre-stimulus 

interval. Noisy epochs and channels were identified visually and discarded. 

Artifact-free data consisted of about 780 trials (78% of the total number of trials) 

and about 50 channels (78% of the total number of channels). After re-referencing 

to the average of the remaining channels, the SEPs were computed for each 

dataset. 

2.2.4 Signal-to-noise ratio (SNR) 
The SNR per channel and sample was calculated via:  

𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐 =
𝑥𝑥(𝑐𝑐, 𝑡𝑡):;

<=>

𝑣𝑣𝑣𝑣𝑣𝑣"(𝑥𝑥(𝑛𝑛, 𝑐𝑐, 𝑡𝑡));
<=>

. 𝑆𝑆 (2.1) 
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where 𝑥𝑥 is a 3-way data matrix consisting of 𝑛𝑛 trials, 𝑐𝑐	channels,	𝑡𝑡	time samples. 𝑁𝑁 

is the total number of trials. The power of the averaged signal 𝑥𝑥 over trials was 

calculated by taking the sum of squares of all samples 𝑇𝑇 over a specific time 

window (20 to 120 ms after stimulus onset) and then divided by the sum of the 

variance over trials 𝑣𝑣𝑣𝑣𝑣𝑣". This ratio was multiplied by the total number of trials and 

the square root of this portion served as measure of SNR. 

The SNR was averaged over all the channels resulting in one SNR value for every 

subject and every finger. 

2.2.5 Dipole fitting 
A dipole fit for all the subjects and conditions of the experiment was computed with 

a current dipole algorithm as described by De Munck et al. (2001). The current 

dipole algorithm splits the inverse problem into the linear and non-linear part and 

then performs a global search based on a fixed grid with mesh size of 1 cm, 

followed by a full nonlinear search. A concentric three-sphere head model was 

determined by fitting a sphere on the subject-specific electrode positions. For the 

inner and outer radii of the skull fixed ratios with respect to the fitted head radius 

were used. The dipole fit was applied to the P50 peak that was identified for every 

subject and for every condition after computing the global field power (μV2) at the 

BIAP software (http://www.demunck.info/software/index.html). By this, individual 

differences were accounted for. 

2.2.6 Statistics 

Spatio-temporal reproducibility 
The spatio-temporal reproducibility of the SEPs was quantified as the correlation 

coefficient r between two averages Act and Bct, where Act and Bct represent two 

averaged responses and c refers to channel and t to sample. Here t is varied over 

a specific time window corresponding to the signal’s peak. The correlation 

coefficient was calculated similar to Goszczynska et al. (2014) and it is as follows:  

𝑣𝑣 =
(𝐴𝐴 𝑐𝑐, 𝑡𝑡 − 𝐴𝐴)(𝐵𝐵 𝑐𝑐, 𝑡𝑡 − 𝐵𝐵)<H

(𝐴𝐴 𝑐𝑐, 𝑡𝑡 − 𝐴𝐴):<H (𝐵𝐵 𝑐𝑐, 𝑡𝑡 − 𝐵𝐵):<H
 (2.2) 
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Here A  and B  are determined by averaging the SEPs over channels and time 

samples. With the use of r the whole spatiotemporal pattern of the responses is 

taken into account. r is used to quantify the similarity of the SEPs belonging to the 

same experimental condition but consisting of different subset of trials. The values 

of r range between -1 and +1, where +1 defines full correlation and -1 full negative 

correlation. As proposed by (Goszczynska et al., 2014) a value of r = 0.9 identifies 

similar EEG spatiotemporal patterns. 

Bootstrapping 
We used a resampling bootstrapping technique in order to set confident regions of 

the responses at electrodes and sources level (Darvas et al., 2005). By randomly 

drawing a specific number of trials out of the total number of trials (780 ± 50) a 

bootstrap of the average response was constructed for a specific number of trials. 

We took 100 random subsets of a certain percentage of the trials and for each 

subset we computed the averaged SEP response. The percentages of trials were 

varied in steps of 10% from 10 to 90%, in order to determine the requested number 

of trials for a reproducible response. 

For every bootstrapped-based average, a dipole was computed, resulting in 100 

dipoles for every condition. Each dipole is represented in 3D space in (x,y,z)-

coordinates. Nasion, left pre-auricular point (LPA), and right pre-auricular point 

(RPA) coordinates were used, with +x pointing to the nose, +y pointing to the left 

ear and +z pointing to the top of the head. To quantify the findings, we computed 

for every condition the mean location m of the cloud of 100 dipoles and the position 

covariance matrix 𝐶𝐶. Parameter variations of the reconstructed dipole locations are 

illustrated with an ellipse centered at the 𝑚𝑚 dipole position. The axes of the 

ellipsoids are oriented according to the principal axes of variation of each cloud of 

dipoles. The principal axes are computed as the eigenvectors of the	𝐶𝐶. For 

specifying the overlap of the ellipsoids corresponding to the bootstrapped-based 

representation of the fingers 𝑖𝑖 and 𝑗𝑗 we computed the pre-whitened distance 

between the cluster’s centroids 𝑖𝑖 and 𝑗𝑗. Assuming that the ellipsoids have 

independent Gaussian distributions with covariances 𝐶𝐶K and	𝐶𝐶L, then the distribution 

of their difference is Gaussian, with mean 𝑚𝑚K − 𝑚𝑚L and covariance 𝐶𝐶K + 𝐶𝐶L. If	𝑊𝑊KL is 
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a pre hitening matri , such that 𝑊𝑊KL𝑊𝑊KL; = 𝐶𝐶K + 𝐶𝐶L
K"N,the possible separabilit  of 

the t o ellipsoids is defined b  the length of the vector 𝑧𝑧 

𝑧𝑧 = 𝑊𝑊KL 𝑚𝑚K − 𝑚𝑚L  (2.3) 

he (dimensionless) measure of separabilit  𝑆𝑆KL of the t o ellipsoids is defined as  

𝑆𝑆KL = 𝑧𝑧P: + 𝑧𝑧Q: + 𝑧𝑧Q: (2.4) 

hen 𝑆𝑆KL is larger than 2 the ellipses corresponding to the dipoles representations 

are considered as not overlapping and hen 𝑆𝑆KL is smaller than 2 the ellipses 

overlap. 

2.   

2. .   i       
he global field po er (GFP) computed in 2 (Brunet et al., 2011) for different 

fingers is plotted for participant 5 in Fig. 2.2. he GFP as used to identif  peaks 

in the event related signal ( ichel and urra , 2012). Although the peaks varied 

bet een participants and fingers, t picall  three peaks could be observed in the 

SEP  one peak around 30 ms, one peak around 50 ms (P50 peak) and one peak 

around 100 ms. Since e ere particularl  interested in the earl  responses that 

correspond to S1 activation, a indo  of 25 to 5 ms after stimulus onset as 

selected for further anal sis. he P50 as al a s present in the SEPs of all 

subjects in contrast to the P30. e thus selected P50 as the candidate peak for 

source locali ation. 

2. .  ig i  i   
he S  as determined as e plained in Section 2.2.  for the time indo  25 to 

5 ms post stimulus. t as found to be (S ±SD)  2. ±0.  for subject 1, 3.4±0.5 

for subject 2, 3. ±0.5 for subject 3, 2.4 ±0.  for subject 4, and 3.3±0.5 for subject 

5. ere, standard deviations (SD) ere computed over fingers. Accordingl , the 

S  for the pre stimulus indo  40 ms to 0 ms as found to be (S ±SD)  

25  

1.7±0.5 for subject 1, 1±0.1 for subject 2, 1±0.1 for subject 3, 1.5 ±0.3 for subject 

4, and 1±0.2 for subject 5. 

 

 

Fig. 2.2 (A) topographical distribution of the P30 peak. (B) GFPs of SEP responses 
after stimulation of the individual fingers of subject 5. Different colors 
represent different fingers. (C) topographical distribution of the P50 peak. 
(D) GFP of grand average of SEP responses of 5 subjects. 
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2. .4 i i i     

est retest reproducibilit  
The correlation coefficients for the two experimental runs over a time window 25 to 

65 ms are shown in Fig. 2.3. We selected a window that most probably contains 2 

peaks, because we want to test the reproducibility of the topographical distribution, 

generated after electrical stimulation. The mean correlation coefficient was 

0.77±0.14 and the mean correlation coefficients per finger were, thumb  0.74±0.20, 

index  0.77±0.06, middle  0.86±0.02, ring  0.85±0.05, pinky  0.70±0.30, where 

standard deviations indicate inter-subject variability. This indicates that the middle 

finger yielded the most reproducible response. To address the habituation effects 

that might occur at the second experimental run, we constructed two datasets 

containing randomly selected non-overlapping subsets of trials (50 % of the trials in 

each dataset) and then the correlation coefficient was computed as shown in Fig. 

2.3. Small differences were present in the correlation coefficient of the two runs, 

however they had a similar pattern. 

 

Fig. 2.  eproducibility of the SEP. The spatiotemporal correlation coefficient was 
computed for the window of 25-65 ms after stimulus onset. The diamond 
markers represent the correlation between the 2 experimental repetitions of the 
same finger, the o  markers represent the correlation of one finger with all the 
others and the square markers refers to the correlation coefficient of 2 randomly 
selected subsets after stimulation of the same finger. Each subject is 
associated with a specific color and the correlation coefficients of every finger 
are plotted above the fingers of the hand representation. Subject 3 was left 
handed. 

27  

The computation of the correlation coefficient between the SEP responses of all 

combinations of fingers shows that the spatiotemporal patterns of all the fingers did 

not differ significantly (mean correlation coefficient 0.67 ±0.15) from the patterns of 

all the other fingers, as also supported from Wang et al. (2004) for index-pinky 

spatiotemporal correlation coefficient In Fig. 2.3 this is indicated per subject with 

the “o” markers. This finding suggests that at least at sensor level there was no 

large distinct spatiotemporal pattern per finger. 

Number of trials needed for reproducible responses: 
A bootstrapping-resampling technique served to assess the effect of the number of 

trials on the reconstruction of the spatial-temporal responses patterns determined 

from the total number of trials. The quality of this reconstruction was quantified by 

computing the correlation coefficient between the SEP response computed with 

the total number of trials and a subset of a certain percentage of the trials. The 

mean and standard deviations of these correlations were computed over 100 

random subsets, and displayed as a function of the percentage of trials in Fig. 2.4. 

Computations were conducted separately for all five fingers and five subjects. One 

observes that after including in the dataset 30% of the total number of trials it was 

possible to reproduce the original dataset by 85% (except two outliers).  

 

 
Fig. 2.4 Correlation coefficient of X % trials averaged pattern and true averaged pattern 

(100% of trials). The mean and standard deviation of the correlation coefficient 
is shown, computed from 100 randomly selected time windows from 25 to 
65ms. Every percentage block shows means and standard deviations for all 
subjects and fingers. The same color code for the different fingers is used as in 
Fig. 2.3.  
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By including 50% of the trials (390 trials) a correlation coefficient of 95% was 

achieved on average. Specifically, after including 390 trials in the SEP response, 

the topographical distribution showed similarity to the response after including all 

trials and was: 0.93 for the thumb, 0.96 for the index, 0.97 for the thumb 0.94 for 

the ring and 0.96 for the pinky, as shown in Table 2.1.Those values exceeded the 

threshold 0.9 as indicated by (Goszczynska et al., 2014) and therefore the 

responses after including 50% of the trials (390) and 100% of the trials showed 

similarity. 

 
Table 2.1 Mean and standard deviation (mean±std) of the spatio-temporal correlation 

coefficient of the averaged response after including 30% and 50% of the total 
number of trials and of the averaged response after including the total number 
of trials. 

 
 %30 of the total number of trials %50 of the total number of trials 

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5 

th
um

b 0.96 
±0.02 

0.89 
±0.03 

0.92 
±0.04 

0.72 
±0.16 

0.88 
±0.05 

0.98 
±0.01 

0.95 
±0.01 

0.96 
±0.01 

0.87 
±0.07 

0.94 
±0.03 

in
de

x 0.90 
±0.05 

0.88 
±0.04 

0.92 
±0.04 

0.88 
±0.06 

0.90 
±0.06 

0.96 
±0.02 

0.95 
±0.02 

0.97 
±0.01 

0.95 
±0.03 

0.96 
±0.02 

m
id

dl
e 0.92 

±0.02 
0.92 
±0.02 

0.95 
±0.02 

0.94 
±0.03 

0.93 
±0.03 

0.97 
±0.01 

0.97 
±0.01 

0.98 
±0.01 

0.97 
±0.01 

0.97 
±0.01 

rin
g 0.92 

±0.03 
0.94 
±0.02 

0.95 
±0.02 

0.89 
±0.05 

0.94 
±0.03 

0.97 
±0.01 

0.97 
±0.01 

0.98 
±0.01 

0.95 
±0.02 

0.97 
±0.01 

pi
nk

y 0.67 
±0.09 

0.90 
±0.03 

0.94 
±0.02 

0.86 
±0.08 

0.92 
±0.04 

0.81 
±0.05 

0.95 
±0.01 

0.97 
±0.01 

0.94 
±0.03 

0.96 
±0.02 

 

2.3.5 Representation of different fingers on the sources level 

Location of the centroids of the bootstrapped- based dipoles 
In Fig. 2.5 the mean location per finger over the 100 permutations is shown as the 

cluster of the centroid (with a bold dot) and around this a sphere is plotted with the 

radius as defined in Section 2.2.6. 

For the two subjects whose data are displayed in Fig. 2.5 (subject 2 and 5) we 

observed no systematic order of the representation of the fingers while the 

29  

estimated representations of fingers were strongly overlapping. In order to have a 

proper somatotopic arrangement, the values of y-coordinates should have had an 

ascending order from thumb to pinky. This arrangement could only be confirmed to 

some extent for subject 2 (see Table 2.2), although the radii of the representation 

ellipsoids (while being the smallest over subjects) did not allow for a complete 

separation of the representation of the fingers. The other four subjects did not 

show such somatotopic arrangement. 

 

 
 
Fig. 2.5 The mean dipole locations of the P50 components, estimated over 100 random 

subsets of trials are plotted for different fingers with filled dot. The ellipses 
around them represent the radius of confidence. Blue = thumb, red = index 
finger, black = middle finger, purple =ring finger and green = pinky. The half 
axes of the ellipsoids are two times the standard deviation of the spatial 
variation of the 100 bootstrapped based locations. The orientation of the 
ellipsoids is given by the eigenvectors of the covariance matrix of the dipole 
locations of each cloud of points. Dipole coordinates are represented in Nasion-
Ear coordinates, in cm. On the left results of subject 2 are shown and on the 
right those of subject 5. 

 

Overlap of the fingers’ representation 
To illustrate the general overlap of the finger representations, we show in Table 2.3 

the minimum and maximum separability measure over all subjects. For example, 

the separability index between middle and ring fingers amounts to 7.10 in the 

“best” subject, indicating that there was no substantial overlap between the 

bootstrapped-based representations for this subject. However, for the same 

combination of fingers, we found a subject in whom the separability was only 0.96 
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implying an almost complete overlap of the bootstrapped-based clusters. Since the 

figures represented in Table 2.3 are not caused by a single good or poor 

performing subject, we have to conclude that there was no pair of fingers for which 

good separability exists for all subjects. Specifically, the minimum part of the table 

shows there was no pair of fingers for which the separability was higher than 0.68 

for all the subjects. 

 

Table 2.2 Mean location and confidence radius of the dipoles estimated over 100 random 
subsets. Dipoles are computed for the P50 peak. Note that subject 3 is left-
handed thus stimulated at left hand so location refers to right hemisphere. All 
values are in cm and nasion-ears coordinates are used. 

 
 finger x y z radius 

Subject 1 
Thumb 4.16 1.51 5,32 1.67 
Index 3.90 2.07 2.98 2.54 
Middle 4.4 1.01 3.42 2.00 
Ring 6.07 -0.33 1.58 2.39 

Pinkie 2.89 4.98 3.18 4.18 

Subject 2 
Thumb 0.60 1.71 6.19 0.83 
Index 1.44 2.07 7.61 0.54 
Middle 1.14 2.20 7.58 0.40 
Ring 0.89 2.18 7.74 0.32 

Pinkie 1.07 2.63 7.78 0.51 

Subject 3 
Thumb 1.01 -3.82 6.99 1.44 
Index 0.47 -3.49 6.73 1.63 
Middle -0.10 -3.72 7.76 1.01 
Ring -0.92 -4.00 8.42 0.63 

Pinkie 0.38 -2.49 6.52 1.71 

Subject 4 
Thumb 2.50 4.83 9.01 1.62 
Index 2.64 1.75 6.81 1.31 
Middle 3.69 3.11 6.55 1.30 
Ring 2.36 4.18 9.55 1.17 

Pinkie 2.25 3.59 8.32 1.35 

Subject 5 
Thumb 0.19 3.14 8.84 0.90 
Index 0.87 2.62 8.85 0.70 
Middle -1.06 2.65 7.85 0.84 
Ring 0.39 2.41 8.61 0.60 

Pinkie -0.83 3.42 7.95 0.83 
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Table 2.3 The maximum and minimum separability over all subjects are shown for all 
finger combinations 

 
 

Digit number 

M
A

X 

D
ig

it 
nu

m
be

r 

 1 2 3 4 5 
1 - 3.65 3.50 3.96 3.90 
2 0.74 - 2.55 6.52 3.36 
3 1.69 0.68 - 7.10 3.45 
4 0.87 0.85 0.96 - 4.17 
5 1.33 1.13 1.42 1.37 - 

MIN 
 

2.4 Discussion 

In the present study, we evaluated the use of somatosensory evoked potentials 

induced by finger stimulation, as a potential biomarker tool for post-stroke 

recovery. We were especially interested in testing the robustness of such a 

biomarker as a lack of consistency would make it impossible to track longitudinal 

changes at a subject-specific level. The large overlap of the dipole representations 

for different fingers and the relatively low reproducibility of the test-retest design 

indicate the difficulty of separating the representations of different fingers as 

determined by EEG and electrical finger stimulation. Moreover, the somatotopic 

representation of the fingers could only be confirmed in one of the five subjects, 

whereas for the others it was not so consistent. We emphasize that these results 

were found in the ‘ideal’ condition in which an optimal stimulation protocol was 

used and reproducibility measure was not compromised by detaching and re-

attaching the EEG cap. 

Parts of these admittedly discouraging results are consistent with other studies. 

We found one or two peaks from 25 to 65 ms (Baumgartner et al., 1993; 

Bourguignon et al., 2013; Buchner et al., 1994; Hari and Forss, 1999; Houzé et al., 

2011; Nierula et al., 2013; Schubert et al., 2008; Wang et al., 2004) and a later 

peak around 100 ms (Hämäläinen et al., 1990). Note that the early peaks are often 

referred to as N20 and P27 in the literature in accordance with peaks found after 

median nerve stimulation, the latencies found after finger stimulation do not agree 

with 20 or 27 ms (Wang et al., 2004). In order to assess the test-retest repeatability 

of the responses and the number of trials needed for reproducible responses, we 
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performing subject, we have to conclude that there was no pair of fingers for which 

good separability exists for all subjects. Specifically, the minimum part of the table 

shows there was no pair of fingers for which the separability was higher than 0.68 

for all the subjects. 

 

Table 2.2 Mean location and confidence radius of the dipoles estimated over 100 random 
subsets. Dipoles are computed for the P50 peak. Note that subject 3 is left-
handed thus stimulated at left hand so location refers to right hemisphere. All 
values are in cm and nasion-ears coordinates are used. 

 
 finger x y z radius 

Subject 1 
Thumb 4.16 1.51 5,32 1.67 
Index 3.90 2.07 2.98 2.54 
Middle 4.4 1.01 3.42 2.00 
Ring 6.07 -0.33 1.58 2.39 

Pinkie 2.89 4.98 3.18 4.18 

Subject 2 
Thumb 0.60 1.71 6.19 0.83 
Index 1.44 2.07 7.61 0.54 
Middle 1.14 2.20 7.58 0.40 
Ring 0.89 2.18 7.74 0.32 

Pinkie 1.07 2.63 7.78 0.51 

Subject 3 
Thumb 1.01 -3.82 6.99 1.44 
Index 0.47 -3.49 6.73 1.63 
Middle -0.10 -3.72 7.76 1.01 
Ring -0.92 -4.00 8.42 0.63 

Pinkie 0.38 -2.49 6.52 1.71 

Subject 4 
Thumb 2.50 4.83 9.01 1.62 
Index 2.64 1.75 6.81 1.31 
Middle 3.69 3.11 6.55 1.30 
Ring 2.36 4.18 9.55 1.17 

Pinkie 2.25 3.59 8.32 1.35 

Subject 5 
Thumb 0.19 3.14 8.84 0.90 
Index 0.87 2.62 8.85 0.70 
Middle -1.06 2.65 7.85 0.84 
Ring 0.39 2.41 8.61 0.60 

Pinkie -0.83 3.42 7.95 0.83 
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Table 2.3 The maximum and minimum separability over all subjects are shown for all 
finger combinations 

 
 

Digit number 
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 1 2 3 4 5 
1 - 3.65 3.50 3.96 3.90 
2 0.74 - 2.55 6.52 3.36 
3 1.69 0.68 - 7.10 3.45 
4 0.87 0.85 0.96 - 4.17 
5 1.33 1.13 1.42 1.37 - 

MIN 
 

2.4 Discussion 

In the present study, we evaluated the use of somatosensory evoked potentials 

induced by finger stimulation, as a potential biomarker tool for post-stroke 

recovery. We were especially interested in testing the robustness of such a 

biomarker as a lack of consistency would make it impossible to track longitudinal 

changes at a subject-specific level. The large overlap of the dipole representations 

for different fingers and the relatively low reproducibility of the test-retest design 

indicate the difficulty of separating the representations of different fingers as 

determined by EEG and electrical finger stimulation. Moreover, the somatotopic 

representation of the fingers could only be confirmed in one of the five subjects, 

whereas for the others it was not so consistent. We emphasize that these results 

were found in the ‘ideal’ condition in which an optimal stimulation protocol was 

used and reproducibility measure was not compromised by detaching and re-

attaching the EEG cap. 

Parts of these admittedly discouraging results are consistent with other studies. 

We found one or two peaks from 25 to 65 ms (Baumgartner et al., 1993; 

Bourguignon et al., 2013; Buchner et al., 1994; Hari and Forss, 1999; Houzé et al., 

2011; Nierula et al., 2013; Schubert et al., 2008; Wang et al., 2004) and a later 

peak around 100 ms (Hämäläinen et al., 1990). Note that the early peaks are often 

referred to as N20 and P27 in the literature in accordance with peaks found after 

median nerve stimulation, the latencies found after finger stimulation do not agree 

with 20 or 27 ms (Wang et al., 2004). In order to assess the test-retest repeatability 

of the responses and the number of trials needed for reproducible responses, we 
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selected a window from 25 to 65 ms, since only a few studies referred to the later 

peaks. The early peak appears to correspond to activity in S1 (Forss et al., 1994b). 

Even at the convenient setup of not removing the EEG cap, correlation coefficients 

were at mean (± SD) of 0.8±0.16. The fairly low reproducibility was not affected by 

habituation effects in the test re-test design because the correlation coefficients of 

the random subset of trials are in the same range. Seeking to eliminate all 

parameters that may lead to irreproducible responses, we estimated the SNR with 

a similar way as Darvas et al. (2005) and the minimum number of trials needed in 

order to have repeatable spatiotemporal patterns. With an SNR of 2.9 (2.8 found in 

a MEG study, (Darvas et al., 2005)) we believe that our pre-processed signal was 

accurate. We found a minimum number of 230 trials to be needed for reproducing 

topographies that can be achieved with the total number of 780 trials. An indication 

about the variations at the brain responses is given by Darvas et al. (2005). We 

also observed a higher correlation coefficient for the middle finger and a lower 

correlation coefficient for the pinky, in accordance with small amplitudes, poor SNR 

and difficulty in source localization for the fifth digit reported in other studies 

(Baumgartner et al., 1993; Buchner et al., 1994; Houzé et al., 2011). 

Although many studies applied electrical stimulation on the fingers to evoke SEPs 

or SEFs, as of yet there is no consensus on stimulus characteristics, nor 

explanation on the design of the chosen experimental protocol. To the best of our 

knowledge all studies used a monophasic anodic rectangular pulse of various 

pulse widths and intensities. MEG studies used a pulse width of 0.2 ms and an 

intensity of two times the sensory threshold or a pulse width of 1 ms and an 

intensity below the pain threshold (Darvas et al., 2005; Kristeva-Feige et al., 1995; 

Xiang et al., 1997). Stimulation protocols among EEG studies were even more 

inconsistent. The width of electrical pulse found was 0.2, 0.3, 0.4 ms and the 

intensities varied as well as 1.5, 2, 3 times the sensory threshold, maximum 

comfortable level or below the pain threshold (Baumgartner et al., 1993; Buchner 

et al., 1994; Houzé et al., 2011; Nierula et al., 2013; Schubert et al., 2008; Yao and 

Dewald, 2005). Inconsistency of stimulation protocols led us to test several 

stimulation parameters and their ability to produce reproducible responses (see 

Appendix). A more detailed test protocol with smaller steps between the pulse 

33  

widths will be helpful in revealing the effect of the pulse width to the responses. 

However, this is not the purpose of the present study. 

With a high SNR, a number of trials adequate for resulting in reproducible 

responses and a stimulation protocol optimal for finger stimulation, we further 

tested the representation of the fingers at the sources level. Although there is 

evidence for discrimination of the activation related to different fingers and mainly 

of thumb and pinky using EEG (Baumgartner et al., 1993; Buchner et al., 1994; 

Houzé et al., 2011; Nierula et al., 2013) or MEG (Barbati et al., 2006; Buchner et 

al., 1994; Rossini et al., 2001, 1998a) it was still unclear if this discrete 

representation of the fingers is prone to trial to trial variations or subject-specific 

differences. Darvas et al. (2005) addressed this topic with using MEG of one 

subject revealing the somatotopic arrangement of the fingers. However, they found 

for the S1 sources, a standard deviation of the 1000 locations of the bootstrapped 

dipoles between 3 and 5 mm revealing an overlap for some of the fingers 

representation. Our results show even higher standard deviation between 2 and 28 

mm that may be explained by the poorer spatial resolution of EEG in comparison 

to MEG (Leahy et al., 1998) and the lower SNR of EEG concerning superficial 

sources (Goldenholz et al., 2009; de Jongh et al., 2005). As it can be seen in Table 

2.2 we failed to pinpoint a pattern of somatotopic arrangement of the fingers for all 

the subjects, let alone a clear pattern of which fingers could be disentangled in the 

human cortex. The use of realistic head models in the dipole calculation might 

have resulted in more accurate dipole positions (Schaefer et al., 2002). In the 

current study, however, we were interested in relative locations of fingers in the 

brain and their reproducibility and not in exact 3D locations of every finger on the 

cortex. 

EEG being an affordable and accessible technique along with single nerve 

recruitment by electrical stimulation of the finger can serve as a tool in the clinic, 

for example for monitoring stroke rehabilitation. However, the variability of the 

responses and the absence of a reproducible pattern of the finger somatotopy 

imply that the finger representation estimated with EEG is not a recommendable 

subject-specific monitoring tool for a longitudinal stroke study. MEG or fMRI along 

with electrical finger stimulation are modalities with higher spatial resolution 



	 Disentangling	somatosensory	evoked	potentials	of	the	fingers:	limitations	and	clinical	potential

2

32  

selected a window from 25 to 65 ms, since only a few studies referred to the later 

peaks. The early peak appears to correspond to activity in S1 (Forss et al., 1994b). 

Even at the convenient setup of not removing the EEG cap, correlation coefficients 

were at mean (± SD) of 0.8±0.16. The fairly low reproducibility was not affected by 

habituation effects in the test re-test design because the correlation coefficients of 

the random subset of trials are in the same range. Seeking to eliminate all 

parameters that may lead to irreproducible responses, we estimated the SNR with 

a similar way as Darvas et al. (2005) and the minimum number of trials needed in 

order to have repeatable spatiotemporal patterns. With an SNR of 2.9 (2.8 found in 

a MEG study, (Darvas et al., 2005)) we believe that our pre-processed signal was 

accurate. We found a minimum number of 230 trials to be needed for reproducing 

topographies that can be achieved with the total number of 780 trials. An indication 

about the variations at the brain responses is given by Darvas et al. (2005). We 

also observed a higher correlation coefficient for the middle finger and a lower 

correlation coefficient for the pinky, in accordance with small amplitudes, poor SNR 

and difficulty in source localization for the fifth digit reported in other studies 

(Baumgartner et al., 1993; Buchner et al., 1994; Houzé et al., 2011). 

Although many studies applied electrical stimulation on the fingers to evoke SEPs 

or SEFs, as of yet there is no consensus on stimulus characteristics, nor 

explanation on the design of the chosen experimental protocol. To the best of our 

knowledge all studies used a monophasic anodic rectangular pulse of various 

pulse widths and intensities. MEG studies used a pulse width of 0.2 ms and an 

intensity of two times the sensory threshold or a pulse width of 1 ms and an 

intensity below the pain threshold (Darvas et al., 2005; Kristeva-Feige et al., 1995; 

Xiang et al., 1997). Stimulation protocols among EEG studies were even more 

inconsistent. The width of electrical pulse found was 0.2, 0.3, 0.4 ms and the 

intensities varied as well as 1.5, 2, 3 times the sensory threshold, maximum 

comfortable level or below the pain threshold (Baumgartner et al., 1993; Buchner 

et al., 1994; Houzé et al., 2011; Nierula et al., 2013; Schubert et al., 2008; Yao and 

Dewald, 2005). Inconsistency of stimulation protocols led us to test several 

stimulation parameters and their ability to produce reproducible responses (see 

Appendix). A more detailed test protocol with smaller steps between the pulse 

33  

widths will be helpful in revealing the effect of the pulse width to the responses. 

However, this is not the purpose of the present study. 

With a high SNR, a number of trials adequate for resulting in reproducible 

responses and a stimulation protocol optimal for finger stimulation, we further 

tested the representation of the fingers at the sources level. Although there is 

evidence for discrimination of the activation related to different fingers and mainly 

of thumb and pinky using EEG (Baumgartner et al., 1993; Buchner et al., 1994; 

Houzé et al., 2011; Nierula et al., 2013) or MEG (Barbati et al., 2006; Buchner et 

al., 1994; Rossini et al., 2001, 1998a) it was still unclear if this discrete 

representation of the fingers is prone to trial to trial variations or subject-specific 

differences. Darvas et al. (2005) addressed this topic with using MEG of one 

subject revealing the somatotopic arrangement of the fingers. However, they found 

for the S1 sources, a standard deviation of the 1000 locations of the bootstrapped 

dipoles between 3 and 5 mm revealing an overlap for some of the fingers 

representation. Our results show even higher standard deviation between 2 and 28 

mm that may be explained by the poorer spatial resolution of EEG in comparison 

to MEG (Leahy et al., 1998) and the lower SNR of EEG concerning superficial 

sources (Goldenholz et al., 2009; de Jongh et al., 2005). As it can be seen in Table 

2.2 we failed to pinpoint a pattern of somatotopic arrangement of the fingers for all 

the subjects, let alone a clear pattern of which fingers could be disentangled in the 

human cortex. The use of realistic head models in the dipole calculation might 

have resulted in more accurate dipole positions (Schaefer et al., 2002). In the 

current study, however, we were interested in relative locations of fingers in the 

brain and their reproducibility and not in exact 3D locations of every finger on the 

cortex. 

EEG being an affordable and accessible technique along with single nerve 

recruitment by electrical stimulation of the finger can serve as a tool in the clinic, 

for example for monitoring stroke rehabilitation. However, the variability of the 

responses and the absence of a reproducible pattern of the finger somatotopy 

imply that the finger representation estimated with EEG is not a recommendable 

subject-specific monitoring tool for a longitudinal stroke study. MEG or fMRI along 

with electrical finger stimulation are modalities with higher spatial resolution 



Chapter 2

34  

(Darvas et al., 2005; Rossini et al., 2001), but patient’s ease and longitudinal 

monitoring will be at stake for patients having to travel to the hospital. If not only 

refined finger representation is of interest, median nerve stimulation could be used 

as an alternative. Electrical stimulation of the median nerve is a popular 

experimental choice when stroke assessment is of interest (Forss et al., 1999; Hari 

and Forss, 1999; Huang et al., 2004; Rossini et al., 2001, 1998a, 1998b, Tecchio 

et al., 2007a, 2001, Wikström et al., 2000, 1999). It induces several peaks 

including an early peak around 20 ms and one around 50ms. Due to the fact that 

the median nerve stimulation activates both the sensory and motor areas, 

responses with larger amplitudes are observed when compared to the ones after 

electrical stimulation of the finger and with more prominent peaks. However, 

median nerve stimulation on stroke patients also showed limitations. For example 

in Tecchio et al. (2007b) median nerve stimulation responses were identifiable at 

the affected hemisphere only in 56 % of the patients. Yet, even when responses 

are identifiable we should expect an accuracy of 10 mm as indicated by 

Bourguignon et al. (2013) .A potential clinical use of the SEPs induced by finger 

stimulation could be the study of afferent pathways and brain areas recruited in S1 

and S2 time locked to the appearance of early and late peaks. 

2.5 Conclusions 

Distinct locations of fingers representation during electrical stimulation were found 

for all participants. However, in a sample of five healthy young participants we 

failed to find non-overlapping dipole confidence limits of different fingers for all the 

subjects using high-density EEG. Responses appeared variable within and across 

recording sessions and therefore SEP induced by electrical stimulation on the 

fingers and recorded with EEG as a tool for subject-specific clinical assessment 

(for example, longitudinal post-stroke assessment) should be used with great care. 
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monophasic anodic electrical pulses in combinations of 3 pulse widths and 5 

intensities. our pulse intensities were defined relatively to the sensation threshold 

(1.5  2  2.5 3 times the sensation threshold) and the 5th intensity was set ust below 

the pain threshold. The sensation threshold was defined as the level at which the 

sub ect was able to sense half of the 10 pulses given. The width of pulses tested 

was 100  400 and 500 μs. This choice was made after reviewing the literature  100 

μs was the shortest pulse width suggested by a review study (Cruccu et al.  2008)  

400 μs was the pulse width used in a recent study with similar analysis ( ou  et 

al.  2011) and 500 μs can be considered the mean width of electrical pulses across 

a variety of studies. ach of the 15 experimental conditions consisted of 500 trials 

divided in 5 experimental blocks  giving 75 blocks of 100 trials. The order of the 

total number of blocks (75) was randomi ed in order to minimi e habituation 

effects. A measure of reproducibility r was obtained by computing the spatio-

temporal correlation coefficient between two averages of distinct random subsets 

of  responses (see ection 2.6). 

ig. A2.1 shows the correlation coefficient  computed between two averaged non-

overlapping datasets created with the bootstrapping method for the time window 

25 to 65 ms after stimulus onset. Mean and standard deviation of the bootstrapped 

based coefficients are depicted for the different combinations of pulses and 

intensities. The correlation coefficient of the pulse width 400 µs turned out more 

stable over intensities than for the other pulse widths. Moreover  the amplitude of 

the peaks (see Table A2.1) for the pulse width of 400 μs and at a threshold of two 

times the sensation threshold was larger than for the other two pulses  widths. e 

selected 400 μs as the pulse width for our experiment and as a stimulation 

threshold we selected the two times sensation threshold as it was not yet 

uncomfortable for the sub ect. 
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Fig. A2.1 Correlation coefficient of the spatiotemporal patterns for the time window 25 to 
65 ms post stimulus and for different stimulation protocols. Mean and standard 
deviation over the bootstrapped based correlations are shown. 

 
Table A2.1 The latency and amplitude of all the experimental conditions (15 pulse width-

amplitude combinations) for the main peak in the global field power are 
presented and expressed in μV. The symbol * indicates a case in which we 
failed to identified the peak. 

  
Pulse 
width 

Times X 
threshold Intensity 

Latency 
30-60 ms 

Amplitude 
30ms in μV 

100 μs 1.5 sensory 3 mA 46 0.17 
100 μs 2 sensory 3.5 mA 38 0.11 
100 μs 2.5 sensory 4 mA 40 0.63 
100 μs 3 sensory 5.5 mA 40 0.75 
100 μs below pain 7.5 mA 38 0.32 
400 μs 1.5 sensory 1 mA * * 
400 μs 2 sensory 1.5 mA 42 0.5 
400 μs 2.5 sensory 2 mA 43 0.74 
400 μs 3 sensory 2.5 mA 37 0.22 
400 μs below pain 3 mA 37 1.1 
500 μs 1.5 sensory 1 mA 43 0.34 
500 μs 2 sensory 1.5 mA 45 0.23 
500 μs 2.5 sensory 2 mA 45 0.23 
500 μs 3 sensory 2.5 mA 35 0.32 
500 μs below pain 3 mA 38 0.50 
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Fig. A2.2 (A) topographical distribution of the P30 peak. (B) GFPs of SEP responses after 

stimulation of the individual fingers of subject . Different colors represent 
different fingers. (C) topographical distribution of the P50 peak. 

 

 
Fig. A2.  (A) topographical distribution of the P30 peak. (B) GFPs of SEP responses after 

stimulation of the individual fingers of subject . Different colors represent 
different fingers. (C) topographical distribution of the P50 peak. 
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Fig. A2.4 (A) topographical distribution of the P30 peak. (B) GFPs of SEP responses after 

stimulation of the individual fingers of subject 3. Different colors represent 
different fingers. (C) topographical distribution of the P50 peak. 

 

 
Fig. A2.5 (A) topographical distribution of the P30 peak. (B) GFPs of SEP responses after 

stimulation of the individual fingers of subject 4. Different colors represent 
different fingers. (C) topographical distribution of the P50 peak. 
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Fig. A2.5 (A) topographical distribution of the P30 peak. (B) GFPs of SEP responses after 

stimulation of the individual fingers of subject 4. Different colors represent 
different fingers. (C) topographical distribution of the P50 peak. 
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 Chapter 3 

 Spatial resolution for EEG source 
reconstruction – a simulation study on 

SEPs2 

ΗΛΙΟΣ ΓΑΡ ΟΥΧ ΑΝ ΥΠΕΡΒΗΣΕΤΑΙ ΜΕΤΡΑ 
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ABSTRACT 
a roun  e a ura  o  sour e re onstru tion epen s on t e spatial 
on i uration o  t e neural sour es un erl in  en ep alo rap i  si nals  t e 

te poral istan e o  t e sour e a ti it  t e le el an  stru ture o  noise in t e 
re or in s  an   o  ourse  on t e e plo e  in erse et o  is plenitu e o  
a tors ren ers a e inition o  spatial resolution  o  t e ele tro en ep alo ra  

 a allen e  
e  et o   proper e inition o  spatial resolution re uires a roun  trut  e 

use  ata ro  nu eri al si ulations o  t o ipoles an e  it  a e or s 
rese lin  so atosensor  e o e  potentials pea in  at     s  e 
arie  inter ipole istan es an  a e  noise to t e si ulate  s alp re or in s 
it  istin t si nal to noise ratios s  rior to in erse o elin  e pre

itene  t e si ulate  ata an  t e lea iel  e teste  a t o ipole it  s
 an  s e  an  assesse  t eir a ura  ia t e istan e et een 

t e si ulate  an  esti ate  sour es  
esults  o uanti  t e spatial resolution o   e intro u e  t e notion o  

separa ilit  i e  t e separation o  t o ipolar sour es it  a ertain inter ipole 
istan e  ur results in i ate separa ilit  o  t o sour es in t e presen e o  

realisti  noise it   up to  i  t e  are   or urt er apart  
o parison it  e istin  et o s  n t e presen e o  realisti  noise  spatial pre

itenin  appears an ator  prepro essin  step irrespe ti e o  t e in erse 
et o  e plo e  
on lusions  epara ilit  is a le iti ate easure to uanti  s spatial 

resolution  n opti al resolution in sour e re onstru tion re uires spatial pre
itenin  as a ru ial pre pro essin  step  
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3.1 Introduction 

Electro-encephalography (EEG) is a non-invasive, affordable, and ambulant 

technique. Over the years, it has received substantial attention from researchers 

and clinicians. Apart from its excellent temporal resolution, EEG shows adequate 

spatial resolution and it is hence considered an imaging tool (Baillet et al., 2001; 

Lopes da Silva, 2004; Michel et al., 2004). While (functional) magnetic resonance 

imaging, (f)MRI, provides much better spatial resolution, EEG (and its magnetic 

counterpart, magneto-encephalography, MEG) are the modalities of choice when 

studying rapid responses of neural populations to a certain stimulus. When looking 

at evoked or induced responses, sources of interest are often located in nearby 

areas within the same lobe. They are activated with only a small time-shift in the 

order of milliseconds. A seminal example are somatosensory evoked responses 

induced by median nerve stimulation as a marker for tracking recovery pathways 

post stroke (Altamura et al., 2007; Forss et al., 1999; Huang et al., 2004; 

Laaksonen et al., 2012; Rossini et al., 2001; Tecchio et al., 2007a; Tzvetanov and 

Rousseff, 2003). Following stimulation, brief activation patterns can be found in the 

areas S1 and S2. To disentangle them with EEG, analyses have to rely on short 

signal epochs and require a comparably high spatial resolution when it comes to 

source reconstruction. Here, we sought to specify the term “comparably” to obtain 

robust estimates of the spatial resolution in EEG source reconstruction. To provide 

a proper definition of such a spatial resolution, we examined different inverse 

methods and evaluated their accuracy as a function of the proximity of the sources. 

Using EEG as an imaging tool implies addressing the inverse problem. In brief, 

extracting (distributed 3D) source activity within the brain from (low-dimensional 

2D) scalp recordings is an ill-posed problem (von Helmholtz, 1853): infinitely many 

source configurations can generate identical electric potentials on the scalp. A 

priori assumptions or constraints can reduce this diversity. They are typically based 

on electro-physiological and anatomical features of the brain. In fact, over the last 

three or so decades, several methods have been developed to implement them. 

Methods fall in three categories: dipole fitting, scanning, and imaging (Darvas et 

al., 2004). Which method is most precise and which method explains best the 
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ABSTRACT 
Background: The accuracy of source reconstruction depends on the spatial 
configuration of the neural sources underlying encephalographic signals, the 
temporal distance of the source activity, the level and structure of noise in the 
recordings, and – of course – on the employed inverse method. This plenitude of 
factors renders a definition of ‘spatial resolution’ of the electro-encephalogram 
(EEG) a challenge. 
New method: A proper definition of spatial resolution requires a ground truth. We 
used data from numerical simulations of two dipoles changed with waveforms 
resembling somatosensory evoked potentials peaking at 20, 30, 50, 100 ms. We 
varied inter-dipole distances and added noise to the simulated scalp recordings 
with distinct signal-to-noise ratios (SNRs). Prior to inverse modeling we pre-
whitened the simulated data and the leadfield. We tested a two-dipole fit, sc-
MUSIC, and sc-eLORETA and assessed their accuracy via the distance between 
the simulated and estimated sources. 
Results: To quantify the spatial resolution of EEG, we introduced the notion of 
separability, i.e. the separation of two dipolar sources with a certain inter-dipole 
distance. Our results indicate separability of two sources in the presence of 
realistic noise with SNR up to 3 if they are 11 mm or further apart. 
Comparison with existing methods: In the presence of realistic noise, spatial pre-
whitening appears mandatory preprocessing step irrespective of the inverse 
method employed. 
Conclusions: Separability is a legitimate measure to quantify EEG’s spatial 
resolution. An optimal resolution in source reconstruction requires spatial pre-
whitening as a crucial pre-processing step. 
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recorded data? As of yet, the literature does not provide commonly accepted 

answers to these questions. Several studies tried to define a gold standard in 

source localization. Yao and Dewald (2005) claimed that the well-known imaging 

approach coined low-resolution electromagnetic tomography (LORETA, Pascual-

Marqui et al., 1994) has the lowest localization error after simulating two dipoles. 

However, Grech et al. (2008) forwarded the so-called standardized LORETA 

(Pascual-Marqui, 2002) when simulating a single dipole, which found recent 

support by Bradley et al. (2016). When interested in pre-surgical mapping, Grova 

et al. (2006) advised to consult the (statistical) output of different source 

localization algorithms. Interestingly, other studies (Becker et al., 2014; de Gooijer-

van de Groep et al., 2013; Mideksa et al., 2012) suggested that subspace-based 

scanning methods, like multiple signal classification (MUSIC, Mosher et al., 1992), 

may lead to accurate solutions when compared with (LORETA-like) distributed 

methods. It appears that recommendations are as plentiful and diverse as 

methods. One reason for this might be that a direct comparison between 

localization methods requires defining the spatial resolution of EEG. 

The presence of noise jeopardizes source localization. EEG signals are always 

contaminated by spatially and temporally correlated noise by means of background 

activity. As indicated for MEG, the spatial resolution will be enhanced by improving 

the SNR and by accounting for spatial characteristics of the noise (Brookes et al., 

2008; Vrba, 2002; Vrba and Robinson, 2002). Spatial correlations in the noise 

potentially reduce the capacity of every inverse method to disentangle the sources 

underlying EEG. One may estimate these correlations by determining 

spatiotemporal covariance matrices from non-time-locked signal (ongoing activity) 

and remove them prior to source reconstruction. One way to do that is spatial pre-

whitening, based on real data covariance matrix, which is considered a standard – 

albeit not well justified – pre-processing step for M/EEG (Engemann and Gramfort, 

2015; Gramfort et al., 2012; Lin et al., 2006; Marzetti et al., 2008; Ou et al., 2009; 

Ramírez et al., 2011). Spatiotemporal pre-whitening seems to improve source 

estimates (Bijma et al., 2003; de Munck et al., 2002; Roś et al., 2015) but to our 

knowledge this has not been thoroughly tested when simulating realistic signals 

resembling actual measurements. 
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3.2 Materials and methods 

In brief, we employed numerical simulations to test under which circumstances it is 

possible to disentangle sources in close proximity. We used two dipolar sources 

and a conventional realistic forward model to generate 62-channel EEG data. We 

studied the effects of distance between the generating sources and their temporal 

correlations as well as the impact of (white or realistic) noise with different signal-

to-noise ratios (SNRs). For this we operationalized the notion of spatial resolution 

of EEG in terms of separability, i.e. how far apart two generating sources should be 

in order to distinguish them from the resulting EEG. 

3.2.1 Data model 

EEG measures changes in the scalp’s electric potential. Current setups typically 

involve a large number of sensors covering the head with a specific arrangement 

(10-5, 10-20, 10-10, equidistant, etc.). The electric potential is believed to stem 

from the summation of post-synaptic potentials of (spatially aligned pyramidal) 

neurons. This source activity can be modeled by current dipoles. Let 𝑗𝑗- 𝑡𝑡  

represent the activity of a dipole at location 𝑟𝑟- = 𝑥𝑥-, 𝑦𝑦-, 𝑧𝑧- ; with orientation 

𝜒𝜒- = 𝜑𝜑-, 𝜃𝜃- ; and amplitude 𝑎𝑎-. In recording number (trial) 𝑘𝑘 this activity causes 

a time-dependent potential 𝑏𝑏",$ 𝑡𝑡  at EEG electrode 𝑛𝑛. This can be formalized by 

𝑏𝑏",$ 𝑡𝑡 = 𝐿𝐿"-𝑗𝑗- 𝑡𝑡 + 𝜀𝜀",$ 𝑡𝑡  (3.1) 

The gain 𝐿𝐿"- is referred to as the leadfield and 𝜀𝜀",$ 𝑡𝑡  denotes background noise 

summarizing activity. The latter stems from background activity that, importantly, 

can be correlated in space and time. In this description one assumes the brain 

response 𝑗𝑗- 𝑡𝑡  to be deterministic and independent of 𝜀𝜀",$ 𝑡𝑡  (de Munck et al., 

2002). In the presence of more than one source, Eq. (1) has to be replaced by 

𝑏𝑏",$ 𝑡𝑡 = 𝐿𝐿"-𝑗𝑗- 𝑡𝑡- + 𝜀𝜀",$ 𝑡𝑡  or in vector notation 

𝑏𝑏$ 𝑡𝑡 = 𝐿𝐿𝚥𝚥 𝑡𝑡 + 𝜀𝜀$ 𝑡𝑡  (3.2) 
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where = >, , ,  summarizes all  dipole sources and  is the leadfield 

matrix mapping all the source activity to the  EE  channels =

>, , , , , ,  in trial . 

Our characterization of background noise readily allows for introducing a definition 

of the recording s signal-to-noise ratio (SNR) in terms of 

=  (3.3) 

where  denotes the average over time  and the expectation value over 

the realizations = 1, ,  (we estimated this by the mean over realizations). This 

definition appeared particularly useful for our simulation studies outlined below, 

since we had full control over the brain response  and background noise . 

nverse met ods  
We selected three source localization algorithms: a stationary two dipole-fit (de 

Munck et al., 2002), the self-consistent (sc-)M SIC (Shahbazi et al., 2015) and 

self-consistent exact (e) ORETA. We expected all the three methods to perform 

well in reconstructing cortical sources in close proximity. 

The sc-M SIC and sc-e ORETA algorithms are modified versions of the seminal 

M SIC (Mosher et al., 1992) and e ORETA (Pascual-Mar ui, 2007) methods, 

respectively. Both modifications account for the synchrony of generating sources 

and, hence, improve localization performance (Shahbazi et al., 2015) . The here 

newly formulated sc-e ORETA incorporates dipole fit and sc-M SIC principles into 

the e ORETA spatial filter: The topography of the maximum of the e ORETA 

distribution is pro ected out of the data prior to iterating through subse uent 

e ORETA inverse solutions. Details of sc-e ORETA are provided in the Appendix. 
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3.2.2 Forward simulations 

Head model and solution space 
We incorporated a conventional three-shell boundary element method (BEM) 

volume conduction model as described by Oostenveld et al. (2003), expressed in 

MNI coordinates in mm. The geometry of BEM model was based on the “colin27” 

template. The forward model was also expressed in MNI coordinates and 

determined on a 3-mm grid using the fieldtrip open-source Matlab toolbox 

(Oostenveld et al., 2011). With the same toolbox, we determined the leadfield as a 

matrix that describes how the current flows from 11740 grid points to the 62 scalp 

electrodes. 

 

Source position and waveforms 
Focusing on somatosensory evoked potentials (SEPs) we placed sources at 

distinct positions in the cortex: two dipoles were placed in somatosensory areas 

with varying distance but fixed orientation, opposite to one another. The first one 

was always placed at the MNI location 𝑟𝑟> = −40, −10, 50  and the second dipole 

 

Fig. 3.1 Panel A: Positions of the simulated dipoles. Dipole 1 is plotted in blue, dipole 
2 in red; the latter is shown at all spatial simulated distances. Panel B: Dipole 
waveforms used in the simulations (dipole 1 in blue, dipole 2 in red). For the 
temporal distances Δ=10, 30, and 80 ms the two dipoles were correlated by 
ρ=0.59, 0.2, and -0.02, respectively. Panel C: Dipole positions (dipole 1 in 
blue, dipole 2 in red) after 200 realizations of one condition: spatial distance 
𝑑𝑑=18 mm, temporal distance Δ=80 ms and SNR=1, with additive spatially pre-
whitened realistic noise. The dots filed in with white represent the true dipoles 
and the dots filled in with black represent the mean of the estimated dipoles. 
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distinct positions in the cortex: two dipoles were placed in somatosensory areas 

with varying distance but fixed orientation, opposite to one another. The first one 

was always placed at the MNI location 𝑟𝑟> = −40, −10, 50  and the second dipole 

 

Fig. 3.1 Panel A: Positions of the simulated dipoles. Dipole 1 is plotted in blue, dipole 
2 in red; the latter is shown at all spatial simulated distances. Panel B: Dipole 
waveforms used in the simulations (dipole 1 in blue, dipole 2 in red). For the 
temporal distances Δ=10, 30, and 80 ms the two dipoles were correlated by 
ρ=0.59, 0.2, and -0.02, respectively. Panel C: Dipole positions (dipole 1 in 
blue, dipole 2 in red) after 200 realizations of one condition: spatial distance 
𝑑𝑑=18 mm, temporal distance Δ=80 ms and SNR=1, with additive spatially pre-
whitened realistic noise. The dots filed in with white represent the true dipoles 
and the dots filled in with black represent the mean of the estimated dipoles. 
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was placed more medial to the first one with an inter-dipole distance of 𝑑𝑑 =

𝑟𝑟> − 𝑟𝑟: = 4, 10, 16, 22, 28, and 50 mm as depicted in Fig. 3.1 (panel A), both 

dipoles were placed in between the grid points (which were located at multiples of 

3 mm, see also the Supplementary Material). The distance between the two 

dipoles will here be referred to as spatial distance 𝑑𝑑 (in mm). 

For all simulations, we chose the sources’ time series to have SEP-like waveforms 

with a single main peak per dipole. The time series of dipole 1, the more lateral 

dipole, had an early peak around 20 ms, dipole 2 had a peak at either 10, 30, or 

80 ms after dipole 1’s peak (Fig. 3.1, panel B). We will refer to the distance 

between peaks as temporal distance Δ (in ms). Since both source signals 

overlapped in time, we finally estimated their temporal correlation via 

𝜌𝜌 =
𝑗𝑗> 𝑡𝑡 𝑗𝑗: 𝑡𝑡

𝑗𝑗>: 𝑡𝑡 𝑗𝑗:: 𝑡𝑡
 (3.4) 

Simulated EEG data 
Scalp potentials were determined using the afore-described leadfield matrix and 

dipole location. The simulated EEG signals contained 62 channels (10-10 system, 

Oostenveld et al., 2011) referenced to average. We generated 𝐾𝐾 = 200 trials of 

250 ms each. 

Noise 
We added two distinct noise types to the scalp potentials and examined their effect 

on the source localization: (i) Gaussian white noise (uncorrelated in both space 

and time) and (ii) realistic noise that was spatially and temporally correlated. To 

construct this realistic noise, we used five minutes recorded 62-channel EEG 

during resting state (one healthy subject, female, age: 75 years, eyes open; Refa 

64 EEG amplifier, TMSi Enschede, average referenced and sampled at 1024 Hz). 

These signals were segmented in epochs of 250 ms and mean centered. 

Segments with too high variance were rejected leaving 200 artifact-free noise 

segments. We scaled both white and realistic noise to obtain SNRs of 0.5, 1, 2, 3, 

10, and 50 – see Eq. (3) for the SNR definition. We considered 𝑆𝑆𝑆𝑆𝑆𝑆 = 3 a realistic 
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value for simulating somatosensory evoked potentials as indicated by an MEG 

study (Darvas et al., 2005). SNR of SEP responses might show inter-subject 

variations due to anatomical differences, as has recently been demonstrated in 5 

healthy controls (Kalogianni et al., 2018): SNR estimates of 3.22±0.23 were found 

after averaging 750 trials after electrical stimulation of the fingers, which 

corresponds to an experimentation time of 5 min. 

Pre-whitening: spatial and temporal covariance 
In Eqs. (1&2), the noise terms 𝜀𝜀",$ 𝑡𝑡  or 𝜀𝜀$ 𝑡𝑡 , respectively, may generally contain 

spatial and/or temporal correlations. Correlations in the noise manifest themselves 

as ‘deterministic’ components in the EEG signal. Estimating them can be used to 

improve source reconstruction by pre-whitening. Put differently, when 

reconstructing sources in the presence of background noise, one should try to 

account for the noise’s covariance. 

The spatiotemporal covariance 𝐶𝐶 can be modeled as the Kronecker product of a 

spatial and temporal covariance matrices, 𝑋𝑋 and 𝑇𝑇, respectively, i.e. as 

𝐶𝐶 = 𝑋𝑋 ⊗ 𝑇𝑇 (3.5) 

These matrices, in turn, can be estimated from the multi-trial EEG data using a so-

called flip-flop algorithm, as outlined by de Munck et al. (2002) and independently 

discovered in (Dutilleul, 1999; Leiva and Roy, 2014; Lu and Zimmerman, 2005). 

We would like to note that these covariances reflect the trial to trial variations of the 

true brain responses which are assumed to be constant. Therefore, these 

covariances reflect the brain state of the subject during stimulation and they do not 

require additional recordings during a baseline resting state. 

The spatial and temporal covariance estimates resulting from the flip-flop 

algorithm, and 𝑇𝑇 are non-negative definite and can therefore decomposed as 

 

𝑋𝑋 = 𝑈𝑈jΛj𝑈𝑈j; and 𝑇𝑇 = 𝑈𝑈;Λ;𝑈𝑈;;, where 𝑈𝑈j and 𝑈𝑈; are orthonormal matrices and Λj 

and Λ; are non-negative diagonal matrices. Substituting 𝑊𝑊j ≡ 𝑈𝑈j	Λjmn.o and 𝑊𝑊; ≡

𝑈𝑈;	Λ;mn.o one obtains the decompositions 
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𝑋𝑋m> = 𝑊𝑊j	𝑊𝑊j; and 𝑇𝑇m> = 𝑊𝑊;	𝑊𝑊;; that can be used to pre-whiten the measurement 

noise: if 𝜀𝜀 is correlated noise with covariance 𝑋𝑋 ⊗ 𝑇𝑇 then 𝑊𝑊j;	𝜀𝜀	𝑊𝑊; is spatially and 

temporally uncorrelated.  

In our simulations, we only consider spatial pre-whitening, though the spatial 

covariance matrix is derived from the flip-flop algorithm applied to resting state 

EEG. As a result, we pre-whiten the data and the leadfield as follows (see, de 

Munck et al., 2002, for details)  

 

𝑏𝑏p = 𝑊𝑊j;𝑏𝑏𝑊𝑊; (3.6) 

and the leadfield with 

𝐿𝐿p = 𝑊𝑊j;𝐿𝐿 (3.7) 

Extending the work by de Munck et al. (2002) and de Munck and Bijma (2009), we 

here concentrated on the effect of spatial pre-whitening using realistic noise for the 

three inverse algorithms tested, i.e. we ignored 𝑇𝑇 and 𝑊𝑊; in Eqs. (3.5) and (3.6), 

respectively. 

Implementation of inverse methods 
The stationary dipole fit algorithm modified by De Munck (1990) – see also (de 

Munck et al., 2002) was implemented in Matlab3, building on the skeleton coding 

for dipole fitting in fieldtrip (Oostenveld et al., 2011). We included a global grid 

search for two dipoles that are up to 20 mm apart from the position of the 

simulated ones. With these initial values, we optimized by iterating Eqs. (27) and 

(32) in (de Munck et al., 2002). Using the resulting asymptotic solution, we finally 

determined the localization error per trial 𝑘𝑘 as the Euclidian distance between the 

true (simulated) and the estimated dipoles, i.e. ℰ$ = 𝑟𝑟$rstutvwx − 𝑟𝑟$	yz{t|w{y} . 

Our implementation of the sc-MUSIC algorithm was based on (Shahbazi et al., 

2015). In brief, with 𝑀𝑀 dominant singular value decomposition (SVD) components 

                                                        
3
 The corresponding code can be accessed freely upon request. 
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defining the signal (sub)space, the algorithm yields as many vectors with the length 

of the grid points. The maximum per vector is considered the sc-MUSIC solution 

and refers to 𝑀𝑀 positions on the grid. 

We implemented a self-consistent version of eLORETA (Pascual-Marqui et al., 

2011). This sc-eLORETA algorithm is described in detail in the Appendix. Its output 

agrees in form with that of sc-MUSIC, i.e. we took the maximum of 𝑀𝑀 distributions 

on the grid. Throughout analysis we assumed that 𝑀𝑀 = 2, since we employed two 

‘true’ sources. 

A proof-of-concept for all the three tested algorithms is provided as Supplementary 

Material. 

3.2.3 Evaluation 

Comparing true and estimated sources: Localization error 
After computing the inverse solutions of the stationary dipole fit, the sc-MUSIC, 

and the sc-eLORETA, every pair of estimated dipoles was compared with a pair of 

true dipoles4. Because the estimated dipoles might have been swapped relative to 

the simulated one, we computed the sum of distances for every trial 𝑘𝑘 for the two 

possible permutations, ℰ$,>>/:: = 𝑟𝑟$,rstutvwx,> − 𝑟𝑟�,yz{t|w{y},> + 𝑟𝑟$,rstutvwx,: −

𝑟𝑟$,yz{t|w{y},:  and ℰ$,>:/:> = 𝑟𝑟$,rstutvwx,> − 𝑟𝑟$,yz{t|w{y},: + 𝑟𝑟�,rstutvwx,: − 𝑟𝑟$,yz{t|w{y},> , 

and considered the least of the two as minimum error denoted as ℰ$. We note that 

in all Fig.s the estimated dipole 1 refers always to the most lateral and dipole 2 is 

always the most medial. 

The Euclidean distance ℰ between the true dipoles and the estimated dipoles was 

determined for each of the 𝐾𝐾 = 200 noise realizations. The resulting mean 

distances from the true locations and the corresponding standard error of the mean 

were determined for every SNR, for every spatial and temporal distance, and for 

the three algorithms. 

                                                        
4
 The dipole fit’s solutions were not necessarily located on a grid point, while sc-MUSIC and sc-

eLORETA were always estimated on the grid; no interpolation was applied for any of the algorithms’ 
output. 
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 The dipole fit’s solutions were not necessarily located on a grid point, while sc-MUSIC and sc-
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output. 
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Separability index 
ext to the comparison with the known locations, we defined a separability index  

as the Euclidean distance5 =  of the two 

centers of distribution of location estimates divided by the sum of the 

corresponding standard deviations  and  around these centers 

=  (3. ) 

1 implies that, on average, the representations of two dipoles can be 

separated. Through interpolation we subse uently determined how far apart the 

underlying sources should be in order to reach = 1, i.e. a separability index of 

one or proper separation of sources. We propose this distance as an operational 

definition for spatial resolution of EE . 

3.3  

Fig. 3.2 shows that spatial pre-whitening improved all methods  accuracy 

significantly in the realistic noise case even if signal-to-noise ratio is as low a 

𝑆𝑆𝑆𝑆𝑆𝑆 = 0.5. When accounting for the spatial correlations in the noise, the 

localization error reduced and matched that of the aussian white noise case. The 

dipole fit was more accurate in localizing the true sources both with white and 

realistic noise than the other inverse methods. 

                                                        
5
 We accounted for a possible swap between estimated dipoles 1 2 as outlined in 2. .1. 
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Fig. 3.2 Mean and standard error of the mean of found solutions (in mm). Here, the 

spatial distance 𝑑𝑑=16 mm and the temporal distance Δ=30 ms is shown. The 
blue symbols represent the most lateral dipole and with red the most medial 
dipole. The columns show the results for the three tested algorithms: stationary 
dipole fit, sc-MUSIC, sc-eLORETA. We found that realistic noise affects the 
source localization accuracy of all the algorithms (cf. 1st and 2nd row). However, 
spatial pre-whitening (3rd row) clearly improved accuracy of all the algorithms 
and produced results similar to the white noise case. Dipole fit has the best 
accuracy of all the algorithms; a low localization error could be observed for 
dipoles that were placed 16 mm part and further for a realistic data situation of 
𝑆𝑆𝑆𝑆𝑆𝑆 = 3. For an example of the corresponding dipole orientation see Fig. S3.6 
in the Supplementary Material. 

 

This was expected as we simulated two dipoles and used this knowledge about the 

number of sources by designing the fitting procedure, which might be an uncertain 

assumption in most practical applications. Sc-MUSIC had overall the second-best 

accuracy followed by sc-eLORETA. However, also for sc-eLORETA our spatial 

pre-whitening improved accuracy. When spatial pre-whitening was applied, the 

true sources were separated by 22 mm and, when dipole fitting was employed, the 

localization error was 3 mm at 𝑆𝑆𝑆𝑆𝑆𝑆 = 3 and dropped to 1.5 mm when the sources 

were 50 mm apart. 
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A complete separation ( 1) of the two dipoles was possible when the two 

simulated dipoles were 50 mm apart, even at low SNRs and for all the inverse 

methods  see Fig. 3.3. The dipole fit had better ability in disentangling two dipoles 

in close proximity. Simulated dipoles that were 8 mm apart were almost separable 

at 𝑆𝑆𝑆𝑆𝑆𝑆 = 0 5 even when realistic noise was added to the signals. For a spatial 

distance of 1  mm, the dipoles were ust separable at 𝑆𝑆𝑆𝑆𝑆𝑆 = 3. As expected, the 

separability increased with increasing distance of the true sources throughout 

inverse methods. 

 

 

Fig. 3.3. Separability as a function of SNR. alues lower than one imply that the dipoles 
were not separable due to the large standard deviation. The different symbols 
represent the different spatial distances between the simulated dipoles. The 
rows show the results for the tested algorithms  stationary dipole fit, sc-MUSIC, 
sc-eLORETA when spatial pre-whitening is applied on the realistic noise case. 
The temporal distance of 30 ms is shown. 

 

For every SNR, every inverse method, and every temporal distance between the 

peaks of the sources  time series, there was a spatial distance that separability  

dropped below 1 dependent of the spatial distance of the simulated dipoles. As 

said, we used = 1 to define a spatial resolution, i.e. the least distance of 

simulated source that could still be separated. For example, when the temporal 

distance was 10 ms, 𝑆𝑆𝑆𝑆𝑆𝑆 = 3, the realistic noise is spatially pre-whitened and 

dipole fitting was used for source estimates, the separability was lower than one if 

the true sources were 10 mm apart but larger than one for dipoles that were 

1  mm apart. After interpolation between the here-used discrete spatial distance 
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steps, the separability results could be summarized in Fig. 3.4. Taken together, for 

the two-dipole fit and for sc-MUSIC we found full separability in the realistic case of 

𝑆𝑆𝑆𝑆𝑆𝑆 = 3 when the underlying sources where at least 11 mm apart. 

 

 

Fig. 3.4. Possible separation of the two dipoles in mm at a function of SNR. Through 
interpolation we estimated how far apart the original dipoles should be in order 
to obtain a separability of one or large, i.e. to be able to completely separate 
them. Blue circles represent a temporal distance of 10 ms, red squares of 
30 ms and purple diamonds 80 ms. The dotted line represents the grid 
resolution	 = 3	𝑚𝑚𝑚𝑚 . We present a possible separation up 50 mm because this 
was the largest simulated inter-dipole distance. 

3.4 Discussion 

Despite advanced pre-processing, the presence of realistic noise reduced 

accuracy, precision (as given by the standard error of the mean), and separability 

across algorithms. Still they appear somewhat disappointing as advanced source 

reconstruction methods, like sc-eLORETA, are often believed to provide way better 

accuracy and separability, which we cannot confirm with our simulations. We must 

admit that we here conducted source reconstruction in conditions in which sources 

are very close to each other while the number of included EEG electrodes was 

fairly small. We used the latter to highlight limitations and, by the same token, to 

resemble yet common clinical practice. We expect that high-density EEG with 128 

or 256 electrodes will improve separability and, hence, the spatial resolution but 

leave it to future studies to address this in more detail. We would like to note that 

the theoretical limits of the here-employed inverse models are presumably way 
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A complete separation ( 1) of the two dipoles was possible when the two 

simulated dipoles were 50 mm apart, even at low SNRs and for all the inverse 

methods  see Fig. 3.3. The dipole fit had better ability in disentangling two dipoles 

in close proximity. Simulated dipoles that were 8 mm apart were almost separable 

at 𝑆𝑆𝑆𝑆𝑆𝑆 = 0 5 even when realistic noise was added to the signals. For a spatial 

distance of 1  mm, the dipoles were ust separable at 𝑆𝑆𝑆𝑆𝑆𝑆 = 3. As expected, the 

separability increased with increasing distance of the true sources throughout 

inverse methods. 
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represent the different spatial distances between the simulated dipoles. The 
rows show the results for the tested algorithms  stationary dipole fit, sc-MUSIC, 
sc-eLORETA when spatial pre-whitening is applied on the realistic noise case. 
The temporal distance of 30 ms is shown. 
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steps, the separability results could be summarized in Fig. 3.4. Taken together, for 

the two-dipole fit and for sc-MUSIC we found full separability in the realistic case of 

𝑆𝑆𝑆𝑆𝑆𝑆 = 3 when the underlying sources where at least 11 mm apart. 
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below the suggested spatial resolution that results from our simulation, as the 

resolution will continue to increase in the case of perfect models. 

The good news is that spatial pre-whitening of the recorded signal (and the 

leadfield) can in general improve accuracy irrespective of the algorithm employed. 

We showed that this pre-processing provides results comparable to the ones 

observed in the white, uncorrelated noise. The positive effect of spatial pre-

whitening has already been demonstrated in the literature ( i ma et al., 2 5  

ngemann and ramfort, 2 15  de Munck et al., 2 2  de Munck and i ma, 

2 ). owever, with our study we went a step further in that even sources in 

close proximity could be disentangled when spatial pre-whitening was applied. As 

said, we consider spatial pre-whitening a mandatory pre-processing step when it 

comes to source estimates for either linear or non-linear inverse models, as also 

stated for a time-frequency approach (Ram rez et al., 2 11). 

We found a positive association between the spatial distance of the underlying 

sources and the accuracy of all inverse methods. When the simulated sources 

were 4 mm apart, it was virtually impossible to retrieve them with any of the inverse 

methods applied. If the simulated dipoles were  mm apart and dipole fit was 

used as an inverse method, the localization error dropped to  mm and lower 

dependent on the SNR. iven a grid size of 3 mm and 𝑆𝑆𝑆𝑆𝑆𝑆 = 3, the maximum 

resolution was  mm in the presence of realistic noise (after spatially pre-

whitening). Dipole fitting and sc-MUSIC revealed about the same capacity to 

separate sources. If the SNR exceeded values of 1  (a rather unrealistic case) sc-

MUSIC remained able to disentangle sources that were up to 4 mm apart, which is 

a clearly higher spatial resolution than reported by ao and Dewald 2 5. ere we 

can conclude that whenever the assumption of a small number of sources can be 

made, then least squares or scanning methods appear the best inverse modeling 

choices as opposed to distributed methods like (sc-)e R TA. 

In our setting, the dipole fit outperformed the alternative source reconstructions in 

terms of accuracy and separability. This was expected since the constraints of the 

algorithm (two dipolar sources) simply resembled what we designed in our 

simulations. We used a stationary dipole fit as a  what we consider legitimate  

test for our simulations where the number of sources is already known. owever, 

57  

sc-MUSIC and all the algorithms based on singular value decomposition offer the 

possibility of a priori estimating the number of underlying sources through 

identifying the number of prominent singular components. As summarized in 

Fig. 3.5, we found the relationship between separability and the existence of one or 

two prominent components after singular value decomposition of the pre-whitened 

simulated data with added realistic noise and 𝑆𝑆𝑆𝑆𝑆𝑆 = 3. 

 

 
Fig.3.5 SVD of the simulated data with added pre-whitened noise (SNR=3). The ratio of 

the square of the 1st SVD component to the sum of squares of all the components 
for all the temporal and the spatial distances of the underlying sources is 
presented. The left panel shows the here-simulated case is, i.e. dipoles with 
opposite orientations with higher temporal distance the ratio of the 1st to the rest 
of the components increases. This suggests a less prominent 2nd component and 
therefore less separability of sources. In the right panel, we show the exactly 
opposite behavior when the simulated dipoles have the same orientation. 

 

We always assumed two underlying sources and therefore selected the two first 

higher components as the signal subspace. We can verify that when dipoles are 

4 mm apart the ratio between the first and the rest of the components is fairly high, 

implying that only a single underlying source can be modeled. This finds support 

by the results in Fig. 3.4 showing that separability 𝒮𝒮 dropped below one when the 

dipoles were 4 mm apart or less. It seems safe to say that sc-MUSIC is an 

accurate choice when an unknown number of underlying sources are present in 
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below the suggested spatial resolution that results from our simulation, as the 
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comes to source estimates for either linear or non-linear inverse models, as also 
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the time window of exploration, due to the fact that it gives a good estimate of the 

inverse model capabilities. 

Temporal correlation of time series had a comparably small but positive effect on 

the accuracy of the algorithms. This is a striking but positive finding. It does 

suggest that sources that are active in a serial way with a small time-difference can 

be accurately found when there are sufficiently spatially distinct from one another. 

In our simulation, we constructed the underlying dipoles to have opposite 

orientations. Testing the case where the dipoles had the same orientations 

provided a positive relationship of the height of the second component of SVD and 

the temporal distance, meaning that when dipoles had a smaller temporal distance, 

the second largest component was closer to zero. Further investigation is needed 

to see if dipoles with the same direction need to be active with a sufficient time-

delay in order to be able to adequately disentangle them. 

Hu et al. (2012) and Gao et al. (2015) demonstrated that somatosensory evoked 

source activity in S1 and S2 were almost 50 mm apart on average when looking at 

activity from 70 to 200 ms post stimulus. This clearly falls within our range of 

separability. However, when looking within S1, our study suggests that one can 

successfully study the underlying sources presuming that are at least 11 mm apart. 

This, of course, requires spatial pre-whitening (and an SNR of at least 3). For 

example, as shown by an MEG study the cortical responses of the median and 

ulnar nerve within left hemisphere S1 (early responses) are 11 mm apart 

(Theuvenet et al., 2006) and therefore could be disentangled with our method and 

the use of EEG. Tailored forward models that take into account subject-specific 

conductivity parameters (Dabek et al., 2016) may improve the spatial resolution of 

EEG. In any case, we can conclude that including pre-whitening as pre-processing 

steps improves any inverse method’s capacity of source separation, as indicated 

more than 20 years ago by (Mosher et al., 1993). 

3.5 Conclusion 

We found that a proper separation of two sources is possible if they are placed 

11 mm or further apart and if additive, EEG-based noise keeps the signal-to-noise 
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ratio at 3 or higher. Separability appears a legitimate measure to quantify EEG’s 

spatial resolution. Obtaining an optimal resolution in source reconstruction, 

however, required spatial pre-whitening as a crucial if not mandatory pre-

processing step. 
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We modified the eLORETA algorithm (Pascual-Marqui, 2007) by iteratively 

applying its filter to obtain estimates of separate sources. This iteration is similar to 

the method used in the sc-MUSIC algorithm described by Shahbazi et al. (2015). 

Per iteration the eLORETA filter is computed and applied to the data. The 

computed topography corresponding to the source at the maximum of the 

eLORETA scan is then projected out of the data and the leadfield matrix, and the 

eLORETA filter is computed and applied again to find a different source. The 

process continues until the algorithm converges to the 𝑀𝑀 distributions best 

explaining the locations of the 𝑚𝑚 sources. The maximum of each distribution can 

be considered as the solution that best matches the field distribution of n point 

sources. 

eLORETA is a weighted minimum norm estimate solution that assumes 

smoothness of the source distribution, implemented by the 𝑙𝑙:-norm in the 

regularization term of LORETA. The assumption here is that neighboring voxels 

show similar activations and that there are no maximum peaks expected at the 



  Spatial resolution for EEG source reconstruction – a simulation study on SEPs

3

58  

the time window of exploration, due to the fact that it gives a good estimate of the 
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nearby grid points. The weight matri  is defined such that a distributed linear 

inverse solution has a localization error of zero when tested with point sources 

everywhere in the brain. In this way, deep sources are taken into account, 

minimizing the bias towards superficial sources. 

The spatial filter of eLORETA is computed by a uickly converging algorithm 

( ascual-Mar ui, 200  ascual-Mar ui et al., 2011), which starts with 

 

=  (A3.1) 

where,  is the forward matri  of the th grid point,  denotes a block 

matri  around the  diagonal elements of  and  is the smoothness constraint.  

is subse uently substituted into 

 

=  (A3.2) 

to form the eLORETA spatial filter. In the case of sc-eLORETA, the	  is 

applied to the data and a pro ection matri  is given as 

=  (A3.3) 

where =  is the 𝑆𝑆  matri  containing the previously found 
dipole patterns as columns  𝑆𝑆 is the number of M EE  channels  cf. E . 2 in 
(Shahbazi et al., 2015). This iterative procedure yields  separate source locations. 
As such, sc-eLORETA can be directly compared to the stationary dipole fit and sc-
MUSIC. 
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3.7 Supplementary material 

Fig. S3.1 presents a validity test for the three algorithms for a very weak noise 

situation (𝑆𝑆𝑆𝑆𝑆𝑆 = 50). In the case of dipole fit, the distance from the simulated 

dipole is 0, while in the case of sc-MUSIC and sc-eLORETA the localization error 

is 2 mm. Note that 2	mm is the distance of the simulated dipole to the closest grid 

point and due to the fact that sc-MUSIC and sc-eLORETA are constrained on the 

grid points, this is the least possible localization error. 

We observe that when two dipoles are simulated (200 realizations), the accuracy 

of the algorithms decreases. The smallest localization error appears when the 

dipoles are separated 50 mm and when with the simulated dipoles are 4 mm apart 

the localization error varies from 3.5 (dipole fit) to 100 mm (the most medial dipole 

with sc-eLORETA). The correlation of sources’ time series did not play an 

important role in the case of dipole fit or sc-ELORETA but did so in the case of sc-

MUSIC (more correlated, better accuracy). 

 

 

Fig. S3.1 Mean distance from simulated dipole(s). Comparison of one dipole simulation 
versus two dipoles simulation for the ideal case of added white noise and 
𝑆𝑆𝑆𝑆𝑆𝑆 = 50. The black line depicts the grid size (3 mm). The different symbols 
represent the different temporal distances of the sources time-series peaks. 
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nearby grid points. The weight matri  is defined such that a distributed linear 
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minimizing the bias towards superficial sources. 

The spatial filter of eLORETA is computed by a uickly converging algorithm 

( ascual-Mar ui, 200  ascual-Mar ui et al., 2011), which starts with 

 

=  (A3.1) 

where,  is the forward matri  of the th grid point,  denotes a block 

matri  around the  diagonal elements of  and  is the smoothness constraint.  
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Fig. S3.  Mean and standard error of the mean of found solutions (in mm). Here, the 
spatial distance 𝑑𝑑=16 mm and the temporal distance Δ=10 ms is shown. The 
blue symbols represent the most lateral dipole and with red the most medial 
dipole. The columns show the results for the three tested algorithms: stationary 
dipole fit, sc-MUSIC, sc-eLORETA. We found that realistic noise affects the 
source localization accuracy of all the algorithms (com. 1st and 2nd row). 
However, spatial pre-whitening (3rd row) clearly improved accuracy of all the 
algorithms and produced results similar to the white noise case. Dipole fit has 
the best accuracy of all the algorithms; a low localization error could be 
observed for dipoles that were placed 16 mm part and further for a realistic data 
situation of 𝑆𝑆𝑆𝑆𝑆𝑆 = 3. 
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Fig. S3.3 Mean and standard error of the mean of found solutions (in mm). Here, the 
spatial distance 𝑑𝑑=16 mm and the temporal distance Δ=80 ms is shown. The 
blue symbols represent the most lateral dipole and with red the most medial 
dipole. The columns show the results for the three tested algorithms: stationary 
dipole fit, sc-MUSIC, sc-eLORETA. We found that realistic noise affects the 
source localization accuracy of all the algorithms (com. 1st and 2nd row). 
However, spatial pre-whitening (3rd row) clearly improved accuracy of all the 
algorithms and produced results similar to the white noise case. Dipole fit has 
the best accuracy of all the algorithms; a low localization error could be 
observed for dipoles that were placed 16 mm part and further for a realistic data 
situation of 𝑆𝑆𝑆𝑆𝑆𝑆 = 3. 
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Fig. S3.4 Mean and standard error of the mean of found solutions (in mm). Here, the 
temporal distance Δ=30 ms is shown. The blue symbols represent the most 
lateral dipole and with red the most medial dipole. The different symbols 
represent the different spatial distances between the simulated dipoles. The 
columns show the results for the three tested algorithms: stationary dipole fit, 
sc-MUSIC, sc-eLORETA. We found that realistic noise affects the source 
localization accuracy of all the algorithms (com. 1st and 2nd row). However, 
spatial pre-whitening (3rd row) clearly improved accuracy of all the algorithms 
and produced results similar to the white noise case. Dipole fit has the best 
accuracy of all the algorithms; a low localization error could be observed for 
dipoles that were placed 16 mm part and further for a realistic data situation of 
𝑆𝑆𝑆𝑆𝑆𝑆 = 3 
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Fig. S3.5 Localization bias: distance of mean location (200 realizations) from simulated 
dipole and standard error of localization bias (in mm). Here, the temporal 
distance Δ=30 ms is shown. The blue symbols represent the most lateral dipole 
and with red the most medial dipole. The different symbols represent the 
different spatial distances between the simulated dipoles. The columns show 
the results for the three tested algorithms: stationary dipole fit, sc-MUSIC, sc-
eLORETA. 

  
 

 

Fig. S3.6 Effect of dipole orientation: the mean location (200 realizations) is plotted as a 
filled dot and around it the vectors (lines) with orientation (x,y,z) of 200 
realizations. The blue symbols represent the most lateral dipole and with red 
the most medial dipole. The spatial distance 𝑑𝑑=16 mm and the temporal 
distance Δ=30 ms and the SNR= 3 is shown. 
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Fig. S3.6 Effect of dipole orientation: the mean location (200 realizations) is plotted as a 
filled dot and around it the vectors (lines) with orientation (x,y,z) of 200 
realizations. The blue symbols represent the most lateral dipole and with red 
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 Chapter 4 

 Are longitudinal SEP recordings a 
biomarker for proportional motor recovery 

post stroke?6 

ΤΟΛΜΗΣΟΝ ΦΡΟΝΕΙΝ 
Τόλµα να στοχάζεσαι 

Αισχύλος 
------ 

Dare to think 
 Aeschylus 

 
 

 

 

  

                                                        
6 Submitted: Konstantina Kalogianni, Mique Saes, Martijn P. Vlaar, Erwin van Wegen, Gert Kwakkel, 
Alfred C. Schouten, Frans C.T. van der Helm, Andreas Daffertshofer, Jan C. de Munck, on behalf of the 
4D-EEG consortium, Are longitudinal SEP recordings a biomarker for proportional motor recovery post 
stroke? 
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ABSTRACT 
Background: At present, it is not well understood which patients will regain motor 
control post ischemic stroke. 
Objective: This study explores the use of somatosensory evoked potentials (SEPs) 
as biomarkers for early prediction of proportional motor recovery post stoke. 
Methods: In 16 first-ever ischemic hemispheric stroke patients (12 completed), 
SEPs induced by electrical stimulation of the median nerve were recorded at three 
time points post stroke (T0:1-4 weeks post-stroke, T1:5-6 weeks post-stroke, T2:12 
weeks post stroke) using 64-channel electroencephalography (EEG). In addition, 
six unimpaired participants were recorded twice. Based on Fugl-Meyer scores of 
the Upper extremity (FM-UE), patients were divided into fitters and non-fitters 
following the 70% proportional recovery rule. A support vector machine algorithm 
(SVM) was used to predict, based on normalized SEP parameters, which patients 
belong to each group.  
Results: In the controls, the interclass correlation coefficients of three of the four 
amplitude/latency SEP parameters were significant. The variability of these 
parameters was much higher in patients than in controls. Normalized SEP 
parameters at T1 were associated with fitters (n=7) and non-fitters (n=5), The 
resulting SVM had an accuracy of 86% tested through a leave-one-out procedure. 
When the SVM was fed with the SEP features of the controls, they were all 
classified in the same category as the fitters. 
Conclusions: Our results suggest that normalized SEP parameters recorded five 
weeks post stroke have predictive value for stroke recovery. The predictive 
capacity of SEP, demonstrated in this study, needs to be confirmed in a larger 
sample of this ongoing cohort. 
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4.1 Introduction 

Despite the continuously advancing care, stroke remains the second-leading cause 

of disease burden (Feigin et al., 2015; Miller et al., 2010). In the next years we will 

continue to see an increase in the global burden of stroke, mainly due to the 

increase in the absolute number of disability-adjusted life years in developing 

countries and the ageing population (Bernhardt et al., 2017; Feigin et al., 2015). 

The challenge set out for stroke rehabilitation research is to reduce patients’ 

disability and handicap by optimizing early prediction and therapeutic care 

(Bernhardt et al., 2017; Ward, 2017). 

Stroke recovery is heterogeneous in its nature, making early prediction paramount 

for optimizing discharge policies and selecting the most appropriate therapy early 

post stroke (Langhorne et al., 2011). Several cohort studies have shown that the 

patterns of recovery in terms of body functions such as Fugl Meyer motor scores 

(FM-UE) (Kwakkel et al., 2003) and activities such as Action Research Arm Test 

(Nijland et al., 2010a; Stinear, 2010) are highly predictive for the upper paretic limb 

in the first days after stroke (Nijland et al., 2010a; Stinear, 2017). The Fugl-Meyer 

(FM) score is a measure that captures intra-limb motor control and therewith the 

patient’s ability to control multiple degrees of freedom during meaningful tasks 

such as reaching (Kordelaar et al., 2013). FM scores of the upper (UE) and lower 

extremity (LE) can be considered a reliable and valid measure of motor recovery 

post stroke (Duncan et al., 1983; Gladstone et al., 2002) genuinely reflecting true 

neurological repair (Bernhardt et al., 2017; Kwakkel et al., 2017). 

Prabhakaran et al. (2008) have formulated the so-called proportional recovery rule, 

which states that patients recover approximately 70% of the maximum possible 

motor recovery based on the FM-UE. This has been confirmed by Winters and co-

workers (2015) in 211 patients with a first-ever ischemic stroke. In that study, it 

was also found that about 30% of their cohort of first ever ischemic stroke patients 

did not follow this ”70% rule” (so-called non-fitters). In particular, patients with initial 

poor FM-UE did not fit to the “70% rule”. Stratification based on the combination of 

clinical and neurophysiological parameters may help to optimize therapy selection 

during recovery and especially for those patients with initial low FM-UE scores 
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Objective: This study explores the use of somatosensory evoked potentials (SEPs) 
as biomarkers for early prediction of proportional motor recovery post stoke.
Methods: In 16 firstMethods: In 16 firstMethods: In 16 f -ever ischemic hemispheric stroke patients (12 completed), 
SEPs induced by electrical stimulation of the median nerve were recorded at three 
time points post stroke (T0:1-4 weeks post-stroke, T1:5-6 weeks post-stroke, T2:12 
weeks post stroke) using 64-channel electroencephalography (EEG). In addition, 
six unimpaired participants were recorded twice. Based on Fugl-Meyer scores of 
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following the 70% proportional recovery rule. A support vector machine algorithm 
(SVM) was used to predict, based on normalized SEP parameters, which patients 
belong to each group.
Results: In the controls, the interclass correlation coefficients of three of the four
amplitude/latency SEP parameters were significant. The variability of these 
parameters was much higher in patients than in controls. Normalized SEP 
parameters at T1 were associated with fitters (n=7) and non-fitters (n=5), The 
resulting SVM had an accuracy of 86% tested through a leave-one-out procedure.
When the SVM was fed with the SEP features of the controls, they were all 
classified in the same category as the fitters.
Conclusions: Our results suggest that normalized SEP parameters recorded five 
weeks post stroke have predictive value for stroke recovery. The predictive 
capacity of SEP, demonstrated in this study, needs to be confirmed in a larger 
sample of this ongoing cohort.
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(Boyd et al., 2017; Ward, 2017; Winters et al., 2016a). Hence, there is an urgent 

need for stroke rehabilitation recovery trials to identify the neurophysiological 

biomarkers that can distinguish fitters from non-fitters of spontaneous 

neurobiological recovery early post stroke (Bernhardt et al., 2017; Boyd et al., 

2017; Corbett et al., 2017; Ward, 2017). 

Brain imaging techniques can be used to unveil the mechanisms of stroke recovery 

by giving more insights into the physiology of the brain during the recovery 

process, especially for patients that do not fit in the aforementioned recovery 

model. Functional imaging techniques like functional magnetic resonance imaging 

(fMRI) can help to uncover the relationship between recovery and task-related 

functional properties of the motor system after stroke (Ward et al., 2003). Recent 

studies emphasized the need for clinically useful, easy to perform and non-invasive 

imaging techniques that can generate new prediction models of stroke recovery 

(Rollnik, 2015; Ward, 2015). 

The predictive value of intactness of somatosensory integrity for identifying fitters 

from non-fitters of proportional recovery is still a neglected field in stroke research. 

However, several studies suggest that somatosensory impairment is highly 

associated with stroke severity (Connel et al., 2008; Meyer et al., 2016). To date, 

the likelihood for return of voluntary finger extension within the first 8 weeks post 

stroke was strongly associated with intactness of somatosensory and lower limb 

function as well as absence of visuospatial neglect after stroke (Winters et al., 

2016b). However, studies in which the integrity of somatosensory function is 

investigated are almost lacking in the literature. 

Somatosensory evoked potentials (SEPs) or fields (SEFs), measured with 

electroencephalography (EEG) or magnetoencephalography (MEG), respectively, 

are non-invasive techniques that may reveal the role of somatosensory integrity 

early post stroke. (Hari and Forss, 1999). After electrical stimulation of the median 

nerve, several peaks can be detected in the stimulus-related EEG/MEG response 

in the S1 (early responses from 20 to 60 ms) or S2 cortices (later responses from 

100 to 300 ms, Forss et al., 1994a) contralateral to the stimulation. Abnormal 

responses measured with MEG/EEG correlate with clinically observed impairment 

of stroke patients and longitudinal alterations of their responses after stroke onset 
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can reveal recovery (Laaksonen et al., 2013). Small SEF amplitudes or absence of 

early SEF responses (20-30 ms) correlate with a more severe impairment (Feys et 

al., 2000; Huang et al., 2004; Keren et al., 1993; Oliviero et al., 2004; Tecchio et 

al., 2007a; Tecchio et al., 2006; Tzvetanov and Rousseff, 2003; Wikström et al., 

2000, 1999). Moreover, interhemispheric latency differences of the early peaks 

correlate with a high level of impairment (Oliviero et al., 2004; Tecchio et al., 2001). 

In contrast to MEG, EEG is an easy to perform and ambulant method which can be 

applied not only in research settings but also in hospitals and rehabilitation centers. 

With that, longitudinal studies using EEG can be executed irrespective of location 

of admission, or even in patients own home. Longitudinal tracking of patients with 

SEP recordings may offer new insights into the dynamics of stroke recovery as 

recommended recently by the stroke recovery and rehabilitation roundtable task 

force (Boyd et al., 2017; Ward, 2017, 2015). 

In the present study, we prospectively explored the relationship between SEP 

responses measured three times after stroke onset and the longitudinally recorded 

clinical motor and sensory scores, recorded four times post stroke. The goal of the 

present study was to generate a verifiable quantitative hypothesis that predicts 

which patients will follow the spontaneous neurobiological recovery rule and which 

ones will fail, on the basis of SEP biomarkers. 

4.2. Methods 

4.2.1 Subjects and clinical testing 
The present study is part of a larger cohort study (European Research Council, 

4D-EEG project), wherein EEG and clinical parameters are recorded. The cohort 

study protocol had been approved by the Medical Ethical Reviewing Committee of 

the VU University Medical Center Amsterdam (registration number 2014.140). All 

participants gave their written informed consent prior to the measurements. 

Sixteen participants with a first-ever ischemic hemispheric stroke (75±11 years, 9 

male, 9 with a lesion in the right hemisphere) were included in this study (see 

Table A4.3 in the Appendix for more details). Additional inclusion criteria were: 1) 

< three weeks post stroke onset, 2) upper limb paresis (NIHSS 5a/b >0), 3) ≥ 18 
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years of age, 4) Mini Mental State Examination score ≥ 20. Exclusion criteria were: 

1) upper extremity orthopedic limitations before stroke onset, 2) other neurological 

disorders. Because from each patient also an MRI scan was made half a year post 

stroke, we also excluded patients with a pace maker. However, MRI data were not 

used in the present study. In addition, six unimpaired participants (54±5 years, five 

men) were included, who met the two last inclusion criteria and were recorded 

twice with a week in between the measurements. 

Clinical testing of the patients and EEG recordings were performed from the sub-

acute phase (one week post-stroke) to the chronic stage (six months post-stroke): 

at one-four weeks (T0), five-six weeks (T1), three months (T2) and six months (T3) 

after stroke. Clinical testing and EEG were recorded with one day in between. At 

T3 no EEG was recorded. Sensory impairment of the affected upper extremity was 

measured using the sensory part of the Erasmus MC modified Nottingham sensory 

assessment (EMNSA) (Stolk-Hornsveld et al., 2006). The maximum score of 

EMNSA used here (only the sensory part) is 32. Upper limb function was assessed 

with the FM-UE score and the Action Research Arm Test (ARAT), reflecting the 

amount of upper limb motor function and capacity, respectively (Fugl-Meyer et al., 

1975; Lyle, 1981). The score of FM-UE can reach up to 66 in unimpaired 

participants or in patients if motor function is fully restored. The ARAT consists of 

19 subtests covering grasp, grip, pinch and gross movements. The maximum 

score that can be achieved is 57. 

4.2.2 High density EEG recordings 
Each patient was measured three times (T0, T1, T2) with EEG, see also Fig. 4.1. 

Unimpaired participants were measured two times (T0, T1) with EEG with 

approximate 10 days (mean±std: 9±4 days) in between the measurements. During 

the recordings, participants were sitting comfortably with their hand and forearm 

positioned on their lap with the fingers on top (supine position). A pillow served to 

secure a stable position and provide comfort and relaxation to prevent muscle 

activity. The experiment was performed within a NEN1010 approved measurement 

4D-EEG VAN (www.4deeg.eu), which was equipped with high-density EEG. The 
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van travelled to the patient’s residence to enhance patient’s comfort and minimize 

dropouts. 

Data were recorded with a 64-channel EEG system (TMSi, Netherlands) with the 

ground electrode placed at the left mastoid and referenced to the common average 

during recording. Sampling rate was 2048 Hz and apart from anti-aliasing filters no 

online filters were applied. Electrode impedance was kept below 20 kΩ. Electrode 

positions and anatomical landmarks of the nasion and both pre-auricular points 

were digitized using a 3D infrared camera with the ANT Neuro Xensor system 

(ANT Neuro, Enschede, Netherlands). 

 

 

Fig. 4.1 Graphical illustration of measurements (EEG, clinical scores) after stroke onset. 
 

Electrical stimulation at the median nerve was applied at both affected and 

unaffected side of patients and dominant and non-dominant side of the unimpaired 

participants. Electric pulses had a duration of 400 μs and an intensity just above 

the individual thumb twitch threshold (Cruccu et al., 2008), tested on both sides. 

The stimulation was repeated 500 times at a varying rate between 3 and 4 Hz. 

Patients with lacking or a very light thumb twitch or patients who experienced pain 

during the recordings were excluded from this study. Finally, EEG recordings with 

low signal-to-noise ratio were also excluded. 
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4.2.3 Data analysis 

Proportional recovery of FM-UE  
The difference between the initial FM-UE scores at T0 and at six months post 

stroke (T3) (𝛿𝛿FMUEr£zys§y} = FMUE;å − FMUE;n) served to describe the amount of 

motor recovery of the upper paretic limb. According to the proportional recovery 

rule (Prabhakaran et al., 2008) patients are expected to reach at six months post 

stroke (T3) approximately 70% of the difference between the initial FM-UE score 

and the maximum possible score:  

𝛿𝛿FMUE•sy}t¶{y} = 0.7 ∙ 66 − FMUE;n + offset (4.1) 

We applied this proportional recovery model to our 16-patients dataset and 

separated them into groups of fitters (𝛿𝛿FMUEr£zys§y} ≥ 𝛿𝛿FMUE•sy}t¶{y}) and non-

fitters (𝛿𝛿FMUEr£zys§y} < 𝛿𝛿FMUE•sy}t¶{y}) using hierarchical clustering with 

Mahalanobis distances (Winters et al., 2015). 

EEG preprocessing & analysis  
The EEG data were pre-processed offline using Matlab (R2013b; The Mathworks, 

Natick, MA) and the toolboxes Fieldtrip (Oostenveld et al., 2011) and EEGlab 

(Delorme and Makeig, 2004). After elimination of the stimulation artifact by linear 

interpolation (lasting for approximately 6 ms after stimulus onset), data were band-

pass filtered between 1 and 250 Hz using a bi-directional 4th order Butterworth 

filter. Data were segmented in 250 ms stimulus-locked epochs including a 50-ms 

pre-stimulus interval. Noisy epochs and channels were identified visually and 

discarded. Artifact-free data typically consisted of about 400 trials (80% of the total 

number of trials) and about 50 channels (78% of the total number of channels). 

After re-referencing to the average of the remaining channels, the SEPs were 

computed by averaging the remaining trials. For each dataset, this resulted in a 

SEP for the affected hemisphere (AH) and one for the unaffected hemisphere (UH) 

or in the case of unimpaired participants a SEP for the non-dominant (ND) and one 

for the dominant (D) side. 

75  

The P20 and P50 SEP components were identified on the basis of their latency 

and using a butterfly plot of the 62 EEG signals. The P20 was identified from 19 to 

25 ms and is referred to as P20. The P50 component was identified between 45 

and 55 ms. For every SEP recording and every participant, we identified the 

channel in the contralateral to the stimulation site exhibiting the largest negative or 

positive value around the time indicated for P20 and P50. Peak latency was 

estimated at the maximal peak amplitude only when a dipolar pattern (validated 

through a topographical distribution) of a P20 or a P50 peak was present; 

whenever that was not the case, we marked the response as non-identifiable. 

In order to access the test-retest variability in unimpaired participants, we 

computed the interclass correlation coefficient (ICC) of amplitudes and latencies of 

controls as described in (Mcgraw and Wong, 1996). We used a one-way random 

effects model as we sought to test the absolute agreement among measurements. 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑀𝑀𝑀𝑀Æ − 𝑀𝑀𝑀𝑀Ø
𝑀𝑀𝑀𝑀Æ + 𝑀𝑀𝑀𝑀Ø

 (4.2) 

where 𝑀𝑀𝑀𝑀Æ is the mean square for all unimpaired participants’ measurements of 

one time (T0, T1) and 𝑀𝑀𝑀𝑀Ø is the mean square within measurements, T0 and T1. 

Comparing EEG with clinical evaluations 
The large inter-subject variability in AH and UH amplitudes as well as in P20 and 

P50 amplitudes (presented in Fig. 4.3 in the results section) motivated looking at a 

combination of these parameters. To reduce effects of inter-subject differences in 

tissue conductivity and arm length, we computed the ratio of amplitudes of P20 

and P50 and the difference between the latencies of P20 and P50 as features for 

classification: 

𝐹𝐹1 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎50≥¥
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎20≥¥

−
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎50µ¥
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎20µ¥

 (4.3) 

𝐹𝐹2 = (𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎50≥¥ − 𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎20≥¥) − 𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎50µ¥ − 𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎20µ¥  (4.4) 
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In (4.3), 𝐹𝐹1 represents the difference between P50 amplitude in AH and UH, where 

P50 amplitude is normalized by the P20 amplitude, as the generators of those two 

peaks are very closely located to each other in S1. Since their amplitudes are 

roughly proportional to local tissue conductivity, the ratios in (4.3) largely are 

insensitive for conductivity effects. A higher 𝐹𝐹1 represents a higher asymmetry 

between the hemispheres as represented by the amplitudes of the underlying 

neuronal currents. In (4.4), 𝐹𝐹2 represents the difference between P50 latency in 

AH and UH. P50 latency is normalized to the P20 latency as latency may depend 

on arm length (van ’t Ent et al., 2010). A positive	𝐹𝐹2 implies that information (from 

P20 to P50) is more slowly processed at the UH than at the AH. 

We used the features 𝐹𝐹1 and 𝐹𝐹2 to distinguish the fitters and the non-fitters to the 

proportional recovery rule by employing a linear support vector machine (SVM) 

classifier. The accuracy of the SVM was determined with a leave-one out method. 

4.3 Results  

4.3.1 Clinical scores and proportional motor recovery  &  

Fig. 4.2 depicts the normalized scores by their maximum value of the longitudinal 

FM-UE, ARAT, and EMNSA tests for all 16 patients included in this study. The FM-

UE scores separated the data into two groups, one consisting of nine patients with 

high FM-UE at T3 values and one consisting of seven patients with low values at 

T3. The group of high FM-UE consisted of two subgroups of patients: One that 

showed recovery from T0 to T3 (three patients) and another one with already a 

high initial score at T0 that did not show further recovery (six patients). ARAT 

scores largely followed the FM-UE scores and EMNSA displayed always high 

scores except for two patients with low scores during all sessions and one patient 

who did show sensory recovery. 

Fig. 4.2 D illustrates how of the dataset agreed with the 70% proportional recovery 

rule (4.1) observed in larger datasets. There was a small percentage of patients 

that did not fit to the proportional recovery rule (N=6) or 37.5% of the included 

patients (N=16). As for the fitters, there was a linear relationship between 
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𝛿𝛿FMUE•sy}t¶{y} and 𝛿𝛿FMUEr£zys§y} described by a least-squares regression line in 

the form of 𝛿𝛿FMUE•sy}t¶{y} = 0.74	 ∙ 𝛿𝛿FMUEr£zys§y}	 + 2.4. 

4.3.2 SEP measurements at T0, T1, T2 

Fig. 4.3 displays the amplitude of AH and UH of P20 and P50 peak for all 

participants. Peak amplitudes in the unimpaired participants for both P20 and P50 

were mostly stable across the two sessions. The ICCs of P20, P50 amplitude, and 

P50 latency were significant (p=.01, p=.0003, p=.02, respectively) but not the ICC 

of P20 latency (p=.1). We did observe inter-subject variability in amplitudes of 

unimpaired participants of around 1 μV (mean±std, D side: P20 amplitude, T0: 2±1, 

T1: 1.8±1.7, P50 amplitude, T0: 2.6±0.6, T1: 2.3±0.8; ND side: P20 amplitude, T0: 

1.8±1.3, T1: 2±1.6, P50 amplitude, T0: 2.1±0.6, T1: 2.3±0.6). 

Patients showed larger differences between the amplitudes of P20 and P50 at both 

AH (mean±std, AH: P20 amplitude, T0: 1.7±1.3, T1: 1.7±1.3, T2: 1.5±1.1. P50 

amplitude, T0: 4±4.4 T1: 4±3. T2: 3.8±3.1) and UH (UH: P20 amplitude, T0: 

2.3±1.6, T1: 2.3±1.8, T2: 2.2±1.8. P50 amplitude, T0: 4.78±1.3 T1: 4.2±2.9. T2: 

3.9±2.4). P20 amplitudes at UH were generally larger than amplitudes at AH, with 

the exception of five measurement points in three patients. Moreover, the 

variability in amplitude among patients was much larger than the variability of 

amplitudes across measurement times and within patients. More details on the 

patients’ P20 and P50 amplitudes and latencies can be found in the Appendix. 

The P20 peak at the AH hemisphere could not be identified in four patients (# 

4,5,11,16) in all three EEG measurements post stroke. Those patients are depicted 

in Fig. 4.3 with zero amplitudes. The P50 peak was not identifiable in three (# 4, 

11,16) out of the 16 patients. At UH, peaks were more easily identified with a few 

exceptions shown in the Appendix. EEG data of these patients were excluded from 

further analysis leaving 12 patients (seven fitters and five non-fitters), as illustrated 

in Fig. 4.4. 
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In (4.3), 𝐹𝐹1 represents the difference between P50 amplitude in AH and UH, where 

P50 amplitude is normalized by the P20 amplitude, as the generators of those two 

peaks are very closely located to each other in S1. Since their amplitudes are 

roughly proportional to local tissue conductivity, the ratios in (4.3) largely are 

insensitive for conductivity effects. A higher 𝐹𝐹1 represents a higher asymmetry 

between the hemispheres as represented by the amplitudes of the underlying 

neuronal currents. In (4.4), 𝐹𝐹2 represents the difference between P50 latency in 

AH and UH. P50 latency is normalized to the P20 latency as latency may depend 

on arm length (van ’t Ent et al., 2010). A positive	𝐹𝐹2 implies that information (from 

P20 to P50) is more slowly processed at the UH than at the AH. 

We used the features 𝐹𝐹1 and 𝐹𝐹2 to distinguish the fitters and the non-fitters to the 

proportional recovery rule by employing a linear support vector machine (SVM) 

classifier. The accuracy of the SVM was determined with a leave-one out method. 

4.3 Results  

4.3.1 Clinical scores and proportional motor recovery  &  

Fig. 4.2 depicts the normalized scores by their maximum value of the longitudinal 

FM-UE, ARAT, and EMNSA tests for all 16 patients included in this study. The FM-

UE scores separated the data into two groups, one consisting of nine patients with 

high FM-UE at T3 values and one consisting of seven patients with low values at 

T3. The group of high FM-UE consisted of two subgroups of patients: One that 

showed recovery from T0 to T3 (three patients) and another one with already a 

high initial score at T0 that did not show further recovery (six patients). ARAT 

scores largely followed the FM-UE scores and EMNSA displayed always high 

scores except for two patients with low scores during all sessions and one patient 

who did show sensory recovery. 

Fig. 4.2 D illustrates how of the dataset agreed with the 70% proportional recovery 

rule (4.1) observed in larger datasets. There was a small percentage of patients 

that did not fit to the proportional recovery rule (N=6) or 37.5% of the included 

patients (N=16). As for the fitters, there was a linear relationship between 
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𝛿𝛿FMUE•sy}t¶{y} and 𝛿𝛿FMUEr£zys§y} described by a least-squares regression line in 

the form of 𝛿𝛿FMUE•sy}t¶{y} = 0.74	 ∙ 𝛿𝛿FMUEr£zys§y}	 + 2.4. 
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3.9±2.4). P20 amplitudes at UH were generally larger than amplitudes at AH, with 

the exception of five measurement points in three patients. Moreover, the 

variability in amplitude among patients was much larger than the variability of 

amplitudes across measurement times and within patients. More details on the 
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The P20 peak at the AH hemisphere could not be identified in four patients (# 

4,5,11,16) in all three EEG measurements post stroke. Those patients are depicted 

in Fig. 4.3 with zero amplitudes. The P50 peak was not identifiable in three (# 4, 

11,16) out of the 16 patients. At UH, peaks were more easily identified with a few 

exceptions shown in the Appendix. EEG data of these patients were excluded from 

further analysis leaving 12 patients (seven fitters and five non-fitters), as illustrated 
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Fig. 4.2 Normalized clinimetrics (by their maximum value) at T0 T1, T2, T3. Different 
colors represent different patients and are consistent across A) FM-UE, B) 
ARAT, C) EMNSA, and D) Proportional motor recovery measured by FM-UE: 
predicted versus observed 𝛿𝛿FM − UE. The blue circles represent the fitters 
(N=10) and the red squares represent the non-fitters (N=6). The blue line 
represents the least squares regression line of the fitters: 𝛿𝛿FMUE•sy}t¶{y} =
0.74 ∙ 	𝛿𝛿FMUEr£zys§y} + 2.4. 

 

 
Table 4.1.  Clinical scores at T0, T1, T2, T3 and fitting to the proportional recovery rule of 

patients with non-identifiable peaks 
 ARAT EmNSA Fugl-Meyer 

 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 Prop. recovery 
#4 0 0 5 5 10 10 3 3 9 16 16 16 Non-fitter 
#5 4 12 20 25 39 51 27 42 29 29 31 31 Fitter 

#11 18 42 34 55 58 57 46 50 22 28 25 30 Fitter 
#16 3 15 24 43 36 42 0 22 0 0 2 1 Fitter 
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Fig. 4.3 Amplitudes of A) P20 of 16 patients ,B) six controls, C) P50 of 16 patients and 
D) six controls. Along the abcissa the amplitudes of the unaffected (UH) or non 
dominant (ND) hemisphere are plotted, along the ordinate the affected (AH) or 
dominant (D) hemisphere..The filled dot represents the T0 (patients and 
controls) measurement and the non-filled dot represents the T1 (patients and 
controls) and T2 (patients). 

 

4.3.3 Predicting recovery with EEG 

Not identified SEP peaks and clinical scores 
Clinical scores of patients with non-identifiable SEP peaks (4, 11, 15 and 16) are 

shown in table 4.1. We observed that patients 4 and 16 show low clinical scores 

longitudinally (except for ARAT score at T3 for patient 16). However, that is not the 

case for patient 5 and 11 who show rather average values on both motor and 

sensory scores. Patient 4 does not fit to the 70% proportional recovery rule and 

0 5 10
0

2

4

6

8

10

12

14

P50 16 patients

am
pl

itu
de

 o
f A

H
 in

  µ
V

amplitude of UH in µV
0 5 10

0

2

4

6

8

10

12

14

am
pl

itu
de

 o
f D

 in
  µ

V

amplitude of ND in µV

P50 6 controlsC D

Am
pl

itu
de

 o
f A

H
 in

μV

Amplitude of UH in μV Amplitude of UH in μV

Am
pl

itu
de

 o
f A

H
 in

μV

Amplitude of UH in μV Amplitude of UH in μV

Am
pl

itu
de

 o
f A

H
 in

μV

P20 16 patients

P50 16 patients

P20 6 controls

P50 6 controls

0 2 4 6
0

1

2

3

4

5

6

7

P20 16 patients

am
pl

itu
de

 o
f A

H
 in

  µ
V

amplitude of UH in µV
0 2 4 6

0

1

2

3

4

5

6

7

am
pl

itu
de

 o
f D

 in
  µ

V

amplitude of ND in µV

P20 6 controls

Am
pl

itu
de

 o
f A

H
 in

μV

A B



  Are longitudinal SEP recordings a biomarker for proportional motor recovery post stroke?

4

78  

 

Fig. 4.2 Normalized clinimetrics (by their maximum value) at T0 T1, T2, T3. Different 
colors represent different patients and are consistent across A) FM-UE, B) 
ARAT, C) EMNSA, and D) Proportional motor recovery measured by FM-UE: 
predicted versus observed 𝛿𝛿FM − UE. The blue circles represent the fitters 
(N=10) and the red squares represent the non-fitters (N=6). The blue line 
represents the least squares regression line of the fitters: 𝛿𝛿FMUE•sy}t¶{y} =
0.74 ∙ 	𝛿𝛿FMUEr£zys§y} + 2.4. 
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Fig. 4.3 Amplitudes of A) P20 of 16 patients ,B) six controls, C) P50 of 16 patients and 
D) six controls. Along the abcissa the amplitudes of the unaffected (UH) or non 
dominant (ND) hemisphere are plotted, along the ordinate the affected (AH) or 
dominant (D) hemisphere..The filled dot represents the T0 (patients and 
controls) measurement and the non-filled dot represents the T1 (patients and 
controls) and T2 (patients). 
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patients 5,11 and 16 belong to the fitters group. We found no association between 

missing SEP values and clinical scores. 

 

 
Fig. 4.4 Patient exclusion flowchart. The first two boxes are estimated after screening of 

patients in one hospital (Reinier de Graaf, Delft, Netherlands). 

Prediction of non-fitters with SEP parameters 
In Fig. 4.5 we summarize the results of the clustering analysis of the clinical scores 

of the 12 patients that did not meet the additional exclusion criteria. Two groups of 

patients emerged from the hierarchical clustering analysis. The two groups 

matched those of the clustering analysis of the T3 values of the normalized clinical 

scores as well as the fitters and non-fitters of the proportional recovery model. 

Complete longitudinal datasets 
(N=16)

Incomplete recording on the affected arm due to pain 
during the stimulation (N=1). Lacking or light thumb twitch 
on the 3 weeks of follow-up (N=2). Excluded from the 
analysis due to low SNR of the EEG recordings (N=1).

Included in the EEG analysis 
(N=12)

Patients included (N=24)

Drop-outs (N=7). Different measurement method (N=1)

Exclusions
(9.3%) Haemorrhagic stroke
(25.0%) Recurrent stroke (not first ever)
(32.9%) No paresis upper extremity
(5.0%) Not fit enough to perform measurements
(7.1%) Neurological comorbidity
(1.4%) Orthopaedic limitation at affected limb
(10.0%) Not being able to follow instructions (MMSE<20)
(2.1%) Met all inclusion and none of the exclusion

criteria, but did not want to participate.

Screened for inclusion (N= 1008) 
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Hence, we divided our dataset in two groups, one of fitters consisting of seven 

patients and one of non-fitters consisting of five patients. 

 

 
Fig. 4.5 Dendrograms for hierarchical clustering using Mahalanobis distances. Twelve 

patients were clustered based on normalized clinical scores at the left and 
proportional recovery at the right. 

 

 

Finally, Fig. 4.6 shows that 𝐹𝐹1 and 𝐹𝐹2 at T1 identified the fitters and the non-fitters 

with an accuracy of 83%. We added the 𝐹𝐹1 and 𝐹𝐹2 parameters of the unimpaired 

participants in the same graph by corresponding the non-affected hemisphere to 

the dominant side and vice versa. One observes in Fig. 4.6 that these SEP data 

fell in the same category as the well-predicted patients (fitters). When the features 

𝐹𝐹1 and 𝐹𝐹2	were taken at T0 instead of T1, an accuracy of 50% could be obtained 

Features 𝐹𝐹1 and 𝐹𝐹2 at T2 led to a 58% accuracy of correct prediction. 

4.4 Discussion 

In the present preliminary study, we monitored the longitudinal change of clinical 

scores and SEP data in a group of 16 patients suffering from stroke. We confirmed 

that the 70% proportional recovery rule of FM-UE (T0 versus T3) applied to our 

data (with 37.5 % of the patients not fitting to the rule). More importantly, by using 

differences between P20 and P50 peak responses of the SEP we could distinguish 
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fitters from non-fitters of the 70% proportional recovery rule with an accuracy of 

about 83%. 

The proportional recovery rule holds true for 62.5 % of the patients, consistent with 

previous studies with larger datasets (Buch et al., 2016; Byblow et al., 2015; 

Prabhakaran et al., 2008; Winters et al., 2016c, 2015). An important difference 

between our dataset and studies with a larger group of patients (Winters et al., 

2015; Zarahn et al., 2011) is that the first measurement of clinical scores (and the 

associated EEG) in the present study was performed between one and four weeks 

post-stroke, whereas in the other cohort studies the initial measurement was 

assessed within 72 hours post-stroke. Although non-fitters to the proportional 

recovery rule represent a small percentage of patients, it is of high interest to 

identify the phenotype of those patients. In accordance to other studies (Krakauer 

and Marshall, 2015; Winters et al., 2015), our patients with low FM-UE scores at 

both T0 (FM-UE 0-17) and T3 (FM-UE < 20) were the non-fitters to the proportional 

recovery model. However, clinical biomarkers such as initial FM-UE scores were 

unable to distinguish prospective ‘recovers’ from ‘non-recovers’ of spontaneous 

neurobiological recovery (Winters et al., 2015). As a consequence, with the use of 

only the proportional recovery rule we could not predict which patients would 

improve at T3 (FM-UE ≥ 20) and which patients would not (FM-UE < 20).  

The electrophysiological biomarkers were designed to reflect interhemispheric 

differences, thereby reducing the effects of natural anatomic variation over 

subjects, such as skull thickness and arm length. For instance, the definition of 𝐹𝐹1 

is based on the amplitude ratio of P20 and P50 in order to obtain a measure of 

interhemispheric difference of neural activity. Because the underlying sources of 

P20 and P50 are closely located in the cortex these amplitudes will be similarly 

affected by the local skull conductivity and therefore the effect of inter-subject 

variation in skull conductivity is reduced. A more fundamental approach would 

have been to use calibrated head models as proposed by e.g. Dabek et al. (2016), 

combined with dipole source amplitude estimation. Our proposed 𝐹𝐹2 refers to the 

conduction velocity difference between the hemispheres. We took the difference 

between P20 and P50 peak latency in the definition of 𝐹𝐹2 to obtain a parameter 

that is insensitive to the patient’s anthropometry (van ’t Ent et al., 2010). In this 
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way, both 𝐹𝐹1	and 𝐹𝐹2 represent interhemispheric differences and we suggest that 

interhemispheric differences represented by 𝐹𝐹1 and 𝐹𝐹2 could be used as indicators 

of neuronal processes during stroke recovery. This suggestion is further endorsed 

by our result that 83% prediction accuracy of fitters and non-fitters is achieved with 

these features and the result that all unimpaired participants fell in the same 

category as the fitters. These results may be related to another finding, by (van 

Putten and Tavy, 2004; Tzvetanov et al., 2005; Winters et al., 2016b), that the 

intactness of proprioceptive input to the primary motor cortex is highly predictive for 

functional recovery post stroke. Furthermore, there might be a relation to recent 

diffusion tensor imaging (DTI) study by (Buch et al., 2016), who revealed that non-

fitters exhibit a high corticospinal tract asymmetry two weeks post-stroke indicating 

that interhemispheric imbalances in early post stroke could have a predictive value 

(Ward, 2017). 

However, we are well aware that our results based on SEP parameters are quite 

specific and cannot be directly compared to studies that used mechanical 

stimulation of the fingers such as (Forss et al., 1994b), because those stimuli give 

different responses. Of the widely used electrical median nerve stimulation it is 

known that peaks both around 20 ms 50 ms and both P20 and P50 are both 

believed to be generated in Brodmann area 3b. It has been proposed that P20, is 

more likely to reflect excitatory postsynaptic potentials, while P50 may stem from 

inhibitory postsynaptic potentials (Wikström et al., 1996). P50 is often considered 

to contain additional predictive value when monitoring stroke patients (Macdonell, 

1991; Wikström et al., 2000). ICCs were more significant for both P50 latency and 

P50 amplitude of unimpaired individuals when compared to P20 latency and 

amplitude (section 4.3.2). Contrary to (Feys et al., 2000; Huang et al., 2004; Keren 

et al., 1993; Oliviero et al., 2004; Tecchio et al., 2007a, 2006; Tzvetanov and 

Rousseff, 2003; Wikström et al., 2000, 1999) we did not find an one-to-one 

relationship between not identifiable P20 and P50 SEP peaks and clinical scores 

(patients 4, 5, 11, and 16). 



  Are longitudinal SEP recordings a biomarker for proportional motor recovery post stroke?

4

82  

fitters from non-fitters of the 70% proportional recovery rule with an accuracy of 

about 83%. 

The proportional recovery rule holds true for 62.5 % of the patients, consistent with 

previous studies with larger datasets (Buch et al., 2016; Byblow et al., 2015; 

Prabhakaran et al., 2008; Winters et al., 2016c, 2015). An important difference 

between our dataset and studies with a larger group of patients (Winters et al., 

2015; Zarahn et al., 2011) is that the first measurement of clinical scores (and the 

associated EEG) in the present study was performed between one and four weeks 

post-stroke, whereas in the other cohort studies the initial measurement was 

assessed within 72 hours post-stroke. Although non-fitters to the proportional 

recovery rule represent a small percentage of patients, it is of high interest to 

identify the phenotype of those patients. In accordance to other studies (Krakauer 

and Marshall, 2015; Winters et al., 2015), our patients with low FM-UE scores at 

both T0 (FM-UE 0-17) and T3 (FM-UE < 20) were the non-fitters to the proportional 

recovery model. However, clinical biomarkers such as initial FM-UE scores were 

unable to distinguish prospective ‘recovers’ from ‘non-recovers’ of spontaneous 

neurobiological recovery (Winters et al., 2015). As a consequence, with the use of 

only the proportional recovery rule we could not predict which patients would 

improve at T3 (FM-UE ≥ 20) and which patients would not (FM-UE < 20).  

The electrophysiological biomarkers were designed to reflect interhemispheric 

differences, thereby reducing the effects of natural anatomic variation over 

subjects, such as skull thickness and arm length. For instance, the definition of 𝐹𝐹1 

is based on the amplitude ratio of P20 and P50 in order to obtain a measure of 

interhemispheric difference of neural activity. Because the underlying sources of 

P20 and P50 are closely located in the cortex these amplitudes will be similarly 

affected by the local skull conductivity and therefore the effect of inter-subject 

variation in skull conductivity is reduced. A more fundamental approach would 

have been to use calibrated head models as proposed by e.g. Dabek et al. (2016), 

combined with dipole source amplitude estimation. Our proposed 𝐹𝐹2 refers to the 

conduction velocity difference between the hemispheres. We took the difference 

between P20 and P50 peak latency in the definition of 𝐹𝐹2 to obtain a parameter 

that is insensitive to the patient’s anthropometry (van ’t Ent et al., 2010). In this 

83  

way, both 𝐹𝐹1	and 𝐹𝐹2 represent interhemispheric differences and we suggest that 

interhemispheric differences represented by 𝐹𝐹1 and 𝐹𝐹2 could be used as indicators 

of neuronal processes during stroke recovery. This suggestion is further endorsed 

by our result that 83% prediction accuracy of fitters and non-fitters is achieved with 

these features and the result that all unimpaired participants fell in the same 

category as the fitters. These results may be related to another finding, by (van 

Putten and Tavy, 2004; Tzvetanov et al., 2005; Winters et al., 2016b), that the 

intactness of proprioceptive input to the primary motor cortex is highly predictive for 

functional recovery post stroke. Furthermore, there might be a relation to recent 

diffusion tensor imaging (DTI) study by (Buch et al., 2016), who revealed that non-

fitters exhibit a high corticospinal tract asymmetry two weeks post-stroke indicating 

that interhemispheric imbalances in early post stroke could have a predictive value 

(Ward, 2017). 

However, we are well aware that our results based on SEP parameters are quite 

specific and cannot be directly compared to studies that used mechanical 

stimulation of the fingers such as (Forss et al., 1994b), because those stimuli give 

different responses. Of the widely used electrical median nerve stimulation it is 

known that peaks both around 20 ms 50 ms and both P20 and P50 are both 

believed to be generated in Brodmann area 3b. It has been proposed that P20, is 

more likely to reflect excitatory postsynaptic potentials, while P50 may stem from 

inhibitory postsynaptic potentials (Wikström et al., 1996). P50 is often considered 

to contain additional predictive value when monitoring stroke patients (Macdonell, 

1991; Wikström et al., 2000). ICCs were more significant for both P50 latency and 

P50 amplitude of unimpaired individuals when compared to P20 latency and 

amplitude (section 4.3.2). Contrary to (Feys et al., 2000; Huang et al., 2004; Keren 

et al., 1993; Oliviero et al., 2004; Tecchio et al., 2007a, 2006; Tzvetanov and 

Rousseff, 2003; Wikström et al., 2000, 1999) we did not find an one-to-one 

relationship between not identifiable P20 and P50 SEP peaks and clinical scores 

(patients 4, 5, 11, and 16). 



Chapter 4

84  

 
Fig. 4.6 Prediction of fitters vs non-fitters to the “70% proportional recovery rule” with 

the use of two EEG features at T1 (see formula’s 4.2 and 4.3). The blue dots 
represent the patients with well-predicted recovery according to the proportional 
recovery and the red dots represent the non-fitters to the model. Green dots 
represent the unimpaired participants. The clustering according to the classifier 
is represented with larger black circles. After training a linear classifier with the 
leave-one-out method we found two incorrectly classified patients (one fitter 
and one non-fitter) and an accuracy of 83.3%.  
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model defined in this study can be replicated in a larger cohort, then SEP-EEG 

measurements at five weeks post-stroke may become an important tool to predict 

future recovery and to develop patient specific therapy for those patients for whom 

prognosis (according to the current prognostic models) is not possible. Once the 

entire dataset is complete, we will cross validate the current proposed model. 

4.5. Conclusions 

Our results confirm that circa 70% of the patients follow proportional recovery rule 

as assessed with the FM-UE recovery score. Compared to unimpaired participants 

SEP responses of stroke patients show a much larger inter-subject variability 
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indicating that SEP responses possibly contain valuable prognostic information. 

Data analysis suggest that SEP parameters reflecting hemispheric differences in 

functional brain activity during sensory processing is able to predict which patients 

fit the proportional recovery model. When confirmed in a larger independent data 

set, our study shows that biomarkers derived from SEP responses can potentially 

be used as complimentary parameters to the existing recovery models. 
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4.8 Appendix 

Tables A4.1 and A4.2 show the latencies and the amplitudes of the SEP peaks at 

T0, T1, T2 for AH and UH, respectively. All 16 patients included in this study are 

presented. The cases with not identifiable peaks are marked as NaN. 
 
Table A4.1 Amplitudes and latencies for the P20 and P50 peaks at T0, T1, T2 at the 

affected hemisphere (non-identified values are marked as NaN). 
 

 

 
  

Affected hemisphere 

 T0 T1 T2  

PAT P20 

lat. 

P20 

amp. 

P50 

lat. 

P50 

amp.  

P20 

lat. 

P20 

amp. 

P50 

lat. 

P50 

amp.  

P20 

lat. 

P20 

amp. 

P50 

lat.  

P50 

amp. 

#1 24.90 1.47 45.41 1.93 24.90 0.97 49.32 2.20 24.90 1.41 48.34 2.24 

#2 22.95 1.93 45.41 5.52 23.44 1.85 54.69 4.90 24.90 2.61 54.69 3.64 

#3 24.90 1.94 45.41 2.17 24.90 1.91 45.41 2.62 24.90 1.75 45.41 2.50 

#4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

#5 NaN NaN 54.69 1.75 NaN NaN 54.69 1.06 NaN NaN 53.22 1.06 

#6 24.90 2.82 51.76 14.65 24.90 2.91 48.83 9.91 24.90 2.21 49.80 10.79 

#7 20.51 2.40 54.69 10.14 24.90 2.04 54.69 5.99 24.90 1.62 54.69 5.40 

#8 24.90 1.60 54.20 10.07 22.95 1.05 50.78 5.93 23.44 1.57 46.88 6.69 

#9 24.90 3.34 45.41 6.85 24.90 2.30 54.69 7.54 24.90 2.79 54.69 7.27 

#10 24.90 0.98 54.69 1.67 23.44 3.88 54.69 3.09 24.90 1.17 51.27 3.13 

#11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

#12 24.90 3.07 45.41 3.85 24.90 2.84 45.41 4.13 24.90 3.14 45.41 4.08 

#13 21.97 3.25 47.85 8.52 22.46 2.95 46.39 6.57 22.46 2.83 45.41 7.83 

#14 24.90 0.78 45.41 2.24 20.51 1.18 45.90 2.37 20.02 0.66 50.78 1.69 

#15 22.95 4.10 49.32 8.23 22.46 3.61 46.39 7.78 23.44 2.78 45.41 5.10 

#16 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
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Table A4.2 Amplitudes and latencies for the P20 and P50 peaks at T0, T1, T2 at the 
unaffected hemisphere (non-identified values are marked at NaN). 

 

	

 

  

Unaffected hemisphere 

 T0 T1 T2  

PAT P20 

lat. 

P20 

amp. 

P50 

lat. 

P50 

amp.  

P20 

lat. 

P20 

amp. 

P50 

lat. 

P50 

amp.  

P20 

lat. 

P20 

amp. 

P50 

lat.  

P50 

amp. 

#1 21.48 1.15 45.41 2.13 23.93 1.37 45.41 1.70 23.93 1.22 48.34 2.62 

#2 24.41 2.38 54.69 3.73 24.90 3.35 54.69 4.69 24.90 3.15 54.69 2.41 

#3 24.90 2.87 45.41 2.47 24.90 2.18 45.41 2.99 24.90 1.81 45.41 2.36 

#4 24.90 1.08 45.41 2.16 NaN NaN NaN NaN 22.95 1.08 45.41 1.93 

#5 23.44 1.23 52.25 1.89 NaN NaN 45.41 2.48 NaN NaN 49.80 1.85 

#6 23.44 3.48 47.36 8.16 23.44 4.37 45.41 7.02 21.48 1.08 47.36 3.72 

#7 20.02 2.72 45.41 4.11 20.02 2.73 54.69 4.79 20.02 2.52 54.69 3.94 

#8 23.44 2.87 45.41 4.28 21.48 2.60 45.41 2.60 24.90 2.69 45.41 2.62 

#9 23.44 4.45 54.20 12.56 24.90 4.77 53.71 11.31 24.90 4.19 54.69 10.46 

#10 23.44 1.97 45.41 3.21 24.41 2.31 53.71 4.70 22.46 2.62 50.78 3.74 

#11 NaN NaN 51.27 4.53 24.90 1.11 50.29 4.74 NaN NaN 45.90 2.11 

#12 24.90 4.10 54.69 5.10 24.90 4.78 45.41 4.13 24.90 3.33 50.29 4.04 

#13 23.44 1.70 46.88 7.46 22.46 1.27 45.90 5.05 23.44 1.78 45.90 6.59 

#14 20.02 0.82 45.41 1.47 24.90 1.30 45.41 3.19 24.90 0.99 45.41 2.86 

#15 21.97 5.94 49.32 9.39 22.46 5.36 48.34 8.04 21.97 7.28 48.34 8.18 

#16 NaN NaN 47.36 3.53 NaN NaN NaN NaN 21.97 1.09 48.83 3.12 
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Table A4.3 shows the 16 patient characteristics as assessed 72 hours post stroke. 

Table A4.4 shows the clinical scores of the 16 patients at T0, T1, T2, with blue are 

presented the fitters to proportional recovery model and with red the non fitters 

 
 
 
Table A4.4 Clinical scores (ARAT, FM-UE, EMNSA) of 16 patients at T0, T1, T2, T3. With 

blue are depicted the patients that fitted to the proportional recovery rule and 
with red the patients that did not fit to the proportional recovery rule as in Fig. 
4.2 D, 

 

 ARAT FM-UE EMNSA 
ID/T T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 

1 41 51 54 54 55 59 60 60 32 32 32 32 
2 22 55 56 57 36 62 62 63 32 32 32 32 
3 0 0 0 23 5 7 11 25 30 30 32 32 
4 0 0 3 3 5 5 10 10 9 16 16 16 
5 4 12 27 42 20 25 39 51 29 29 31 31 
6 33 49 56 55 50 61 63 64 28 28 31 31 
7 0 0 3 3 5 7 11 11 21 30 32 32 
8 21 54 57 52 39 62 62 64 32 32 32 32 
9 0 0 3 3 7 7 19 24 32 32 32 32 

10 3 3 3 3 7 10 10 10 26 25 30 28 
11 18 42 46 50 34 55 58 57 22 28 25 30 
12 0 23 48 57 11 33 51 59 29 31 32 32 
13 0 0 3 3 9 12 13 10 31 32 32 31 
14 42 56 57 57 49 60 62 63 27 32 30 32 
15 24 50 56 55 35 54 59 60 3 25 31 31 
16 3 15 8 22 24 43 36 42 0 0 2 1 

 

Table A4.3 Patient characteristics, and Bamford classification as assessed 72 hours post 
stroke. LACI: lacunar anterior cerebral infraction; PACI: partial anterior cerebral 
infraction; TACI: total anterior cerebral infraction. F2R means forced to write 
with the right hand 

 

#ID age gender handedness affected body side Bamford classification 
1 73 m R L LACI 
2 86 f R R LACI 
3 52 f R R LACI 
4 64 m R R TACI 
5 58 m R R PACI 
6 75 f R L PACI 
7 75 f R L PACI 
8 63 m L R LACI 
9 77 m R L PACI 

10 93 f R R PACI 
11 79 m F2R L PACI 
12 76 f R R PACI 
13 94 f R L PACI 
14 77 m R L LACI 
15 72 m R L PACI 
16 78 m R L TACI 
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ABSTRACT 

Evaluating sensory and motor impairment and recovery after stroke may benefit 
from affordable and ambulant imaging modalities like electroencephalography 
(EEG). However, there is currently neither a standard protocol nor a standard out-
come measure for clinical practice to evaluate impairment after stroke with EEG. 
The goal of this study is to test if electrical stimulation of the index finger eliciting 
somatosensory activity is associated with clinical stroke measures. Accordingly, we 
supplemented the data by resting state activity as a baseline. The electrical stimu-
lation at the finger failed to generate clear-cut evoked potentials, which called for 
non-time locked frequency analysis. Based on earlier studies, we determined 
asymmetries via EEG power ratios between left and right hemispheres in different 
frequency bands. Both after stimulation and during resting state, we found differ-
ences between chronic stroke patients (N=21) and healthy age-matched unim-
paired participants (N=9). Interhemispheric asymmetries were correlated with clini-
cal motor and sensory scales. We confirm asymmetries in the delta band (1.5-4 
Hz) during resting state but also after electrical stimulation of the fingers in chronic 
stroke patients. We concluded that these asymmetries are almost significantly 
correlated (p=0.06) with clinical motor scales supporting the potential for character-
izing chronic stroke. We did not find any significant correlation of beta nor alpha 
asymmetry with clinical scores  
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5.1 Introduction 

Stroke is a leading cause of physical disability worldwide. According to Parker et 

al. (1986), approximately 87% of all stroke survivors suffer from paresis of the 

upper extremity immediately after stroke onset. Stroke recovery typically contains a 

fast, initial recovery pattern followed by a slower recovery pattern and saturates 

within three months post stroke. Yet, recovery can continue for years during the 

so-called chronic stage defined as >6 months post stroke (Cramer, 2008). Focal 

injuries in motor areas after ischemic stroke can cause changes in intra- and inter-

hemispheric interactions across the motor and/or sensory networks, including 

primary motor cortex, dorsal and ventral premotor cortex, supplementary motor 

area, parietal cortex, and secondary somatosensory cortex but also prefrontal 

cortex (Grefkes and Fink, 2011). It seems that the brain ‘tries’ to remap the 

sensorimotor interactions to reconnect motor areas with somatosensory input 

(Bolognini et al., 2016; Ward and Cohen, 2004). Common clinical practice does not 

involve detailed imaging, like for example magnetic resonance imaging (MRI), to 

assess such changes but rather follows the patient from the acute to the chronic 

stage with clinical motor and sensory scales; e.g., the Fugl-Meyer scale, or the 

Erasmus Nottingham Sensory Assessment score. This is due to MRI practical 

limitations (Singer et al., 2004), but is also due to the financial burden of neural 

imaging. Here we advocate electroencephalography (EEG) as a safe, easy-to-

apply, affordable, and ambulant imaging method that can be used to access 

sensory impairment, even post stroke (Rollnik, 2015; Ward, 2017, 2015). 

Monitoring sensory areas during ischemic stroke recovery with the use of EEG has 

been suggested for evaluating rehabilitation strategies and eventually adjusting 

them in a patient-specific manner (Bolognini et al., 2016). A proper understanding 

of changes in the sensory areas may help improving the functional outcome 

(Winward et al., 1999). Somatosensory evoked potentials or fields (SEPs or SEFs, 

respectively) are conventional measures for studying the somatosensory areas 

(Hari and Forss, 1999). They are estimated as an event-related average based on 

the assumption that to every stimulation (event) a neural population responds in 

the same way. Seminal for this approach is the stimulation of the median nerve at 
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the wrist. While providing robust SEPs, median nerve stimulation involves both 

efferent and afferent pathways. Median nerve stimulation includes Ia, Ib, II 

afferents and efferent fibers, where the latter can induce muscles twitches 

(Dawson, 1956; Kuiken et al., 2007; Mauguiere, 1999). However, in particular 

changes in the afferent pathways are currently believed to have predictive capacity 

for stroke recovery (Laaksonen et al., 2012). An alternative is electric stimulation of 

the finger because it primarily involves Αβ afferents (Dowman, 1997). Electrical 

finger stimulation in stroke has been applied before. For instance, MEG studies 

associated the absence or lack of early SEF finger-stimulated responses in the 

chronic stage of stroke with worse clinical scores (Rossini et al. 1998a, 1998b, 

2001). 

Stimulus-evoked response fall into two categories: so-called evoked responses 

that are almost instantaneous and appear largely additive to ongoing activity, and 

induced ones that are delayed and are, hence, indicative of (high-level) 

processing. Stimulation, however, may also alter ongoing activity. Here important 

is the possible modulation of spontaneous brain rhythms (Bullock, 1992), which 

can be explained by mere changes in spectral power (David et al., 2006) but also 

by changes in phase (Nikulin et al., 2007). In fact, various rhythms have been 

reported to change post stroke even in the absence of external stimulation. Stroke 

is typically lateralized because of which altered brain activity comes with significant 

left/right asymmetry in spectral distributions (Finnigan and van Putten, 2013; van 

Putten, 2007, 2006; Sheorajpanday et al., 2011), which have been suggested as a 

tool for monitoring recovery (Anastasi et al., 2017; Sheorajpanday et al., 2009; 

Stojanović and Djurasić, 2013), even in the acute stage (van Putten and Tavy, 

2004). 

Poor function of the somatosensory cortex is associated with stroke severity 

(Connel et al., 2008; Meyer et al., 2016). The goal of the study was to determine if 

SEP-related parameters after finger stimulation may help characterizing chronic 

stroke. In view of the literature we also evaluated spectral asymmetries during 

resting state and SEP. In our experiments, we included N=21 chronic ischemic 

stroke patients and N=9 age-matched unimpaired participants. All outcomes were 

correlated with clinical scores for motor and sensory function. 
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5.2 Methods 

5.2.1 Subjects  
Twenty-one patients with chronic hemiparesis after stroke participated in this study 

(61±9 years, six female, all at least six months post stroke, with initial hemiparesis, 

eight with a lesion in the left hemisphere). 

Inclusion criteria were: 1) first-ever ischemic stroke in an area supplied by the 

anterior, medial, and/or posterior cerebral arteries, 2) ≥ 18 years of age, 3) Mini 

Mental State Examination score ≥ 20, 4) able to sit in a wheel chair for at least two 

hours. Exclusion criteria were: 1) a pacemaker or other metallic implants which are 

not allowed in the MRI scanner (due to an MRI recorded in another trial of the 

study), 2) upper extremity orthopedic limitations before stroke onset, 3) other 

neurological disorders, and 4) botuline-toxine injections or medication that may 

influence upper limb function in past three months. 

Nine unimpaired age-matched participants (60±11 years, three women) served as 

a control group, who met the two last inclusion criteria. 

The present study is part of a larger EEG cohort study on stroke (European 

Research Council, 4D-EEG project), wherein EEG and clinical parameters are 

determined. 

This EEG cohort study protocol has been approved by the Medical Ethical 

Reviewing Committee of the VU University Medical Center Amsterdam 

(registration number 2014.140). All participants gave their written informed consent 

prior to the measurements. This study was conducted in accordance with The 

Declaration of Helsinki. 

5.2.2 Clinical testing 
Clinical testing of the patients was performed the day before or after the EEG 

measurements. Sensory impairment (SI) of the affected upper limb was measured 

using the Erasmus MC modified Nottingham sensory assessment (EmNSA) (Stolk-

Hornsveld et al., 2006): The maximum score of the EmNSA is 40. The EmNSA 

consists of five subtests with 8 as the maximum score of every subtest. SI was 

summarized as described in (Stolk-Hornsveld et al., 2006): Patients who achieved 

a full score on each subtest of the EmNSA were classified to be without sensory 
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impairment. Patients with a reduced score in one or two subtests were marked as 

mildly impaired, whereas participants with a reduced score on more than two 

subtests of the EmNSA were considered severely impaired. 

Upper limb function was assessed with the upper limb subtest of the Brunnstrom 

Fugl-Meyer Assessment (FMA-UE), reflecting the amount of motor function, as a 

measure of functional recovery (Fugl-Meyer et al., 1975). The FMA-UE is a stroke 

specific impairment scale, which determines the ability to execute dissociated 

movement, and is believed to reflect true neurological recovery (Levin et al., 2009). 

The maximum score of FMA is 66 for healthy individuals or patients with fully 

restored motor function. More details about patient characteristics and their 

corresponding FMA and SI can be found in the Appendix. 

5.2.3 EEG recordings 
During the EEG recordings, participants were sitting comfortably with their hand 

and forearm positioned on their lap with the fingers on top (supine position). 

Between forearm and lap a pillow was placed to secure a stable position and 

provide comfort. The experiment was performed within a NEN1010 approved 

measurement van, which was equipped with high-density EEG, and travelled to 

participant’s residence to enhance patient’s comfort and minimize dropout. 

Signals were recorded with a 64-channel EEG system (TMSi, Netherlands) with 

the ground electrode placed at the left mastoid and referenced to the common 

average during recording. Sampling rate was 2048 Hz and apart from anti-aliasing, 

no filters were applied online. The electrodes’ impedance was kept below 20kΩ. 

The electrodes’ positions and the anatomical landmarks of the nasion and both 

pre-auricular points were digitized using a 3D infrared camera with the ANT Neuro 

Xensor system (ANT Neuro, Enschede, Netherlands). 

EEG was recorded during rest (resting state) and during electrical stimulation of 

the index finger. Resting state was recorded with the eyes open and patients 

fixating at a cross, displayed at a screen in front of them. Five segments of one 

minute were recorded in order to reduce fatigue. Participants were asked to relax 

and were allowed to blink normally. 
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Electrical stimulation at the index finger was applied after the resting state. 

Stimulation was applied at both affected and unaffected side of the patients and 

dominant and non-dominant side of the unimpaired participants. Electric pulses 

had a duration of 400 μs and an intensity of two times the sensory threshold. The 

sensory threshold was assessed by asking the participants to count the received 

pulses at their unaffected side. The individual sensory threshold was set at the 

intensity where subjects were able to count five out of ten applied pulses. The 

stimulation was repeated 500 times (without a pause) at a varying rate between 3 

and 4 Hz (inter-stimulus interval: 250-330 ms). During the stimulation, participants 

were asked to fixate at a cross, displayed at a screen in front of them. 

5.2.4  Data Analysis 
The EEG data were pre-processed offline using Matlab (R2013b; The Mathworks, 

(Natick, MA) with the Fieldtrip (Oostenveld et al., 2011) and EEGlab toolboxes 

(Delorme and Makeig, 2004). 

SEP preprocessing & analysis  
After replacing the stimulus artifact in the EEG by linear interpolation (lasting for 

approximately 6 ms after stimulus onset, therefore the time segment from 0 to 6 

ms after the stimulation onset was interpolated), data were band-pass filtered 

between 1.5 and 250 Hz using a 4th-order bi-directional Butterworth filter. Data 

were segmented in 250 ms stimulus-locked epochs including a 50-ms pre-stimulus 

interval. Noisy epochs and channels were identified visually and discarded using 

the BIAP software (http://www.demunck.info/software/index.html). Artifact-free data 

typically consisted of about 400 trials (80% of the total number of trials) and about 

50 channels (78% of the total number of channels). After re-referencing to the 

common average of the remaining channels, SEPs were computed resulting in 

SEPs of the affected hemisphere (AH), the unaffected hemisphere (UH) for 

patients and dominant (D) and non-dominant side (ND) for unimpaired participants. 

Peaks were identified visually. We especially focused at two early peaks recorded 

above the primary somatosensory cortex (Kaas, 1983): a peak around 20 ms (P20) 

and a peak around 50 ms (P50) after stimulus onset. 
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Resting state preprocessing 
Resting state data were band-pass filtered between 1.5 and 250 Hz, similar to the 

SEP preprocessing. The same channels as during electrical stimulation of the 

fingers were excluded. Resting state data were also re-referenced to the common 

average of the remaining channels. Data were segmented in two seconds intervals 

and were visually inspected for artifacts. The resting state segments with too high 

variance were excluded. 

Spectral analysis 
Since the time interval between stimuli was too short to determine the 

spectrograms of the stimulus-locked responses, non-time locked SEPs were 

determined by concatenating eight time-locked segments resulting in two-second 

segments (corresponding to a frequency resolution of 0.5 Hz). The power spectral 

densities (PSD) of both resting state and non-time locked SEP recordings were 

determined by averaging the spectral power of all two-second segments (i.e. 

Welch’s periodogram method). Next, we computed the mean power over the 

frequency ranges of interest: delta (1.5-4 Hz), alpha (8-12.5 Hz), and beta (11.5-30 

Hz). This yielded in power values per EEG channel per frequency band. 

Two ROIs were defined around somatosensory and motor areas, including 

occipital and parietal electrodes. The left ROI included the electrodes (labeling 

according to the 10-20 system): F1, F3, F5, FC1, FC3, FC5, C1, C3, C5, CP1, 

CP3, CP5, P1, P3, P5; the right ROI: F2, F4, F6, FC2, FC4, FC6, C2, C4, C6, 

CP2, CP4, CP6, P2, P4, P6. The frequency band power per ROI were defined as 

the average of the frequency band power of all electrodes within a ROI. The 

averaged power 𝑃𝑃 over all electrodes within a ROI and over the 𝑓𝑓 frequency bins 

of the specific frequency band will from hereon be referred as delta power, alpha 

power, and beta power. The resting state power will be from hereon referred as 

baseline power and the power after electrical stimulation of the finger will be 

referred as modulated power. 
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Asymmetry 
To estimate the difference between modulated power and baseline we determined 

an asymmetry ratio of two homologous ROIs. The asymmetry 𝐴𝐴 was calculated 

separately for all the frequency bands power as follows: 

𝐴𝐴 =
𝑃𝑃≥¥(𝑓𝑓, 𝑅𝑅𝑅𝑅𝑅𝑅≥¥)
𝑃𝑃µ¥(𝑓𝑓, 𝑅𝑅𝑅𝑅𝑅𝑅µ¥)

 (1) 

where the subscripts of 𝐴𝐴𝐴𝐴 and 𝑈𝑈𝐴𝐴 refer to the affected and unaffected 

hemisphere, respectively. 𝐴𝐴 was computed for each site of stimulation condition 

(AH and UH) and for the no-stimulation condition (resting state). For unimpaired 

participants, UH in (1) corresponded to the dominant side (D) and AH to the non-

dominant side (ND). 𝐴𝐴 larger than 1 implies the power in the respective frequency 

band to be higher in UH (or D), whereas for 𝐴𝐴 smaller than 1 the power is higher in 

AH (or ND). We would like to note that discontinuities in the SEP signal due to 

concatenating eight 250 ms epochs into two-second segments may have resulted 

in noisy power spectral densities. However, this artifact is expected to be 

significantly reduced when computing the asymmetry ratio, as the asymmetry ratio 

was calculated using segments from the same time window. 

Statistics 
Spectral power. The frequency band power of D and ND obtained from healthy 

participants were compared with stroke subjects. UH was compared with the D and 

AH to the ND using a Mann-Whitney U test. 

Asymmetry per frequency band. Asymmetry index 𝐴𝐴 of the modulated power was 

compared with the resting state 𝐴𝐴 using Pearson correlation, computed for both the 

affected (or non-dominant) side stimulation and the unaffected (or dominant) side 

stimulation. 

The 𝐴𝐴-values of the stroke patients were finally correlated with the corresponding 

FMA and SI scores (Pearson correlation). 
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Resting state preprocessing 
Resting state data were band-pass filtered between 1.5 and 250 Hz, similar to the 

SEP preprocessing. The same channels as during electrical stimulation of the 

fingers were excluded. Resting state data were also re-referenced to the common 

average of the remaining channels. Data were segmented in two seconds intervals 

and were visually inspected for artifacts. The resting state segments with too high 

variance were excluded. 

Spectral analysis 
Since the time interval between stimuli was too short to determine the 

spectrograms of the stimulus-locked responses, non-time locked SEPs were 

determined by concatenating eight time-locked segments resulting in two-second 

segments (corresponding to a frequency resolution of 0.5 Hz). The power spectral 

densities (PSD) of both resting state and non-time locked SEP recordings were 

determined by averaging the spectral power of all two-second segments (i.e. 

Welch’s periodogram method). Next, we computed the mean power over the 

frequency ranges of interest: delta (1.5-4 Hz), alpha (8-12.5 Hz), and beta (11.5-30 

Hz). This yielded in power values per EEG channel per frequency band. 

Two ROIs were defined around somatosensory and motor areas, including 

occipital and parietal electrodes. The left ROI included the electrodes (labeling 

according to the 10-20 system): F1, F3, F5, FC1, FC3, FC5, C1, C3, C5, CP1, 

CP3, CP5, P1, P3, P5; the right ROI: F2, F4, F6, FC2, FC4, FC6, C2, C4, C6, 

CP2, CP4, CP6, P2, P4, P6. The frequency band power per ROI were defined as 

the average of the frequency band power of all electrodes within a ROI. The 

averaged power 𝑃𝑃 over all electrodes within a ROI and over the 𝑓𝑓 frequency bins 

of the specific frequency band will from hereon be referred as delta power, alpha 

power, and beta power. The resting state power will be from hereon referred as 

baseline power and the power after electrical stimulation of the finger will be 

referred as modulated power. 
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Asymmetry 
To estimate the difference between modulated power and baseline we determined 

an asymmetry ratio of two homologous ROIs. The asymmetry 𝐴𝐴 was calculated 

separately for all the frequency bands power as follows: 

𝐴𝐴 =
𝑃𝑃≥¥(𝑓𝑓, 𝑅𝑅𝑅𝑅𝑅𝑅≥¥)
𝑃𝑃µ¥(𝑓𝑓, 𝑅𝑅𝑅𝑅𝑅𝑅µ¥)

 (1) 

where the subscripts of 𝐴𝐴𝐴𝐴 and 𝑈𝑈𝐴𝐴 refer to the affected and unaffected 

hemisphere, respectively. 𝐴𝐴 was computed for each site of stimulation condition 

(AH and UH) and for the no-stimulation condition (resting state). For unimpaired 

participants, UH in (1) corresponded to the dominant side (D) and AH to the non-

dominant side (ND). 𝐴𝐴 larger than 1 implies the power in the respective frequency 

band to be higher in UH (or D), whereas for 𝐴𝐴 smaller than 1 the power is higher in 

AH (or ND). We would like to note that discontinuities in the SEP signal due to 

concatenating eight 250 ms epochs into two-second segments may have resulted 

in noisy power spectral densities. However, this artifact is expected to be 

significantly reduced when computing the asymmetry ratio, as the asymmetry ratio 

was calculated using segments from the same time window. 

Statistics 
Spectral power. The frequency band power of D and ND obtained from healthy 

participants were compared with stroke subjects. UH was compared with the D and 
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Asymmetry per frequency band. Asymmetry index 𝐴𝐴 of the modulated power was 

compared with the resting state 𝐴𝐴 using Pearson correlation, computed for both the 

affected (or non-dominant) side stimulation and the unaffected (or dominant) side 

stimulation. 

The 𝐴𝐴-values of the stroke patients were finally correlated with the corresponding 

FMA and SI scores (Pearson correlation). 
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5.3 Results 

5.3.1 SEP responses  
Fig. 5.1 shows the superposition of all channels after the calculation of SEPs for 

three patients. 

 

 A 

  
B 

  
C 

  
Fig. 5.1 Butterfly plot of EEG signals (left column affected side, right column unaffected 

side) of all channels in the [-50, 200] ms stimulus interval indicating SEP 
responses in three typical patients. A) SEP peaks could only be identified at UH, 
B) SEP peaks were identified in both hemispheres, C) no peaks could be 
identified. The peaks are indicated with red arrows. 
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Example A corresponds to identifiable SEP peaks only at the unaffected 

hemisphere and is representative for seven patients in our dataset. Example B 

corresponds to identifiable SEP peaks at both hemispheres and is representative 

for two patients. All healthy participants in this study were represented by example 

B. Example C corresponds to non-identifiable peaks at both the affected and 

unaffected hemisphere and corresponds to twelve patients. Fig. 5.2 summarizes 

FMA scores and SI levels of categories A, B, C. Except for one patient, identifiable 

SEP responses in at least one hemisphere (group A&B) were associated with FMA 

scores higher than 50. We could not observe any pattern in the FMA of patients 

with no identifiable SEP peaks (group C). 

 

 

Fig. 5.2 FMA and SI grouping of all patients: peaks only at UH (group A), peaks in 
both hemispheres (group B), no peaks could be identified (group C). 

 

5.3.2 Spectral power 
Fig. 5.3 depicts the delta power values of all patients and all healthy participants 

after afferent stimulation at AH and UH and during rest. 

Delta power was significantly larger in patients compared to unimpaired 

participants for all three conditions: resting state, stimulation at UH versus 

stimulation at D, and stimulation at AH versus stimulation at ND (RS: p=.003, UH: 
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p=.04, AH: p=.01). Differences in beta and alpha power between patients and 

unimpaired participants were not significant (beta: S: p=.3 UH: p=.4, AH: p=.3; 

alpha: S: p=.1, UH: p=.4, AH: p=.4). 

 

 
Fig. 5.  Delta power in all patients ( =21) and healthy unimpaired participants ( =9). 

The p values were computed for the comparison of the groups of healthy 
unimpaired participants and patients for the three conditions: resting state 
(patients: S; unimpaired participants: SC), electrical stimulation of the 
unaffected site (SEP UH) versus electrical stimulation of the dominant site in 
unimpaired participants (SEPC D) and electrical stimulation of the affected site 
(SEP AH) versus electrical stimulation of the dominant site in unimpaired 
participants (SEPC ND)  

 

5. .   
ig. 5.4 shows the asymmetry ratio 𝐴𝐴 for the delta band after SEP stimulation of all 

patients and unimpaired participants against the corresponding resting state 

asymmetry ratio. In unimpaired participants, SEP and resting state delta 

asymmetry largely agreed both when stimulating dominant or non-dominant 
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hemisphere (corr. of delta asymmetry D: r=0.93, p<.05, ND: r=0.95, p<.05). The 

asymmetry ratio was in the immediate vicinity of 𝐴𝐴 = 1 (mean±std:1±0.06), i.e. the 

delta power was symmetrically distributed. In the patients, we also found 𝐴𝐴 ≈ 1 but 

encountered a larger standard deviation (0.4, in the case of stimulation of the 

affected side). We further observed that stimulation-related delta asymmetry in 

patients was very similar to the resting state delta asymmetry both when affected 

(r=0.9, p<.05) or unaffected hemisphere were stimulated (r=0.9, p<.05). Similarities 

between SEP and resting state were also observed in alpha and beta frequency 

bands (alpha: AH: r=0.84, p<.05, UH: r=0.62, p<.05; beta: AH: r=0.77, p<.05, UH: 

r=0.62, p<.05). 

 

 
Fig. 5.4 Asymmetry ratio of delta power after SEP stimulation (vertical axis) versus 

asymmetry ratio delta power during resting state (horizontal axes); stimulation 
of the dominant side in unimpaired participants (A), the non-dominant side of 
unimpaired participants (B), the not affected side of patients (C), the affected 
side of patients (D). 
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5.3.4 Correlation asymmetry with FMA and SI scores 
Fig. 5.5 depicts the relationship of FMA and sensory impairment to the delta band 

asymmetry. Since asymmetries during resting state and afferent stimulation were 

highly correlated, we here only show the asymmetry during resting state. We found 

a significant correlation (r=0.6, p=.006) of the resting state asymmetry of the delta 

band and the FMA scores. SI scores did not correlate significantly with delta band 

asymmetry (r=0.1, p=.5); cf. Fig. 5.5, panel B. Similarly, delta asymmetry after 

stimulation of the AH (or UH) correlated with FMA and not with SI (FMA AH: r=0.5, 

p=.01, FMA UH: r=0.5, p=.01, SI AH: r=0.5, p>.05, SI UH: r=0.08, p>.05). We did 

not find any significant correlation of beta nor alpha asymmetry with FMA or SI 

scores (for both p>.05). 

 
A 

 

B 

 
Fig. 5.5 Asymmetry ratio of delta power during resting state plotted versus FMA (panel A) 

and SI (panel B) The black line represents symmetry (A=1).  
 

5.4 Discussion 

We investigated the use of SEPs after electrical stimulation of the index fingers 

and the assessment of resting state activity for monitoring chronic stroke patients. 

Analyzing stimulus-related responses yielded poor results that let us to conclude 

that using electrical stimulation of the fingers may not be optimal for stroke 

recovery assessment. For 55% of the patients included in this study, identification 

of the ‘expected’ peaks at the SEP response was not possible. The analysis of 

stimulus-induced modulations of ongoing beta and alpha activity did not provide 
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additional information about stroke recovery. However, we found further support 

that delta asymmetry during both resting state (Finnigan and van Putten, 2013) 

and afferent electrical stimulation of the index finger correlated with FMA scores, 

i.e. with motor function in chronic stroke patients. 

Our search for biomarkers of chronic stroke patients explored responses recorded 

with EEG after electrical stimulation of the fingers. We employed a stimulation 

protocol from which we found reproducible responses with a high signal-to-noise-

ratio in healthy volunteers (see Appendix Kalogianni et al., 2018) and expected 

similar finding for stroke patients. However, it was not always possible to identify 

SEP responses in patients, although all chronic stroke subjects in our study 

indicated that they clearly felt the stimulation delivered at their index fingers. 

Previous studies also indicated that it is not always possible to identify SEP or SEF 

peaks in chronic stroke patients (Castillo et al., 2008; Rossini et al., 2001;). 

Tecchio et al., 2007 indicated that patients with unidentifiable responses at the AH 

presented subcortical involvement. Since all our healthy unimpaired participants 

had responses with identifiable peaks, one may assume that a lack of responses in 

the AH of stroke patients might be related to the exact location and volume of the 

lesion of each patient. Missing structural information about the lesions made this 

comparison impossible. Further studies are needed if one wants to investigate this 

relationship in detail. The large amount of absent SEPs at the UH in our study 

could be due to the relatively low stimulation intensity at two times the sensation 

threshold. Although, our stimulation threshold agreed with those suggested in the 

literature (Cruccu et al., 2008). Previous studies suggest that stimulation close to 

pain threshold is more likely to elicit SEP responses with larger amplitude and 

more prominent peaks (e.g., Wang et al., 2004). However, to assure patients’ 

comfort we stimulated at twice the sensation threshold. 

Electrical stimulation of the median nerve is a popular experimental choice in 

research studies when stroke assessment is of interest (Forss et al., 1999; Hari 

and Forss, 1999; Huang et al., 2004; Rossini et al., 2001, 1998a, 1998b, Tecchio 

et al., 2007b, 2001; Tzvetanov et al., 2005; Wikström et al., 1999, 2000). It induces 

several peaks including an early peak around 20 ms and one around 50ms. Due to 

the fact that the median nerve stimulation activates both the sensory and motor 
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areas (through stimulation of Ia, Ib and II afferents), responses with larger 

amplitudes are observed when compared to the ones after electrical stimulation of 

the finger and with more prominent peaks. Although median nerve stimulation led 

to identifiable responses (Kalogianni et al., submitted), one should expect a less 

specific area of activation in the cortex in comparison to the activation after finger 

stimulation. 

Increased delta power in resting state has been observed in perilesional areas of 

acute stroke patients (Cillessen et al., 1994; Jackel and Harner, 1989; Murri et al., 

1998; Zappasodi et al., 2007). Abnormal low-frequency magnetic activity in a 

longitudinal follow-up has been found to correlate with larger lesions (Laaksonen et 

al., 2013). As summarized by Finnigan and Putten (2013) increased delta power at 

acute or subacute stage correlates with poor functional outcome and has a 

substantial prognostic value. Our results confirm that also, in chronic stroke, 

enhanced delta power at the affected hemisphere in comparison with lower delta 

power at the unaffected hemisphere correlates with poor motor scores at six 

months post stroke. 

Resting state spectral power asymmetry was highly correlated with spectral power 

asymmetry during electric stimulation, at all frequency bands and both hemisphere, 

but stimulus-induced power was not always higher than resting state power when 

comparing power at ROI during rest and power after stimulus at the same ROI. 

This indicates that power modulations are not purely additive to the ongoing neural 

activity. However, a longer inter-stimulus interval (than used in this study, 250 ms) 

is necessary to investigate the induced or delayed oscillations after the transient 

stimulation and whether these oscillations correlate with stroke severity. 

5.5 Conclusion 

SEPs based on electrical stimulation of the fingers at a comfortable stimulation 

threshold cannot be used as a tool for characterizing chronic stroke because 

response peaks are difficult to identify. We can confirm previous findings that 

asymmetry of delta power correlates with Fugl-Meyer scores, demonstrating that 

EEG does provide a potential biomarker for stroke severity. The delta asymmetry 
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can already be estimated from recordings during resting state. Apparently, the 

activity evoked by finger stimulation is so weak that with regard to delta asymmetry 

the earlier reported correlation between sensory scores and delta asymmetry at 

rest remains valid. Hence, resting state alone may suffice as experimental 

paradigm to assess cortical correlates of motor function in chronic stroke. 

5.6 Appendix 

5.6.1 Detailed patients’ characteristics 
 

ID FMA(0-66) 
sensory 

impairment 
months post 

stroke gender age 
affected 

side handedness 
1 13 none 83 M 64 L R 
2 39 none 50 M 62 R R 
3 62 severe 7 M 77 L R 
4 9 severe 212 F 66 R R 
5 63 mild 36 F 76 L R 
6 8 severe 22 M 54 L R 
7 54 mild 27 M 67 R R 
8 58 none 76 M 55 L L 
9 9 mild 72 M 59 L R 

10 66 none 68 F 68 R R 
11 59 none 41 F 49 L R 
12 66 none 11 M 57 L R 
13 10 mild 82 M 48 L R 
14 64 mild 23 M 65 L R 
15 59 mild 54 F 50 R R 
16 48 none 35 M 50 L R 
17 56 mild 11 M 56 R R 
18 66 none 89 M 48 L R 
19 60 mild 11 F 61 R R 
20 26 severe 15 M 72 L R 
21 20 severe 144 M 68 L L 
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 Chapter 6 

 Discussion & Conclusions 

ΟΥΔΕΝ ΕΙΔΑ ΟΥΤΕ ΔΙΔΑΣΚΩ ΤΙ ΑΛΛΑ ΔΙΑΠΟΡΩ ΜΟΝΟΝ 
Δεν γνωρίζω ούτε διδάσκω κάτι αλλά µόνο έχω απορίες (προβληµατισµούς) 

Σωκράτης 
------ 

Neither do I know nor I teach anything, I only have questions 
Socrates 
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The goal of this thesis was to develop a methodology for tracking longitudinal 

changes after ischemic stroke within the somatosensory cortex using 

somatosensory evoked potentials (SEPs), with the ultimate aim to test for the 

validity of SEP as a biomarker in the clinical assessment of stroke. Tracking such 

expectedly subtle changes in a refined area in somatosensory cortices (S1/2) 

requires reproducible measurements with high spatial resolution. I started by 

studying the reproducibility of SEPs in healthy individuals after electric stimulation 

of the fingers in Chapter 2. What was meant as preparation to optimize protocols 

in patients revealed limited reproducibility of S1 responses to finger stimulation 

possibly due to a poor spatial separability of source-reconstructed EEG. This 

motivated my study in Chapter 3 on the spatial resolution of EEG. There, I used 

synthetic data from numerical forward simulations and investigated the separability 

of proximate sources based on surface EEG. After these more principled chapters, 

I went into application by studying the capacity of SEP as a biomarker for 

predicting stroke recovery in Chapters 4 & 5. 

The major conclusions of my thesis are as follows: 

a) The complete separation of the cortical representations of different fingers as 

determined by EEG and electrical finger stimulation appears impossible due to 

the large overlap of the dipole representations for different fingers and the 

relatively low reproducibility of the test-retest design. 

b) The EEG’s ‘spatial resolution’ can be defined as the separability of sources. In 

typical clinical settings, it is about 1 cm, under the proviso of a sufficiently large 

signal-to-noise ratio (around 3). To achieve this resolution, a spatial pre-

whitening is a mandatory pre-processing step when source-reconstructing 

surface EEG. 

c) When assessing S1 responses in stroke, the amplitude and latency 

parameters of SEPs evoked by stimulation of the median nerve shows the 

capacity of improving the prognostic model for stroke recovery. This is 

particularly true for the interhemispheric differences of these parameters. 

d) Lateralization of spectral power in lower frequency bands (here delta power 

asymmetries), recorded either at rest, or during electrical simulation, can be 

confirmed as a monitoring indicator tool for chronic stroke patients. In contrast 
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to the aforementioned responses after stimulation of the median nerve, 

stimulus-locked responses after electrical stimulation of the index finger are 

not associated with the severity of sensory and motor impairments after stroke. 

 

Before answering the research questions listed in the introduction (Chapter 1), I 

will discuss the relationship between the results obtained in the separate chapters 

of this thesis. 

6.1 General topics  

6.1.1 Finger vs median nerve SEPs 
Stimulation of the afferent sensory pathway by transient stimuli, i.e. SEPs, is a 

common approach when studying the somatosensory system. There are various 

different stimulation protocols that potentially provide distinct insight in the function 

of, e.g., the somatosensory cortices, S1/2. As of yet, however, there are no 

standardized ways of inducing SEPs and, hence, retrieving these insights. This 

might be due to several challenges when interpreting the cortical responses to 

stimulation. For instance, the latency and the amplitude of the responses are 

largely dependent on stimulus interval, stimulus duration and stimulation site. 

In the present thesis, electrical stimulation of the fingers (Chapters 2 and 5) and 

the median nerve (Chapter 4) were employed to investigate SEPs. Electrical 

stimulation of the finger is an attractive experimental choice as it primarily recruits 

a single type of nerves (Aβ fibers) and likely activates a refined cortical area. 

However, the results of Chapters 2 and 5 discouraged the use of SEP induced by 

finger stimulation as a biomarker for stroke recovery. In healthy controls, 

responses appeared variable within and across recording sessions and finger 

representations largely overlapped. As shown in Chapter 5, in 55% of the included 

patients (N=21) event-related responses could neither be identified when fingers of 

the affected or unaffected side were stimulated. 

To quantify the evoked responses, the interclass correlations (ICCs) of the test-rest 

reproducibility of SEP responses after electrical stimulation of the finger (intensity: 

2´ sensation threshold) and the median nerve (intensity: just above the thumb 
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twitch) were assessed in Chapter 4. In Tables 6.1 and 6.2 the results of six healthy 

controls have been summarized. Median nerve responses of the first test were 

significantly correlated with the re-test responses (except for the latency of P/N20 

at the dominant hemisphere) of the re-test session. The responses after electrical 

stimulation of the index finger were not significantly reproducible, as shown in 

Tables 6.1 and 6.2 (except for the dominant P/N20 amplitude response). The SNR 

determined as in Chapter 2 (Equation 2.1) was also lower after electrical 

stimulation of the finger than after electrical stimulation of the median nerve 

(mean±std SNR dominant side=3.9±1.0, non-dominant side 3.4±0.6 versus 

dominant side=1.7±0.4, non-dominant side 1.7±0.2) – note that the SNR generally 

depends on the number of repetitions. The insufficient reproducibility for most of 

the extracted parameters provides additional evidence (rather than that given at 

Chapters 2 and 5) that event-related responses after electrical stimulation of the 

index finger are a less appropriate method to study the somatosensory cortex and 

the longitudinal changes of stroke recovery. 

The electrical stimulation of the finger was performed with fairly comfortable 

stimulation amplitudes to prevent patient dropouts (Chapter 5). In the unaffected 

side we chose for a stimulation intensity of twice the individual sensation threshold 

as also reported in other studies (e.g. Baumgartner et al., 1993; Buchner et al., 

1994) and used the same intensity at the affected side. Even if the stimulation 

amplitude was determined at the unaffected hemisphere, we always asked if the 

patient clearly felt the stimulation pulses at their affected site. Stimulation intensity 

close to pain threshold (≥ 3´ sensation threshold) will induce responses with higher 

SNR and higher reproducibility (Wang et al., 2004). However, these responses 

were not suitable for our purpose because they can be expected to be associated 

with additional areas activated due to attention to the painful stimuli (Chien et al., 

2014). 
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Table 6.1 P-values of ICCs of SEP peaks after stimulation of the index finger (IF) and the 
median nerve (MN) of the dominant hemisphere in controls; significant values 
are in bold. 

 

 Lat P/N20 Amp P/N20 Lat P50 Amp P50 
IF SEPs 0.81 0.03 0.94 0.88 

MN SEPs 0.11 0.01 0.0004 0.02 
 
Table 6.2 P-values of ICCs of SEP peaks after stimulation of the index finger (IF) and the 

median nerve (MN) of the non-dominant hemisphere in controls; significant 
values are in bold. 

 

 Lat P/N20 Amp P/N20 Lat P50 Amp P50 
IF SEPs 0.36 0.13 0.66 0.35 

MN SEPs 0.79 0.01 0.003 0.02 
 

6.1.2 Variable SEP amplitudes in healthy controls: what does it mean? 
As discussed above, SEP responses after stimulation of the median nerve are 

highly reproducible within subjects. However, SEP amplitudes and latencies did 

vary considerably between subjects (Chapter 4). Are SEP responses mainly 

determined by confounding factors like the length of the arm, skull conductivity and 

thickness, age and gender? Or, do they depend more on electrophysiological 

characteristics, like the number of activated neurons and conductivity speeds? 

To answer part of this question, I correlated the median nerve SEP responses of 

the six healthy controls of Section 6.1.1 with age and gender but could not find any 

significant correlation with response amplitudes and latencies both in dominant and 

non-dominant side. Unfortunately, the length of the arm and individual skull 

conductivity had not been recorded in the healthy controls, which did not allow for 

determined correlations between these parameters and SEP responses. The data 

presented in Chapter 4 showed that SEP responses after median nerve stimulation 

were variable across healthy controls. Since they did not depend on age and 

gender, it appears reasonable to hypothesize that subject specificity may stem 

from individual skull conductivity, the length of the arm, and genetic anatomical 

characteristics. Note that this has already been indicated by a study on 

monozygotic and dizygotic pairs by Van’t Ent et al. (2010). Looking at latency 

differences and amplitude ratios, as proposed in Chapter 4, may eliminate subject 
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specific differences (length of the arm, scalp conductivity) and may help to achieve 

sensitivity of these parameters to stroke recovery-related changes. 

6.1.  i i  i   . 
In clinical neurophysiology, it is a common practice to test for differences between 

the two hemispheres. Interhemispheric differences of resting state spectral 

characteristics have an important value in monitoring recovery of stroke patients 

(van Putten, 200  Sheora panday et al., 2009). Interhemispheric differences of 

SEP source locations in the early weeks post-stroke are associated with cerebral 

plasticity (Altamura et al., 200  ossini et al., 2001  Tecchio et al., 2006). ere, I 

used sc- SIC after data pre-whitening (Chapter 3) to test for interhemispheric 

asymmetries post stroke. In what follows, I present preliminary results at source 

level of participants that were recorded longitudinally (cf. Chapter 4) and who had a 

structural I available at the time of completing this thesis (4 healthy controls and 

9 patients). These Is served to construct sub ect-specific, realistic head models. 

As explained in Chapter 3, prior to sc- SIC, a principal component analysis 

(PCA) was applied to disentangle the signal and the noise subspaces. In stroke 

patients, PCA always resulted in a single component as the signal subspace, 

which corresponded to the P50 peak (validated by correlating the PCAs 

topography to the P50 peak topography). This implies that there is a single, 

dominant source at the affected and one at the unaffected hemisphere. 

Interhemispheric differences were estimated by pro ecting the source location of 

the unaffected (or non-dominant side for healthy controls) hemisphere to the 

affected hemisphere (or the dominant side for healthy controls) and, subsequently, 

computing the Euclidean distance between the two sources. et me denote this 

distance as interhemispheric source asymmetry’ (ISA). ISAs of the patients were 

correlated with the Fugl- eyer score and the sensory impairment as accessed by 

the Erasmus C modified Nottingham sensory assessment (E Nsa). 

ISAs in healthy controls were around 3 cm (mean std  26 6 mm) in agreement 

with an E  study by Tecchio et al. (200 ). Patients showed larger levels of ISA 

than healthy controls (mean std over patients 1-4 weeks post stroke  26 1  mm, 5 

weeks post stroke 30 15 mm, 12 weeks post stroke 29 20 mm). In this arguably 
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small population (N=9), the ISAs did not correlate with motor or sensory 

impairment at the same measurement time (p>.05). 

 

 
Fig. 6.1 Difference of interhemispheric source asymmetries at T0 (1-4 weeks after 

stroke) and T1 (five weeks post stroke), plotted against sensory impairment 
(S.I) at T3 (six months post stroke). Nine patients (# 1,2,3,5,6,8,9,13,14) 
were analyzed, more details of patients’ characteristics can be found in 
Chapter 4.  

 

Further, I investigated the difference between ISA in T0 (1-4 weeks post stroke) 

and ISA in T1 (5 weeks post stroke) and correlated it with the sensory impairment 

six months post stroke. A higher interhemispheric difference at T1 post stroke than 

at T0 (T1 ISA-T0 ISA>10 mm) correlated with mild sensory impairment six months 

post stroke (Fig. 6.1). Although this finding requires further validation in a larger 

sample, it does indicate that large interhemispheric differences of SEP source 

locations at early weeks post stroke (T0) in comparison to lower or almost the 

same interhemispheric differences at five weeks post stroke (T1) may predict good 

sensory function at six months post stroke. 
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6.2 Research questions 

6.2.1 Is finger stimulation a valid approach for investigating S1? 
In Chapter 2, I explored the use of SEPs induced by finger stimulation as a 

possible EEG biomarker for stroke recovery. Disentangling fingers’ cortical 

representation would mean that changes occurring after stroke can be studied in 

great detail with the use of EEG. Moreover, a proper EEG biomarker should be 

highly reproducible, at least in healthy controls. However, the low reproducibility of 

SEPs after electrical stimulation of the fingers and the limitations in discriminating 

between representations of the fingers led us conclude that SEPs induced by 

electrical stimulation of the fingers should be used with great care when monitoring 

stroke recovery. 

6.2.2 How can we define EEG’s spatial resolution and what is the 
resolution? 

The overlapping representation of the fingers, as found in Chapter 2, indicated that 

the EEG’s spatial resolution using SEP may be worse than 3-5 mm, which is the 

distance of representation of the fingers in Brodmann area 3b as revealed by an 

fMRI study (Martuzzi et al., 2014). This called for a study to define the spatial 

resolution of EEG. A high spatial resolution of EEG is important when studying 

small anatomical changes. For example, early after stroke neural populations in 

the somatosensory area re-organize in order to remap the motor projections (Ward 

and Cohen, 2004). 

Defining the spatial resolution of a brain imaging method is not trivial. EEG’s 

spatial resolution depends on several parameters, including the number and 

location of underlying sources., In Chapter 3, we defined the spatial resolution of 

EEG as the distance between two cortical sources where the confidence limits of 

the source reconstruction that do not overlap. We used synthetic data generated 

through numerical forward simulation which guaranteed all knowledge of source 

activity (ground truth). When mimicking conventional clinical settings, the spatial 

resolution of source-localized EEG was about 1 cm presuming a sufficiently large 

signal-to-noise ratio (SNR ≥ 3). Achieving this resolution required to account for 

spatial correlations of the noise and to minimize them via spatial pre-whitening). 
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With the use of EEG, one can study stroke-related changes within that area with a 

resolution of about 1 cm given that two sources are active during the same time 

window of exploration. Simultaneous activations within areas that are closer than 

this threshold are not separable with EEG. 

Although the resolution relies on choices of our simulation study (e.g., 64 EEG 

electrodes, small time delay between sources), it does provide a quantifiable and 

verifiable measure of the EEG’s spatial resolution. It can be expected that a more 

dense electrode array and a finer grid will improve EEG’s spatial resolution only 

marginally (Akalin Acar and Makeig, 2013; Lantz et al., 2003). 

If a single source is present (like shown in Section 6.1.3), then our notion of 

‘resolution’ is not appropriate as it is based on the separability of sources. In that 

case one should test for the accuracy of the inverse method employed. 

Longitudinal changes related to stroke as studied in Section 6.1.3 may be 

assessed with the accuracy provided by the inverse method of choice. 

6.2.3 Can SEP parameters, early or a few weeks after stroke, be used 
to improve the prediction of the rehabilitation curve of stroke 
patients? 
Can SEPs induced by finger stimulation provide useful 
insights about chronic stroke patients? 

Biomarkers for longitudinal stroke monitoring should be reproducible between 

recordings (test-retest design). Parameters extracted from SEP recordings after 

median nerve stimulation were found reproducible as shown in healthy participants 

in a test-retest setup in Section 6.1.1. SEP induced by electrical stimulation at the 

median nerve (Chapter 4) rather than electrical stimulation on the finger (Chapter 

5) can serve as a prognostic model for stroke recovery. After normalizing the 

recorded latency and amplitude parameters to reduce the influence of length of the 

arm and thickness of the skull, I managed to extract parameters relevant for stroke 

recovery. In Chapter 4, it was demonstrated that SEP features five weeks post 

stroke can provide prognostic information about stroke severity at six months post-

stroke. A potentially important contribution of this study is a possible biomarker to 

predict stroke recovery can be identified already five weeks after stroke. 
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6.3 Future direction of the research: recommendations 

The size and area of brain lesions after stroke vary and so does the electrical 

conductivity in the brain due to changes of oxygenation in the lesioned area. When 

altered tissue conductivity is present, source modeling must be adjusted. Improper 

values of conductivity induce a large error in source localization accuracy (Akalin 

Acar and Makeig, 2013). Although modeling of the lesion is feasible (Pustina et al., 

2016), the altered conductivity is typically not incorporated in present volume 

conduction models for stroke patients. Future research is needed to validate to 

what extent subject-specific tissue conductivity values can improve source 

modeling in stroke patients (Dabek et al., 2016). 

As stressed at several instances in my thesis, I advocate spatial pre-whitening as a 

mandatory pre-processing step in inverse modelling. When also taking into 

account the temporal correlations of the noise, one can expect further 

improvements of the accuracy of pretty much every inverse method (Bijma et al., 

2003; Engemann and Gramfort, 2015; de Munck et al., 2002). However, its effect 

on spatial resolution of EEG should be further tested and quantified starting with 

simulation studies since they provide the ground truth of the generating sources. 

An extension of the simulation study, presented in Chapter 3, may serve as a 

starting point to quantify the effect of temporal pre-whitening. 

6.4 The 4D-EEG project 

The present thesis is part of the ERC advanced project 4D-EEG (n. 291339). 4D-

EEG aims to understand how stroke patients regain control of their arm. It is a 

collaborative project of four universities: Delft University of Technology, VU 

University Medical Center, Amsterdam, Vrije Universiteit Amsterdam, and 

Northwestern University, Chicago. For the purposes of the 4D-EEG project a large 

dataset of acute and chronic stroke patients was and is still being recorded. In 

brief, patients undergo a complete assessment protocol including EEG recordings 

with sensory and motor tasks, MRI scans, fMRI recordings and clinical 

assessments. 
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Here I would like to note that most of the experimental choices made in Chapters 4 

and 5 reflect a trade-off between protocol variety and measurement time. The 

duration of the SEP recordings had to be limited to a maximum of 15 minutes 

(1000 repetitions with an inter-stimulus interval of 250 to 330 ms) for both affected 

and unaffected hemisphere, to leave sufficient time for the rest of the EEG protocol 

that was limited to 90 minutes (along with preparation of the measurement that 

was 25 minutes). More research is necessary to determine if more repetitions or 

larger inter-stimulus intervals are necessary to obtain a better signal to noise ratio. 

As mentioned in Chapter 4, a more detailed test of the methodology developed in 

this thesis, will be conducted at a later stage when the 4D-EEG dataset is 

complete. 
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 Summary 

Somatosensory cortex plays an important role in motor planning and execution. 

After ischemic stroke, both afferent projections to sensory cortices (S1/2) and 

sensory projections to motor cortices are often affected. Changes in S1 are 

particularly interesting for our understanding of stroke recovery and rehabilitation 

strategies. The assessment of sensory impairment after stroke can certainly 

benefit from affordable and ambulant imaging modalities, like 

electroencephalography (EEG). Somatosensory evoked potentials (SEPs) 

recorded with EEG may be used to follow stroke patients longitudinally. In order to 

detect changes occurring in S1, precise measurements and with high spatial 

resolution are obligatory. In the present thesis, I first evaluated the capacity of 

SEPs for tracking longitudinal stroke recovery. Subsequently, I explored the 

potential benefits and pitfalls of EEG-based monitoring of stroke patients. 

SEPs evoked by electrical stimulation of the upper limb and especially after 

median nerve stimulation is a method widely used in the literature when searching 

for predictors for post stroke recovery. It was unclear, however, if the EEG 

recordings after finger stimulation are reproducible within the same subject. I 

assessed different stimulation amplitudes and durations. Using a stimulation with 

maximum response, I tested the consistency and reproducibility of responses 

through bootstrapping as well as test-retest recordings in five healthy controls 

(Chapter 2). I further evaluated the possibility to discriminate activity of different 

fingers both at electrode and at source level. The lack of consistency and 

reproducibility suggested responses to finger stimulation to be unreliable, even for 

reasonably high signal-to-noise ratios (SNR) and large numbers of trials. After 

source reconstruction, the anatomically expected somatotopic arrangement of the 

fingers representation was only found in one of the subjects. Although I could 

identify distinct locations of activation of the different fingers, the optimized protocol 

did not allow for non-overlapping finger representations by current dipoles. These 

findings urged for reconsidering the notion of EEG’s ‘spatial resolution’ and the 
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resulting limitations in disentangling sources in proximity (as those found within the 

S1 area of the somatosensory cortex). 

Accuracy of source reconstruction depends on the spatial configuration of the 

neural sources underlying encephalographic signals, the temporal distance of the 

source activity, the level and structure of noise in the recordings, and – of course – 

on the employed inverse method. This plenitude of factors renders a definition of 

‘spatial resolution’ of EEG a challenge. In Chapter 3, I addressed this by 

examining factors that may affect the separation of sources. In principle, a proper 

definition of spatial resolution requires a ground truth. Hence, I employed data from 

numerical simulations, in which two dipoles changed in time with waveforms 

resembling SEPs with peaks at moments: 20, 50 and 100 ms. Inter-dipole 

distances were varied and Gaussian white or realistic EEG noise was added to the 

simulated scalp recordings with distinct signal-to-noise ratios (SNRs). Prior to 

inverse modelling, pre-whitening was applied to both the simulated data and the 

leadfield. I explored three algorithms for source reconstruction: two-dipole fit, the 

sc-MUSIC, and the sc-eLORETA. Accuracy of source localization was assessed 

via the distance between the true, simulated point sources and the estimated ones. 

To quantify the resulting “spatial resolution” of EEG, we introduced the notion of 

separability, i.e. the separation of two dipolar sources with a certain inter-dipole 

distance. The results indicated separability of two sources in the presence of 

realistic noise with SNR up to 3 if they are 11 mm or further apart. In the presence 

of realistic noise, spatial pre-whitening appears a mandatory pre-processing step 

irrespective of the inverse method employed. Taken together the findings indicate 

that stroke-related changes within the S1 cortex can be identified. 

To explore the use of SEP biomarkers for prediction of stroke recovery, 16 first 

ever stroke patients and 6 healthy controls were studied (Chapter 4). SEPs 

induced by electrical stimulation of the median nerve were recorded at three time 

points post stroke (T0, T1, T2) using high-density EEG. To facilitate participation, 

assessment was realized in a van at the patient’s location. Using the proportional 

recovery model (based on Fugl-Meyer assessments), patients were considered 

either fitters or non-fitters and the two groups were correlated with normalized SEP 

parameters using machine learning (linear support vector machine, SVM). 
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Features based on amplitude and latency of the SEP recordings five weeks post 

stroke (T1) were associated with the identification of non-fitters. The resulting SVM 

had an accuracy of 86% tested through a leave-one-out procedure. When the SVM 

was fed with the SEP features of the healthy controls, they were all classified in the 

same category as the fitters. The data suggested that normalized SEP parameters 

recorded five weeks post stroke have predictive capacity for stroke recovery. 

Electrical afferent stimulation of the fingers during EEG recording eliciting SEPs 

can be used for assessment of stroke patients. In the study summarized in 

Chapter 5, I applied this protocol to a group of chronic stroke patients and 

determined stimulus-related responses and their asymmetries (based on spectral 

power). I also extracted asymmetry values during resting state. All outcome 

variables were compared to that of age-matched healthy controls and correlated 

with clinical motor and sensory scales. While stimulus-locked responses appeared 

not optimal for characterizing chronic stroke, the delta power asymmetries turned 

out to correlate with the Fugl-Meyer scale. 

EEG is an adequate tool to monitor stroke recovery when electrical stimulation of 

the median nerve is applied and a combination of SEP-derived parameters are 

used to define a prognostic model. On the other hand, stimulus-locked responses 

after electrical stimulation of the different fingers show low reproducibility, large 

overlap of the dipole representations and appeared not optimal for characterizing 

chronic stroke. In typical clinical settings, EEG can serve as an imaging modality to 

study changes in the somatosensory cortex (due to ischemic stroke) in distances 

of about 1 cm, provided that the signal-to-noise ratio is sufficiently high and proper 

pre-processing steps are being applied. 
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 Samenvatting 

De somatosensorische cortex speelt een belangrijke rol bij het plannen en 

uitvoeren van bewegingen. Na een beroerte zijn vaak zowel de afferente projecties 

op sensorische cortex (S1/2) als de sensorische projecties op de motorische 

cortex aangedaan. Met name veranderingen in S1 zijn interessant om het herstel 

na een beroerte, en de effecten van revalidatie, beter te begrijpen. Monitoring van 

sensorische veranderingen kan profiteren van betaalbare en ambulante 

beeldvormingsmodaliteiten, zoals elektro-encefalografie (EEG). Somatosensory 

evoked potentials (SEPs) gemeten met EEG maken het mogelijk om patiënten na 

een beroerte longitudinaal te volgen. Om veranderingen in S1 te detecteren, zijn 

nauwkeurige metingen met een hoge spatiële resolutie nodig. In dit proefschrift 

heb ik eerst de geschiktheid van SEPs voor het longitudinaal volgen van herstel na 

een beroerte onderzocht. Vervolgens onderzocht ik de potentiële voordelen en 

valkuilen van EEG-gebaseerde monitoring van patiënten na een beroerte. 

SEPs geïnduceerd door elektrische stimulatie van de arm, en dan met name de 

nervus medianus, is een veelgebruikte methode in de zoektocht naar een 

prognostisch parameter voor het herstel na een beroerte. Echter, het was nog 

onduidelijk of EEG-opnamen na stimulatie van de vinger te reproduceren zijn bij 

een proefpersoon. Ik heb verschillende stimulatieamplitudes en -duren vergeleken. 

Met de maximale-respons stimulatie testte ik de consistentie en 

reproduceerbaarheid van SEPs in vijf gezonde proefpersonen (Hoofdstuk 2). 

Verder evalueerde ik de mogelijkheid om de activiteit van verschillende vingers in 

EEG te onderscheiden, zowel op elektrode- als op bronniveau. Het gebrek aan 

consistentie en reproduceerbaarheid suggereert dat vingerstimulatie 

onbetrouwbaar is, zelfs bij een redelijk hoge signaal-ruisverhoudingen (SNR) en 

grote aantallen herhalingen. Na bronreconstructie werd de anatomisch verwachte 

somatotopische representatie van de vingers slechts bij een enkele proefpersoon 

gevonden. Hoewel ik verschillende locaties van de vingers kon identificeren, was 

het met het geoptimaliseerde protocol niet mogelijk om de vingers te representeren 
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in niet-overlappende dipolen. Deze bevindingen drongen aan op een 

heroverweging van de ‘spatiële resolutie' van EEG en de resulterende beperkingen 

in het onderscheiden van nabij gelegen bronnen (zoals die gevonden in het S1-

gebied van de somatosensorische cortex). 

De nauwkeurigheid van bronreconstructie hangt af van de spatiële configuratie van 

de neurale bronnen die ten grondslag liggen aan het EEG, de temporele afstand 

van de bronactiviteit, het niveau en de structuur van ruis in het EEG, en - uiteraard 

- van de gebruikte inverse methode. Deze overvloed aan factoren maakt een 

definitie van de ‘spatiële resolutie' van EEG een uitdaging. In Hoofdstuk 3 heb ik 

dit aangepakt door factoren te onderzoeken die van invloed zijn op het kunnen 

onderscheiden van bronnen. In principe vereist een definitie van spatiële resolutie 

kennis van de onderliggende waarheid. Daarom heb ik data gebruikt uit numerieke 

simulaties waarin twee dipolen in de tijd veranderden, met golfvormen die lijken op 

SEPs met pieken op 20 ms, 50 ms, en 100 ms. De afstand tussen de 

gesimuleerde dipolen werd gevarieerd en witte Gaussische ruis of realistische 

EEG-ruis met verschillende signaal-ruisverhoudingen (SNRs) werden toegevoegd 

aan het gesimuleerde EEG. Voorafgaand aan de inverse modellering werd pre-

whitening toegepast op zowel de gesimuleerde data als op het leadfield. Ik 

onderzocht drie algoritmen voor de bronreconstructie: twee-dipoolfit, de sc-MUSIC 

en de sc-eLORETA. De nauwkeurigheid van de bronlocalisatie werd beoordeeld 

op basis van de afstand tussen de originele, gesimuleerde (punt)bronnen en de 

afstand tussen de geschatte bronnen. Om de resulterende "spatiële resolutie" van 

EEG te kwantificeren, introduceerden we het begrip onderscheidbaarheid, i.e. het 

kunnen onderscheiden van twee dipool-bronnen met een bepaalde inter-

dipoolafstand. De resultaten suggereren dat, in de aanwezigheid van realistische 

ruis met een SNR tot 3, een onderscheidbaarheid van twee bronnen als ze 11 mm 

of verder uit elkaar liggen. In aanwezigheid van realistische ruis lijkt spatiële pre-

whitening een noodzakelijke voorbewerkingsstap, ongeacht welke inverse 

methode werd gebruikt. Alles bij elkaar geven de bevindingen aan dat beroerte-

gerelateerde veranderingen binnen de S1-cortex kunnen worden geïdentificeerd. 

Om het gebruik van SEP biomarkers voor de voorspelling van het herstel na een 

beroerte te onderzoeken, werden 16 patiënten die voor het eerst een beroerte 
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hadden gehad en 6 gezonde proefpersonen onderzocht (Hoofdstuk 4). SEPs 

geïnduceerd door elektrische stimulatie van de nervus medianus werden gemeten 

met behulp van hoge-resolutie EEG op drie tijdstippen na de beroerte (T0, T1, T2). 

Om deelname te vergemakkelijken, werden de metingen uitgevoerd in een 

meetbus op locatie bij de patiënt. Met behulp van het proportionele herstelmodel 

(gebaseerd op de Fugl-Meyer-schaal) werden patiënten verdeeld in fitters en niet-

fitters. Deze twee groepen werden gecorreleerd met de genormaliseerde SEP-

parameters met behulp van machine learning (linear support vector machine, 

SVM). Kenmerken op basis van amplitude en latentie van de SEPs vijf weken na 

de beroerte (T1) werden geassocieerd met de identificatie van de niet-fitters. De 

resulterende SVM had een nauwkeurigheid van 86% getest via een leave-one-out 

procedure. Wanneer de SEP kenmerken van de gezonde proefpersonen werden 

ingevoerd in de SVM, classificeerde de SVM deze allemaal in dezelfde categorie 

als de fitters. De resultaten suggereren dat genormaliseerde SEP-parameters die 

vijf weken na een beroerte zijn gemeten voorspellende capaciteit hebben voor het 

herstel na een beroerte. 

SEPs gemeten in EEG na elektrische afferente stimulatie van de vingers kunnen 

worden gebruikt voor de beoordeling van patiënten na een beroerte. In de studie 

die is beschreven in Hoofdstuk 5, heb ik dit protocol toegepast op een groep 

patiënten in de chronische fase na een beroerte en heb ik de stimulus-

gerelateerde reacties (op basis van spectrale dichtheid) en hun asymmetrie 

bepaald. Ik heb ook asymmetrische kenmerken gemeten tijdens rust (‘resting 

state’). Alle uitkomstvariabelen werden gecorreleerd met klinische motorische en 

sensorische schalen en vergeleken met die van gezonde proefpersonen met 

dezelfde leeftijd. Hoewel stimulus-gerelateerde reacties niet optimaal leken om 

beroerte in de chronische fase te karakteriseren, bleek de asymmetrie van het 

vermogen in de delta-band te correleren met de Fugl-Meyer schaal. 

EEG is een geschikt hulpmiddel om herstel na een beroerte te monitoren wanneer 

elektrische stimulatie van de nervus medianus wordt toegepast en een combinatie 

van SEP-afgeleide parameters wordt gebruikt om een prognostisch model te 

definiëren. Aan de andere kant hebben de activiteiten na elektrische stimulatie van 

de verschillende vingers een lage reproduceerbaarheid en een grote overlap van 
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de dipoolrepresentaties, en bleken daarom niet optimaal voor het karakteriseren 

van beroerte in de chronische fase. In typische klinische omgevingen kan EEG 

dienen als een beeldvormende modaliteit om veranderingen in de 

somatosensorische cortex (als gevolg van een beroerte) te bestuderen bij 

afstanden van ongeveer 1 cm, op voorwaarde dat de signaal-ruisverhouding 

voldoende hoog is en de juiste voorbewerkingsstappen worden toegepast. 
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