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exit from society, but to provide a
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English Summary

I
n aworld of increasing threats frommonopolies and oligarchies, people are increas-
ingly looking for ways to protect their privacy. Isolating oneself from the world
may be tempting, but there is a collective bene�t to the processing of sensitive

data. For example, hospitals use patient data to improve treatments, energy companies
use power consumption data to predict grid usage, and governments can address
inequality only if they measure it.

Privacy-enhancing technologies promise to close the apparent gap between privacy
and utility. They provide a cryptographic solution by which statistics can be calculated
without exposing individual inputs. In the world envisioned here, people gain the
bene�ts of sharing data without exposing themselves to potential abuse.
Though solutions to societal problems are rarely if ever purely technical, this dis-

sertation is concerned only with the technical. Speci�cally, with privacy-preserving
summation, a protocol allowing users to learn the sum of their inputs without anyone
learning the individual value of anyone else. While it may sound restrictive to focus
only on summation, this is su�cient to achieve complex operations including principal
component analysis, singular-value decomposition, and decision tree classi�cations.

In this dissertation, I provide novel methods for enforcing input and output validity
in privacy-preserving summation, describe how running multiple summations in
parallel leads to reconstruction attacks, and propose and evaluate countermeasures
based on distributed short-cycle removal.

Validation of inputs and outputs is enforced through extensions, which can be added
to any privacy-preserving summation scheme without sacri�cing con�dentiality. The
�rst extension ensures that the individual pieces of data being summed over each fall
within a speci�ed numeric range. The second extension allows others to ensure that
the sum published by the aggregator actually corresponds to the inputs.
Reconstruction attacks are an inherent risk when multiple summations run in

sequence, regardless of the implementation of the summation protocol. When users
obtain the sum � + �, one cannot learn either � or � due to the summation’s privacy-
preserving guarantees. However, if users subsequently also learn � + � + � , then
anyone can infer � from the di�erence of the sums.
Understanding how and when reconstruction is possible is not trivial, especially

as the numbers of variables and equations grows large. In this dissertation, I show
that representing summations as a graph reveals that reconstruction coincides with
the graph’s cycles. In other words, removing cycles prevents reconstruction attacks.
Therefore, I propose a decentralised protocol for removing short cycles. Finally, I
evaluate the impact that restricting valid summation has on distributed averaging, and
�nd that though the e�ect is largely negative, this can mostly be ameliorated through
a subsequent greedy repair algorithm.
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Nederlandse Samenvatting

I
n een wereld van toenemende bedreigingen door monopoliën en oligarchieën zijn
mensen steeds meer op zoek naar bescherming van hun privacy. Zel�solatie klinkt
verleidelijk, maar de verwerking van persoonlijke gegevens heeft wel degelijk een

collectief voordeel. Ziekenhuizen gebruiken bijvoorbeeld patiëntgegevens om behan-
delingen te verbeteren, energiebedrijven bekijken stroomverbruik om overbelasting te
voorspellen, en overheden kunnen ongelijkheid alleen bestrijden als ze het meten.

Privacyverbeterende technologieën beloven de ogenschijnlijke kloof tussen privacy
en nut te dichten. Ze bieden een cryptogra�sche oplossing om statistieken te berekenen
zonder individuele waarden te onthullen. In de voorgestelde wereld pro�teren mensen
van het delen van gegevens zonder zichzelf bloot te stelen aan mogelijk misbruik.

Hoewel oplossingen voor maatschappelijke problemen zelden tot nooit puur tech-
nisch zijn, gaat dit proefschrift alleen over de techniek. Speci�ek gaat het over privacy-
behoudende sommatie, een protocol om een som te berekenen zonder dat individuele
invoerwaarden te achterhalen zijn. Sommatie is een krachtige berekening, voldoende
om complexe berekeningen als hoofdcomponentenanalyse, singulierewaardenontbin-
ding, en beslissingsboomclassi�caties te implementeren.
In dit proefschrift geef ik nieuwe methoden voor het afdwingen van in- en uit-

voervaliditeit in privacybehoudende sommatie, beschrijf ik hoe het parallel uitvoeren
van meerdere sommaties leidt tot reconstructieaanvallen, en stel ik tegenmaatregelen
gebaseerd op gedistribueerde verwijdering van korte cycli voor en evalueer ik deze.

Validatie van in- en uitvoer werkt door middel van uitbreidingen bovenop arbitraire
bestaande privacybeschermende sommatieschema’s, zonder de vertrouwelijkheid op
te o�eren. De ene uitbreiding verzekert dat de individuele invoerwaarden elk binnen
een gespeci�ceerd numeriek bereik vallen. De andere uitbreiding veri�ëert dat de
door de aggregator gepubliceerde som daadwerkelijk overeenkomt met de invoer.
Reconstructieaanvallen zijn een inherent risico wanneer meerdere sommaties na

elkaar worden uitgevoerd, ongeacht de implementatie van de sommatie. Wanneer
gebruikers � + � leren, kan niemand � of � te weten komen vanwege de garanties
van de privacybehoudende sommatie. Als gebruikers echter vervolgens ook � + � +�
te weten komen, kan iedereen � a�eiden uit het verschil van de sommen.
Begrijpen hoe en wanneer reconstructie mogelijk is, is niet triviaal, vooral als

het aantal variabelen en vergelijkingen groeit. In dit proefschrift laat ik zien dat de
graafrepresentatie van de sommen onthult dat reconstructie samenvalt met de cycli.
Met andere woorden, het verwijderen van cycli voorkomt reconstructie-aanvallen.
Daarom stel ik een gedecentraliseerd protocol voor om korte cycli te verwijderen.
Tot slot meet ik de invloed die het beperken van sommaties heeft op gedistribueerde
middeling, en ontdek ik dat dit grotendeels negatief is, maar grotendeels kan worden
voorkomen met een daaropvolgend gretig reparatiealgoritme.
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Part I

Prologue





Chapter 1

Introduction

S
pending time alone is important. When you are alone, you are free to do what
you want, and need not su�er the judgment of others. At these times, your
thoughts �ow more freely. You have the privilege to explore your opinions

and deepen your knowledge. Occasionally being alone is vital to grow as a person.
On the other hand, collaborating is important to broaden your knowledge. When

you observe others, you may see methods or solutions you had not thought of yourself.
When others observe you, they may point out what they think you do well or what
you do wrong, and may both learn from the experience. Moreover, by observing large
groups of people, you can learn about collective or aggregate behaviours.
Unfortunately, it is not easy to maintain a balance between privacy and sharing.

If you discuss intimate details with someone, they may use that information against
you, or share it with others. Even if your conversation partner is trustworthy, your
conversation may be overheard by a malicious eavesdropper. And even if you are sure
no one can overhear you, you will have to trust your conversation partner never to
write anything down, lest their notes be stolen.

The situation is not dissimilar in the digital realm: Once you share information, you
no longer have any control over what happens to that data, at least not beyond the
promises of those you shared it with. Even if you do not explicitly share anything,
others can learn about you by seeing which websites you visit, and what you do
there. Which news articles pique your interest? What kinds of products do you buy?
Which routes do you use in your navigation app? What symptoms and ailments
do you enter in search engines? Private information inferred from your behaviour
is continuously collected and is used to target you [BN15, DT19, New21]. Even if
companies promise not to sell such data, temptations of increased pro�t regularly lead
to broken promises [FTC19, Fun21, Zia23, Fun24]. Though disengaging from the digital
realm completely would prevent others from learning about you (except insofar as
others share information about you), this is often not an option [Rai18, CD21].

In an ideal world, we could safeguard our data against undesired computations: For
example, if we send a query to a search engine, then our computers should ensure that
our query is used only to search for information, and not to infer private information
about us. In other words, we want technologically-enforced purpose limitation [TL24].
One important technology to achieve such purpose limitation is Multi-Party Compu-
tation (mpc), a family of cryptographic techniques for computing over private data.
After the participants have chosen the functions they want to compute, and agreed
upon an implementation to achieve it, mpc presents participants with the desired
outputs, while ensuring the inputs remain completely con�dential. For example, using
mpc, participants can calculate the sum of their ages, without anyone learning the age
of anyone else. To prove that an mpc design guarantees con�dentiality of the inputs,
the implementation is compared with its ideal functionality: a high-level black-box
description of the desired calculations. On the one hand we have the real-world mpc
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implementation with all its nitty-gritty implementation details regarding synchronisa-
tion, availability, integrity, and so on; and on the other hand we have an ideal-world
trusted third party (who is indeed actually trusted) who simply looks at everyone’s
inputs and gives the desired outputs. If we can prove that participants can infer the
exact same information about others’ inputs in both worlds, then we can conclude
that the real-world mpc implementation achieves optimal levels of con�dentiality.
The seminal mpc paper, from 1979, describes a method to play “mental poker”,

which is like regular poker, except the players can only communicate by telephone,
and neither player is above cheating [SRA79, GM82]. Subsequent works have focused
on improving the security de�nitions and models, providing evermore elaborate
methods and protocols for achieving all kinds of functionalities [Lin20]. The �rst
large-scale real-world deployment of mpc was at a beet auction in 2009 [Bog+09],
where production contracts needed to be allocated to farmers. Farmers could bid
on these contracts, but wanted their bids to remain private so as to not reveal their
economic positions to competitors and customers. The auction was �rst represented
as an ideal functionality, then implemented as an mpc protocol, proven to be secure,
and �nally executed at the auction, with the protocol completing its calculations
in 25 minutes. Since then, mpc has seen trials and deployments in several other
niche cases, including the calculating of statistics in vulnerable populations [Lap+18]
and collaborations between government o�ces [vEgm+21, Wor+20]. Currently, any
computation can be implemented with mpc [Lin20].

The cost of mpc is not negligible, however. As the number of participants increases
and the computations grow in complexity, so do the computation and communication
requirements. This has not stopped the increasing interest in mpc [AOdR22, BD20].
Companies see mpc as a valuable tool for retaining their business models in the face of
increasing data breach risks and tightening privacy regulations, as mpc allows these
companies to process encrypted privacy-sensitive data (seemingly) without violating
privacy. Governments see mpc as a way to process sensitive census data, and to
get di�erent governmental departments to collaborate in ways that were previously
thought impossible. Perhaps, with increased attention comes increased funding, al-
lowing improvements of the underlying primitives, new models of interactivity, and
extremely e�cient mpc compilers [NSTC23].

1.1 Reconstruction Attacks

mpc is not without its �aws and pitfalls [STPO22, Can+22]. One potential pitfall
surrounds the de�nition of the ideal functionality itself. While mpc guarantees that
nothing leaks beyond the intended output, participants may still be able to infer
information from multiple outputs. For example, let’s say that three people—Alice,
Bob, and Charlie—learn through their use of mpc that their cumulative age is 120.
Afterwards, Alice and Bob run another mpc protocol again, this time without Charlie,
and learn that their cumulative age is 80. Despite the privacy-preserving guarantees
of the underlying methods, Alice and Bob can infer from the di�erence that Charlie
must be 40 years old. Clearly, the privacy guarantees of singular collaborations do not
extend to sequences of collaborations.
The type of attack described above is known as a reconstruction attack, and has

been known since at least the early 1970s [Fel72], before the �rst literature on mpc.

4 Q Graph-Based Reconstruction in Summation Sequences
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While census o�ces have been publishing aggregate information about the general
population for a long time, it was around that time that computers had become powerful
enough to allow users to write their own queries. To preserve the privacy of the people
whose information was stored in these databases, records pertaining to only a small
number of individuals had to be forbidden. However, exactly as in the aforementioned
case of Alice, Bob, and Charlie, the outputs of multiple non-forbidden queries may
still allow a querier to infer private information. Various solutions for the problem
have been proposed, including random sampling [Den80], query auditing [CÖ82], and
perturbation [Dwo06]. For summation queries speci�cally, it is su�cient to keep a
history of queries, and forbid subsequent queries if they could be combined to infer
private information [Chi78, WWJ02].
As noted earlier, any algorithm can be translated to a corresponding mpc variant.

Therefore, it is entirely possible to do auditing in mpc, and thereby prevent recon-
struction attacks. However, this does not mean that such a protocol is practical. In
a peer-to-peer system, there is no single party that can keep track of queries. Some-
times, a summation on one side of the network may allow users on the other side
of the network to infer private information. Therefore, in a naive translation of the
query-tracking mechanism to mpc, the entire (hidden) database of past queries must
continuously be communicated to all users before any decision can be made, which
would be excessively costly.

1.2 Composability and Disclosure

The problem of reconstruction attacks is super�cially similar to the problem of com-
posability in mpc. Composability is the guarantee that the implementation details of
an mpc protocol do not cause issues even when the protocol is executed multiple times.
A non-composable protocol will be secure when used in isolation, but when two in-
stances run in parallel, adversaries can gain an undue advantage by using information
from one instance in the other. There are numerous frameworks to model composabil-
ity, including universal composability [Can01], constructive composability [Mau11],
and reactive simulatability [BPW07].
However, composability is unrelated to reconstruction attacks. Even if Alice, Bob,

and Charlie are given a summation protocol that is composable in every relevant way,
the previously mentioned calculations will still allow Bob and Charlie to learn Alice’s
age. To understand this, recall that con�dentiality is shown in mpc by comparing
what participants learn in the real protocol with what they learn in the ideal protocol.
If Alice, Bob, and Charlie learn that � + � +� = 120 and that � +� = 80, they can
infer that � = 40, even if they ask a trusted third party to perform the summations.
Thus, while composability ensures that participants learn nothing beyond the intended
outputs, it cannot judge whether the intended outputs were well-chosen.
As the number of real-world mpc deployments increases, so does the chance of

designers combining sub-protocols in ways that are vulnerable to reconstruction.
Creating well-de�ned formal notions of this type of leakage is thus an important
next step in ensuring the correctness of mpc systems. We note that while di�erential
privacy [Dwo06] is su�cient to prevent information disclosure, its guarantees are
probabilistic, its outputs are necessarily distorted, and its privacy-utility tradeo� is
infamously di�cult to understand and calibrate in real-world settings [CT13, JE19].

Chapter 1 q Introduction 5
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Several recent works investigated information-theoretic bounds on information

disclosure in multi-party computation [BBZ24, AH20a, AH20b]. These works measure
the amount of information that outputs reveal about the inputs, and carry over these
estimates into subsequent computations to accurately estimate the total privacy loss
in a pipeline of computations. However, the above works are all limited to speci�c
computations, adversarial models, or network structures. Many interesting avenues
remain unexplored, such as generalisation to other securitymodels, translating �ndings
to and from di�erential privacy, and the development of practical tools and guidelines
for protocol designers to quantify leakage with.

1.3 Research Objectives

With increasing e�ciency, public interesting in mpc is growing. mpc has an increas-
ingly sound and complete framework to prove that desired ideal functionalities are
implemented correctly. However, there are no comprehensive frameworks that determ-
ine whether ideal functionalities should be desired. To prevent faulty mpc deployments,
it is vital that such frameworks are developed. The goal of this dissertation has been
to contribute to the collective knowledge surrounding information disclosure in mpc.
Speci�cally, the goal has been to determine the graph-theoretic conditions under
which full input leakage occurs after a sequence of summation operations.

The research presented in this dissertation was conducted in a curiosity-driven
manner. There has not been a singular research question to be answered; instead, a
chain of research questions emerged along the way. The initial goal was to, one way
or another, contribute to the developing �eld of federated learning by creating privacy-
preserving summation protocols for various security models. After realising that the
aforementioned reconstruction attacks would undo any and all privacy guarantees
of these summation protocols, the research objective became to determine the exact
circumstances under which reconstruction attacks pose a threat. Finally, we moved to
evaluate the suitability of the developed defence mechanism for real-world protocols
that rely on privacy-preserving summation.

1.4 Contributions

The scienti�c contributions of this dissertation have been structured into two parts,
and are �nalised by a discussion.

Part II: Privacy-Preserving Summation

We look at the summation primitive and provide two extensions for existing protocols.

Chapter 2: Probabilistic range validation [DE21]. We enhance privacy-preserving
summation, a classical mpc protocol wherein a central party learns the sum of the
participants’ values (and nothing else). Note that summation alone is a su�cient
primitive to implement more complex operations such as principal component analysis,
singular-value decomposition, and decision tree classi�cations, simply by writing the
inputs as aggregate-sum queries [Blu+05]. We describe a protocol by which the
aggregator can validate that all users’ numerical inputs are within a desired range.
Unlike existing works, our protocol does not rely on complex zero-knowledge proofs,
instead probabilistically detecting disallowed values with a likelihood proportional to

6 Q Graph-Based Reconstruction in Summation Sequences
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the value’s transgression. The simplicity of our scheme means that validation requires
no cryptographic operations, and does not require any hardness assumptions. We
provide an in-depth analysis of our scheme’s detection rate; though the scheme’s
probabilistic nature requires assuming a distribution to model the users’ values under,
our analysis should be relatively easy to extend to other distributions. Furthermore,
we formally prove the scheme’s correctness, argue that con�dentiality holds, and
calculate the asymptotic communication and computation complexity and compare
this to related works.

Chapter 3: mpvas [Pal+24]. We propose mpvas, a protocol that allows the aggreg-
ator in (centralised) privacy-preserving summation to publicly prove that the sum
it publishes was correctly calculated. mpvas is an add-on: mpvas creates the proof,
but the summation should be done by some other (privacy-preserving) summation
protocol. Our adversarial model is the strongest model yet in literature: We guarantee
con�dentiality and unforgeability even when an actively malicious aggregator colludes
with multiple actively malicious users, and anyone (including the adversaries) can
register as a veri�er. We extend our protocol in several ways: mpvas+ reduces runtime
complexity at the cost of breaking the non-forgery guarantee with low probability,
mpvas-iv ensures robustness against malformed inputs, and mpvas-ud allows users to
temporarily drop out. We calculate the asymptotic communication complexity of our
protocol and compare this to related works. Moreover, based on our implementations
of all variants of mpvas, we conclude that they achieve e�cient runtimes, even without
mpvas+. Finally, we argue for each of the protocols that they achieve con�dentiality
of the inputs and that signatures cannot be forged.

Part III: Reconstruction Attacks

We show that it is feasible for non-malicious adversaries to infer private data purely
from the outputs of (ideal) summations. We model the attack in detail in its algebraic
form, derive the corresponding (hyper)graph-theoretic representation, and ultimately
design a graph-based criterion to classify faulty sequences of summations with. We
apply our criterion to peer-to-peer networks to prevent the attacks from occurring in
the �rst place, and validate its suitability for distributed averaging protocols.

Chapter 4: Reconstruction attacks [DEC25c]. We empirically show that reconstruction
attacks are feasible after running multiple privacy-preserving summation protocols,
and investigate the graph-theoretic conditions that underlie these attacks. We mathem-
atically derive the necessary (but not necessarily su�cient) condition that the graph
contains cycles. More speci�cally, we prove that the graph’s girth (which is the length
of its shortest cycle) determines a lower bound on the number of adversaries required
to perform a reconstruction attack. Therefore, graph stretching (which is the removal
of short cycles) is su�cient to prevent reconstruction attacks. However, we also note
that graph stretching is typically a drastic change to the network topology, and may
signi�cantly a�ect the convergence properties of distributed algorithms running on
top. We investigate this impact and propose methods to reduce it in Chapter 6.

Chapter 5: Cycle detection [Jen+25]. We propose a peer-to-peer protocol for detecting
nearby cycles without revealing the topology to users outside the cycle. Though
we present our protocol in the context of detecting cycles in monetary transaction
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networks, where cycles are indicators of money laundering, our protocol is applicable
to any peer-to-peer network. Our algorithm works by �ooding messages through the
network, and inferring the presence of a cycle when the �ood reaches back to the
initiator. Messages are re-randomised each time they are forwarded to ensure that they
are not linkable. However, messages have a hidden structure so that when they reach
back to the initiator, the initiator recognises the message and can infer the presence
of a cycle. The initiator can then start a simple sub-protocol to determine which
nodes are in that cycle. The aforementioned hidden structure is a novel forwarding-
based unlinkable key agreement protocol, which may be of independent interest. We
calculate our protocol’s asymptotic communication and computation complexities,
compare these to related works, and, based on measurements of an implementation
of our protocol, conclude that our protocol achieves practical runtimes for graphs
without high-degree nodes. Finally, we formally model the knowledge that each node
or collusion of nodes obtains, and then informally argue that nodes cannot unduly
learn about the topology beyond (self-)loops.

Chapter 6: Optimal stretching [DEC25a]. We conduct a thorough empirical study of
the e�ect that graph stretching has on the convergence speed of distributed averaging
protocols. While existing literature has considered short-cycle removal, and has studied
the relation between topology and convergence speed, these results are insu�cient to
describe the relation between girth and convergence speed. We introduce the optimal

graph stretching problem, which is the task of modifying a graph such that convergence
speed is optimal, while keeping girth above a certain minimum. We propose an
algorithm that enforces the problem’s constraints before heuristically optimising for
the minimisation target. We empirically validate the performance of our algorithm
on thousands of random graphs, comparing multiple stretching methods, various
convergence speed heuristics, and several widely used graph topologies. We con�rm
the �nding in Chapter 4 that stretching severely a�ects convergence speed. However,
we additionally observe that this e�ect is mostly caused by the removal of edges, and
the reintroduction of edges compensates for a large part of the lost convergence speed.
We conclude that graph stretching is a feasible reconstruction prevention method, and
the negative consequences for convergence speed can largely be overcome using a
subsequent heuristic optimisation procedure.

Part IV: Discussion

We summarise and discuss the results of this dissertation. We embed these achieve-
ments in the greater picture, and look at open problems and potential future directions.

1.5 About This Dissertation

Format. This dissertation is an anthology of the scienti�c works I have written during
my PhD. These works have been included as-is without signi�cant modi�cations.
Consequently, its chapters are self-contained and may use con�icting notation or
reintroduce concepts. Even so, all chapters contain minor modi�cations, for example
to rectify errors, improve �gures, or eliminate typographical widows and orphans.
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Part II

Privacy-Preserving Summation





Chapter 2

Privacy-Preserving Aggregation with Probabilistic Range
Validation

Abstract. Privacy-preserving data aggregation protocols have been researched widely, but
usually cannot guarantee correctness of the aggregate if users are malicious. These protocols
can be extended with zero-knowledge proofs and commitments to work in the malicious model,
but this incurs a signi�cant computational cost on the end users, making adoption of these
protocols less likely.

We propose a privacy-preserving data aggregation protocol for calculating the sum of user
inputs. Our protocol gives the aggregator con�dence that all inputs are within a desired
range. Instead of zero-knowledge proofs, our protocol relies on a probabilistic hypergraph-
based detection algorithm with which the aggregator can quickly pinpoint malicious users.
Furthermore, our protocol is robust to user dropouts and, apart from the setup phase, it is
non-interactive.

Based on: Florine W. Dekker and Zekeriya Erkin. “Privacy-preserving data aggregation with probabilistic

range validation”. In: ACNS 2021: Proceedings of the 19th International Conference on Applied Cryptography and

Network Security. Volume 12727. Lecture Notes in Computer Science. 2021, pages 79–98. doi: 10.1007/978-

3-030-78375-4_4.

https://doi.org/10.1007/978-3-030-78375-4_4
https://doi.org/10.1007/978-3-030-78375-4_4
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2.1 Introduction

D
ata aggregation gives us many valuable insights into the real world in the
form of machine learning [Bon+17], participatory sensing [Bur+06], software
telemetry [FPE16, Bit+17], and smart metering [LeM+07]. Although the use-

fulness of these methods depends on the amount of available data, privacy concerns
make users reluctant to share their sensitive data with a third party [GJ10, Chr16].
This poses a signi�cant threat to the viability of large-scale data analysis.

To overcome this problem, Privacy-preserving Data Aggregation (pda) protocols
have been proposed which allow an aggregator to calculate statistics on privacy-
sensitive data without being able to determine private values. There are various ways
to achieve this. For example, several proposals use techniques such as homomorphic
encryption [GJ10, ET12] and secret sharing [Kur10, Erk15] to guarantee that user
contributions cannot be decrypted unless they have been aggregated. Other proposals
use di�erential privacy [RN10, ÁC11, Shi+11] to ensure that the connection between the
observed value and the actual value is perturbed. Either way, pda protocols provide
the same expressiveness as non-pda protocols, but without sacri�cing user privacy.
These guarantees usually come at the cost of increased computational complexity,
increased bandwidth usage, or decreased accuracy.
A shortcoming of many existing proposals is that they assume that all users are

honest-but-curious, for example as in [KDK11, ET12, YL13]. As a result, these proposals
cannot be used to defend against dishonest users that want to invalidate the aggregate
or nudge it in their favour. This means that dishonest users could tamper with their
smart meter to reduce their reported electricity consumption [McL+13] or inject false
data to increase their score in a ranking system [LM17]. The aggregator would have
been able to detect these attacks by looking at the users’ private values, but the
privacy-preserving properties of the pda protocol prevent this.
Transitioning from the honest-but-curious model to the malicious model can be

achieved using zero-knowledge proofs and commitments, as suggested in proposals
such as [Shi+11, KDK11, ET12]. In particular, range proofs [Bou00] can be used to
prove in zero knowledge that a committed value is within a given range. However,
range proofs—and zero-knowledge proofs in general—often either require a trusted
setup or a signi�cant amount of resources from the user [Mor+19]. This makes these
approaches unappealing or even infeasible for resource-constrained users.

In this paper, we present an e�cient pda protocol for �nding the sum of all private
user values at a regular interval. The protocol lets an aggregator probabilistically
identify private values that are not within a desired range without the need for zero-
knowledge proofs. First, the aggregator divides all users into multiple overlapping
groups such that every user is in a unique set of groups. Then, in each interval, each
user sends their encrypted values to the aggregator, who determines the sum of private
values per group. Finally, the aggregator pinpoints malicious users by looking at the
intersection of groups that violate the range. By memorising which groups have
out-of-range aggregates, the aggregator can combine detections from di�erent rounds
to further enhance its detection rate.
Our protocol boasts several important properties. Firstly, the scheme can be con-

�gured to customise the balance between privacy, complexity, and detection rate.
For example, one can increase the work the aggregator needs to perform per round
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to increase the protocol’s resistance to user collusions. Secondly, our protocol does
not require a trusted setup and is non-interactive apart from the registration phase:
Users simply send their encrypted values to the aggregator, who then aggregates and
validates asynchronously. Thirdly, our protocol is an e�cient solution for aggregators
relying on resource-constrained users; users are subject to O(log=) complexity per
round in the number of users =. Fourthly, the grouping structure of our protocol gives
the protocol robustness as the aggregator can continue to operate even when users
fail to submit their measurements. Finally, our protocol can be used as a primitive
to build complex algorithms such as principal component analysis, singular-value
decomposition, and decision tree classi�cations by writing the inputs as aggregate-sum
queries, like in [Blu+05].

The remainder of this paper is structured as follows. In Section 2.2 we look at related
work. Then, in Section 2.3 we present our protocol in detail, and in Section 2.4 we
analyse its security, privacy, complexity, and detection rate. Finally, in Section 2.5 we
present our conclusions.

2.2 Related Work

We discuss various protocols for range validation of malicious inputs. First, we consider
pda protocols that have range validation built in. Then, we consider several alternative
approaches not inherent to pda protocols.

Kursawe [Kur10] proposes a scheme in which the aggregator veri�es that all private
values are valid by checking that the sum of inputs approximates the true aggregate.
However, it cannot identify which user sent the invalid value and requires knowledge
of the true aggregate beforehand, which is not always feasible.

Sun et al. [Sun+13] present aped, a pda protocol that detects defective smart meters
using a method similar to ours. In aped, a trusted third party divides all users into
F random sets of disjoint pairs such that each user is inF pairs at once, and creates
a random key :8 for each user 8 . Then, for each pair of users (8, 9), the third party
sends :8, 9 = −(:8 + : 9 ) to the aggregator. In each round, each user 8 sends a ciphertext
of their measurement, encrypted with the key :8 . After receiving the ciphertexts for
that round, the aggregator decrypts the product of the ciphertexts of each pair in one
of theF pairing sets of users using that pair’s combined key :8, 9 . If a pair cannot be
decrypted, at least one of the two users must be defective, and the aggregator will
use a di�erent pairing set in the next round. Eventually, the aggregator infers from
the overlap of invalid pairs which users are defective. An extension of the protocol,
dg-aped [Shi+15], uses groups of arbitrary size. Both protocols have two drawbacks.
Firstly, they rely on a trusted third party to create groups and generate key material.
Secondly, because the protocols are tailored to defective users, the detection algorithms
are unsuitable for users that do not always send invalid users.
Ahadipour, Mohammadi and Keshavarz-Haddad [AMK19] propose a protocol that

reduces the amount of private data the aggregator has access to. Users are divided
into disjoint groups, and the aggregator obtains the sum of each group’s values in
addition to a random subset of the users’ private values. The aggregator then looks at
the collected private values to determine which users sent invalid values. While this
reduces the privacy impact on its users, giving the aggregator access to even a single
private value is not tolerable for sensitive data.
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Yang and Li [YL13] propose a protocol that can identify out-of-range values using
re-encryption. The aggregator divides users into disjoint groups, and when it �nds
that the aggregate of a group is out of range, it re-encrypts and shu�es the values of
the violating group and sends them to a random user in that group. The random user
decrypts the values and reports which values are out of range. The main drawback
of this scheme is that it is especially vulnerable to collusions, as a single collusion
between the aggregator and the random user su�ces to reveal all private values of an
entire group to the aggregator.
Finally, there is a multitude of proposals that assume that users are honest-but-

curious, but note that zero-knowledge proofs could be used to perform input valida-
tion [Shi+11, KDK11, ET12]. With zero-knowledge proofs, users can mathematically
prove that their value is within a particular range without having to reveal their value.
Generic zero-knowledge proofs such as snarks require a trusted setup, which is often
not a realistic assumption. Its cousin, the stark [Ben+18], resolves this problem, but
this comes at the cost of increased communication complexity. Corrigan-Gibbs and
Boneh [CB17] introduce snips to allow users to prove that input is valid according to
an arbitrary circuit, but this solution requires a multitude of cooperating servers, of
which all must be honest to guarantee correctness and at least one must be honest to
guarantee privacy for the user; furthermore, client-side communication costs grow lin-
early with the complexity of the validation circuit. Range proofs [Bou00] are a speci�c
form of zero-knowledge proof speci�c to range checking. Even though range proofs
such as Bulletproofs [Bün+18] are more e�cient than generic zero-knowledge proofs,
they still incur a relatively high complexity for the users (i.e. the provers) [Mor+19],
and must also be used in addition to the privacy-preserving data aggregation protocol
and a cryptographic link between the two such as a commitment scheme.

2.3 Probabilistic Range-Limited Private Data Aggregation

We consider a setting with = users and a single aggregator, similar to related work in
Section 2.2. Users continuously submit new privacy-sensitive measurements to the
aggregator at regular intervals called rounds; we assume that users and the aggregator
have access to a synchronised clock. We work in the standard model under the
assumption that the discrete log problem is intractable. We require setup parameters
1 and ℓ , both positive integers, such that there are exactly = = 1ℓ users. Up to ℓ users
may be malicious and may deviate from the protocol; these are exactly the users the
aggregator wants to identify. All other users are honest-but-curious (also known as
semi-honest). We assume that the aggregator is honest-but-curious, an assumption
made in several other related works including [ET12, Erk15]. This assumption makes
sense in a business-driven setting, in which a malicious aggregator would be faced with
negative publicity and a loss in consumer trust if its behaviour were discovered. Still,
we allow for collusions between at most (1 − 1)ℓ users and the aggregator. We assume
that the sets of malicious and colluding users do not change throughout the protocol.
Finally, we assume that the security, integrity, and authenticity of all messages is
guaranteed. The notation used to describe our protocol is shown in Table 2.1. Our
protocol broadly works as follows.
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1. Registration: Each user sends a message to the aggregator indicating that they want
to register. Once all users have registered, the aggregator divides the users into
overlapping groups. It then sends information such as the public parameters and
the group con�guration to all registered users.

2. Submission: Every round, each user creates a new secret share of the value zero for
each group they are in. The user takes copies of their private value and blinds each
copy with a di�erent secret share. The user sends the blinded copies in addition to
commitments to the secret shares to the aggregator.

3. Aggregation: The aggregator veri�es that the secret shares of each group sum to
zero and veri�es that each user used copies of a single private value, remembering
which users and groups failed veri�cation. Next, the aggregator computes the sum
of private values of each group, and remembers which groups have aggregates that
are out of bounds. Finally, the aggregator combines all group aggregates to �nd
the sum of all private values.

4. Detection: The aggregator looks back at which groups have exhibited malicious
activity, and derives from their overlap which users are the cause. As the protocol
progresses, the aggregator is able to identify more and more malicious users.

x Table 2.1 The notation used in the description of our protocol

Symbol Meaning

= Number of users
1 Grouping base/radix = users per group
ℓ Grouping dimensionality = groups per user
[min,max] Valid range of a single private value
6 Generator for commitments
pp Public parameters, contains all of the above

* Set of all user identi�ers
� Set of all group identi�ers
�8 Set of identi�ers of groups of user 8
* 9 Set of identi�ers of users of group 9
#8 Set of identi�ers of neighbours of user 8

(sk8 , pk8 ) User 8’s key pair
C Round number
<8,C User 8’s private value in round C
28, 9,C User 8’s encryption of<8,C for group 9
" 9,C Sum of private values of users in group 9 in round C
"C Sum of all private values in round C
A8→9,C User 8’s random value for neighbour 9 in round C
B8, 9,C User 8’s secret share for group 9 in round C
38, 9,C User 8’s commitment to B8, 9,C

+ Set of group identi�ers aggregator marked as malicious
, Set of user identi�ers aggregator marked as malicious
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2.3.1 Registration

The goal of the registration phase is to determine the parameters under which the
protocol will run and to exchange the necessary information for subsequent rounds.
Firstly, the honest-but-curious aggregator chooses a random generator6 of an algebraic
structure in which the discrete log problem is hard, such as a speci�c elliptic curve.
Additionally, the aggregator chooses application-speci�c values for = and min <

max. Then, each user sends a message to the aggregator indicating the desire to
participate in the protocol. Once = users have registered, the aggregator sends the
public parameters pp and some additional information to all users. The remaining
public parameters and additional information are chosen based on the following
grouping algorithm and secret sharing scheme.

Parameters for the Grouping Algorithm

The grouping algorithm divides users into groups such that the aggregator can pinpoint
malicious users based on which groups exhibit malicious behaviour. We base our
algorithm on the structure of a hypermesh [Szy95]. A 1-ary ℓ-dimensional hypermesh
is a hypergraph with 1ℓ nodes, where each node is assigned an ℓ-digit identi�er
3ℓ−13ℓ−2 . . . 30 such that 38 ∈ [0, 1) for all 0 ≤ 8 < ℓ . Two nodes are neighbours if and
only if their identi�ers di�er in exactly one digit. Nodes are connected by 1-edges,
i.e. edges with 1 endpoints. Edge identi�ers have the same format as node identi�ers,
except that exactly one digit is replaced by the wildcard symbol ★. Every edge then
connects the 1 nodes of which the identi�er matches that of the edge, ignoring the
digit in the wildcard’s position. Identi�ers can be considered coordinates in an ℓ-
dimensional Euclidean space, with 1ℓ−1 edges aligned along each dimension for a total
of ℓ1ℓ−1 edges. We give some examples of hypermeshes in Figure 2.1.
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(b) A 23-hypermesh (which is the graph of
a regular cube), which has 8 nodes and
12 hyperedges

x Figure 2.1 Examples of hypermeshes

In our protocol, the aggregator generates a 1-ary ℓ-dimensional hypermesh after
all = users have registered, with the requirements that = = 1ℓ , 1 ≥ 2, and ℓ ≥ 2. The
edges in the hypermesh are then exactly the groups that users are in. Generating
such a hypermesh constitutes choosing values for 1 and ℓ , and assigning to each
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user a unique identi�er in [0, 1ℓ ), which can be converted to a unique ℓ-digit 1-ary
identi�er. These three variables are su�cient for a user to reconstruct the hypermesh
and determine their own position. The ℓ groups that user 8 is in, denoted �8 , can be
found by replacing the respective ℓ digits in 8 by the wildcard symbol ★. The 1 users
in group 9 , denoted * 9 , can be found by replacing the wildcard symbol ★ with the
respective values [0, 1). The neighbours of user 8 , denoted #8 , can be found by taking
the union of {� 9 | 9 ∈ *8 }, minus 8 .

Parameters for Secret Sharing

Our scheme uses secret sharing to prevent the aggregator from decrypting ciphertexts
unless all ciphertexts of a group have been aggregated. We apply the procedure for
creating zero-sum additive secret shares used in [ET12] to each group in� . We avoid
direct communication between users by forwarding messages through the (honest-
but-curious) aggregator, but use public-key encryption to ensure that the aggregator
cannot see the actual random values being transmitted. Our goal is to obtain secret
shares B8, 9,C for each user 8 ∈ * in each group 9 ∈ �8 in each round C such that

∀9 ∈ � :
∑
8∈* 9

B8, 9,C = 0. (2.1)

While the following description assumes that users exchange random numbers each
round, such excessive communication can be avoided by having users exchange seeds
for random number generators once during registration.
First, each user 8 generates an asymmetric key pair (sk8 , pk8 ), and includes pk8

when sending the registration message to the aggregator. Once all = users have
registered, the (honest-but-curious) aggregator sends to each user 8 the public keys
{pk: | : ∈ #8 }. These key pairs can be reused and do not need to be exchanged again in
future rounds. Then, in each round C , user 8 generates a random number A8→:,C for each
neighbour : ∈ #8 , encrypts it with pk: , and sends this value to the aggregator, who
forwards the message to user : . Once user 8 has obtained A:→8,C for each neighbour : ,
user 8 creates the secret share

B8, 9,C =
∑
:∈� 9

(A8→:,C − A:→8,C ) (2.2)

for each 9 ∈ �8 . We consider the privacy of this construction in Section 2.4.2. We
present a communication diagram that includes registration in Figure 2.2.

2.3.2 Submission

In round C , each user 8 submits the private value<8,C such that the aggregator can obtain
the group aggregates without seeing<8,C . We use encryption function 28, 9,C =<8,C+B8, 9,C
to have each user 8 send {28, 9,C | 9 ∈ �8 } to the aggregator, with the secret share B8, 9,C
as described in Section 2.3.1. To prevent malicious users from avoiding detection by
using a di�erent<8,C in di�erent groups, users must additionally send commitments
to their secret shares. We use a simple homomorphic commitment scheme that is
computationally binding and computationally hiding: To commit to a value G , a
user sends 6G . Then, each user 8 computes commitments 38, 9,C = 6B8,9,C and sends
{(28, 9,C , 38, 9,C ) | 9 ∈ �8 } to the aggregator.
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Registration
pk8

Wait for all users

pp, 8, {pk: | : ∈ #8 }

{encpk: ('8→: ) | : ∈ #8 }

Wait for all users

{encpk8 (':→8 ) | : ∈ #8 }

Round C { (28,9,C , 38,9,C ) | 9 ∈ �8 }

Round C + 1 { (28,9,C+1, 38,9,C+1 ) | 9 ∈ �8 }

etc.
.
.
.

User i Aggregator

x Figure 2.2 An overview of the communication in our protocol. To reduce per-
round communication, users exchange seeds '8→: during registration to
generate A8→:,C in round C .

2.3.3 Aggregation

The aggregation phase is asynchronous to user submissions and may be invoked
by the aggregator at any time. Before aggregating the submissions for round C , the
aggregator veri�es for each group 9 ∈ � of which all users have submitted their values
by checking that ∏

8∈* 9

38, 9,C =
∏
8∈* 9

6B8,9,C = 6
∑

8∈*9
B8,9,C

= 60 = 1 (2.3)

to ensure that users committed to secret shares of the value zero. If a group 9 fails
this check, at least one user in this group must have been malicious, so the aggregator
adds 9 to + . Next, the aggregator constructs for each user 8 the set

{628,9,C (38, 9,C )−1 | 9 ∈ �8 } = {6<8,C+B8,9,C6−B8,9,C | 9 ∈ �8 } = {6<8,C | 9 ∈ �8 } (2.4)

and checks that all values in the set are equal. This ensures that each 28, 9,C for user 8
uses the same<8,C . If user 8 fails this check, all groups in�8 are added to + , e�ectively
marking this user as malicious once the detection algorithm runs. Users that fail to
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submit measurements similarly have their groups added to + . If desired, a level of
lenience can be introduced by only adding these groups once a user fails to submit in
multiple rounds.

After the aggregator has completed its veri�cations, aggregation can start. For each
group 9 ∈ � , the aggregator calculates

" 9,C =

∑
8∈* 9

28, 9,C =
∑
8∈* 9

(<8,C + B8, 9,C ) =
∑
8∈* 9

<8,C . (2.5)

If an aggregate" 9,C is not in the range [1 ·min, 1 ·max], at least one user must have
sent a value that is not in [min,max], so the aggregator adds 9 to+ . This check can be
adjusted to support use cases in which ranges di�er per user or per round by checking
that the aggregate is in the sum of the users’ current ranges.
The sum of all private values can be calculated by taking the sum of all group

aggregates. However, the aggregator should refrain from including invalid groups.
Therefore, the aggregator calculates

"C =

∑
9∈�\+ " 9,C

ℓ
, (2.6)

which is the average of the total sums along each of the hypermesh’s ℓ dimensions,
excluding groups in+ . This approximates the sum of only the honest-but-curious users;
if all users behave honestly this approximation is perfect. If desired, the aggregator
can estimate the sum of all users by including a fake group aggregate for each group
in + based on the average of {" 9,C | 9 ∈ � \+ } in round C .

2.3.4 Detection

The detection algorithm lets the aggregator identify malicious users. Throughout
the protocol and across rounds, the aggregator adds groups that exhibit malicious
behaviour to the set+ . In particular, the set+ contains all groups in which at least one
user sent a wrongly constructed secret share or sent di�erent private values to di�erent
groups in the same round, and contains a subset of groups in which at least one user
sent an out-of-bounds value. Looking at the overlaps of groups in + , the aggregator
infers which users caused the malicious behaviour: Users that are in exactly ℓ di�erent
groups in + are malicious and are added to, . Over time, the set + becomes more
and more complete until all groups containing malicious users have been detected.
We prove that this method does not result in false-positive detections in Section 2.4.1,
even if some malicious users collude. We analyse the detection rate in Section 2.4.4.

2.4 Analyses

2.4.1 Security Analysis

In this section we prove that the aggregator does not incorrectly identify users, we
prove that malicious users cannot submit di�erent measurements to di�erent groups,
and we analyse the impact of missing users to the aggregate.
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Proof of No False Positives

It is important that the aggregator correctly identi�es which users are malicious. We
prove that malicious users cannot frame an honest-but-curious user, even if they
coordinate the values they send.

Theorem 1. In our protocol, the aggregator will never identify an honest-but-curious
user as a malicious user if there are fewer than ℓ malicious users.

Proof. For the sake of contradiction, let there be an honest-but-curious user whom
the aggregator falsely identi�es as malicious. Then this user must be in ℓ groups
of + , so this user shares ℓ groups with malicious users. Because a group contains
those users that di�er by exactly one digit, two users can at most share a single group.
The wrongly-identi�ed user must therefore share groups with ℓ di�erent malicious
users. However, by assumption of the theorem’s antecedent, there are strictly fewer
than ℓ malicious users. Therefore, the honest-but-curious user could not have been
identi�ed as a malicious user. |

Proof of Aggregate Consistency

Users blind their private measurements<8,C using secret shares B8, 9,C to obtain 28, 9,C . It
is important that the aggregator veri�es that a user’s 28, 9,C values use the same under-
lying<8,C ; otherwise malicious users could avoid detection by causing inconsistencies
between aggregates. We show that it is infeasible for users to do this under our security
model, regardless of how many users are malicious. Working in the standard model,
every user 8 sends (28, 9,C , 38, 9,C ) for each 9 ∈ �8 to the aggregator, constructed in any
way the users want. Let B8, 9,C = dlog6 (38, 9,C ) and<8, 9,C = 28, 9,C − B8, 9,C for all users 8 and
for all 9 ∈ �8 , regardless of whether values are constructed honestly.

Theorem 2. In our protocol, a malicious user 8 cannot send messages in round C
to the aggregator such that <8, 9,C ≠ <8, 9 ′,C for any two groups 9, 9 ′ ∈ �8 such that
the aggregator’s veri�cation does not fail, assuming that the discrete log problem is
intractable in the group generated by 6.

Proof. Firstly, if either user 8 or any neighbour : ∈ #8 fails to send their messages,
the aggregator’s veri�cation fails right away and the malicious user does not succeed.
Now, it follows from the aggregator’s veri�cation of Equation 2.3 on page 22 that∑

8∈* 9
B8, 9,C = 0. Subsequently, we know from the veri�cation of Equation 2.4 on page 22

that, for �xed 8 ∈ * and C ∈ N, all 28, 9,C − B8, 9,C for 9 ∈ �8 are equal. Therefore, by
de�nition of<8, 9,C , all<8, 9,C for �xed 8 ∈ * and C ∈ N are also equal. |

Impact of Missing User Values

The in�uence of malicious users on"C decreases as the aggregator adds more groups
to + . At the same time, groups in + contain honest-but-curious users. We quantify
the e�ect that malicious users have on the correctness of the total aggregate.
Each user e�ectively contributes their measurement ℓ times, and, by Theorem 2,

each contribution is the same. An ideal protocol would remove only the ℓ contributions
of each malicious user. Our protocol also removes the (1 − 1)ℓ contributions of each
malicious user’s neighbours. The total impact of any set of fewer than ℓ malicious
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users is greatest when these malicious users do not share any groups, in which case
+ contains (ℓ − 1)ℓ groups. The aggregator then removes 1 (ℓ − 1)ℓ contributions
instead of the optimal (ℓ − 1)ℓ ; a factor of 1 more than optimal. With a total of
ℓ1ℓ contributions amongst all users, the e�ect of malicious users on "C therefore
diminishes as ℓ increases.

2.4.2 Privacy Analysis

We argue that our protocol is a secure data summation protocol in the setting described
in Section 2.3. In particular, we argue that when executing the protocol using a 1ℓ -
hypermesh, both the joint view of any set of users and the joint view of the aggregator
and a set of fewer than (1 − 1)ℓ users do not leak any information about honest-but-
curious users’ inputs, besides what can be inferred from the group aggregates. We
should note that we assume that each group with an honest-but-curious user also
contains at least one other non-colluding honest-but-curious user so as to prevent
trivial attacks on the aggregates. This assumption is naturally present in many group-
based aggregation schemes, including [KDK11, ET12, Erk15]. Recall that the aggregator
is honest-but-curious and will therefore assign users to random positions honestly.

Firstly, we consider the joint view of any set of users*� ⊂ * , which consists only of
the public parameters pp, the users’ private data, and the public keys pk8 and random
seeds A8→:,C other users have sent to users in*�. Con�dentiality is trivial because the
view does not contain any data derived from the private values<8,C of any user 8 ∉ *�.

Next, we consider the joint view of the honest-but-curious aggregator and any
set*� ⊂ * of fewer than (1 − 1)ℓ users. The view consists of the same data as before,
now in addition to the aggregator’s private information and the data that are sent to
the aggregator. We proceed to dissect the implications of this view. Firstly, malicious
users in*� di�er only from honest-but-curious users in *� in that they can interact
dishonestly with other users, but this does not give them an advantage. If a malicious
user refuses to interact with or sends malformed data to a user, then this user halts and
privacy is maintained. Otherwise, if a malicious user sends non-random data to user 8 ,
then this is no worse than an honest-but-curious user in*� sharing their data with the
aggregator. Secondly, users that are not in*� receive sensitive information through
the aggregator, but privacy is ensured by encrypting data such that the decryption
key is not in the adversary’s view. Thirdly, the private values<8,C of user 8 ∉ *� are
masked using the secret shares B8, 9,C constructed from values A8→:,C . Because at least
one user : ≠ 8 of each group 9 ∈ �8 is not in *�, both A8→:,C and A:→8,C are chosen
honestly and remain unknown to the adversary. Because additive secret sharing is
trivially secure, the secret shares B8, 9,C properly mask<8, 9,C . Finally, we observe that
each submission occurs in multiple linearly dependent aggregates, which is equivalent
to a system of linear equations. We prove that it is infeasible for the adversary to solve
this system because it is not full rank.

Theorem 3. The rank of the incidence matrix of a 1ℓ -hypermesh is 1ℓ − (1 − 1)ℓ .
(Equivalently, the number of unknowns in the incidence matrix is (1 − 1)ℓ .)

Proof. We model the incidence matrix such that each row describes a group and each
column describes a user. We construct the incidence matrix recursively, similar to how
the hypermesh itself can be constructed. Given a 1-ary 1-dimensional hypermesh, its
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incidence matrix�1,1 is a (1×1)-matrix containing only 1s. Then, a1-ary ℓ-dimensional
hypermesh can be constructed from 1 copies of the 1-ary (ℓ − 1)-dimensional hyper-
mesh, where all nodes are additionally connected to their counterparts in the other
copies using 1-edges. This allows us to construct the incidence matrix�1,ℓ for ℓ > 1 as



�1,ℓ−1 0 . . . 0

0 �1,ℓ−1 . . . 0
...

...
. . .

...

0 0 . . . �1,ℓ−1
�1ℓ−1 �1ℓ−1 . . . �1ℓ−1


, (2.7)

where each 0 represents a matrix of the same size as �1,ℓ−1 containing only zeroes,
and �G denotes an identity matrix of size G × G .
We now use complete induction on ℓ to prove that rank(�1,ℓ ) = 1ℓ − (1 − 1)ℓ . For

the base case, we take ℓ = 1 and �nd that rank(�1,1) = 1, which matches our theorem:

1ℓ − (1 − 1)ℓ = 1 − (1 − 1) = 1. (2.8)

For the recursive case, take as our induction hypothesis that A = rank(�1,ℓ−1) =

1ℓ−1 − (1 − 1)ℓ−1. We write �1,ℓ in column echelon form as follows to determine its
rank. Firstly, consider the column operations necessary to write �1,ℓ−1 in column
echelon form, and apply them to each instance of �1,ℓ−1 in �1,ℓ . Note that this also
transforms the �1ℓ−1s located beneath the �1,ℓ−1s. After applying these steps, each
instance of�1,ℓ−1 has 1ℓ−1 − A empty columns on the right, while each instance of �1ℓ−1
has no zero columns because it is full rank. The rightmost 1ℓ−1 − A columns of each
�1ℓ−1 are now identical, however, and have nothing but zeroes above them. As such, we
cancel out these columns except in the rightmost instance of �1ℓ−1 using simple column
operations. This cancels out (1 − 1) (1ℓ−1 − A ) columns, while all other columns are
non-zero. After moving these zero columns to the right of the matrix,�1,ℓ is in column
echelon form. The rank of �1,ℓ is then the number of non-zero columns, which is

1ℓ − (1 − 1) (1ℓ−1 − A ) (2.9)

= 1ℓ − (1 − 1) (1ℓ−1 − (
1ℓ−1 − (1 − 1)ℓ−1) ) (2.10)

= 1ℓ − (1 − 1) (1 − 1)ℓ−1 (2.11)

= 1ℓ − (1 − 1)ℓ , (2.12)

proving our theorem. |

With fewer than (1 − 1)ℓ users in the view, the adversary always has at least one
unknown in this system. To give an intuition into the growth of (1 − 1)ℓ , consider
Figure 2.3, where we show the maximum ratio of users that may collude with the
aggregator as a function of 1 and ℓ without breaking con�dentiality. For example, a
system with 1 = ℓ = 2 could not tolerate a single colluding user, while a system with
1 = ℓ = 5 could tolerate up to (4/5)5 ≈ 33% of all users colluding. As the number of
groups per user grows, the collusion resistance decreases. This can be compensated
for by increasing the number of users per group, but, as we discuss in Section 2.4.4,
this decreases the detection rate.

26 Q Graph-Based Reconstruction in Summation Sequences



2

5 10 15 20
0

0.2

0.4

0.6

2

Groups per user, ℓ

R
at
io

o
f
u
se
rs

1 = 5

1 = 4

1 = 3

x Figure 2.3 Maximum proportion of users that can collude with the aggregator as a
function of 1 (users per group) and ℓ (groups per user)

2.4.3 Complexity Analysis

We quantify the complexity of our protocol in terms of the number of users = and
compare this to several related pda protocols. We express complexity as the number
of encryptions, decryptions, multiplications, exponentiations, additions, subtractions,
and outgoing messages, separately for each user and the aggregator, similar to [Erk15].

Complexity of Our Protocol

Firstly, note that in our protocol, 1 = =
1
ℓ . This number is maximal when ℓ = 2, so we

say that 1 is O (√
=
)
. Meanwhile, ℓ = log1 (=) is O(log=). Recall the time diagram of

our protocol in Figure 2.2 on page 22.
During the registration, each user sends one encrypted seed for each neighbor and

a �xed-size key to the aggregator, resulting in an outgoing communication complexity
of O (√

= log=
)
per user. Meanwhile, each user receives one key and one encrypted

seed per neighbor, for an incoming communication complexity of O (√
= log=

)
per

user. We visualize registration communication complexity in Figure 2.4. Later, in each
round, each user sends for each group it is in a constant-size message containing a
masked plaintext and a commitment, for a communication complexity of O(log=).
Users do not receive anything during rounds. Creating a submission requires one
commitment and one masked private value for each of the user’s groups, for a total of
O(log=) exponentiations and O(log=) additions per user per round.
The aggregator forwards each user message during the registration, resulting in a

factor of = more communication. After the registration, however, the aggregator does
not need to communicate with users other than sending acknowledgements. During
aggregation, the aggregator veri�es user inputs, requiring one exponentiation and one
multiplication for each group for each user, for a total of =ℓ1ℓ−1 of either operation.
The calculation of the aggregate itself requires only that the aggregator sums together
all =ℓ1ℓ−1 submissions. The detection phase does not require complex operations, as
the aggregator need only �nd which users are in ℓ groups of + .
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x Figure 2.4 Per-user communication during registration. We assume 4 bytes for
each (masked) private value and 256-bit ec-cryptography. With point
compression, this gives 33-byte keys, ciphertexts (for seeds), and com-
mitments.

Comparison to Related Protocols

We compare our protocol to a selection of related pda protocols in Table 2.2. Our
analysis is subject to several limitations. Firstly, because our protocol is tailored to
identifying malicious users, we restrict our analysis to detection protocols for malicious
users, thus also excluding aped [Sun+13] and dg-aped [Shi+15]. Secondly, in our
analysis of the protocol in [CB17], we assume that the number of multiplication gates is
linear in the size of the range, which corresponds to the size of an integer comparison
circuit. Finally, for the protocol in [YL13], we assume a binary tree topology for
simplicity, and include operations related to the detection sub-protocol for fairness.
The protocol in [YL13] provides by far the lowest complexity by validating in a

decentralised fashion, but requires long periods of interactivity and has the weakest
security model: An honest-but-curious aggregator and any single user can collude to
obtain all private values. Prio [CB17] and Bulletproofs [Bün+18] have a complexity that
depends on the size A of the valid range; meanwhile, our complexity is independent of A .
Additionally, with Bulletproofs, the size of the range must be of the form [0, 2A ) for
some natural number A , whereas our protocol supports arbitrary ranges, as does Prio.
Finally, Bulletproofs can verify user submissions in bulk, but only if all users have the
same range. Otherwise, the veri�cation complexity grows linearly with the number of
di�erent ranges. While an alternative would be to verify the widest range in bulk, this
is not practical. Our protocol supports di�erent ranges for all users without an increase
in complexity, instead a�ecting the detection rate, as we discuss in Section 2.4.4.

We conclude that the complexities of these protocols must be considered in light of
the application. If users have di�erent, personalised use cases, the computation and
communication complexities of our protocol scale better than competing protocols.

2.4.4 Detection Rate Analysis

Values submitted by honest-but-curious users in the same group as a malicious user
may coincidentally compensate for the malicious transgression. As a result, our
detection algorithm is probabilistic. In this section we analyse how the detection rate
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x Table 2.2 Comparison of related pda protocols, given total number of users = and
range size 2A

[YL13] [CB17] [Bün+18] Ours

Properties

Topology Tree Arbitrary Arbitrary Hypermesh
Group ElGamal fft �eld ec ec

Aggregation ✓ ✓ ✓

Detection ✓ ✓ ✓ ✓

Robustness ✓ ✓ ✓

User complexity

Enc O(1) – – –
Dec O(1) – – –
Mult O(1) O(A log A ) – –
Exp O(1) – O(A ) O(log=)
Add – – – O(log=)
Sub – – – –

Com O(1) O(log A ) O(A ) O (√
= log=

)
Aggregator complexity

Enc O(1) – – –
Dec O(1) – – –
Mult O(1) O(A log A ) – O(= log=)
Exp O(1) – O(=A ) O(= log=)
Add – – – O(= log=)
Sub – – – –

Com O(1) O(1) O(=A ) O (
=
√
= log=

)

varies as a function of the protocol’s parameters. In our analysis we model each honest-
but-curious user’s value as a truncated binomial distribution - with ` = min+max

2
and a

support of [min,max]. For the sake of illustration, we use f = 2, min = 5, and max =

15. We model the sum of = independent honest-but-curious users’ values, denoted -= ,
by approximating - with a non-truncated binomial distribution, multiplying the
distribution by =, and truncating this distribution to the range [= · min, = · max].
Our model does not capture serial dependence in user data, which is unrealistic but
ultimately does not impinge upon our conclusions. The source code underlying the
�gures in this section is publicly available [DE25].

Detection Rate of a Single Malicious User

Consider a system with a single malicious user 8 who submits the out-of-range meas-
urement<. We assume that< > max, without loss of generality because - and -1−1
are symmetrical. Recall that user 8 is detected only once all ℓ groups in �8 are in + .
First, we consider the detection rate of an individual group. The aggregate of a

group 9 ∈ �8 does not exceed its upper bound if and only if" 9,C = -1−1 +< ≤ 1 ·max,
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x Figure 2.5 Detection rate of a single malicious user

or, equivalently, if -1−1 ≤ 1 ·max −<. We illustrate the probability that this relation
holds as a function of< and 1 in Figure 2.5a. The �gure shows that �xing a particular
detection rate results in the corresponding malicious value growing linearly with the
group size. Note that the detection rate is exactly 0% at< = max and exactly 100%

at< = 1 (max −min) +min.
We can thus model the detection rate of a group as a geometric variable to express

the expected number of rounds until it is detected. Because the groups �8 overlap
only in user 8 , their detection rates are independent for �xed<. The expected number
of rounds until all ℓ groups have been detected at least once is then the expected
maximum of ℓ iid geometric variables, which is [Eis08]

5 (ℓ, ?) =
=∑

:=0

((
ℓ

:

)
?: (1 − ?)ℓ−: (1 + 5 (ℓ − :, ?))

)
, (2.13)

where ℓ is the number of groups and ? is the per-round detection probability of each
group. Figure 2.5b shows 5 (ℓ, ?) for various combinations of ℓ and ? . We conclude that
increasing the number of groups per user necessitates a higher per-group detection
rate to retain the number of expected rounds, which can be done by reducing the
group size, for example.

Detection Rate of Multiple Malicious Users

When a group contains multiple malicious users, these users can either intensify
or diminish the sum e�ect they have on their group’s aggregate. This means that,
depending on the usage scenario, multiple malicious users either become harder to
detect (if malicious users have equal reason to transgress the range in either direction)
or easier to detect (if malicious users have more reason to transgress the range in a
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malicious user and overlapping in one honest-but-curious user. Simulated
in matlab by sampling honest values from truncated normal distribution
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the groups are not always detected. Correlation was calculated with 5000
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particular detection). Therefore, our protocol is best suited for applications where
users are most likely to transgress in a particular direction.

We can reuse our results from Section 2.4.4 to quantify the detection rate of a group
with multiple malicious users. Given a group of size 1 with = malicious users, the
detection rate of the sum of malicious values< is

Pr[-1−= +< ≤ 1 ·max] (2.14)

= Pr[-1−= +< − (= − 1) ·max ≤ (1 − (= − 1)) ·max] . (2.15)

That is, this detection rate is the same as that of a single malicious user that sends the
value< − (= − 1) ·max in a group with only 1 − (= − 1) users.

Users may coordinate the malicious values they send to avoid being detected by
the aggregator in some groups. However, it follows from Equation 2.14 that complete
avoidance is possible only if the sum of their values is valid. Because values are
consistent between groups by Theorem 2 on page 24, this type of avoidance detection
requires that the sum e�ect on the total aggregate is valid, so malicious users do not
gain any signi�cant advantages by working together.

An important observation regarding the interplay of group aggregates is that mali-
cious users that do not share a group may still have an overlap in the users that they
share groups with. In this case, the detection rates of these groups become covariant
because of the common user. As shown in Figure 2.6, the impact of this covariance
depends on the group size 1 and quickly becomes negligible. Therefore, the expected
number of rounds until detection as expressed in Figure 2.5b holds for multiple users
up to covariance.
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2.5 Conclusion

Data aggregation is an immensely useful tool for various applications, but introduces
a number of privacy concerns. Existing privacy-preserving data aggregation protocols
tend to assume that the users are honest-but-curious rather than malicious, or use
zero-knowledge proofs, which impose signi�cant computational requirements on
the users. Either way, adoption of these much-needed protocols is di�cult. We
present a data aggregation protocol that probabilistically detects out-of-range user
values without giving the aggregator access to these values. Our protocol imposes
only O(log=) per-round computational complexity on its users without relying on
expensive cryptography. The protocol is also robust to missing data because it can
exclude any number of groups that have exhibited malicious behaviour. Furthermore,
given 1ℓ users for positive integers 1 and ℓ , the aggregator will not misidentify an
honest-but-curious user as malicious as long as there are strictly fewer than ℓ malicious
users. Finally, our protocol continues to guarantee privacy even when up to (1 −
1)ℓ users collude with the aggregator.
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Chapter 3

Privacy-Preserving Aggregation with Public Veri�ability
Against Internal Adversaries

Abstract. We consider the problem of publicly veri�able privacy-preserving data aggregation
in the presence of a malicious aggregator colluding with malicious users. State-of-the-art
solutions either split the aggregator into two parties under the assumption that they do not
collude, or require many rounds of interactivity and have non-constant veri�cation time.

In this work, we propose mpvas, the �rst publicly veri�able privacy-preserving data aggrega-
tion protocol that allows arbitrary collusion, without relying on trusted third parties during
execution, where veri�cation runs in constant time. We also show three extensions to mpvas:
mpvas+, for improved communication complexity, mpvas-iv, for the identi�cation of malicious
users, and mpvas-ud, for graceful handling of reduced user availability without the need to
redo the setup. We show that our schemes achieve the desired con�dentiality, integrity, and
authenticity. Finally, through both theoretical and experimental evaluations, we show that our
schemes are feasible for real-world applications.

Based on: Marco Palazzo, Florine W. Dekker, Alessandro Brighente, Mauro Conti and Zekeriya Erkin.

“Privacy-preserving data aggregation with public veri�ability against internal adversaries”. In: USENIX

Security 2024: Proceedings of the 33rd USENIX Security Symposium. 2024. url: https://www.usenix.

org/conference/usenixsecurity24/presentation/palazzo.
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3.1 Introduction

D
ata aggregation refers to the collection of data from one or more sources and
its processing by a central aggregator for statistical analysis. These protocols
�nd applications in many situations concerning sensitive data, such as auto-

mated power delivery and balancing mechanisms in smart grids [Fan+12, Dhr+20],
patient monitoring [Ull+21], andmobile computing [Hul+06, Shi09]. While the bene�ts
brought by data aggregation are evident, without proper countermeasures, they may
represent a threat to the privacy of users [GJ10, MEO13, Kap16]. Malicious actors could
exploit the collected data to pro�le or track users’ activities, social status, religious
beliefs, and medical conditions [GJ10, MEO13, Kap16]. Therefore, data aggregation
protocols should guarantee users’ privacy in the presence of malicious actors.

Drawbacks of current solutions. “Classical” privacy-preserving data summation pro-
tocols [ET12, Shi+11, KDK11] assume that participants are honest-but-curious: They
follow the protocol but may try to infer others’ sensitive information. When users
may be actively malicious by attempting to in�uence the correctness of the output,
zero-knowledge proofs can be used to prove that users’ inputs are well-formed [FLC15,
KÖB21]. When aggregators may in�uence correctness, the problem is more di�-
cult. The aforementioned protocols typically assume that the legal and reputational
consequences of malicious behavior deter the aggregator from publishing a forged
aggregate. However, without e�cient methods to actually detect such tampering,
these protocols may fail to prevent malicious behaviour.
A simple technique to detect tampering by the aggregator is to have each user

sign their submitted value. However, this incurs high veri�cation costs as possibly
thousands of signatures must be veri�ed in applications with many users. A more
common technique adopted in the literature is to make only the result of the aggrega-
tion veri�able using privacy-preserving veri�able summation protocols [Leo+15, Ni+15,
Bak+15, Guo+21, Wan+23, Hah+23]. Unfortunately, both solutions fail to guarantee
unforgeability when the malicious aggregator may collude with malicious users.

To the best of our knowledge, only three works have considered privacy-preserving
veri�able summation against a malicious aggregator who colludes with malicious
users [MT21, LL21, Ren+22]. Leontiadis and Li [LL21] and Mouris and Tsoutsos [MT21]
both assume a two-aggregator model in which at most one aggregator may collude
with malicious users. Unfortunately, as we describe in Section 3.3.3, the work by
Leontiadis and Li [LL21] contains a mistake that breaks unforgeability. Finally, Ren
et al. [Ren+22] propose a single-server protocol in which the aggregate is hidden from
the aggregator. Unfortunately, their protocol fails to provide con�dentiality for small
plaintext spaces, and veri�cation time is linear in the number of users.

Contributions. We present mpvas, the �rst privacy-preserving publicly veri�able
summation protocol that allows for arbitrary collusions between amalicious aggregator
and malicious users, requiring only a single server and constant-time veri�cation.
Note that data poisoning attacks from the users are outside the scope of this paper.
Our contributions can be summarized as follows.

• We propose a publicly veri�able aggregate signature scheme considering malicious
users and aggregators (mpvas), a novel signature scheme that allows users to sign
their reports and compute a signature over the sum of the private values.
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• We present three extensions to mpvas. mpvas+ reduces communication overhead in a
slightly weaker adversarial model, mpvas-iv allows the detection and removal of ma-
licious users, and mpvas-ud allows users to exit the protocol without necessitating
a new setup phase for the other users.

• We provide theoretical evaluations of the security and performance of our proto-
cols, as well as a practical analysis of their performance using a proof-of-concept
implementation. Our results show that mpvas and its extensions are practical for
real-world scenarios.

Outline. In Section 3.2, we present the system model and our assumptions. In Sec-
tion 3.3, we discuss related works. In Section 3.4, we introduce the building blocks of
our schemes. In Section 3.5, we introduce mpvas. In Section 3.6, we introduce mpvas+,
which reduces communication complexity. In Section 3.7, we introduce mpvas-iv,
which adds input validation to combat malicious users. In Section 3.8, we introduce
mpvas-ud, which adds support for user dropouts. In Section 3.9, we evaluate all four
protocols. Finally, in Section 3.10, we present our conclusions.

3.2 System Model and Assumptions

The goal of our protocol is to publish the (authenticated) sum of all users’ private values
in round C , subject to two properties: Individual users’ values remain unknown to other
parties (con�dentiality), and the published sum is guaranteed to match the true sum
(unforgeability). Here, unforgeability implies both integrity and authenticity [Sma16].

We assume all adversaries are probabilistic and polynomially time-bounded. Fur-
thermore, similar to related work [Bak+15, LL21], we assume availability: Parties do not
intentionally try to make the protocol fail (denial of service), and do not unexpectedly
drop out. We loosen this assumption in Section 3.7 and Section 3.8, where we provide
extensions for availability.
The following parties participate in the protocol.

Aggregator. The aggregator collects users’ inputs and signatures, and publishes the
input sum and an aggregate signature of the sum. The aggregator is malicious and
may collude with other malicious parties. That is, the aggregator may deviate from
the protocol in arbitrary ways, for example to learn users’ private values, tamper with
signatures, or publish an incorrect aggregate.

Users. We consider a set of = users U = {1, 2, . . . , =}. In any round C , each user 8 ∈ U
holds some private integer G8,C . We assume at most : ≤ = − 2 users are malicious
and may collude with the aggregator. The remaining = − : ≥ 2 users are honest-but-
curious; these users follow the protocol, but may still try to obtain private data without
colluding. Finally, all users have access to a synchronized clock indicating the current
round C .

Veri�er. Veri�ers check that the aggregator’s published output is correct. Any party
may be a veri�er; this includes external auditors, the aggregator, users, the dealer, and
system administrators. We assume there is at least one veri�er.

Dealer. We require a trusted dealer to set up the system, similar to nearly all related
works [Leo+15, Ni+15, Bak+15, Guo+21, Wan+23, Hah+23, LL21, Ren+22]. Though
a fully trusted party is a strong assumption, we argue that it is feasible in relevant
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applications such as smart grids and medical data sharing, where the role can be
ful�lled by a trusted institution or hardware manufacturer. The dealer is tasked with
generating and distributing the public and private parameters to the other parties.
After the setup, the dealer exits the protocol.

Communication. The dealer and aggregator both have direct communication channels
with all users and veri�ers, and with each other. These channels provide secrecy,
authenticity, and integrity. Users cannot interact with each other directly but can ask
the aggregator to forward messages for them.

3.3 Related Work

There is a large body of work on privacy-preserving computation. We discuss why
these works cannot be trivially adapted to the adversarial model from Section 3.2. In
Section 3.3.1, we discuss protocols for general veri�able computation. Then, in Sec-
tion 3.3.2, we discuss protocols for non-veri�able summation. Finally, in Section 3.3.3,
we discuss protocols for veri�able summation, which we also summarise in Table 3.1.

x Table 3.1 Overview of privacy-preserving veri�able summation works and their
properties. The symbols , , and respectively denote that a property
is not, is partially, or is fully achieved by a particular work. The symbol –
denotes that a property is not applicable. We denote users byU, aggreg-
ator(s) by A, and veri�er(s) byV; and abbreviate “trusted” to “trust.” and
“malicious” to “mal.”

Trust.

setup1
A is

single

U is

mal.

Veri�able by Collusions

U A V A +U A +V
[Leo+15]
[Ni+15] 2 3

[Bak+15]
[Guo+21] –
[Wan+23] –
[Hah+23] –

[LL21] 3 4

[MT21] 5 4 4

[Ren+22] –

mpvas

mpvas+

mpvas-ud

mpvas-iv

1 Also includes public-key infrastructure and common reference string.
2 Requires trusted party in all phases of protocol.

3 Exactly one (trusted) veri�er.
4 May collude with at most one aggregator.

5 Requires public ledger in all phases of protocol.
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3.3.1 General veri�able computation

In general veri�able computation [GGP10], the aggregator computes an arbitrary
function over users’ data, while learning neither the function nor its inputs. Users can
verify that the output is correct, without learning others’ values.

Gordon et al. [Gor+15] prove that general veri�able computation is impossible if
the aggregator colludes with users, even when only a single user colludes, this user is
honest-but-curious, and the protocol uses a trusted setup. Therefore, general veri�able
computation is not a suitable solution for our adversarial model. Note that since the
above impossibility result requires that the function remains private, this does not
preclude veri�able privacy-preserving summation in this adversarial model.

3.3.2 Non-veri�able summation

Privacy-preserving summation [KDK11, Shi+11, Bon+17, Bel+20] ensures con�dentiality
and availability in a variety of adversarial models. However, these works are not
veri�able. That is, if a malicious aggregator publishes an arbitrary value as the sum,
this cannot be detected by other parties. Therefore, these protocols are insu�cient
when the aggregator has an incentive to lie.

3.3.3 Veri�able summation

With privacy-preserving veri�able summation, the aggregator’s output can be proven
to be the sum of users’ inputs. We �rst discuss protocols for honest-but-curious users
and then discuss protocols for malicious users. The aggregator is necessarily assumed
malicious. We restrict our discussion to the veri�cation techniques, ignoring the
protocols’ summation mechanisms. We summarise our results in Table 3.1.

Honest-but-curious users. Given honest-but-curious users and a malicious aggregator,
the aggregator must prove that the published sum corresponds to the users’ inputs.

Early works [Leo+15, Ni+15, Bak+15] rely on a shared secret between the users and
the veri�er to ensure only authenticated parties can sign, and rely on a signature key
that is secret-shared between the users to ensure a signature is valid only if all users are
included. These protocols cannot ensure unforgeability when the aggregator colludes
with honest-but-curious users, because if a user sends the aggregator the shared
authentication secret, the aggregator can homomorphically modify valid signatures.

Recent works [Guo+21, Wan+23, Hah+23] use the same high-level ideas, but combine
this with the non-veri�able summation protocol of Bonawitz et al. [Bon+17] to achieve
reliability when users unexpectedly drop out. Each of these works similarly cannot
ensure unforgeability when the aggregator colludes with users. We point out to
interested readers that two of the above works have received security �xes [Guo22,
LWY24]. There are more works that achieve privacy-preserving veri�able summation
with honest-but-curious users, but none that do not �t the above general descriptions.

Malicious aggregator and malicious users. To the best of our knowledge, only a few
works tackle the problem of privacy-preserving veri�able summation with a malicious
aggregator and malicious users.
Leontiadis and Li [LL21] propose the addition of a new honest-but-curious party,

the converter. Users work with the converter to create homomorphic commitments of
their data based on shares of the veri�er’s secret key. The aggregator then aggregates
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users’ private data and their commitments (respectively), and sends both to the veri�er.
Finally, the veri�er checks that the aggregation was done correctly. Unfortunately,
this protocol is not truly publicly veri�able, since the veri�cation key cannot be shared
with users of the protocol. Furthermore, if a user, aggregator, and converter collude,
unforgeability no longer holds. Finally, it appears that the protocol is �awed: If a
malicious user sends the converter a commitment to zero and then forwards the
response to the aggregator, the aggregator can create arbitrary valid signatures.
Mouris and Tsoutsos [MT21] propose splitting the aggregator into two parties: a

curator and an analyst. Both may be malicious, but they do not collude, and only the
analyst has the decryption key for the aggregate. Users homomorphically encrypt
their data and send it to the curator, and publish a homomorphic commitment to
the ciphertext on a public ledger. The curator veri�es that the received ciphertexts
correspond to the commitments on the public ledger, and then publishes an aggregate
ciphertext and an aggregate commitment on the public ledger. Finally, the analyst
veri�es the aggregate commitment, decrypts the aggregate ciphertext, and publishes
the aggregate data together with a proof of correct decryption on the public ledger. The
protocol requires that the curator and analyst do not collude; otherwise, the protocol
cannot guarantee con�dentiality and unforgeability. Furthermore, users colluding
with the curator may a�ect correctness.

Ren et al. [Ren+22] propose a summation protocol that provides con�dentiality, un-
forgeability, and availability against a malicious aggregator colluding with a malicious
subset of clients. The protocol has four major drawbacks. First, only the users learn
the obtained sum, whereas the aggregator learns nothing. Second, only participating
users can verify the obtained sum, and there is no trivial extension to allow external
parties to learn and verify the sum. Third, if the plaintext space is small (as in veri�-
able summation for smart meters [Shi+11, Leo+15]), con�dentiality can be broken by
brute-forcing commitments. Finally, veri�cation time is linear in the number of users.

3.4 Preliminaries

Before we present mpvas in Section 3.5, we introduce its basic building blocks. We
follow the de�nitions in [KL14].

Bilinear pairings. Given cyclic groups G1,G2,G) , each of the same prime order ? , a
bilinear pairing is a function 4 : G1 × G2 → G) such that, for any 61 ∈ G1, 62 ∈ G2

and 0, 1 ∈ Z? ,

4 (601 , 612 ) = 4 (61, 62)01 . (3.1)

Furthermore, 4 (61, 62) should be a generator of G) , and 4 should be e�ciently comput-
able. This excludes so-called degenerate bilinear pairings, in which 4 (61, 62) = 1

for all 61 ∈ G1 and 62 ∈ G2. Finally, we assume that the Symmetric External
Di�e-Hellman (sxdh) assumption [Ate+05] holds, i.e. that the Decisional Di�e-
Hellman (ddh) assumption holds (and thus also that the Discrete Logarithm Prob-
lem (dlp) is hard) in both G1 and G2, and that there exist no e�ciently computable
homomorphisms between the two.

Zero-knowledge proof of equality between commitments. We describe zkpeq, a zero-
knowledge proof that two di�erent Pedersen commitments share the same committed

40 Q Graph-Based Reconstruction in Summation Sequences



3

value. Formally, given commitments C(G, A1) and C(G, A2), zkpeq proves the relation

{(G, A1, A2) : ( = 6G1ℎ
A1
1 ∧) = 6G2ℎ

A2
2 }. (3.2)

This proof can be implemented as an eq-composition on the common witness G of
two Okamoto protocols [Oka92] running in parallel [Sch25]. zkpeq can be made
non-interactive using the Fiat-Shamir heuristic [FS86].

3.5 mpvas: Publicly Verifiable Aggregate Signatures with

Malicious Users and a Malicious Aggregator

We present mpvas, a novel aggregate signature scheme for summations. mpvas can be
used to verify that the output of a separate summation protocol was not tampered with
by the aggregator. The core idea behind mpvas is to create commitment-like signatures
of the inputs and wrap each signature under a common secret exponent B , similar
to other veri�able schemes [Bak+15, Leo+15, Li+16]. Unlike other schemes, however,
we allow users to collude with the aggregator by revealing their private parameters.
mpvas guarantees unforgeability of the aggregate signature given at most : malicious
users. To achieve this, we use Shamir secret sharing over B with a threshold of : + 1.

mpvas runs in four phases: setup, signing, aggregation, and veri�cation. During
setup, the participants interactively determine the scheme’s public and private para-
meters. During signing, users cooperatively calculate signatures of their inputs to a
separate summation protocol. During aggregation, the aggregator combines users’
signatures into a single signature. Finally, during veri�cation, veri�ers compare the
aggregate signature with the summation protocol’s output.

mpvas provides only an aggregate signature and, for large plaintext spaces, must
operate adjacent to a separate privacy-preserving summation scheme. The order of
operations is that mpvas runs up to (but excluding) veri�cation, then the summation
protocol reveals the sum and, �nally, mpvas veri�es correctness. Alternatively, if the
plaintext space is small enough, the sum can be extracted in polynomial time from the
aggregate signature itself by repeated veri�cation on all possible values.

Data poisoning attacks are outside the scope of this paper. Still, we note that these
attacks can be partially mitigated by including range proofs in the signing phase.

3.5.1 Setup

During the setup, the trusted dealer chooses and publishes the public parameters
pp = (�,�1,G1,G2,G) , 61, 62, 4, ?, =, :), generated according to a strong security para-
meter _. Each G8 is a cyclic group of order ? , where ? is a large prime number. 61
and 62 are random generators of G1 and G2, respectively. 4 : G1 × G2 → G) is a
type-3 bilinear pairing in which the sxdh [Ate+05] assumption holds. Furthermore,
� : {0, 1}∗ → G1 and �1 : {0, 1}∗ → G1 are two distinct and cryptographically-secure
hash functions. Finally, = is the number of users, and : ≤ =−2 is the maximum number
of malicious users.
The dealer assigns each user a unique identi�er 8 ∈ {1 . . . =}, chooses a secret

B ←$ Z? , and creates = secret shares [B]8 using (: + 1)-out-of-= Shamir secret sharing.
Recall that each Shamir secret share consists of a coordinate (G8 , ~8 ) on the 2D plane.
The dealer ensures that the G-coordinates correspond exactly to the user identi�ers,
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and de�nes [B]8 = ~8 . Next, for each 8 ∈ {1 . . . =} and each 9 ∈ {1 . . . : + 1}, the dealer
chooses encryption key ek8, 9 ←$ Z? , but sets the last encryption key to

ek=,:+1 = −
=∑
8=1

:∑
9=1

ek8, 9 . (3.3)

It follows that the sum of all encryption keys is zero. The dealer then sends (pp, 8, [B]8 ,
{ek8, 9 | 1 ≤ 9 ≤ : + 1}) to the corresponding user 8 .
Each user 8 generates a signature key sk8 ←$ Z? and sends it to the dealer.
Once all = signature keys have been received, the dealer calculates the veri�cation

key tuple

vk =

(
(6B2)

∑=
8=1 sk8 , 6B2

)
, (3.4)

sends (pp, vk) to each veri�er, and then leaves the protocol.

3.5.2 Signing

User 8 creates a signature of their private input G8,C in round C of the summation
protocol using the following interactive four-step procedure.

1) Create initial signature. User 8 computes their initial signature for round C as

f18,C = � (C)sk86
G8,C
1 ∈ G1. (3.5)

and sends it to the aggregator.

2) Create partial signatures. The aggregator forwards the initial signature tuple of
each user 8 to an arbitrary1set�8 of : users other than user 8 . We call�8 the signing set
of user 8 . The aggregator also sends the list of identi�ers �8 to user 8 . After receiving
the initial signature of user 8 , each user 9 ∈ �8 computes

f
2, 9
8,C = �1 (C)ek 9,8 (f18,C ) [B ]

∗
9 (3.6)

= �1 (C)ek 9,8 (� (C)sk86G8,C1 ) [B ]
∗
9 ∈ G1, (3.7)

where (in a minor abuse of notation) ek 9,8 denotes the encryption key that user 9
chooses to uniquely associate with user 8 , and [B]∗9 denotes the partial reconstruction
of user 9 ’s Shamir secret share of B . User 9 then sends f2, 98,C to the aggregator.

3) Sum secret shares. Once the aggregator has received : partial signatures f2, 98,C for
user 8 , the aggregator combines the shares in the exponent by computing

f38,C =
∏
9∈�8

(f2, 98,C ) = �1 (C)
∑

9 ∈U8 ek 9,8 (f18,C )
∑

9 ∈�8 [B ]∗9 (3.8)

= �1 (C)
∑

9 ∈U8 ek 9,8 (� (C)sk86G8,C1 )
∑

9 ∈�8 [B ]∗9 ∈ G1. (3.9)

The aggregator then sends f38,C back to user 8 .

1In our evaluation, we assume that the signing set consists of the next : users after user 8 when ordered
by their numerical identi�er.
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4) Compute �nal user signature. At this point, : secret shares of B have been added to
the exponent. Adding one more secret share therefore reconstructs B in the exponent.
User 8 computes the �nal user signature as

f8,C = �1 (C)ek8,8 · f38,C · (� (C)sk86
G8,C
1 ) [B ]

∗
8 (3.10)

= �1 (C)ek8,8+
∑

9 ∈U8 ek 9,8 (� (C)sk86G8,C1 )B ∈ G1, (3.11)

where ek8,8 is the single remaining unused encryption key. User 8 submits their �nal
user signature f8,C to the aggregator.
Note that this signature cannot be veri�ed using the veri�cation key, because this

key only works for aggregated signatures. This is intentional, as verifying individual
user signatures would trivially allow an adversary to learn the private input of a user
by brute force.

3.5.3 Signature Aggregation

After having received the �nal user signatures of all users for round C , the aggregator
computes the aggregate signature

fC =

=∏
8=1

f8,C (3.12)

= �1 (C)
∑=

8=1

∑:+1
9=1 ek8,9 (� (C)B )

∑=
8=1 sk8

(
6B1

)∑=
8=1 G8,C (3.13)

= (� (C)B )
∑=

8=1 sk8
(
6B1

)∑=
8=1 G8,C ∈ G1 . (3.14)

The aggregator sends fC to each veri�er.
Only at this point should the adjacent summation protocol reveal the sum of users’

inputs.

3.5.4 Veri�cation

Once the aggregator has published the sum of all G8,C and the aggregate signature fC ,
each veri�er checks the equation

4 (� (C), vk1) 4
(
6
∑=

8=1 G8,C
1 , vk2

)
(3.15)

= 4
(
� (C), (6B2)

∑=
8=1 sk8

)
4
(
6
∑=

8=1 G8,C
1 , 6B2

)
(3.16)

?
= 4 (fC , 62). (3.17)

3.5.5 Security Analysis of mpvas

We show that the veri�cation procedure is correct, does not leak private data, and
cannot be fooled into accepting an incorrect signature.
To see that veri�cation succeeds for a correct signature, observe that

4 (fC , 62) = 4
(
(� (C)B )

∑
sk8 (6B1)

∑
G8,C , 62

)
(3.18)

= 4
(
(� (C)B )

∑
sk8 , 62

)
4
(
(6B1)

∑
G8,C , 62

)
(3.19)

= 4
(
� (C), (6B2)

∑
sk8

)
4
(
6
∑
G8,C

1 , 6B2

)
∈ G) . (3.20)
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Theorem 4. mpvas is Aggregator Oblivious (ao).

Proof. See Appendix 3.a.1. |

Theorem 5. mpvas is Aggregate Unforgeable (au).

Proof. See Appendix 3.a.2. Intuitively, because the aggregator does not know B , they
cannot create a correct signature for a sum other than the published one. |

3.6 mpvas+: mpvas with Lower Communication Overhead

In mpvas (see Section 3.5), communication complexity is linear in the number of
malicious users : . Though we assume malicious users to be in the minority, this
level of interactivity may be too high for some applications. We present mpvas+, an
extension of mpvas to signi�cantly reduce communication complexity. Recall that we
provide a runtime analysis of mpvas and all extensions in Section 3.9.

We show that we can signi�cantly decrease the communication complexity using a
divide-and-conquer strategy. Intuitively, our solution works by dividing users into
random groups of size 2 ≤ : and providing each group with an independent set of
secret shares of B . Since each group can now individually reconstruct B in the exponent,
we can eliminate cross-group communication. As long as at least one user in each
group is non-malicious, adversaries cannot reconstruct B . We provide a statistical
analysis that this holds in Section 3.6.3.

3.6.1 Modi�cations in mpvas+

We describe how mpvas+ di�ers from mpvas.

Setup. The key di�erence with the setup of mpvas (see Section 3.5.1) is that in mpvas+,
instead of creating a single sharing over all users, the dealer randomly assigns users to
groups of size 2 ≤ : and, for each group, generates 2-out-of-2 Shamir secret shares of B .
If 2 does not divide =, then = mod 2 arbitrary groups should have one additional user,
and the secret sharing threshold of this group is adjusted accordingly. After having
chosen the random secret B ←$ Z? (as in mpvas), the dealer creates separate 2-out-of-2
Shamir secret shares of B for each group. Because a separate set of shares is created for
each group, shares from di�erent groups cannot be combined together. As in mpvas,
each share [B]8 is sent to the corresponding user 8 . Furthermore, the dealer creates
only =2 encryption keys instead of =(: + 1). In mpvas+, the list of other users in the
group is additionally sent to user 8 .

Signing. In this phase, the only di�erence with mpvas (see Section 3.5.2) is that the
aggregator sends the initial signature f18,C of each user 8 to the 2 − 1 other users in
user 8’s group, rather than sending them to : arbitrary other users.

Aggregation. The aggregation phase remains unchanged (see Section 3.5.3).

Veri�cation. The veri�cation phase remains unchanged (see Section 3.5.4).
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3.6.2 Security Analysis of mpvas+

Theorem 6. mpvas+ is ao.

Proof. The mpvas+ extension changes the behavior of plain mpvas. When 2 malicious
users end up in the same group, they can collectively reconstruct B and share it with the
aggregator, thus allowing it to tamper with the signatures of honest users. However,
note that even with knowledge of B , the aggregator still cannot learn the private values
of individual users because they are also blinded by the secret factor � (C)sk8 . When B
is known by the aggregator, mpvas directly reduces to ppats, which is ao. |

Theorem 7. mpvas+ is au2 if each group contains at least one honest user.

Proof. The mpvas+ scheme can be seen as multiple instances of the regular mpvas
scheme running on multiple groups of users, but with di�erent instances of Shamir
secret sharing used to generate the secret shares of B . Thus, au still holds following
the same logic presented in the proof of Theorem 5 for mpvas, as long as each group
contains at least one honest user. We provide a statistical analysis that this requirement
holds in Section 3.6.3. |

We emphasise that mpvas+ provides au with : malicious users only if we assume
non-adaptive corruptions. Otherwise, the security of mpvas+ is downgraded to that
of an mpvas instance with : = 2 − 1.
3.6.3 Statistical Analysis of mpvas+

The communication complexity of mpvas+ is better than that of mpvas only if 2 ≤ : .
However, unlike mpvas, in mpvas+ it is possible that at least one group consists of
adversaries only, who may then collude to retrieve private key material. We give an
exact formula for this probability, and show that it can be made negligibly small.

Let = be the number of users, : the number of malicious users, 2 the group size, and
3 = �oor (=/2) the number of groups. We assume that 2 divides = exactly. Otherwise,
= − 23 groups should be given one user more, and the following calculations give an
upper bound rather than an exact value.
We calculate the probability using a combinatorial counting argument. We model

the process of dividing users into groups as �rst dividing all = users into groups,
and then randomly (non-adaptively) corrupting : users. We count the number of
instances in which at least one group is fully corrupted, and divide this by the total
number of instances.3 The total number of instances (the denominator) is simply

(=
:

)
(i.e. the binomial coe�cient “= choose :”), but the number of problematic instances
(the numerator) is harder to compute.

Intuitively, the numerator is the number of combinations in which exactly one group
is fully compromised (which is 3 , since there are 3 groups), multiplied by the number
of ways in which the remaining = − 2 users can contain : − 2 corruptions (which is

2Against type-i and type-ii forgeries. See Appendix 3.a.2.
3We calculate the probability as a combinatorial problem. Modeling this as a permutation instead would

require counting all possible ways to assign identity to users after �xing a speci�c combination. This can
be done by multiplying both the numerator and denominator by (= − : )!:!. Since this cancels out, both
methods give the same result.
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(=−2
:−2

)
), seemingly giving the probability

3
(=−2
:−2

)
(=
:

) . (3.21)

However, this is inaccurate, because if the remaining users also fully corrupt a group,
that case is counted twice. In fact, duplicates are counted twice, triplicates are counted
thrice, and, in general, A -replicates are counted A times. Luckily, by the inclusion-
exclusion principle, it su�ces to separately count and subtract these cases.

Let ' = �oor
(
:
2

)
denote the “replicity”, which is the highest order of replication. To

determine the number of A -replicates, we �rst de�ne a helper function that counts the
number of A -replicates after �xing which A groups are fully corrupted:

rep(A ) =
(
= − A2
: − A2

)
−

'∑
8=A+1

((
3 − A
8 − A

)
· rep(8)

)
. (3.22)

This function counts the number of ways to corrupt remaining users and then recurs-
ively subtracts higher-order replicates. The number of recursive 8-replicates is found
by �rst �xing A − 8 additional groups and then multiplying by rep(8).

We conclude that the probability that at least one group is fully corrupted is exactly

3 · (=−2
:−2

) −∑'
A=2 ((A − 1) ·

(3
A

) · rep(A ))(=
:

) (3.23)

if 2 divides =, and is a strict upper bound otherwise. As in Equation 3.22, for each order
of replication, we multiply by the number of ways to choose A groups, and additionally
multiply by A − 1 to actually the multiply-counted items.
We visualize Equation 3.23 for various values of =, : , and 2 in Figure 3.1. The

�gure shows that, given su�cient users, the probability of accidentally assigning only
malicious users to a group can be made negligible with an appropriate choice of 2 . For
example, with 50 users, of which 20% malicious, choosing 2 = 7 gives a probability of
approximately 0.000841%, and can be made even smaller.
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x Figure 3.1 Probability that at least one group is fully corrupted in mpvas+. Due to
the logarithmic y-axis, lines end when they reach zero.
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3.7 mpvas-iv: mpvas with Input Validation

We have thus far assumed that parties do not try to make the protocol fail. In this
section, we present mpvas-iv, an extension to mpvas (see Section 3.5) to allow the
aggregator to identify and remove users that attempt to cause an invalid aggregate
signature. mpvas-iv is fully compatible with both mpvas+ (see Section 3.6) and mpvas-

ud (see Section 3.8).
In terms of our adversarial model (see Section 3.2), we loosen our assumptions on

users, who may now send ill-formed messages with the intent of causing veri�cation
to fail. We model the aggregator as a service provider, who may attempt to obtain
users’ private data or output a falsi�ed signature, but is expected to ensure well-formed
outputs so as to not disrupt users reliant on their services. As such, the malicious
aggregator may still collude with malicious users against con�dentiality and unforge-
ability, but the aggregator acts honestly with regard to availability. Furthermore,
we assume that the adjacent summation protocol ensures availability in this model,
including veri�ed commitments to users’ summation inputs.

mpvas-iv validates that users’ inputs are well-formed, and pinpoints users causing
malformedness. Those users are then barred from participating in future instances of
the protocol, and the protocol is restarted from scratch with the remaining users. In
the worst case, all : malicious users are removed one at a time, requiring : restarts.
However, since there will then be no more malicious users left, users can then con-
tinue normal operation without further interruptions. Therefore, whereas in mpvas

adversaries could prevent all output without end, mpvas-iv reduces this adversarial
capability to a linearly bounded overhead.

At its core, mpvas-iv adds a mechanism to validate individual �nal user signatures
when veri�cation fails. However, since users may tamper with others’ signatures, we
must also add a detection mechanism there. Note that we do not need to validate the
initial signature, since either the subsequent �nal user signature is valid and there is
no problem to begin with, or the �nal user signature is invalid and is detected as such.

3.7.1 Modi�cations in mpvas-iv

We describe how mpvas-iv di�ers from mpvas.

Setup. The setup phase of mpvas-iv starts by running the setup phase of mpvas (see
Section 3.5.1). The dealer then generates extra information for input validation.

First, the dealer chooses 6) and ℎ) as random generators of G) , and, for each user 8 ,

generates A8 ←$ Z? and the set of values EK 9,8 = 6
ek 9,8
2 . The dealer sends A8 , EK 9,8 = 6

ek 9,8
2 ,

and 6B2 to each user 8 .
Next, for each user 8 , the dealer generates SK8 = 6

sk8
) ℎA8) , SS8 = 6

[B ]8
2 , EK 9,8 = 6

ek 9,8
2

for 9 ∈ {1 . . . :}, and EKS 9,8 = 6
ek 9,8/B
2 for 9 ∈ {1 . . . : + 1}. The dealer sends these

values to the aggregator, along with a = 6
1/B
2 .

Finally, the dealer sends the additional public parameters (6) , ℎ) ) to all participants.
Signing. We require additional operations before and after the regular signing phase
of mpvas (see Section 3.5.2).
Before the regular signing phase, we require that the adjacent summation scheme

outputs Pedersen commitments of the users’ inputs to that summation scheme. This
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is to ensure consistency of the inputs between the two schemes. If mpvas-iv is used
without a separate summation scheme, the committed values should be validated using
range proofs instead. Either way, let� (G8,C ) for each user 8 denote these commitments.
After the regular signing phase is complete, each user checks their �nal user sig-

nature for tampering. If tampering is detected, the user informs the aggregator, who
then validates the corresponding partial signatures. If the aggregator also detects tam-
pering, the aggregator marks the user(s) who sent that partial signature as malicious.
Otherwise, if the aggregator does not detect tampering, the reporting user is instead
marked as malicious. The protocol then restarts without the detected malicious users.
User 8 checks their �nal user signature f8,C , calculated in Equation 3.10 on page 43,

for tampering by checking that

4 (�1 (C), 6Y82 ) 4 (� (C), (6B2)sk8 ) 4 (6
G8,C
1 , 6B2)

?
= 4 (f8,C , 62) (3.24)

holds, where Y8 =
∑:+1

9=1 ek 9,8 . In a nutshell, the left-hand side re-calculates user 8’s
expected �nal user signature under a bilinear mapping (compare with Equation 3.10
on page 43), while the right-hand side bilinearly maps the actual �nal user signature.
If Equation 3.24 does not hold, the user reports this to the aggregator.
Since the aggregator forwards all partial signatures, the aggregator possesses the

initial signature f18,C as well as the partial signature f
2, 9
8,C of each user 9 ∈ �8 . Upon re-

ceiving user 8’s claim that their signature was tampered with, the aggregator computes
for each user 9 ∈ �8 the value

f
2, 9∗
8,C = 4

(
�1 (C), 6ek 9,82

)
4
(
f18,C , 6

[B ]∗9
2

)
, (3.25)

where [B]∗9 is as in Equation 3.6 on page 42, i.e. the partial reconstruction of user 9 ’s
Shamir secret share of B , here calculated in the exponent of 62 using the set SS. Finally,
the aggregator validates the partial signature f2, 98,C by checking

f
2, 9∗
8,C

?
= 4

(
f
2, 9
8,C , 62

)
(3.26)

= 4

(
�1 (C)ek 9,8

(
� (C)sk86G8,C1

) [B ]∗9
, 62

)
(3.27)

= 4
(
�1 (C)ek 9,8 , 62

)
4
(
(� (C)sk86G8,C1 ) [B ]

∗
9 , 62

)
(3.28)

= 4
(
�1 (C), 6ek 9,82

)
4
(
f18,C , 6

[B ]∗9
2

)
(3.29)

If this holds, then user 9 did not act maliciously; otherwise, user 9 is marked as
malicious and expelled from the protocol. The aggregator repeats this process for
all users in�8 , as there can be more than one user behaving maliciously in a single
signing set.

Aggregation. The aggregation phase remains unchanged (see Section 3.5.3).
We assume that the adjacent summation scheme aborts no later than this point if

the Pedersen commitment � (G8,C ) of any user 8 does not correspond to that user’s real
input to the summation scheme.
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Veri�cation. The veri�cation phase of mpvas-iv starts by running the veri�cation
phase of mpvas (see Section 3.5.4). If veri�cation fails, the aggregator tries to �nd the
culprit by verifying that the �nal user signaturef8,C of each user 8 matches Equation 3.10
on page 43. This veri�cation entails removing the term containing the encryption
keys ek and then asking user 8 for a zero-knowledge proof of equality between the
expected and the actual value of the remaining term.
To remove the term with the encryption keys, the aggregator �rst computes

6
Y8
B

2 =

:+1∏
9=1

EK 9,8 =

:+1∏
9=1

6
ek 9,8
B

2 ∈ G2, (3.30)

and then removes the term by computing

f ′8,C =
4
(
f8,C , 6

1
B

2

)
4
(
�1 (C), 6

Y8
B

2

) (3.31)

=

4
(
�1 (C)Y8 (� (C)sk

′
86

G ′8,C
1 )B , 6

1
B

2

)
4 (�1 (C), 62)

Y8
B

(3.32)

=

4
(
�1 (C)Y8 , 6

1
B

2

)
4
(
� (C)sk′86G

′
8,C

1 , 62

)
4 (�1 (C), 62)

Y8
B

(3.33)

= 4 (� (C), 62)sk
′
8 4 (61, 62)G

′
8,C ∈ G) , (3.34)

where the values of sk′8 and G
′
8,C are implied. Finally, the aggregator asks user 8 to prove

that sk′8 = sk8 and G ′8,C = G8,C . User 8 does so by interpreting Equation 3.34 as a Pedersen
commitment and providing two zkpeq proofs (see Section 3.4): one for proving the
equality sk′8 = sk8 between f ′8,C and SK8 , and another for proving equality of G ′8,C = G8,C
between f ′8,C and � (G8,C ).
If mpvas-iv is used without an adjacent summation protocol, user 8 must also

provide a range proof (such as a Bulletproof [Bün+18]) of G8,C to show that their input
lies in a restricted range, and that extraction of the sum from fC is tractable. Users that
fail to send valid proofs are removed from the protocol and subsequent executions.

3.7.2 Security Analysis

Theorem 8. mpvas-iv is ao.

Proof. The additional information received by the aggregator does not yield any
advantage to breaking ao. In fact, the secret shares the aggregator receives in the
set SS cannot be e�ciently extracted due to the hardness of the dlp in G2. The
commitments contained in the set SK are hiding, thus the aggregator cannot extract
the signing keys either. Furthermore, as with mpvas, all initial and �nal user signatures
f18,C , f

2, 9
8,C , f

3
8,C , f8,C contain the secret factor � (C)sk8 , which perfectly hides G8,C in G1 and

prevents the aggregator from exploiting the veri�cation algorithm in Equation 3.24 to
�nd G8,C .
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The intermediate value 4 (� (C), 62)sk
′
8 4 (61, 62)G

′
8,C from Equation 3.34 is also hiding

under the random oracle model. Finally, the proof zkpeq does not leak any information
about the private witness due to its zero-knowledge property. We conclude that the
aggregator cannot learn the private value of honest users, and thus mpvas-iv is ao. |

Theorem 9. mpvas-iv is au.

Proof. See Appendix 3.a.3. |

3.8 mpvas-ud: mpvas with User Dropouts

Requiring that all users are always online is not feasible for some applications. In this
section, we present mpvas-ud, an extension to mpvas (see Section 3.5) to allow users
to choose a set of rounds in which they will not participate by sending one or more
recovery keys containing the necessary material that would otherwise be missing
from those rounds. As with the base mpvas protocol, mpvas-ud works as long as at
least : + 2 users do not drop out of the protocol. mpvas-ud is fully compatible with
both mpvas+ (see Section 3.6) and mpvas-iv (see Section 3.7).

3.8.1 Modi�cations in mpvas-ud

We describe how mpvas-ud di�ers from mpvas.

Setup. In addition to the regular setup of mpvas (see Section 3.5.1), the dealer also

sends EK 9 = 6
∑:

8=1 4: 9,8

2 , for each 9 ∈ {1 . . . =}, to all veri�ers.
If mpvas-ud is combined with mpvas+, then the setup should be adjusted to use

2-out-of-2′ secret sharing instead of 2-out-of-2 secret sharing, where 2′ ≥ 2 . This
ensures that at most 2′ − 2 users in each group can drop out without resulting in
incomplete signatures. The statistical analysis in Section 3.6.3 still applies to 2 .

Signing. In any round C , before running the regular signing phase (see Section 3.5.2),
each user 8 has the option of dropping out for a set of rounds�, possibly including
the remainder of the current round C . For each round g ∈ � from which user 8 would
like to drop out, user 8 calculates a recovery key

rk8,g = 4
(
� (g)−sk8 , 6B2

)
∈ G) . (3.35)

User 8 then sends<8 = (8 ∥ g ∥ rk8,g ) to the aggregator, who forwards both to the
veri�ers. Note that the aggregator can aggregate all recovery keys A:8,C together before
sending them to the veri�ers to save space and reduce the communication overhead.

If mpvas-ud is used in the adversarial model of mpvas-iv (see Section 3.7), we must
additionally ensure that user 8 cannot invalidate signatures of rounds�. Therefore,
user 8 must prove that the recovery key is well-formed using a zero-knowledge proof
that sk8 in rk8,g is the same as in the commitment 6sk8

)
ℎA8
)
from the setup of mpvas-iv.

Concretely, user 8 proves the relation

{(G,~) : ( = 6G1ℎ
~
1 ∧) = 6G2 }, (3.36)

which can be implemented and made non-interactive similar to zkpeq (see Section 3.4).
The signing phase then proceeds as normal, but without the users who have opted

to drop out of round C .
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Aggregation. The aggregation phase remains unchanged (see Section 3.5.3).

Veri�cation. The veri�cation phase of mpvas-ud replaces that of regular mpvas (see
Section 3.5.4). In round C , let�C be the set of users that dropped out, and letℛC be the
set of the remaining users. Since users�C do not participate in the adjacent summation
protocol of round C , the published sum should be GC =

∑
8∈ℛC

G8,C , and the aggregate
signature should similarly be over that sum. To verify that the signature fC is correct,
the veri�er uses the dropped-out users’ recovery keys and checks

4
(
6GC1 , vk2

)
4 (� (C), vk1)

∏
8∈�C

rk8,C
?
=

4 (fC , 62)
4
(
�1 (C),

∏
8∈ℛC

EK8

) . (3.37)

This is essentially a modi�cation of Equation 3.15 on page 43 wherein the veri�er
assumes that dropped-out users input G8,C = 0, while compensating for missing
information using the recovery material. To see that correctness holds, let f ′C =

(� (C)
∑

8∈ℛC
sk86GC1 )B be the desired signature (see Equation 3.14 on page 43), recall the

de�nition of vk from Equation 3.4 on page 42, and observe that on the left-hand side
of Equation 3.37 we �nd

4
(
6GC1 , vk2

)
4 (� (C), vk1)

∏
8∈�C

rk8,C (3.38)

= 4
(
6GC1 , 6

B
2

)
4 (� (C), vk1) 4 (� (C), 6B2)−

∑
8∈�C

sk8 (3.39)

= 4
(
6GC1 , 6

B
2

)
4 (� (C), 6B2)

∑
8∈ℛC

sk8 (3.40)

= 4
(
(� (C)

∑
8∈ℛC

sk86GC1 )B , 62
)
= 4 (f ′C , 62). (3.41)

Similarly, on the right-hand side of Equation 3.37, we �nd

4 (fC , 62)
4
(
�1 (C),

∏
8∈ℛC

EK8

) (3.42)

=

4
(
�1 (C)

∑
8∈ℛC

∑:+1
9=1 ek 9,8

(
� (C)

∑
8∈ℛC

sk86GC1

)B
, 62

)
4
(
�1 (C),

∏
8∈ℛC

EK8

) (3.43)

=
4 (�1 (C), 62)

∑
8∈ℛC

∑:+1
9=1 ek 9,8 4

(
f ′C , 62

)
4 (�1 (C), 62)

∑
8∈ℛC

∑:+1
9=1 ek 9,8

(3.44)

= 4
(
f ′C , 62

)
. (3.45)

3.8.2 Security Analysis

Theorem 10. mpvas-ud is ao.

Proof. See Appendix 3.a.4. |

Theorem 11. mpvas-ud is au.

Proof. See Appendix 3.a.5. |
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3.9 Complexity Analysis of the mpvas Family

We evaluate the complexity of mpvas and each of its extensions. In Section 3.9.1, we
present the asymptotic communication complexity of our schemes, and compare this
with a selection of related works. In Section 3.9.2, we describe our experimental setup
for empirically determining runtime complexity. After that, we present the results of
this analysis for mpvas in Section 3.9.3, for mpvas+ in Section 3.9.4, for mpvas-iv in
Section 3.9.5, and for mpvas-ud in Section 3.9.6.

3.9.1 Asymptotic Communication Complexity

In Table 3.2, we summarize the asymptotic communication complexity of all proposed
schemes and compare them with state-of-the-art protocols that consider malicious
users. The dealer has to share information with every user, which leads to a complexity
of O(=) for all signature schemes. Users only communicate within their own signing
set, for a complexity of O(:), or O(2) in the mpvas+ scheme. The aggregator needs to
relay messages between each user and their signing set, which leads to a complexity
of O(:=) for the mpvas and mpvas-iv schemes, and O(2=) for the mpvas+ scheme.
Veri�ers do not actively participate in the protocol.

x Table 3.2 Asymptotic communication complexity per party in related works and in
the mpvas family

Dealer Aggregator User Veri�er Ledger

[LL21] O(=) O(1) O(1) O(0) –
[MT21] O(1) O(1) O(1) O(0) O(=)

[Ren+22] O(=) O(=2) O(=) O(0) –

mpvas O(=) O(:=) O(:) O(0) –
mpvas+ O(=) O(2=) O(2) O(0) –

mpvas-iv O(=) O(:=) O(:) O(0) –
mpvas-ud O(=) O(:=) O(:) O(0) –

The mpvas family of protocols enjoys reduced communication complexity compared
to [Ren+22], but increased communication complexity compared to [LL21, MT21]. We
note that similar schemes such as [Bak+15, Leo+15, LL21, MT21], work in a di�erent
system and adversarial model where there is little to no interaction between the
participants except for the initial setup. As such, the communication complexities
for these schemes is O(1) for both the aggregator and the users. (Similarly, the
computation complexity is O(1) for the users and O(=) for the aggregator.) While this
is better than any of the mpvas variants, the adversarial model in these related works
is also weaker than those used in our work. As discussed in Section 3.3, the compared
schemes either assume honest behavior from the users [Leo+15, Bak+15], no collusions
between the aggregator and the users [MT21], or they rely on a semi-trusted party
during protocol execution [MT21, LL21]. That said, mpvas can trivially be generalized
to these alternative scenarios. For example, honest users can be simulated by choosing
: = 0, which leads to a non-interactive scheme with O(1) communication complexity
and a computation complexity nearly identical to that of the puda scheme [Leo+15].
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Similarly, choosing : = 1 for mpvas corresponds to the scheme presented in [LL21],
which entrusts a semi-trusted third party with the secret signing key, and similarly
leads to constant communication complexity.

3.9.2 Experimental Setup

We created a proof-of-concept implementation of mpvas and its extensions [PD25].
We use the Charm framework [Bla79], which is widely used for the prototyping and
benchmarking of cryptographic schemes [RW13, Ara+17]. All experiments were run
on a Threadripper 7970X cpu with 256GB of ram, on Debian 12. The protocol ran
sequentially on a single core in a single thread without special optimizations.
We do not model communication between nodes, measuring only the runtime of

our schemes’ computations. We measure wall-clock time with nanosecond precision.
We repeat each experiment �ve times, and take the mean runtime.

The experiments are performed over the mnt224 elliptic curve, which is pairing
friendly, provides 112 bits of security [Cui+18], and allows for type-3 pairings, which are
necessary for the sxdh assumption [Bak+15]. This is the most secure curve provided
by the Charm framework that is compatible with our schemes. While the current
recommendation is to use curves that provide 128 bits of security as a conservative
choice, 112 bits is the minimum security level required by nist for the United States
Federal Government [BR19]. In this curve, elements in G1 are 56 bytes, in G2 are
168 bytes, in G) are 168 bytes, and in Z? are 28 bytes [KR19], which we veri�ed
experimentally. The size of the elements in�uences the performance of the various
algebraic operations performed in each group.

3.9.3 mpvas Runtime

We show the runtime of mpvas (see Section 3.5) in Figure 3.2. Firstly, Figure 3.2a
shows that, even when there are 1000 users and : = 30% of all users are malicious,
the runtime is only around 0.36 seconds for a single user. As expected from an
asymptotic complexity O(:), the runtime decreases with the number of malicious
users : . Secondly, Figure 3.2b shows a similar trend for the aggregator. Moreover,
when : = 0, the aggregator does not have to combine partial secret sharing for every
user, and the runtime dips below even that of a single user. Finally, Figure 3.2c shows
the runtime for veri�ers. As expected, since a veri�er only needs to compute three
pairings regardless of the number of users, runtime is constant.

3.9.4 mpvas+ Runtime

mpvas+ (see Section 3.6) reduces computational complexity under well-de�ned prob-
abilistic assumptions, assuming non-adaptive corruptions. We present its runtime in
Figure 3.3. We note that, at : = 0%, mpvas+ reduces directly to mpvas, and complexity
is independent of the number of users. For experiments with : > 0%, we choose
the smallest group size 2 such that the probability that at least one group is fully
compromised is at most 10−5, using our combinatorial formula in Equation 3.23 on
page 46, giving us group sizes ranging from 5 up to 14.

We see in Figure 3.3a that, compared to mpvas, user runtime is reduced by an order
of magnitude. Since the runtime depends only on the constant 2 , the runtime appears
to become constant even as = continues to grow.
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We see in Figure 3.3b that the speedup for the aggregator is similar. As in mpvas,
the main bottleneck for the aggregator is combining the partial user signatures as
in Equation 3.8 on page 42. (Combining the �nal user signatures requires negligible
runtime.) Reducing the group size 2 a�ects this bottleneck directly. For example, with
1000 users, setting 2 = 14 means the aggregator must only aggregate 2 − 1 = 13 values
per user instead of : = 300, reducing complexity in this part by a factor of 23.
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3.9.5 mpvas-iv Runtime

mpvas-iv (see Section 3.7) deals with malicious users causing malformed signatures.
The aggregator identi�es these users through several additional checks. Since the
aggregator does not know the number of malicious users beforehand, they will check
all signatures in order to �nd every user that acted maliciously during each round.

First, we consider the case in which users obtain invalid �nal user signatures during
the signing phase and report these to the aggregator. Figure 3.4a shows the runtime for
a single user. We see that the total runtime for a single user is comparable to that of the
mpvas scheme, as there are no additional steps required from users at this stage. For
the aggregator, instead, the runtime is dependent on the number of reports received
and the size : of each signing set. This dependence is clearly shown in Figure 3.4b,
Figure 3.4c, and Figure 3.4d, in which we consider three cases where 10%, 50%, and
100% of users submit a report to the aggregator. In all cases, the runtime is noticeably
higher than in the base mpvas protocol. The reason for this steep increase is the
additional exponentiations and pairings required to check whether each signature f29,8
is well-formed. Moreover, these checks must be repeated for every user in a signing set
in order to �nd every possible instance of tampering or whether the report was actually
false. We remark that our implementation does not include any speci�c optimizations,
such as parallelization. Since veri�cation is embarrassingly parallel for the aggregator,
we expect this can be sped up linearly in the number of cores.

200 400 600 800 1,000
0

0.1

0.2

0.3

0.4

50

Number of users, =

R
u
n
ti
m
e
[s
]

: = 30%

: = 20%

: = 10%

: = 0%

(a) Mean user

200 400 600 800 1,000
0

100

200

300

50

Number of users, =

R
u
n
ti
m
e
[s
]

: = 30%

: = 20%

: = 10%

: = 0%

(b) Agg. (10% of reports received)

200 400 600 800 1,000
0

500

1,000

1,500

50

Number of users, =

R
u
n
ti
m
e
[s
]

: = 30%

: = 20%

: = 10%

: = 0%

(c) Agg. (50% of reports received)

200 400 600 800 1,000
0

1,000

2,000

3,000

50

Number of users, =

R
u
n
ti
m
e
[s
]

: = 30%

: = 20%

: = 10%

: = 0%

(d) Agg. (100% of reports received)

x Figure 3.4 Empirical runtime of mpvas-ivwith �nal user signature tampering. Note
the di�erent y-axis scales.
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Next, we consider the case in which malicious users submit malformed �nal user
signatures to the aggregator. When this happens, veri�cation of the aggregate signature
fails, and the aggregator starts a procedure to identify the malicious users. The checks
in this procedure must be performed on all = users, thus giving a linear complexity for
the aggregator. Figure 3.5a and Figure 3.5b show the runtime for a single user and for
the aggregator, respectively. We see that the runtime for the aggregator can reach up
to 22 seconds on our machine. Despite the increased runtime for the aggregator, recall
from Section 3.7 that this identi�cation procedure is necessary only after malicious
behavior has occurred. Our experiments represent the cumulative worst-case “denial
of service” that malicious users can in�ict on the aggregator and other users.

3.9.6 mpvas-ud Runtime

In mpvas-ud (see Section 3.8), there are changes in the signing phase for users that
drop out and in the veri�cation phase for veri�ers. We, therefore, focus on their
runtimes in Figure 3.6. In our experiments, we �x the number of user dropouts to be
10%, 30%, and 50% of the total number of users.

Figure 3.6a shows the runtime for each dropped-out user. We �nd that the runtime
is independent of the number of malicious users and the number of dropped-out users,
which is expected since the protocol is non-interactive for these users and the recovery
material can be computed in constant time.

From Figure 3.6b, Figure 3.6c, and Figure 3.6d we see that the runtime for the veri�er
is not constant anymore, unlike all other variants of mpvas. In mpvas-ud, the veri-
�er’s runtime is linear in the number of remaining users because it must compute the
product of the masking factors EK 9 for every remaining user 9 , as described in Equa-
tion 3.37 on page 51. Note that the product of the recovery keys rk8,C is precomputed
by the aggregator before being sent to the veri�ers to save bandwidth. Still, these
multiplications not particularly expensive and, even in the worst case we consider,
with 1000 users and only 10% dropouts, the total running time is below 0.0165 seconds.

3.10 Conclusions

mpvas and its extensions ensure the con�dentiality of the input values and the integrity
and authenticity of the aggregate even in the presence of a malicious aggregator and a
subset of malicious users that collaborate to tamper with the result of the aggregation.
Ensuring not only con�dentiality but also integrity and authenticity even in the
presence of malicious adversaries helps to develop more trust in the results of privacy-
preserving schemes and make such schemes appealing to a wider range of scenarios.
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3.a Security Arguments for the mpvas Family

In this appendix, we provide evidence of the unforgeability of the aggregate signature
schemes of mpvas. In order to do so, we adopt the concept of Aggregate Unforgeable
(au) [LL21, Leo+15, Emu+19], which denotes the notion that in round C , the aggregator
cannot produce a valid proof of correctness fC for a sum that was not computed from
inputs submitted by the registered users. Throughout this appendix, we regularly refer
to the scheme by Shi et al. [Shi+11, Section 5], which we shall henceforth call ppats.

Types of forgeries. We say that an adversary A successfully forges an aggregate
signature fC for some round C if it outputs (sumC , fC ) such that Verify(C, vk, sumC , fC ) =
1 and sumC ≠

∑=
8=1 G8,C . In other words, A can provide a valid aggregate signature

that successfully authenticates an incorrect sum. We distinguish between two types
of forgeries [Bak+15, Leo+15, LL21, Emu+19, TDP16]:

• Type-i , when an adversary A forges an aggregate signature for a round C∗ in which
A did not see any signatures from the users, which implies forgeries for future
rounds of the protocol, and

• Type-ii , when an adversaryA forges an aggregate signature for a round C∗ in which
A saw all signatures from the users, which implies forgeries for present or past
rounds of the protocol.

3.a.1 Aggregator Obliviousness of mpvas

We provide the proof of Theorem 4 on page 44. We �rst provide some preliminaries,
and then restate the theorem as Theorem 12.
We show that if a probabilistic polynomial-time adversary has a non-negligible

advantage of breaking the Aggregator Oblivious (ao) property of mpvas, then it also
has a non-negligible advantage of breaking the ao of ppats, which is proven under
the Decisional Di�e-Hellman (ddh) assumption. The proof of this property follows
an indistinguishability-based game, and it provides an adversary with access to the
following oracles.

• OSetup (1_): Performs the setup of the mpvas scheme using the given security para-
meter _ and replies with the public parameters pp and the veri�cation key vk. The
secret values of each user ( [B]8 , sk8 ) are kept secret.

• OCompromise1 (8 ∈ U): When queried on user 8 , the oracle replies with the secret of
user 8 , namely ( [B]8 , sk8 ).

• OSign (8 ∈ U, C, G8,C ): Given an input G8,C of user 8 in round C , the oracle replies with(
f18,C , {f

2, 9
8,C } 9∈�8

, f38,C , f8,C

)
, where f ℓ8,C is a �nal user signature for each 1 ≤ ℓ ≤ 3, and

f8,C is the �nal user signature.

• OChallenge (X0
C∗ ,X1

C∗ ): Given two sets of input values X0
C∗ ,X1

C∗ of size |X8
C∗ | = =, such

that
∑

8∈* ∗ G
0
8,C∗ =

∑
8∈* ∗ G

1
8,C∗ , the oracle randomly �ips a coin 1 ←$ {0, 1} and, for

set X1
C∗ , it returns all the corresponding partial and �nal user signatures of its inputs.

Aggregator Obliviousness security game. The ao security game is based on the game
introduced by Shi et al. [Shi+11]. We derive the term ao from this game, following the
de�nitions in [Leo+15, LL21].
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De�nition 1 (Aggregator Oblivious (ao)). Let Pr[Aao] denote the probability that
aggregatorA outputs 1∗ = 1 in the ao game. A data aggregation protocol is said to be
ao if any polynomially bounded A has negligible advantage Pr[Aao] ≤ 1

2
+ negl(_)

of winning the ao game.

Theorem 12 (Restatement of Theorem 4). The mpvas scheme is ao in the random
oracle model under Symmetric External Di�e-Hellman (sxdh) in G1 and G2.

Proof. Let us assume an adversaryA that can win the ao game with a non-negligible
advantage. We show how a polynomial time algorithm B can break ppats, which is
provably secure under the ddh assumption, by using A as a subroutine. We refer to
the following oracles provided by the ppats scheme:

• Oppats
Setup returns the public parameters.

• Oppats
Encrypt returns the ciphertext 28,C of a given input G8,C in round C using ppats.

• Oppats
Compromise returns the secret encryption key sk′8 of a speci�ed user 8 ∈ U.

• Oppats
Challenge, only called once during the game, randomly �ips a coin 1 ←$ {0, 1} and,

similarly to the challenge phase described above, encrypts one of the two plaintext
sets chosen by the adversary X1

C∗ = {G8,C∗ }8∈U∗ .
We follow the ao security game and show how B reacts to the queries of A.

1. Setup. When A queries the OSetup (1_) oracle, B queries Oppats
Setup (1_). The latter re-

turns the public parameters ppppats = (�,G1, 61, ?). B also queries Oppats
Compromise (0),

which returns the secret key of the aggregator sk� = −∑=
8=1 sk

′
8 . B will additionally

choose the remaining public parameters of mpvas, pp = (�,G1,G2,G) , 61, 62, 4, :).
Finally, B chooses the secret keys

(
B, {sk8 }8∈U, {{ek8, 9 }1≤ 9≤: }8∈U

)
, creates = secret

shares [B]8 using (: + 1, =)-Shamir secret sharing, and creates the veri�cation key

vk =

(
(6B2)−sk� , 6B2

)
=

(
(6B2)

∑=
8=1 sk

′
8 , 6B2

)
. (3.46)

Finally, B returns pp and vk to A.

2. Learning. Consists of three parts.

Compromise. When A queries the OCompromise1 (8 ∈ U) oracle, B will, in turn,
query Oppats

Compromise (8 ∈ U) and return the corresponding secret key sk′8 of user 8 .
Additionally, the secret share [B]8 is sent to A.

Sign. When A calls OSign (8 ∈ U, C, G8,C ), B queries Oppats
Encrypt (8 ∈ U, C, G8,C ) to obtain

2ppats8,C = � (C)sk′86G8,C1 . B then computes

f18,C = 2
ppats
8,C = � (C)sk′86G8,C1 , (3.47)

f
2, 9
8,C = �1 (C)ek 9,8

(
f18,C

) [B ]∗9 , (3.48)

f38,C =
∏
9∈�8

f
2, 9
8,C , and (3.49)
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f8,C = �1 (C)ek8,8 · ©«
∏
9∈�8

f
2, 9
8,C

ª®¬
· (f08,C ) [B ]∗8 (3.50)

= �1 (C)ek8,8+
∑

9 ∈�8 ek 9,8 ·
(
� (C)sk′86G8,C1

)B
. (3.51)

Notice how each partial signature and the �nal user signature f8,C are constructed
from the ciphertext output by the encryption algorithm of ppats but perfectly
simulates a partial or �nal user signature of the mpvas scheme. Finally, B returns(
f18,C , {f

2, 9
8,C } 9∈�8

, f8,C

)
to A.

Verify. A can use Equation 3.15 on page 43 to test the correctness of an aggregate
sum using the veri�cation key vk obtained during the setup.

3. Challenge. A chooses a set of uncompromised users* ∗ ⊆ U, with |* ∗ | ≥ 2 and
an aggregation round C∗ for which no sign queries were made in the learning phase.
Then, A also chooses two sets of ciphertexts - 0

C∗ = {G08,C }8∈* ∗ and - 1
C∗ = {G18,C }8∈* ∗

such that
∑

8∈* ∗ G
0
8,C∗ =

∑
8∈* ∗ G

1
8,C∗ . When A calls the OChallenge (X0

C∗ ,X1
C∗ ) oracle,

B queries Oppats
Challenge (X0

C∗ ,X1
C∗ ). The oracle �ips a coin 1 ←$ {0, 1} and returns the

ciphertexts of the 1th set {2ppats18,C }8∈* ∗ . B computes the partial and �nal user
signatures using the OSign oracle, returning(

{f118,C∗ }8∈* ∗ , {{f2
1 , 9

8,C∗ } 9∈�8
}8∈* ∗ , {f3

1

8,C∗ }8∈* ∗ , {f18,C∗ }8∈* ∗
)

(3.52)

to A. In particular, the �nal user signature is

f18,C∗ = �1 (C∗)ek8,8+
∑

9 ∈�8 ek 9,8 ·
(
� (C∗)sk′86G

1
8,C∗

1

)B
(3.53)

for 8 ∈ * ∗. Notice how f18,C∗ , and all partial signatures are computed from the
ciphertexts output by the encryption algorithm of the ppats scheme and perfectly
simulate the ciphertexts, partial and �nal user signatures of the mpvas scheme.
The aggregation of all such �nal user signatures is also valid and correctly veri�ed

using the veri�cation key vk as f1C∗ =
∏

8∈* ∗ f
1
8,C∗ = (� (C∗)B )

∑
8∈* ∗ sk

′
8
(
6B1

)∑
8∈* ∗ G18,C∗ .

If A has a non-negligible advantage Y of guessing the correct bit 1∗ in the ao game of
the mpvas scheme, then B can also win the ao game of the ppats scheme with the
same non-negligible advantage Y by guessing the same bit 1∗. This would contradict
the ddh assumption in G1, because the security of the ppats scheme relies on this
assumption. Additionally, if the ddh does not hold in G1, then the sxdh assumption
does not hold either since it requires that the ddh problem be hard in G1. Therefore,
the mpvas scheme is ao in the random oracle model under the sxdh assumption. |

3.a.2 Aggregate Unforgeability of mpvas

We restate Theorem 5 as Theorem 13 and provide a proof. Recall Appendix 3.a.

Theorem 13. mpvas is au against type-i and type-ii forgeries.

Proof. We prove both types of unforgeability.
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Type-i unforgeability [Bak+15, Leo+15, LL21, Emu+19, TDP16]. A type-i forgery occurs
when the aggregator outputs a valid aggregate signature fC in a round C without
receiving any users’ signatures. Thus, the aggregator can only use knowledge from
previous rounds or by colluding with users. First, we note how signatures from
di�erent rounds are incompatible with each other. Assuming a cryptographically-
secure hash function � : {0, 1}∗ → G1 under the random oracle model its output can
be considered random. As such, in each round C , each signature has a di�erent random
factor � (C). Even assuming the aggregator chooses the round identi�er C , because
of the collision resistance property of � , it has a negligible probability of �nding
two di�erent round identi�ers C, C ′ such that � (C) = � (C ′). Similarly, because of the
second pre-image resistance property of � , given C , the aggregator has negligible
probability of �nding another C ′ such that � (C) = � (C ′). The same arguments hold
for the other hash function �1 : {0, 1}∗ → G1 used in the protocol. It follows that the
aggregator cannot reuse signatures from previous rounds. The only other option left
for the aggregator is to construct new signatures itself. However, in order to do so, all
secret signing keys sk8 are required but, assuming colluding users, the aggregator has
only access to at most : of them. The aggregator also needs the secret exponent B to
compute a valid signature, but it has only access to at most : secret shares of B , which
are not enough to reconstruct B .

Type-ii unforgeability [Bak+15, Leo+15, LL21, Emu+19, TDP16]. There are two pieces of
information that can allow the aggregator to successfully forge an aggregate signature
in a round in which it received all signatures from the users: the secret exponent B or
the factor 6B1. The exponent B is secret-shared by all users using (:+1, =)-Shamir secret
sharing. Since we assume at most : malicious users who collude with each other and
: shares leak no information about the underlying secret B , then no dishonest party
can directly learn B from exchanging their shares. Additionally, if 6B ∈ G1 is known,
for any 6 ∈ G1, recovering B is considered computationally infeasible because Discrete
Logarithm Problem (dlp) is assumed to be hard in G1. The same argument applies to
the value 6B2 ∈ G2, which is part of the veri�cation key and known by every veri�er.
Note that, while a malicious actor may know 6B2, since the Co-Computational Di�e-
Hellman (co-cdh) [BLS04] problem is assumed to be hard in G1 and G2, obtaining 6B1
is still considered hard.

In a malicious setting where users can behave arbitrarily, sending malformed signa-
tures may allow them to gain additional information that will allow them to break the
au property.

Each signature starts with the form f18,C = � (C)sk86
G8,C
1 . Clearly, any malicious party

can immediately tamper with this signature since 61 is public. However, the aggregator
is required to send a Compute �nal user signature request to every user in order for
the aggregate signature to be successfully veri�ed. From Equation 3.10, any f38,C that

was not computed using user 8’s original f18,C will lead to an invalid f8,C , because the
bases of the two factors will not match. This, in turn, will lead to an invalid aggregate
signature fC .

In order to prevent malicious actors from manipulating any of the partial signatures
to obtain 6B1, each user 9 is required to further mask any response to a Create partial
signature or Compute �nal user signature request with a fresh masking factor �1 (C)ek 9,8 .
Assuming at most : malicious users, any signing request from each user 8 will result in
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a f8,C containing at least one such factor, since either user 8 itself or a user in its signing
set must be honest by assumption. Therefore, all that malicious actors can learn by
deviating from the protocol is of the form �1 (C)Y6B or �1 (C)Y6[B ]

∗
9 , where 6 ∈ G1 and Y

indicates the sum of any non-empty subset of masking exponents ek 9,8 . None of these
values can be used to successfully forge a valid aggregate signature, as they would
introduce extra masking exponents that would not sum up to zero anymore. As a
result, the veri�cation algorithm will fail. |

3.a.3 Aggregate Unforgeability of mpvas-iv

We restate Theorem 9 as Theorem 14 and provide a proof. Recall Appendix 3.a.

Theorem 14. mpvas-iv is au against type-i and type-ii forgeries.

Proof. In the mpvas-iv extension, the aggregator is trusted to detect users who may
attempt disrupt the normal execution of the protocol and not to disrupt the protocol
itself. However, the aggregator is still considered malicious with respect to the unforge-
ability property of the mpvas-iv extension. This extension provides the aggregator
with additional knowledge that is not available in the main scheme. As such, in this
section, we provide additional arguments to show why au is still maintained in the
mpvas-iv extension.

Type-i forgeries. The new pieces of information that the aggregator is handed in the

mpvas-iv extension are the sets SS8 = 6
[B ]8
2 , SK8 = 6

sk8
)
ℎA8
)
, EK 9,8 = 6

ek 9,8
2 , EKS 9,8 = 6

ek 9,8/B
2 ,

and the value a = 6
1/B
2 . Since dlp is assumed to be intractable inG2, the aggregator has

a negligible probability of obtaining the secret share [B]8 or the masks ek 9,8 of a user 8

from 6
[B ]8
2 and 6

ek 9,8
2 , respectively. Similarly, �nding 1

B
from a is also hard. Additionally,

because of the perfect hiding property of Pedersen commitments, the aggregator cannot
learn any information about the signing key sk8 from its corresponding commitment
in SK8 . Hence, the additional information that is handed to the aggregator in the
mpvas-iv extension gives the aggregator no advantage of learning the necessary
information to create type-i forgeries.

Type-ii forgeries. There is no additional piece of information handed to the aggregator
in the mpvas-iv extension that could allow it to create type-ii forgeries. Intuitively,
this is because all of the additional values are members of either G2 or G) , but the
signatures are elements of G1. As such, there is no additional information that could
be used by the aggregator to tamper with the signatures in G1, assuming the sxdh
assumption holds in the chosen pairing group. |

3.a.4 Aggregator Obliviousness of mpvas-ud

We recall Theorem 10 and provide a proof. Recall Appendix 3.a.1.

Theorem 10. mpvas-ud is ao.

Proof. In the mpvas-ud protocol, the signing phase is identical to that of the main
mpvas protocol for all remaining users. As such, the signature of each remaining user
perfectly hides the input value, as proven in Theorem 12.
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The signing phase is, however, di�erent for dropped-out users. Each user is required
to send a recovery key rk8,C for every round C it wish to drop out of. This value could,
in turn, be plugged into Equation 3.24 on page 48, using EK 9,8 , to �nd user 8’s secret
input value by brute force. Fortunately, the signing key sk8 is bound to the generator
� (C) and, thus, can only be successfully used in round C , during which dropped-out
users do not submit any data. Additionally, if malicious users collaborate to create
: additional recovery factors rk8,C , then, as long as at least two honest users do not
drop out during round C , only the sum of their input data can be computed, but not
the individual values.
As a result, the input data of both remaining and dropped-out users remain private

during every step of the protocol. |

3.a.5 Aggregate Unforgeability of mpvas-ud

We restate Theorem 11 as Theorem 15 and provide a proof. Recall Appendix 3.a.

Theorem 15. mpvas-ud is au against type-i and type-ii forgeries.

Proof. The main addition introduced by the mpvas-ud extension is the recovery key
rk8,C that users that wish to exit the protocol during some round C submit to the
aggregator. The recovery key is computed over G) , so it cannot be used to directly
a�ect the signatures, which are elements of G1.
The aggregator cannot lie about the set of users that drop out during any given

round C and cannot publish more than one valid aggregate signature. Forcing a subset
of users out of the protocol would lead to a failed veri�cation, since the aggregator
cannot provide the veri�ers with valid recovery keys for the missing users on its
own. Similarly, the aggregator cannot force a dropped-out user 8 in the protocol as
it does not possess its signing key sk8 . Assuming a subset of users colludes with the
aggregator and provides it with valid recovery keys, we identify two cases.

If any of these users actually engage in the protocol, then their recovery key alone
would not su�ce anymore, because their �nal user signature would contain at least
one masking factor �1 (C)ek 9,8 , with ek 9,8 belonging to an honest user 9 , which has not
been redistributed among the remaining users. As such, the check in Equation 3.37
would fail. Otherwise, if they do not submit anything, then the aggregator is forced to
forward their recovery keys, indicating they have indeed dropped out, otherwise, the
veri�cation would fail.

As for type-i forgeries, the same arguments presented in Theorem 5 similarly apply
to mpvas-ud. |
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Part III

Reconstruction Attacks





Chapter 4

Topology-Based Reconstruction Prevention for
Decentralised Learning

Abstract. Decentralised learning has recently gained traction as an alternative to federated
learning in which both data and coordination are distributed over its users. To preserve the
con�dentiality of users’ data, decentralised learning relies on di�erential privacy, multi-party
computation, or a combination thereof. However, running multiple privacy-preserving sum-
mations in sequence may allow adversaries to perform reconstruction attacks. Unfortunately,
current reconstruction countermeasures either cannot trivially be adapted to the distributed
setting, or add excessive amounts of noise.

In this work, we �rst show that passive honest-but-curious adversaries can infer other users’
private data after several privacy-preserving summations. For example, in subgraphs with 18
users, we show that only three passive honest-but-curious adversaries succeed at reconstructing
private data 11.0% of the time, requiring an average of 8.8 summations per adversary. The success
rate depends only on the adversaries’ direct neighbourhood, and is independent of the size of
the full network. We consider weak adversaries that do not control the graph topology, cannot
exploit the inner workings of the summation protocol, and do not have auxiliary knowledge;
and show that these adversaries can still infer private data.

We develop a mathematical understanding of how reconstruction relates to topology and
propose the �rst topology-based decentralised defence against reconstruction attacks. Speci�c-
ally, we show that reconstruction requires a number of adversaries linear in the length of the
network’s shortest cycle. Consequently, exact reconstruction attacks over privacy-preserving
summations are impossible in acyclic networks.

Our work is a stepping stone for a formal theory of topology-based decentralised recon-
struction defences. Such a theory would generalise our countermeasure beyond summation,
de�ne con�dentiality in terms of entropy, and describe the interactions with (topology-aware)
di�erential privacy.

Based on: FlorineW.Dekker, Zekeriya Erkin andMauro Conti. “Topology-based reconstruction prevention

for decentralised learning”. In: Proceedings on Privacy Enhancing Technologies 2025.1 (2025), pages 553–566.

doi: 10.56553/POPETS-2025-0030.
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4.1 Introduction

M
achine learning is used in a wide array of systems, including malware de-
tection [Rie+11], predictive text [Bon+17], and smartwatches [Wei+16]. These
systems require access to large amounts of reliable data in order to function

accurately. In practice, the necessary data usually exist, but are distributed over many
data owners. The naive approach for data collection is to have the data owners send
their data to a central server, which trains a machine learning model on these data
before deploying it. However, sharing private data may result in misuse, for example
in the form of targeted advertising or harassment. In an age of increasing privacy
awareness, data owners may be reluctant to share their data, threatening the viability
of data-intensive machine learning applications.
The emerging �eld of federated learning, �rst formalised in [McM+17], addresses

these privacy issues by distributing the training process over the data owners. Instead
of submitting their data, each data owner �rst trains a machine learning model on
their local data and then submits this model to a central server. This central server,
called the aggregator, uses a privacy-preserving summation protocol to combine the
received models into a single global model. The central server then sends back the
global model to the data owners, who apply another round of training, repeating the
entire process until the global model has converged.
A signi�cant drawback of classical federated learning is that communication is a

bottleneck, scaling quadratically [Bon+17] or poly-logarithmically [Bel+20] in the
number of users. Decentralised learning, a variant of federated learning [Kai+21],
removes this bottleneck by distributing both the data and the coordination between
users. Training happens in a peer-to-peer fashion, with users exchanging information
only with their direct neighbours. This signi�cantly reduces the communication
complexity [Lia+17], allowing for cost-e�ective deployments without a central server.
Furthermore, because communication is local, it becomes much harder for adversaries
to observe the full network [Tro+17].

Recently, there has been increased interest in decentralised learning. Though some
works do not consider privacy [Lia+17, Tan+18, ZBT20], many other works do. Some of
these works [VBT17, Bel+18, ZBT20] consider algorithms in which nodes are randomly
selected to calculate updates, and protect the private data underlying the models
using di�erential privacy. That is, they apply carefully calibrated random noise to
the calculated gradients before sharing them with others. A slight variation of this
is to use a random walk through the graph to determine the order in which updates
occur [Cyf+22]. There are also works [Che+18a, Qu+20, Sch+20] that use blockchains
to facilitate the communication and coordination between nodes, and then similarly
use di�erential privacy. Finally, instead of di�erential privacy, some works utilise
multi-party computation [Dan+18, Kan+20, Tra+21], which does not give noisy results,
but has higher computational costs.
A common thread in these works is that they apparently assume that if a single

summation is secure, then the protocol remains secure after multiple summations.
However, this requires further scrutiny, as combining information from multiple
rounds may reveal previously hidden information. For example, given private re-
cords �, �, and � , and a privacy-preserving summation protocol, an adversary could
separately query � + �, then � +� , and �nally � +� , and use a linear algebra solver
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to learn all three private records. To defend against such attacks, one must prevent
sequences of queries that would reveal private data. Naive restrictions, such as requir-
ing a minimum number of included records per query, are insu�cient: The adversary
could still �rst query the sum of all models and then query the sum of all models
except one, allowing them to reconstruct the excluded model. As such, designing
proper countermeasures requires a formal theory.
Extracting data from output traces is known as a reconstruction attack, which

has its roots in the theory of statistical disclosure [Fel72]. Many defences have been
proposed since the 1970s, including query auditing [CÖ82], perturbation [Dwo06], and
random sampling [Den80]. However, these works assume either a central database,
or otherwise assume a central arbiter that determines which queries are allowed. In
decentralised learning, there is no clear leader who can be trusted to audit queries.
Instead, decentralised learning requires a decentralised solution. Apart from works
on perturbation, to the best of our knowledge, only da Silva et al. [dSil+04] have
considered reconstruction attacks in peer-to-peer networks, but their work applies
only to distributed clustering, and does not propose any countermeasures. When con-
sidering perturbation, naively applying user-level di�erential privacy in a distributed
setting results in linearly-scaling noise, severely reducing the protocol’s utility [DR14,
ZMW17, Cyf+22]. Intuitively, utility can be increased while retaining the level of
privacy by correlating noise by topology [Dwo06], but to the best of our knowledge
only a few works have done this. Guo et al. [Guo+22] reduce noise based on the mutual
overlaps of neighbours’ neighbourhoods, but do not consider time-series correlations.
Cy�ers et al. [Cyf+22] observe that data sensitivity decreases as mutual node distances
increase, but their solution does not scale well under collusion.

In this work, we analyse reconstruction attacks performed by colluding adversaries
in peer-to-peer networks. We model the network after decentralised learning, though
our analysis is su�ciently generic to describe a sequence of summations in any envir-
onment. Summation is a simple protocol, but is su�cient to implement many of the
aforementioned decentralised learning protocols, in addition to smart metering [GJ10]
and even principal component analysis, singular-value decomposition, and decision
tree classi�cations [Blu+05]. We assume a set of nodes, each with a private datum
that changes over time, and allow privacy-preserving summation over one’s direct
neighbours. We do not consider auxiliary knowledge; see Section 4.3.3 and [Cor+13,
CT13] for a detailed discussion on the real-world applicability of this model. We then
formalise the relation between reconstruction and network topology, and prove that
exact reconstruction attacks are impossible in a speci�c class of topologies.
Concretely, we begin by showing that reconstruction attacks are practical, and

that, in random peer-to-peer subgraphs, three honest-but-curious adversaries with 15
neighbours succeed in �nding at least one neighbour’s private datum with an 11.0%
success rate, requiring an average of only 8.8 rounds per adversary. The success rate
is independent of the size of the full network; it depends only on the adversaries’ local
neighbourhood. We then show that the success rate depends on the connectivity of
the network rather than its size. Speci�cally, we show that reconstruction corresponds
to cycles in the graph: If the graph’s shortest cycle has length 2: , then reconstruction
never succeeds if there are fewer than : adversaries. Finally, we brie�y evaluate the
impact of increasing girth on the convergence of a distributed averaging protocol, and
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�nd that while all graphs require more rounds to achieve convergence, dense graphs
are a�ected less when “stretched” to higher girths.
To the best of our knowledge, our work is the �rst to propose a topology-based

decentralised defence to reconstruction attacks. We show that restricting how summa-
tions may be composed makes it impossible to reconstruct private data. We assume
that adversaries do not have auxiliary knowledge, as restrictions on summations can-
not be guaranteed otherwise. With the ultimate goal of developing a general theory of
structured composition as a distributed reconstruction countermeasure, future work
may include �nding a condition that is not only su�cient (as seen in this work) but
also necessary for reconstruction, generalising these countermeasures to operations
beyond summation, stronger notions of privacy rooted in information theory, and
investigating the interactions with (topology-aware) di�erentially private noise.
The remainder of this paper is structured as follows. In Section 4.2, we discuss

related work. In Section 4.3, we describe the preliminaries: We explain basic primitives,
formalise our assumptions, and introduce our notation. In Section 4.4, we formally
describe reconstruction attacks, and show that the attack is feasible. In Section 4.5, we
prove that the success rate of the reconstruction attack depends on the graph’s girth,
and investigate how girth a�ects application performance. Finally, in Section 4.6, we
present our conclusions.

4.2 Related Work

In this work we propose a decentralised reconstruction countermeasure for privacy-
preserving summation with dynamic data. To the best of our knowledge, this exact
problem has not been treated in literature before. Therefore, in this section, we consider
related works from various �elds, and describe their similarities and di�erences.

4.2.1 Reconstruction Attacks

Consider a database that users can query for statistical information. For example,
in a database with employee records, users can query for the sum of salaries of all
PhD students. Naturally, the database must ensure that users cannot learn individual
employees’ salaries. A naive defence would be to disallow queries over single records.
However, a clever adversary would still be able to reconstruct private data. For example,
the user could query the sum of salaries of all employees, and the sum of salaries of
all employees except Jay Doe, and reconstruct Jay Doe’s salary from that.
The attack described above is known under various names: statistical disclosure1,

the inference problem, and the reconstruction attack. It has been the subject of research
since at least the 1970s [Fel72], originally in the context of releasing census statistics.
Since then, many reconstruction defences have been proposed, including random
sampling [Den80], query auditing [CÖ82], and perturbation [Dwo06].

Most related to our research question are those works that consider sum queries only.
Chin [Chi78] studies summation query graphs to determine the exact conditions under
which disclosure occurs. However, his analysis is limited to queries that are over exactly
two records each, and cannot easily be generalised. Wang, Wijesekera and Jajodia

1Confusingly, the term “statistical disclosure attack” is also a separate attack in peer-to-peer literat-
ure [Dan03], but this is an unrelated attack on anonymity rather than con�dentiality.
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[WWJ02] allow queries over more than two records. The authors propose cardinality-
based criteria for determining whether reconstruction is possible, and create a whitelist
of summations that can be performed without allowing reconstruction.

All aforementioned solutions consider a single trusted database or auditor, making
them unsuitable for peer-to-peer protocols, in which the data are spread over many
users. Except for perturbation-based techniques, there are very fewworks that consider
reconstruction defences in peer-to-peer settings. In their study on reconstruction
attacks in distributed environments, Jebali, Sassi and Jemai [JSJ19] note only the work
by da Silva et al. [dSil+04] when discussing peer-to-peer solutions, but the latter
applies only to distributed clustering, and does not propose any countermeasures.
Perturbation, on the other hand, has been studied in more detail. Probably the

most popular perturbation mechanism for the decentralised setting is local di�erential
privacy [War65, EGS03, Kas+08], a variation of di�erential privacy [Dwo06]. With
this technique, when a query is performed over some set of nodes, each node adds a
small amount of noise such that the aggregate is relatively accurate, but reconstruction
remains impossible even after multiple queries. Various fully-decentralised learning
protocols use local di�erential privacy to allow learning a shared machine learning
model without revealing users’ private datasets [VBT17, Bel+18, ZBT20]. However,
the perturbation is calibrated to protect individual records in users’ private datasets,
rather than protecting users’ entire datasets. As a result, these works are potentially
vulnerable to inversion attacks [HAP17, Wan+19]. The level of noise can be increased,
but this severely impacts utility [ZMW17, Cyf+22]. Intuitively, noise can be made more
“e�cient” by exploiting correlations between users’ data [DR14], which, in peer-to-peer
networks, amounts to calibrating noise to the topology. To the best of our knowledge
only a few works have done this. Guo et al. [Guo+22] reduce noise based on the mutual
overlaps of neighbours’ neighbourhoods, but do not consider time-series correlations.
Cy�ers et al. [Cyf+22] observe that data sensitivity decreases as mutual node distances
increase, but their solution does not scale well when adversaries collude.

4.2.2 Multi-Party Computation

In secure multi-party computation, composability [Lin03] is the property of a crypto-
graphic scheme that no additional leakage occurs when it is invoked multiple times,
with varying parties, combined with other schemes, and so on. There are numer-
ous frameworks to model composability, including universal composability [Can01],
constructive composability [Mau11], and reactive simulatability [BPW07].
Composability solves a di�erent issue than the one posed in this work. While

composability ensures nothing leaks beyond what can be inferred from the outputs,
our work is concerned exactly with that which can be inferred from the outputs.
Composability does not help when the desired output (implicitly) reveals private data.
In secure multi-party computation literature, this di�erence is occasionally ac-

knowledged. For example, Bogdanov et al. [Bog+14] note that “the composition of
ideal functionalities is no longer an ideal functionality”, and, before them, Yang et al.
[Yan+10] made a similar observation. There are more works that consider this di�er-
ence, but, to the best of our knowledge, these works all resolve the issue by removing
or protecting intermediate values, but do not consider protocols which desire inter-
mediate values, and even then do not consider that reconstruction attacks may be
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possible after multiple instantiations of the protocol. An exception is the work by
Dekker and Erkin [DE21], which releases intermediate values in a structured manner
such that it is not possible to reconstruct all users’ values. However, the authors do
not prove (or disprove) that it is impossible to �nd a single user’s value.

4.3 Preliminaries

We brie�y explain some basics on privacy-preserving summation in Section 4.3.1 and
on bipartite graphs in Section 4.3.2. After that, we formulate our assumptions and
de�ne our notation in Section 4.3.3.

4.3.1 Privacy-Preserving Summation

Privacy-preserving summation is a special case of multi-party computation in which
an aggregator calculates the sum of users’ private values without learning the users’
individual values. In this work, we consider privacy-preserving summation to be an
information-theoretically secure black-box that reveals only the identities and the sum
of the variables.

4.3.2 Bipartite Graphs

A bipartite graph � = (* ,+ , �) is a graph with nodes* ∪+ and edges �, subject to
* ∩+ = ∅ and ∀(D, E) ∈ � : D ∈ * ⇔ E ∈ + .

Furthermore, a bipartite graph � = (* ,+ , �) can be described by a biadjacency
matrix � ∈ {0, 1} |* |× |+ | , where ∀0 ≤ D < |* |, 0 ≤ E < |+ | : �D,E = 1⇔ (*D,+E) ∈ �.
In this work, all graphs are undirected.

4.3.3 Assumptions and Notation

The underlying models and assumptions in this work are based on those seen in the
decentralised learning literature [Dan+18, Bel+18, ZBT20], but are especially close to
the work by Vanhaesebrouck, Bellet and Tommasi [VBT17].

In general, we denote the �rst element of a vector E by E0, the �rst row of a matrix�
by �0, the range of integers {0 . . . = − 1} by ⟦=⟧, and the cardinality of a collection (
by |( |.
User data and objectives

Consider a system of = users + , each with a private datum. Each datum is dynamic; it
changes each time the user initiates a round and incorporates new knowledge from
their neighbours. (We describe the time model in Section 4.3.3.) Each datum can be
a vector of values, though for simplicity we assume scalar values in our notation.
Examples of dynamic data are power consumption, gps coordinates, and machine
learning models. In round C , the data of user 8 ∈ ⟦=⟧ is denoted \8,C .
The users want to compute some function over their data without revealing their

data to others. Each user regularly runs a privacy-preserving summation protocol
to �nd the sum of their direct neighbours’ private data. This sum can be used for
principal component analysis, singular-value decomposition, or distributed gradient
descent, for example.
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Network model

Users communicate with each other in a peer-to-peer network. This can be a physical
network, for example based on Bluetooth or Wi-Fi Direct, or an overlay network,
in which users are connected through the Internet. We model the network as an
undirected, self-loopless, static graph� = (+ , �) in which each node represents a user.
(We consider graphs with dynamic edges in Section 4.5.4.) The direct neighbours of a
node E ∈ + are denoted #� (E), and for any set of users* ⊆ + we de�ne their shared
neighbours #� (* ) ≔

⋃
D∈* #� (D) \* . The network topology is not private; in fact,

users know who their direct neighbours are. Users may run a privacy-preserving
summation protocol to learn the sum of their direct neighbours’ private values.

Adversarial model

We assume all = users + are honest-but-curious. That is, all users honestly follow
the protocol, but may attempt to obtain other users’ private data by operating on the
data obtained in the protocol in any way they see �t. Additionally, : users � ⊆ +
may collude with each other, but we require that each adversary has either zero or
at least two non-adversary neighbours, as retrieving private data is trivial otherwise.
We give an example of a valid set of adversaries in Figure 4.1. Colluding users are
still honest-but-curious, so their collusion is limited to sharing information outside
the protocol. While excluding all actively malicious behaviour is a strenuous assump-
tion in practice, we argue that the challenges in the honest-but-curious model are
already su�ciently interesting to warrant investigation. We leave stronger notions of
adversarial behaviour to future work; see also Section 4.6.

+1 +2 +3

+4 +5 +6

x Figure 4.1 A network with 6 users + . The adversaries � = {+2,+4,+5} are shaded.
Removing edge (+2,+3) would violate our requirements, as adversary +2
would have exactly one non-adversary neighbour.

Finally, we assume that adversaries do not possess auxiliary knowledge. That is,
we aim for syntactic privacy [CT13], of which the privacy guarantees do not compose
trivially with those of other protocols using the same private data. Syntactic privacy
is suitable when high utility is desired and participants have some level of mutual
trust [Cor+13, CT13]. Moreover, prescribing a syntax on the data is inherent to this
work’s goal of establishing an interpretable relation between privacy and topology.
We note that syntactic privacy does not preclude the use of semantic protections such
as di�erential privacy, though the investigation of that combination is out of scope for
this work. See [Cor+13, CT13] for a detailed discussion of the subject.
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Time model

We work in the asynchronous time model [Boy+06], in which a global clock ticks
whenever a user wakes up and performs some work. Equivalently, each user has their
own clock ticking at the speed of a rate-1 Poisson process; when a user’s clock ticks,
that user wakes up. We denote the current global round number by C (for “time”).

4.4 Reconstruction in Multi-party Summation

In this section we formally de�ne reconstruction attacks in privacy-preserving multi-
party dynamic-data summation, and experimentally verify that this attack is feasible.
Adversaries passively record the summations they obtain throughout the protocol.
Because adversaries know which users are included in which summation, they obtain
a system of linear equations. Even if the system has no global solutions, adversaries
may still learn the private data of some users.
In Section 4.4.1, we informally explain reconstruction attacks with examples. In

Section 4.4.2, we give an exact de�nition of the adversaries’ knowledge. In Section 4.4.3,
we formally de�ne reconstruction on multi-party dynamic-data summation. In Sec-
tion 4.4.4, we experimentally verify the feasibility and success rate of reconstruction
attacks on random graphs.

4.4.1 Introduction to Reconstruction Attacks

For this brief introduction, we use somewhat informal notation. We formally de�ne
our notation in Section 4.4.2.

A small example. Consider a graph� = (+ , �) with users+ and a set of : adversaries
� ⊆ + . If a single adversary 2 ∈ � sums their neighbours’ values, they learn a linear
equation Θ2 over the private values \ of neighbours #� (2). If multiple adversaries �
collude, they share a system of linear equations �\ = Θ over the private values \
of #� (�). If the system of linear equations has a solution, then the adversaries are
able to calculate all observed users’ private values using linear combinations of the
system’s rows. For example, given adversaries �, �, and � with observations

\1 + \2 = Θ�,

\1 + \3 = Θ�, and
\2 + \3 = Θ� ,

(4.1)

this is equivalent to the system of linear equations


1 1 0

1 0 1

0 1 1


\ = Θ. (4.2)

Since this system is full rank, adversaries can calculate

\1 =
Θ� + Θ� + Θ�

2
− Θ� , (4.3)

\2 = Θ� − \1, and (4.4)

\3 = Θ� − \1 . (4.5)
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For example, if Θ� = 7, Θ� = 13, and Θ� = 8, the adversaries know with certainty that
\1 = 6, \2 = 1, and \3 = 7. Observe that this works even if each individual summation
in Equation 4.1 is information-theoretically secure.

Partial solutions. If the system is rank-de�cient, no unique solution exists, but the
system may still have partial solutions. That is, even if a system has in�nitely many
possible solutions, it may be the case that some variables have the same value in
all solutions. Even a single user’s private value being leaked is a major issue for
any privacy-preserving protocol. Consider, for example, the adversarial knowledge
consisting of

\1 + \2 + \3 = Θ� and
\1 + \2 = Θ� .

(4.6)

Even though there is no unique solution, all solutions have the same value for \3,
calculated as \3 = Θ� − Θ� .
The case of Equation 4.6 is trivial because Θ� is the sum over a subset of Θ�.

However, there are also rank-de�cient systems in which no summation is a subset of
another:

\1 + \2 + \3 = Θ�,

\1 + \2 + \4 = Θ�, and
\3 + \4 = Θ� .

(4.7)

This system, too, has an in�nite number of solutions, but each possible solution has
the same values

\3 =
Θ� + Θ� − Θ�

2
and (4.8)

\4 =
Θ� + Θ� − Θ�

2
. (4.9)

Time dimension. The above examples do not take into account that users’ data change
over time. To model dynamic data, �rst recall from Section 4.3.3 that users update their
values only after initiating a summation. Since each update requires an interactive
summation, users implicitly inform their neighbours whenever they update; and since
each update represents the introduction of a new unknown value to \ , adversaries
can represent an update by adding a new column to their adversarial knowledge. If a
user updates their value multiple times before being observed by an adversary, the
adversaries treat this as a single update.

To give an example, consider adversaries� and their neighbours#� (�) in Figure 4.2.
If adversaries �1 and �2 run their summations, they learn[

1 1 0

1 0 1

]
\ = Θ. (4.10)

The added vertical lines group the columns per non-adversarial user. Next, say that
user #1 updates their private value. This is noticed by the adversaries, who insert a
new column into their system of equations. If user �1 then does another summation
(including user #1’s new value), the adversaries know the system
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1 0 1 0

1 0 0 1

0 1 1 0



#1︷︸︸︷
\ = Θ. (4.11)

The last row represents adversary �1’s new summation, and the second column
represents user #1’s new value. Finally, if users #1, #2, and �1 subsequently update
(in that order), then users #1 and #2 each get a new column, and �1’s update adds a
new row, giving



1 0 0 1 0 0

1 0 0 0 0 1

0 1 0 1 0 0

0 0 1 0 1 0



#1︷    ︸︸    ︷ #2︷︸︸︷
\ = Θ. (4.12)

In the remainder of this work, to simplify notation, we will always assign the same
number of columns C to each user.

Observations. Before we give a formal de�nition of reconstruction attacks, we make
two observations:

1. Reconstruction does not rely on weaknesses in the summation algorithm; recon-
struction works even if summation is done by a trusted third party. Instead,
reconstruction relies only on the summation revealing both the identities of in-
cluded variables and the sum of those variables.

2. Reconstruction is independent of how users update their private values, and works
even if users update their models in random ways or multiple times. Reconstruc-
tion works because adversaries observe multiple summations with at least

one unchanged value, and know how the summations are related.

�1 �2 �3

#1 #2 #3

x Figure 4.2 Example graph � with adversaries � = {�1,�2,�3} (shaded) and non-
adversaries # = #� (�) = {#1, #2, #3}.

4.4.2 Obtained Adversarial Knowledge

We give a formal description of adversarial knowledge, which is the system of linear
equations that adversaries obtain in a privacy-preserving multi-party dynamic-data
summation protocol, and observe two important properties.
Let � = (+ , �) be an undirected graph, let � ⊆ + be a collusion of : adversaries,

let = ≔ |#� (�) |, and let C ∈ N be the number of summations performed by � .
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De�nition 2 (Adversarial knowledge). The adversarial knowledge over C summations
by � is a consistent system of linear equations �\ = Θ, subject to the conditions that

• \ ∈ R
=C×1 are the private values of neighbours #� (�), such that \aC+8 is the 8 ∈

⟦C⟧th unique private value of neighbour a ∈ ⟦=⟧ that is observed by any adversary
in � ,

• Θ ∈ RC×1 are the sums obtained by the adversaries, where Θg is the g ∈ ⟦C⟧th such
sum, and

• � ∈ {0, 1}C×=C indicates which private values are observed in which summation,
such that �g,aC+8 = 1 if and only if the adversaries’ g ∈ ⟦C⟧th summation includes
the 8 ∈ ⟦C⟧th unique private value of neighbour a ∈ ⟦=⟧.

Remark 1. In Theorem 17, we will show that it is not necessary to include adversaries’
own private values in �\ = Θ.

Property 1. Let � be the adversarial knowledge over C summations by � . In each
equation, each neighbour in #� (�) contributes at most one private value:

∀g ∈ ⟦C⟧, a ∈ ⟦=⟧ :
∑
8∈⟦C⟧

�g,aC+8 ∈ {0, 1}. (4.13)

Property 2. Let � be the adversarial knowledge over C summations by � . Since each
equation is over all the neighbours of an adversary in � , each row in � corresponds
exactly to #� (2) for some 2 ∈ �:

∀g ∈ ⟦C⟧ : ∃2 ∈ � : ∀a ∈ ⟦=⟧ :

©
«
∑
8∈⟦C⟧

�g,aC+8 = 1
ª®
¬
⇔ (2, #� (�)a ) ∈ �. (4.14)

As in Property 1, the summation merely describes whether neighbour a is included in
the gth linear equation.

4.4.3 Reconstruction from Adversarial Knowledge

Finding a (partial) solution is not trivial. It is well-known that the reduced row echelon
form (rref) of a system of linear equations reveals the system’s unique solution, if it
has one. Clearly, this unique solution is also at least a partial solution. However, if
there is no unique solution, there may still be a partial solution, as in Equation 4.6 on
page 75. We will show in Theorem 16 that �nding the reduced row echelon form of
the adversarial knowledge is both necessary and su�cient to �nd all partial solutions.
Moreover, we will show in Theorem 17 that this is true even if adversaries’ own private
values are removed from the adversarial knowledge matrix.

We begin with some de�nitions. Let � = (+ , �) be an undirected graph, let � ⊆ +
be a set of : adversaries, let = ≔ |#� (�) |, let C ∈ N, and let �\ = Θ be the adversarial
knowledge over C summations by �; that is, � ∈ RC×=C .

De�nition 3 (Solution of a variable). Let ~ ∈ R1×C and let 8 ∈ ⟦=C⟧. We say that “~
solves \8 in �\ = Θ” if and only if the vector ~� contains exactly one non-zero value,
at index 8: ((~�)8 ≠ 0

) ∧ (∀9 ∈ ⟦=C⟧ \ 8 : (~�) 9 = 0
)
. (4.15)
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Remark 2. Since Equation 4.15 is independent of \ and Θ, it is equivalent to say that
“~ solves \8 in �”.

De�nition 4 (Partial solution). Let ~ ∈ R1×C . If ~ solves \8 in � for any 8 ∈ ⟦=C⟧, then
we say that “~ is a partial solution to �”.

We proceed with the central theorem of this section, which states that the reduced
row echelon form of � describes all partial solutions to �. We remark that a weaker
variant of this theorem was previously given without a formal proof [WWJ02].

Theorem 16. Let 8 ∈ ⟦=C⟧, and let � ∈ RC×C such that �� = rref (�). Then \8 has a
solution in � if and only if there exists A ∈ ⟦C⟧ such that �A solves \8 in �.

Proof. Given 8 ∈ ⟦=C⟧, we give a proof for both directions.
We �rst prove that if there exists A ∈ ⟦C⟧ such that �A solves \8 , then \8 has a

solution in �. Since �\ = Θ, it follows that �A�\ = �AΘ, and by Equation 4.15 we have
that �A�\ = \8 . Therefore, \8 = �AΘ, proving the �rst direction of Theorem 16.
We prove the other direction of Theorem 16 by contradiction. Let ~ ∈ R

1×C be
a solution to \8 in �, so ~� has its only non-zero value at (~�)8 . For the sake of
contradiction, assume that there is no row in � that solves \8 in �. Because ~ is in
the row space of �, and the row space of � is the same as the row space of rref (�),
there exists ~′ ∈ R1×C such that ~� = ~′ · rref (�) = ~′��. By associativity of matrix
multiplication, ~′� solves \8 in �. Furthermore, since we assumed (for the sake of
contradiction) that no single row of � solves \8 in �, it follows that ~′ must have
multiple non-zero coe�cients. Thus, let ~′A and ~

′
B be any two non-zero coe�cients

in ~′, and let 9, : such that (��)A,9 and (��)B,: are the leading coe�cients of their
respective rows; these are their columns’ only non-zero values, and 9 ≠ : . Therefore,
(~�) 9 = (~′��) 9 = ~′A ≠ 0, and similarly (~�): = ~′B ≠ 0. However, this is a
contradiction, because we initially assumed that~� has its only non-zero value at (~�)8 .
Therefore, there exists a row in � that solves \8 in �. This proves the other direction
of Theorem 16.
Therefore, it is both necessary and su�cient to check the rows of �� = rref (�) to

learn all partial solutions to �. |

Note that � does not describe that adversaries know each other’s private values,
since #� (�) excludes adversaries themselves. We show that including this know-
ledge does not reveal new partial solutions. Speci�cally, observe that the adversarial
knowledge including self-knowledge over C summations by : adversaries � is

�′ =
[
� '

0 �C:

]
, (4.16)

where �C: is the (C: × C:) identity matrix, 0 is an appropriately-sized matrix of zeroes,
and ' is some appropriately-sized binary matrix. The rows of �C: represent that
adversaries know each other’s values, and ' represents the edges between adversaries.

Theorem 17. Let 8 < C=. Then \8 has a solution in � if and only if \8 has a solution
in �′.
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Proof. Observe that

rref (�′) =
[
rref (�) 0

0 �C:

]
(4.17)

ignoring row-switching transformations. The bottom C: rows solve exactly \8 in �
for 8 ≥ C=. The upper rows solve \8 in � for 8 < C= if and only if the rows of rref (�)
do so. |

Intuitively, Theorem 17 holds because the linear dependencies that exist within �
remain una�ected by '.

4.4.4 Reconstruction Attack Feasibility

We show that reconstruction is feasible for honest-but-curious adversaries. We run
the attack in static graphs with randomly-placed adversaries passively collecting data.
We measure both the success rate and the number of rounds until success. Our source
code is publicly available [DEC25b].

Remark 3. This section pertains only to static graphs. We show a reduction from
edge-dynamic graphs to static graphs in Section 4.5.4.

Experimental setup

By Theorem 16, the success rate of the attack depends only on the adversaries’ direct
neighbourhood. Therefore, instead of modeling large peer-to-peer networks, it su�ces
to model only the subgraph that is relevant for the attack. Additionally, by Theorem 17,
edges between adversaries can be ignored. Therefore, given any graph� = (+ , �) and
a set of colluding adversaries � ⊆ + , it su�ces to model the induced subgraph � [�],
minus edges between adversaries. This forms a bipartite graph � . We provide an
example in Figure 4.3.

+1 +2 +3

+4 +5 +6 +7

+8 +9

x Figure 4.3 A graph � . Adversaries � = {+1,+2,+3} are shaded. The bipartite sub-
graph � =� [�] consists of exactly the non-dotted nodes and edges.

We emphasise that reconstruction depends only on the adversaries’ view, regardless
of the remaining graph outside this view. However, the likelihood of obtaining any
speci�c adversarial view does depend on the full graph. For example, the probability
that a random adversarial view contains a cycle depends on the connectivity of the
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full graph. For our experiments, we choose not to make assumptions on the graph’s
topology, analysing all possible adversarial views equally, so that our results are
agnostic to the speci�c network, application, and adversary.

Bipartite graphs can be parameterised by three variables: the number of adversaries,
the number of direct neighbours, and the number of edges. We generate random
graphs according to these parameter, subject to some �ltering:

• We exclude graphs in which there is an adversary with only one edge because this
would allow trivial attacks, as described in Section 4.3.3.

• We do not exclude graphs in which there is an honest-but-curious user with only
one edge, because this user may have more edges in � that are not in � .

• We exclude graphs in which an honest-but-curious user has no neighbours, because
these cases do not accurately represent the bipartite graph’s parameters.

• We do not exclude graphs in which an adversary has no neighbours.

• We do not exclude disconnected graphs.

Amount of reconstructed data

For our �rst experiment, we measure the amount of private data that adversaries can
reconstruct. We generate a large amount of random bipartite graphs as described
above, and count the number of partial solutions in the biadjacency matrices. This
corresponds to the adversarial knowledge if neighbours do not update their values,
and thus represents the strongest reconstruction attack that adversaries can perform.
In Section 4.4.4 we also consider neighbours updating their values.
Firstly, we look at the proportion of data that can be reconstructed, shown in

Figure 4.4. We see that if the number of adversaries is close to the number of neighbours,
the adversary is typically able to reconstruct all neighbours’ data. As the number of
neighbours increases, fewer data can be reconstructed, unless compensated for by a
higher connectivity. If the graph has many neighbours and few edges, adversaries
share fewer neighbours, and are thus typically unable to exploit the overlaps.

Secondly, we look at the distribution of how much data can be reconstructed, shown
in Figure 4.5. We see again that adversaries are more successful if they outnumber
their neighbours. As the number of neighbours increases, so does the probability of
being unable to reconstruct any data. However, even if three adversaries passively
observe 15 neighbours, they still have an 11.0% probability of reconstructing at least
one neighbour’s datum, which is unacceptable for any privacy-preserving scheme.

Rounds until �rst reconstruction

Some partial solutions are harder to obtain than others. For example, if the graph is
such that users update their values faster than adversaries can collect them, adversaries
may never “converge” to a (partial) solution.
In the next experiment, we measure how many rounds adversaries need before

reconstruction succeeds. For each of the subgraphs in Figure 4.4 that were found
to be susceptible to the attack, we simulate a multi-party summation protocol as
follows. Each round, a uniformly random user in the subgraph wakes up. If the
user is an adversary, they learn the sum of their neighbours’ values, and adds this
to the adversarial knowledge. Otherwise, if a non-adversary wakes up, we simulate
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x Figure 4.4 Proportion of neighbours’ private data that can be reconstructed by
adversaries. Each point represents the mean over 1000 random bipartite
graphs. White points indicate no valid bipartite graphs could be found.
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x Figure 4.5 Probability of reconstructing a given number of neighbours’ data, ignor-
ing the number of edges. Each column adds up to 100%, and corresponds
to a column in Figure 4.4.
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x Figure 4.6 Mean number of adversarial summations needed to obtain private data.
Each point corresponds to 100 attacks on each of the solvable graphs
from Figure 4.4. White points indicate no private data was obtained.
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an update: The next adversarial sum that includes this non-adversary will use a new
column in the adversarial knowledge matrix. After every round, the adversaries check
for a partial solution. We repeat this procedure 100 times to control for the order in
which users wake up, truncate instances that have no partial solutions after 250 rounds,
and take the mean number of rounds until the �rst partial solution is found.
We show the mean number of rounds until the reconstruction attack succeeds

in Figure 4.6. We see that the attack is fastest when there are more adversaries,
more edges, and fewer neighbours. Intuitively, this means that the required number
of summations increases if neighbours can update their values at a higher rate than
adversaries can observe them. For example, 3 adversaries against 15 neighbours require
on average 8.8 rounds before they can reconstruct private data. In related works such
as [VBT17, Che+18b, CBU24], users run hundreds or thousands of rounds before the
protocol terminates, signi�cantly more than required in our attack.

Conclusion of results

We sampled the set of all possible views of randomly selected adversaries in random
graphs, excluding some trivial attack cases. If the reconstruction attack succeeds, the
adversaries obtain other users’ private inputs to the information-theoretically secure
summation operation. Our results show that passive honest-but-curious adversaries
are able to obtain private data in this scenario with non-negligible probability. While
we note that di�erent classes of graph topologies may have varying susceptibility
to reconstruction attacks, we conclude that, in general, individually protecting each
summation is insu�cient for con�dentiality.

4.5 Girth as a Reconstruction Countermeasure

In a centralised protocol, the single aggregator can track which summations have
occurred, and refuse a subsequent summation if it would result in a partial solution.
However, in a distributed computation, there is no such aggregator, and simulating the
aggregator using a multi-party protocol is impractical as this would require involving
all users in each summation. In this section, we show that to prevent reconstruction it is
su�cient to increase the network’s girth, which is the length of the network’s shortest
cycle. The network’s girth is an established metric for peer-to-peer networks, with
various peer-to-peer algorithms for measuring and increasing the girth [Cen+21, DK08,
LU95, Oli+18]. Using such an algorithm before running a privacy-preserving dynamic-
data multi-party summation protocol is thus su�cient to prevent reconstruction of
private data by honest-but-curious adversaries.
We begin in Section 4.5.1 by showing that reconstruction requires collusion. In

Section 4.5.2, we show that reconstruction does not work in acyclic graphs, regardless
of the number adversaries. In Section 4.5.3, generalise results to determine an upper
bound on the number of adversaries. In Section 4.5.4, consider graphs with dynamic
edges. Finally, in Section 4.5.5, we brie�y evaluate the impact that increasing girth has
on distributed convergence.

4.5.1 Privacy in Static Graphs without Collusion

We begin by considering the special case of : = 1, i.e. a setting without collusion.
We show that, if the graph is static, the adversary cannot obtain other users’ private
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values regardless of topology, barring trivial attacks.
Assuming a privacy-preserving summation protocol, it is self-evident that repeating

the summation over the same set of values does not leak any private data. However,
while the set of neighbours is always the same in the static no-collusion setting,
neighbours still update their local values. Thus, it remains to be shown that no
reconstruction is possible with this kind of composition.

Lemma 1. Given adversarial knowledge � ∈ RC×=C of a single adversary with = ≥ 2

�xed neighbours, we have for any ~ ∈ R1×C

∀`, a ∈ ⟦=⟧ :
∑
8∈⟦C⟧
(~�)`C+8 =

∑
8∈⟦C⟧
(~�)aC+8 . (4.18)

Here,
∑

8∈⟦C⟧ (~�)aC+8 is the sum of components of ~� relating to neighbour a . The
equation states that in any linear combination ~�, every neighbour has the same sum
of components.

Proof. Firstly, because the adversary has �xed neighbours,

∀g ∈ ⟦C⟧, a ∈ ⟦=⟧ :
∑
8∈⟦C⟧

�g,aC+8 = 1. (4.19)

In the linear combination~�, the rows of� are scaled according to~ and then summed
together. Therefore, since each row includes each neighbour exactly once,

∀a ∈ ⟦=⟧ :
∑
8∈⟦C⟧
(~�)aC+8 =

∑
g∈⟦C⟧

~g . (4.20)

|

Corollary 1. Given adversarial knowledge� ∈ RC×=C of a single adversary with = ≥ 2

�xed neighbours, there exists no ~ ∈ R1×C such that ~� has exactly one non-zero value.
Therefore, there exist no partial solutions for �.

4.5.2 Privacy in Static Graphs with Unbounded Collusion

The special case of: = 1 provides some insights into the workings of the reconstruction
attack, but not allowing any collusion is not realistic, as honest-but-curious collusion
in the form of secretly exchanging information is undetectable and there are no strong
incentives against it. Therefore, we now proceed to consider the general case of : ≥ 1.

Partial solutions are linear combinations of the rows of the adversarial knowledge
such that all but one column cancels out, as in Equation 4.1 on page 74. We already
know from Corollary 1 that a partial solution requires multiple adversaries. If two rows
in the adversarial knowledge from di�erent adversaries match in multiple columns,
then these adversaries share multiple neighbours, and the graph has a cycle. Otherwise,
if no two rows from di�erent adversaries overlap in multiple columns, then, since each
equation has at least two non-zero columns, each equation introduces new unknowns,
taking the adversaries further from a partial solution. In this case, if the adversaries
are able to �nd a partial solution, they must have another row that cancels out the
unknowns of multiple other rows; but this, too, introduces a cycle. The intuition thus
seems to be that partial solutions require a cyclic graph. We now formally prove that
this intuition is correct.
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Theorem 18. Let � = (+� , �� ) be an undirected graph, let � ⊆ +� be the set of
adversaries, let : ≔ |� |, let= ≔ |#� (�) |, let C be the number of summations performed
by the adversaries � , and let � ∈ RC×=C be the adversarial knowledge.
If � is acyclic, then � does not have partial solutions.

Proof. We give a proof by contraposition: Given a partial solution to�, we show that�
is cyclic. Let ~ ∈ R

1×C be a partial solution to �. We show how to �nd a bipartite
subgraph � of � such that its biadjacency matrix �′′ has a partial solution ~′′. We
then show that this implies the existence of a cycle in � . Our proof works in multiple
steps: (1) combine columns of � to create �′, (2) remove rows from �′ to create �′′,
(3) create the corresponding partial solution ~′′, and �nally (4) show that � is cyclic.
We show an example of this procedure in Figure 4.7.

1. Combine columns. We merge the C columns in � assigned to each neighbour to
obtain �′. Let ~′ = ~, and let �′ ∈ RC×= such that

∀g ∈ ⟦C⟧, a ∈ ⟦=⟧ : �′g,a ≔

∑
8∈⟦C⟧

�g,aC+8 . (4.21)

It follows from Property 1 on page 77 that this is a binary matrix, and it follows
from Property 2 on page 77 that no neighbour relations are removed. Furthermore,
observe that

∀a ∈ ⟦=⟧ : (~′�′)a =

∑
8∈⟦C⟧
(~�)aC+8 . (4.22)

Since~� contains exactly one non-zero value, so does~′�′. Therefore,~′ is a partial
solution to �′.

2. Remove rows. We remove duplicate and unused rows from �′ to obtain �′′. We
de�ne �′′ as a set of rows:

�′′ ≔ {�′8 | 8 ∈ ⟦C⟧ ∧ (4.23)

� 9 ∈ ⟦8⟧ : �′8 = �′9 ∧ (4.24)
∑{~′9 | 9 ∈ ⟦C⟧ ∧�′8 = �′9 } ≠ 0}. (4.25)

Here, Equation 4.24 excludes duplicates by only choosing row�′8 if there is no 9 < 8
such that �′8 = �

′
9 , and Equation 4.25 excludes unused rows by only picking row �′8

if the sum of ~′9 over all identical rows �
′
9 is non-zero.

3. Create partial solution. We similarly combine and remove the corresponding col-
umns from ~′ to obtain ~′′. To do so, we de�ne a function q that describes how the
rows of �′′ relate to the rows of �′. Let B be the number of rows in �′′. Then we
de�ne q : ⟦B⟧ → ⟦C⟧∗ such that

∀g ∈ ⟦C⟧, f ∈ ⟦B⟧ : g ∈ q (f) ⇔ �′g = �′′f . (4.26)

Using this function, we de�ne ~′′ ∈ R1×B as

∀f ∈ ⟦B⟧ : ~′′f ≔

∑
g∈q (f )

~′g . (4.27)
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�1 #1

�2

#2�3

#3

�4 #4

(a) A graph � featuring adversaries {�1,�2,�3,�4} and non-adversaries {#1, #2, #3, #4}.

� =



1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0



#1︷              ︸︸              ︷ #2︷              ︸︸              ︷ #3︷              ︸︸              ︷ #4︷              ︸︸              ︷

,

�′ =



1 0 1 0

1 1 0 0

0 1 1 0

0 1 1 0

1 0 0 1


, �′′ =


1 0 1 0

1 1 0 0

0 1 1 0


(b) The adversarial knowledge � after the users from Figure 4.7a run in the sequence
(�1,�2,�3, #3,�3,�4); the matrix �′ with collapsed columns; and the matrix �′′ without
duplicate and unused rows.

~ =
[
1 1 −1 0 0

]
, ~′ =

[
1 1 −1 0 0

]
, ~′′ =

[
1 1 −1 ]

(c) Partial solutions respectively of �, �′, and �′′.

�1 #1

�2

#2�3

#3

�4

(d) The bipartite graph � corresponding to biadjacency matrix �′′.

x Figure 4.7 Example transformation of graph and adversarial knowledge as seen in
the proof of Theorem 18.
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It follows that

∀a ∈ ⟦=⟧ : (~′′�′′)a =

∑
f∈⟦B⟧

(~′′f�′′f,a ) (4.28)

=

∑
f∈⟦B⟧

∑
g∈q (f )

(~′g�′′f,a ) (4.29)

=

∑
f∈⟦B⟧

∑
g∈q (f )

(~′g�′g,a ) (4.30)

=

∑
g∈⟦C⟧
(~′g�′g,a ) (4.31)

= (~′�′)a . (4.32)

Therefore, ~′′�′′ = ~′�′, and ~′′ is a partial solution to �′′.

4. Find cycle. Note that �′′ is the biadjacency matrix of some bipartite subgraph � =

(�′, #� (�), �� ) of� , where�′ ⊆ � and �� ⊆ �� . Assume, for the sake of contradic-
tion, that � is acyclic. Then � has two distinct nodes 8, 9 with degree one. Since ad-
versaries cannot have degree one in� , and∀2 ∈ �′ : (#� (2) = #� (2) ∨ #� (2) = ∅),
we know that 8, 9 ∈ #� (�). Consequently, the columns in�′′ for 8, 9 must each con-
tain only one non-zero value, and ~′′ does not contain zeroes at all by Equation 4.25.
Therefore, (~′′�′′)8 ≠ 0 and (~′′�′′) 9 ≠ 0. However, this implies that ~′′�′′ has
multiple non-zero values, which contradicts the earlier observation that ~′′ is a
partial solution to �′′. Therefore, � is cyclic, and so is � . |

Our proof shows that partial solutions imply the existence of cycles. This does
not mean that cycles imply the existence of partial solutions. Indeed, we show in
Section 4.5.3 that structured cycles can be introduced without creating partial solutions.

Remark 4. Theorem 18 pertains only to partial solutions. Even in an acyclic topology,
there may be linear relations that reveal sensitive information without leaking private
values outright, such as \1 = \2 or \3 = 4 × \5. Protecting these relations is left for
future work.

4.5.3 Privacy in Static Graphs with Bounded Collusion

While acyclic graphs resist reconstruction attacks, these graphs are not well-suited
for peer-to-peer networks for two reasons. Firstly, if any non-leaf node becomes
unavailable, the network becomes disconnected. Secondly, leaf nodes have only one
neighbour, and thus cannot initiate summations to learn from their neighbours.
We show that there are no partial solutions given an upper bound on the number

of adversaries. This bound depends on the graph’s girth, which is the length of its
shortest cycle.

Theorem 19. Let � = (+� , �� ) be an undirected graph, let � ⊆ +� be a set of
: adversaries, let = ≔ |#� (�) |, let C be the number of summations performed by � ,
and let � ∈ RC×=C be the adversarial knowledge.
If girth(�) > 2: , then � does not have partial solutions.
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Proof. We give a proof by contraposition: Given a partial solution to �, we show
that girth(�) ≤ 2: . Let � be as in the proof of Theorem 18. Then � is cyclic. Since �
is bipartite, every edge in the cycle is between an adversary and a neighbour. Since
each node in the cycle is visited at most once, the cycle length is at most 2: . This cycle
also exists in � . Therefore, girth(�) ≤ 2: . |

4.5.4 Privacy in Dynamic Graphs

So far, we have assumed that graphs are static. However, this prevents users from
changing their neighbours, which is unrealistic if users move through the network.
We brie�y show that dynamic graphs can be reduced to static graphs.

If a single user performs two summations over two sets of neighbours, they learn
exactly the same information as two users would over those same sets of neighbours.
We show an example in Figure 4.8. More generally, : users with static neighbours
can learn the exact same information as ℓ users with : di�erent sets of neighbours.
Our results on reconstruction feasibility in static graphs from Section 4.4.4 can be
translated similarly to dynamic graphs.

*

#2#1 #3

(a) A dynamic graph. The dotted edge is
not present in all rounds.

*1 *2

#1 #2 #3

(b) A reduction to a static graph. * has
been split into*1 and*2.

x Figure 4.8 Example of how a dynamic graph can be reduced to a static graph.
* learns the same as*1 and*2 together.

We conclude that Theorem 19 implies the following.

Corollary 2. Let � = (+� , �� ) be a dynamic undirected graph, let � ⊆ +� be a set of
adversaries, let = ≔ |#� (�) |, let C be the number of summations performed by� , let :
be the number of sets of neighbours the adversaries sum over, and let � ∈ RC×=C be
the adversarial knowledge.
If girth(�) > 2: , then � does not have partial solutions.

There are several important limitations to this result. Firstly, the upper bound on
the number of adversaries depends on the girth, but the girth may not be known
beforehand if users move through the network in unpredictable ways. Secondly, even
if a minimum girth is guaranteed throughout the protocol, the upper bound implies a
maximum number of changes that may occur during the protocol.

4.5.5 Impact on Convergence

We brie�y evaluate the impact of increasing the network’s girth on the convergence
of a protocol running over that network. Speci�cally, we numerically simulate a
distributed averaging protocol [XB04], which is just a non-privacy-preserving form of
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distributed learning. We intentionally choose a simple, e�cient, non-noisy protocol to
make the impact of the girth parameter most apparent. The “numerical simulation”
part of the description is because we do not actually create separate processes and
communication for the nodes. Our source code is publicly available [DEC25b].
We use the system model presented in Section 4.3.3. We create a network by

generating a random Erdős–Rényi graph with 50 nodes and with each edge having a
probability ? of being added. Each node holds a single private scalar value, sampled
uniformly from the range {0 . . . 50}. Each round, one random node updates their
private value to be the unweighted mean of their neighbours’ values and their own
value. We then measure the number of rounds until convergence, and take the mean
over 1000 repetitions of this procedure. We de�ne convergence as the moment at
which any two nodes’ local values di�er by at most 1. Changing this threshold does
not give fundamentally di�erent results.

To measure the e�ect girth has on convergence, we “stretch” graphs to a given girth
by iteratively removing random edges from cycles shorter than the desired girth until
no such cycles remain. With 50 nodes, stretching to a girth of G ensures reconstruction

attacks are impossible when less than G/2
50

= G% of users collude.
We show our results in Figure 4.9. Since undirected graphs always have girth at

least 3, no signi�cant changes occur at these low girths. As the girth increases, so does
the number of rounds required. As the girth approaches 25, the slope approaches zero.
Graphs that initially have more edges (as determined by ?) require more rounds at
low girths, but settle at a lower number of rounds at high girths. When we look at
our experiments in more detail, we see that ceilings occur once all cycles have been
removed, and that graphs with high ? retain more edges. This matches the intuition
that information propagates more e�ciently when there are more edges.
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0

10,000

20,000

Stretched minimal girth

G
lo
b
al
ro
u
n
d
s

? = 0.1

? = 0.5

? = 0.9

x Figure 4.9 Number of rounds until convergence in distributed averaging in random
Erdős–Rényi graphs with 50 nodes and varying edge probabilities ? , as
a function of the girth to which the graphs are “stretched”.

Our results show that increasing girth a�ects convergence speed signi�cantly.
Though state-of-the-art distributed learning protocols typically already require sev-
eral tens of thousands of rounds [VBT17, Che+18b, CBU24], the magnitude by which
increasing girth increases the number of required rounds may be excessive for some
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applications. More sophisticated edge removal methods may ameliorate this issue.
Furthermore, though implementing the cycle removal method from our experiments
as a distributed protocol is trivial,2 this method is not communicationally e�cient. To
the best of our knowledge, there is no research on communication-e�cient distributed
“graph stretching”. That said, there are distributed protocols for measuring the net-
work’s girth [Cen+21] and for removing all cycles [DK08, Oli+18]. We conclude that
determining a network’s resistance by measuring the girth is feasible in general, but
increasing girth is practical only when communication e�ciency is not a concern.

4.6 Conclusion

We investigated reconstruction attacks in the setting of secure multi-party computa-
tion. We observed that existing multi-party computation literature does not consider
protocols in which intermediate values are intentionally exposed by the ideal func-
tionality, and seemingly assumes that protocols are not self-composed when deployed.
In our investigation, we focused on a peer-to-peer setting with privacy-preserving
summation in which users’ data change over time. In random subgraphs with 18 users,
we found that three passive honest-but-curious adversarial users have an 11.0% success
rate at recovering another user’s private data using a reconstruction attack, requiring
an average of 8.8 rounds per adversary. We analysed the structural dependencies
of the underlying network graph that permit this attack, and proved that success-
ful reconstruction attacks correspond to cycles in the network. More generally, we
showed that the length of the graph’s shortest cycle determines the minimum number
of adversaries required for the attack. We conclude that removing short cycles from
the network is a feasible countermeasure, albeit with considerable cost towards the
convergence speed of distributed protocols.

Our work sets the �rst step towards preventing reconstruction in the peer-to-peer
setting as seen in multi-party computation, and opens up multiple questions for future
work. Firstly, and most obviously, though we have found a su�cient criterion to
determine reconstruction feasibility, �nding a criterion that is also necessary would
allow using some graphs which our criterion currently forbids. Secondly, our work is
limited to a strictly syntactic notion of privacy, and does not protect linear relations
between data, which is required to protect against adaptive adversaries. Thirdly,
though our restriction to the summation operation is already su�cient to analyse
decentralised learning, our work could be extended to cover compositions with other
operations, such as multiplication or comparison. Finally, the addition of di�erentially
private noise may further strengthen the provided level of privacy.

2A node can break all cycles of at most length ℓ that they are part of as follows. The node �oods a unique
random message, paired with a counter starting at ℓ , through the network. Each time a node forwards the
message, the counter is decreased. Once the counter reaches zero, nodes stop forwarding the message. If
(and only if) the source node receives back their own message, they are part of a cycle of length at most ℓ ,
and remove the edge on which the message came in.
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Chapter 5

Privacy-Preserving Peer-to-Peer Cycle Detection

Abstract. Money laundering has seen a surge in complexity over the past decades as a result
of digitisation. This has forced �nancial institutions to develop more advanced anti-money
laundering technologies. Among these technologies is transaction graph monitoring, which
involves searching for transaction patterns that are likely indicators of fraud. To ensure e�ective
monitoring across legislative boundaries, institutions should share their transaction information.
However, these data are highly sensitive and heavily regulated, making the monitoring infeasible.
To address this, we propose a decentralised privacy-preserving protocol that detects fraudulent
patterns in transaction graphs. We limit our scope to detecting short cycles. Our protocol
can be initiated by any node, who performs recursive key exchanges with the nodes in their
neighbourhood up to a maximum depth. If a cycle exists, the initiator will eventually perform a
key exchange with themselves, and will then run a separate sub-protocol to recover the nodes
involved in the cycle. Our protocol is highly parallelisable, as any number of instances can run
simultaneously. We prove the security by showing that a single adversary learns nothing about
the topology beyond the detected cycles. When multiple adversaries collude, they may learn of
the existence of short paths connecting them, but do not learn what these paths look like. We
empirically show that the complexity scales with the local topology and maximum cycle length.

Based on: Juno Jense, Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Privacy-preserving peer-to-peer

cycle detection. 2025. In preparation.
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5.1 Introduction

C
riminals obfuscate illicitly obtained funds by running them through a com-
plex series of �nancial transactions. Subsequently, the illegal proceeds appear
to come from legal sources, disguising the true nature of the activities. The

Russian invasion of Ukraine and its associated funding are a prominent example
showcasing the scale and global impact of money laundering: Russia has an estimated
$1 trillion hidden abroad, of which a quarter is controlled by Putin and his associ-
ates [ÅF20]. By setting up complex laundering schemes, this money can be used to
exert political in�uence, fund illicit trade, and evade sanctions [ÅF20].
Anti-money laundering (aml) is an umbrella term for the laws, regulations and

procedures designed to combat the generation, concealment, and integration of illicit
funds. In recent years, tighter regulations have led to �nancial crime detection becom-
ing a high priority among organisations subject to aml audits. These aml systems
typically model the transaction network as a graph, with nodes representing bank
accounts and edges representing transactions between them. The task of the aml

system is to �nd patterns in the graph that may indicate money laundering. Typical
patterns include cliques, stars, and cycles [DBB22]. GraphS [Qiu+18], a tool developed
by the e-commerce platform Alibaba, is one such large-scale industry solution based
on �nding cycles in an internal dataset.

At the same time, digital �nance has made it possible for criminals to set up accounts
at di�erent banks across multiple countries to avoid getting caught by law enforcement
agencies [LJ16, EDF21]. Detection is di�cult because this requires cross-organisational
data analysis, but regulations require that no more information is exchanged than
strictly necessary. Coordination between �nancial organisations is far from straightfor-
ward, and remains uncommon within the industry [Mou20]. Since organisations are
required by law to report suspicious transactions to their respective national �nancial
authority for analysis, there have been attempts at international cooperation. For
example, Ma3tch is a multinational European aml e�ort, but is lacking because taking
a proactive stance imposes too much of a workload on the authority [Mou20]. At the
same time, centralising �nancial data to an international �nancial authority raises
concerns surrounding transparency and privacy, and is unrealistic as governments are
largely independent in the creation of their legislative policies, and it is hard to imagine
each government consistently reporting to a single authority. Therefore, cross-border
data analysis that ensures both con�dentiality and autonomy remains an unsolved
problem, requiring decentralised privacy-preserving solution.
In this work, we propose a novel decentralised privacy-preserving graph cycle

detection protocol. Though many di�erent network patterns are indicative of money
laundering, we focus on short cycles as they remain one of the stronger indicat-
ors [HK20, Qiu+18]. We model the network as an unweighted directed graph, where
nodes and edges represent accounts and transactions, respectively. Our protocol starts
at a single node, the initiator, who triggers a �ood of messages throughout the network.
Each node that is reached by the �ood sends messages back through the �ood to the
initiator to performs a key exchange. If the graph contains a cycle, the �ood will also
reach the initiator, who will notice that they are performing a key exchange with
themselves, and subsequently triggers a simple cycle recovery routine. Our protocol
can be parallelised trivially to run many �oods simultaneously.
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We implement our protocol and validate its performance on various graphs. We
�nd that our protocol is computationally and communicationally e�cient for cycles
with lengths commonly seen in anti-money laundering operations. Furthermore, we
show that nodes learn nothing more about the topology beyond the detected cycles
and the existence (but not contents) of paths between pairs of colluding adversaries.

The remainder of this work is structured as follows. In Section 5.2, we discuss related
work. In Section 5.3, we cover notation, cryptographic fundamentals, and proposed
solution. In Section 5.4, we discuss and empirically validate the complexity of our
protocol. In Section 5.5, we prove the security of our protocol. Finally, in Section 5.6,
we discuss our �ndings and provide some concluding remarks.

5.2 Related Work

Existing works have proposed detecting fraudulent transactions using subgraph detec-
tion, graph queries, statistical functions, and machine learning. These areas have been
surveyed extensively [ATK15, Pou+20, ST21, Pan+20, Bal+23, IPB19, HGY22, DBB22].
However, to the best of our knowledge, there are only three privacy-preserving cycle
detection algorithms, which we discuss in the remainder of this section.
The decentralised protocol proposed in [Mar23] uses a message-based approach

for detecting cycles, taking as input the maximum cycle length ℓ . To the best of
our knowledge, this is the only decentralised privacy-preserving solution that does
not scale quadratically in the number of graph vertices. Instead, the protocol is
e�cient for small ℓ and scales well with network size, because it operates in the
local neighbourhood. Any node can initiate the protocol by sending a nonce with
a time-to-live of 2ℓ . Recipients forward the message to their outgoing neighbours,
but not before applying a one-time pad to the nonce based on the outgoing edge and
decrementing the time-to-live. Cycle detection relies on messages following the same
path twice, causing one-time pads to be applied twice and thus cancel out, resulting in
the initiating node receiving their original nonce.
Unfortunately, re-using the one-time pad has signi�cant security implications. In

Figure 5.1, we show a graph in which topological knowledge is leaked because an
adversary can infer that messages belong to the same �ood of messages. Here, node E�
is the initiator, and node E� is controlled by a passive adversary. First, E� sends the
nonces A0, A1 to neighbours E1 and E2, respectively. Each recipient re-randomises the
nonce with a one-time pad and forwarding the messages until �nally E� receives one
message for each path from E� . However, because the one-time pads are based only
on the identity of the edge, the messages that arrive at E� abide by a certain pattern.
Speci�cally, the di�erence between the respective pairs of messages received from
E�’s neighbours are the same:

(A0A3 ) (A0A4A 5 ) = A3A4A 5 = (A1A2A3 ) (A1A2A4A 5 ). (5.1)

This implies that E2 and E3 share a common ancestor, which violates the protocol’s
privacy guarantees. Not re-using one-time pads is not a feasible remedy, because the
protocol requires one-time pads to be applied twice to cancel out. Running only one
�ood at a time is not feasible either, because an adversary that knows that this is the
case can derive the same information as in Equation 5.1 by looking at the di�erences
in the time-to-live �eld of the messages.
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E�

E1

E2

E3

E�
A0

A1 A1A2

A0A3

A1A2A3

A0A4

A1A2A4

A0A4A 5

A1A2A4A 5

x Figure 5.1 Simpli�ed example execution of the protocol in [Mar23], with starting
node E� and passive adversary E�. The re-use of one-time pads allows E�
to detect patterns in received messages.

The approach in [Vor23] uses secure arithmetic based on Multi-Party Computation
(mpc) to implement secure variants of various graph algorithms. We brie�y highlight
two algorithms: one to detect cycles and another to enumerates cycles. The �rst
algorithm is based on the iterative vertex removal algorithm. This algorithm starts
with the full graph, and on each iteration removes all vertices that have no incoming
edges until the remaining structure contains only cycles, or is empty if no cycles exist.
Their mpc implementation makes use of a secret-shared adjacency matrix and uses an
auxiliary list of decision bits to indicate which bits have been removed. The output is a
boolean denoting whether the graph contains a cycle. The second algorithm �nds and
enumerates cycles of a �xed size U by iterating over all possible paths and keeping only
those that are cycles. Work can easily be parallelised, which keeps the communication
(or round) complexity reasonable. Unfortunately, their approach requires a fully-
connected communication graph as the adjacency matrix and computations are shared
among all nodes. Consequently, the computational complexity scales with the network
size while being exponential in U .
Finally, we discuss topology-hiding computation, which is another form of mpc

which considers a partial communication graph. The goal is to perform shared compu-
tation while keeping the topology private. To the best of our knowledge, the work
in [ALM20] is the only topology-hiding work that covers our objectives: Their ap-
proach is round-based, is not speci�c to cycles, and performs computation over all
nodes in the partial graph. Their main contributions are a two-phase protocol based
on random walks, as well as a proof that topology-hiding computation is feasible for
arbitrary network topologies under the decisional Di�e-Hellman assumption. The �rst
protocol phase propagates a message forward using a random walk. Homomorphic
encryption is used to aggregate a secret bit for each node a message passes through.
Upon forwarding the message, nodes add an encryption layer. The second phase traces
back the walk, such that each node removes the layer of encryption added in the �rst
phase. The output contains the logical or of the secret bits. To obtain the complexities
for general graphs, consider the input =, ^, where the input size is polynomial in the
security parameter ^. The round and communication complexity are O(^=3) and
O(^=5) respectively. This makes the random walk approach infeasible for general
graphs with large =.
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5.3 Our Proposal: Decentralised Cycle Detection

We propose a privacy-preserving protocol for detecting cycles in decentralised net-
works. Our protocol works by �ooding a message through the network and inferring
the presence of a cycle when that message reaches the beginning again. To ensure
privacy, messages from the same �ood should not be linkable, except for the initiator,
who can recognise when the message has completed a cycle.

We achieve this using a key exchange protocol, where each node that is reached by
the �ood performs a key exchange with the initiator, communicating through the other
nodes. Once the �ood reaches the initiator, the initiator does not immediately know
that this message corresponds to the �ood they initiated. However, after completing
the key exchange, the initiator notices they have performed a key agreement with
themselves, proving the presence of a cycle. The initiator then sends a message to
determine which nodes are in the cycle. This way, our protocol leaks nothing about
the topology beyond a small set of paths.
In Section 5.3.1, we brie�y present our preliminaries, including notation, network

model, and security model. In Section 5.3.2, we present the protocol in detail.

5.3.1 Preliminaries

Notation. We denote the size of a set - by |- |. We model the transaction network
as a directed simple graph � = (+ , �) with nodes + and edges � ⊆ + × + . Each
edge (E8 , E 9 ) ∈ � represents a transaction from E8 to E 9 . We denote the set of all direct
neighbours of E ∈ + by # (E). The sets of incoming and outgoing direct neighbours
of E ∈ + are denoted by # − (E) and # + (E), respectively. The degree of E ∈ + is
given by 3 (E) := |# (E) |, its in-degree by 3− (E) := |# − (E) |, and its out-degree by
3+ (E) := |# + (E) |. A path is a sequence of nodes (E1, . . . , E: ). A (simple) cycle is a path
where E1 = E: and E1 ∉ {E2, . . . , E:−1}.
Network model. Nodes are autonomous and have no common storage, memory, or
processing power. Each node has a unique identi�er, and each node knows their direct
neighbours. The network is static throughout the protocol’s execution. Though the
network is directed, communication may occur in both directions along each edge.

Security model. Communication between nodes is reliable and cannot be modi�ed,
but can be tapped by a global adversary. Additionally, a (non-strict) subset of nodesmay
be adversarial. All adversaries are honest-but-curious and may exchange information
with each other. Additionally, all adversaries are probabilistic polynomial-time.

We de�ne privacy as the inability of adversaries to learn about the topology beyond
their background knowledge and the intended output of our protocol. Concretely, for
any pair of nodes D, E ∈ + , the adversary cannot guess whether (D, E) ∈ � any better
after the algorithm than before, unless (D, E) is part of a cycle containing the adversary.
We formalise and analyse this notion in Section 5.5.

We do not consider attacks based on side channels or network tra�c analysis based
on timing or volume. Some of these threats may be mitigated by using anonymous
communication, dummy tra�c, and parallel execution of instances.
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5.3.2 Protocol Details

During the protocol, nodes send various messages, and keep routing tables to be able
to send message back and forth along a speci�c route. We present a minimal example
of the exchanged messages in Figure 5.2, and a visual example in Figure 5.4 on page 105.
Our protocol uses the following messages:

• “flood”: The initiator starts by sending “flood” to each neighbour. Any node
that receives “flood” sends “flood” to each of their neighbours. The time-to-live
�eld in each “flood” message ensures the message is forwarded a limited number
of times. Each “flood” message contains a unique public key.

• “echo”: Any node that receives “flood” combines a fresh private key with the
contained public key, and sends this back to the sender in an “echo”. When a node
receive “echo”, it forwards this backwards through the �ood, towards the initiator.

• “trace”: Once the initiator has established that there is a cycle, they send “trace”
to the next node in the cycle. Each node that receives “trace” appends their
identity to the list, and forwards it until it reaches the initiator again.

(“flood”, A0,1 , 6
:0,1 , 3)

(“echo”, A0,1 , 6
:1,0 )

(“flood”, A1,2 , 6
:0,1 :1,2 , 2)

(“echo”, A1,2 , 6
:2,1 )

(“echo”, A1,2 , 6
:2,1 :1,0 )

(“flood”, A2,0, 6
:2,0 , 1)

(“echo”, A2,0, 6
:0,2 )

(“echo”, A2,1 , 6
:0,2 :2,1 )

(“echo”, A1,0, 6
:0,2 :2,1 :1,0 )

(“trace”, 6:0,2 :2,1 :1,0 , {0})

(“trace”, 6:0,2 :2,1 , {0,1})

(“trace”, 6
:2,1 , {0,1, 2 })

(“publish”, 6:0,2 :2,1 :1,0 , {0,1, 2 })

(“publish”, 6:0,2 :2,1 , {0,1, 2 })

(“publish”, 6
:2,1 , {0,1, 2 })

User 0 User 1 User 2

x Figure 5.2 Example message exchange after node � initiates a �ood of messages,
with nodes �, �, and � arranged in a simple directed cycle
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• “publish”: When “trace” reaches the initiator again, the list of nodes is complete,
and sends it in an “publish” message to the next node. This node learns about the
cycle, and forwards the “publish” as well. When “publish” reaches the initiator,
the protocol is complete.

For the key exchange, we use Di�e-Hellman key exchange [DH76]. We assume that
all nodes agree upon a group G ⊆ Z

∗
? of order @ where the decisional Di�e-Hellman

problem is hard, and that generator 6 of G is publicly known. When we do arithmetic
in G, we omit the modulo for simplicity. Our protocol uses security parameters ^? ,
^@ , and ^A : The values ? and @ have ^? -bit and ^@-bit security, respectively, while any
nonces generated in our protocol have ^A -bit security.

The message exchanges described earlier are implemented over several algorithms.
It may help to imagine each algorithm running in a dedicated thread. The algorithm
Initiate is started by a node when that node desires to detect nearby cycles, and
kicks o� a �ood of messages. The algorithms Flood, Echo, Trace, and Publish

are run continuously by each node, and describe what a node does upon receiving a
message of the corresponding type.

Initiate

We present Initiate in Algorithm 1. This algorithm is run only by the initiating
node D when they want to kick o� cycle detection. Recall that the initiating node D
also responds to messages as described in the other algorithms.

NodeD starts by sending “flood” to each neighbour E , containing a nonce AD,E and a
public key 6:D,E . In Flood (Algorithm 2), each receiver E processes this message, result-
ing in a �ood of key agreements, which are stored in the nodes’ private agreements
arrays, and “echo”’d back to the initiator (Algorithm 3). Back in Initiate, the
initiator inspects incoming “echo”s, completes the key exchange, and if it �nds the
resulting key in the agreements array, then the exchange was apparently performed
with themselves, which proves the presence of a cycle. Using the information in
agreements, the initiator infers that the cycle starts with (D, E ′) and ends with (F,D).
Therefore, the initiator sends “trace” to E ′ to create a list of nodes in the cycle
(Algorithm 4), which ultimately comes back to node D through nodeF , containing the
list of nodes� . (The function of keys  and  ′ is explained in subsequent algorithms.)
Node D �nally publishes � by sending a “publish” message (Algorithm 5).

Flood

We present Flood in Algorithm 2. When node E receives a “flood” from some
node D, they generate fresh private key :E,D and send 6:E,D back to node D in an
“echo”, reusing the nonce. Recall from Initiate that the key agreement  :E,D is
stored in agreements to detect when self-agreement occurs. Next, node E forwards
the “flood” to its neighbours. The construction of these messages is similar to the
original message from Initiate, with one major di�erence: The key  is amended
with the fresh key :E,F . Additionally, the local data structures before and after

are populated. These will be used in Echo (Algorithm 3) and Trace (Algorithm 4)
to e�ciently send messages between nodes without broadcasting. Speci�cally, using
before, a message fromF with nonce AE,F can be sent back to D with nonce AD,E , and
using after, a message from D with key  can be sent toF with key  F .
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Echo

We present Echo in Algorithm 3. When node E receives an “echo”, they send an
“echo” towards the initiator, using before to determine node D and nonce AD,E . This
repeats until the “echo” arrives at the initiator, who handles themessage in Initiate.
Note that the same private key :E,F that was applied to the “flood” to F is now
applied to the key that will eventually reach the initiator.

Trace

Wepresent Trace in Algorithm 4. The algorithm is conceptually similar to Algorithm 3,
with two major di�erences. First, messages are forwarded in the other direction.
Second, messages are not identi�ed by nonces, but using keys in after. Each time
the message is forwarded, the forwarded appends its identity to � . The initiator E has
di�erent behaviour (Algorithm 1) upon receiving a “trace”; it sees that �0 = E , and
stops the forwarding. The check after[ ] lets the algorithm di�erentiate between
the initiator and other nodes.

Publish

We present Publish in Algorithm 5. The algorithm is extremely similar to Algorithm 4.
The only di�erence is that the cycle� is now complete and can be appended to cycles
before being forwarded. The check after[ ] ensures the initiator stops forwarding
the message.

Algorithm 1: Initiate, from the perspective of node D ∈ + .
Data: agreements, cycles
Result: Starts �ooding, waits for self-agreement, starts cycle recovery.

// Start key agreement flood

for E ∈ # + (D) do
AD,E ←' {0, 1}^A ; :D,E ←' Z

∗
@ ;

send (“flood”, AD,E, 6:D,E , ℓ − 1) to E ;
end for

// Analyse incoming echoes until self-agreement occurs

while true do

receive (“echo”, AD,E′ ,  ) from any E ′ ∈ # + (D);
if exists(agreements[ :D,E′]) then // see Algorithm 2

(F, AF,D,  
′) ← agreements[ :D,E′];

// Construct �

send (“trace”,  , {D}) to E ′; // see Algorithm 4

receive (“trace”,  ′, �) fromF ;

// Publish �

append � to cycles;
send (“publish”,  , �) to E ′; // see Algorithm 5

end if

end while
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Algorithm 2: Flood, from the perspective of node E ∈ + .
Data: agreements, before, after
Result: Starts back-propagation and continues �ooding.

while true do

receive (“flood”, AD,E,  , ℓ) from any D ∈ # − (E);
// Respond to sender, starting back-propagation

:E,D ←' Z
∗
@ ;

agreements[ :E,D]← (D, AD,E,  ); // used in Algorithm 1

send (“echo”, AD,E, 6:E,D ) to D;
// Continue flooding

if ℓ − 1 = 0 then continue;
forF ∈ # +(E) do

AE,F ←' {0, 1}^A ; :E,F ←' Z
∗
@ ;  F ←  :E,F ;

before[AE,F]← (D, AD,E, :E,F); // used in Algorithm 3

after[ ]← (F,  F); // used in Algorithm 4

send (“flood”, AE,F,  F, ℓ − 1) toF ;
end for

end while

Algorithm 3: Echo, from the perspective of node E ∈ + .
Data: before

Result: Back-propagates echo messages to the initiating node.

while true do

receive (“echo”, AE,F,  ) from anyF ∈ # +(E);
if exists(before[AE,F]) then

(D, AD,E, :E,F) ← before[AE,F];

send (“echo”, AD,E,  :E,F ) to D;
end if

end while

Algorithm 4: Trace, from the perspective of node E ∈ + .
Data: after

Result: Determines which nodes are in the detected cycle.

while true do

receive (“trace”,  , �) from any D ∈ # − (E);
if exists(after[ ]) then // see Algorithm 2

(F, F) ← after[ ];
send (“trace”,  F, � + {E}) toF ;

end if

end while
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Algorithm 5: Publish, from the perspective of node E ∈ + .
Data: after, cycles
Result: Informs nodes in the cycle of the list of nodes in the cycle.

while true do

receive (“publish”,  , �) from any D ∈ # − (E);
if exists(after[ ]) then // see Algorithm 2

append � to cycles;
(F, F) ← after[ ];
send (“publish”,  F, �) toF ;

end if

end while

5.4 Performance

Firstly, in Section 5.4.1, we derive the worst-case complexity in terms of time, commu-
nication, and storage. Secondly, in Section 5.4.2, we discuss our implementation of our
protocol. Finally, in Section 5.4.3, we present the empirical complexity results of our
implementation.

5.4.1 Worst-Case Complexity

Communication. The number of messages in Flood and Echo each is exponential in
ℓ and grows by a factor of =. The number of messages in Trace and Publish each is
simply the sum of lengths of the found cycles. Overall, given the set of found cycles� ,
the communication complexity is O(=ℓ +∑

f∈� |f |).
Computation. Each incoming message results in a function call of the corresponding
type. Trace and Publish each require a constant number of relatively trivial compu-
tations. However, Flood and Echo both require expensive exponentiations upon each
invocation: Flood requires one exponentiation per neighbour, and Echo requires a
constant number of exponentiations. The bit complexity of each exponentiation scales
with the security parameters from Section 5.3.2. Concretely, in Z? , each exponentiation
has a computational complexity of O((log^? )3) [MvOV96]. The overall computational
complexity is therefore O(=ℓ+1 (log^? )3 +

∑
f∈� |f |).

Storage. Users may receive O(=ℓ ) di�erent “flood”s. For each such message, that
user stores one ^@-bit key plus for each outgoing neighbour one ^@-bit key and one
^A -bit nonce. Also, users store the cycles they �nd during Publish. Overall, given the
set of found cycles � , the storage complexity is O(=ℓ+1 (^@ + ^A ) + (

∑
f∈� |f |)2) bits.

Observations. We conclude that our protocol exhibits its worst performance when
executed over a fully-connected graph, and its best performance when executed over
a fully-disconnected graph. For arbitrary graphs, the complexity is dependent on the
search depth ℓ and the degree distribution in the local neighbourhood. In particular, the
node with the highest out-degree contributes signi�cantly to the complexity [Qiu+18],
and may be used instead of = to obtain a tighter bound.
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5.4.2 Method

We use our publicly available implementation of the protocol, written in C++ [JD25].
Our implementation generates synthetic graphs in the Barabási–Albert model [AB01].
The underlying principle of this model is preferential attachment: New nodes prefer
to connect to high-degree nodes, resulting in a power-law distribution over the nodes’
degrees. Many real-world phenomena, including �nancial markets [LV16], are thought
to have this property While empirical analysis shows that such networks are rare
in the real world [BC18], recall that the performance bottleneck in real-world cycle
detection is due to a small number of high-degree nodes [Qiu+18]. Therefore, we argue
that a power-law distribution is su�ciently realistic for our purposes.
The Barabási–Albert model speci�es two parameters,<0 and<1, plus the desired

number of nodes =. Generation is iterative and starts with a fully-connected graph of
size<0. Each iteration adds a node, and randomly connects it to<1 di�erent nodes in
the existing network, with the sampling probability proportional to the existing node’s
degree. The direction of each new edge is decided by a fair coin toss. This process
repeats until there are = nodes in total. As is commonly done, we set< =<0 =<1. A
higher value of< corresponds to a denser graph.

For our security parameters (recall Section 5.3.2), we recommend setting ^? = 3072

and ^@ = 384, which is large enough to resist attacks [Bou+20, LLW24] on the discrete
log problem.1 The same paradigm applies to nonces, for which we recommend setting
^A to be at least 128 bits. The choice of security parameters a�ects the e�ciency of
the protocol. This creates a well-known trade-o�: stronger security results in worse
performance of the protocol.
For each < ∈ [3, 9], we generate a random graph with = = 50 nodes. For each

graph, for each ℓ ∈ {2, 3, 4}, we sequentially run our protocol once on each node, and
record the mean runtime Cavg, the mean number of “flood” and “echo” messages,
the mean number of “trace” messages, and the mean number of cycles of length at
most ℓ . We repeat this entire procedure 10 times, each time using a di�erent random
group with ^? = 60 and ^@ = ^A = 20.

5.4.3 Results

We present our results in Figure 5.3. Note the logarithmic y-axis in each �gure. In
Figure 5.3a we see that the mean runtime grows exponentially as the graph becomes
denser, where higher values of ℓ result in an increased growth rate. In Figure 5.3b
we see a similar pattern for the communication complexity, as expected from our
asymptotic complexity analysis. In Figure 5.3c we see that the number of “trace”
messages grows slower than either the runtime or the number of “flood” and “echo”
messages, but certainly does not grow linearly either. This behaviour is best understood
by considering Figure 5.3d, in which we see the mean number of cycles that each user
is part of, and which has a roughly similar growth rate as the number of “trace”
messages. We note that the growth rate in these latter two �gures may be di�erent for
other types of graphs.

1The 2019 cryptographic guideline published by the National Institute of Standards and Techno-
logy [BR19] recommends picking a key size in the range of 128 to 3072 bits to mitigate security risks,
and considers key lengths of under 112 bits to be insecure.
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x Figure 5.3 Empirical results for graphs with = = 50. Figures (i)–(iii) show the
performance of the protocol, where each data-point is the mean over
the 50 nodes. Figure (iv) shows auxiliary information resulting from the
graph generation method.

5.5 Security Analysis

We show that our protocol, introduced in Section 5.3, is secure. We say our protocol
achieves security (or rather: con�dentiality) when running the protocol does not give
the adversary an advantage in guessing the (non-)existence of an edge beyond what
can be inferred from the intended outputs: cycles containing adversaries, and path
existence between adversaries.
The topology is encoded into our protocol in two places: in the message contents,

and in how the �oods �ow through the network. We can trivially show that message
contents alone are not su�cient to learn about the topology: The only messages
that explicitly encode the topology are “trace” and “publish”, but the contained
information corresponds to the intended outputs of the protocols, and therefore do
not constitute a breach of con�dentiality.
We now focus on analysing what adversaries can learn from the way in which

messages �ow through the network. Should an adversary learn that two received
messages belong to the same �ood, then the adversary knows that their respective
senders are connected, which is more than the adversary knew before. Still, our
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security model in Section 5.3.1 limits what adversaries can learn: Adversaries cannot
perform side-channel attacks based on the timing and volume of messages. However,
they can link messages together based on their contents, for example by detecting
patterns in the nonces. Some linkages are trivial and do not impact con�dentiality,
which we capture in the following de�nition.

De�nition 5. System of messages. Given a protocol message< and an adversarial
node D, the corresponding system of messages, denoted systemD (<), consists of all
messages that D can trivially infer to be part of the same �ood as<. If< is a “flood”
received by D, then systemD (<) contains<, the “echo” returned by D, all “flood”s
sent by D in response to <, all “echo”s received in response to those forwards,
and all “echo”s forwarded by D in response to those echoes. The function systemD

represents an equivalence class: For any<′ ∈ systemD (<), we have that systemD (<) =
systemD (<′).
Furthermore, if a message< was sent from an adversarial node D to another ad-

versarial node E , then the set of messages that can be linked to each other consists of
both users’ systems of messages, systemD (<) and systemE (<). In fact, these systems of
messages are therefore the same, large system of messages: systemD (<) = systemE (<).
This property is transitive.

We show that the adversary cannot determine whether two messages belong to the
same �ood. We consider two messages that were sent to or received by one or more
adversarial nodes. We give a proof by contradiction. For the sake of contradiction,
we assume that the adversaries do derive whether the messages belong to the same
�ood. If the two messages belong to the same system of messages, then they are
trivially linkable, but do not reveal information that the adversaries did not already
have access to. If they are not part of the same system of messages, however, we can
distinguish two distinct situations, depending on whether the messages are linked
sequentially, i.e. whether the path from the �ood’s initiator to one of the messages
includes the other message. If they are linked sequentially, there clearly exists a path
between the adversarial nodes; since paths between adversaries are explicitly part of
the protocol’s output, this situation does not leak con�dential information. Otherwise,
if the messages are not linked sequentially, the two messages have a common ancestor
node; since the ancestor independently re-randomises the messages before forwarding
them, the twomessages are by de�nition unlinkable. Therefore, in all cases, adversaries
are unable to link messages together such that they gain undue information.

5.6 Conclusion

Anti-money laundering systems work by detecting patterns in transaction graphs. In
practice, data sharing prevents these systems from being deployed across legislative
boundaries. To this end, we have designed a decentralised privacy-preserving cycle
detection protocol. In our protocol, the initiating node �oods their local neighbourhood
with messages and performs recursive key exchanges with the recipients. When the
�ood reaches back to the initiator, a cycle must exist, which the initiator subsequently
uncovers in a sub-protocol. Our protocol can be run in parallel with many initiating
nodes, allowing the participants to collectively �nd all cycles in the network. We
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show that participants learn nothing about the topology beyond the cycles, even when
participants collude.

Our protocol di�ers from existing works in that it is fully distributed. Previous works
have typically required knowledge of the full topology, or otherwise required all nodes
to be available simultaneously. These works thus cannot guarantee output delivery
when nodes become unavailable, and their computational complexities typically scale
with the size of the graph. Meanwhile, in our protocol, complexity scales depending
on the local neighbourhood only, with nodes learning only about cycles that they
themselves are part of.
Future work may include optimisations across parallel instances, ensuring only

simple cycles are found, multiple initiating nodes, and reusing the outputs of past
instances, for example to detect new cycles after the topology has changed.
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x Figure 5.4 Visualisation of the network behaviour during an instance of our protocol,
with initiator ( . Note the dotted lines, representing echoes being sent
opposite the edge’s normal direction. Also note that Figure 5.4k actually
shows three separate steps similar to the trace steps.
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Chapter 6

Optimal Graph Stretching for Distributed Averaging

Abstract. The performance of distributed averaging depends heavily on the underlying topo-
logy. In various �elds, including compressed sensing, multi-party computation, and abstract
graph theory, graphs may be expected to be free of short cycles, i.e. to have high girth. Though
extensive analyses and heuristics exist for optimising the performance of distributed averaging
in general networks, these studies do not consider girth. As such, it is not clear what happens
to convergence time when a graph is stretched to a higher girth.

In this work, we introduce the optimal graph stretching problem, wherein we are interested
in �nding the set of edges for a particular graph that ensures optimal convergence time under
constraint of a minimal girth. We compare various methods for choosing which edges to
remove, and use various convergence heuristics to speed up the searching process. We generate
many graphs with varying parameters, stretch and optimise them, and measure the duration of
distributed averaging. We �nd that stretching by itself signi�cantly increases convergence time.
This decrease can be counteracted with a subsequent repair phase, guided by a convergence
time heuristic. Existing heuristics are capable, but may be suboptimal.

Based on: Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Optimal graph stretching for distributed

averaging. 2025. arXiv: 2504.10289.

https://arxiv.org/abs/2504.10289
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6.1 Introduction

D
istributed averaging allows nodes in a peer-to-peer network to �nd the
global mean of the nodes’ local values in a completely distributed manner.
Throughout the protocol’s iterative process, each node’s estimate of the global

mean continues to improve until a consensus is reached. Distributed averaging has
applications in various �elds, including gossip learning [Boy+05], fully-distributed
learning [VBT17], and control systems [HDC18]. In all cases, the challenge is to �nd
an algorithm that is e�cient in terms of convergence time and communication cost.

The study of convergence in consensus algorithms is heavily tied to studies on syn-

chronisability in chaos theory, which, roughly speaking, studies the ability of disjoint
systems to synchronise spontaneously [PC98, BP02]. We know from chaos theory
that the convergence time of distributed averaging is heavily tied to the underlying
topology [Boy+05, Li+10]. Optimising a topology for convergence time is hard [XB04],
and so a multitude of heuristics have been proposed, including those based on graph
metrics such as degree, closeness centrality, and e�ciency [HS08, SB22], and on
spectral metrics such as eigenratio and algebraic connectivity [GB06, XB04].

Meanwhile, several �elds study the girth of the network, which is the length of its
shortest cycle. In compressed sensing, high girth positively impacts reconstruction
guarantees [Kha+11, LX13]. In multi-party computation, the girth implies speci�c pri-
vacy guarantees [DEC25c]. Finally, in graph theory, high-girth graphs are an interest-
ing concept per se [Mar82], and are important when studying expander graphs [Par21].
Various authors have also proposed algorithms for increasing the girth of an existing
graph. Algorithms for coding theory focus on bipartite graphs [HEA05, LTT11], while
algorithms for expander graphs focus on degree-regular graphs [Par21].

To the best of our knowledge, there are no works that study the intersection of these
two areas. Therefore, in this work, we ask: How does “stretching” the girth of a graph
to a higher value a�ect the convergence time of distributed averaging? Additionally,
we ask how to minimise the number of leaf nodes, since these are undesirable in
various applications [AHL02, DEC25c]. To answer both our questions, we formalise
our optimisation problem, consider several stretching and leaf minimisation algorithms,
optimisation heuristics, and graph families, and compare the results.
We �nd that stretching a graph to a higher girth signi�cantly increases the con-

vergence time, typically by an order of magnitude. Since stretching consists solely
of removing edges, we �nd that the best algorithm prioritises the removal of those
edges that are in the largest number of cycles. Additionally, lost convergence time
can be recuperated partially by greedily optimising the edge set using a heuristic
for convergence time. Meanwhile, minimising the number of leaves has little impact
on convergence time, with little di�erence between the various algorithms studied.
Finally, though the studied heuristics are adequate for improving convergence time,
our results indicate that heuristics tailored for high-girth graphs may be able to achieve
even better convergence time.
In Section 6.2, we present our notation and various preliminaries. In Section 6.3,

we survey related work. In Section 6.4, we introduce the optimal graph stretching
problem and our exact research questions. In Section 6.5, we explain our research
method. In Section 6.6, we present our results. Finally, in Section 6.7, we o�er our
conclusions.
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6.2 Preliminaries

In general, we denote the �rst element of a vector E by E0, the absolute value of a
scalar G by |G |, the cardinality of a collection ( by |( |, the range of integers {0 . . . =−1}
by ⟦=⟧, and the Euclidian norm of a vector E by ∥E ∥2.
6.2.1 Graph theory

Basics. A graph� = (+ , �) is a set of vertices+ and a set of edges � ⊆ + ×+ . In this
work, we consider only simple graphs, i.e. unweighted, undirected, self-loopless graphs,
where each edge may occur at most once. For any node E ∈ + , the function neigh(E)
gives the set of direct neighbours of E , and deg(E) gives the degree of E . The adjacency
matrix� of graph� is a |+ |-by-|+ |-matrix where, for any 8, 9 ∈ ⟦|+ |⟧, we have�8, 9 = 1

if (+8 ,+9 ) ∈ � and �8, 9 = 0 otherwise. The (unoriented) incidence matrix � of graph �
is a |+ |-by-|� |-matrix where, for any 8 ∈ ⟦|+ |⟧, 9 ∈ ⟦|� |⟧, we have �8, 9 = 1 if +8 ∈ � 9

and �8, 9 = 0 otherwise.

Spectral theory. For any =-by-= matrix " , an eigenvector E is a vector such that
"E = _E for some scalar _. This scalar _ is the eigenvalue corresponding to E . The
matrix" has= (not necessarily unique) eigenvalues, collectively known as the spectrum
of " . For any 1 ≤ 8 ≤ =, we write _8 (") to mean the 8th-smallest eigenvalue of " .
That is, _1 (") ≤ _2 (") ≤ . . . ≤ _= ("). We drop the index" when the matrix is clear
from context.

Spectral graph theory. The Laplacian ! of a graph � is the |+ |-by-|+ | matrix ��) .
For any 8, 9 ∈ ⟦|+ |⟧, we have !8, 9 = −�8, 9 if 8 ≠ 9 and !8, 9 = deg(+8 ) otherwise. Some
eigenvalues of ! are special: _1 = 0; _2 is called the algebraic connectivity (and the
associated eigenvector is called the Fiedler vector); _= is called the spectral radius;
and _2

_=
is called the eigenratio. The algebraic connectivity _2 = 0 if and only if � is

connected [Fie73]. All eigenvalues increase monotonically with the edge set. (This
cannot be said for the eigenratio.) Formally, given graphs�1 = (+ , �1) and�2 = (+ , �2)
where �1 ⊆ �2, we have _8 (!1) ≤ _8 (!2) [Fie73]. In fact, the eigenvalues of the two
graphs become interlaced [GMS90, Mer91]: _8 (!1) ≤ _8 (!2) ≤ _8+1 (!1) ≤ _8+1 (!2).
6.2.2 Distributed averaging

Consider a graph� = (+ , �) with = := |+ | nodes. Each node E ∈ + has a scalar value GE
and can communicate only with their direct neighbours neigh(E). In distributed

averaging, the task for each node is to �nd the global mean
∑

E∈+ GE
=

.
Distributed averaging can be achieved using a distributed asynchronous push-pull

algorithm: Nodes iteratively calculate the mean of their local neighbourhood and then
replace their own value with that mean. Speci�cally, in this work, the algorithm we
consider has the following properties:

• Asynchronous [Boy+06]: Users do not coordinate to choose which user is next.
Instead, users randomly and independently “wake up” and perform their iteration.

• Linear iterations [OM03, XB04]: Distributed averaging algorithms di�er in which
neighbours are included in the averaging operation. To achieve convergence, it is
su�cient that each direct neighbour is selected with a non-zero probability [HDC18].
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For simplicity, in our implementation, the initiating user selects one of its neighbours
at random.

• Push-pull [Dem+88]: The mean calculated by the initiating user is used as the new
local value of both the initiating user E (“pull”) and the selected neighbourF (“push”).

Implementing this type of distributed averaging requires each user to simultaneously
run two threads: one to initiate rounds, and one to respond. We show the corresponding
algorithms respectively in Algorithm 6 and Algorithm 7. To avoid overly complex
notation, these algorithms do not address issues relating to concurrency.

Algorithm 6: Active thread of
each user E in distributed aver-
aging

while true do

sleep();
F ←' neigh(E);
// random sample

send GE toF ;
receive GF fromF ;
GE ← GE+GF

2
;

end while

Algorithm 7: Passive thread of
each userF in distributed aver-
aging

while true do

receive GE from E ;
send GF to E ;
GF ← GF+GE

2
;

end while

6.3 Related work

To the best of our knowledge, there is no literature that covers the relation between
distributed algorithm convergence speed and graph girth. Therefore, in this section,
we survey those works that are most closely related. In Section 6.3.1, we discuss works
on the relation between topology and convergence. In Section 6.3.2, we discuss works
on high-girth graphs and short-cycle removal.

6.3.1 Convergence

There exists a vast body of work that analyses the relation between topology and
convergence. These works have their origin in physics, aiming to predict the ability of
dynamic networks to spontaneously synchronise [PC98, BP02]. Since similar dynamics
occur in distributed systems, results on synchronisability were adopted into computer
science, where the concept is referred to as convergence [DHM05, Li+11, Liu+14]. For
simplicity, in the following overview, we will speak of convergence even if the cited
work is about synchronisation.

Spectral theory. Pecora and Carroll [PC98] and Barahona and Pecora [BP02] show
that the convergence speed of a graph is determined by the eigenvalues of that graph’s
Laplacian. Subsequent literature often uses algebraic connectivity and eigenratio as
heuristics of the graph’s convergence speed.
Kar, Aldosari and Moura [KAM06] show that (non-bipartite) Ramanujan graphs

exhibit high convergence speeds, both as expected from their eigenratio, and as
validated in numerical simulations. The authors point to various constructions of
Ramanujan graphs in literature.
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Donetti, Hurtado and Muñoz [DHM05] propose a new family of graphs that achieve
fast convergence: entangled networks. They propose an algorithm that �nds entangled
networkswith a desired number of nodes and average degree. The algorithm starts with
an arbitrary graph and, in each iteration, chooses random pairs of edges, performs
an edge exchange on each edge pair ((41, 42), (43, 44)) to get ((41, 44), (42, 43)), and
accepts the change if the eigenratio decreases. By using simulated annealing, the
algorithm avoids getting stuck in local optima. Donetti, Neri and Muñoz [DNM06]
extend their analysis, and show that entangled networks correspond exactly to so-
called cage graphs and Ramanujan graphs. However, the authors conclude that the
aforementioned algorithm is ine�cient for �nding Ramanujan graphs compared to
existing literature.

Wang et al. [Wan+07] improve upon the aforementioned edge exchange algorithm
by using tabu search instead of simulated annealing. The authors also observe that
the clustering coe�cient is a good heuristic to predict convergence speed, and show
that basing the search algorithm’s acceptance criterion on the clustering coe�cient
also creates graphs with high convergence speeds.
Ghosh and Boyd [GB06] propose a greedy algorithm to optimise algebraic con-

nectivity. At each iteration, �nd the Fiedler vector D, and add the edge (8, 9) with
largest (D8 − D 9 )2. Since the work focuses on optimising algebraic connectivity, it is
not clear how this algorithm a�ects the convergence speed of distributed averaging.

Degree relations. Rad, Jalili and Hasler [RJH08] propose an algorithm that removes
edges based on the sum of adjacent node degrees, and adds edges using the Fiedler
vector criterion of Ghosh and Boyd [GB06], and shows that this results in a network
with optimised eigenratio, which coincides with Ramanujan graphs. The authors note
that many other metrics provide similar results.
In a series of works, Yang and Tang [YT11], Yeung et al. [Yeu+12], and Liu et al.

[Liu+14] create increasingly performant heuristics for maximising convergence speed.
Ultimately, they settle on a tabu search-based algorithm in which edges are removed
and added as done by Rad, Jalili and Hasler [RJH08], and accept the resulting candidates
depending on whether the eigenratio improved. The algorithm prefers adding edges
between nodes that are within a short distance of each other in the underlying physical
network, and ensures that the resulting graph is connected.
However, Donetti, Hurtado and Muñoz [DHM08] show that while degree-degree

associations of neighbouring nodes indeed correlate negatively with the network’s
convergence speed, this correlation is not causative, as the mere act of introducing
such heterogeneity does not by itself decrease the eigenratio.

Comparisons. Hagberg and Schult [HS08] compare a multitude of greedy edge-
modifying algorithms to determine which methods achieve convergence in the fewest
iterations. Overall, they conclude that methods that focus on increasing algebraic
connectivity outperform those based on spectral radius and degree criteria, and that
edge exchanges are not necessarily better than separate edge additions and removals.
The authors do not consider eigenratio as a separate optimisation metric.

Sirocchi and Bogliolo [SB22] extensively compare metrics and �nd that the metrics
that most strongly correlate with high convergence speed of a distributed consensus
protocol are high closeness centrality, implying that information travels quickly, and
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small clustering coe�cient, implying that information is sent non-redundantly. How-
ever, these metrics vary in their accuracy for di�erent graph families. Unfortunately,
the authors do not investigate eigenratio as a metric.

6.3.2 Girth

We discuss works related to (increasing) girth in graphs.

Moore bound. Firstly, we note the Moore bound [Big93]. For 3-regular graphs with
girth 6, the number of nodes must be at least{

2
∑6/2−1

8=0 (3 − 1)8 , if girth is even

1 + 3∑(6−1)/2−1
8=0 (3 − 1)8 , if girth is odd.

(6.1)

Alon, Hoory and Linial [AHL02] show that if 3 is taken to be the graph’s average
degree, and each node has at least degree two, Equation 6.1 also holds for irregular
graphs. Consequently, another way to interpret the Moore bound is to say that, given
the number of nodes and a desired girth, there is an upper limit on the number of
edges. Therefore, when a higher girth is desired, the Moore bound dictates that it may
be necessary to remove some edges.

High-girth graph constructions. We note several works that present algorithms for
constructing graphs with high girth. Though these works do not consider increasing
girth in arbitrary existing graphs, the algorithms are interesting nonetheless.
Chandran [Cha03] provides a construction of high-girth almost-regular graphs.

Brie�y, this algorithm takes the number of nodes =, the desired average degree : <
=
3
,

and outputs a graph with girth 6 ≥ log: (=) +$ (1). The algorithm starts with = nodes
and the edges being a perfect matching on those nodes, and then iteratively adds edges
between the most distant pair of nodes such that at least one of the nodes in the pair
is a node with the lowest degree globally. The graph is almost regular in the sense
that any two nodes di�er in degree by at most two.

Linial and Simkin [LS21] provide a construction of high-girth regular graphs. Their
procedure is similar to that of Chandran [Cha03], but starts with a Hamiltonian cycle�
on = vertices instead, and, with high probability, gives a :-regular graph with girth at
least 2 log:−1 (=) for input 0 < 2 < 1.
Finally, Lazebnik, Ustimenko and Woldar [LUW95] present a family of high-girth

bipartite graphs, but their method cannot be adapted to non-bipartite graphs.

Short-cycle removal. Paredes [Par21] gives a polynomial-time algorithm that, given a
3-regular (A, g)-graph (that is, such that each node has at most one cycle within A hops,
and has at most g cycles of length at most A ), where A ≤ 2

3
log3−1

(
=
g

) − 5, outputs
a graph with girth 6 ≥ A , while ensuring all eigenvalues remain unchanged except
for a bounded factor. Brie�y, the algorithm works by breaking up all short cycles
by removing an arbitrary edge in each, and then adding new edges to restore the
spectrum, without reintroducing short cycles. Though this work is the closest to our
research question, it does not explicitly investigate the e�ect stretching has on the
convergence speed.
Finally, Hu, Eleftheriou and Arnold [HEA05] and Lau, Tam and Tse [LTT11] both

present what are e�ectively modi�cations of the aforementioned work by Chandran
[Cha03] speci�cally for bipartite graphs.
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6.4 Optimal Graph Stretching Problem

We consider the problem of increasing the girth of a connected graph � = (+ , �) to
some 6 ≥ 3 while achieving maximal distributed averaging convergence speed and
ensuring that the graph has (almost) no leaves. Here, convergence speed refers to the
reciprocal of the averaging time, which is the expected number of rounds until all
nodes are su�ciently1 close to the average [Boy+05]. Formally, the problem is to �nd

max
�′⊆+ ×+

convergence speed of � := (+ , �′)

such that � is a simple connected graph

|{E ∈ + : deg(E) < 2}| = 0

girth(� ) ≥ 6
Since this problem is non-linear, it is hard to solve e�ciently. Therefore, we relax

our problem de�nition as follows:

• Optimising the convergence speed of a graph is hard [XB04]. Therefore, we settle
for a heuristic; recall Section 6.3.1.

• As seen in Moore’s bound, there is a di�cult-to-control interaction between girth
and the number of edges. Therefore, we tolerate the presence of some leaves, as
long as a best-e�ort attempt is made.

Given this relaxed problem formulation, we ask the following research questions:

• How does leaf minimisation a�ect convergence speed?

• What is the e�ect of di�erent stretching methods on convergence speed?

• What heuristic achieves maximal convergence speed?

We describe our method in Section 6.5 and present our results in Section 6.6.

6.5 Method

We present our method for answering the questions posed in Section 6.4. At a high
level, the way we solve the optimal graph stretching problem is to �rst modify the
given graph to satisfy the constraints, and then greedily optimise for the convergence
speed heuristic. More speci�cally, our approach consists of the following steps:

1. Generate a graph. (Section 6.5.1)

2. Increase the girth. (Section 6.5.2)

3. Minimise the number of leaves. (Section 6.5.3)

4. Optimise graph using a heuristic. (Section 6.5.4)

5. Run distributed averaging. (Section 6.5.5)

We repeat this procedure 500 times for each combination of parameters. We provide
more details in the subsequent sections. Source code for the experiments is publicly
available [Dek25]. We present the results of our method in Section 6.6.

1The formal de�nition of “su�ciently” is given in the cited works, but is not relevant for our formulation.
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6.5.1 Generate Graphs

The accuracy with which heuristics predict convergence speed varies between graph
types [SB22]. Therefore, we generate graphs from four families commonly used to
model real-world networks. Each graph is characterised by its number of nodes = and
some family-speci�c parameters. For all graphs, we choose = uniformly randomly from
the range {25 . . . 100}. After �xing a set of parameters, we keep generating graphs
until a connected graph is found. We consider the following graph families:

• (=, ?) Erdős–Rényi graphs, where ? determines for each possible edge the probability
that it is included. We choose ? uniformly random from real range [ln(=)/=, 1],
ensuring an overwhelming probability of being connected [ER60].

• (=, :, ?)Watts–Strogatz graphs, which have small-world properties (i.e. high cluster-
ing and low distance), which are generated by connecting each node to the previous:
and next : nodes (creating a ring lattice), and then rewiring each edge with prob-
ability ? . We choose : uniformly random from integer range [1, �oor (=/2)) and ?
uniformly random from real range [0, 1], which is the full range of valid parameters.

• (=,<) Barabási–Albert graphs, which have scale-free properties (i.e. asymptotic
degree distribution), which are generated by starting with a star topology with
< + 1 nodes, and then iteratively adding the remaining nodes. Each new node is
connected to< random existing nodes, with probabilities proportional to nodes’
degrees, without replacement. We choose< uniformly random from the integer
range [1, =), which is the full range of valid parameters.

• (=, A ) geometric graphs, which represent physical networks, and are generated by
placing the nodes uniformly random in the unit square, and connecting pairs of
nodes within Euclidean distance at most A . We choose A uniformly random from
real range [1.1 ×

√
log(=)/(=c), 1), ensuring an overwhelming probability of being

connected [Pen97].

6.5.2 Stretch Graphs

Though the underlying application we consider is a distributed protocol, the stretching
algorithm itself need not be distributed. To stretch the girth of a graph to threshold 6,
all cycles with length below 6 must be removed. Trivially, it su�ces to �nd all short
cycles and remove one edge from each. However, since cycles may overlap, this naive
method may disconnect the graph, and typically removes more edges than necessary.
In our experiments, we stretch graphs from girth 3 up to and including 10. Here,

girth 3 represents no stretching at all (because every graph has girth at least 3), and
girth 10 was chosen because preliminary experiments revealed that very little happens
when stretching to even higher girths.

We consider three approaches for stretching a graph to a desired girth. All three
approaches work by repeatedly removing a speci�c edge until the girth has reached 6,
but di�er in how they select that edge:

• Random: Any edge that is part of a cycle.

• Least-Cycles: The edge that is part of the smallest number of shortest cycles.

• Most-Cycles: The edge that is part of the largest number of shortest cycles.
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Each approach considers only those edges that can be removed without disconnecting
the graph. When multiple edges match the criterion, one such edge is chosen randomly.

Remark 5. Note that the third method is expected to remove the most edges. We
include it nonetheless because the subsequent optimiser in Section 6.5.4 may bene�t
from starting with fewer edges.

Remark 6. Note that the second and third method consider the “number of shortest
cycles”, not the “number of short cycles”. If the graph currently has girth 6′, then only
cycles with exactly length 6′ are counted. Eventually, the graph reaches girth 6′ + 1,
and only cycles with exactly length 6′ + 1 will be counted, and so on until the graph
reaches girth 6. The reason for this is that the “number of short cycles” quickly
becomes infeasibly large, while the “number of shortest cycles” remains much smaller.
For example, the complete graph with 25 nodes has 2300 length-3 cycles, 10 626 000
length-6 cycles, and 41 186 376 000 length-9 cycles. After most-cycles stretching to
girth 4, only 157 392 length-6 cycles and 8 015 760 length-9 cycles remain, and, after
subsequently stretching to girth 5, 84 length-6 cycles and zero length-9 cycles remain.

Finding all cycles with length equal to the graph’s girth can be done using a simple
depth-�rst search. We perform this search once at the start, and once again whenever
the girth increases. We store the results in a sparse matrix with a row for each cycle
and a column for each edge, similar to an incidence matrix. (If cycles are hyperedges,
then this is the incidence matrix of that hypergraph.) When an edge is removed, its
column is removed from the matrix, and so are all rows that contained that edge. This
way, rows always correspond exactly to eligible cycles, and columns to edges that can
be removed without disconnecting the graph. Finding the edge that is in the largest
number of cycles is simply a case of �nding the column with the largest number of
non-zero values. Columns can be mapped to edges by keeping track in a map.

6.5.3 Minimise Leaves

We minimise the number of leaves in the graph without removing nodes and without
reducing girth below the threshold 6. We present three methods, which are variations
of one algorithm. We repeat each experiment four times: once for each method, and
once without leaf minimisation.

The high-level algorithm works by iteratively adding edges between pairs of nodes.
To ensure the girth does not sink below 6, pairs with distance strictly less than 6 − 1
are excluded. Initially, the algorithm only connects leaves to other leaves, but when
no suitable pairs remain, the algorithm moves on to connect leaves to non-leaves. The
algorithm terminates when no suitable pairs remain.
The three leaf minimisation methods we propose all use the above algorithm but

di�er in how they choose which pair to connect from the list of candidates:

• Random: Connect a random pair of nodes.

• Closest: Connect the pair of nodes with the shortest distance.

• Furthest: Connect the pair of nodes with the largest distance.

This method may fail to remove all leaves in some cases. For example, when girth
is stretched to 6 = 4, this may create a star topology, after which adding an edge will
always reduce the girth to 6 = 3. In this case, our method will not add any edges. As
noted in Section 6.4, this is acceptable.
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6.5.4 Optimise Convergence

After minimising the number of leaves and stretching the graph to the desired girth,
we optimise the graph’s convergence speed for distributed averaging. We run a
greedy algorithm that adds or removes edges until any such change would worsen the
convergence speed. To estimate the convergence speed, we employ a heuristic. We
do not allow the addition or removal of edges that would disconnect the graph, add
leaves, or decrease girth below the desired value.

Our choice of heuristics is based on Section 6.3.1: We choose two graph metrics that
are known the correlate well with convergence speed [SB22], and two spectral metrics
known to provide bounds on convergence speed [GB06]. We repeat each experiment
several times, once for each heuristic:

• Eigenratio. Equals _2
_=
. Maximised.

• Algebraic connectivity. Equals _2. Maximised.

• Closeness centrality. Equals
∑

D∈+
(
|+ |−1∑
E∈+ 3D,E

)
/|+ |, given pairwise distances 3 .

Maximised.

• Global e�ciency. Equals 1
|+ | ( |+ |−1)

∑
D,E∈+ ,D≠E

1
3D,E

, given pairwise distances 3 .

Maximised.

Remark 7. The choice for maximisation (rather than minimisation) is based on prelim-
inary results that show that, in our setting, each of these heuristics correlates positively
with convergence speed.

Remark 8. We do not consider clustering coe�cient as a metric because, for girth
larger than four, the clustering coe�cient is always zero by de�nition.

We e�ciently choose edge removal candidates by �nding a cycle basis of the current
candidate graph. This reveals the list of all edges which are in any cycle of any length.
These are exactly the edges that can be removed without disconnecting the graph,
since an edge is part of a cycle if and only if the two end nodes have at least two
di�erent paths to each other.
We e�ciently choose edge addition candidates by �nding all pairs of nodes with

distance at least 6 − 1. Adding an edge anywhere else would create a short cycle.
The above operations and heuristics require knowing at each iteration the adjacency

matrix, degree matrix, and pairwise distances. Instead of constantly recalculating
these, we calculate these for the initial graph and “patch” them when an edge is added
or removed. These patches all take constant time, except for patching the pairwise
distances when an edge is added, which requires a complete recalculation.

6.5.5 Run Distributed Averaging

We use the asynchronous push-pull model with single-neighbour selection, as de-
scribed in Section 6.2.2. At any point in time, given the vector of initial values G and

the vector of intermediate values Ḡ , we de�ne the error norm as ∥Ḡ−G ∥2∥G ∥2 .
Each node is assigned an integer value uniformly random from the range [0, 50]. We

continue the protocol until the error norm is less than 0.01. The convergence time is
then the number of rounds taken until convergence is achieved. For each experiment,
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to control for randomness, we run 10 instances of distributed averaging, and take the
mean convergence time.
The range of starting values does not a�ect the output; only the variance does.

Similarly, the exact error norm bound does not qualitatively a�ect our results.

6.6 Results

We present the results obtained through the method in Section 6.5. Firstly, we look at
the impact that girth stretching has on convergence time, without considering leaf
removal and optimisation in Section 6.6.1. Secondly, we consider the impact of leaf
removal in Section 6.6.2. Finally, we look at the real meat of this work, which is the
comparison of various heuristics, speci�cally when combined with stretching and leaf
removal in Section 6.6.3.
In all �gures, we use shaded areas to show the 95% con�dence interval, calculated

over 500 independent samples per plot point.

6.6.1 Stretching

We compare the stretching methods by the number of edges removed, number of
leaves created, optimisation heuristics, and convergence time.

Edges and leaves. In Figure 6.1a, we show the proportion of edges removed by stretch-
ing for each combination of graph family and stretching method. Note that a girth
of three implies that no stretching has taken place. Though the proportion quickly
increases for all experiments, it also immediately �attens out. This shows that, at
least in these graph families, removing all short cycles is typically su�cient to re-
move the majority of longer cycles (recall Remark 6 on page 115). As expected, the
most-cycles stretching method removes the smallest proportion of edges, followed
by random stretching, and then least-cycles stretching. Watts–Strogatz graphs and
Barabási–Albert graphs require removing the smallest proportion of edges; their being
highly clustered means that most cycles are centred around just a few edges, which
are quickly removed. However, as girth increases, di�erences between graph types
and stretching methods diminish signi�cantly.
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In Figure 6.1b, we show the number of leaves in stretched graphs. All graphs have
(nearly) no leaves at girth 3, which is before any stretching takes place. The number
of leaves quickly goes up when the graph is stretched, with major di�erences between
graph types and stretching methods. Among graph types, we observe that Barabási–
Albert graphs have signi�cantly more leaves than all other graph types regardless of
which stretching method is used. This is because these graphs have many low-degree
nodes, so the removal of any edge is likely to create a new leaf. When we compare
stretching methods, we see that, regardless of graph type, most-cycles stretching
creates very few new leaves even when stretching to girth 10, random stretching
performs approximately three times as badly, and least-cycles stretching shoots up so
quickly that it hits a ceiling because the stretched graph is (nearly) a tree.

Convergence heuristics. In Figure 6.2, we show the convergence time heuristics for
stretched graphs. In all cases, higher is better. The four heuristics behave quite similarly,
predicting worse convergence time as girth increases, but predicted performance
�attens out at higher girths. Across graph types, all heuristics predict that Barabási–
Albert graphs and geometric graphs perform worse when stretched to low girths, but
joins up with the rest once stretched to girth 10. Across stretching methods, least-
cycles stretching typically drops down immediately before �ooring out, while random
stretching and most-cycles stretching approach this �oor gradually with increased
girth, with the latter keeping higher predicted convergence times.

We note that the most-cycles stretchingmethod exhibits a “sawtooth” pattern, where
heuristics drop harder at odd values than at even values. When we inspect cycle counts
in individual graphs, we �nd that stretching to an even girth typically also removes a
disproportionate amount of odd-length cycles, even those longer than the desired girth.
For example, after stretching to girth 4 with the most-cycles method, the resulting
graphs often end up having fewer length-7 cycles than length-6 cycles, even though
this is not true for any of the unstretched graphs. This holds even if we use a variant
of the most-cycles stretching method that counts all cycles, not just the shortest ones
(see Remark 6 on page 115). This e�ect is most pronounced in Barabási–Albert graphs.

Convergence time. In Figure 6.3, we show the empirical convergence time for stretched
graphs. Lower is better. It is immediately clear that least-cycles stretching performs
terribly, presenting a fourfold increase compared to random stretching, and a seven-
fold increase in convergence time compared to most-cycles stretching. We see from
Figure 6.2 that the heuristics are decent predictors of convergence time, though the
predicted divide between graph types is not present in the empirical measurements.
We note, however, that an even better predictor of performance is the number of leaves
removed (see Figure 6.1b), or rather, the number of nodes removed.

We conclude that convergence time is seriously impacted by stretching, but that this
is not due to cycle removal per se, but due to the removal of many edges. Therefore,
most-cycles stretching is the optimal method, despite its sawtooth behaviour.
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6.6.2 Leaf Minimisation

We look at how e�ective leaf minimisation is at removing leaves, and at its e�ect on
convergence time.

Leaves and edges. In Figure 6.4, we show the number of leaves that remain after leaf
minimisation. Note that, unlike previous graphs, colours indicate leaf minimisation
method, not graph family. The lines representing no leaf minimisation correspond
exactly to Figure 6.1b. When we compare stretching methods, we see that least-cycles
stretching creates the largest number of leaves, followed by random stretching, and
then most-cycles stretching, though the latter two are close. When we compare leaf
minimisation methods, we see only small di�erences, with closest leaf minimisation
most e�ectively eliminating leaves, followed by random leaf minimisation, and �nally
furthest leaf minimisation. There are no signi�cant di�erences between graph types.

In Figure 6.5, we show the number of edges added by leaf minimisation. Recall that
our minimisation method starts by connecting leaves to each other before connecting
leaves to non-leaves, and thus the number of edges added is not necessarily linear in
the number of leaves eliminated. The lines for most-cycles stretching and random
stretching are similar to their counterparts in Figure 6.4, whereas the least-cycles
stretching line goes down when girth goes up. The latter result is visible in Figure 6.4:
The number of leaves before minimisation hits a ceiling and stays the same, while
the number of leaves after minimisation increases. Thus, fewer leaves have been
eliminated, and therefore fewer edges must have been added. Overall, this implies
that the graph’s diameter (the length of the longest shortest path) resulting from
least-cycles stretching is too small to allow leaf minimisation without reducing girth.

Convergence time. In Figure 6.6, we show the convergence time after leaf minimisa-
tion. There are no signi�cant di�erences between leaf minimisation methods. Though
the sawtooth pattern with most-cycles stretching complicates the graphs, it is clear that
leaf minimisation improves convergence time for all stretching methods, especially
least-cycles stretching. However, we argue that it is not the leaf minimisation itself
that improves the convergence, but simply the fact that any edges are added to the
graph. This is apparent from the lack of similarity to Figure 6.4 and Figure 6.5. We
conclude that leaf minimisation is neither detrimental nor bene�cial to performance.

6.6.3 Optimisation

Finally, we look at the e�ect of optimising convergence time with heuristics.

Number of edges. In Figure 6.7, we show the number of edges added or removed during
optimisation, without considering leaf optimisation. Intuitively, this is a measure of
how many steps stretched graphs are removed from the optimum. On average, graphs
have 238 edges before optimisation and 380 edges after optimisation, with signi�cantly
more edges added than removed. However, the number of changes decreases as
girth increases. Though greedy algorithms may get stuck in local optima, additional
experiments using simulated annealing based on the method by Jalili and Rad [JR09]
show that even search algorithms without this drawback require a decreasing number
of changes to the edge set. The downwards trend thus appears to be inherent to the
optimal graph stretching problem itself.
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When we compare graph types, we see that they di�er only in scale, with Barabási–
Albert graphs requiring the most changes. In all four graph types, stretched graphs
require the fewest changes after most-cycles stretching, followed by random stretching,
and then least-cycles stretching. The only exception is low-girth graphs optimised by
eigenratio, where all stretching methods perform similarly.

Convergence time. In Figure 6.8, we show the e�ect of heuristic optimisation on
convergence time per graph family. Note the di�erent y-axis scale per column. All
sixteen graphs have many similarities. When we compare stretching methods, most-
cycles stretching and random stretching achieve the lowest convergence time, followed
by least-cycles stretching, defeating the hypothesis that the optimiser may bene�t from
fewer edges being removed. When we consider leaf minimisation, we see that there is
little di�erence between the various methods, and con�rm that leaf minimisation by
itself is not responsible for improved convergence time. When we compare heuristics,
we also do not see a clearwinner. Though graphs stretchedwith the least-cyclesmethod
appear to bene�t from choosing the right heuristic for the graph type, di�erences are
much smaller for the other stretching methods. Finally, several �gures, especially those
describing Barabási–Albert graphs, contain the aforementioned sawtooth pattern.

6.7 Conclusion

We investigated the relation between a graph’s girth and the convergence time of
distributed averaging. We introduced the optimal graph stretching problem, which is
the task of increasing the girth of a graph while keeping the convergence time and
number of leaves minimal, and the graph connected. We proposed and implemented
a sequence of algorithms to solve this problem, which we applied to hundreds of
thousands of graphs, after which we measured the results.

We �nd that stretching the girth of a graph increases convergence time proportional
to the number of edges removed. Consequently, stretching by iteratively removing
the edge that is simultaneously in the largest number of cycles results in the smallest
convergence time cost. Furthermore, convergence time can be recuperated using
a greedy algorithm to add edges without decreasing girth. Finally, minimising the
number of leaves does not a�ect convergence time.

We note a few possible avenues for future work. Firstly, the aforementioned stretch-
ing method creates a sawtooth pattern in the distribution of cycle lengths, which
may be of independent interest. Secondly, the studied heuristics correlate worse with
convergence time than in related work; we postulate that our results may be improved
by developing high-girth-speci�c heuristics. Finally, our solution to the optimal graph
stretching problem requires global knowledge of the graph, but for ad-hoc networks it
may be useful to create a distributed solution.
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Chapter 7

Discussion

I
f Multi-Party Computation (mpc) is to see mass adoption in the coming years,
we require a deeper understanding of reconstruction attacks. Current security
frameworks allow proving that nothing leaks beyond what can be inferred from

the outputs, but determining what can be inferred from the outputs is itself an open
question. While several recent works have studied reconstruction attacks in mpc, this
direction of research is young, and there are no comprehensive theories yet. This
dissertation contributes to our understanding of the privacy guarantees of mpc by
developing a graph-theoretic model of reconstruction attacks on summations.

We have enhanced the privacy-preserving summation primitive by proposing two
extensions to respectively achieve input and output validation, showed the feasibility
of reconstruction attacks, described these attacks in graph-theoretic terms, and em-
pirically validated the applicability of our defences to distributed averaging. Though
our results on reconstruction attacks apply to all sequence of sums in all contexts
and all architectures, the exemplifying use case in this dissertation has been privacy-
preserving distributed averaging, which can be implemented as a sequence of local
summations in a distributed network. Beyond distributed averaging, summation alone
is a su�cient primitive to implement more complex operations such as principal
component analysis, singular-value decomposition, and decision tree classi�cations,
simply by writing the inputs as aggregate-sum queries [Blu+05].

7.1 Achievements

Summation validation. We enhanced the privacy-preserving summation primitive
by creating extensions to respectively valid inputs and outputs. In Chapter 2, we
introduced a probabilistic alternative to zero-knowledge proofs, ensuring inputs are
within a particular range without requiring expensive cryptographic operations. Our
main achievement has been the speci�c construction of the topology and the analysis of
its e�ciency and resistance. In Chapter 3, we introduce the mpvas family of protocols,
which allow veri�ers to check that the aggregator’s output is truthful. Unlike existing
works, mpvas works even when all adversaries are actively malicious, when the
aggregator, users, and veri�ers collude, and requires only a single server.

Reconstruction attack formalisation. In Chapter 4, we formalised reconstruction at-
tacks on summations algebraically. Our notation is generic to the method by which
sums are obtained, su�cient to allow adversaries to include observations made about
themselves, and allows users to update their values at any time.

Attack feasibility. In Chapter 4, we showed that reconstruction attacks are feasible.
We generated a large number of random graphs, and showed that passively malicious
adversaries will typically stumble upon sequences of summations that allow them to
infer at least some private information. Our results apply even when users choose
independently random new values while adversaries’ are still collecting data. We
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conclude that any system in which a su�ciently dynamic set of summations occurs
will eventually leak private data; in line with the Fundamental Law of Information
Recovery [DR14].

Girth criterion. In Chapter 4, we showed that reconstruction attacks require cycles.
Speci�cally, if ℓ adversaries successfully reconstruct private data, then the graph must
have at least one cycle of length at most 2ℓ , i.e. the graph’s girth is at most 2ℓ . We
conclude that, if there are at most ℓ adversaries, it is su�cient to remove all cycles with
length below 2ℓ . We term the process of increasing the girth of a graph “stretching”,
analogous to the action of stretching the holes in a set of plastic six-pack rings. Since
cycle detection and removal can be performed locally in distributed networks, graph
stretching is the �rst fully-distributed reconstruction prevention method.

Cycle detection. In Chapter 5, we proposed a novel peer-to-peer cycle detection pro-
tocol. Previous works are either centralised or leak signi�cant amounts of information.
Our protocol relies on �ooding, and uses a novel key exchange algorithm to recognise
when cycles occur, after which a simple cycle recovery sub-protocol follows. Due to
the high communication complexity, our protocol is best-suited for low-degree graphs.

Cycle removal. In Chapter 6, we compared various methods for removing cycles
from graphs in terms of their impact on the performance of distributed averaging
protocols. We �nd that removing the edges that are in the largest number of short
cycles is the best amongst the compared methods, but random edge removal is a close
second. Since determining the number of short cycles that each edge is in is a complex
task, we instead count only the number of shortest cycles that each edge is in, and
show that the resulting e�ect is nearly identical.

Distributed averaging. In Chapter 6, apart from the cycle removal method, we also
investigated other relations between girth and distributed averaging performance.
Based on measurements over millions of graphs, we found that while removing cycles
decreases performance signi�cantly, the main cause is not the removal of cycles
themselves, but the removal of edges. We thus proposed to counteract the e�ects of
graph stretching by a subsequent edge addition phase, which heuristically selects which
edges to add to the graph to improve performance. All in all, edge addition compensates
for a signi�cant portion of the performance deterioration due to stretching.

7.2 Limitations

The works presented in this dissertation do not provide a full answer to the question of
how to prevent reconstruction attacks. Additionally, our works are subject to various
assumptions, and can thus yet be generalised.

Trivial attacks. The graph girth criterion from Chapter 4 works only to defend against
non-trivial attacks. In the most trivial attack, an adversary calculates a “privacy-
preserving” summation of only one neighbour. Despite the total absence of cycles
in the resulting graph, the adversary clearly learns the other user’s private value.
Luckily, this trivial attack is easily defended against, since the user can simply reject
participation if no other users take part in the summation. However, in general,
adversaries have access to colluders whom they can include in summations, and whose
values they can subtract from the total to uncover the honest user’s value. Again,
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despite the absence of cycles, the adversary still learns private data.
We do not consider this a �aw in our work. In our work, we assume that individual

summations are secure, and determine the additional leakage that occurs as a result
of composition. In the trivial attacks outlined above, the leakage occurs not because
of composition, but because there is a single faulty summation. For completeness’
sake, however, we note that we can extend our graph criterion to include these trivial
attacks: To protect against< adversaries, the graph must have at least girth 2< + 1
and at least degree< + 2. Unfortunately, real-world networks typically do not have
high minimum degrees [BA99, LO14, BSZ15].

Partial leakage. Our work focuses on detecting situations in which users’ values
leak in their entirety. We did not consider other types of leakage, such as partial
leakage and relative linear combinations. Partial leakage occurs when a sequence of
summations narrows down the range that a private value is in. For example, when
working with non-negative numbers, the sum � + � +� = 100 implies that each value
is at most 100; after subsequently also learning that � + � + � = 15, the adversaries
additionally learn that � ≤ 15 and 85 ≤ � + � ≤ 100. Relative linear combinations
occur when adversaries learn to express private values in terms of other private values.
For example, after learning that � + � = 80 and � +� = 90, adversaries know that
� − � = 10, which may be private information in its own right.

Auxiliary knowledge. Adversaries may have an advantage if they obtain auxiliary
knowledge from outside the protocol. For example, if one dataset publishes�+�+� =

100, and another publishes � + � = 50, then combining the two reveals � = 50, even
though neither individual dataset contains any cycles. Our core results are independent
of the existence of auxiliary knowledge: We simply model the additional leakage that
occurs as a result of sequences of summations, regardless of where those summations
come from.
If there is no way of knowing whether auxiliary knowledge may be obtained, and

no way to model the worst-case scope of what such knowledge could entail, then our
results are not applicable. Indeed, inherent to the kind of syntactic requirements we
impose, our results are mostly applicable to situations in which it is feasible to exert
some amount of control over which summations take place. Modeling and tracking
the exact leakage that occurs over time, as noted earlier, may provide a partial remedy.

7.3 Future Work

Entropy-based analysis. Perhaps the most interesting potential avenue for future
work would be to combine our results with those presented by Baccarini, Blanton and
Zou [BBZ24]. While our work shows the family of graphs that fully leaks users’ private
inputs, Baccarini, Blanton and Zou provide a more granular method of determining
leakage, at least under the assumption that users’ values follow a given distribution.
Combining their methodology with ours could provide us with heuristics (or exact
functions) that assign leakage scores based only on (sub)structures of the full network.
Overall, future work could provide improved guidance on privacy-preserving network
designs.

Formal security. Several of our contributions would bene�t from deeper scrutiny into
the exact privacy guarantees provided. Amongst others, mpvas (see Chapter 3) would
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bene�t from formal security proofs, including proofs in composition frameworks, and
our cycle detection protocol (see Chapter 5) would bene�t from a complete proof.

Di�erential privacy. Di�erential privacy aims to reduce information loss by adding
random noise to outputs. The added noise is calibrated in a precise way to make
privacy loss measurable. The privacy loss guarantees of multiple operations can be
composed elegantly, while the design of the noise mechanism in each operation is
agnostic of the remaining design. Meanwhile, in our work, we show that restricting
which summations may take place prevents data from leaking. We argue that allowing
such restrictions to be made in di�erentially private pipelines allows one to reduce the
amount of noise required for each operation. As long as it is feasible to assume that
some operations will not take place, this hybrid approach could signi�cantly increase
the accuracy of di�erentially private outputs.
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