<]
TUDelft

Delft University of Technology

Graph-Based Reconstruction in Summation Sequences

Dekker, Florine W.

DOI
10.4233/uuid:6b567512-a2f0-4588-a3c6-199d8bbb8a79

Publication date
2025

Document Version
Final published version

Citation (APA)
Dekker, F. W. (2025). Graph-Based Reconstruction in Summation Sequences. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:6b567512-a2f0-4588-a3c6-199d8bbb8a79

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:6b567512-a2f0-4588-a3c6-199d8bbb8a79
https://doi.org/10.4233/uuid:6b567512-a2f0-4588-a3c6-199d8bbb8a79

GRAPH-BASED
RECONSTRUCTION IN
SUMMATION SEQUENCES

Florine W. Dekker

GRAPH-BASED
RECONSTRUCTION IN
SUMMATION SEQUENCES

GRAPH-BASED
RECONSTRUCTION IN
SUMMATION SEQUENCES

DISSERTATION

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus prof. dr.ir. TH.J.J. van der Hagen,
Chair of the Board for Doctorates,
to be defended publicly on
Thursday, 18 September 2025 at 15:00

by
Florine Willemke DEKKER

Master of Science in Computer Science
Delft University of Technology, the Netherlands
born in Zwijndrecht, the Netherlands

This dissertation has been approved

by the promotors.

Composition of the doctoral committee:

Rector Magnificus
prof. dr. M. CoNTI

dr. Z. ERKIN

Independent members:

prof.dr. M. T.J. SPAAN
prof.dr. S. Roos

prof.dr.ir. P.J. M. VEUGEN
dr.ir. L. A.M. SCHOENMAKERS
prof. dr. G. SMARAGDAKIS
prof.dr.ir. G.J.P.M. HOUBEN

© 2025 Florine W. DEKKER

Cover design: © 2025 Marilou MAEs
Printed by: Proefschriftspecialist
ISBN: 978-94-6518-090-8

chairperson

Delft University of Technology /
University of Padua, Italy, promotor
Delft University of Technology, promotor

Delft University of Technology

University of Kaiserslautern-Landau, Germany
University of Twente

Eindhoven University of Technology

Delft University of Technology

Delft University of Technology, substitute

The primary role of cryptography
in human rights struggles is not to
exit from society, but to provide a
robust, temporary shield for those
who would reform it.

Cory Doctorow

Sy

7 a‘.‘ffﬁ
Contents
English Summary xi
Nederlandse Samenvatting xiii
I Prologue 1
1 Introduction 3
11 Reconstruction Attacks 4
12 Composability and Disclosure 5
1.3 Research Objectives 6
1.4 Contributions 6
1.5 About This Dissertation 8
II Privacy-Preserving Summation 13

2 Privacy-Preserving Aggregation with Probabilistic Range Validation 15

21 Introduction 16
2.2 RelatedWork. 17
2.3 Probabilistic Range-Limited Private Data Aggregation 18
2.4 Analyses 23
2.5 Conclusion 32

3 Privacy-Preserving Aggregation with Public Verifiability Against

Internal Adversaries 35
3.1 Introduction 36
3.2 System Model and Assumptions 37
3.3 RelatedWork. 38
3.4 Preliminaries 40
3.5 mPVAS: Publicly Verifiable Aggregate Signatures with Malicious Users

and a Malicious Aggregator. 41
3.6 MPVAS+: MPVAS with Lower Communication Overhead 44
3.7 MPVAS-IV: MPvAS with Input Validation 47
3.8 MPVAS-UD: mPvAs with User Dropouts 50
3.9 Complexity Analysis of the mpvas Family 52
310 Conclusions 56
3.A Security Arguments for the mpvas Family 58

vii

III Reconstruction Attacks

65

4 Topology-Based Reconstruction Prevention for Decentralised Learning 67

4.1
4.2
4.3
4.4
4.5
4.6

Introduction
Related Work
Preliminaries
Reconstruction in Multi-party Summation
Girth as a Reconstruction Countermeasure
Conclusion

5 Privacy-Preserving Peer-to-Peer Cycle Detection

5.1
5.2
53
5-4
55
5.6

Introduction L
Related Work L
Our Proposal: Decentralised Cycle Detection
Performance
Security Analysis L
Conclusion L

6 Optimal Graph Stretching for Distributed Averaging

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introductiono
Preliminaries
Relatedwork
Optimal Graph Stretching Problem
Method
Results e
Conclusion

IV Epilogue

7 Discussion

7.1
7.2
7-3

Achievements

Limitations
Future Work

Bibliography

Acknowledgements

Curriculum Vitae

viii

68

91
92
93

95
100

102
103

107
108
109
110
113
113
117
122

127

129
129
130

131

135

161

165

Sy

g A#h

English Summary

ingly looking for ways to protect their privacy. Isolating oneself from the world

may be tempting, but there is a collective benefit to the processing of sensitive
data. For example, hospitals use patient data to improve treatments, energy companies
use power consumption data to predict grid usage, and governments can address
inequality only if they measure it.

Privacy-enhancing technologies promise to close the apparent gap between privacy
and utility. They provide a cryptographic solution by which statistics can be calculated
without exposing individual inputs. In the world envisioned here, people gain the
benefits of sharing data without exposing themselves to potential abuse.

Though solutions to societal problems are rarely if ever purely technical, this dis-
sertation is concerned only with the technical. Specifically, with privacy-preserving
summation, a protocol allowing users to learn the sum of their inputs without anyone
learning the individual value of anyone else. While it may sound restrictive to focus
only on summation, this is sufficient to achieve complex operations including principal
component analysis, singular-value decomposition, and decision tree classifications.

In this dissertation, I provide novel methods for enforcing input and output validity
in privacy-preserving summation, describe how running multiple summations in
parallel leads to reconstruction attacks, and propose and evaluate countermeasures
based on distributed short-cycle removal.

Validation of inputs and outputs is enforced through extensions, which can be added
to any privacy-preserving summation scheme without sacrificing confidentiality. The
first extension ensures that the individual pieces of data being summed over each fall
within a specified numeric range. The second extension allows others to ensure that
the sum published by the aggregator actually corresponds to the inputs.

Reconstruction attacks are an inherent risk when multiple summations run in
sequence, regardless of the implementation of the summation protocol. When users
obtain the sum A + B, one cannot learn either A or B due to the summation’s privacy-
preserving guarantees. However, if users subsequently also learn A + B + C, then
anyone can infer C from the difference of the sums.

Understanding how and when reconstruction is possible is not trivial, especially
as the numbers of variables and equations grows large. In this dissertation, I show
that representing summations as a graph reveals that reconstruction coincides with
the graph’s cycles. In other words, removing cycles prevents reconstruction attacks.
Therefore, I propose a decentralised protocol for removing short cycles. Finally, I
evaluate the impact that restricting valid summation has on distributed averaging, and
find that though the effect is largely negative, this can mostly be ameliorated through
a subsequent greedy repair algorithm.

gN A woRLD of increasing threats from monopolies and oligarchies, people are increas-

Xi

Sy

g A#h

Nederlandse Samenvatting

mensen steeds meer op zoek naar bescherming van hun privacy. Zelfisolatie klinkt

verleidelijk, maar de verwerking van persoonlijke gegevens heeft wel degelijk een
collectief voordeel. Ziekenhuizen gebruiken bijvoorbeeld patiéntgegevens om behan-
delingen te verbeteren, energiebedrijven bekijken stroomverbruik om overbelasting te
voorspellen, en overheden kunnen ongelijkheid alleen bestrijden als ze het meten.

Privacyverbeterende technologieén beloven de ogenschijnlijke kloof tussen privacy
en nut te dichten. Ze bieden een cryptografische oplossing om statistieken te berekenen
zonder individuele waarden te onthullen. In de voorgestelde wereld profiteren mensen
van het delen van gegevens zonder zichzelf bloot te stelen aan mogelijk misbruik.

Hoewel oplossingen voor maatschappelijke problemen zelden tot nooit puur tech-
nisch zijn, gaat dit proefschrift alleen over de techniek. Specifiek gaat het over privacy-
behoudende sommatie, een protocol om een som te berekenen zonder dat individuele
invoerwaarden te achterhalen zijn. Sommatie is een krachtige berekening, voldoende
om complexe berekeningen als hoofdcomponentenanalyse, singulierewaardenontbin-
ding, en beslissingsboomclassificaties te implementeren.

In dit proefschrift geef ik nieuwe methoden voor het afdwingen van in- en uit-
voervaliditeit in privacybehoudende sommatie, beschrijf ik hoe het parallel uitvoeren
van meerdere sommaties leidt tot reconstructieaanvallen, en stel ik tegenmaatregelen
gebaseerd op gedistribueerde verwijdering van korte cycli voor en evalueer ik deze.

Validatie van in- en uitvoer werkt door middel van uitbreidingen bovenop arbitraire
bestaande privacybeschermende sommatieschema’s, zonder de vertrouwelijkheid op
te offeren. De ene uitbreiding verzekert dat de individuele invoerwaarden elk binnen
een gespecificeerd numeriek bereik vallen. De andere uitbreiding verifiéert dat de
door de aggregator gepubliceerde som daadwerkelijk overeenkomt met de invoer.

Reconstructieaanvallen zijn een inherent risico wanneer meerdere sommaties na
elkaar worden uitgevoerd, ongeacht de implementatie van de sommatie. Wanneer
gebruikers A + B leren, kan niemand A of B te weten komen vanwege de garanties
van de privacybehoudende sommatie. Als gebruikers echter vervolgens ook A + B+ C
te weten komen, kan iedereen C afleiden uit het verschil van de sommen.

Begrijpen hoe en wanneer reconstructie mogelijk is, is niet triviaal, vooral als
het aantal variabelen en vergelijkingen groeit. In dit proefschrift laat ik zien dat de
graafrepresentatie van de sommen onthult dat reconstructie samenvalt met de cycli.
Met andere woorden, het verwijderen van cycli voorkomt reconstructie-aanvallen.
Daarom stel ik een gedecentraliseerd protocol voor om korte cycli te verwijderen.
Tot slot meet ik de invloed die het beperken van sommaties heeft op gedistribueerde
middeling, en ontdek ik dat dit grotendeels negatief is, maar grotendeels kan worden
voorkomen met een daaropvolgend gretig reparatiealgoritme.

gN EEN WERELD van toenemende bedreigingen door monopolién en oligarchieén zijn

xiii

PArT I

SR

Prologue

CHAPTER 1

=y %

Introduction

(&) PENDING TIME ALONE is important. When you are alone, you are free to do what
\‘@)\ you want, and need not suffer the judgment of others. At these times, your

\NC thoughts flow more freely. You have the privilege to explore your opinions

and deepen your knowledge. Occasionally being alone is vital to grow as a person.

On the other hand, collaborating is important to broaden your knowledge. When
you observe others, you may see methods or solutions you had not thought of yourself.
When others observe you, they may point out what they think you do well or what
you do wrong, and may both learn from the experience. Moreover, by observing large
groups of people, you can learn about collective or aggregate behaviours.

Unfortunately, it is not easy to maintain a balance between privacy and sharing.
If you discuss intimate details with someone, they may use that information against
you, or share it with others. Even if your conversation partner is trustworthy, your
conversation may be overheard by a malicious eavesdropper. And even if you are sure
no one can overhear you, you will have to trust your conversation partner never to
write anything down, lest their notes be stolen.

The situation is not dissimilar in the digital realm: Once you share information, you
no longer have any control over what happens to that data, at least not beyond the
promises of those you shared it with. Even if you do not explicitly share anything,
others can learn about you by seeing which websites you visit, and what you do
there. Which news articles pique your interest? What kinds of products do you buy?
Which routes do you use in your navigation app? What symptoms and ailments
do you enter in search engines? Private information inferred from your behaviour
is continuously collected and is used to target you [BN15, DT19, Newz21]. Even if
companies promise not to sell such data, temptations of increased profit regularly lead
to broken promises [FTC19, Fun2i, Zia23, Fun24]. Though disengaging from the digital
realm completely would prevent others from learning about you (except insofar as
others share information about you), this is often not an option [Rai18, CD21].

In an ideal world, we could safeguard our data against undesired computations: For
example, if we send a query to a search engine, then our computers should ensure that
our query is used only to search for information, and not to infer private information
about us. In other words, we want technologically-enforced purpose limitation [TL24].
One important technology to achieve such purpose limitation is Multi-Party Compu-
tation (Mpc), a family of cryptographic techniques for computing over private data.
After the participants have chosen the functions they want to compute, and agreed
upon an implementation to achieve it, MPC presents participants with the desired
outputs, while ensuring the inputs remain completely confidential. For example, using
MPC, participants can calculate the sum of their ages, without anyone learning the age
of anyone else. To prove that an mpc design guarantees confidentiality of the inputs,
the implementation is compared with its ideal functionality: a high-level black-box
description of the desired calculations. On the one hand we have the real-world mpc

implementation with all its nitty-gritty implementation details regarding synchronisa-
tion, availability, integrity, and so on; and on the other hand we have an ideal-world
trusted third party (who is indeed actually trusted) who simply looks at everyone’s
inputs and gives the desired outputs. If we can prove that participants can infer the
exact same information about others’ inputs in both worlds, then we can conclude
that the real-world mpc implementation achieves optimal levels of confidentiality.

The seminal mpc paper, from 1979, describes a method to play “mental poker”,
which is like regular poker, except the players can only communicate by telephone,
and neither player is above cheating [SRA79, GM82]. Subsequent works have focused
on improving the security definitions and models, providing evermore elaborate
methods and protocols for achieving all kinds of functionalities [Lin2o]. The first
large-scale real-world deployment of MPc was at a beet auction in 2009 [Bog+09],
where production contracts needed to be allocated to farmers. Farmers could bid
on these contracts, but wanted their bids to remain private so as to not reveal their
economic positions to competitors and customers. The auction was first represented
as an ideal functionality, then implemented as an MPc protocol, proven to be secure,
and finally executed at the auction, with the protocol completing its calculations
in 25 minutes. Since then, MPc has seen trials and deployments in several other
niche cases, including the calculating of statistics in vulnerable populations [Lap+18]
and collaborations between government offices [vEgm+21, Wor+20]. Currently, any
computation can be implemented with mpc [Linzo].

The cost of mpc is not negligible, however. As the number of participants increases
and the computations grow in complexity, so do the computation and communication
requirements. This has not stopped the increasing interest in mpc [AOdR22, BD20o].
Companies see MPC as a valuable tool for retaining their business models in the face of
increasing data breach risks and tightening privacy regulations, as mpc allows these
companies to process encrypted privacy-sensitive data (seemingly) without violating
privacy. Governments see MPC as a way to process sensitive census data, and to
get different governmental departments to collaborate in ways that were previously
thought impossible. Perhaps, with increased attention comes increased funding, al-
lowing improvements of the underlying primitives, new models of interactivity, and
extremely efficient Mmpc compilers [NSTC23].

11 RECONSTRUCTION ATTACKS

MPC is not without its flaws and pitfalls [STPO22, Can+22]. One potential pitfall
surrounds the definition of the ideal functionality itself. While mpc guarantees that
nothing leaks beyond the intended output, participants may still be able to infer
information from multiple outputs. For example, let’s say that three people—Alice,
Bob, and Charlie—learn through their use of mpc that their cumulative age is 120.
Afterwards, Alice and Bob run another mpc protocol again, this time without Charlie,
and learn that their cuamulative age is 8o. Despite the privacy-preserving guarantees
of the underlying methods, Alice and Bob can infer from the difference that Charlie
must be 40 years old. Clearly, the privacy guarantees of singular collaborations do not
extend to sequences of collaborations.

The type of attack described above is known as a reconstruction attack, and has
been known since at least the early 1970s [Fel72], before the first literature on mpc.

4 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

While census offices have been publishing aggregate information about the general
population for a long time, it was around that time that computers had become powerful
enough to allow users to write their own queries. To preserve the privacy of the people
whose information was stored in these databases, records pertaining to only a small
number of individuals had to be forbidden. However, exactly as in the aforementioned
case of Alice, Bob, and Charlie, the outputs of multiple non-forbidden queries may
still allow a querier to infer private information. Various solutions for the problem
have been proposed, including random sampling [Den8o], query auditing [CO82], and
perturbation [Dwoo6]. For summation queries specifically, it is sufficient to keep a
history of queries, and forbid subsequent queries if they could be combined to infer
private information [Chiz8, WW]o2].

As noted earlier, any algorithm can be translated to a corresponding Mpc variant.
Therefore, it is entirely possible to do auditing in mpc, and thereby prevent recon-
struction attacks. However, this does not mean that such a protocol is practical. In
a peer-to-peer system, there is no single party that can keep track of queries. Some-
times, a summation on one side of the network may allow users on the other side
of the network to infer private information. Therefore, in a naive translation of the
query-tracking mechanism to mpc, the entire (hidden) database of past queries must
continuously be communicated to all users before any decision can be made, which
would be excessively costly.

1.2 COMPOSABILITY AND DISCLOSURE

The problem of reconstruction attacks is superficially similar to the problem of com-
posability in mpc. Composability is the guarantee that the implementation details of
an MPc protocol do not cause issues even when the protocol is executed multiple times.
A non-composable protocol will be secure when used in isolation, but when two in-
stances run in parallel, adversaries can gain an undue advantage by using information
from one instance in the other. There are numerous frameworks to model composabil-
ity, including universal composability [Cano1], constructive composability [Mauu1],
and reactive simulatability [BPWo7].

However, composability is unrelated to reconstruction attacks. Even if Alice, Bob,
and Charlie are given a summation protocol that is composable in every relevant way,
the previously mentioned calculations will still allow Bob and Charlie to learn Alice’s
age. To understand this, recall that confidentiality is shown in mpc by comparing
what participants learn in the real protocol with what they learn in the ideal protocol.
If Alice, Bob, and Charlie learn that A + B + C = 120 and that B + C = 80, they can
infer that A = 40, even if they ask a trusted third party to perform the summations.
Thus, while composability ensures that participants learn nothing beyond the intended
outputs, it cannot judge whether the intended outputs were well-chosen.

As the number of real-world mpc deployments increases, so does the chance of
designers combining sub-protocols in ways that are vulnerable to reconstruction.
Creating well-defined formal notions of this type of leakage is thus an important
next step in ensuring the correctness of MpPc systems. We note that while differential
privacy [Dwoo6] is sufficient to prevent information disclosure, its guarantees are
probabilistic, its outputs are necessarily distorted, and its privacy-utility tradeoff is
infamously difficult to understand and calibrate in real-world settings [CT13, JE19].

CHAPTER 1 & Introduction 5

Several recent works investigated information-theoretic bounds on information
disclosure in multi-party computation [BBZ24, AH20a, AH20b]. These works measure
the amount of information that outputs reveal about the inputs, and carry over these
estimates into subsequent computations to accurately estimate the total privacy loss
in a pipeline of computations. However, the above works are all limited to specific
computations, adversarial models, or network structures. Many interesting avenues
remain unexplored, such as generalisation to other security models, translating findings
to and from differential privacy, and the development of practical tools and guidelines
for protocol designers to quantify leakage with.

1.3 RESEARCH OBJECTIVES

With increasing efficiency, public interesting in Mmpc is growing. Mmpc has an increas-
ingly sound and complete framework to prove that desired ideal functionalities are
implemented correctly. However, there are no comprehensive frameworks that determ-
ine whether ideal functionalities should be desired. To prevent faulty mpc deployments,
it is vital that such frameworks are developed. The goal of this dissertation has been
to contribute to the collective knowledge surrounding information disclosure in mpc.
Specifically, the goal has been to determine the graph-theoretic conditions under
which full input leakage occurs after a sequence of summation operations.

The research presented in this dissertation was conducted in a curiosity-driven
manner. There has not been a singular research question to be answered; instead, a
chain of research questions emerged along the way. The initial goal was to, one way
or another, contribute to the developing field of federated learning by creating privacy-
preserving summation protocols for various security models. After realising that the
aforementioned reconstruction attacks would undo any and all privacy guarantees
of these summation protocols, the research objective became to determine the exact
circumstances under which reconstruction attacks pose a threat. Finally, we moved to
evaluate the suitability of the developed defence mechanism for real-world protocols
that rely on privacy-preserving summation.

1.4 CONTRIBUTIONS

The scientific contributions of this dissertation have been structured into two parts,
and are finalised by a discussion.

Part II: Privacy-Preserving Summation

We look at the summation primitive and provide two extensions for existing protocols.

Chapter 2: Probabilistic range validation [DEz1]. 'We enhance privacy-preserving
summation, a classical MPc protocol wherein a central party learns the sum of the
participants’ values (and nothing else). Note that summation alone is a sufficient
primitive to implement more complex operations such as principal component analysis,
singular-value decomposition, and decision tree classifications, simply by writing the
inputs as aggregate-sum queries [Blu+os]. We describe a protocol by which the
aggregator can validate that all users’ numerical inputs are within a desired range.
Unlike existing works, our protocol does not rely on complex zero-knowledge proofs,
instead probabilistically detecting disallowed values with a likelihood proportional to

6 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

the value’s transgression. The simplicity of our scheme means that validation requires
no cryptographic operations, and does not require any hardness assumptions. We
provide an in-depth analysis of our scheme’s detection rate; though the scheme’s
probabilistic nature requires assuming a distribution to model the users’ values under,
our analysis should be relatively easy to extend to other distributions. Furthermore,
we formally prove the scheme’s correctness, argue that confidentiality holds, and
calculate the asymptotic communication and computation complexity and compare
this to related works.

Chapter 3: upVAS [Pal+24]. We propose mPVAS, a protocol that allows the aggreg-
ator in (centralised) privacy-preserving summation to publicly prove that the sum
it publishes was correctly calculated. mPvas is an add-on: mPvAs creates the proof,
but the summation should be done by some other (privacy-preserving) summation
protocol. Our adversarial model is the strongest model yet in literature: We guarantee
confidentiality and unforgeability even when an actively malicious aggregator colludes
with multiple actively malicious users, and anyone (including the adversaries) can
register as a verifier. We extend our protocol in several ways: mPvASs+ reduces runtime
complexity at the cost of breaking the non-forgery guarantee with low probability,
MPVAS-IV ensures robustness against malformed inputs, and mpvAas-uD allows users to
temporarily drop out. We calculate the asymptotic communication complexity of our
protocol and compare this to related works. Moreover, based on our implementations
of all variants of mpvAs, we conclude that they achieve efficient runtimes, even without
mPVAS+. Finally, we argue for each of the protocols that they achieve confidentiality
of the inputs and that signatures cannot be forged.

Part I1I: Reconstruction Attacks

We show that it is feasible for non-malicious adversaries to infer private data purely
from the outputs of (ideal) summations. We model the attack in detail in its algebraic
form, derive the corresponding (hyper)graph-theoretic representation, and ultimately
design a graph-based criterion to classify faulty sequences of summations with. We
apply our criterion to peer-to-peer networks to prevent the attacks from occurring in
the first place, and validate its suitability for distributed averaging protocols.

Chapter 4: Reconstruction attacks [DECz5c]. We empirically show that reconstruction
attacks are feasible after running multiple privacy-preserving summation protocols,
and investigate the graph-theoretic conditions that underlie these attacks. We mathem-
atically derive the necessary (but not necessarily sufficient) condition that the graph
contains cycles. More specifically, we prove that the graph’s girth (which is the length
of its shortest cycle) determines a lower bound on the number of adversaries required
to perform a reconstruction attack. Therefore, graph stretching (which is the removal
of short cycles) is sufficient to prevent reconstruction attacks. However, we also note
that graph stretching is typically a drastic change to the network topology, and may
significantly affect the convergence properties of distributed algorithms running on
top. We investigate this impact and propose methods to reduce it in Chapter 6.

Chapter 5: Cycle detection [Jen+25]. 'We propose a peer-to-peer protocol for detecting
nearby cycles without revealing the topology to users outside the cycle. Though
we present our protocol in the context of detecting cycles in monetary transaction

CHAPTER 1 ¢ Introduction 7

networks, where cycles are indicators of money laundering, our protocol is applicable
to any peer-to-peer network. Our algorithm works by flooding messages through the
network, and inferring the presence of a cycle when the flood reaches back to the
initiator. Messages are re-randomised each time they are forwarded to ensure that they
are not linkable. However, messages have a hidden structure so that when they reach
back to the initiator, the initiator recognises the message and can infer the presence
of a cycle. The initiator can then start a simple sub-protocol to determine which
nodes are in that cycle. The aforementioned hidden structure is a novel forwarding-
based unlinkable key agreement protocol, which may be of independent interest. We
calculate our protocol’s asymptotic communication and computation complexities,
compare these to related works, and, based on measurements of an implementation
of our protocol, conclude that our protocol achieves practical runtimes for graphs
without high-degree nodes. Finally, we formally model the knowledge that each node
or collusion of nodes obtains, and then informally argue that nodes cannot unduly
learn about the topology beyond (self-)loops.

Chapter 6: Optimal stretching [DEC25a]. 'We conduct a thorough empirical study of
the effect that graph stretching has on the convergence speed of distributed averaging
protocols. While existing literature has considered short-cycle removal, and has studied
the relation between topology and convergence speed, these results are insufficient to
describe the relation between girth and convergence speed. We introduce the optimal
graph stretching problem, which is the task of modifying a graph such that convergence
speed is optimal, while keeping girth above a certain minimum. We propose an
algorithm that enforces the problem’s constraints before heuristically optimising for
the minimisation target. We empirically validate the performance of our algorithm
on thousands of random graphs, comparing multiple stretching methods, various
convergence speed heuristics, and several widely used graph topologies. We confirm
the finding in Chapter 4 that stretching severely affects convergence speed. However,
we additionally observe that this effect is mostly caused by the removal of edges, and
the reintroduction of edges compensates for a large part of the lost convergence speed.
We conclude that graph stretching is a feasible reconstruction prevention method, and
the negative consequences for convergence speed can largely be overcome using a
subsequent heuristic optimisation procedure.

Part IV: Discussion

We summarise and discuss the results of this dissertation. We embed these achieve-
ments in the greater picture, and look at open problems and potential future directions.
15 ABOUT THIS DISSERTATION

Format. This dissertation is an anthology of the scientific works I have written during
my PhD. These works have been included as-is without significant modifications.
Consequently, its chapters are self-contained and may use conflicting notation or
reintroduce concepts. Even so, all chapters contain minor modifications, for example
to rectify errors, improve figures, or eliminate typographical widows and orphans.

8 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Works. This dissertation includes the following scientific works. The following list
additionally details my contributions to each work.

1.

Florine W. Dekker and Zekeriya Erkin. “Privacy-preserving data aggregation
with probabilistic range validation”. In: ACNS 2021: Proceedings of the 19th Inter-
national Conference on Applied Cryptography and Network Security. Volume 12727.
Lecture Notes in Computer Science. 2021, pages 79—98. DOI: 10.1007/978-3-
030-78375-4_4.

Included as Chapter 2. Based on my master’s thesis. Written by me, with editing
guidance by my promotors.

Marco Palazzo, Florine W. Dekker, Alessandro Brighente, Mauro Conti and
Zekeriya Erkin. “Privacy-preserving data aggregation with public verifiability
against internal adversaries”. In: USENIX Security 2024: Proceedings of the 33rd
USENIX Security Symposium. 2024. URL: https://www.usenix.org/confere
nce/usenixsecurity24/presentation/palazzo.

Included as Chapter 3. Based on the master’s thesis of and in collaboration with
Marco Palazzo, whom I supervised; and with the support of Alessandro Brighente.
Palazzo and I independently identified and cooperatively resolved several crucial
security flaws in the thesis version, and jointly designed mpvAs-uD. Additionally, I
wrote or rewrote all parts of the work, performed the literature survey, performed
the statistical analysis of mpvAs+, and guided the asymptotic complexity analysis.
A small amount of editing guidance was provided by my promotors.

Florine W. Dekker, Zekeriya Erkin and Mauro Conti. “Topology-based re-
construction prevention for decentralised learning”. In: Proceedings on Privacy
Enhancing Technologies 2025.1 (2025), pages 553-566. DOI: 10.56553/POPETS -
2025-0030.

Included as Chapter 4. Written by me, with editing guidance by my promotors.

Juno Jense, Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Privacy-
preserving peer-to-peer cycle detection. 2025. In preparation.

Included as Chapter 5. Based on the master’s thesis of and written in collaboration
with Juno Jense, whom I supervised. Jense and I subsequently jointly resolved
several minor security flaws in the protocols. I wrote or rewrote all parts of the
work and performed the security analysis.

Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Optimal graph stretching
for distributed averaging. 2025. arXiv: 2504 .10289.

Included as Chapter 6. Written by me.

CHAPTER 1 & Introduction 9

https://doi.org/10.1007/978-3-030-78375-4_4
https://doi.org/10.1007/978-3-030-78375-4_4
https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo
https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo
https://doi.org/10.56553/POPETS-2025-0030
https://doi.org/10.56553/POPETS-2025-0030
https://arxiv.org/abs/2504.10289

Artifacts. The software artifacts underlying all results presented in this dissertation
have been published. Some results have also been reproduced by independent parties.

1.

10

Florine W. Dekker and Zekeriya Erkin. Source code underlying the publication:
Privacy-preserving data aggregation with probabilistic range validation. 15th May
2025. DOI: 10.4121/b9db276f-5522-4986-9d98-e9710134£d71.v1.

Supports Chapter 2. Written by me.

Marco Palazzo and Florine W. Dekker. Source code underlying the publica-
tion: Privacy-preserving data aggregation with public verifiability against internal
adversaries. 1th June 2025. pDOI: 10.4121/56552cc8 - 7ebf - 46ce - a6el -
668dd6065eb2.v1.

Supports Chapter 3. Written by Palazzo, and subsequently rewritten by me to
ensure understandability and reproducibility.

Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Source code underlying
the publication: Topology-based reconstruction prevention for decentralised learning.
13th Jan. 2025. po1: 10.4121/21572601.v2.

Supports Chapter 4. Written by me. All results reproduced independently by
PoPETS artifact review committee [DEC25¢].

Juno Jense and Florine W. Dekker. Source code underlying the publication:
Privacy-preserving peer-to-peer cycle detection. 17th June 2025. por: 10.4121/
d23e6d7d-15d9-4c83-86de-5a3fclfd5aa6.v1l.

Supports Chapter 5. Written by Jense, and subsequently edited by me to ensure
reproducibility.

Florine W. Dekker. Source code underlying the publication: Optimal graph
stretching for distributed averaging. 16th June 2025. DOI: 10.4121/e64c61d3-
deb5-4aad-af60-92d92755781f.v3.

Supports Chapter 6. Written by me. All results reproduced independently by
CODECHECK [UQ25].

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.4121/b9db276f-5522-4986-9d98-e9710134fd71.v1
https://doi.org/10.4121/56552cc8-7ebf-46ce-a6e0-668dd6065eb2.v1
https://doi.org/10.4121/56552cc8-7ebf-46ce-a6e0-668dd6065eb2.v1
https://doi.org/10.4121/21572601.v2
https://doi.org/10.4121/d23e6d7d-15d9-4c83-86de-5a3fc1fd5aa6.v1
https://doi.org/10.4121/d23e6d7d-15d9-4c83-86de-5a3fc1fd5aa6.v1
https://doi.org/10.4121/e64c61d3-deb5-4aad-af60-92d92755781f.v3
https://doi.org/10.4121/e64c61d3-deb5-4aad-af60-92d92755781f.v3

ParT II

Privacy-Preserving Summation

CHAPTER 2

s .

Privacy-Preserving Aggregation with Probabilistic Range
Validation

Abstract. Privacy-preserving data aggregation protocols have been researched widely, but
usually cannot guarantee correctness of the aggregate if users are malicious. These protocols
can be extended with zero-knowledge proofs and commitments to work in the malicious model,
but this incurs a significant computational cost on the end users, making adoption of these
protocols less likely.

We propose a privacy-preserving data aggregation protocol for calculating the sum of user
inputs. Our protocol gives the aggregator confidence that all inputs are within a desired
range. Instead of zero-knowledge proofs, our protocol relies on a probabilistic hypergraph-
based detection algorithm with which the aggregator can quickly pinpoint malicious users.
Furthermore, our protocol is robust to user dropouts and, apart from the setup phase, it is
non-interactive.

>0 _~—_0<

Based on: Florine W. Dekker and Zekeriya Erkin. “Privacy-preserving data aggregation with probabilistic
range validation”. In: ACNS zo21: Proceedings of the 19th International Conference on Applied Cryptography and
Network Security. Volume 12727. Lecture Notes in Computer Science. 2021, pages 79—98. DOI: 10.1007/978~
3-030-78375-4_4.

https://doi.org/10.1007/978-3-030-78375-4_4
https://doi.org/10.1007/978-3-030-78375-4_4

21 INTRODUCTION

form of machine learning [Bon+17], participatory sensing [Bur+o06], software

telemetry [FPE16, Bit+17], and smart metering [LeM+o07]. Although the use-
fulness of these methods depends on the amount of available data, privacy concerns
make users reluctant to share their sensitive data with a third party [GJ1io0, Chri6].
This poses a significant threat to the viability of large-scale data analysis.

To overcome this problem, Privacy-preserving Data Aggregation (PDA) protocols
have been proposed which allow an aggregator to calculate statistics on privacy-
sensitive data without being able to determine private values. There are various ways
to achieve this. For example, several proposals use techniques such as homomorphic
encryption [GJio, ET12] and secret sharing [Kurio, Erkis] to guarantee that user
contributions cannot be decrypted unless they have been aggregated. Other proposals
use differential privacy [RN10, AC11, Shi+11] to ensure that the connection between the
observed value and the actual value is perturbed. Either way, PDA protocols provide
the same expressiveness as non-pPDA protocols, but without sacrificing user privacy.
These guarantees usually come at the cost of increased computational complexity,
increased bandwidth usage, or decreased accuracy.

A shortcoming of many existing proposals is that they assume that all users are
honest-but-curious, for example as in [KDK11, ET12, YL13]. As a result, these proposals
cannot be used to defend against dishonest users that want to invalidate the aggregate
or nudge it in their favour. This means that dishonest users could tamper with their
smart meter to reduce their reported electricity consumption [McL+13] or inject false
data to increase their score in a ranking system [LM17]. The aggregator would have
been able to detect these attacks by looking at the users’ private values, but the
privacy-preserving properties of the Ppa protocol prevent this.

Transitioning from the honest-but-curious model to the malicious model can be
achieved using zero-knowledge proofs and commitments, as suggested in proposals
such as [Shi+11, KDKui1, ET12]. In particular, range proofs [Bouoo] can be used to
prove in zero knowledge that a committed value is within a given range. However,
range proofs—and zero-knowledge proofs in general—often either require a trusted
setup or a significant amount of resources from the user [Mor+19]. This makes these
approaches unappealing or even infeasible for resource-constrained users.

In this paper, we present an efficient PDA protocol for finding the sum of all private
user values at a regular interval. The protocol lets an aggregator probabilistically
identify private values that are not within a desired range without the need for zero-
knowledge proofs. First, the aggregator divides all users into multiple overlapping
groups such that every user is in a unique set of groups. Then, in each interval, each
user sends their encrypted values to the aggregator, who determines the sum of private
values per group. Finally, the aggregator pinpoints malicious users by looking at the
intersection of groups that violate the range. By memorising which groups have
out-of-range aggregates, the aggregator can combine detections from different rounds
to further enhance its detection rate.

Our protocol boasts several important properties. Firstly, the scheme can be con-
figured to customise the balance between privacy, complexity, and detection rate.
For example, one can increase the work the aggregator needs to perform per round

@ ATA AGGREGATION gives us many valuable insights into the real world in the

16 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

to increase the protocol’s resistance to user collusions. Secondly, our protocol does
not require a trusted setup and is non-interactive apart from the registration phase:
Users simply send their encrypted values to the aggregator, who then aggregates and
validates asynchronously. Thirdly, our protocol is an efficient solution for aggregators
relying on resource-constrained users; users are subject to O(logn) complexity per
round in the number of users n. Fourthly, the grouping structure of our protocol gives
the protocol robustness as the aggregator can continue to operate even when users
fail to submit their measurements. Finally, our protocol can be used as a primitive
to build complex algorithms such as principal component analysis, singular-value
decomposition, and decision tree classifications by writing the inputs as aggregate-sum
queries, like in [Blu+os].

The remainder of this paper is structured as follows. In Section 2.2 we look at related
work. Then, in Section 2.3 we present our protocol in detail, and in Section 2.4 we
analyse its security, privacy, complexity, and detection rate. Finally, in Section 2.5 we
present our conclusions.

2.2 RELATED WORK

We discuss various protocols for range validation of malicious inputs. First, we consider
PDA protocols that have range validation built in. Then, we consider several alternative
approaches not inherent to PDA protocols.

Kursawe [Kurio] proposes a scheme in which the aggregator verifies that all private
values are valid by checking that the sum of inputs approximates the true aggregate.
However, it cannot identify which user sent the invalid value and requires knowledge
of the true aggregate beforehand, which is not always feasible.

Sun et al. [Sun+13] present APED, a PDA protocol that detects defective smart meters
using a method similar to ours. In APED, a trusted third party divides all users into
w random sets of disjoint pairs such that each user is in w pairs at once, and creates
a random key k; for each user i. Then, for each pair of users (i, j), the third party
sends k; j = —(k; + k;) to the aggregator. In each round, each user i sends a ciphertext
of their measurement, encrypted with the key k;. After receiving the ciphertexts for
that round, the aggregator decrypts the product of the ciphertexts of each pair in one
of the w pairing sets of users using that pair’s combined key k; ;. If a pair cannot be
decrypted, at least one of the two users must be defective, and the aggregator will
use a different pairing set in the next round. Eventually, the aggregator infers from
the overlap of invalid pairs which users are defective. An extension of the protocol,
DG-APED [Shi+15], uses groups of arbitrary size. Both protocols have two drawbacks.
Firstly, they rely on a trusted third party to create groups and generate key material.
Secondly, because the protocols are tailored to defective users, the detection algorithms
are unsuitable for users that do not always send invalid users.

Ahadipour, Mohammadi and Keshavarz-Haddad [AMKi9] propose a protocol that
reduces the amount of private data the aggregator has access to. Users are divided
into disjoint groups, and the aggregator obtains the sum of each group’s values in
addition to a random subset of the users’ private values. The aggregator then looks at
the collected private values to determine which users sent invalid values. While this
reduces the privacy impact on its users, giving the aggregator access to even a single
private value is not tolerable for sensitive data.

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 17

Yang and Li [YL13] propose a protocol that can identify out-of-range values using
re-encryption. The aggregator divides users into disjoint groups, and when it finds
that the aggregate of a group is out of range, it re-encrypts and shuffles the values of
the violating group and sends them to a random user in that group. The random user
decrypts the values and reports which values are out of range. The main drawback
of this scheme is that it is especially vulnerable to collusions, as a single collusion
between the aggregator and the random user suffices to reveal all private values of an
entire group to the aggregator.

Finally, there is a multitude of proposals that assume that users are honest-but-
curious, but note that zero-knowledge proofs could be used to perform input valida-
tion [Shi+11, KDKi1, ET12]. With zero-knowledge proofs, users can mathematically
prove that their value is within a particular range without having to reveal their value.
Generic zero-knowledge proofs such as SNARKs require a trusted setup, which is often
not a realistic assumption. Its cousin, the STARK [Ben+18], resolves this problem, but
this comes at the cost of increased communication complexity. Corrigan-Gibbs and
Boneh [CB17] introduce sN1Ps to allow users to prove that input is valid according to
an arbitrary circuit, but this solution requires a multitude of cooperating servers, of
which all must be honest to guarantee correctness and at least one must be honest to
guarantee privacy for the user; furthermore, client-side communication costs grow lin-
early with the complexity of the validation circuit. Range proofs [Bouoo] are a specific
form of zero-knowledge proof specific to range checking. Even though range proofs
such as Bulletproofs [Biin+18] are more efficient than generic zero-knowledge proofs,
they still incur a relatively high complexity for the users (i.e. the provers) [Mor+19],
and must also be used in addition to the privacy-preserving data aggregation protocol
and a cryptographic link between the two such as a commitment scheme.

2.3 PROBABILISTIC RANGE-LIMITED PRIVATE DATA AGGREGATION

We consider a setting with n users and a single aggregator, similar to related work in
Section 2.2. Users continuously submit new privacy-sensitive measurements to the
aggregator at regular intervals called rounds; we assume that users and the aggregator
have access to a synchronised clock. We work in the standard model under the
assumption that the discrete log problem is intractable. We require setup parameters
b and ¢, both positive integers, such that there are exactly n = b’ users. Up to £ users
may be malicious and may deviate from the protocol; these are exactly the users the
aggregator wants to identify. All other users are honest-but-curious (also known as
semi-honest). We assume that the aggregator is honest-but-curious, an assumption
made in several other related works including [ET12, Erkis]. This assumption makes
sense in a business-driven setting, in which a malicious aggregator would be faced with
negative publicity and a loss in consumer trust if its behaviour were discovered. Still,
we allow for collusions between at most (b — 1)¢ users and the aggregator. We assume
that the sets of malicious and colluding users do not change throughout the protocol.
Finally, we assume that the security, integrity, and authenticity of all messages is
guaranteed. The notation used to describe our protocol is shown in Table 2.1. Our
protocol broadly works as follows.

18 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

1. Registration: Each user sends a message to the aggregator indicating that they want
to register. Once all users have registered, the aggregator divides the users into
overlapping groups. It then sends information such as the public parameters and
the group configuration to all registered users.

2. Submission: Every round, each user creates a new secret share of the value zero for
each group they are in. The user takes copies of their private value and blinds each
copy with a different secret share. The user sends the blinded copies in addition to
commitments to the secret shares to the aggregator.

3. Aggregation: The aggregator verifies that the secret shares of each group sum to
zero and verifies that each user used copies of a single private value, remembering
which users and groups failed verification. Next, the aggregator computes the sum
of private values of each group, and remembers which groups have aggregates that
are out of bounds. Finally, the aggregator combines all group aggregates to find
the sum of all private values.

4. Detection: The aggregator looks back at which groups have exhibited malicious
activity, and derives from their overlap which users are the cause. As the protocol
progresses, the aggregator is able to identify more and more malicious users.

& Table 2.1 The notation used in the description of our protocol

Symbol Meaning

n Number of users

b Grouping base/radix = users per group

¢ Grouping dimensionality = groups per user
[min, max] Valid range of a single private value

g Generator for commitments

pp Public parameters, contains all of the above

U Set of all user identifiers

G Set of all group identifiers

G Set of identifiers of groups of user i

U; Set of identifiers of users of group j

N; Set of identifiers of neighbours of user i

(ski, pk;) User i’s key pair
t

Round number

Mmi; User i’s private value in round ¢

Cijt User i’s encryption of m;; for group j

M;; Sum of private values of users in group j in round ¢

M, Sum of all private values in round ¢

Tisjt User i’s random value for neighbour j in round ¢

Sijt User i’s secret share for group j in round ¢

dijr User i’s commitment to s; ; ;

14 Set of group identifiers aggregator marked as malicious
w Set of user identifiers aggregator marked as malicious

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 19

2.3.1 Registration

The goal of the registration phase is to determine the parameters under which the
protocol will run and to exchange the necessary information for subsequent rounds.
Firstly, the honest-but-curious aggregator chooses a random generator g of an algebraic
structure in which the discrete log problem is hard, such as a specific elliptic curve.
Additionally, the aggregator chooses application-specific values for n and min <
max. Then, each user sends a message to the aggregator indicating the desire to
participate in the protocol. Once n users have registered, the aggregator sends the
public parameters pp and some additional information to all users. The remaining
public parameters and additional information are chosen based on the following
grouping algorithm and secret sharing scheme.

Parameters for the Grouping Algorithm

The grouping algorithm divides users into groups such that the aggregator can pinpoint
malicious users based on which groups exhibit malicious behaviour. We base our
algorithm on the structure of a hypermesh [Szy9s]. A b-ary ¢-dimensional hypermesh
is a hypergraph with b’ nodes, where each node is assigned an ¢-digit identifier
de—1dp—2 .. .dp such that d; € [0,b) for all 0 < i < £. Two nodes are neighbours if and
only if their identifiers differ in exactly one digit. Nodes are connected by b-edges,
i.e. edges with b endpoints. Edge identifiers have the same format as node identifiers,
except that exactly one digit is replaced by the wildcard symbol x. Every edge then
connects the b nodes of which the identifier matches that of the edge, ignoring the
digit in the wildcard’s position. Identifiers can be considered coordinates in an ¢-
dimensional Euclidean space, with b‘~! edges aligned along each dimension for a total
of £b'~! edges. We give some examples of hypermeshes in Figure 2.1.

0% 1% 2% 3%
I T I ; *3
03 H|I 13 H| 23 H| 33 R 00% 01% 10% 11%
I I T T *2 L n 0x1 I I 1x1
02 Hl 12 H| 22 H| 32 R 001 H| o11 H 101 H| 111 H
I T T T *1 L 1 0%0 I T 1%0
o1 Hl 11 H| 21 H| 31 H 000 H| o10 H 100 H| 110 H
I T I I *0
o0 Hf 10 F| 20 F| 30 H

(a) A 4%-hypermesh, which has 16 nodes (b) A 23-hypermesh (which is the graph of
and 8 hyperedges a regular cube), which has 8 nodes and
12 hyperedges

Figure 2.1 Examples of hypermeshes
In our protocol, the aggregator generates a b-ary ¢-dimensional hypermesh after
all n users have registered, with the requirements that n = b, b>2, and ¢ > 2. The

edges in the hypermesh are then exactly the groups that users are in. Generating
such a hypermesh constitutes choosing values for b and ¢, and assigning to each

20 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

user a unique identifier in [0, b*), which can be converted to a unique ¢-digit b-ary
identifier. These three variables are sufficient for a user to reconstruct the hypermesh
and determine their own position. The ¢ groups that user i is in, denoted G;, can be
found by replacing the respective ¢ digits in i by the wildcard symbol x. The b users
in group j, denoted Uj, can be found by replacing the wildcard symbol x with the
respective values [0, b). The neighbours of user i, denoted Nj, can be found by taking
the union of {G; | j € U;}, minus i.

Parameters for Secret Sharing

Our scheme uses secret sharing to prevent the aggregator from decrypting ciphertexts
unless all ciphertexts of a group have been aggregated. We apply the procedure for
creating zero-sum additive secret shares used in [ET12] to each group in G. We avoid
direct communication between users by forwarding messages through the (honest-
but-curious) aggregator, but use public-key encryption to ensure that the aggregator
cannot see the actual random values being transmitted. Our goal is to obtain secret
shares s; j ; for each user i € U in each group j € G; in each round ¢ such that

VjeG: Z Sijr =0. (2.1)

ieU;

While the following description assumes that users exchange random numbers each
round, such excessive communication can be avoided by having users exchange seeds
for random number generators once during registration.

First, each user i generates an asymmetric key pair (sk;, pk;), and includes pk;
when sending the registration message to the aggregator. Once all n users have
registered, the (honest-but-curious) aggregator sends to each user i the public keys
{pki | k € N;}. These key pairs can be reused and do not need to be exchanged again in
future rounds. Then, in each round ¢, user i generates a random number r;_, ; for each
neighbour k € Nj, encrypts it with pk;, and sends this value to the aggregator, who
forwards the message to user k. Once user i has obtained r¢_,; ; for each neighbour k,
user i creates the secret share

Sijt = Z (Fimsks = Tk—iz) (2.2)

kEGj

for each j € G;. We consider the privacy of this construction in Section 2.4.2. We
present a communication diagram that includes registration in Figure 2.2.

2.3.2 Submission

In round t, each user i submits the private value m; ; such that the aggregator can obtain
the group aggregates without seeing m; ;. We use encryption function c; j; = m;+s;
to have each user i send {c; ;; | j € G;} to the aggregator, with the secret share s; ;;
as described in Section 2.3.1. To prevent malicious users from avoiding detection by
using a different m;; in different groups, users must additionally send commitments
to their secret shares. We use a simple homomorphic commitment scheme that is
computationally binding and computationally hiding: To commit to a value x, a
user sends g*. Then, each user i computes commitments d; j; = ¢°/* and sends
{(cijrdijr) | j € Gi} to the aggregator.

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 21

User i Aggregator

Registration

Pk;

Wait for all users

pp. i {pky 1 k € N;}

i
{encpr, (Rimk) | k € Ny}
Wait for all users
{encpk; (Rk—i) | k € Ni}
Round ¢ {(Ci,j,t, di,/‘,t) |je G}
Round ¢ + 1

{(cijie1.dijre1) | j € Gi}

& Figure 2.2 An overview of the communication in our protocol. To reduce per-
round communication, users exchange seeds R;_,; during registration to
generate r;_,k; in round t.

2.3.3 Aggregation

The aggregation phase is asynchronous to user submissions and may be invoked
by the aggregator at any time. Before aggregating the submissions for round ¢, the
aggregator verifies for each group j € G of which all users have submitted their values
by checking that

[e = [[o =g =0 =1)
iEUj i€ Uj

to ensure that users committed to secret shares of the value zero. If a group j fails
this check, at least one user in this group must have been malicious, so the aggregator
adds j to V. Next, the aggregator constructs for each user i the set

(g (@)™ |] € Giy = (g™ *urg™r | je G = (g™ | j€ G} (2.

and checks that all values in the set are equal. This ensures that each c; ; ; for user i
uses the same m; ;. If user i fails this check, all groups in G; are added to V, effectively
marking this user as malicious once the detection algorithm runs. Users that fail to

22 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

submit measurements similarly have their groups added to V. If desired, a level of
lenience can be introduced by only adding these groups once a user fails to submit in
multiple rounds.

After the aggregator has completed its verifications, aggregation can start. For each
group j € G, the aggregator calculates

M;, = Z Cijt = Z (M +sij) = Z Mmi;. (25)

ieU; ieU; ieU;

If an aggregate M, ; is not in the range [b - min, b - max], at least one user must have
sent a value that is not in [min, max], so the aggregator adds j to V. This check can be
adjusted to support use cases in which ranges differ per user or per round by checking
that the aggregate is in the sum of the users’ current ranges.

The sum of all private values can be calculated by taking the sum of all group
aggregates. However, the aggregator should refrain from including invalid groups.
Therefore, the aggregator calculates

_ 2jec\wv Mji

M; n

, (2.6)
which is the average of the total sums along each of the hypermesh’s ¢ dimensions,
excluding groups in V. This approximates the sum of only the honest-but-curious users;
if all users behave honestly this approximation is perfect. If desired, the aggregator
can estimate the sum of all users by including a fake group aggregate for each group
in V based on the average of {M;; | j € G\ V} in round ¢.

2.3.4 Detection

The detection algorithm lets the aggregator identify malicious users. Throughout
the protocol and across rounds, the aggregator adds groups that exhibit malicious
behaviour to the set V. In particular, the set V contains all groups in which at least one
user sent a wrongly constructed secret share or sent different private values to different
groups in the same round, and contains a subset of groups in which at least one user
sent an out-of-bounds value. Looking at the overlaps of groups in V, the aggregator
infers which users caused the malicious behaviour: Users that are in exactly ¢ different
groups in V are malicious and are added to W. Over time, the set V becomes more
and more complete until all groups containing malicious users have been detected.
We prove that this method does not result in false-positive detections in Section 2.4.1,
even if some malicious users collude. We analyse the detection rate in Section 2.4.4.

2.4 ANALYSES

2.4.1 Security Analysis

In this section we prove that the aggregator does not incorrectly identify users, we
prove that malicious users cannot submit different measurements to different groups,
and we analyse the impact of missing users to the aggregate.

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 23

Proof of No False Positives

It is important that the aggregator correctly identifies which users are malicious. We
prove that malicious users cannot frame an honest-but-curious user, even if they
coordinate the values they send.

Theorem 1. In our protocol, the aggregator will never identify an honest-but-curious
user as a malicious user if there are fewer than ¢ malicious users.

Proof. For the sake of contradiction, let there be an honest-but-curious user whom
the aggregator falsely identifies as malicious. Then this user must be in £ groups
of V, so this user shares ¢ groups with malicious users. Because a group contains
those users that differ by exactly one digit, two users can at most share a single group.
The wrongly-identified user must therefore share groups with ¢ different malicious
users. However, by assumption of the theorem’s antecedent, there are strictly fewer
than ¢ malicious users. Therefore, the honest-but-curious user could not have been
identified as a malicious user. o

Proof of Aggregate Consistency

Users blind their private measurements m;; using secret shares s; ; ; to obtain ¢; j ;. It
is important that the aggregator verifies that a user’s ¢; j; values use the same under-
lying m; ;; otherwise malicious users could avoid detection by causing inconsistencies
between aggregates. We show that it is infeasible for users to do this under our security
model, regardless of how many users are malicious. Working in the standard model,
every user i sends (c; j;, d; j) for each j € G; to the aggregator, constructed in any
way the users want. Let s; ;; = dlog,(d; ;) and m; j; = c; j; — s j for all users i and
for all j € G;, regardless of whether values are constructed honestly.

Theorem 2. In our protocol, a malicious user i cannot send messages in round ¢
to the aggregator such that m;j; # m;j; for any two groups j, j* € G; such that
the aggregator’s verification does not fail, assuming that the discrete log problem is
intractable in the group generated by g.

Proof. Firstly, if either user i or any neighbour k € N; fails to send their messages,
the aggregator’s verification fails right away and the malicious user does not succeed.
Now, it follows from the aggregator’s verification of Equation 2.3 on page 22 that
Jieu; Sijt = 0. Subsequently, we know from the verification of Equation 2.4 on page 22
that, for fixed i € U and t € N, all ¢; j; — s;j, for j € G; are equal. Therefore, by
definition of m; j;, all m; j; for fixed i € U and t € N are also equal. o

Impact of Missing User Values

The influence of malicious users on M; decreases as the aggregator adds more groups
to V. At the same time, groups in V contain honest-but-curious users. We quantify
the effect that malicious users have on the correctness of the total aggregate.

Each user effectively contributes their measurement ¢ times, and, by Theorem 2,
each contribution is the same. An ideal protocol would remove only the ¢ contributions
of each malicious user. Our protocol also removes the (b — 1)¢ contributions of each
malicious user’s neighbours. The total impact of any set of fewer than ¢ malicious

24 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

users is greatest when these malicious users do not share any groups, in which case
V contains (£ — 1)¢ groups. The aggregator then removes b(£ — 1)¢ contributions
instead of the optimal (£ — 1)¢; a factor of b more than optimal. With a total of
¢b? contributions amongst all users, the effect of malicious users on M; therefore
diminishes as ¢ increases.

2.4.2 Privacy Analysis

We argue that our protocol is a secure data summation protocol in the setting described
in Section 2.3. In particular, we argue that when executing the protocol using a b-
hypermesh, both the joint view of any set of users and the joint view of the aggregator
and a set of fewer than (b — 1)¢ users do not leak any information about honest-but-
curious users’ inputs, besides what can be inferred from the group aggregates. We
should note that we assume that each group with an honest-but-curious user also
contains at least one other non-colluding honest-but-curious user so as to prevent
trivial attacks on the aggregates. This assumption is naturally present in many group-
based aggregation schemes, including [KDK11, ET12, Erkis]. Recall that the aggregator
is honest-but-curious and will therefore assign users to random positions honestly.

Firstly, we consider the joint view of any set of users Uy C U, which consists only of
the public parameters pp, the users’ private data, and the public keys pk; and random
seeds r;_,k; other users have sent to users in U,. Confidentiality is trivial because the
view does not contain any data derived from the private values m;; of any user i ¢ Ua.

Next, we consider the joint view of the honest-but-curious aggregator and any
set Uy C U of fewer than (b — 1) users. The view consists of the same data as before,
now in addition to the aggregator’s private information and the data that are sent to
the aggregator. We proceed to dissect the implications of this view. Firstly, malicious
users in Uy differ only from honest-but-curious users in Uy in that they can interact
dishonestly with other users, but this does not give them an advantage. If a malicious
user refuses to interact with or sends malformed data to a user, then this user halts and
privacy is maintained. Otherwise, if a malicious user sends non-random data to user i,
then this is no worse than an honest-but-curious user in U4 sharing their data with the
aggregator. Secondly, users that are not in Uy receive sensitive information through
the aggregator, but privacy is ensured by encrypting data such that the decryption
key is not in the adversary’s view. Thirdly, the private values m;; of user i ¢ U, are
masked using the secret shares s; j ; constructed from values r;_,; ;. Because at least
one user k # i of each group j € G; is not in Uy, both r,_x; and rr_,;, are chosen
honestly and remain unknown to the adversary. Because additive secret sharing is
trivially secure, the secret shares s; j ; properly mask m; ; ;. Finally, we observe that
each submission occurs in multiple linearly dependent aggregates, which is equivalent
to a system of linear equations. We prove that it is infeasible for the adversary to solve
this system because it is not full rank.

Theorem 3. The rank of the incidence matrix of a b*-hypermesh is b* — (b — 1)°.
(Equivalently, the number of unknowns in the incidence matrix is (b — 1).)

Proof. We model the incidence matrix such that each row describes a group and each
column describes a user. We construct the incidence matrix recursively, similar to how
the hypermesh itself can be constructed. Given a b-ary 1-dimensional hypermesh, its

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 25

incidence matrix Cp; is a (1xb)-matrix containing only 1s. Then, a b-ary £-dimensional
hypermesh can be constructed from b copies of the b-ary (¢ — 1)-dimensional hyper-
mesh, where all nodes are additionally connected to their counterparts in the other
copies using b-edges. This allows us to construct the incidence matrix Cy ¢ for £ > 1 as

Cpr-1 0 - 0
0 Coe-1 .. 0
: : . aE (2.7)
0 0 PP Cb,{’—l

Tpe—1 Ipe-r o0 Iper

where each 0 represents a matrix of the same size as Cp,_; containing only zeroes,
and I, denotes an identity matrix of size x X x.

We now use complete induction on ¢ to prove that rank(Cp) = b’ — (b — 1). For
the base case, we take ¢ = 1 and find that rank(Cp ;) = 1, which matches our theorem:

—(b-1)f=b-(b-1)=1. (2.8)

For the recursive case, take as our induction hypothesis that r = rank(Cp,—1) =
b1 — (b - 1)!"1. We write Cy; in column echelon form as follows to determine its
rank. Firstly, consider the column operations necessary to write Cp,_; in column
echelon form, and apply them to each instance of Cp,_; in Cp . Note that this also
transforms the Ic-1s located beneath the Cp,_;s. After applying these steps, each
instance of Cp,¢_; has b’~! — r empty columns on the right, while each instance of I
has no zero columns because it is full rank. The rightmost b’~! — r columns of each
Ipe-1 are now identical, however, and have nothing but zeroes above them. As such, we
cancel out these columns except in the rightmost instance of I.-1 using simple column
operations. This cancels out (b — 1)(b*~! — r) columns, while all other columns are
non-zero. After moving these zero columns to the right of the matrix, Cy ¢ is in column
echelon form. The rank of Cp,, is then the number of non-zero columns, which is

b —(b-1) (b =) (2.9)

= - (-1 -0 - -1 (2.10)

= —(b-1)(b-1)"" (2.12)

=b - (b-1)", (2.12)

proving our theorem. o

With fewer than (b — 1)¢ users in the view, the adversary always has at least one
unknown in this system. To give an intuition into the growth of (b — 1), consider
Figure 2.3, where we show the maximum ratio of users that may collude with the
aggregator as a function of b and ¢ without breaking confidentiality. For example, a
system with b = £ = 2 could not tolerate a single colluding user, while a system with
b = ¢ = 5 could tolerate up to (4/5)° ~ 33% of all users colluding. As the number of
groups per user grows, the collusion resistance decreases. This can be compensated
for by increasing the number of users per group, but, as we discuss in Section 2.4.4,
this decreases the detection rate.

26 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Ratio of users

2 5 10 15 20

Groups per user, £

& Figure 2.3 Maximum proportion of users that can collude with the aggregator as a
function of b (users per group) and £ (groups per user)

2.4.3 Complexity Analysis

We quantify the complexity of our protocol in terms of the number of users n and
compare this to several related ppA protocols. We express complexity as the number
of encryptions, decryptions, multiplications, exponentiations, additions, subtractions,
and outgoing messages, separately for each user and the aggregator, similar to [Erkis].

Complexity of Our Protocol

Firstly, note that in our protocol, b = n . This number is maximal when £ = 2, SO we
say that b is O (y/n). Meanwhile, ¢ = log,, (n) is O(log n). Recall the time diagram of
our protocol in Figure 2.2 on page 22.

During the registration, each user sends one encrypted seed for each neighbor and
a fixed-size key to the aggregator, resulting in an outgoing communication complexity
of O(y/nlogn) per user. Meanwhile, each user receives one key and one encrypted
seed per neighbor, for an incoming communication complexity of O(y/nlogn) per
user. We visualize registration communication complexity in Figure 2.4. Later, in each
round, each user sends for each group it is in a constant-size message containing a
masked plaintext and a commitment, for a communication complexity of O(logn).
Users do not receive anything during rounds. Creating a submission requires one
commitment and one masked private value for each of the user’s groups, for a total of
O(log n) exponentiations and O(log n) additions per user per round.

The aggregator forwards each user message during the registration, resulting in a
factor of n more communication. After the registration, however, the aggregator does
not need to communicate with users other than sending acknowledgements. During
aggregation, the aggregator verifies user inputs, requiring one exponentiation and one
multiplication for each group for each user, for a total of n¢b’~! of either operation.
The calculation of the aggregate itself requires only that the aggregator sums together
all neb*~! submissions. The detection phase does not require complex operations, as
the aggregator need only find which users are in ¢ groups of V.

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 27

3,000 6,000

2,000 4,000
% @
8 &
> >
a @
1,000 2,000
0 0
2 5 10 15 20 2 5 10 15 20
Groups per user, £ Groups per user, £
(a) Outgoing communication (b) Incoming communication

Figure 2.4 Per-user communication during registration. We assume 4 bytes for
each (masked) private value and 256-bit Ec-cryptography. With point
compression, this gives 33-byte keys, ciphertexts (for seeds), and com-
mitments.

Comparison to Related Protocols

We compare our protocol to a selection of related ppaA protocols in Table 2.2. Our
analysis is subject to several limitations. Firstly, because our protocol is tailored to
identifying malicious users, we restrict our analysis to detection protocols for malicious
users, thus also excluding APED [Sun+13] and DG-APED [Shi+15]. Secondly, in our
analysis of the protocol in [CB17], we assume that the number of multiplication gates is
linear in the size of the range, which corresponds to the size of an integer comparison
circuit. Finally, for the protocol in [YL13], we assume a binary tree topology for
simplicity, and include operations related to the detection sub-protocol for fairness.

The protocol in [YL13] provides by far the lowest complexity by validating in a
decentralised fashion, but requires long periods of interactivity and has the weakest
security model: An honest-but-curious aggregator and any single user can collude to
obtain all private values. Prio [CB17] and Bulletproofs [Biin+18] have a complexity that
depends on the size r of the valid range; meanwhile, our complexity is independent of r.
Additionally, with Bulletproofs, the size of the range must be of the form [0, 2") for
some natural number r, whereas our protocol supports arbitrary ranges, as does Prio.
Finally, Bulletproofs can verify user submissions in bulk, but only if all users have the
same range. Otherwise, the verification complexity grows linearly with the number of
different ranges. While an alternative would be to verify the widest range in bulk, this
is not practical. Our protocol supports different ranges for all users without an increase
in complexity, instead affecting the detection rate, as we discuss in Section 2.4.4.

We conclude that the complexities of these protocols must be considered in light of
the application. If users have different, personalised use cases, the computation and
communication complexities of our protocol scale better than competing protocols.

2.4.4 Detection Rate Analysis

Values submitted by honest-but-curious users in the same group as a malicious user
may coincidentally compensate for the malicious transgression. As a result, our
detection algorithm is probabilistic. In this section we analyse how the detection rate

28 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Table 2.2 Comparison of related DA protocols, given total number of users n and
range size 2"

[YL13] [CB17] [Biin+18] Ours

Properties

Topology Tree Arbitrary Arbitrary ~ Hypermesh

Group ElGamal Frr field EC EC
Aggregation v v v
Detection v v v v
Robustness v v v
User complexity
Enc 0o(1) - - -
Dec 0(1) - - -
Mult o(1) O(rlogr) - -
Exp o(1) - O(r) O(logn)
Add - - - O(logn)
Sub - - - -
Com O(1) O(logr) o(r) O(«/nlogn)
Aggregator complexity
Enc o(1) - - -
Dec o(1) - - -
Mult 0(1) O(rlogr) - O(nlogn)
Exp o(1) - O(nr) O(nlogn)
Add - - - O(nlogn)
Sub - - - -
Com O(1) o(1) O(nr) O(nynlogn)

varies as a function of the protocol’s parameters. In our analysis we model each honest-
but-curious user’s value as a truncated binomial distribution X with p = W and a
support of [min, max]. For the sake of illustration, we use ¢ = 2, min = 5, and max =
15. We model the sum of n independent honest-but-curious users’ values, denoted X,
by approximating X with a non-truncated binomial distribution, multiplying the
distribution by n, and truncating this distribution to the range [n - min,n - max].
Our model does not capture serial dependence in user data, which is unrealistic but
ultimately does not impinge upon our conclusions. The source code underlying the
figures in this section is publicly available [DE25].

Detection Rate of a Single Malicious User

Consider a system with a single malicious user i who submits the out-of-range meas-
urement m. We assume that m > max, without loss of generality because X and X;_,
are symmetrical. Recall that user i is detected only once all £ groups in G; are in V.
First, we consider the detection rate of an individual group. The aggregate of a
group j € G; does not exceed its upper bound if and only if M;; = X1 + m < b - max,

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 29

Detection rate

100%) 10% 25% 50%

90% 0 750 —— 90%

80%

70%

60%

50% 10! /”__
40%

30%

20% //’_
10% /

0% 10°

2 3 45 6 7 8 9 10 2 20 40
Users per group Groups per user, £

Number of rounds

Malicious value

(a) Probability that a group of given size (b) Expected number of rounds until the

transgresses the valid range, given the aggregator has detected a given number
value of the single malicious user in that of the malicious user’s groups, given the
group, with each honest value distrib- per-group detection rate for any single
uted as X round

Figure 2.5 Detection rate of a single malicious user

or, equivalently, if X_; < b - max — m. We illustrate the probability that this relation
holds as a function of m and b in Figure 2.5a. The figure shows that fixing a particular
detection rate results in the corresponding malicious value growing linearly with the
group size. Note that the detection rate is exactly 0% at m = max and exactly 100%
at m = b(max — min) + min.

We can thus model the detection rate of a group as a geometric variable to express
the expected number of rounds until it is detected. Because the groups G; overlap
only in user i, their detection rates are independent for fixed m. The expected number
of rounds until all ¢ groups have been detected at least once is then the expected
maximum of ¢ iid geometric variables, which is [Eiso8]

n

fep =y ((,f_)pku) fe=kp) | (213)

k=0

where £ is the number of groups and p is the per-round detection probability of each
group. Figure 2.5b shows f(#, p) for various combinations of £ and p. We conclude that
increasing the number of groups per user necessitates a higher per-group detection
rate to retain the number of expected rounds, which can be done by reducing the
group size, for example.

Detection Rate of Multiple Malicious Users

When a group contains multiple malicious users, these users can either intensify
or diminish the sum effect they have on their group’s aggregate. This means that,
depending on the usage scenario, multiple malicious users either become harder to
detect (if malicious users have equal reason to transgress the range in either direction)
or easier to detect (if malicious users have more reason to transgress the range in a

30 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Joint groups
0.3

——— Disjoint groups

Pearson correlation

3 5 10 15 20 25 30 32
Users per group, b

& Figure 2.6 The correlation of the detection rate of two groups, each with a different
malicious user and overlapping in one honest-but-curious user. Simulated
in MATLAB by sampling honest values from truncated normal distribution
N (10, 9) with support [5, 15]. Malicious users send 10+5b, which ensures
the groups are not always detected. Correlation was calculated with 5000
trials per group size.

particular detection). Therefore, our protocol is best suited for applications where
users are most likely to transgress in a particular direction.

We can reuse our results from Section 2.4.4 to quantify the detection rate of a group
with multiple malicious users. Given a group of size b with n malicious users, the
detection rate of the sum of malicious values m is

Pr[Xp_p + m < b - max] (2.14)
=Pr[Xp_n+m—-(n—1)-max < (b-(n-1)) - max]. (2.15)

That is, this detection rate is the same as that of a single malicious user that sends the
value m — (n — 1) - max in a group with only b — (n — 1) users.

Users may coordinate the malicious values they send to avoid being detected by
the aggregator in some groups. However, it follows from Equation 2.14 that complete
avoidance is possible only if the sum of their values is valid. Because values are
consistent between groups by Theorem 2 on page 24, this type of avoidance detection
requires that the sum effect on the total aggregate is valid, so malicious users do not
gain any significant advantages by working together.

An important observation regarding the interplay of group aggregates is that mali-
cious users that do not share a group may still have an overlap in the users that they
share groups with. In this case, the detection rates of these groups become covariant
because of the common user. As shown in Figure 2.6, the impact of this covariance
depends on the group size b and quickly becomes negligible. Therefore, the expected
number of rounds until detection as expressed in Figure 2.5b holds for multiple users
up to covariance.

CHAPTER 2 ¢ Privacy-Preserving Probabilistic Range Validation 31

2.5 CONCLUSION

Data aggregation is an immensely useful tool for various applications, but introduces
a number of privacy concerns. Existing privacy-preserving data aggregation protocols
tend to assume that the users are honest-but-curious rather than malicious, or use
zero-knowledge proofs, which impose significant computational requirements on
the users. Either way, adoption of these much-needed protocols is difficult. We
present a data aggregation protocol that probabilistically detects out-of-range user
values without giving the aggregator access to these values. Our protocol imposes
only O(logn) per-round computational complexity on its users without relying on
expensive cryptography. The protocol is also robust to missing data because it can
exclude any number of groups that have exhibited malicious behaviour. Furthermore,
given b users for positive integers b and ¢, the aggregator will not misidentify an
honest-but-curious user as malicious as long as there are strictly fewer than ¢ malicious
users. Finally, our protocol continues to guarantee privacy even when up to (b —
1)! users collude with the aggregator.

32 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

CHAPTER 3

s .

Privacy-Preserving Aggregation with Public Verifiability
Against Internal Adversaries

Abstract. We consider the problem of publicly verifiable privacy-preserving data aggregation
in the presence of a malicious aggregator colluding with malicious users. State-of-the-art
solutions either split the aggregator into two parties under the assumption that they do not
collude, or require many rounds of interactivity and have non-constant verification time.

In this work, we propose mpvas, the first publicly verifiable privacy-preserving data aggrega-
tion protocol that allows arbitrary collusion, without relying on trusted third parties during
execution, where verification runs in constant time. We also show three extensions to MPVAS:
MPVAS+, for improved communication complexity, MPvAs-1v, for the identification of malicious
users, and MPVAs-UD, for graceful handling of reduced user availability without the need to
redo the setup. We show that our schemes achieve the desired confidentiality, integrity, and
authenticity. Finally, through both theoretical and experimental evaluations, we show that our
schemes are feasible for real-world applications.

>0 _~—_0<

Based on: Marco Palazzo, Florine W. Dekker, Alessandro Brighente, Mauro Conti and Zekeriya Erkin.
“Privacy-preserving data aggregation with public verifiability against internal adversaries”. In: USENIX
Security 2024: Proceedings of the 33rd USENIX Security Symposium. 2024. URL: https://www.usenix.

org/conference/usenixsecurity24/presentation/palazzo.

https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo
https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo

31 INTRODUCTION

its processing by a central aggregator for statistical analysis. These protocols

find applications in many situations concerning sensitive data, such as auto-
mated power delivery and balancing mechanisms in smart grids [Fan+12, Dhr+20],
patient monitoring [Ull+21], and mobile computing [Hul+06, Shiog]. While the benefits
brought by data aggregation are evident, without proper countermeasures, they may
represent a threat to the privacy of users [GJ10, MEO13, Kap16]. Malicious actors could
exploit the collected data to profile or track users’ activities, social status, religious
beliefs, and medical conditions [G]i0, MEO13, Kap16]. Therefore, data aggregation
protocols should guarantee users’ privacy in the presence of malicious actors.

@ ATA AGGREGATION refers to the collection of data from one or more sources and

Drawbacks of current solutions. “Classical” privacy-preserving data summation pro-
tocols [ET12, Shi+11, KDK11] assume that participants are honest-but-curious: They
follow the protocol but may try to infer others’ sensitive information. When users
may be actively malicious by attempting to influence the correctness of the output,
zero-knowledge proofs can be used to prove that users’ inputs are well-formed [FLC15,
KOB21]. When aggregators may influence correctness, the problem is more diffi-
cult. The aforementioned protocols typically assume that the legal and reputational
consequences of malicious behavior deter the aggregator from publishing a forged
aggregate. However, without efficient methods to actually detect such tampering,
these protocols may fail to prevent malicious behaviour.

A simple technique to detect tampering by the aggregator is to have each user
sign their submitted value. However, this incurs high verification costs as possibly
thousands of signatures must be verified in applications with many users. A more
common technique adopted in the literature is to make only the result of the aggrega-
tion verifiable using privacy-preserving verifiable summation protocols [Leo+15, Ni+15,
Bak+15, Guo+21, Wan+23, Hah+23]. Unfortunately, both solutions fail to guarantee
unforgeability when the malicious aggregator may collude with malicious users.

To the best of our knowledge, only three works have considered privacy-preserving
verifiable summation against a malicious aggregator who colludes with malicious
users [MT21, LL21, Ren+22]. Leontiadis and Li [LL21] and Mouris and Tsoutsos [MT21]
both assume a two-aggregator model in which at most one aggregator may collude
with malicious users. Unfortunately, as we describe in Section 3.3.3, the work by
Leontiadis and Li [LL21] contains a mistake that breaks unforgeability. Finally, Ren
et al. [Ren+22] propose a single-server protocol in which the aggregate is hidden from
the aggregator. Unfortunately, their protocol fails to provide confidentiality for small
plaintext spaces, and verification time is linear in the number of users.

Contributions. We present mPVAS, the first privacy-preserving publicly verifiable

summation protocol that allows for arbitrary collusions between a malicious aggregator

and malicious users, requiring only a single server and constant-time verification.

Note that data poisoning attacks from the users are outside the scope of this paper.
Our contributions can be summarized as follows.

« We propose a publicly verifiable aggregate signature scheme considering malicious
users and aggregators (MmPVAS), a novel signature scheme that allows users to sign
their reports and compute a signature over the sum of the private values.

36 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

We present three extensions to mPVAS. mPVAs+ reduces communication overhead in a
slightly weaker adversarial model, mpvas-1v allows the detection and removal of ma-
licious users, and mPvAs-UD allows users to exit the protocol without necessitating
a new setup phase for the other users.

« We provide theoretical evaluations of the security and performance of our proto-
cols, as well as a practical analysis of their performance using a proof-of-concept
implementation. Our results show that mpvas and its extensions are practical for
real-world scenarios.

Outline. In Section 3.2, we present the system model and our assumptions. In Sec-
tion 3.3, we discuss related works. In Section 3.4, we introduce the building blocks of
our schemes. In Section 3.5, we introduce mPVAS. In Section 3.6, we introduce mPVAS+,
which reduces communication complexity. In Section 3.7, we introduce MmPVAS-1V,
which adds input validation to combat malicious users. In Section 3.8, we introduce
MPVAS-UD, which adds support for user dropouts. In Section 3.9, we evaluate all four
protocols. Finally, in Section 3.10, we present our conclusions.

3.2 SYSTEM MODEL AND ASSUMPTIONS

The goal of our protocol is to publish the (authenticated) sum of all users’ private values
in round t, subject to two properties: Individual users’ values remain unknown to other
parties (confidentiality), and the published sum is guaranteed to match the true sum
(unforgeability). Here, unforgeability implies both integrity and authenticity [Sma16].

We assume all adversaries are probabilistic and polynomially time-bounded. Fur-
thermore, similar to related work [Bak+15, LL21], we assume availability: Parties do not
intentionally try to make the protocol fail (denial of service), and do not unexpectedly
drop out. We loosen this assumption in Section 3.7 and Section 3.8, where we provide
extensions for availability.

The following parties participate in the protocol.

Aggregator. The aggregator collects users’ inputs and signatures, and publishes the
input sum and an aggregate signature of the sum. The aggregator is malicious and
may collude with other malicious parties. That is, the aggregator may deviate from
the protocol in arbitrary ways, for example to learn users’ private values, tamper with
signatures, or publish an incorrect aggregate.

Users. We consider a set of nusers U = {1,2,...,n}. In any round ¢, each user i € U
holds some private integer x;,. We assume at most k < n — 2 users are malicious
and may collude with the aggregator. The remaining n — k > 2 users are honest-but-
curious; these users follow the protocol, but may still try to obtain private data without
colluding. Finally, all users have access to a synchronized clock indicating the current
round t.

Verifier. Verifiers check that the aggregator’s published output is correct. Any party
may be a verifier; this includes external auditors, the aggregator, users, the dealer, and
system administrators. We assume there is at least one verifier.

Dealer. We require a trusted dealer to set up the system, similar to nearly all related
works [Leo+15, Ni+15, Bak+15, Guo+21, Wan+23, Hah+23, LL21, Ren+22]. Though
a fully trusted party is a strong assumption, we argue that it is feasible in relevant

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 37

applications such as smart grids and medical data sharing, where the role can be
fulfilled by a trusted institution or hardware manufacturer. The dealer is tasked with
generating and distributing the public and private parameters to the other parties.
After the setup, the dealer exits the protocol.

Communication. The dealer and aggregator both have direct communication channels
with all users and verifiers, and with each other. These channels provide secrecy,
authenticity, and integrity. Users cannot interact with each other directly but can ask
the aggregator to forward messages for them.

3.3 RELATED WORK

There is a large body of work on privacy-preserving computation. We discuss why
these works cannot be trivially adapted to the adversarial model from Section 3.2. In
Section 3.3.1, we discuss protocols for general verifiable computation. Then, in Sec-
tion 3.3.2, we discuss protocols for non-verifiable summation. Finally, in Section 3.3.3,
we discuss protocols for verifiable summation, which we also summarise in Table 3.1.

& Table 3.1 Overview of privacy-preserving verifiable summation works and their

properties. The symbols O, D, and @ respectively denote that a property
is not, is partially, or is fully achieved by a particular work. The symbol -
denotes that a property is not applicable. We denote users by U, aggreg-
ator(s) by A, and verifier(s) by V; and abbreviate “trusted” to “trust” and
“malicious” to “mal”

Trust. Ais Uis Verifiable by Collusions
setup’ single mal. U A v A+U A+YV
[Leo+15] o o O o o o O O
[Nit15] @ L O O O s O O
[Bak+15] @ L O o o [O O
[Guo+21] o [O o o O O -
[Wan+23] o O O o o O O
[Hah+23] o o O o o O O -
1. ®€ O e O O ® @& O
M ® O @ e e e B O
[Ren+22] [[o o O O o -
wpvas @ [[[o o o o
wpvas+ @ [[[[[[[
wpvas-up @ [[[o o o o
wpvas-v @ [[[o o o o

! Also includes public-key infrastructure and common reference string.
2 Requires trusted party in all phases of protocol.
3 Exactly one (trusted) verifier.
4 May collude with at most one aggregator.
5 Requires public ledger in all phases of protocol.

38 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

3.3.1 General verifiable computation

In general verifiable computation [GGP10], the aggregator computes an arbitrary
function over users’ data, while learning neither the function nor its inputs. Users can
verify that the output is correct, without learning others’ values.

Gordon et al. [Gor+15] prove that general verifiable computation is impossible if
the aggregator colludes with users, even when only a single user colludes, this user is
honest-but-curious, and the protocol uses a trusted setup. Therefore, general verifiable
computation is not a suitable solution for our adversarial model. Note that since the
above impossibility result requires that the function remains private, this does not
preclude verifiable privacy-preserving summation in this adversarial model.

3.3.2 Non-verifiable summation

Privacy-preserving summation [KDKi1, Shi+11, Bon+17, Bel+20] ensures confidentiality
and availability in a variety of adversarial models. However, these works are not
verifiable. That is, if a malicious aggregator publishes an arbitrary value as the sum,
this cannot be detected by other parties. Therefore, these protocols are insufficient
when the aggregator has an incentive to lie.

3.3.3 Verifiable summation

With privacy-preserving verifiable summation, the aggregator’s output can be proven
to be the sum of users’ inputs. We first discuss protocols for honest-but-curious users
and then discuss protocols for malicious users. The aggregator is necessarily assumed
malicious. We restrict our discussion to the verification techniques, ignoring the
protocols’ summation mechanisms. We summarise our results in Table 3.1.

Honest-but-curious users. Given honest-but-curious users and a malicious aggregator,
the aggregator must prove that the published sum corresponds to the users’ inputs.
Early works [Leo+15, Ni+15, Bak+15] rely on a shared secret between the users and
the verifier to ensure only authenticated parties can sign, and rely on a signature key
that is secret-shared between the users to ensure a signature is valid only if all users are
included. These protocols cannot ensure unforgeability when the aggregator colludes
with honest-but-curious users, because if a user sends the aggregator the shared
authentication secret, the aggregator can homomorphically modify valid signatures.
Recent works [Guo+21, Wan+23, Hah+23] use the same high-level ideas, but combine
this with the non-verifiable summation protocol of Bonawitz et al. [Bon+17] to achieve
reliability when users unexpectedly drop out. Each of these works similarly cannot
ensure unforgeability when the aggregator colludes with users. We point out to
interested readers that two of the above works have received security fixes [Guo22,
LWY24]. There are more works that achieve privacy-preserving verifiable summation
with honest-but-curious users, but none that do not fit the above general descriptions.

Malicious aggregator and malicious users. To the best of our knowledge, only a few
works tackle the problem of privacy-preserving verifiable summation with a malicious
aggregator and malicious users.

Leontiadis and Li [LL21] propose the addition of a new honest-but-curious party,
the converter. Users work with the converter to create homomorphic commitments of
their data based on shares of the verifier’s secret key. The aggregator then aggregates

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 39

users’ private data and their commitments (respectively), and sends both to the verifier.
Finally, the verifier checks that the aggregation was done correctly. Unfortunately,
this protocol is not truly publicly verifiable, since the verification key cannot be shared
with users of the protocol. Furthermore, if a user, aggregator, and converter collude,
unforgeability no longer holds. Finally, it appears that the protocol is flawed: If a
malicious user sends the converter a commitment to zero and then forwards the
response to the aggregator, the aggregator can create arbitrary valid signatures.

Mouris and Tsoutsos [MT21] propose splitting the aggregator into two parties: a
curator and an analyst. Both may be malicious, but they do not collude, and only the
analyst has the decryption key for the aggregate. Users homomorphically encrypt
their data and send it to the curator, and publish a homomorphic commitment to
the ciphertext on a public ledger. The curator verifies that the received ciphertexts
correspond to the commitments on the public ledger, and then publishes an aggregate
ciphertext and an aggregate commitment on the public ledger. Finally, the analyst
verifies the aggregate commitment, decrypts the aggregate ciphertext, and publishes
the aggregate data together with a proof of correct decryption on the public ledger. The
protocol requires that the curator and analyst do not collude; otherwise, the protocol
cannot guarantee confidentiality and unforgeability. Furthermore, users colluding
with the curator may affect correctness.

Ren et al. [Ren+22] propose a summation protocol that provides confidentiality, un-
forgeability, and availability against a malicious aggregator colluding with a malicious
subset of clients. The protocol has four major drawbacks. First, only the users learn
the obtained sum, whereas the aggregator learns nothing. Second, only participating
users can verify the obtained sum, and there is no trivial extension to allow external
parties to learn and verify the sum. Third, if the plaintext space is small (as in verifi-
able summation for smart meters [Shi+11, Leo+15]), confidentiality can be broken by
brute-forcing commitments. Finally, verification time is linear in the number of users.

3.4 PRELIMINARIES

Before we present mpvAs in Section 3.5, we introduce its basic building blocks. We
follow the definitions in [KL14].

Bilinear pairings. Given cyclic groups G;, G,, Gr, each of the same prime order p, a
bilinear pairing is a function e: G; X G, — Gr such that, for any g; € Gy, g2 € G,
and a,b € Z,,,

e(9%, g5) = e(g1,92)*. (3.1)

Furthermore, e(gy, g2) should be a generator of G, and e should be efficiently comput-
able. This excludes so-called degenerate bilinear pairings, in which e(g1,g2) = 1
for all g; € Gy and g, € G,. Finally, we assume that the Symmetric External
Diffie-Hellman (sxpH) assumption [Ate+o05] holds, i.e. that the Decisional Diffie-
Hellman (ppH) assumption holds (and thus also that the Discrete Logarithm Prob-
lem (prp) is hard) in both G; and Gy, and that there exist no efficiently computable
homomorphisms between the two.

Zero-knowledge proof of equality between commitments. We describe ZKPEQ, a zero-
knowledge proof that two different Pedersen commitments share the same committed

40 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

value. Formally, given commitments C(x, r;) and C(x, r;), ZKPEQ proves the relation
{(x,r1,r2): S=gih AT = g3 b} (3.2)

This proof can be implemented as an EQ-composition on the common witness x of
two Okamoto protocols [Okagz] running in parallel [Sch25]. ZKPEQ can be made
non-interactive using the Fiat-Shamir heuristic [FS86].

3.5 MPVAS: PUBLICLY VERIFIABLE AGGREGATE SIGNATURES WITH
MaLicious USERS AND A MALICIOUS AGGREGATOR

We present mPVAsS, a novel aggregate signature scheme for summations. mpvas can be
used to verify that the output of a separate summation protocol was not tampered with
by the aggregator. The core idea behind mpvas is to create commitment-like signatures
of the inputs and wrap each signature under a common secret exponent s, similar
to other verifiable schemes [Bak+15, Leo+15, Li+16]. Unlike other schemes, however,
we allow users to collude with the aggregator by revealing their private parameters.
MPVAS guarantees unforgeability of the aggregate signature given at most k malicious
users. To achieve this, we use Shamir secret sharing over s with a threshold of k + 1.

MPVAS runs in four phases: setup, signing, aggregation, and verification. During
setup, the participants interactively determine the scheme’s public and private para-
meters. During signing, users cooperatively calculate signatures of their inputs to a
separate summation protocol. During aggregation, the aggregator combines users’
signatures into a single signature. Finally, during verification, verifiers compare the
aggregate signature with the summation protocol’s output.

MPVAS provides only an aggregate signature and, for large plaintext spaces, must
operate adjacent to a separate privacy-preserving summation scheme. The order of
operations is that mPvAs runs up to (but excluding) verification, then the summation
protocol reveals the sum and, finally, mPvAs verifies correctness. Alternatively, if the
plaintext space is small enough, the sum can be extracted in polynomial time from the
aggregate signature itself by repeated verification on all possible values.

Data poisoning attacks are outside the scope of this paper. Still, we note that these
attacks can be partially mitigated by including range proofs in the signing phase.

3.5.1 Setup

During the setup, the trusted dealer chooses and publishes the public parameters
pp = (H, Hy, Gy, Gy, Gr, g1, g2, €, p, 1, k), generated according to a strong security para-
meter A. Each G; is a cyclic group of order p, where p is a large prime number. g;
and g, are random generators of G; and G, respectively. e: G; X G, — Gr isa
type-3 bilinear pairing in which the sxpH [Ate+o05] assumption holds. Furthermore,
H: {0,1}* — G; and H;: {0, 1}* — Gy are two distinct and cryptographically-secure
hash functions. Finally, n is the number of users, and k < n—2 is the maximum number
of malicious users.

The dealer assigns each user a unique identifier i € {1...n}, chooses a secret
s «$ Z,, and creates n secret shares [s]; using (k + 1)-out-of-n Shamir secret sharing.
Recall that each Shamir secret share consists of a coordinate (x;, y;) on the 2D plane.
The dealer ensures that the x-coordinates correspond exactly to the user identifiers,

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 41

and defines [s]; = y;. Next, for each i € {1...n} and each j € {1...k + 1}, the dealer
chooses encryption key ek; j «$ Z,,, but sets the last encryption key to

k
ekp i1 = — i Z ekij. (3:3)

i=1 j=1

It follows that the sum of all encryption keys is zero. The dealer then sends (pp, i, [s];,
{eki;j | 1 < j < k+ 1}) to the corresponding user i.

Each user i generates a signature key sk; < Z,, and sends it to the dealer.

Once all n signature keys have been received, the dealer calculates the verification
key tuple

vk = ((g3) %4, g3), (3.4)
sends (pp, vk) to each verifier, and then leaves the protocol.

3.5.2 Signing

User i creates a signature of their private input x;; in round ¢ of the summation
protocol using the following interactive four-step procedure.

1) Create initial signature. User i computes their initial signature for round ¢ as
o}, =H(t)%g" € G. (35)

and sends it to the aggregator.

2) Create partial signatures. The aggregator forwards the initial signature tuple of
each user i to an arbitrary'set %; of k users other than user i. We call %; the signing set
of user i. The aggregator also sends the list of identifiers %; to user i. After receiving
the initial signature of user i, each user j € %; computes

Gz}j = Hl(t)ekf*”(ail’t)lsj; (3.6)
= H ()% (H()%ig7)) e Gy, (37)

where (in a minor abuse of notation) ek;; denotes the encryption key that user j
chooses to uniquely associate with user i, and [s]} denotes the partial reconstruction

of user j’s Shamir secret share of s. User j then sends crl.z tj to the aggregator.

3) Sum secret shares. Once the aggregator has received k partial signatures O'iz t] for
user i, the aggregator combines the shares in the exponent by computing

o3, = [[(0% = Hy(tyZsem 1a (2, 2o ls] (38)
JEU;
= Hy(t) 2=t %t (H (1) *1 gy) 2l e Gy (3.9)

The aggregator then sends O'?’t back to user i.

'In our evaluation, we assume that the signing set consists of the next k users after user i when ordered
by their numerical identifier.

42 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

4) Compute final user signature. At this point, k secret shares of s have been added to
the exponent. Adding one more secret share therefore reconstructs s in the exponent.
User i computes the final user signature as

oie = Hy(t)™ - o, - (H(t)%i gy)lsh (3.10)
= H, (1)t Zieu; Kii (H(1)%ig7)s € Gy, (3.11)

where ek;; is the single remaining unused encryption key. User i submits their final
user signature o;; to the aggregator.

Note that this signature cannot be verified using the verification key, because this
key only works for aggregated signatures. This is intentional, as verifying individual
user signatures would trivially allow an adversary to learn the private input of a user
by brute force.

3.5.3 Signature Aggregation

After having received the final user signatures of all users for round t, the aggregator
computes the aggregate signature

n
oy = H Oit (3-12)
i=1

= Hy (1)2 205 b (R (1)) (g7) 2 e (313)
= (H(1)) X% (g}) > € Gy, (3.14)

The aggregator sends o; to each verifier.

Only at this point should the adjacent summation protocol reveal the sum of users’
inputs.
3.5.4 Verification

Once the aggregator has published the sum of all x;; and the aggregate signature oy,
each verifier checks the equation

e(H(t), vky) e(glz?:l it vkg) (3.15)
= e(H(), ()%) (g7, g3) (316)
2 e(01, g2). (317)

3.5.5 Security Analysis of mPVAS

We show that the verification procedure is correct, does not leak private data, and
cannot be fooled into accepting an incorrect signature.
To see that verification succeeds for a correct signature, observe that

e(01,92) = e((H(1)) 2% (g) 2%, g, (319)
= e[(HD*)E%, g2) e (927, g2 (319)
= e(H(®). (g% e[g7™.g3) € Br. (320)

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 43

Theorem 4. mPvAs is Aggregator Oblivious (A0).
Proof. See Appendix 3.A.1. o
Theorem 5. mpvAs is Aggregate Unforgeable (au).

Proof. See Appendix 3.A.2. Intuitively, because the aggregator does not know s, they
cannot create a correct signature for a sum other than the published one. o

3.6 MPVAS+: MPVAS WITH LOWER COMMUNICATION OVERHEAD

In mPvAs (see Section 3.5), communication complexity is linear in the number of
malicious users k. Though we assume malicious users to be in the minority, this
level of interactivity may be too high for some applications. We present mPvAs+, an
extension of mPVAs to significantly reduce communication complexity. Recall that we
provide a runtime analysis of mPvAs and all extensions in Section 3.9.

We show that we can significantly decrease the communication complexity using a
divide-and-conquer strategy. Intuitively, our solution works by dividing users into
random groups of size ¢ < k and providing each group with an independent set of
secret shares of s. Since each group can now individually reconstruct s in the exponent,
we can eliminate cross-group communication. As long as at least one user in each
group is non-malicious, adversaries cannot reconstruct s. We provide a statistical
analysis that this holds in Section 3.6.3.

3.6.1 Modifications in mPVAS+
We describe how mpvas+ differs from mPvAsS.

Setup. The key difference with the setup of mpvaAs (see Section 3.5.1) is that in mpvAs+,
instead of creating a single sharing over all users, the dealer randomly assigns users to
groups of size ¢ < k and, for each group, generates c-out-of-c Shamir secret shares of s.
If ¢ does not divide n, then n mod ¢ arbitrary groups should have one additional user,
and the secret sharing threshold of this group is adjusted accordingly. After having
chosen the random secret s < Z,, (as in mPVvAs), the dealer creates separate c-out-of-c
Shamir secret shares of s for each group. Because a separate set of shares is created for
each group, shares from different groups cannot be combined together. As in mPVAs,
each share [s]; is sent to the corresponding user i. Furthermore, the dealer creates
only nc encryption keys instead of n(k + 1). In mPvAs+, the list of other users in the
group is additionally sent to user i.

Signing. In this phase, the only difference with mpvaAs (see Section 3.5.2) is that the
aggregator sends the initial signature o}, of each user i to the ¢ — 1 other users in
user i’s group, rather than sending them to k arbitrary other users.

Aggregation. The aggregation phase remains unchanged (see Section 3.5.3).

Verification. The verification phase remains unchanged (see Section 3.5.4).

44 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

3.6.2 Security Analysis of MPVAS+

Theorem 6. MmPVAS+ is AO.

Proof. The mpvAs+ extension changes the behavior of plain mpvas. When ¢ malicious
users end up in the same group, they can collectively reconstruct s and share it with the
aggregator, thus allowing it to tamper with the signatures of honest users. However,
note that even with knowledge of s, the aggregator still cannot learn the private values
of individual users because they are also blinded by the secret factor H(t)*. When s
is known by the aggregator, mpvAs directly reduces to ppATs, which is ao. o

Theorem 7. mpvAs+ is AU if each group contains at least one honest user.

Proof. The mpvas+ scheme can be seen as multiple instances of the regular mpvas
scheme running on multiple groups of users, but with different instances of Shamir
secret sharing used to generate the secret shares of s. Thus, AU still holds following
the same logic presented in the proof of Theorem 5 for mPvAs, as long as each group
contains at least one honest user. We provide a statistical analysis that this requirement
holds in Section 3.6.3. o

We emphasise that mpvas+ provides Au with k malicious users only if we assume
non-adaptive corruptions. Otherwise, the security of mpvas+ is downgraded to that
of an mPVAS instance with k = ¢ — 1.

3.6.3 Statistical Analysis of MPVAS+

The communication complexity of mpvas+ is better than that of mpvas only if ¢ < k.
However, unlike mPVAsS, in MPVAS+ it is possible that at least one group consists of
adversaries only, who may then collude to retrieve private key material. We give an
exact formula for this probability, and show that it can be made negligibly small.

Let n be the number of users, k the number of malicious users, ¢ the group size, and
d = floor(n/c) the number of groups. We assume that ¢ divides n exactly. Otherwise,
n — cd groups should be given one user more, and the following calculations give an
upper bound rather than an exact value.

We calculate the probability using a combinatorial counting argument. We model
the process of dividing users into groups as first dividing all n users into groups,
and then randomly (non-adaptively) corrupting k users. We count the number of
instances in which at least one group is fully corrupted, and divide this by the total
number of instances.? The total number of instances (the denominator) is simply (Z)
(i.e. the binomial coefficient “n choose k”), but the number of problematic instances
(the numerator) is harder to compute.

Intuitively, the numerator is the number of combinations in which exactly one group
is fully compromised (which is d, since there are d groups), multiplied by the number
of ways in which the remaining n — ¢ users can contain k — ¢ corruptions (which is

?Against type-1 and type-11 forgeries. See Appendix 3.A.2.

3We calculate the probability as a combinatorial problem. Modeling this as a permutation instead would
require counting all possible ways to assign identity to users after fixing a specific combination. This can
be done by multiplying both the numerator and denominator by (n — k)! k!. Since this cancels out, both
methods give the same result.

CHAPTER 3 &' Privacy-Preserving Public Verifiability 45

(72¢)), seemingly giving the probability

(3.21)

However, this is inaccurate, because if the remaining users also fully corrupt a group,
that case is counted twice. In fact, duplicates are counted twice, triplicates are counted
thrice, and, in general, r-replicates are counted r times. Luckily, by the inclusion-
exclusion principle, it suffices to separately count and subtract these cases.

Let R = floor % denote the “replicity”, which is the highest order of replication. To

determine the number of r-replicates, we first define a helper function that counts the
number of r-replicates after fixing which r groups are fully corrupted:

R
rep(r) = (Z : :2) - Z ((‘j__:) . rep(i)) . (3.22)

i=r+1

This function counts the number of ways to corrupt remaining users and then recurs-
ively subtracts higher-order replicates. The number of recursive i-replicates is found
by first fixing r — i additional groups and then multiplying by rep(i).

We conclude that the probability that at least one group is fully corrupted is exactly

d- (320 - S5 =1) - () - rep(r)
(x)
if ¢ divides n, and is a strict upper bound otherwise. As in Equation 3.22, for each order
of replication, we multiply by the number of ways to choose r groups, and additionally
multiply by r — 1 to actually the multiply-counted items.

We visualize Equation 3.23 for various values of n, k, and ¢ in Figure 3.1. The
figure shows that, given sufficient users, the probability of accidentally assigning only
malicious users to a group can be made negligible with an appropriate choice of c. For
example, with 50 users, of which 20% malicious, choosing ¢ = 7 gives a probability of
approximately 0.000841%, and can be made even smaller.

10° 10°
k
\ — 30%

—20%
10%
—_5%

(3-23)

10775

Probability
s
&
Probability

-12 -150
1o 2 5 10 15 1o 2 50 100 150

Group size, ¢ Group size, ¢
(a) n =50 (b) n =500

& Figure 3.1 Probability that at least one group is fully corrupted in mpvas+. Due to
the logarithmic y-axis, lines end when they reach zero.

46 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

3.7 MPVAS-IV:MPVAS WITH INPUT VALIDATION

We have thus far assumed that parties do not try to make the protocol fail. In this
section, we present MPVAS-IV, an extension to mPVAS (see Section 3.5) to allow the
aggregator to identify and remove users that attempt to cause an invalid aggregate
signature. mpvAs-1V is fully compatible with both mPvas+ (see Section 3.6) and mPvAS-
UD (see Section 3.8).

In terms of our adversarial model (see Section 3.2), we loosen our assumptions on
users, who may now send ill-formed messages with the intent of causing verification
to fail. We model the aggregator as a service provider, who may attempt to obtain
users’ private data or output a falsified signature, but is expected to ensure well-formed
outputs so as to not disrupt users reliant on their services. As such, the malicious
aggregator may still collude with malicious users against confidentiality and unforge-
ability, but the aggregator acts honestly with regard to availability. Furthermore,
we assume that the adjacent summation protocol ensures availability in this model,
including verified commitments to users’ summation inputs.

mPVAs-1V validates that users’ inputs are well-formed, and pinpoints users causing
malformedness. Those users are then barred from participating in future instances of
the protocol, and the protocol is restarted from scratch with the remaining users. In
the worst case, all k malicious users are removed one at a time, requiring k restarts.
However, since there will then be no more malicious users left, users can then con-
tinue normal operation without further interruptions. Therefore, whereas in mpvas
adversaries could prevent all output without end, mpvas-1v reduces this adversarial
capability to a linearly bounded overhead.

At its core, mPVAS-1v adds a mechanism to validate individual final user signatures
when verification fails. However, since users may tamper with others’ signatures, we
must also add a detection mechanism there. Note that we do not need to validate the
initial signature, since either the subsequent final user signature is valid and there is
no problem to begin with, or the final user signature is invalid and is detected as such.

3.7.1 Modifications in mPVAS-IV

We describe how mpvas-1v differs from mpvAs.

Setup. The setup phase of mpvAas-1V starts by running the setup phase of mpvas (see
Section 3.5.1). The dealer then generates extra information for input validation.
First, the dealer chooses gr and ht as random generators of Gr, and, for each user i,

generates r; < Z, and the set of values EK ;; = g;kj *. The dealer sends r;, EK j; = g;kj "
and g; to each user i.

Next, for each user i, the deale]f generates SK; = gsTkihrTi, SS; = ggsli, EK;; = gzekfi
for j € {1...k}, and EKS;; = gg 7415 for j € {1...k + 1}. The dealer sends these

values to the aggregator, along with v = g;/ %

Finally, the dealer sends the additional public parameters (gr, h7) to all participants.

Signing. 'We require additional operations before and after the regular signing phase
of MmPVAS (see Section 3.5.2).

Before the regular signing phase, we require that the adjacent summation scheme
outputs Pedersen commitments of the users’ inputs to that summation scheme. This

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 47

is to ensure consistency of the inputs between the two schemes. If mpPvas-1V is used
without a separate summation scheme, the committed values should be validated using
range proofs instead. Either way, let C(x;,) for each user i denote these commitments.

After the regular signing phase is complete, each user checks their final user sig-
nature for tampering. If tampering is detected, the user informs the aggregator, who
then validates the corresponding partial signatures. If the aggregator also detects tam-
pering, the aggregator marks the user(s) who sent that partial signature as malicious.
Otherwise, if the aggregator does not detect tampering, the reporting user is instead
marked as malicious. The protocol then restarts without the detected malicious users.

User i checks their final user signature o; , calculated in Equation 3.10 on page 43,
for tampering by checking that

e(Hi (), g5) e(H (1), (9)™) e(g", 63) = e(011.g2) (3-24)

holds, where ¢; = f“ ek;;. In a nutshell, the left-hand side re-calculates user i’s
expected final user 31gnature under a bilinear mapping (compare with Equation 3.10
on page 43), while the right-hand side bilinearly maps the actual final user signature.
If Equation 3.24 does not hold, the user reports this to the aggregator.

Since the aggregator forwards all partial s1gnatures the aggregator possesses the
initial 51gnature o}, as well as the partial signature a J of each user j € %;. Upon re-
ceiving user i’s clalm that their signature was tampered with, the aggregator computes

for each user j € %; the value

-k ki [s]%
O'iz”tj = e(Hl(t),gg 4) e(ail’t,gz J), (3.25)

where [s]x is as in Equation 3.6 on page 42, i.e. the partial reconstruction of user j’s
Shamir secret share of s, here calculated in the exponent of g, using the set SS. Finally,
the aggregator validates the partial signature o} 2.j 7 by checking

® 9 .
olzt] = (Ui}],gz) (3.26)
ekj; ski Xit [s];
= e| (0™ (HOMg7) ™ g, (327)
= e(Hi (%, g2 e((H (1) 7)), g2 (328)
- [s1;
= e(Hl(t),gg 4) e(a{t,gz ’) (3.29)

If this holds, then user j did not act maliciously; otherwise, user j is marked as
malicious and expelled from the protocol. The aggregator repeats this process for
all users in %;, as there can be more than one user behaving maliciously in a single
signing set.

Aggregation. The aggregation phase remains unchanged (see Section 3.5.3).

We assume that the adjacent summation scheme aborts no later than this point if
the Pedersen commitment C(x; ;) of any user i does not correspond to that user’s real
input to the summation scheme.

48 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Verification. 'The verification phase of mPvAs-1V starts by running the verification
phase of mPVAS (see Section 3.5.4). If verification fails, the aggregator tries to find the
culprit by verifying that the final user signature o; ; of each user i matches Equation 3.10
on page 43. This verification entails removing the term containing the encryption
keys ek and then asking user i for a zero-knowledge proof of equality between the
expected and the actual value of the remaining term.

To remove the term with the encryption keys, the aggregator first computes

o k+1 k+1 ok i
g5, = n EK;; = 1_[g9,° €Gy, (3.30)
j=1 j=1

and then removes the term by computing

1
e(o-i,t’ gzs)
-

o, = (3.31)

e(Hl (t)’ gzs)
e[(H (%9,)", ;)

= = (332)

e(Hi(1),92)

st i

= = (333)

e(Hi(),g2)
= e(H(1),g2)™ e(g1,)" € Cr, (334)

where the values of sk; and x;, are implied. Finally, the aggregator asks user i to prove
that sk} = sk; and x;, = ;. User i does so by interpreting Equation 3.34 as a Pedersen
commitment and providing two ZKPEQ proofs (see Section 3.4): one for proving the
equality sk; = sk; between o;, and SK;, and another for proving equality of x;, = x;,
between O'i/’t and C(x;;).

If mpvas-1v is used without an adjacent summation protocol, user i must also
provide a range proof (such as a Bulletproof [Biin+18]) of x; ; to show that their input
lies in a restricted range, and that extraction of the sum from oy is tractable. Users that
fail to send valid proofs are removed from the protocol and subsequent executions.

3.7.2 Security Analysis

Theorem 8. MPVAS-1V is AO.

Proof. The additional information received by the aggregator does not yield any
advantage to breaking Ao. In fact, the secret shares the aggregator receives in the
set SS cannot be efficiently extracted due to the hardness of the piLp in G,. The
commitments contained in the set SK are hiding, thus the aggregator cannot extract
the signing keys either. Furthermore, as with mpvas, all initial and final user signatures
olp Gi,}]’ 01'3,:’ 0;,; contain the secret factor H(t)*, which perfectly hides x;; in G; and
prevents the aggregator from exploiting the verification algorithm in Equation 3.24 to

find Xit.

CHAPTER 3 &' Privacy-Preserving Public Verifiability 49

The intermediate value e(H(t), g2)* e(g1, g2)™ from Equation 3.34 is also hiding
under the random oracle model. Finally, the proof zkPEQ does not leak any information
about the private witness due to its zero-knowledge property. We conclude that the
aggregator cannot learn the private value of honest users, and thus mpvas-1vis Ao. o

Theorem 9. MPVAS-IV is AU.

Proof. See Appendix 3.A.3. o

3.8 MPVAS-UD: mPVAS WITH USER DROPOUTS

Requiring that all users are always online is not feasible for some applications. In this
section, we present MPVAS-UD, an extension to mPVAS (see Section 3.5) to allow users
to choose a set of rounds in which they will not participate by sending one or more
recovery keys containing the necessary material that would otherwise be missing
from those rounds. As with the base mPVAS protocol, mPvAs-UD works as long as at
least k + 2 users do not drop out of the protocol. mPvas-uUD is fully compatible with
both mPvAs+ (see Section 3.6) and MmPVAS-1V (see Section 3.7).

3.8.1 Modifications in MPVAS-UD
We describe how mpvas-uD differs from mPVAS.

Setup. In addition to the regular setup of mPvAs (see Section 3.5.1), the dealer also
k
ek . .

sends EK; = gzZH 1 for each j €{1...n}, to all verifiers.

If mPVAS-UD is combined with mPvAs+, then the setup should be adjusted to use
c-out-of-¢” secret sharing instead of c-out-of-c secret sharing, where ¢’ > c. This
ensures that at most ¢ — ¢ users in each group can drop out without resulting in

incomplete signatures. The statistical analysis in Section 3.6.3 still applies to c.

Signing. In any round t, before running the regular signing phase (see Section 3.5.2),
each user i has the option of dropping out for a set of rounds I, possibly including
the remainder of the current round ¢t. For each round 7 € from which user i would
like to drop out, user i calculates a recovery key

rki; = e(H(T)_Ski,g§> € Gr. (3.35)

User i then sends m; = (i || 7 || rki.) to the aggregator, who forwards both to the
verifiers. Note that the aggregator can aggregate all recovery keys rk; ; together before
sending them to the verifiers to save space and reduce the communication overhead.

If MPVAS-UD is used in the adversarial model of mPVAs-1V (see Section 3.7), we must
additionally ensure that user i cannot invalidate signatures of rounds . Therefore,

user i must prove that the recovery key is well-formed using a zero-knowledge proof
Sk,'

that sk; in rk; ; is the same as in the commitment g

Concretely, user i proves the relation

{(x,y) : S=gih} AT = g5}, (3.36)

which can be implemented and made non-interactive similar to ZKPEQ (see Section 3.4).
The signing phase then proceeds as normal, but without the users who have opted
to drop out of round ¢.

k7 from the setup of MPVAS-1V.

50 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Aggregation. The aggregation phase remains unchanged (see Section 3.5.3).

Verification. The verification phase of mPVAS-UD replaces that of regular mpvas (see
Section 3.5.4). In round ¢, let &; be the set of users that dropped out, and let &; be the
set of the remaining users. Since users 9, do not participate in the adjacent summation
protocol of round ¢, the published sum should be x; = 3;c, xi:, and the aggregate
signature should similarly be over that sum. To verify that the signature o; is correct,
the verifier uses the dropped-out users’ recovery keys and checks

e(gy", vka) e(H(t), vky) l_[rkis z e(91,92) (3.37)

o, e(H(t), [Ticq, EKi)

This is essentially a modification of Equation 3.15 on page 43 wherein the verifier
assumes that dropped-out users input x;; = 0, while compensating for missing
information using the recovery material. To see that correctness holds, let o, =
(H(t)Ziea: ki g,')° be the desired signature (see Equation 3.14 on page 43), recall the
definition of vk from Equation 3.4 on page 42, and observe that on the left-hand side
of Equation 3.37 we find

e(gy", vko) e(H(t), vk1) 1—[rki s (3.38)
i€D;

=e(g".g3) e(H(t), vky) e(H(t), g3)~ Zreze ki (3.39)

= e(g)", g3) e(H(t), g3) = *i (3.40)

= e((H(Do g7 g2) = (o, g0). (349

Similarly, on the right-hand side of Equation 3.37, we find

e(o-t, 92)

(3.42)
e(Hi (1), [Tica, EK)
e(Hl (t)ZiE%t T ek (H(t)z"eg"t Skigft)s ,92)
= (3.43)
e(Hi (1), [Tieq, EK)
e(Hy (1), g2)%ie 21 63 ¢(g7, gy)
= . (3-44)
e(Hl(t)’gz)Zie@, Zj:1 €Kji
=e(0},92). (3-45)
3.8.2 Security Analysis
Theorem 10. MPVAS-UD is AO.
Proof. See Appendix 3.A.4. o
Theorem 11. MPVAS-UD is AU.
Proof. See Appendix 3.A.5. o

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 51

3.9 COMPLEXITY ANALYSIS OF THE mPVAS FAMILY

We evaluate the complexity of mPvas and each of its extensions. In Section 3.9.1, we
present the asymptotic communication complexity of our schemes, and compare this
with a selection of related works. In Section 3.9.2, we describe our experimental setup
for empirically determining runtime complexity. After that, we present the results of
this analysis for mPvAs in Section 3.9.3, for mPVAS+ in Section 3.9.4, for MPVAS-1V in
Section 3.9.5, and for MPVAS-UD in Section 3.9.6.

3.9.1 Asymptotic Communication Complexity

In Table 3.2, we summarize the asymptotic communication complexity of all proposed
schemes and compare them with state-of-the-art protocols that consider malicious
users. The dealer has to share information with every user, which leads to a complexity
of O(n) for all signature schemes. Users only communicate within their own signing
set, for a complexity of O(k), or O(c) in the mPvAs+ scheme. The aggregator needs to
relay messages between each user and their signing set, which leads to a complexity
of O(kn) for the mpvas and mPvas-1v schemes, and O(cn) for the mpvas+ scheme.
Verifiers do not actively participate in the protocol.

Table 3.2 Asymptotic communication complexity per party in related works and in
the mpvas family

Dealer Aggregator User Verifier Ledger

[LL21] O(n) 0o(1) o(1) 0(0) -
MT21] 0(1) o1y 01 00 O
[Ren+22] O(n) Oo(n?) O(n) 0(0) -

mpPvas O(n) O(kn) O(k) 0(0) -
mpvas+ O(n) O(cn) O(c) 0(0) -
mPVAs-1v O(n) O(kn) O(k) 0(0) -
MPVAS-UD O(n) O(kn) O(k) 0(0) -

The mPvas family of protocols enjoys reduced communication complexity compared
to [Ren+22], but increased communication complexity compared to [LL21, MT21]. We
note that similar schemes such as [Bak+1s5, Leo+15, LL21, MT21], work in a different
system and adversarial model where there is little to no interaction between the
participants except for the initial setup. As such, the communication complexities
for these schemes is O(1) for both the aggregator and the users. (Similarly, the
computation complexity is O(1) for the users and O(n) for the aggregator.) While this
is better than any of the mpvAs variants, the adversarial model in these related works
is also weaker than those used in our work. As discussed in Section 3.3, the compared
schemes either assume honest behavior from the users [Leo+15, Bak+15], no collusions
between the aggregator and the users [MT21], or they rely on a semi-trusted party
during protocol execution [MT21, LL21]. That said, mPVAS can trivially be generalized
to these alternative scenarios. For example, honest users can be simulated by choosing
k = 0, which leads to a non-interactive scheme with O(1) communication complexity
and a computation complexity nearly identical to that of the pupA scheme [Leo+15].

52 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Similarly, choosing k = 1 for mPVAs corresponds to the scheme presented in [LL21],
which entrusts a semi-trusted third party with the secret signing key, and similarly
leads to constant communication complexity.

3.9.2 Experimental Setup

We created a proof-of-concept implementation of mpvas and its extensions [PD25].
We use the Charm framework [Blay9], which is widely used for the prototyping and
benchmarking of cryptographic schemes [RW13, Ara+17]. All experiments were run
on a Threadripper 7970X cPU with 256 GB of RAM, on Debian 12. The protocol ran
sequentially on a single core in a single thread without special optimizations.

We do not model communication between nodes, measuring only the runtime of
our schemes’ computations. We measure wall-clock time with nanosecond precision.
We repeat each experiment five times, and take the mean runtime.

The experiments are performed over the MNT224 elliptic curve, which is pairing
friendly, provides 112 bits of security [Cui+18], and allows for type-3 pairings, which are
necessary for the sxpu assumption [Bak+15]. This is the most secure curve provided
by the Charm framework that is compatible with our schemes. While the current
recommendation is to use curves that provide 128 bits of security as a conservative
choice, 112 bits is the minimum security level required by N1sT for the United States
Federal Government [BR19]. In this curve, elements in G, are 56 bytes, in G, are
168 bytes, in Gt are 168 bytes, and in Z, are 28 bytes [KR19], which we verified
experimentally. The size of the elements influences the performance of the various
algebraic operations performed in each group.

3.9.3 MPVAS Runtime

We show the runtime of mPvAs (see Section 3.5) in Figure 3.2. Firstly, Figure 3.2a
shows that, even when there are 1000 users and k = 30% of all users are malicious,
the runtime is only around 0.36 seconds for a single user. As expected from an
asymptotic complexity O(k), the runtime decreases with the number of malicious
users k. Secondly, Figure 3.2b shows a similar trend for the aggregator. Moreover,
when k = 0, the aggregator does not have to combine partial secret sharing for every
user, and the runtime dips below even that of a single user. Finally, Figure 3.2c shows
the runtime for verifiers. As expected, since a verifier only needs to compute three
pairings regardless of the number of users, runtime is constant.

3.9.4 MPVAS+ Runtime

MPVAS+ (see Section 3.6) reduces computational complexity under well-defined prob-
abilistic assumptions, assuming non-adaptive corruptions. We present its runtime in
Figure 3.3. We note that, at k = 0%, mpvAs+ reduces directly to mPvAs, and complexity
is independent of the number of users. For experiments with k > 0%, we choose
the smallest group size ¢ such that the probability that at least one group is fully
compromised is at most 107>, using our combinatorial formula in Equation 3.23 on
page 46, giving us group sizes ranging from 5 up to 14.

We see in Figure 3.3a that, compared to mPvAs, user runtime is reduced by an order
of magnitude. Since the runtime depends only on the constant c, the runtime appears
to become constant even as n continues to grow.

CHAPTER 3 &' Privacy-Preserving Public Verifiability 53

We see in Figure 3.3b that the speedup for the aggregator is similar. As in mPVAS,
the main bottleneck for the aggregator is combining the partial user signatures as
in Equation 3.8 on page 42. (Combining the final user signatures requires negligible
runtime.) Reducing the group size c affects this bottleneck directly. For example, with
1000 users, setting ¢ = 14 means the aggregator must only aggregate ¢ — 1 = 13 values
per user instead of k = 300, reducing complexity in this part by a factor of 23.

0.4 0.4
—— k =30%
0.3 0.3
“)
L L
E 02 E 02
= s
= =}
& &
0.1 0.1
o o R . N A
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(a) Mean user (b) Aggregator
0.008
0.006 e @
t
g 0.004 =307
£ —— k = 20%
0.002 k =10%
——k=0%

0,
50 200 400 600 800 1,000

Number of users, n

(c) Verifier

Figure 3.2 Empirical runtime of mpPvas. Note the different y-axis scales.

0.02 0.02
—0— k =30% —— k =20% —0— k =30% —— k = 20%
0.015 k = 10% —a— k = 0% 0.015 k = 10% —a— k = 0%
) =
) L
E o0.01 E o0.01
g g
& &
0.005 0.005
N A
oL A At
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(a) Mean user (b) Aggregator

& Figure 3.3 Empirical runtime of mpvas+

54 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

3.9.5 MPVAS-IV Runtime

MPVAS-IV (see Section 3.7) deals with malicious users causing malformed signatures.
The aggregator identifies these users through several additional checks. Since the
aggregator does not know the number of malicious users beforehand, they will check
all signatures in order to find every user that acted maliciously during each round.

First, we consider the case in which users obtain invalid final user signatures during
the signing phase and report these to the aggregator. Figure 3.4a shows the runtime for
a single user. We see that the total runtime for a single user is comparable to that of the
MPVAS scheme, as there are no additional steps required from users at this stage. For
the aggregator, instead, the runtime is dependent on the number of reports received
and the size k of each signing set. This dependence is clearly shown in Figure 3.4b,
Figure 3.4¢, and Figure 3.4d, in which we consider three cases where 10%, 50%, and
100% of users submit a report to the aggregator. In all cases, the runtime is noticeably
higher than in the base mpvas protocol. The reason for this steep increase is the
additional exponentiations and pairings required to check whether each signature O'JZ.,I.
is well-formed. Moreover, these checks must be repeated for every user in a signing set
in order to find every possible instance of tampering or whether the report was actually
false. We remark that our implementation does not include any specific optimizations,
such as parallelization. Since verification is embarrassingly parallel for the aggregator,
we expect this can be sped up linearly in the number of cores.

0.4 300

0.3
) = 200
L))
£ 02 £
£ g
& & 100

0.1

2= . . i o * . |
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(a) Mean user (b) Agg. (10% of reports received)
1,500 3,000
—— k =30% —6— k =30%
—t—k =20% —t—k =20%
= 1,000 k =10% = 2,000 k =10%
E ——k=0% g —— k=0%
g g
& 500 & 1,000
o s . | o N . |
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(c) Agg. (50% of reports received) (d) Agg. (100% of reports received)

Figure 3.4 Empirical runtime of mPvAs-1v with final user signature tampering. Note
the different y-axis scales.

CHAPTER 3 &' Privacy-Preserving Public Verifiability 55

Next, we consider the case in which malicious users submit malformed final user
signatures to the aggregator. When this happens, verification of the aggregate signature
fails, and the aggregator starts a procedure to identify the malicious users. The checks
in this procedure must be performed on all n users, thus giving a linear complexity for
the aggregator. Figure 3.5a and Figure 3.5b show the runtime for a single user and for
the aggregator, respectively. We see that the runtime for the aggregator can reach up
to 22 seconds on our machine. Despite the increased runtime for the aggregator, recall
from Section 3.7 that this identification procedure is necessary only after malicious
behavior has occurred. Our experiments represent the cumulative worst-case “denial
of service” that malicious users can inflict on the aggregator and other users.

3.9.6 MPVAS-UD Runtime

In MPVAS-UD (see Section 3.8), there are changes in the signing phase for users that
drop out and in the verification phase for verifiers. We, therefore, focus on their
runtimes in Figure 3.6. In our experiments, we fix the number of user dropouts to be
10%, 30%, and 50% of the total number of users.

Figure 3.6a shows the runtime for each dropped-out user. We find that the runtime
is independent of the number of malicious users and the number of dropped-out users,
which is expected since the protocol is non-interactive for these users and the recovery
material can be computed in constant time.

From Figure 3.6b, Figure 3.6¢, and Figure 3.6d we see that the runtime for the verifier
is not constant anymore, unlike all other variants of mpvas. In mPVAS-UD, the veri-
fier’s runtime is linear in the number of remaining users because it must compute the
product of the masking factors EK; for every remaining user j, as described in Equa-
tion 3.37 on page 51. Note that the product of the recovery keys rk;; is precomputed
by the aggregator before being sent to the verifiers to save bandwidth. Still, these
multiplications not particularly expensive and, even in the worst case we consider,
with 1000 users and only 10% dropouts, the total running time is below 0.0165 seconds.

310 CONCLUSIONS

mPvAs and its extensions ensure the confidentiality of the input values and the integrity
and authenticity of the aggregate even in the presence of a malicious aggregator and a
subset of malicious users that collaborate to tamper with the result of the aggregation.
Ensuring not only confidentiality but also integrity and authenticity even in the
presence of malicious adversaries helps to develop more trust in the results of privacy-
preserving schemes and make such schemes appealing to a wider range of scenarios.

56 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

0.4 20

—— k =30% —— k =30%

03| —+ k=20% 15 || —+— k =20%
= k =10% = k=10%
qé —t k= 0% GEJ —h = 0%
= 0.2 = 10
& &

0.1 5

¢
0t A A A A o A A A A
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(a) Mean user (with proof generation) (b) Agg. checks final user signatures

Figure 3.5 Empirical runtime of mPvas-1v with aggregate signature tampering.
Note the different y-axis scales.

0.02 0.02
—0— k =30%
0.015 —— k =20% 0.015
= k=10% =
5} —t— = 0% 3}
£ o001 £ o001
E E —6—k =30%
& & —— k =20%
0.005 0.005 k =10%
TO—G 2 & S ——k =0%
0 0
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(a) Dropped-out user (b) Verifier (10% of users drop out)
0.02 0.02
0.015 _2 0.015
= =
£ £
£ o001 £ o001
= —— k =30% £ —6— k =30%
& —— k =20% & —— k =20%
0.005 k =10% 0.005 k=10%
—— k =0% —— k= 0%
0 0
50 200 400 600 800 1,000 50 200 400 600 800 1,000
Number of users, n Number of users, n
(c) Verifier (30% of users drop out) (d) Verifier (50% of users drop out)

« Figure 3.6 Empirical runtime of mPVAS-UD

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 57

3.A SECURITY ARGUMENTS FOR THE mPVAS FAMILY

In this appendix, we provide evidence of the unforgeability of the aggregate signature
schemes of mpvas. In order to do so, we adopt the concept of Aggregate Unforgeable
(avu) [LL21, Leo+15, Emu+19], which denotes the notion that in round ¢, the aggregator
cannot produce a valid proof of correctness o; for a sum that was not computed from
inputs submitted by the registered users. Throughout this appendix, we regularly refer
to the scheme by Shi et al. [Shi+11, Section 5], which we shall henceforth call pPATS.

Types of forgeries. We say that an adversary A successfully forges an aggregate
signature o; for some round ¢ if it outputs (sumy, o;) such that Verify(t, vk, sumy, ;) =
1 and sum; # }J; x;;. In other words, A can provide a valid aggregate signature
that successfully authenticates an incorrect sum. We distinguish between two types
of forgeries [Bak+15, Leo+15, LL21, Emu+19, TDP16]:

« Type-1, when an adversary A forges an aggregate signature for a round ¢* in which
A did not see any signatures from the users, which implies forgeries for future
rounds of the protocol, and

« Type-11, when an adversary A forges an aggregate signature for a round ¢* in which
A saw all signatures from the users, which implies forgeries for present or past
rounds of the protocol.

3.A.1 Aggregator Obliviousness of MPVAS

We provide the proof of Theorem 4 on page 44. We first provide some preliminaries,
and then restate the theorem as Theorem 12.

We show that if a probabilistic polynomial-time adversary has a non-negligible
advantage of breaking the Aggregator Oblivious (A0) property of mpvas, then it also
has a non-negligible advantage of breaking the Ao of praTs, which is proven under
the Decisional Diffie-Hellman (ppH) assumption. The proof of this property follows
an indistinguishability-based game, and it provides an adversary with access to the
following oracles.

« Osetup(1%): Performs the setup of the mpvas scheme using the given security para-
meter A and replies with the public parameters pp and the verification key vk. The
secret values of each user ([s];, sk;) are kept secret.

Ocompromise! (i € U): When queried on user i, the oracle replies with the secret of
user i, namely ([s];, sk;).

* Osign(i € U, t,x;;): Given an input x;; of user i in round ¢, the oracle replies with

2,j . .
(ol.lt, {o7]Yjeu,, 03, O'i,t), where o, is a final user signature for each 1 < ¢ < 3, and

oi is the final user signature.

* Ochallenge (X}, X.): Given two sets of input values X, X\ of size |X].| = n, such
that Y;cy- x),. = Yiey+ X; ., the oracle randomly flips a coin b «s {0, 1} and, for
set X t’i, it returns all the corresponding partial and final user signatures of its inputs.

Aggregator Obliviousness security game. The A0 security game is based on the game
introduced by Shi et al. [Shi+11]. We derive the term Ao from this game, following the
definitions in [Leo+15, LL21].

58 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Definition 1 (Aggregator Oblivious (a0)). Let Pr[A“C] denote the probability that
aggregator A outputs b* = b in the Ao game. A data aggregation protocol is said to be
Ao if any polynomially bounded A has negligible advantage Pr[A“°] < 1 + negl(1)
of winning the Ao game.

Theorem 12 (Restatement of Theorem 4). The mPVAs scheme is A0 in the random
oracle model under Symmetric External Diffie-Hellman (sxpH) in G; and Gs,.

Proof. Let us assume an adversary A that can win the Ao game with a non-negligible
advantage. We show how a polynomial time algorithm 8 can break ppATS, which is
provably secure under the DDH assumption, by using A as a subroutine. We refer to
the following oracles provided by the ppATSs scheme:

. Oé’:&;s returns the public parameters.

. O}Ii’ﬁs;ryi)t returns the ciphertext c;; of a given input x;; in round ¢ using PPATS.

OPPATS

. .
Compromise

returns the secret encryption key sk; of a specified user i € U.

. Oéﬁgﬁiﬂge, only called once during the game, randomly flips a coin b < {0, 1} and,
similarly to the challenge phase described above, encrypts one of the two plaintext

sets chosen by the adversary X t’i = {xi s }ieUr.
We follow the Ao security game and show how 8 reacts to the queries of A.

1. Setup. When A queries the Osetup(ll) oracle, B queries Og’;’tﬁ;s(l’l). The latter re-

turns the public parameters pp,, s = (H, Gy, g1, p). B also queries Oég‘rfpsromise(o),
which returns the secret key of the aggregator ska = — 2.1, sk;. 8 will additionally
choose the remaining public parameters of mpvas, pp = (H, Gy, Gy, G7, 91, g2, €, k).
Finally, B chooses the secret keys (s, {ski}icu, {{eki,j}lsjsk},-em), creates n secret

shares [s]; using (k + 1, n)-Shamir secret sharing, and creates the verification key

vk = (g7 g3) = (g% 4, g3) . (3.46)

Finally, B returns pp and vk to A.

2. Learning. Consists of three parts.

Compromise. When A queries the Ocompromiset (i € U) oracle, 8 will, in turn,
query Oégﬁpsmmise(i € U) and return the corresponding secret key sk; of user i.

Additionally, the secret share [s]; is sent to A.
Sign. When A calls Osign (i € U, t, x;), B queries OF7 4™ (i € U, t,x;,) to obtain

Encrypt
cPPATS = H(t)%%ig}"". B then computes

o}, = e = H(1)%igy™, (3-47)
az}j = H1(t)ek“ (Gil,,)lsjj, (3.48)
2
iy = 1_[o;;» and (3-49)
JEU;

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 59

o1 = Hy (1) % - 1—1 O'iz,}j) (O'gt)[S]i (3:50)
JEU;

= H, (1) kii*Xjen; ki (H (t)Sk'gf”) . (3-51)

Notice how each partial signature and the final user signature o;; are constructed
from the ciphertext output by the encryption algorithm of praTs but perfectly
simulates a partial or final user signature of the mpvas scheme. Finally, 8B returns

1 2.J
(O-i,t’ {O.i,t }j€%is O-i,t) to A.

Verify. A can use Equation 3.15 on page 43 to test the correctness of an aggregate
sum using the verification key vk obtained during the setup.

. Challenge. A chooses a set of uncompromised users U* C U, with |U*| > 2 and

an aggregation round t* for which no sign queries were made in the learning phase.
Then, A also chooses two sets of ciphertexts X, = {x{,};cy and X}. = {x},}icv*
such that 3,y x0 . = Yicp llt* When A calls the Ocpalienge (X}, X}.) oracle,

B queries Oéfl‘;ﬁ:nge(Xg, X, 1). The oracle flips a coin b < {0, 1} and returns the

ciphertexts of the b set {cflt’ATS }ieu+. B computes the partial and final user
signatures using the Os;gy oracle, returning

({015 Yiew-, (o7 e Yiew {031 Yiew {2y biew) (352)

to A. In particular, the final user signature is
xb $
00y = Hy(t7) et Licw ki . (H(t*)Sk"gl"') (3.53)

for i € U*. Notice how o i1+ and all partial signatures are computed from the
ciphertexts output by the encryption algorithm of the pPATs scheme and perfectly
simulate the ciphertexts, partial and final user signatures of the mpvAs scheme.
The aggregation of all such final user signatures is also valid and correctly verified

b
using the verification key vk as 0¥, = [];cp- 0¥ oy = (H(t)*) Zieu® 5Ki (g3)Z’GU* K

If A has a non-negligible advantage ¢ of guessing the correct bit b* in the Ao game of
the mPvAs scheme, then B can also win the Ao game of the PPATS scheme with the
same non-negligible advantage ¢ by guessing the same bit b*. This would contradict
the ppH assumption in G, because the security of the PPATs scheme relies on this
assumption. Additionally, if the pDH does not hold in Gy, then the sxpH assumption
does not hold either since it requires that the bpH problem be hard in G;. Therefore,
the mPvAs scheme is Ao in the random oracle model under the sxDH assumption. o

3.A.2 Aggregate Unforgeability of mPVAS

We restate Theorem 5 as Theorem 13 and provide a proof. Recall Appendix 3.A.

Theorem 13. mMPVAS is AU against type-1 and type-11 forgeries.

Proof. We prove both types of unforgeability.

60

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Type-1 unforgeability [Bak+15, Leo+15, LL21, Emu+19, TDP16]. A type-1 forgery occurs
when the aggregator outputs a valid aggregate signature o; in a round ¢t without
receiving any users’ signatures. Thus, the aggregator can only use knowledge from
previous rounds or by colluding with users. First, we note how signatures from
different rounds are incompatible with each other. Assuming a cryptographically-
secure hash function H: {0, 1}* — G; under the random oracle model its output can
be considered random. As such, in each round t, each signature has a different random
factor H(t). Even assuming the aggregator chooses the round identifier ¢, because
of the collision resistance property of H, it has a negligible probability of finding
two different round identifiers ¢, ¢’ such that H(t) = H(¢’). Similarly, because of the
second pre-image resistance property of H, given ¢, the aggregator has negligible
probability of finding another ¢ such that H(t) = H(t’). The same arguments hold
for the other hash function H; : {0,1}* — G used in the protocol. It follows that the
aggregator cannot reuse signatures from previous rounds. The only other option left
for the aggregator is to construct new signatures itself. However, in order to do so, all
secret signing keys sk; are required but, assuming colluding users, the aggregator has
only access to at most k of them. The aggregator also needs the secret exponent s to
compute a valid signature, but it has only access to at most k secret shares of s, which
are not enough to reconstruct s.

Type-11 unforgeability [Bak+15, Leo+15, LL21, Emu+19, TDP16]. There are two pieces of
information that can allow the aggregator to successfully forge an aggregate signature
in a round in which it received all signatures from the users: the secret exponent s or
the factor gj. The exponent s is secret-shared by all users using (k + 1, n)-Shamir secret
sharing. Since we assume at most k malicious users who collude with each other and
k shares leak no information about the underlying secret s, then no dishonest party
can directly learn s from exchanging their shares. Additionally, if g° € G; is known,
for any g € Gy, recovering s is considered computationally infeasible because Discrete
Logarithm Problem (prp) is assumed to be hard in G;. The same argument applies to
the value g5 € Gy, which is part of the verification key and known by every verifier.
Note that, while a malicious actor may know g3, since the Co-Computational Diffie-
Hellman (co-cpH) [BLSo4] problem is assumed to be hard in G, and Gy, obtaining g}
is still considered hard.

In a malicious setting where users can behave arbitrarily, sending malformed signa-
tures may allow them to gain additional information that will allow them to break the
AU property.

Each signature starts with the form o}, = H (t)*kigi*. Clearly, any malicious party
can immediately tamper with this signature since g; is public. However, the aggregator
is required to send a Compute final user signature request to every user in order for
the aggregate signature to be successfully verified. From Equation 3.10, any 03 that
was not computed using user i’s original ¢}, will lead to an invalid o; , because the
bases of the two factors will not match. ThIS in turn, will lead to an invalid aggregate
signature o;.

In order to prevent malicious actors from manipulating any of the partial signatures
to obtain gj, each user j is required to further mask any response to a Create partial
signature or Compute final user signature request with a fresh masking factor Hy (£)¢%i.
Assuming at most k malicious users, any signing request from each user i will result in

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 61

a 0;; containing at least one such factor, since either user i itself or a user in its signing
set must be honest by assumption. Therefore, all that malicious actors can learn by
deviating from the protocol is of the form H; (¢)¢g° or H; (t)gg[s]j’, where g € G; and ¢
indicates the sum of any non-empty subset of masking exponents ek; ;. None of these
values can be used to successfully forge a valid aggregate signature, as they would
introduce extra masking exponents that would not sum up to zero anymore. As a
result, the verification algorithm will fail. o

3.A.3 Aggregate Unforgeability of mpvas-1v
We restate Theorem ¢ as Theorem 14 and provide a proof. Recall Appendix 3.A.
Theorem 14. MPVAS-1V is AU against type-I and type-11 forgeries.

Proof. In the mPVAs-1Vv extension, the aggregator is trusted to detect users who may
attempt disrupt the normal execution of the protocol and not to disrupt the protocol
itself. However, the aggregator is still considered malicious with respect to the unforge-
ability property of the mPvas-1v extension. This extension provides the aggregator
with additional knowledge that is not available in the main scheme. As such, in this
section, we provide additional arguments to show why AU is still maintained in the
MPVAS-1V extension.

Type-1 forgeries. The new pieces of information that the aggregator is handed in the

MPVAS-IV extension are the sets SS; = ggs]", SK; = gSTk"hrTi, EK;; = g;kj’i, EKS;; = g;kj’i/s,

and the value v = g;/ ®, Since DLP is assumed to be intractable in Gy, the aggregator has
a negligible probability of obtaining the secret share [s]; or the masks ek;; of a user i

from ggs]" and g;kj’i, respectively. Similarly, finding % from v is also hard. Additionally,
because of the perfect hiding property of Pedersen commitments, the aggregator cannot
learn any information about the signing key sk; from its corresponding commitment
in SK;. Hence, the additional information that is handed to the aggregator in the
MPVAS-1V extension gives the aggregator no advantage of learning the necessary
information to create type-1 forgeries.

Type-11 forgeries. There is no additional piece of information handed to the aggregator
in the mPVAS-1v extension that could allow it to create type-11 forgeries. Intuitively,
this is because all of the additional values are members of either G, or G, but the
signatures are elements of G;. As such, there is no additional information that could
be used by the aggregator to tamper with the signatures in Gy, assuming the sxpHu
assumption holds in the chosen pairing group. o

3.A.4 Aggregator Obliviousness of MPVAS-UD

We recall Theorem 10 and provide a proof. Recall Appendix 3.4.1.
Theorem 10. MPVAS-UD is AoO.

Proof. In the mPVAs-UD protocol, the signing phase is identical to that of the main
MPVAS protocol for all remaining users. As such, the signature of each remaining user
perfectly hides the input value, as proven in Theorem 12.

62 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

The signing phase is, however, different for dropped-out users. Each user is required
to send a recovery key rk;; for every round ¢ it wish to drop out of. This value could,
in turn, be plugged into Equation 3.24 on page 48, using EK;;, to find user i’s secret
input value by brute force. Fortunately, the signing key sk; is bound to the generator
H(t) and, thus, can only be successfully used in round t, during which dropped-out
users do not submit any data. Additionally, if malicious users collaborate to create
k additional recovery factors rk;;, then, as long as at least two honest users do not
drop out during round ¢, only the sum of their input data can be computed, but not
the individual values.

As a result, the input data of both remaining and dropped-out users remain private
during every step of the protocol. o

3.A.5 Aggregate Unforgeability of MPVAS-UD
We restate Theorem 11 as Theorem 15 and provide a proof. Recall Appendix 3.A.
Theorem 15. MPVAS-UD is AU against type-1 and type-11 forgeries.

Proof. The main addition introduced by the mPVAs-UD extension is the recovery key
rk;; that users that wish to exit the protocol during some round ¢ submit to the
aggregator. The recovery key is computed over Gr, so it cannot be used to directly
affect the signatures, which are elements of G;.

The aggregator cannot lie about the set of users that drop out during any given
round t and cannot publish more than one valid aggregate signature. Forcing a subset
of users out of the protocol would lead to a failed verification, since the aggregator
cannot provide the verifiers with valid recovery keys for the missing users on its
own. Similarly, the aggregator cannot force a dropped-out user i in the protocol as
it does not possess its signing key sk;. Assuming a subset of users colludes with the
aggregator and provides it with valid recovery keys, we identify two cases.

If any of these users actually engage in the protocol, then their recovery key alone
would not suffice anymore, because their final user signature would contain at least
one masking factor H (t)%%, with ek;; belonging to an honest user j, which has not
been redistributed among the remaining users. As such, the check in Equation 3.37
would fail. Otherwise, if they do not submit anything, then the aggregator is forced to
forward their recovery keys, indicating they have indeed dropped out, otherwise, the
verification would fail.

As for type-1 forgeries, the same arguments presented in Theorem 5 similarly apply
to MPVAS-UD. o

{éjﬁ

CHAPTER 3 X&' Privacy-Preserving Public Verifiability 63

ParT III

Reconstruction Attacks

CHAPTER 4

=

Topology-Based Reconstruction Prevention for
Decentralised Learning

Abstract. Decentralised learning has recently gained traction as an alternative to federated
learning in which both data and coordination are distributed over its users. To preserve the
confidentiality of users’ data, decentralised learning relies on differential privacy, multi-party
computation, or a combination thereof. However, running multiple privacy-preserving sum-
mations in sequence may allow adversaries to perform reconstruction attacks. Unfortunately,
current reconstruction countermeasures either cannot trivially be adapted to the distributed
setting, or add excessive amounts of noise.

In this work, we first show that passive honest-but-curious adversaries can infer other users’
private data after several privacy-preserving summations. For example, in subgraphs with 18
users, we show that only three passive honest-but-curious adversaries succeed at reconstructing
private data 11.0% of the time, requiring an average of 8.8 summations per adversary. The success
rate depends only on the adversaries’ direct neighbourhood, and is independent of the size of
the full network. We consider weak adversaries that do not control the graph topology, cannot
exploit the inner workings of the summation protocol, and do not have auxiliary knowledge;
and show that these adversaries can still infer private data.

We develop a mathematical understanding of how reconstruction relates to topology and
propose the first topology-based decentralised defence against reconstruction attacks. Specific-
ally, we show that reconstruction requires a number of adversaries linear in the length of the
network’s shortest cycle. Consequently, exact reconstruction attacks over privacy-preserving
summations are impossible in acyclic networks.

Our work is a stepping stone for a formal theory of topology-based decentralised recon-
struction defences. Such a theory would generalise our countermeasure beyond summation,
define confidentiality in terms of entropy, and describe the interactions with (topology-aware)
differential privacy.

— o0 "0 —

Based on: Florine W. Dekker, Zekeriya Erkin and Mauro Conti. “Topology-based reconstruction prevention
for decentralised learning”. In: Proceedings on Privacy Enhancing Technologies 2025.1 (2025), pages 553-566.
DOL: 10.56553/POPETS-2025-0030.

https://doi.org/10.56553/POPETS-2025-0030

41 INTRODUCTION

tection [Rie+11], predictive text [Bon+17], and smartwatches [Wei+16]. These

systems require access to large amounts of reliable data in order to function
accurately. In practice, the necessary data usually exist, but are distributed over many
data owners. The naive approach for data collection is to have the data owners send
their data to a central server, which trains a machine learning model on these data
before deploying it. However, sharing private data may result in misuse, for example
in the form of targeted advertising or harassment. In an age of increasing privacy
awareness, data owners may be reluctant to share their data, threatening the viability
of data-intensive machine learning applications.

The emerging field of federated learning, first formalised in [McM+17], addresses
these privacy issues by distributing the training process over the data owners. Instead
of submitting their data, each data owner first trains a machine learning model on
their local data and then submits this model to a central server. This central server,
called the aggregator, uses a privacy-preserving summation protocol to combine the
received models into a single global model. The central server then sends back the
global model to the data owners, who apply another round of training, repeating the
entire process until the global model has converged.

A significant drawback of classical federated learning is that communication is a
bottleneck, scaling quadratically [Bon+17] or poly-logarithmically [Bel+20] in the
number of users. Decentralised learning, a variant of federated learning [Kai+21],
removes this bottleneck by distributing both the data and the coordination between
users. Training happens in a peer-to-peer fashion, with users exchanging information
only with their direct neighbours. This significantly reduces the communication
complexity [Lia+17], allowing for cost-effective deployments without a central server.
Furthermore, because communication is local, it becomes much harder for adversaries
to observe the full network [Tro+17].

Recently, there has been increased interest in decentralised learning. Though some
works do not consider privacy [Lia+17, Tan+18, ZBT20], many other works do. Some of
these works [VBT17, Bel+18, ZBT20] consider algorithms in which nodes are randomly
selected to calculate updates, and protect the private data underlying the models
using differential privacy. That is, they apply carefully calibrated random noise to
the calculated gradients before sharing them with others. A slight variation of this
is to use a random walk through the graph to determine the order in which updates
occur [Cyf+22]. There are also works [Che+18a, Qu+20, Sch+20] that use blockchains
to facilitate the communication and coordination between nodes, and then similarly
use differential privacy. Finally, instead of differential privacy, some works utilise
multi-party computation [Dan+18, Kan+20, Tra+21], which does not give noisy results,
but has higher computational costs.

A common thread in these works is that they apparently assume that if a single
summation is secure, then the protocol remains secure after multiple summations.
However, this requires further scrutiny, as combining information from multiple
rounds may reveal previously hidden information. For example, given private re-
cords A, B, and C, and a privacy-preserving summation protocol, an adversary could
separately query A + B, then B + C, and finally A + C, and use a linear algebra solver

m ACHINE LEARNING is used in a wide array of systems, including malware de-

68 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

to learn all three private records. To defend against such attacks, one must prevent
sequences of queries that would reveal private data. Naive restrictions, such as requir-
ing a minimum number of included records per query, are insufficient: The adversary
could still first query the sum of all models and then query the sum of all models
except one, allowing them to reconstruct the excluded model. As such, designing
proper countermeasures requires a formal theory.

Extracting data from output traces is known as a reconstruction attack, which
has its roots in the theory of statistical disclosure [Fel72]. Many defences have been
proposed since the 1970s, including query auditing [CO82], perturbation [Dwoo6], and
random sampling [Den8o]. However, these works assume either a central database,
or otherwise assume a central arbiter that determines which queries are allowed. In
decentralised learning, there is no clear leader who can be trusted to audit queries.
Instead, decentralised learning requires a decentralised solution. Apart from works
on perturbation, to the best of our knowledge, only da Silva et al. [dSil+o4] have
considered reconstruction attacks in peer-to-peer networks, but their work applies
only to distributed clustering, and does not propose any countermeasures. When con-
sidering perturbation, naively applying user-level differential privacy in a distributed
setting results in linearly-scaling noise, severely reducing the protocol’s utility [DR14,
ZMW?17, Cyf+22]. Intuitively, utility can be increased while retaining the level of
privacy by correlating noise by topology [Dwoo6], but to the best of our knowledge
only a few works have done this. Guo et al. [Guo+22] reduce noise based on the mutual
overlaps of neighbours’ neighbourhoods, but do not consider time-series correlations.
Cyffers et al. [Cyf+22] observe that data sensitivity decreases as mutual node distances
increase, but their solution does not scale well under collusion.

In this work, we analyse reconstruction attacks performed by colluding adversaries
in peer-to-peer networks. We model the network after decentralised learning, though
our analysis is sufficiently generic to describe a sequence of summations in any envir-
onment. Summation is a simple protocol, but is sufficient to implement many of the
aforementioned decentralised learning protocols, in addition to smart metering [GJ10]
and even principal component analysis, singular-value decomposition, and decision
tree classifications [Blu+os]. We assume a set of nodes, each with a private datum
that changes over time, and allow privacy-preserving summation over one’s direct
neighbours. We do not consider auxiliary knowledge; see Section 4.3.3 and [Cor+13,
CT13] for a detailed discussion on the real-world applicability of this model. We then
formalise the relation between reconstruction and network topology, and prove that
exact reconstruction attacks are impossible in a specific class of topologies.

Concretely, we begin by showing that reconstruction attacks are practical, and
that, in random peer-to-peer subgraphs, three honest-but-curious adversaries with 15
neighbours succeed in finding at least one neighbour’s private datum with an 11.0%
success rate, requiring an average of only 8.8 rounds per adversary. The success rate
is independent of the size of the full network; it depends only on the adversaries’ local
neighbourhood. We then show that the success rate depends on the connectivity of
the network rather than its size. Specifically, we show that reconstruction corresponds
to cycles in the graph: If the graph’s shortest cycle has length 2k, then reconstruction
never succeeds if there are fewer than k adversaries. Finally, we briefly evaluate the
impact of increasing girth on the convergence of a distributed averaging protocol, and

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 69

find that while all graphs require more rounds to achieve convergence, dense graphs
are affected less when “stretched” to higher girths.

To the best of our knowledge, our work is the first to propose a topology-based
decentralised defence to reconstruction attacks. We show that restricting how summa-
tions may be composed makes it impossible to reconstruct private data. We assume
that adversaries do not have auxiliary knowledge, as restrictions on summations can-
not be guaranteed otherwise. With the ultimate goal of developing a general theory of
structured composition as a distributed reconstruction countermeasure, future work
may include finding a condition that is not only sufficient (as seen in this work) but
also necessary for reconstruction, generalising these countermeasures to operations
beyond summation, stronger notions of privacy rooted in information theory, and
investigating the interactions with (topology-aware) differentially private noise.

The remainder of this paper is structured as follows. In Section 4.2, we discuss
related work. In Section 4.3, we describe the preliminaries: We explain basic primitives,
formalise our assumptions, and introduce our notation. In Section 4.4, we formally
describe reconstruction attacks, and show that the attack is feasible. In Section 4.5, we
prove that the success rate of the reconstruction attack depends on the graph’s girth,
and investigate how girth affects application performance. Finally, in Section 4.6, we
present our conclusions.

4.2 RELATED WORK

In this work we propose a decentralised reconstruction countermeasure for privacy-
preserving summation with dynamic data. To the best of our knowledge, this exact
problem has not been treated in literature before. Therefore, in this section, we consider
related works from various fields, and describe their similarities and differences.

4.2.1 Reconstruction Attacks

Consider a database that users can query for statistical information. For example,
in a database with employee records, users can query for the sum of salaries of all
PhD students. Naturally, the database must ensure that users cannot learn individual
employees’ salaries. A naive defence would be to disallow queries over single records.
However, a clever adversary would still be able to reconstruct private data. For example,
the user could query the sum of salaries of all employees, and the sum of salaries of
all employees except Jay Doe, and reconstruct Jay Doe’s salary from that.

The attack described above is known under various names: statistical disclosure’,
the inference problem, and the reconstruction attack. It has been the subject of research
since at least the 1970s [Fel72], originally in the context of releasing census statistics.
Since then, many reconstruction defences have been proposed, including random
sampling [Den8o], query auditing [CO82], and perturbation [Dwoo6].

Most related to our research question are those works that consider sum queries only.
Chin [Chi78] studies summation query graphs to determine the exact conditions under
which disclosure occurs. However, his analysis is limited to queries that are over exactly
two records each, and cannot easily be generalised. Wang, Wijesekera and Jajodia

'Confusingly, the term “statistical disclosure attack” is also a separate attack in peer-to-peer literat-
ure [Danos], but this is an unrelated attack on anonymity rather than confidentiality.

70 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

[WW]Joz] allow queries over more than two records. The authors propose cardinality-
based criteria for determining whether reconstruction is possible, and create a whitelist
of summations that can be performed without allowing reconstruction.

All aforementioned solutions consider a single trusted database or auditor, making
them unsuitable for peer-to-peer protocols, in which the data are spread over many
users. Except for perturbation-based techniques, there are very few works that consider
reconstruction defences in peer-to-peer settings. In their study on reconstruction
attacks in distributed environments, Jebali, Sassi and Jemai [JSJ19] note only the work
by da Silva et al. [dSil+o4] when discussing peer-to-peer solutions, but the latter
applies only to distributed clustering, and does not propose any countermeasures.

Perturbation, on the other hand, has been studied in more detail. Probably the
most popular perturbation mechanism for the decentralised setting is local differential
privacy [War6s, EGSo3, Kas+08], a variation of differential privacy [Dwoo6]. With
this technique, when a query is performed over some set of nodes, each node adds a
small amount of noise such that the aggregate is relatively accurate, but reconstruction
remains impossible even after multiple queries. Various fully-decentralised learning
protocols use local differential privacy to allow learning a shared machine learning
model without revealing users’ private datasets [VBT17, Bel+18, ZBT20]. However,
the perturbation is calibrated to protect individual records in users’ private datasets,
rather than protecting users’ entire datasets. As a result, these works are potentially
vulnerable to inversion attacks [HAP17, Wan+19]. The level of noise can be increased,
but this severely impacts utility [ZMW17, Cyf+22]. Intuitively, noise can be made more
“efficient” by exploiting correlations between users’ data [DR14], which, in peer-to-peer
networks, amounts to calibrating noise to the topology. To the best of our knowledge
only a few works have done this. Guo et al. [Guo+22] reduce noise based on the mutual
overlaps of neighbours’ neighbourhoods, but do not consider time-series correlations.
Cyffers et al. [Cyf+22] observe that data sensitivity decreases as mutual node distances
increase, but their solution does not scale well when adversaries collude.

4.2.2 Multi-Party Computation

In secure multi-party computation, composability [Lino3] is the property of a crypto-
graphic scheme that no additional leakage occurs when it is invoked multiple times,
with varying parties, combined with other schemes, and so on. There are numer-
ous frameworks to model composability, including universal composability [Cano1],
constructive composability [Maui1], and reactive simulatability [BPWo7].
Composability solves a different issue than the one posed in this work. While
composability ensures nothing leaks beyond what can be inferred from the outputs,
our work is concerned exactly with that which can be inferred from the outputs.
Composability does not help when the desired output (implicitly) reveals private data.
In secure multi-party computation literature, this difference is occasionally ac-
knowledged. For example, Bogdanov et al. [Bog+14] note that “the composition of
ideal functionalities is no longer an ideal functionality”, and, before them, Yang et al.
[Yan+10] made a similar observation. There are more works that consider this differ-
ence, but, to the best of our knowledge, these works all resolve the issue by removing
or protecting intermediate values, but do not consider protocols which desire inter-
mediate values, and even then do not consider that reconstruction attacks may be

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 71

possible after multiple instantiations of the protocol. An exception is the work by
Dekker and Erkin [DE21], which releases intermediate values in a structured manner
such that it is not possible to reconstruct all users’ values. However, the authors do
not prove (or disprove) that it is impossible to find a single user’s value.

4.3 PRELIMINARIES

We briefly explain some basics on privacy-preserving summation in Section 4.3.1 and
on bipartite graphs in Section 4.3.2. After that, we formulate our assumptions and
define our notation in Section 4.3.3.

4.3.1 Privacy-Preserving Summation

Privacy-preserving summation is a special case of multi-party computation in which
an aggregator calculates the sum of users’ private values without learning the users’
individual values. In this work, we consider privacy-preserving summation to be an
information-theoretically secure black-box that reveals only the identities and the sum
of the variables.

4.3.2 Bipartite Graphs

A bipartite graph H = (U, V, E) is a graph with nodes U U V and edges E, subject to
UNnV=0andV(u,0) eE:uclU oveV.
Furthermore, a bipartite graph H = (U, V, E) can be described by a biadjacency
matrix A € {0, 1}/VXIVI where V0 < u < |U],0 < v < |V] Ay, =1 (U, Vy) €E.
In this work, all graphs are undirected.

4.3.3 Assumptions and Notation

The underlying models and assumptions in this work are based on those seen in the
decentralised learning literature [Dan+18, Bel+18, ZBT20], but are especially close to
the work by Vanhaesebrouck, Bellet and Tommasi [VBT17].

In general, we denote the first element of a vector v by vy, the first row of a matrix A
by Ay, the range of integers {0...n — 1} by [[n]), and the cardinality of a collection S
by |S|.

User data and objectives

Consider a system of n users V, each with a private datum. Each datum is dynamic; it
changes each time the user initiates a round and incorporates new knowledge from
their neighbours. (We describe the time model in Section 4.3.3.) Each datum can be
a vector of values, though for simplicity we assume scalar values in our notation.
Examples of dynamic data are power consumption, Gps coordinates, and machine
learning models. In round ¢, the data of user i € [n] is denoted 6; ;.

The users want to compute some function over their data without revealing their
data to others. Each user regularly runs a privacy-preserving summation protocol
to find the sum of their direct neighbours’ private data. This sum can be used for
principal component analysis, singular-value decomposition, or distributed gradient
descent, for example.

72 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Network model

Users communicate with each other in a peer-to-peer network. This can be a physical
network, for example based on Bluetooth or Wi-Fi Direct, or an overlay network,
in which users are connected through the Internet. We model the network as an
undirected, self-loopless, static graph G = (V, E) in which each node represents a user.
(We consider graphs with dynamic edges in Section 4.5.4.) The direct neighbours of a
node v € V are denoted Ng(v), and for any set of users U C V we define their shared
neighbours Ng(U) = U,ey No(u) \ U. The network topology is not private; in fact,
users know who their direct neighbours are. Users may run a privacy-preserving
summation protocol to learn the sum of their direct neighbours’ private values.

Adversarial model

We assume all n users V are honest-but-curious. That is, all users honestly follow
the protocol, but may attempt to obtain other users’ private data by operating on the
data obtained in the protocol in any way they see fit. Additionally, k users C € V
may collude with each other, but we require that each adversary has either zero or
at least two non-adversary neighbours, as retrieving private data is trivial otherwise.
We give an example of a valid set of adversaries in Figure 4.1. Colluding users are
still honest-but-curious, so their collusion is limited to sharing information outside
the protocol. While excluding all actively malicious behaviour is a strenuous assump-
tion in practice, we argue that the challenges in the honest-but-curious model are
already sufficiently interesting to warrant investigation. We leave stronger notions of
adversarial behaviour to future work; see also Section 4.6.

—@

2

& Figure 4.1 A network with 6 users V. The adversaries C = {V,, V4, V5} are shaded.
Removing edge (V5, V3) would violate our requirements, as adversary V,
would have exactly one non-adversary neighbour.

Finally, we assume that adversaries do not possess auxiliary knowledge. That is,
we aim for syntactic privacy [CT13], of which the privacy guarantees do not compose
trivially with those of other protocols using the same private data. Syntactic privacy
is suitable when high utility is desired and participants have some level of mutual
trust [Cor+13, CT13]. Moreover, prescribing a syntax on the data is inherent to this
work’s goal of establishing an interpretable relation between privacy and topology.
We note that syntactic privacy does not preclude the use of semantic protections such
as differential privacy, though the investigation of that combination is out of scope for
this work. See [Cor+13, CT13] for a detailed discussion of the subject.

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 73

Time model

We work in the asynchronous time model [Boy+06], in which a global clock ticks
whenever a user wakes up and performs some work. Equivalently, each user has their
own clock ticking at the speed of a rate-1 Poisson process; when a user’s clock ticks,
that user wakes up. We denote the current global round number by ¢ (for “time”).

4.4 RECONSTRUCTION IN MULTI-PARTY SUMMATION

In this section we formally define reconstruction attacks in privacy-preserving multi-
party dynamic-data summation, and experimentally verify that this attack is feasible.
Adversaries passively record the summations they obtain throughout the protocol.
Because adversaries know which users are included in which summation, they obtain
a system of linear equations. Even if the system has no global solutions, adversaries
may still learn the private data of some users.

In Section 4.4.1, we informally explain reconstruction attacks with examples. In
Section 4.4.2, we give an exact definition of the adversaries’ knowledge. In Section 4.4.3,
we formally define reconstruction on multi-party dynamic-data summation. In Sec-
tion 4.4.4, we experimentally verify the feasibility and success rate of reconstruction
attacks on random graphs.

4.4.1 Introduction to Reconstruction Attacks

For this brief introduction, we use somewhat informal notation. We formally define
our notation in Section 4.4.2.

A small example. Consider a graph G = (V, E) with users V and a set of k adversaries
C C V. If a single adversary ¢ € C sums their neighbours’ values, they learn a linear
equation ©, over the private values 6 of neighbours Ng(c). If multiple adversaries C
collude, they share a system of linear equations A9 = © over the private values 0
of Ng(C). If the system of linear equations has a solution, then the adversaries are
able to calculate all observed users’ private values using linear combinations of the
system’s rows. For example, given adversaries A, B, and C with observations

0, + 0, = Oy,
0, + 63 = Opg, and (4.1)
92 + 03 = Oc,

this is equivalent to the system of linear equations

S =

1 0
0 1/60=0. (4.2)
1 1

Since this system is full rank, adversaries can calculate

_®A+®B+®C

91 2 - G)C: (43)
92 = @A — 91, and (44)
03 = @B - 91. (45)

74 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

For example, if 4 = 7, ©p = 13, and O¢ = 8, the adversaries know with certainty that
0, = 6,60, =1, and 63 = 7. Observe that this works even if each individual summation
in Equation 4.1 is information-theoretically secure.

Partial solutions. If the system is rank-deficient, no unique solution exists, but the
system may still have partial solutions. That is, even if a system has infinitely many
possible solutions, it may be the case that some variables have the same value in
all solutions. Even a single user’s private value being leaked is a major issue for
any privacy-preserving protocol. Consider, for example, the adversarial knowledge
consisting of

0, + 06, + 065 04 and

61 + 62 = Op. (4.6)

Even though there is no unique solution, all solutions have the same value for 0,
calculated as 6; = ©4 — Op.

The case of Equation 4.6 is trivial because Op is the sum over a subset of ©4.
However, there are also rank-deficient systems in which no summation is a subset of
another:

91 + 92 + 93 = Oy,
91 + 92 + 94 = ®B> and (47)
93 + 0, = Oc.

This system, too, has an infinite number of solutions, but each possible solution has
the same values

©4+0c-0

%z%”and (4.8)
Op+0c -0

94=%~ (4-9)

Time dimension. The above examples do not take into account that users’ data change
over time. To model dynamic data, first recall from Section 4.3.3 that users update their
values only after initiating a summation. Since each update requires an interactive
summation, users implicitly inform their neighbours whenever they update; and since
each update represents the introduction of a new unknown value to 6, adversaries
can represent an update by adding a new column to their adversarial knowledge. If a
user updates their value multiple times before being observed by an adversary, the
adversaries treat this as a single update.

To give an example, consider adversaries C and their neighbours Ng(C) in Figure 4.2.
If adversaries C; and C, run their summations, they learn

[1(1)(1)]9=®. (4.10)

The added vertical lines group the columns per non-adversarial user. Next, say that
user N; updates their private value. This is noticed by the adversaries, who insert a
new column into their system of equations. If user C; then does another summation
(including user Ni’s new value), the adversaries know the system

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 75

1 0|10
1 00|11 |0=0. (4.11)
0 1110

The last row represents adversary C;’s new summation, and the second column
represents user N;’s new value. Finally, if users Nj, N;, and C; subsequently update
(in that order), then users N; and N; each get a new column, and C;’s update adds a

new row, giving
Ny N
—_——

0=0. (4.12)

S O = =
S = O O
_ o O O
O = O
_ o O O
S O = O

In the remainder of this work, to simplify notation, we will always assign the same
number of columns t to each user.

Observations. Before we give a formal definition of reconstruction attacks, we make
two observations:

1. Reconstruction does not rely on weaknesses in the summation algorithm; recon-
struction works even if summation is done by a trusted third party. Instead,
reconstruction relies only on the summation revealing both the identities of in-
cluded variables and the sum of those variables.

2. Reconstruction is independent of how users update their private values, and works
even if users update their models in random ways or multiple times. Reconstruc-
tion works because adversaries observe multiple summations with at least
one unchanged value, and know how the summations are related.

@ (@ @
e

& Figure 4.2 Example graph G with adversaries C = {Cy, C;, C3} (shaded) and non-
adversaries N = Ng(C) = {Ny, Ny, N3}.

4.4.2 Obtained Adversarial Knowledge

We give a formal description of adversarial knowledge, which is the system of linear
equations that adversaries obtain in a privacy-preserving multi-party dynamic-data
summation protocol, and observe two important properties.

Let G = (V,E) be an undirected graph, let C C V be a collusion of k adversaries,
let n := [Ng(C)|, and let t € N be the number of summations performed by C.

76 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Definition 2 (Adversarial knowledge). The adversarial knowledge over ¢ summations

by C is a consistent system of linear equations A8 = ©, subject to the conditions that

« 0 € R"! are the private values of neighbours Ng(C), such that 0,,,; is the i €
[£]1th unique private value of neighbour v € [n] that is observed by any adversary
in C,

« © € R™! are the sums obtained by the adversaries, where ©; is the 7 € [t]th such
sum, and

« A € {0,1}**" indicates which private values are observed in which summation,
such that A; ,;4; = 1if and only if the adversaries’ 7 € [[¢]th summation includes
the i € [¢]th unique private value of neighbour v € [[n].

Remark 1. In Theorem 17, we will show that it is not necessary to include adversaries’
own private values in Af = ©.

Property 1. Let A be the adversarial knowledge over t summations by C. In each
equation, each neighbour in Ng(C) contributes at most one private value:

vz € [t],v e [n] : Z Arvevi € {0, 1} (4.13)
i€[¢]

Property 2. Let A be the adversarial knowledge over t summations by C. Since each
equation is over all the neighbours of an adversary in C, each row in A corresponds
exactly to Ng(c) for some c € C:

Vre[t] :3ceC:Vven]:

D Acuri = 1] © (€,N6(0),) € B, (a14)
ielt]

As in Property 1, the summation merely describes whether neighbour v is included in
the rth linear equation.

4-4-3 Reconstruction from Adversarial Knowledge

Finding a (partial) solution is not trivial. It is well-known that the reduced row echelon
form (rref) of a system of linear equations reveals the system’s unique solution, if it
has one. Clearly, this unique solution is also at least a partial solution. However, if
there is no unique solution, there may still be a partial solution, as in Equation 4.6 on
page 75. We will show in Theorem 16 that finding the reduced row echelon form of
the adversarial knowledge is both necessary and sufficient to find all partial solutions.
Moreover, we will show in Theorem 17 that this is true even if adversaries’ own private
values are removed from the adversarial knowledge matrix.

We begin with some definitions. Let G = (V, E) be an undirected graph, let C C V
be a set of k adversaries, let n := [Ng(C)|, let t € N, and let A9 = © be the adversarial
knowledge over ¢ summations by C; that is, A € R™*".

Definition 3 (Solution of a variable). Let y € R and let i € [[nt]. We say that “y
solves 0; in AG = ©” if and only if the vector yA contains exactly one non-zero value,
at index i:

((yA); #0) A (Vje[ne] \i: (yA); =0). (4.15)

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 77

Remark 2. Since Equation 4.15 is independent of 8 and O, it is equivalent to say that
“y solves 0; in A”.

Definition 4 (Partial solution). Lety € R, If y solves ; in A for any i € [[nt], then
we say that “y is a partial solution to A”.

We proceed with the central theorem of this section, which states that the reduced
row echelon form of A describes all partial solutions to A. We remark that a weaker
variant of this theorem was previously given without a formal proof [WW]oz].

Theorem 16. Leti € [nt], and let B € R**! such that BA = rref(A). Then 6; has a
solution in A if and only if there exists r € [[¢] such that B, solves §; in A.

Proof. Given i € [nt]], we give a proof for both directions.

We first prove that if there exists r € [¢] such that B, solves 6;, then 6; has a
solution in A. Since Af = O, it follows that B,A6 = B, 0, and by Equation 4.15 we have
that B,Af = 0;. Therefore, 6; = B, ©, proving the first direction of Theorem 16.

We prove the other direction of Theorem 16 by contradiction. Let y € R be
a solution to 6; in A, so yA has its only non-zero value at (yA);. For the sake of
contradiction, assume that there is no row in B that solves 0; in A. Because y is in
the row space of A, and the row space of A is the same as the row space of rref(A),
there exists y’ € R such that yA =y’ - rref (A) = y’ BA. By associativity of matrix
multiplication, y’B solves 0; in A. Furthermore, since we assumed (for the sake of
contradiction) that no single row of B solves 6; in A, it follows that y’ must have
multiple non-zero coefficients. Thus, let y. and y; be any two non-zero coefficients
in y’, and let j, k such that (BA), ; and (BA), are the leading coefficients of their
respective rows; these are their columns’ only non-zero values, and j # k. Therefore,
(yA); = (y'BA); = y, # 0, and similarly (yA)r = y; # 0. However, this is a
contradiction, because we initially assumed that yA has its only non-zero value at (yA);.
Therefore, there exists a row in B that solves §; in A. This proves the other direction
of Theorem 16.

Therefore, it is both necessary and sufficient to check the rows of BA = rref(A) to
learn all partial solutions to A. o

Note that A does not describe that adversaries know each other’s private values,
since N (C) excludes adversaries themselves. We show that including this know-
ledge does not reveal new partial solutions. Specifically, observe that the adversarial
knowledge including self-knowledge over t summations by k adversaries C is

, _|A R
A = [0 Itk]’ (4.16)

where I is the (tk X tk) identity matrix, 0 is an appropriately-sized matrix of zeroes,

and R is some appropriately-sized binary matrix. The rows of I represent that
adversaries know each other’s values, and R represents the edges between adversaries.

Theorem 17. Let i < tn. Then 6; has a solution in A if and only if ; has a solution
inA’.

78 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Proof. Observe that

(4.17)

rref(A) = [rref(A) 0]

0 I[k

ignoring row-switching transformations. The bottom tk rows solve exactly 6; in A
for i > tn. The upper rows solve 0; in A for i < tn if and only if the rows of rref(A)
do so. o

Intuitively, Theorem 17 holds because the linear dependencies that exist within A
remain unaffected by R.

4-4-4 Reconstruction Attack Feasibility

We show that reconstruction is feasible for honest-but-curious adversaries. We run
the attack in static graphs with randomly-placed adversaries passively collecting data.
We measure both the success rate and the number of rounds until success. Our source
code is publicly available [DEC25b].

Remark 3. This section pertains only to static graphs. We show a reduction from
edge-dynamic graphs to static graphs in Section 4.5.4.

Experimental setup

By Theorem 16, the success rate of the attack depends only on the adversaries’ direct
neighbourhood. Therefore, instead of modeling large peer-to-peer networks, it suffices
to model only the subgraph that is relevant for the attack. Additionally, by Theorem 17,
edges between adversaries can be ignored. Therefore, given any graph G = (V, E) and
a set of colluding adversaries C C V, it suffices to model the induced subgraph G[C],
minus edges between adversaries. This forms a bipartite graph H. We provide an
example in Figure 4.3.

& Figure 4.3 A graph G. Adversaries C = {V;, V,, V3} are shaded. The bipartite sub-
graph H = G[C] consists of exactly the non-dotted nodes and edges.

We emphasise that reconstruction depends only on the adversaries’ view, regardless
of the remaining graph outside this view. However, the likelihood of obtaining any
specific adversarial view does depend on the full graph. For example, the probability
that a random adversarial view contains a cycle depends on the connectivity of the

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 79

full graph. For our experiments, we choose not to make assumptions on the graph’s
topology, analysing all possible adversarial views equally, so that our results are
agnostic to the specific network, application, and adversary.

Bipartite graphs can be parameterised by three variables: the number of adversaries,
the number of direct neighbours, and the number of edges. We generate random
graphs according to these parameter, subject to some filtering:

« We exclude graphs in which there is an adversary with only one edge because this

would allow trivial attacks, as described in Section 4.3.3.

« We do not exclude graphs in which there is an honest-but-curious user with only
one edge, because this user may have more edges in G that are not in H.

We exclude graphs in which an honest-but-curious user has no neighbours, because
these cases do not accurately represent the bipartite graph’s parameters.

« We do not exclude graphs in which an adversary has no neighbours.
« We do not exclude disconnected graphs.
Amount of reconstructed data

For our first experiment, we measure the amount of private data that adversaries can
reconstruct. We generate a large amount of random bipartite graphs as described
above, and count the number of partial solutions in the biadjacency matrices. This
corresponds to the adversarial knowledge if neighbours do not update their values,
and thus represents the strongest reconstruction attack that adversaries can perform.
In Section 4.4.4 we also consider neighbours updating their values.

Firstly, we look at the proportion of data that can be reconstructed, shown in
Figure 4.4. We see that if the number of adversaries is close to the number of neighbours,
the adversary is typically able to reconstruct all neighbours’ data. As the number of
neighbours increases, fewer data can be reconstructed, unless compensated for by a
higher connectivity. If the graph has many neighbours and few edges, adversaries
share fewer neighbours, and are thus typically unable to exploit the overlaps.

Secondly, we look at the distribution of how much data can be reconstructed, shown
in Figure 4.5. We see again that adversaries are more successful if they outnumber
their neighbours. As the number of neighbours increases, so does the probability of
being unable to reconstruct any data. However, even if three adversaries passively
observe 15 neighbours, they still have an 11.0% probability of reconstructing at least
one neighbour’s datum, which is unacceptable for any privacy-preserving scheme.

Rounds until first reconstruction

Some partial solutions are harder to obtain than others. For example, if the graph is
such that users update their values faster than adversaries can collect them, adversaries
may never “converge” to a (partial) solution.

In the next experiment, we measure how many rounds adversaries need before
reconstruction succeeds. For each of the subgraphs in Figure 4.4 that were found
to be susceptible to the attack, we simulate a multi-party summation protocol as
follows. Each round, a uniformly random user in the subgraph wakes up. If the
user is an adversary, they learn the sum of their neighbours’ values, and adds this
to the adversarial knowledge. Otherwise, if a non-adversary wakes up, we simulate

80 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

m 100%

M 100% r 100%

90% 90% 90%
" 80% 80% 80%
g 70% & 70% & 70%
b5 60% T 60% T 60%
2 50% & 50% & 50%
5 0% 5 4% 5 40%
'c% 30% a% 30% 'c% 30%

20% 20% 20%

10% 10% 10%

0% 5 0% 0%

3 5 7 9 111315 3 5 7 9 111315 357 9 11315
Direct neighbours Direct neighbours Direct neighbours
(a) Three adversaries (b) Five adversaries (c) Seven adversaries

& Figure 4.4 Proportion of neighbours’ private data that can be reconstructed by
adversaries. Each point represents the mean over 1000 random bipartite
graphs. White points indicate no valid bipartite graphs could be found.

m 100%

r 100% f 100%
90% 90% ° 90%
= 80% & 80% s 1 80%
< < <
le=] 70% fe=] 70% < 2 70%
= o =
% 60% ;15 60% % 3 60%
=1 50% =1 50% =1 50%
g % 5 % 54 %
2 40% 2 40% g 40%
S 30% S 30% g5 30%
3 3 o
~ 20% ~ 20% ~ 6 20%
10% 10% 7 10%
0% 0% 0%
3 5 7 9 111315 3 5 7 9 111315 3 5 7 9 111315
Direct neighbours Direct neighbours Direct neighbours
(a) Three adversaries (b) Five adversaries (c) Seven adversaries

& Figure 4.5 Probability of reconstructing a given number of neighbours’ data, ignor-
ing the number of edges. Each column adds up to 100%, and corresponds
to a column in Figure 4.4.

5 » 5 40 5 55
10 13 17 50
22 35 45
a 15 0 g 2 o 29
) & 29 30 &% 40
T 20 18 T - 4
) 25 o 35
8 o5 16z 37 2 53 30
1 14 T 45 20 & ¢ 2
£ % 12 £ 53 & > >
a 5 A 5 &8 77 20
10 6 15
1 10 89
40 8 69 10
Use Us 101 |
3 5 7 9 111315 3 5 7 9 11315 3 5 7 9 111315
Direct neighbours Direct neighbours Direct neighbours
(a) Three adversaries (b) Five adversaries (c) Seven adversaries

& Figure 4.6 Mean number of adversarial summations needed to obtain private data.
Each point corresponds to 100 attacks on each of the solvable graphs
from Figure 4.4. White points indicate no private data was obtained.

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 81

an update: The next adversarial sum that includes this non-adversary will use a new
column in the adversarial knowledge matrix. After every round, the adversaries check
for a partial solution. We repeat this procedure 100 times to control for the order in
which users wake up, truncate instances that have no partial solutions after 250 rounds,
and take the mean number of rounds until the first partial solution is found.

We show the mean number of rounds until the reconstruction attack succeeds
in Figure 4.6. We see that the attack is fastest when there are more adversaries,
more edges, and fewer neighbours. Intuitively, this means that the required number
of summations increases if neighbours can update their values at a higher rate than
adversaries can observe them. For example, 3 adversaries against 15 neighbours require
on average 8.8 rounds before they can reconstruct private data. In related works such
as [VBT17, Che+18b, CBU24], users run hundreds or thousands of rounds before the
protocol terminates, significantly more than required in our attack.

Conclusion of results

We sampled the set of all possible views of randomly selected adversaries in random
graphs, excluding some trivial attack cases. If the reconstruction attack succeeds, the
adversaries obtain other users’ private inputs to the information-theoretically secure
summation operation. Our results show that passive honest-but-curious adversaries
are able to obtain private data in this scenario with non-negligible probability. While
we note that different classes of graph topologies may have varying susceptibility
to reconstruction attacks, we conclude that, in general, individually protecting each
summation is insufficient for confidentiality.

45 GIRTH AS A RECONSTRUCTION COUNTERMEASURE

In a centralised protocol, the single aggregator can track which summations have
occurred, and refuse a subsequent summation if it would result in a partial solution.
However, in a distributed computation, there is no such aggregator, and simulating the
aggregator using a multi-party protocol is impractical as this would require involving
all users in each summation. In this section, we show that to prevent reconstruction it is
sufficient to increase the network’s girth, which is the length of the network’s shortest
cycle. The network’s girth is an established metric for peer-to-peer networks, with
various peer-to-peer algorithms for measuring and increasing the girth [Cen+21, DKo8,
LUgs, Oli+18]. Using such an algorithm before running a privacy-preserving dynamic-
data multi-party summation protocol is thus sufficient to prevent reconstruction of
private data by honest-but-curious adversaries.

We begin in Section 4.5.1 by showing that reconstruction requires collusion. In
Section 4.5.2, we show that reconstruction does not work in acyclic graphs, regardless
of the number adversaries. In Section 4.5.3, generalise results to determine an upper
bound on the number of adversaries. In Section 4.5.4, consider graphs with dynamic
edges. Finally, in Section 4.5.5, we briefly evaluate the impact that increasing girth has
on distributed convergence.

4.5.1 Privacy in Static Graphs without Collusion

We begin by considering the special case of k = 1, i.e. a setting without collusion.
We show that, if the graph is static, the adversary cannot obtain other users’ private

82 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

values regardless of topology, barring trivial attacks.

Assuming a privacy-preserving summation protocol, it is self-evident that repeating
the summation over the same set of values does not leak any private data. However,
while the set of neighbours is always the same in the static no-collusion setting,
neighbours still update their local values. Thus, it remains to be shown that no
reconstruction is possible with this kind of composition.

Lemma 1. Given adversarial knowledge A € R”*" of a single adversary with n > 2
fixed neighbours, we have for any y € RI*?

‘v’y, S [[n]] : Z (yA),uHi = Z (yA)vHi- (4-18)
i€[] i€[£]

Here, Xic[/] (YA) ve+: is the sum of components of yA relating to neighbour v. The
equation states that in any linear combination yA, every neighbour has the same sum
of components.

Proof. Firstly, because the adversary has fixed neighbours,

vz e [t],ven]: Z Aryevi = L. (4.19)
ielt]

In the linear combination yA, the rows of A are scaled according to y and then summed
together. Therefore, since each row includes each neighbour exactly once,

Vv e [n] : Z (YA) vesi = Z Yr. (4.20)
i€[] el t]

o

Corollary 1. Given adversarial knowledge A € R”*" of a single adversary with n > 2
fixed neighbours, there exists no y € R such that yA has exactly one non-zero value.
Therefore, there exist no partial solutions for A.

4.5.2 Privacy in Static Graphs with Unbounded Collusion

The special case of k = 1 provides some insights into the workings of the reconstruction
attack, but not allowing any collusion is not realistic, as honest-but-curious collusion
in the form of secretly exchanging information is undetectable and there are no strong
incentives against it. Therefore, we now proceed to consider the general case of k > 1.

Partial solutions are linear combinations of the rows of the adversarial knowledge
such that all but one column cancels out, as in Equation 4.1 on page 74. We already
know from Corollary 1 that a partial solution requires multiple adversaries. If two rows
in the adversarial knowledge from different adversaries match in multiple columns,
then these adversaries share multiple neighbours, and the graph has a cycle. Otherwise,
if no two rows from different adversaries overlap in multiple columns, then, since each
equation has at least two non-zero columns, each equation introduces new unknowns,
taking the adversaries further from a partial solution. In this case, if the adversaries
are able to find a partial solution, they must have another row that cancels out the
unknowns of multiple other rows; but this, too, introduces a cycle. The intuition thus
seems to be that partial solutions require a cyclic graph. We now formally prove that
this intuition is correct.

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 83

Theorem 18. Let G = (Vg, Eg) be an undirected graph, let C C Vi be the set of
adversaries, let k := |C|, let n := |[Ng(C)], let t be the number of summations performed
by the adversaries C, and let A € R"™*™ be the adversarial knowledge.

If G is acyclic, then A does not have partial solutions.

Proof. We give a proof by contraposition: Given a partial solution to A, we show that G
is cyclic. Let y € R be a partial solution to A. We show how to find a bipartite
subgraph H of G such that its biadjacency matrix A" has a partial solution y”’. We
then show that this implies the existence of a cycle in G. Our proof works in multiple
steps: (1) combine columns of A to create A’, (2) remove rows from A’ to create A",
(3) create the corresponding partial solution y”, and finally (4) show that G is cyclic.
We show an example of this procedure in Figure 4.7.

1. Combine columns. We merge the t columns in A assigned to each neighbour to
obtain A’. Let y’ =y, and let A’ € R**" such that

vre [t],ve[n]:A;, = Z Arvrrie (4.21)
i€[t]

It follows from Property 1 on page 77 that this is a binary matrix, and it follows
from Property 2 on page 77 that no neighbour relations are removed. Furthermore,
observe that
Ve lnl: @A) =) A s (4.22)
i€[£]
Since yA contains exactly one non-zero value, so does y’A’. Therefore, y’ is a partial
solution to A”.

2. Remove rows. We remove duplicate and unused rows from A’ to obtain A”. We
define A" as a set of rows:

A" ={Al|ie[t] A (4.23)
B e [il - 4] = 4) A (424)
c{yj | j € [t] A A; = Aj} # 0} (4.25)

Here, Equation 4.24 excludes duplicates by only choosing row A7 if there isno j < i
such that A} = A, and Equation 4.25 excludes unused rows by only picking row A}
if the sum of y} over all identical rows A’; is non-zero.

3. Create partial solution. We similarly combine and remove the corresponding col-
umns from y’ to obtain y”’. To do so, we define a function ¢ that describes how the
rows of A” relate to the rows of A’. Let s be the number of rows in A”’. Then we
define ¢ : [[s]] — [¢]* such that

Vre[t].oes]: € plo) & A, =AL. (4.26)

Using this function, we define y”’ € RIXS ag

Vo e [s] 1yl = Z yr. (4.27)
T€d(o)

84 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

10 0 0 0[/0 0 0 0 0[1 0 0 0 0|0 0 0 0O
1.0 0 0 0[{1 0 0 0 0[0 0 0 0 0|0 0 0 0 O
A=|0 0 0 0 0/1 0 0 0 0[{1 0 0 0 0[0 0 0 0 0|,
0 000 O0f1 0O0OO0OTUO0O|O 1 O0O0TO0/0O0O0TO0 O
1.0 0 0 0{0 0 0 0 O0[0 0 0 0 Of1 0 0 0 0
1.0 1 0
11 0 0 1.0 1 0
A=l011 0] A’=|1 1 0 0
01 10 01 10
10 0 1

(b) The adversarial knowledge A after the users from Figure 4.7a run in the sequence
(C1,Cy, C3, N3, C3,Cy); the matrix A” with collapsed columns; and the matrix A" without
duplicate and unused rows.

y=[1 1 -1 0 0], yy=[1 1 -1 0 0], y’'=[1 1 -1]

(c) Partial solutions respectively of A, A’, and A”.

(d) The bipartite graph H corresponding to biadjacency matrix A”.

& Figure 4.7 Example transformation of graph and adversarial knowledge as seen in
the proof of Theorem 18.

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 85

It follows that

Vv e [n] : (y"A"), = Z (Y7 AG,) (4-28)
oels]
= > > WAL (4.29)
o€ls] reg(o)
= > > (A (4:30)
o€ s] reg (o)
= > WAL (431
el t]
= (y'A)y. (4-32)

Therefore, y’A” =y’A’, and y"’ is a partial solution to A”.

4. Find cycle. Note that A” is the biadjacency matrix of some bipartite subgraph H =
(C’,Ng(C),Eg) of G,where C’ C Cand Eg C Eg. Assume, for the sake of contradic-
tion, that H is acyclic. Then H has two distinct nodes i, j with degree one. Since ad-
versaries cannot have degree onein G, and Ve € C’ : (Ny(c) = Ng(c) V Ng(c) = 0),
we know that i, j € Ng(C). Consequently, the columns in A” for i, j must each con-
tain only one non-zero value, and y”’ does not contain zeroes at all by Equation 4.25.
Therefore, (y’A”); # 0 and (y’A”); # 0. However, this implies that y"” A" has
multiple non-zero values, which contradicts the earlier observation that y” is a
partial solution to A”’. Therefore, H is cyclic, and so is G. o

Our proof shows that partial solutions imply the existence of cycles. This does
not mean that cycles imply the existence of partial solutions. Indeed, we show in
Section 4.5.3 that structured cycles can be introduced without creating partial solutions.

Remark 4. Theorem 18 pertains only to partial solutions. Even in an acyclic topology,
there may be linear relations that reveal sensitive information without leaking private
values outright, such as 6; = 6, or 05 = 4 X 05. Protecting these relations is left for
future work.

4.5.3 Privacy in Static Graphs with Bounded Collusion

While acyclic graphs resist reconstruction attacks, these graphs are not well-suited
for peer-to-peer networks for two reasons. Firstly, if any non-leaf node becomes
unavailable, the network becomes disconnected. Secondly, leaf nodes have only one
neighbour, and thus cannot initiate summations to learn from their neighbours.

We show that there are no partial solutions given an upper bound on the number
of adversaries. This bound depends on the graph’s girth, which is the length of its
shortest cycle.

Theorem 19. Let G = (Vi, Eg) be an undirected graph, let C C Vi be a set of
k adversaries, let n := [Ng(C)|, let t be the number of summations performed by C,
and let A € R be the adversarial knowledge.

If girth(G) > 2k, then A does not have partial solutions.

86 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Proof. We give a proof by contraposition: Given a partial solution to A, we show
that girth(G) < 2k. Let H be as in the proof of Theorem 18. Then H is cyclic. Since H
is bipartite, every edge in the cycle is between an adversary and a neighbour. Since
each node in the cycle is visited at most once, the cycle length is at most 2k. This cycle
also exists in G. Therefore, girth(G) < 2k. o

4.5.4 Privacy in Dynamic Graphs

So far, we have assumed that graphs are static. However, this prevents users from
changing their neighbours, which is unrealistic if users move through the network.
We briefly show that dynamic graphs can be reduced to static graphs.

If a single user performs two summations over two sets of neighbours, they learn
exactly the same information as two users would over those same sets of neighbours.
We show an example in Figure 4.8. More generally, k users with static neighbours
can learn the exact same information as ¢ users with k different sets of neighbours.
Our results on reconstruction feasibility in static graphs from Section 4.4.4 can be
translated similarly to dynamic graphs.

(a) A dynamic graph. The dotted edge is (b) A reduction to a static graph. U has
not present in all rounds. been split into U; and Us.

& Figure 4.8 Example of how a dynamic graph can be reduced to a static graph.
U learns the same as U; and U, together.

We conclude that Theorem 19 implies the following.

Corollary 2. Let G = (Vg, Eg) be a dynamic undirected graph, let C C V;; be a set of
adversaries, let n := [Ng(C)|, let t be the number of summations performed by C, let k
be the number of sets of neighbours the adversaries sum over, and let A € R™*™ be
the adversarial knowledge.

If girth(G) > 2k, then A does not have partial solutions.

There are several important limitations to this result. Firstly, the upper bound on
the number of adversaries depends on the girth, but the girth may not be known
beforehand if users move through the network in unpredictable ways. Secondly, even
if a minimum girth is guaranteed throughout the protocol, the upper bound implies a
maximum number of changes that may occur during the protocol.

4.5.5 Impact on Convergence

We briefly evaluate the impact of increasing the network’s girth on the convergence
of a protocol running over that network. Specifically, we numerically simulate a
distributed averaging protocol [XBog4], which is just a non-privacy-preserving form of

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 87

distributed learning. We intentionally choose a simple, efficient, non-noisy protocol to
make the impact of the girth parameter most apparent. The “numerical simulation”
part of the description is because we do not actually create separate processes and
communication for the nodes. Our source code is publicly available [DEC25b].

We use the system model presented in Section 4.3.3. We create a network by
generating a random Erdés-Rényi graph with 50 nodes and with each edge having a
probability p of being added. Each node holds a single private scalar value, sampled
uniformly from the range {0...50}. Each round, one random node updates their
private value to be the unweighted mean of their neighbours’ values and their own
value. We then measure the number of rounds until convergence, and take the mean
over 1000 repetitions of this procedure. We define convergence as the moment at
which any two nodes’ local values differ by at most 1. Changing this threshold does
not give fundamentally different results.

To measure the effect girth has on convergence, we “stretch” graphs to a given girth
by iteratively removing random edges from cycles shorter than the desired girth until
no such cycles remain. With 50 nodes, stretching to a girth of x ensures reconstruction
attacks are impossible when less than xs_/oz = x% of users collude.

We show our results in Figure 4.9. Since undirected graphs always have girth at
least 3, no significant changes occur at these low girths. As the girth increases, so does
the number of rounds required. As the girth approaches 25, the slope approaches zero.
Graphs that initially have more edges (as determined by p) require more rounds at
low girths, but settle at a lower number of rounds at high girths. When we look at
our experiments in more detail, we see that ceilings occur once all cycles have been
removed, and that graphs with high p retain more edges. This matches the intuition
that information propagates more efficiently when there are more edges.

—) = 0.1
20,000 | | === P =05
p=09
<
=]
=
e
I
£ 10,000
o]
0
0 5 10 15 20 25

Stretched minimal girth

& Figure 4.9 Number of rounds until convergence in distributed averaging in random
Erd6s—Rényi graphs with 50 nodes and varying edge probabilities p, as
a function of the girth to which the graphs are “stretched”.

Our results show that increasing girth affects convergence speed significantly.
Though state-of-the-art distributed learning protocols typically already require sev-
eral tens of thousands of rounds [VBT17, Che+18b, CBU24], the magnitude by which
increasing girth increases the number of required rounds may be excessive for some

88 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

applications. More sophisticated edge removal methods may ameliorate this issue.
Furthermore, though implementing the cycle removal method from our experiments
as a distributed protocol is trivial,” this method is not communicationally efficient. To
the best of our knowledge, there is no research on communication-efficient distributed
“graph stretching”. That said, there are distributed protocols for measuring the net-
work’s girth [Cen+21] and for removing all cycles [DKo8, Oli+18]. We conclude that
determining a network’s resistance by measuring the girth is feasible in general, but
increasing girth is practical only when communication efficiency is not a concern.

4.6 CONCLUSION

We investigated reconstruction attacks in the setting of secure multi-party computa-
tion. We observed that existing multi-party computation literature does not consider
protocols in which intermediate values are intentionally exposed by the ideal func-
tionality, and seemingly assumes that protocols are not self-composed when deployed.
In our investigation, we focused on a peer-to-peer setting with privacy-preserving
summation in which users’ data change over time. In random subgraphs with 18 users,
we found that three passive honest-but-curious adversarial users have an 11.0% success
rate at recovering another user’s private data using a reconstruction attack, requiring
an average of 8.8 rounds per adversary. We analysed the structural dependencies
of the underlying network graph that permit this attack, and proved that success-
ful reconstruction attacks correspond to cycles in the network. More generally, we
showed that the length of the graph’s shortest cycle determines the minimum number
of adversaries required for the attack. We conclude that removing short cycles from
the network is a feasible countermeasure, albeit with considerable cost towards the
convergence speed of distributed protocols.

Our work sets the first step towards preventing reconstruction in the peer-to-peer
setting as seen in multi-party computation, and opens up multiple questions for future
work. Firstly, and most obviously, though we have found a sufficient criterion to
determine reconstruction feasibility, finding a criterion that is also necessary would
allow using some graphs which our criterion currently forbids. Secondly, our work is
limited to a strictly syntactic notion of privacy, and does not protect linear relations
between data, which is required to protect against adaptive adversaries. Thirdly,
though our restriction to the summation operation is already sufficient to analyse
decentralised learning, our work could be extended to cover compositions with other
operations, such as multiplication or comparison. Finally, the addition of differentially
private noise may further strengthen the provided level of privacy.

2A node can break all cycles of at most length ¢ that they are part of as follows. The node floods a unique
random message, paired with a counter starting at ¢, through the network. Each time a node forwards the
message, the counter is decreased. Once the counter reaches zero, nodes stop forwarding the message. If
(and only if) the source node receives back their own message, they are part of a cycle of length at most ¢,
and remove the edge on which the message came in.

CHAPTER 4 ¢ Reconstruction Prevention for Decentralised Learning 89

CHAPTER §

=y e

Privacy-Preserving Peer-to-Peer Cycle Detection

Abstract. Money laundering has seen a surge in complexity over the past decades as a result
of digitisation. This has forced financial institutions to develop more advanced anti-money
laundering technologies. Among these technologies is transaction graph monitoring, which
involves searching for transaction patterns that are likely indicators of fraud. To ensure effective
monitoring across legislative boundaries, institutions should share their transaction information.
However, these data are highly sensitive and heavily regulated, making the monitoring infeasible.
To address this, we propose a decentralised privacy-preserving protocol that detects fraudulent
patterns in transaction graphs. We limit our scope to detecting short cycles. Our protocol
can be initiated by any node, who performs recursive key exchanges with the nodes in their
neighbourhood up to a maximum depth. If a cycle exists, the initiator will eventually perform a
key exchange with themselves, and will then run a separate sub-protocol to recover the nodes
involved in the cycle. Our protocol is highly parallelisable, as any number of instances can run
simultaneously. We prove the security by showing that a single adversary learns nothing about
the topology beyond the detected cycles. When multiple adversaries collude, they may learn of
the existence of short paths connecting them, but do not learn what these paths look like. We
empirically show that the complexity scales with the local topology and maximum cycle length.

—>0(__— _o<——

Based on: Juno Jense, Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Privacy-preserving peer-to-peer
cycle detection. 2025. In preparation.

51 INTRODUCTION

plex series of financial transactions. Subsequently, the illegal proceeds appear

to come from legal sources, disguising the true nature of the activities. The
Russian invasion of Ukraine and its associated funding are a prominent example
showcasing the scale and global impact of money laundering: Russia has an estimated
$1trillion hidden abroad, of which a quarter is controlled by Putin and his associ-
ates [AF20]. By setting up complex laundering schemes, this money can be used to
exert political influence, fund illicit trade, and evade sanctions [AF20].

Anti-money laundering (AML) is an umbrella term for the laws, regulations and
procedures designed to combat the generation, concealment, and integration of illicit
funds. In recent years, tighter regulations have led to financial crime detection becom-
ing a high priority among organisations subject to Amr audits. These AML systems
typically model the transaction network as a graph, with nodes representing bank
accounts and edges representing transactions between them. The task of the aAML
system is to find patterns in the graph that may indicate money laundering. Typical
patterns include cliques, stars, and cycles [DBB22]. GraphS [Qiu+18], a tool developed
by the e-commerce platform Alibaba, is one such large-scale industry solution based
on finding cycles in an internal dataset.

At the same time, digital finance has made it possible for criminals to set up accounts
at different banks across multiple countries to avoid getting caught by law enforcement
agencies [L]J16, EDF21]. Detection is difficult because this requires cross-organisational
data analysis, but regulations require that no more information is exchanged than
strictly necessary. Coordination between financial organisations is far from straightfor-

@ RIMINALS obfuscate illicitly obtained funds by running them through a com-

ward, and remains uncommon within the industry [Mouzo]. Since organisations are
required by law to report suspicious transactions to their respective national financial
authority for analysis, there have been attempts at international cooperation. For
example, Ma3tch is a multinational European amL effort, but is lacking because taking
a proactive stance imposes too much of a workload on the authority [Mouzo]. At the
same time, centralising financial data to an international financial authority raises
concerns surrounding transparency and privacy, and is unrealistic as governments are
largely independent in the creation of their legislative policies, and it is hard to imagine
each government consistently reporting to a single authority. Therefore, cross-border
data analysis that ensures both confidentiality and autonomy remains an unsolved
problem, requiring decentralised privacy-preserving solution.

In this work, we propose a novel decentralised privacy-preserving graph cycle
detection protocol. Though many different network patterns are indicative of money
laundering, we focus on short cycles as they remain one of the stronger indicat-
ors [HK20, Qiu+18]. We model the network as an unweighted directed graph, where
nodes and edges represent accounts and transactions, respectively. Our protocol starts
at a single node, the initiator, who triggers a flood of messages throughout the network.
Each node that is reached by the flood sends messages back through the flood to the
initiator to performs a key exchange. If the graph contains a cycle, the flood will also
reach the initiator, who will notice that they are performing a key exchange with
themselves, and subsequently triggers a simple cycle recovery routine. Our protocol
can be parallelised trivially to run many floods simultaneously.

92 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

We implement our protocol and validate its performance on various graphs. We
find that our protocol is computationally and communicationally efficient for cycles
with lengths commonly seen in anti-money laundering operations. Furthermore, we
show that nodes learn nothing more about the topology beyond the detected cycles
and the existence (but not contents) of paths between pairs of colluding adversaries.

The remainder of this work is structured as follows. In Section 5.2, we discuss related
work. In Section 5.3, we cover notation, cryptographic fundamentals, and proposed
solution. In Section 5.4, we discuss and empirically validate the complexity of our
protocol. In Section 5.5, we prove the security of our protocol. Finally, in Section 5.6,
we discuss our findings and provide some concluding remarks.

5.2 RELATED WORK

Existing works have proposed detecting fraudulent transactions using subgraph detec-
tion, graph queries, statistical functions, and machine learning. These areas have been
surveyed extensively [ATKi5, Pou+20, ST21, Pan+20, Bal+23, IPB19, HGY22, DBB22].
However, to the best of our knowledge, there are only three privacy-preserving cycle
detection algorithms, which we discuss in the remainder of this section.

The decentralised protocol proposed in [Mar23] uses a message-based approach
for detecting cycles, taking as input the maximum cycle length ¢. To the best of
our knowledge, this is the only decentralised privacy-preserving solution that does
not scale quadratically in the number of graph vertices. Instead, the protocol is
efficient for small ¢ and scales well with network size, because it operates in the
local neighbourhood. Any node can initiate the protocol by sending a nonce with
a time-to-live of 2¢. Recipients forward the message to their outgoing neighbours,
but not before applying a one-time pad to the nonce based on the outgoing edge and
decrementing the time-to-live. Cycle detection relies on messages following the same
path twice, causing one-time pads to be applied twice and thus cancel out, resulting in
the initiating node receiving their original nonce.

Unfortunately, re-using the one-time pad has significant security implications. In
Figure 5.1, we show a graph in which topological knowledge is leaked because an
adversary can infer that messages belong to the same flood of messages. Here, node vy
is the initiator, and node v4 is controlled by a passive adversary. First, v; sends the
nonces rq, 1 to neighbours v; and vy, respectively. Each recipient re-randomises the
nonce with a one-time pad and forwarding the messages until finally v receives one
message for each path from v;. However, because the one-time pads are based only
on the identity of the edge, the messages that arrive at v4 abide by a certain pattern.
Specifically, the difference between the respective pairs of messages received from
v4’s neighbours are the same:

(rara)(rarery) = rarery = (rprera) (rprerery). (5.1)

This implies that v; and v; share a common ancestor, which violates the protocol’s
privacy guarantees. Not re-using one-time pads is not a feasible remedy, because the
protocol requires one-time pads to be applied twice to cancel out. Running only one
flood at a time is not feasible either, because an adversary that knows that this is the
case can derive the same information as in Equation 5.1 by looking at the differences
in the time-to-live field of the messages.

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 93

rarerf
rbrbrerf

& Figure 5.1 Simplified example execution of the protocol in [Mar23], with starting
node vy and passive adversary v,4. The re-use of one-time pads allows v4
to detect patterns in received messages.

The approach in [Vor23] uses secure arithmetic based on Multi-Party Computation
(mMpc) to implement secure variants of various graph algorithms. We briefly highlight
two algorithms: one to detect cycles and another to enumerates cycles. The first
algorithm is based on the iterative vertex removal algorithm. This algorithm starts
with the full graph, and on each iteration removes all vertices that have no incoming
edges until the remaining structure contains only cycles, or is empty if no cycles exist.
Their mpc implementation makes use of a secret-shared adjacency matrix and uses an
auxiliary list of decision bits to indicate which bits have been removed. The output is a
boolean denoting whether the graph contains a cycle. The second algorithm finds and
enumerates cycles of a fixed size a by iterating over all possible paths and keeping only
those that are cycles. Work can easily be parallelised, which keeps the communication
(or round) complexity reasonable. Unfortunately, their approach requires a fully-
connected communication graph as the adjacency matrix and computations are shared
among all nodes. Consequently, the computational complexity scales with the network
size while being exponential in a.

Finally, we discuss topology-hiding computation, which is another form of mpc
which considers a partial communication graph. The goal is to perform shared compu-
tation while keeping the topology private. To the best of our knowledge, the work
in [ALM20] is the only topology-hiding work that covers our objectives: Their ap-
proach is round-based, is not specific to cycles, and performs computation over all
nodes in the partial graph. Their main contributions are a two-phase protocol based
on random walks, as well as a proof that topology-hiding computation is feasible for
arbitrary network topologies under the decisional Diffie-Hellman assumption. The first
protocol phase propagates a message forward using a random walk. Homomorphic
encryption is used to aggregate a secret bit for each node a message passes through.
Upon forwarding the message, nodes add an encryption layer. The second phase traces
back the walk, such that each node removes the layer of encryption added in the first
phase. The output contains the logical or of the secret bits. To obtain the complexities
for general graphs, consider the input n, x, where the input size is polynomial in the
security parameter k. The round and communication complexity are O(xn®) and
O(kn®) respectively. This makes the random walk approach infeasible for general
graphs with large n.

94 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

5.3 OUR PROPOSAL: DECENTRALISED CYCLE DETECTION

We propose a privacy-preserving protocol for detecting cycles in decentralised net-
works. Our protocol works by flooding a message through the network and inferring
the presence of a cycle when that message reaches the beginning again. To ensure
privacy, messages from the same flood should not be linkable, except for the initiator,
who can recognise when the message has completed a cycle.

We achieve this using a key exchange protocol, where each node that is reached by
the flood performs a key exchange with the initiator, communicating through the other
nodes. Once the flood reaches the initiator, the initiator does not immediately know
that this message corresponds to the flood they initiated. However, after completing
the key exchange, the initiator notices they have performed a key agreement with
themselves, proving the presence of a cycle. The initiator then sends a message to
determine which nodes are in the cycle. This way, our protocol leaks nothing about
the topology beyond a small set of paths.

In Section 5.3.1, we briefly present our preliminaries, including notation, network
model, and security model. In Section 5.3.2, we present the protocol in detail.

5.3.1 Preliminaries

Notation. We denote the size of a set X by |X|. We model the transaction network
as a directed simple graph G = (V,E) with nodes V and edges E € V x V. Each
edge (v;,v;) € E represents a transaction from v; to v;. We denote the set of all direct
neighbours of v € V by N(v). The sets of incoming and outgoing direct neighbours
of v € V are denoted by N~ (v) and N*(v), respectively. The degree of v € V is
given by d(v) = |N(v)|, its in-degree by d~(v) = |[N~(v)|, and its out-degree by
d*(v) == |N*(v)|. A path is a sequence of nodes (vy, . ..,v;). A (simple) cycle is a path
where v; = v and vy € {vy,...,0_1}.

Network model. Nodes are autonomous and have no common storage, memory, or
processing power. Each node has a unique identifier, and each node knows their direct
neighbours. The network is static throughout the protocol’s execution. Though the
network is directed, communication may occur in both directions along each edge.

Security model. Communication between nodes is reliable and cannot be modified,
but can be tapped by a global adversary. Additionally, a (non-strict) subset of nodes may
be adversarial. All adversaries are honest-but-curious and may exchange information
with each other. Additionally, all adversaries are probabilistic polynomial-time.

We define privacy as the inability of adversaries to learn about the topology beyond
their background knowledge and the intended output of our protocol. Concretely, for
any pair of nodes u,v € V, the adversary cannot guess whether (u,v) € E any better
after the algorithm than before, unless (u, v) is part of a cycle containing the adversary.
We formalise and analyse this notion in Section 5.5.

We do not consider attacks based on side channels or network traffic analysis based
on timing or volume. Some of these threats may be mitigated by using anonymous
communication, dummy traffic, and parallel execution of instances.

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 95

5.3.2 Protocol Details

During the protocol, nodes send various messages, and keep routing tables to be able
to send message back and forth along a specific route. We present a minimal example
of the exchanged messages in Figure 5.2, and a visual example in Figure 5.4 on page 105.
Our protocol uses the following messages:

« “flood”: The initiator starts by sending “flood” to each neighbour. Any node
that receives “f1lood” sends “flood” to each of their neighbours. The time-to-live
field in each “f1lood” message ensures the message is forwarded a limited number
of times. Each “flood” message contains a unique public key.

« “echo”: Any node that receives “f1lood” combines a fresh private key with the
contained public key, and sends this back to the sender in an “echo”. When a node
receive “echo”, it forwards this backwards through the flood, towards the initiator.

« “trace”: Once the initiator has established that there is a cycle, they send “trace”
to the next node in the cycle. Each node that receives “trace” appends their
identity to the list, and forwards it until it reaches the initiator again.

User a User b User ¢

(“flood”, Tab gka,b’ 3)

AN
(“echo”, rap, gkba)
<
(“flood”, ry., gfabkbe, 2)
>
(“echo”, rpe, g%0)
(“echo”, rpe, gtk ba)
a
(“flood”, rea gkea, 1)
a
(“echo”, req, gk‘l’c)
A
B (“echo”, rep, < eb)
(“echo”, rya» gku.c keb kb,a)
(“trace”, gkaxﬂ kebkba, {a})
A

(“trace”, gk“”" ke, {a,b})

(“trace”, geb, {a,b,c})

(“publish”, g‘ackeb ba (4, c})

(“publish”, gkackeb {4 b, c})

(“publish”, gkcvb, {a,b,c})

Figure 5.2 Example message exchange after node A initiates a flood of messages,
with nodes A, B, and C arranged in a simple directed cycle

96 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

« “publish”: When “trace” reaches the initiator again, the list of nodes is complete,
and sends it in an “publish” message to the next node. This node learns about the
cycle, and forwards the “publish” as well. When “publish” reaches the initiator,
the protocol is complete.

For the key exchange, we use Diffie-Hellman key exchange [DH76]. We assume that
all nodes agree upon a group G C Z, of order g where the decisional Diffie-Hellman
problem is hard, and that generator g of G is publicly known. When we do arithmetic
in G, we omit the modulo for simplicity. Our protocol uses security parameters x,,
kg, and k,: The values p and q have «,-bit and x4-bit security, respectively, while any
nonces generated in our protocol have «,-bit security.

The message exchanges described earlier are implemented over several algorithms.
It may help to imagine each algorithm running in a dedicated thread. The algorithm
Initiate is started by a node when that node desires to detect nearby cycles, and
kicks off a flood of messages. The algorithms Flood, Echo, Trace, and Publish
are run continuously by each node, and describe what a node does upon receiving a
message of the corresponding type.

Initiate

We present Initiate in Algorithm 1. This algorithm is run only by the initiating
node u when they want to kick off cycle detection. Recall that the initiating node u
also responds to messages as described in the other algorithms.

Node u starts by sending “f1ood” to each neighbour v, containing a nonce r,, , and a
public key gk«2. In Flood (Algorithm 2), each receiver v processes this message, result-
ing in a flood of key agreements, which are stored in the nodes’ private agreements
arrays, and “echo”’d back to the initiator (Algorithm 3). Back in Initiate, the
initiator inspects incoming “echo”s, completes the key exchange, and if it finds the
resulting key in the agreements array, then the exchange was apparently performed
with themselves, which proves the presence of a cycle. Using the information in
agreements, the initiator infers that the cycle starts with (u,v’) and ends with (w, u).
Therefore, the initiator sends “trace” to v’ to create a list of nodes in the cycle
(Algorithm 4), which ultimately comes back to node u through node w, containing the
list of nodes C. (The function of keys K and K’ is explained in subsequent algorithms.)
Node u finally publishes C by sending a “publish” message (Algorithm s5).

Flood

We present Flood in Algorithm 2. When node v receives a “flood” from some
node u, they generate fresh private key k,, and send g*»* back to node u in an
“echo”, reusing the nonce. Recall from Initiate that the key agreement K*ou is
stored in agreements to detect when self-agreement occurs. Next, node v forwards
the “f1oo0d” to its neighbours. The construction of these messages is similar to the
original message from Initiate, with one major difference: The key K is amended
with the fresh key k, ,,. Additionally, the local data structures before and after
are populated. These will be used in Echo (Algorithm 3) and Trace (Algorithm 4)
to efficiently send messages between nodes without broadcasting. Specifically, using
before, a message from w with nonce r, ,, can be sent back to u with nonce ry, ,, and
using after, a message from u with key K can be sent to w with key K,,.

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 97

Echo

We present Echo in Algorithm 3. When node o receives an “echo”, they send an
“echo” towards the initiator, using before to determine node u and nonce ry ,. This
repeats until the “echo” arrives at the initiator, who handles the message in Initiate.
Note that the same private key k, ,, that was applied to the “flood” to w is now
applied to the key that will eventually reach the initiator.

Trace

We present Trace in Algorithm 4. The algorithm is conceptually similar to Algorithm 3,
with two major differences. First, messages are forwarded in the other direction.
Second, messages are not identified by nonces, but using keys in after. Each time
the message is forwarded, the forwarded appends its identity to C. The initiator v has
different behaviour (Algorithm 1) upon receiving a “trace”; it sees that Cy = v, and
stops the forwarding. The check after[K] lets the algorithm differentiate between
the initiator and other nodes.

Publish

We present Publish in Algorithm 5. The algorithm is extremely similar to Algorithm 4.
The only difference is that the cycle C is now complete and can be appended to cycles
before being forwarded. The check after[K] ensures the initiator stops forwarding
the message.

Algorithm 1: Initiate, from the perspective of node u € V.

Data: agreements, cycles
Result: Starts flooding, waits for self-agreement, starts cycle recovery.

// Start key agreement flood
forov € N*(u) do

Tuo <R {0, 1}%r; ku,v <R Z:};

send (“flood”, ryp, gk“’“, t—1) tou;
end for

// Analyse incoming echoes until self-agreement occurs
while true do

receive (“echo”, r,, K) from any o’ € N*(u);

if exists (agreements[KFu 1) then // see Algorithm 2
(W, Ty K') < agreements[Kkuo J;

// Construct C

send (“trace”, K, {u}) tov’; // see Algorithm 4
receive (“trace”, K’, C) from w;

// Publish C

append C to cycles;

send (“publish”, K, C) to v’; // see Algorithm 5
end if

end while

98 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Algorithm 2: Flood, from the perspective of node v € V.

Data: agreements, before, after
Result: Starts back-propagation and continues flooding.

while true do
receive (“flood”, ry,,, K, £) from any u € N~ (v);
// Respond to sender, starting back-propagation
kv,u R ZZ;
agreements[Kk”r"] — (u, 1y, K); // used in Algorithm 1
send (“echo”, ry,, ng) to u;
// Continue flooding
if £ — 1 = 0 then continue;
for w € N*(v) do
To,w <R {0’ 1}Kr; kv,w <R Z;, K, «— Kkv’WZ

before[ryw] <« (U, ryo Kow); // used in Algorithm 3
after[K] <« (w, Ky); // used in Algorithm 4
send (“flood”, ryw, Ky, £ —1) tow;
end for
end while

Algorithm 3: Echo, from the perspective of node v € V.

Data: before
Result: Back-propagates echo messages to the initiating node.

while true do
receive (“echo”, ry ., K) from any w € N*(v);
if exists(before[ry,]) then
(U, Tuo, kow) < before[rymwl;
send (“echo”, ry,, ka) to u;
end if
end while

Algorithm 4: Trace, from the perspective of node v € V.
Data: after
Result: Determines which nodes are in the detected cycle.

while true do
receive (“trace”, K, C) from any u € N~ (v);
if exists(after[K]) then // see Algorithm 2
(w,K,,) <« after[K];
send (“trace”, K,,, C + {v}) to w;
end if

end while

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 99

Algorithm 5: Publish, from the perspective of node v € V.

Data: after, cycles
Result: Informs nodes in the cycle of the list of nodes in the cycle.

while true do

receive (“publish”, K, C) from any u € N~ (v);

if exists(after[K]) then // see Algorithm 2
append C to cycles;
(w,K,,) < after[K];
send (“publish”, K,,, C) to w;

end if

end while

5.4 PERFORMANCE

Firstly, in Section 5.4.1, we derive the worst-case complexity in terms of time, commu-
nication, and storage. Secondly, in Section 5.4.2, we discuss our implementation of our
protocol. Finally, in Section 5.4.3, we present the empirical complexity results of our
implementation.

5.4.1 Worst-Case Complexity

Communication. The number of messages in Flood and Echo each is exponential in
¢ and grows by a factor of n. The number of messages in Trace and Publish each is
simply the sum of lengths of the found cycles. Overall, given the set of found cycles C,
the communication complexity is O(nf + Y jcclol).

Computation. Each incoming message results in a function call of the corresponding
type. Trace and Publish each require a constant number of relatively trivial compu-
tations. However, Flood and Echo both require expensive exponentiations upon each
invocation: Flood requires one exponentiation per neighbour, and Echo requires a
constant number of exponentiations. The bit complexity of each exponentiation scales
with the security parameters from Section 5.3.2. Concretely, in Z,, each exponentiation
has a computational complexity of O((log x,)?) [MvOV96]. The overall computational
complexity is therefore O(n*!(logk,)* + Y, cclol).

Storage. Users may receive O(n’) different “f1ood”s. For each such message, that
user stores one k4-bit key plus for each outgoing neighbour one x,-bit key and one
K,-bit nonce. Also, users store the cycles they find during Publish. Overall, given the
set of found cycles C, the storage complexity is O(n“*!(kq + 1) + (X cclol)?) bits.

Observations. We conclude that our protocol exhibits its worst performance when
executed over a fully-connected graph, and its best performance when executed over
a fully-disconnected graph. For arbitrary graphs, the complexity is dependent on the
search depth ¢ and the degree distribution in the local neighbourhood. In particular, the
node with the highest out-degree contributes significantly to the complexity [Qiu+18],
and may be used instead of n to obtain a tighter bound.

100 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

5.4.2 Method

We use our publicly available implementation of the protocol, written in C++ [JD25].
Our implementation generates synthetic graphs in the Barabéasi-Albert model [ABo1].
The underlying principle of this model is preferential attachment: New nodes prefer
to connect to high-degree nodes, resulting in a power-law distribution over the nodes’
degrees. Many real-world phenomena, including financial markets [LV16], are thought
to have this property While empirical analysis shows that such networks are rare
in the real world [BC18], recall that the performance bottleneck in real-world cycle
detection is due to a small number of high-degree nodes [Qiu+18]. Therefore, we argue
that a power-law distribution is sufficiently realistic for our purposes.

The Barabasi-Albert model specifies two parameters, mq and my, plus the desired
number of nodes n. Generation is iterative and starts with a fully-connected graph of
size my. Each iteration adds a node, and randomly connects it to m; different nodes in
the existing network, with the sampling probability proportional to the existing node’s
degree. The direction of each new edge is decided by a fair coin toss. This process
repeats until there are n nodes in total. As is commonly done, we set m = mgy = m;. A
higher value of m corresponds to a denser graph.

For our security parameters (recall Section 5.3.2), we recommend setting x, = 3072
and x4 = 384, which is large enough to resist attacks [Bou+20, LLW24] on the discrete
log problem." The same paradigm applies to nonces, for which we recommend setting
Kk, to be at least 128 bits. The choice of security parameters affects the efficiency of
the protocol. This creates a well-known trade-off: stronger security results in worse
performance of the protocol.

For each m € [3,9], we generate a random graph with n = 50 nodes. For each
graph, for each ¢ € {2, 3,4}, we sequentially run our protocol once on each node, and
record the mean runtime t,y, the mean number of “flood” and “echo” messages,
the mean number of “trace” messages, and the mean number of cycles of length at
most £. We repeat this entire procedure 10 times, each time using a different random
group with x, = 60 and x4 = x, = 20.

5.4.3 Results

We present our results in Figure 5.3. Note the logarithmic y-axis in each figure. In
Figure 5.3a we see that the mean runtime grows exponentially as the graph becomes
denser, where higher values of ¢ result in an increased growth rate. In Figure 5.3b
we see a similar pattern for the communication complexity, as expected from our
asymptotic complexity analysis. In Figure 5.3¢c we see that the number of “trace”
messages grows slower than either the runtime or the number of “f1ood” and “echo”
messages, but certainly does not grow linearly either. This behaviour is best understood
by considering Figure 5.3d, in which we see the mean number of cycles that each user
is part of, and which has a roughly similar growth rate as the number of “trace”
messages. We note that the growth rate in these latter two figures may be different for
other types of graphs.

'The 2019 cryptographic guideline published by the National Institute of Standards and Techno-
logy [BR19] recommends picking a key size in the range of 128 to 3072 bits to mitigate security risks,
and considers key lengths of under 112 bits to be insecure.

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 101

s

of=4 8 = of=4] ?
0t =3 8 g 0f=3 ¢
. C] 5 10t e
= Lot I e[z e ;
o] g ¥ o ©
g 1 8 : °
E 102 8 8 g 10° °
£ a 8 =
El <)
& o 8 3
8 102
10° | S g
| 10! ‘
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Graph density, m Graph density, m
(a) Mean runtime of full protocol (b) Mean number of floods and echoes sent
ob=4) ¢ 102|ot=4 é e
w2 lloe=3 (] k¢ 0t=3 g
= =2 ' & t=
=] s]
£ [5 b4
2] (-] = Q
e 10! e ° < é
« o
~ @ —
F 2
0 g e
=
Z 10t
I
10*1‘
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Graph density, m Graph density, m
(c) Mean number of traces sent (d) Total number of cycles shorter than ¢
Figure 5.3 Empirical results for graphs with n = 50. Figures (i)-(iii) show the

performance of the protocol, where each data-point is the mean over
the 50 nodes. Figure (iv) shows auxiliary information resulting from the
graph generation method.

55 SECURITY ANALYSIS

We show that our protocol, introduced in Section 5.3, is secure. We say our protocol
achieves security (or rather: confidentiality) when running the protocol does not give
the adversary an advantage in guessing the (non-)existence of an edge beyond what
can be inferred from the intended outputs: cycles containing adversaries, and path
existence between adversaries.

The topology is encoded into our protocol in two places: in the message contents,
and in how the floods flow through the network. We can trivially show that message
contents alone are not sufficient to learn about the topology: The only messages
that explicitly encode the topology are “trace” and “publish”, but the contained
information corresponds to the intended outputs of the protocols, and therefore do
not constitute a breach of confidentiality.

We now focus on analysing what adversaries can learn from the way in which
messages flow through the network. Should an adversary learn that two received
messages belong to the same flood, then the adversary knows that their respective
senders are connected, which is more than the adversary knew before. Still, our

102 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

security model in Section 5.3.1 limits what adversaries can learn: Adversaries cannot
perform side-channel attacks based on the timing and volume of messages. However,
they can link messages together based on their contents, for example by detecting
patterns in the nonces. Some linkages are trivial and do not impact confidentiality,
which we capture in the following definition.

Definition 5. System of messages. Given a protocol message m and an adversarial
node u, the corresponding system of messages, denoted system,,(m), consists of all
messages that u can trivially infer to be part of the same flood as m. If mis a “f1ood”
received by u, then system, (m) contains m, the “echo” returned by u, all “flood”s
sent by u in response to m, all “echo”s received in response to those forwards,
and all “echo”s forwarded by u in response to those echoes. The function system,,
represents an equivalence class: For any m’ € system,, (m), we have that system,,(m) =
system,, (m’).

Furthermore, if a message m was sent from an adversarial node u to another ad-
versarial node v, then the set of messages that can be linked to each other consists of
both users’ systems of messages, system,,(m) and system, (m). In fact, these systems of
messages are therefore the same, large system of messages: system,,(m) = system,,(m).
This property is transitive.

We show that the adversary cannot determine whether two messages belong to the
same flood. We consider two messages that were sent to or received by one or more
adversarial nodes. We give a proof by contradiction. For the sake of contradiction,
we assume that the adversaries do derive whether the messages belong to the same
flood. If the two messages belong to the same system of messages, then they are
trivially linkable, but do not reveal information that the adversaries did not already
have access to. If they are not part of the same system of messages, however, we can
distinguish two distinct situations, depending on whether the messages are linked
sequentially, i.e. whether the path from the flood’s initiator to one of the messages
includes the other message. If they are linked sequentially, there clearly exists a path
between the adversarial nodes; since paths between adversaries are explicitly part of
the protocol’s output, this situation does not leak confidential information. Otherwise,
if the messages are not linked sequentially, the two messages have a common ancestor
node; since the ancestor independently re-randomises the messages before forwarding
them, the two messages are by definition unlinkable. Therefore, in all cases, adversaries
are unable to link messages together such that they gain undue information.

5.6 CONCLUSION

Anti-money laundering systems work by detecting patterns in transaction graphs. In
practice, data sharing prevents these systems from being deployed across legislative
boundaries. To this end, we have designed a decentralised privacy-preserving cycle
detection protocol. In our protocol, the initiating node floods their local neighbourhood
with messages and performs recursive key exchanges with the recipients. When the
flood reaches back to the initiator, a cycle must exist, which the initiator subsequently
uncovers in a sub-protocol. Our protocol can be run in parallel with many initiating
nodes, allowing the participants to collectively find all cycles in the network. We

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 103

show that participants learn nothing about the topology beyond the cycles, even when
participants collude.

Our protocol differs from existing works in that it is fully distributed. Previous works
have typically required knowledge of the full topology, or otherwise required all nodes
to be available simultaneously. These works thus cannot guarantee output delivery
when nodes become unavailable, and their computational complexities typically scale
with the size of the graph. Meanwhile, in our protocol, complexity scales depending
on the local neighbourhood only, with nodes learning only about cycles that they
themselves are part of.

Future work may include optimisations across parallel instances, ensuring only
simple cycles are found, multiple initiating nodes, and reusing the outputs of past
instances, for example to detect new cycles after the topology has changed.

104 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

RN RN
Ay O 20

e'e & -l

(a) Topology (b) Initiate, £ = 3 c) Forward/echo, ¢ = 2

§» 8o . Ox

B X@ <
@cf of @{;&9 ég/«@/@

(d) Forward/echo, £ =1 (e) Forward/echo, £ = 0. (f) Echo
Max depth reached.

2 Yo
P2 e 3?@ et

@a@/

g) Echo. S self-agrees. (h) Trace (1) Trace

@ 0
/ \)

/
@/ \@ L
ol oot

o%ot

(j) Trace (k) Publish (separately) (I) Reconstructed cycle

& Figure 5.4 Visualisation of the network behaviour during an instance of our protocol
with initiator S. Note the dotted lines, representing echoes being sent
opposite the edge’s normal direction. Also note that Figure 5.4k actually
shows three separate steps similar to the trace steps.

CHAPTER 5 & Privacy-Preserving Peer-to-Peer Cycle Detection 105

CHAPTER 6

=y S

Optimal Graph Stretching for Distributed Averaging

Abstract. The performance of distributed averaging depends heavily on the underlying topo-
logy. In various fields, including compressed sensing, multi-party computation, and abstract
graph theory, graphs may be expected to be free of short cycles, i.e. to have high girth. Though
extensive analyses and heuristics exist for optimising the performance of distributed averaging
in general networks, these studies do not consider girth. As such, it is not clear what happens
to convergence time when a graph is stretched to a higher girth.

In this work, we introduce the optimal graph stretching problem, wherein we are interested
in finding the set of edges for a particular graph that ensures optimal convergence time under
constraint of a minimal girth. We compare various methods for choosing which edges to
remove, and use various convergence heuristics to speed up the searching process. We generate
many graphs with varying parameters, stretch and optimise them, and measure the duration of
distributed averaging. We find that stretching by itself significantly increases convergence time.
This decrease can be counteracted with a subsequent repair phase, guided by a convergence
time heuristic. Existing heuristics are capable, but may be suboptimal.

—>0(C_—_o<——0o

Based on: Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Optimal graph stretching for distributed
averaging. 2025. arXiv: 2504 .10289.

https://arxiv.org/abs/2504.10289

6.1 INTRODUCTION

global mean of the nodes’ local values in a completely distributed manner.

Throughout the protocol’s iterative process, each node’s estimate of the global
mean continues to improve until a consensus is reached. Distributed averaging has
applications in various fields, including gossip learning [Boy+o5], fully-distributed
learning [VBT17], and control systems [HDC18]. In all cases, the challenge is to find
an algorithm that is efficient in terms of convergence time and communication cost.

The study of convergence in consensus algorithms is heavily tied to studies on syn-
chronisability in chaos theory, which, roughly speaking, studies the ability of disjoint
systems to synchronise spontaneously [PC98, BPo2]. We know from chaos theory
that the convergence time of distributed averaging is heavily tied to the underlying
topology [Boy+os, Li+10]. Optimising a topology for convergence time is hard [XBo4],
and so a multitude of heuristics have been proposed, including those based on graph
metrics such as degree, closeness centrality, and efficiency [HSo08, SB22], and on
spectral metrics such as eigenratio and algebraic connectivity [GBo6, XBo4].

Meanwhile, several fields study the girth of the network, which is the length of its
shortest cycle. In compressed sensing, high girth positively impacts reconstruction
guarantees [Kha+11, LX13]. In multi-party computation, the girth implies specific pri-
vacy guarantees [DEC25c]. Finally, in graph theory, high-girth graphs are an interest-
ing concept per se [Mar82], and are important when studying expander graphs [Par21].
Various authors have also proposed algorithms for increasing the girth of an existing
graph. Algorithms for coding theory focus on bipartite graphs [HEAo5, LTT11], while
algorithms for expander graphs focus on degree-regular graphs [Parz1].

To the best of our knowledge, there are no works that study the intersection of these
two areas. Therefore, in this work, we ask: How does “stretching” the girth of a graph
to a higher value affect the convergence time of distributed averaging? Additionally,
we ask how to minimise the number of leaf nodes, since these are undesirable in
various applications [AHLo2, DECz25c]. To answer both our questions, we formalise
our optimisation problem, consider several stretching and leaf minimisation algorithms,
optimisation heuristics, and graph families, and compare the results.

We find that stretching a graph to a higher girth significantly increases the con-
vergence time, typically by an order of magnitude. Since stretching consists solely
of removing edges, we find that the best algorithm prioritises the removal of those
edges that are in the largest number of cycles. Additionally, lost convergence time
can be recuperated partially by greedily optimising the edge set using a heuristic
for convergence time. Meanwhile, minimising the number of leaves has little impact
on convergence time, with little difference between the various algorithms studied.
Finally, though the studied heuristics are adequate for improving convergence time,
our results indicate that heuristics tailored for high-girth graphs may be able to achieve
even better convergence time.

In Section 6.2, we present our notation and various preliminaries. In Section 6.3,
we survey related work. In Section 6.4, we introduce the optimal graph stretching
problem and our exact research questions. In Section 6.5, we explain our research
method. In Section 6.6, we present our results. Finally, in Section 6.7, we offer our
conclusions.

@ ISTRIBUTED AVERAGING allows nodes in a peer-to-peer network to find the

108 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

6.2 PRELIMINARIES

In general, we denote the first element of a vector v by vy, the absolute value of a
scalar x by | x|, the cardinality of a collection S by |S|, the range of integers {0...n—1}
by [n], and the Euclidian norm of a vector v by ||o||,.

6.2.1 Graph theory

Basics. A graph G = (V,E) is a set of vertices V and a set of edges E C V X V. In this
work, we consider only simple graphs, i.e. unweighted, undirected, self-loopless graphs,
where each edge may occur at most once. For any node v € V, the function neigh(v)
gives the set of direct neighbours of v, and deg(v) gives the degree of v. The adjacency
matrix A of graph G is a |V|-by-|V|-matrix where, for any i, j € [|[V|], we have A; ; = 1
if (V;,V;) € E and A; ; = 0 otherwise. The (unoriented) incidence matrix B of graph G
is a |V|-by-|E|-matrix where, for any i € [|V]], j € [|E|], we have B; ; = 1if V; € E;
and B; ; = 0 otherwise.

Spectral theory. For any n-by-n matrix M, an eigenvector v is a vector such that
Mo = Av for some scalar A. This scalar A is the eigenvalue corresponding to v. The
matrix M has n (not necessarily unique) eigenvalues, collectively known as the spectrum
of M. For any 1 < i < n, we write A;(M) to mean the ith-smallest eigenvalue of M.
That is, 4; (M) < A,(M) < ... < A,(M). We drop the index M when the matrix is clear
from context.

Spectral graph theory. The Laplacian L of a graph G is the |V|-by-|V| matrix BB .
For any i, j € [|V|], we have L; ; = —A; ; if i # j and L; ; = deg(V;) otherwise. Some
eigenvalues of L are special: Ay = 0; A; is called the algebraic connectivity (and the
associated eigenvector is called the Fiedler vector); A, is called the spectral radius;
and ;11—,21 is called the eigenratio. The algebraic connectivity A; = 0 if and only if G is
connected [Fie73]. All eigenvalues increase monotonically with the edge set. (This
cannot be said for the eigenratio.) Formally, given graphs G; = (V,E;) and Gz = (V, E2)
where E; C E,, we have A;(L;) < 4;(L,) [Fie73]. In fact, the eigenvalues of the two
graphs become interlaced [GMSgo, Merg1]: A;(L1) < A;(Lz) < Air1(L1) < A1 (L2).

6.2.2 Distributed averaging

Consider a graph G = (V, E) with n := |[V| nodes. Each node v € V has a scalar value x,
and can communicate only with their direct neighbours neigh(v). In distributed
averaging, the task for each node is to find the global mean Zocv Xo,

Distributed averaging can be achieved using a distributed asynchronous push-pull
algorithm: Nodes iteratively calculate the mean of their local neighbourhood and then
replace their own value with that mean. Specifically, in this work, the algorithm we

consider has the following properties:
« Asynchronous [Boy+o6]: Users do not coordinate to choose which user is next.
Instead, users randomly and independently “wake up” and perform their iteration.

« Linear iterations [OMo3, XBo4]: Distributed averaging algorithms differ in which
neighbours are included in the averaging operation. To achieve convergence, it is
sufficient that each direct neighbour is selected with a non-zero probability [HDC18].

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 109

For simplicity, in our implementation, the initiating user selects one of its neighbours
at random.

o Push-pull [Dem+88]: The mean calculated by the initiating user is used as the new
local value of both the initiating user v (“pull”) and the selected neighbour w (“push”).

Implementing this type of distributed averaging requires each user to simultaneously
run two threads: one to initiate rounds, and one to respond. We show the corresponding
algorithms respectively in Algorithm 6 and Algorithm 7. To avoid overly complex
notation, these algorithms do not address issues relating to concurrency.

Algorithm 6: Active thread of Algorithm 7: Passive thread of
each user v in distributed aver- each user w in distributed aver-
aging aging
while true do while true do
sleep(); receive x, from v;
w <—g neigh(v); send x,, to v;
// random sample Xy XWTH”;
send x, to w; end while
receive x,, from w;
Xy m;
end while

6.3 RELATED WORK

To the best of our knowledge, there is no literature that covers the relation between
distributed algorithm convergence speed and graph girth. Therefore, in this section,
we survey those works that are most closely related. In Section 6.3.1, we discuss works
on the relation between topology and convergence. In Section 6.3.2, we discuss works
on high-girth graphs and short-cycle removal.

6.3.1 Convergence

There exists a vast body of work that analyses the relation between topology and
convergence. These works have their origin in physics, aiming to predict the ability of
dynamic networks to spontaneously synchronise [PC98, BPoz]. Since similar dynamics
occur in distributed systems, results on synchronisability were adopted into computer
science, where the concept is referred to as convergence [DHMos, Li+11, Liu+14]. For
simplicity, in the following overview, we will speak of convergence even if the cited
work is about synchronisation.

Spectral theory. Pecora and Carroll [PC98] and Barahona and Pecora [BPo2] show
that the convergence speed of a graph is determined by the eigenvalues of that graph’s
Laplacian. Subsequent literature often uses algebraic connectivity and eigenratio as
heuristics of the graph’s convergence speed.

Kar, Aldosari and Moura [KAMo6] show that (non-bipartite) Ramanujan graphs
exhibit high convergence speeds, both as expected from their eigenratio, and as
validated in numerical simulations. The authors point to various constructions of
Ramanujan graphs in literature.

110 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Donetti, Hurtado and Muiioz [DHMos5] propose a new family of graphs that achieve
fast convergence: entangled networks. They propose an algorithm that finds entangled
networks with a desired number of nodes and average degree. The algorithm starts with
an arbitrary graph and, in each iteration, chooses random pairs of edges, performs
an edge exchange on each edge pair ((ey, e2), (e3,e4)) to get ((ey, es), (€2, €3)), and
accepts the change if the eigenratio decreases. By using simulated annealing, the
algorithm avoids getting stuck in local optima. Donetti, Neri and Muiioz [DNMo6]
extend their analysis, and show that entangled networks correspond exactly to so-
called cage graphs and Ramanujan graphs. However, the authors conclude that the
aforementioned algorithm is inefficient for finding Ramanujan graphs compared to
existing literature.

Wang et al. [Wan+o7] improve upon the aforementioned edge exchange algorithm
by using tabu search instead of simulated annealing. The authors also observe that
the clustering coefficient is a good heuristic to predict convergence speed, and show
that basing the search algorithm’s acceptance criterion on the clustering coefficient
also creates graphs with high convergence speeds.

Ghosh and Boyd [GBo6] propose a greedy algorithm to optimise algebraic con-
nectivity. At each iteration, find the Fiedler vector u, and add the edge (i, j) with
largest (u; — u;)®. Since the work focuses on optimising algebraic connectivity, it is
not clear how this algorithm affects the convergence speed of distributed averaging.

Degree relations. Rad, Jalili and Hasler [RJHo8] propose an algorithm that removes
edges based on the sum of adjacent node degrees, and adds edges using the Fiedler
vector criterion of Ghosh and Boyd [GBo6], and shows that this results in a network
with optimised eigenratio, which coincides with Ramanujan graphs. The authors note
that many other metrics provide similar results.

In a series of works, Yang and Tang [YT11], Yeung et al. [Yeu+12], and Liu et al.
[Liu+14] create increasingly performant heuristics for maximising convergence speed.
Ultimately, they settle on a tabu search-based algorithm in which edges are removed
and added as done by Rad, Jalili and Hasler [RJHo8], and accept the resulting candidates
depending on whether the eigenratio improved. The algorithm prefers adding edges
between nodes that are within a short distance of each other in the underlying physical
network, and ensures that the resulting graph is connected.

However, Donetti, Hurtado and Mufioz [DHMo8] show that while degree-degree
associations of neighbouring nodes indeed correlate negatively with the network’s
convergence speed, this correlation is not causative, as the mere act of introducing
such heterogeneity does not by itself decrease the eigenratio.

Comparisons. Hagberg and Schult [HSo8] compare a multitude of greedy edge-
modifying algorithms to determine which methods achieve convergence in the fewest
iterations. Overall, they conclude that methods that focus on increasing algebraic
connectivity outperform those based on spectral radius and degree criteria, and that
edge exchanges are not necessarily better than separate edge additions and removals.
The authors do not consider eigenratio as a separate optimisation metric.

Sirocchi and Bogliolo [SB22] extensively compare metrics and find that the metrics
that most strongly correlate with high convergence speed of a distributed consensus
protocol are high closeness centrality, implying that information travels quickly, and

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 111

small clustering coefficient, implying that information is sent non-redundantly. How-
ever, these metrics vary in their accuracy for different graph families. Unfortunately,
the authors do not investigate eigenratio as a metric.

6.3.2 Girth
We discuss works related to (increasing) girth in graphs.

Moore bound. Firstly, we note the Moore bound [Bigg3]. For d-regular graphs with
girth g, the number of nodes must be at least

{2 Zfig_l(d -1) if girth is even (6.)

1+d X9V @ - 1)1, if girth is odd.

i=0

Alon, Hoory and Linial [AHLoz] show that if d is taken to be the graph’s average
degree, and each node has at least degree two, Equation 6.1 also holds for irregular
graphs. Consequently, another way to interpret the Moore bound is to say that, given
the number of nodes and a desired girth, there is an upper limit on the number of
edges. Therefore, when a higher girth is desired, the Moore bound dictates that it may
be necessary to remove some edges.

High-girth graph constructions. We note several works that present algorithms for
constructing graphs with high girth. Though these works do not consider increasing
girth in arbitrary existing graphs, the algorithms are interesting nonetheless.

Chandran [Chao3] provides a construction of high-girth almost-regular graphs.
Briefly, this algorithm takes the number of nodes n, the desired average degree k < 7,
and outputs a graph with girth g > log, (n) + O(1). The algorithm starts with n nodes
and the edges being a perfect matching on those nodes, and then iteratively adds edges
between the most distant pair of nodes such that at least one of the nodes in the pair
is a node with the lowest degree globally. The graph is almost regular in the sense
that any two nodes differ in degree by at most two.

Linial and Simkin [LS21] provide a construction of high-girth regular graphs. Their
procedure is similar to that of Chandran [Chao3], but starts with a Hamiltonian cycle G
on n vertices instead, and, with high probability, gives a k-regular graph with girth at
least clog;._,(n) for input 0 < ¢ < 1.

Finally, Lazebnik, Ustimenko and Woldar [LUWgs5] present a family of high-girth
bipartite graphs, but their method cannot be adapted to non-bipartite graphs.

Short-cycle removal. Paredes [Parz21] gives a polynomial-time algorithm that, given a
d-regular (r, 7)-graph (that is, such that each node has at most one cycle within r hops,
and has at most 7 cycles of length at most r), where r < élogd_1 (%) — 5, outputs
a graph with girth g > r, while ensuring all eigenvalues remain unchanged except
for a bounded factor. Briefly, the algorithm works by breaking up all short cycles
by removing an arbitrary edge in each, and then adding new edges to restore the
spectrum, without reintroducing short cycles. Though this work is the closest to our
research question, it does not explicitly investigate the effect stretching has on the
convergence speed.

Finally, Hu, Eleftheriou and Arnold [HEAo5] and Lau, Tam and Tse [LTT11] both
present what are effectively modifications of the aforementioned work by Chandran
[Chaos] specifically for bipartite graphs.

112 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

6.4 OPTIMAL GRAPH STRETCHING PROBLEM

We consider the problem of increasing the girth of a connected graph G = (V, E) to
some g > 3 while achieving maximal distributed averaging convergence speed and
ensuring that the graph has (almost) no leaves. Here, convergence speed refers to the
reciprocal of the averaging time, which is the expected number of rounds until all
nodes are sufficiently' close to the average [Boy+o5]. Formally, the problem is to find

Soax convergence speed of H := (V,E’)
such that H is a simple connected graph
[{v € V :deg(v) <2} =0
girth(H) > g
Since this problem is non-linear, it is hard to solve efficiently. Therefore, we relax
our problem definition as follows:
« Optimising the convergence speed of a graph is hard [XBog4]. Therefore, we settle

for a heuristic; recall Section 6.3.1.

« As seen in Moore’s bound, there is a difficult-to-control interaction between girth
and the number of edges. Therefore, we tolerate the presence of some leaves, as
long as a best-effort attempt is made.

Given this relaxed problem formulation, we ask the following research questions:

« How does leaf minimisation affect convergence speed?
« What is the effect of different stretching methods on convergence speed?

« What heuristic achieves maximal convergence speed?

We describe our method in Section 6.5 and present our results in Section 6.6.

6.5 METHOD

We present our method for answering the questions posed in Section 6.4. At a high
level, the way we solve the optimal graph stretching problem is to first modify the
given graph to satisfy the constraints, and then greedily optimise for the convergence
speed heuristic. More specifically, our approach consists of the following steps:

1. Generate a graph. (Section 6.5.1)

2. Increase the girth. (Section 6.5.2)

3. Minimise the number of leaves. (Section 6.5.3)
4. Optimise graph using a heuristic. (Section 6.5.4)
5. Run distributed averaging. (Section 6.5.5)

We repeat this procedure 500 times for each combination of parameters. We provide
more details in the subsequent sections. Source code for the experiments is publicly
available [Dekzs5]. We present the results of our method in Section 6.6.

"The formal definition of “sufficiently” is given in the cited works, but is not relevant for our formulation.

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 113

6.5.1 Generate Graphs

The accuracy with which heuristics predict convergence speed varies between graph
types [SB22]. Therefore, we generate graphs from four families commonly used to
model real-world networks. Each graph is characterised by its number of nodes n and
some family-specific parameters. For all graphs, we choose n uniformly randomly from
the range {25...100}. After fixing a set of parameters, we keep generating graphs
until a connected graph is found. We consider the following graph families:

« (n,p) Erd6s-Rényi graphs, where p determines for each possible edge the probability
that it is included. We choose p uniformly random from real range [In(n)/n, 1],
ensuring an overwhelming probability of being connected [ER60].

« (n,k, p) Watts—Strogatz graphs, which have small-world properties (i.e. high cluster-
ing and low distance), which are generated by connecting each node to the previous k
and next k nodes (creating a ring lattice), and then rewiring each edge with prob-
ability p. We choose k uniformly random from integer range [1, floor (n/2)) and p
uniformly random from real range [0, 1], which is the full range of valid parameters.

« (n,m) Barabasi-Albert graphs, which have scale-free properties (i.e. asymptotic
degree distribution), which are generated by starting with a star topology with
m + 1 nodes, and then iteratively adding the remaining nodes. Each new node is
connected to m random existing nodes, with probabilities proportional to nodes’
degrees, without replacement. We choose m uniformly random from the integer
range [1,n), which is the full range of valid parameters.

« (n,r) geometric graphs, which represent physical networks, and are generated by
placing the nodes uniformly random in the unit square, and connecting pairs of
nodes within Euclidean distance at most r. We choose r uniformly random from
real range [1.1 X 4/log(n)/(nx), 1), ensuring an overwhelming probability of being

connected [Peng7].

6.5.2 Stretch Graphs

Though the underlying application we consider is a distributed protocol, the stretching
algorithm itself need not be distributed. To stretch the girth of a graph to threshold g,
all cycles with length below g must be removed. Trivially, it suffices to find all short
cycles and remove one edge from each. However, since cycles may overlap, this naive
method may disconnect the graph, and typically removes more edges than necessary.

In our experiments, we stretch graphs from girth 3 up to and including 10. Here,
girth 3 represents no stretching at all (because every graph has girth at least 3), and
girth 10 was chosen because preliminary experiments revealed that very little happens
when stretching to even higher girths.

We consider three approaches for stretching a graph to a desired girth. All three
approaches work by repeatedly removing a specific edge until the girth has reached g,
but differ in how they select that edge:

« Random: Any edge that is part of a cycle.
+ Least-Cycles: The edge that is part of the smallest number of shortest cycles.
« Most-Cycles: The edge that is part of the largest number of shortest cycles.

114 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

Each approach considers only those edges that can be removed without disconnecting
the graph. When multiple edges match the criterion, one such edge is chosen randomly.

Remark 5. Note that the third method is expected to remove the most edges. We
include it nonetheless because the subsequent optimiser in Section 6.5.4 may benefit
from starting with fewer edges.

Remark 6. Note that the second and third method consider the “number of shortest
cycles”, not the “number of short cycles”. If the graph currently has girth ¢’, then only
cycles with exactly length g’ are counted. Eventually, the graph reaches girth ¢’ + 1,
and only cycles with exactly length ¢’ + 1 will be counted, and so on until the graph
reaches girth g. The reason for this is that the “number of short cycles” quickly
becomes infeasibly large, while the “number of shortest cycles” remains much smaller.
For example, the complete graph with 25 nodes has 2300 length-3 cycles, 10 626 ooo
length-6 cycles, and 41186 376 ooo length-9 cycles. After most-cycles stretching to
girth 4, only 157 392 length-6 cycles and 8 015 760 length-9 cycles remain, and, after
subsequently stretching to girth 5, 84 length-6 cycles and zero length-9 cycles remain.

Finding all cycles with length equal to the graph’s girth can be done using a simple
depth-first search. We perform this search once at the start, and once again whenever
the girth increases. We store the results in a sparse matrix with a row for each cycle
and a column for each edge, similar to an incidence matrix. (If cycles are hyperedges,
then this is the incidence matrix of that hypergraph.) When an edge is removed, its
column is removed from the matrix, and so are all rows that contained that edge. This
way, rows always correspond exactly to eligible cycles, and columns to edges that can
be removed without disconnecting the graph. Finding the edge that is in the largest
number of cycles is simply a case of finding the column with the largest number of
non-zero values. Columns can be mapped to edges by keeping track in a map.

6.5.3 Minimise Leaves

We minimise the number of leaves in the graph without removing nodes and without
reducing girth below the threshold g. We present three methods, which are variations
of one algorithm. We repeat each experiment four times: once for each method, and
once without leaf minimisation.

The high-level algorithm works by iteratively adding edges between pairs of nodes.
To ensure the girth does not sink below ¢, pairs with distance strictly less than g — 1
are excluded. Initially, the algorithm only connects leaves to other leaves, but when
no suitable pairs remain, the algorithm moves on to connect leaves to non-leaves. The
algorithm terminates when no suitable pairs remain.

The three leaf minimisation methods we propose all use the above algorithm but
differ in how they choose which pair to connect from the list of candidates:

« Random: Connect a random pair of nodes.
« Closest: Connect the pair of nodes with the shortest distance.

« Furthest: Connect the pair of nodes with the largest distance.

This method may fail to remove all leaves in some cases. For example, when girth
is stretched to g = 4, this may create a star topology, after which adding an edge will
always reduce the girth to g = 3. In this case, our method will not add any edges. As
noted in Section 6.4, this is acceptable.

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 115

6.5.4 Optimise Convergence

After minimising the number of leaves and stretching the graph to the desired girth,
we optimise the graph’s convergence speed for distributed averaging. We run a
greedy algorithm that adds or removes edges until any such change would worsen the
convergence speed. To estimate the convergence speed, we employ a heuristic. We
do not allow the addition or removal of edges that would disconnect the graph, add
leaves, or decrease girth below the desired value.

Our choice of heuristics is based on Section 6.3.1: We choose two graph metrics that
are known the correlate well with convergence speed [SB22], and two spectral metrics
known to provide bounds on convergence speed [GBo6]. We repeat each experiment
several times, once for each heuristic:

« Eigenratio. Equals % Maximised.

« Algebraic connectivity. Equals 1,. Maximised.

« Closeness centrality. Equals },cy (ZWF1) /1V], given pairwise distances d.

ueVdu,v
Maximised.

« Global efficiency. Equals W DYiveV.auto dL, given pairwise distances d.
Maximised.

Remark 7. The choice for maximisation (rather than minimisation) is based on prelim-
inary results that show that, in our setting, each of these heuristics correlates positively
with convergence speed.

Remark 8. We do not consider clustering coefficient as a metric because, for girth
larger than four, the clustering coefficient is always zero by definition.

We efficiently choose edge removal candidates by finding a cycle basis of the current
candidate graph. This reveals the list of all edges which are in any cycle of any length.
These are exactly the edges that can be removed without disconnecting the graph,
since an edge is part of a cycle if and only if the two end nodes have at least two
different paths to each other.

We efficiently choose edge addition candidates by finding all pairs of nodes with
distance at least g — 1. Adding an edge anywhere else would create a short cycle.

The above operations and heuristics require knowing at each iteration the adjacency
matrix, degree matrix, and pairwise distances. Instead of constantly recalculating
these, we calculate these for the initial graph and “patch” them when an edge is added
or removed. These patches all take constant time, except for patching the pairwise
distances when an edge is added, which requires a complete recalculation.

6.5.5 Run Distributed Averaging

We use the asynchronous push-pull model with single-neighbour selection, as de-

scribed in Section 6.2.2. At any point in time, given the vector of initial values x and
[P

the vector of intermediate values x, we define the error norm as

Each node is assigned an integer value uniformly random from the range [0, 50]. We
continue the protocol until the error norm is less than o.01. The convergence time is
then the number of rounds taken until convergence is achieved. For each experiment,

116 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

to control for randomness, we run 10 instances of distributed averaging, and take the
mean convergence time.

The range of starting values does not affect the output; only the variance does.
Similarly, the exact error norm bound does not qualitatively affect our results.

6.6 RESULTS

We present the results obtained through the method in Section 6.5. Firstly, we look at
the impact that girth stretching has on convergence time, without considering leaf
removal and optimisation in Section 6.6.1. Secondly, we consider the impact of leaf
removal in Section 6.6.2. Finally, we look at the real meat of this work, which is the
comparison of various heuristics, specifically when combined with stretching and leaf
removal in Section 6.6.3.

In all figures, we use shaded areas to show the 95% confidence interval, calculated
over 500 independent samples per plot point.

6.6.1 Stretching

We compare the stretching methods by the number of edges removed, number of
leaves created, optimisation heuristics, and convergence time.

Edges and leaves. In Figure 6.1a, we show the proportion of edges removed by stretch-
ing for each combination of graph family and stretching method. Note that a girth
of three implies that no stretching has taken place. Though the proportion quickly
increases for all experiments, it also immediately flattens out. This shows that, at
least in these graph families, removing all short cycles is typically sufficient to re-
move the majority of longer cycles (recall Remark 6 on page 115). As expected, the
most-cycles stretching method removes the smallest proportion of edges, followed
by random stretching, and then least-cycles stretching. Watts—Strogatz graphs and
Barabasi—Albert graphs require removing the smallest proportion of edges; their being
highly clustered means that most cycles are centred around just a few edges, which
are quickly removed. However, as girth increases, differences between graph types
and stretching methods diminish significantly.

1 50
08| f——— 40
2 0 .
S o. »
E 4
2 g
2 04 =
oo
0.2}/
0
3 4 6 8 10
Stretched girth Stretched girth
(a) Proportion of edges removed (b) Number of leaves remaining
— Erdés-Rényi Barabési-Albert 4 Random stretching A Most-cycles stretching
—— Watts-Strogatz == Geometric % Least-cycles stretching

& Figure 6.1 Analysis of edges after stretching to a desired girth

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 117

In Figure 6.1b, we show the number of leaves in stretched graphs. All graphs have
(nearly) no leaves at girth 3, which is before any stretching takes place. The number
of leaves quickly goes up when the graph is stretched, with major differences between
graph types and stretching methods. Among graph types, we observe that Barabasi—
Albert graphs have significantly more leaves than all other graph types regardless of
which stretching method is used. This is because these graphs have many low-degree
nodes, so the removal of any edge is likely to create a new leaf. When we compare
stretching methods, we see that, regardless of graph type, most-cycles stretching
creates very few new leaves even when stretching to girth 10, random stretching
performs approximately three times as badly, and least-cycles stretching shoots up so
quickly that it hits a ceiling because the stretched graph is (nearly) a tree.

Convergence heuristics. In Figure 6.2, we show the convergence time heuristics for
stretched graphs. In all cases, higher is better. The four heuristics behave quite similarly,
predicting worse convergence time as girth increases, but predicted performance
flattens out at higher girths. Across graph types, all heuristics predict that Barabasi-
Albert graphs and geometric graphs perform worse when stretched to low girths, but
joins up with the rest once stretched to girth 10. Across stretching methods, least-
cycles stretching typically drops down immediately before flooring out, while random
stretching and most-cycles stretching approach this floor gradually with increased
girth, with the latter keeping higher predicted convergence times.

We note that the most-cycles stretching method exhibits a “sawtooth” pattern, where
heuristics drop harder at odd values than at even values. When we inspect cycle counts
in individual graphs, we find that stretching to an even girth typically also removes a
disproportionate amount of odd-length cycles, even those longer than the desired girth.
For example, after stretching to girth 4 with the most-cycles method, the resulting
graphs often end up having fewer length-7 cycles than length-6 cycles, even though
this is not true for any of the unstretched graphs. This holds even if we use a variant
of the most-cycles stretching method that counts all cycles, not just the shortest ones
(see Remark 6 on page 115). This effect is most pronounced in Barabéasi-Albert graphs.

Convergence time. InFigure 6.3, we show the empirical convergence time for stretched
graphs. Lower is better. It is immediately clear that least-cycles stretching performs
terribly, presenting a fourfold increase compared to random stretching, and a seven-
fold increase in convergence time compared to most-cycles stretching. We see from
Figure 6.2 that the heuristics are decent predictors of convergence time, though the
predicted divide between graph types is not present in the empirical measurements.
We note, however, that an even better predictor of performance is the number of leaves
removed (see Figure 6.1b), or rather, the number of nodes removed.

We conclude that convergence time is seriously impacted by stretching, but that this
is not due to cycle removal per se, but due to the removal of many edges. Therefore,
most-cycles stretching is the optimal method, despite its sawtooth behaviour.

18 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

i
2
o 107! 3
E g
g S
o g
& g
8
1072 5
<
I o 3 %
3 4 6 8 10
Stretched girth Stretched girth
(a) Eigenratio (b) Algebraic connectivity
10701
&
T;;
= >
: g
@ 5 10-04
p g 10
g =
2
O
Stretched girth Stretched girth
(c) Closeness centrality (d) Efficiency
= Erd6s-Rényi Barabési-Albert 4 Random stretching A Most-cycles stretching
— Watts-Strogatz = Geometric % Least-cycles stretching

& Figure 6.2 Convergence heuristics after stretching to a desired girth

— Erdés-Rényi

— Watts-Strogatz
Barabasi-Albert

— Geometric

=+ Random stretching

% Least-cycles stretching

A Most-cycles stretching

Convergence time

3 4 5 6 7 8 9 10
Stretched girth

' Figure 6.3 Convergence time after stretching

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 119

6.6.2 Leaf Minimisation

We look at how effective leaf minimisation is at removing leaves, and at its effect on
convergence time.

Leaves and edges. In Figure 6.4, we show the number of leaves that remain after leaf
minimisation. Note that, unlike previous graphs, colours indicate leaf minimisation
method, not graph family. The lines representing no leaf minimisation correspond
exactly to Figure 6.1b. When we compare stretching methods, we see that least-cycles
stretching creates the largest number of leaves, followed by random stretching, and
then most-cycles stretching, though the latter two are close. When we compare leaf
minimisation methods, we see only small differences, with closest leaf minimisation
most effectively eliminating leaves, followed by random leaf minimisation, and finally
furthest leaf minimisation. There are no significant differences between graph types.

In Figure 6.5, we show the number of edges added by leaf minimisation. Recall that
our minimisation method starts by connecting leaves to each other before connecting
leaves to non-leaves, and thus the number of edges added is not necessarily linear in
the number of leaves eliminated. The lines for most-cycles stretching and random
stretching are similar to their counterparts in Figure 6.4, whereas the least-cycles
stretching line goes down when girth goes up. The latter result is visible in Figure 6.4:
The number of leaves before minimisation hits a ceiling and stays the same, while
the number of leaves after minimisation increases. Thus, fewer leaves have been
eliminated, and therefore fewer edges must have been added. Overall, this implies
that the graph’s diameter (the length of the longest shortest path) resulting from
least-cycles stretching is too small to allow leaf minimisation without reducing girth.

Convergence time. In Figure 6.6, we show the convergence time after leaf minimisa-
tion. There are no significant differences between leaf minimisation methods. Though
the sawtooth pattern with most-cycles stretching complicates the graphs, it is clear that
leaf minimisation improves convergence time for all stretching methods, especially
least-cycles stretching. However, we argue that it is not the leaf minimisation itself
that improves the convergence, but simply the fact that any edges are added to the
graph. This is apparent from the lack of similarity to Figure 6.4 and Figure 6.5. We
conclude that leaf minimisation is neither detrimental nor beneficial to performance.

6.6.3 Optimisation
Finally, we look at the effect of optimising convergence time with heuristics.

Number of edges. InFigure 6.7, we show the number of edges added or removed during
optimisation, without considering leaf optimisation. Intuitively, this is a measure of
how many steps stretched graphs are removed from the optimum. On average, graphs
have 238 edges before optimisation and 380 edges after optimisation, with significantly
more edges added than removed. However, the number of changes decreases as
girth increases. Though greedy algorithms may get stuck in local optima, additional
experiments using simulated annealing based on the method by Jalili and Rad [JRog]
show that even search algorithms without this drawback require a decreasing number
of changes to the edge set. The downwards trend thus appears to be inherent to the
optimal graph stretching problem itself.

120 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

50 50

40 40
3 30 3 30
> >
< <
=20 =20
10 10
04 - 03
3 4 6 8 10 3 4 6 8 10
Stretched girth Stretched girth
(a) Erdés—Rényi (b) Watts—Strogatz
50
40
9 3 30
g 5
S S 20
10
0
3 4 6 8 10
Stretched girth Stretched girth
(c) Barabasi—Albert (d) Geometric
+ Random stretching A Most-cycles stretching = No minimisation Closest minimisation
% Least-cycles stretching = Random minimisation == Furthest minimisation

& Figure 6.4 Number of leaves remaining after leaf minimisation

25 25
20
o k=
i L
T 15 =F 3
< <
o o
& 10 &
= =
[[
5
w
0 e e 4 % % o ok
3 4 6 8 10
Stretched girth Stretched girth
(a) Erd6s-Rényi (b) Watts—Strogatz

25

Edges added
Edges added

Stretched girth Stretched girth
(c) Barabasi—Albert (d) Geometric
+ Random stretching A Most-cycles stretching = No minimisation Closest minimisation
% Least-cycles stretching = Random minimisation == Furthest minimisation

Figure 6.5 Number of edges added during leaf minimisation

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 121

When we compare graph types, we see that they differ only in scale, with Barabasi—
Albert graphs requiring the most changes. In all four graph types, stretched graphs
require the fewest changes after most-cycles stretching, followed by random stretching,
and then least-cycles stretching. The only exception is low-girth graphs optimised by
eigenratio, where all stretching methods perform similarly.

Convergence time. In Figure 6.8, we show the effect of heuristic optimisation on
convergence time per graph family. Note the different y-axis scale per column. All
sixteen graphs have many similarities. When we compare stretching methods, most-
cycles stretching and random stretching achieve the lowest convergence time, followed
by least-cycles stretching, defeating the hypothesis that the optimiser may benefit from
fewer edges being removed. When we consider leaf minimisation, we see that there is
little difference between the various methods, and confirm that leaf minimisation by
itself is not responsible for improved convergence time. When we compare heuristics,
we also do not see a clear winner. Though graphs stretched with the least-cycles method
appear to benefit from choosing the right heuristic for the graph type, differences are
much smaller for the other stretching methods. Finally, several figures, especially those
describing Barabasi-Albert graphs, contain the aforementioned sawtooth pattern.

6.7 CONCLUSION

We investigated the relation between a graph’s girth and the convergence time of
distributed averaging. We introduced the optimal graph stretching problem, which is
the task of increasing the girth of a graph while keeping the convergence time and
number of leaves minimal, and the graph connected. We proposed and implemented
a sequence of algorithms to solve this problem, which we applied to hundreds of
thousands of graphs, after which we measured the results.

We find that stretching the girth of a graph increases convergence time proportional
to the number of edges removed. Consequently, stretching by iteratively removing
the edge that is simultaneously in the largest number of cycles results in the smallest
convergence time cost. Furthermore, convergence time can be recuperated using
a greedy algorithm to add edges without decreasing girth. Finally, minimising the
number of leaves does not affect convergence time.

We note a few possible avenues for future work. Firstly, the aforementioned stretch-
ing method creates a sawtooth pattern in the distribution of cycle lengths, which
may be of independent interest. Secondly, the studied heuristics correlate worse with
convergence time than in related work; we postulate that our results may be improved
by developing high-girth-specific heuristics. Finally, our solution to the optimal graph
stretching problem requires global knowledge of the graph, but for ad-hoc networks it
may be useful to create a distributed solution.

122 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

ﬂ) L
£ g8 £
[[
Q Q
g / g
2 2
14 14
S 10° o

L

3 4 6 8 10 3 4 6 8 10

Stretched girth Stretched girth
(a) Erd6s-Rényi (b) Watts—Strogatz

Convergence time
Convergence time

Stretched girth Stretched girth
(c) Barabasi—Albert (d) Geometric
+ Random stretching A Most-cycles stretching = No minimisation Closest minimisation
% Least-cycles stretching = Random minimisation == Furthest minimisation

& Figure 6.6 Convergence time after leaf minimisation

Edges changed
Edges changed

3 4 6 8 10
Stretched girth Stretched girth
(a) Erd6s-Rényi (b) Watts—Strogatz

Edges changed
Edges changed

3 4 6 8 10
Stretched girth Stretched girth
(c) Barabasi—-Albert (d) Geometric
+ Random stretching A Most-cycles stretching — Eigenratio Closeness centrality
% Least-cycles stretching = Algebraic connectivity = Efficiency

@ Figure 6.7 Number of edges added or removed during optimisation

CHAPTER 6 ¢ Optimal Graph Stretching for Distributed Averaging 123

Erdés—Rényi Watts—Strogatz Barabasi-Albert Geometric

10%3 10%3
103 i ; 103%
34 6 8 10
10%3 10%3
10° : 10% i
34 6 8 10
1035 T103°
10° 10%
34 6 8 10
03 '
34 8

Eigenratio
Convergence time

Algebraic
Connectivity

Convergence time

Closeness
Centrality
Convergence time

34 6 8 10

6 8 10 6 10 34 6 8 10 6 8 10
Stretched girth Stretched girth Stretched girth Stretched girth

1033 1035

103 1

Efficiency
Convergence time

w
.
w
w

+ Random stretching A Most-cycles stretching — No minimisation Closest minimisation
% Least-cycles stretching = Random minimisation == Furthest minimisation

Figure 6.8 Convergence time after heurisical optimisation, with columns indicating
the graph type, and rows indicating the heuristic that was optimised

124 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

ParT IV

SR

Epilogue

CHAPTER 7

=y e

Discussion

we require a deeper understanding of reconstruction attacks. Current security

frameworks allow proving that nothing leaks beyond what can be inferred from
the outputs, but determining what can be inferred from the outputs is itself an open
question. While several recent works have studied reconstruction attacks in mpc, this
direction of research is young, and there are no comprehensive theories yet. This
dissertation contributes to our understanding of the privacy guarantees of mpc by
developing a graph-theoretic model of reconstruction attacks on summations.

We have enhanced the privacy-preserving summation primitive by proposing two
extensions to respectively achieve input and output validation, showed the feasibility
of reconstruction attacks, described these attacks in graph-theoretic terms, and em-
pirically validated the applicability of our defences to distributed averaging. Though
our results on reconstruction attacks apply to all sequence of sums in all contexts
and all architectures, the exemplifying use case in this dissertation has been privacy-
preserving distributed averaging, which can be implemented as a sequence of local
summations in a distributed network. Beyond distributed averaging, summation alone
is a sufficient primitive to implement more complex operations such as principal
component analysis, singular-value decomposition, and decision tree classifications,
simply by writing the inputs as aggregate-sum queries [Blu+os].

%F MuLtI-PARTY COMPUTATION (MPC) is to see mass adoption in the coming years,

71 ACHIEVEMENTS

Summation validation. We enhanced the privacy-preserving summation primitive
by creating extensions to respectively valid inputs and outputs. In Chapter 2, we
introduced a probabilistic alternative to zero-knowledge proofs, ensuring inputs are
within a particular range without requiring expensive cryptographic operations. Our
main achievement has been the specific construction of the topology and the analysis of
its efficiency and resistance. In Chapter 3, we introduce the mpvas family of protocols,
which allow verifiers to check that the aggregator’s output is truthful. Unlike existing
works, mpvas works even when all adversaries are actively malicious, when the
aggregator, users, and verifiers collude, and requires only a single server.

Reconstruction attack formalisation. In Chapter 4, we formalised reconstruction at-
tacks on summations algebraically. Our notation is generic to the method by which
sums are obtained, sufficient to allow adversaries to include observations made about
themselves, and allows users to update their values at any time.

Attack feasibility. In Chapter 4, we showed that reconstruction attacks are feasible.
We generated a large number of random graphs, and showed that passively malicious
adversaries will typically stumble upon sequences of summations that allow them to
infer at least some private information. Our results apply even when users choose
independently random new values while adversaries’ are still collecting data. We

conclude that any system in which a sufficiently dynamic set of summations occurs
will eventually leak private data; in line with the Fundamental Law of Information
Recovery [DR14].

Girth criterion. In Chapter 4, we showed that reconstruction attacks require cycles.
Specifically, if £ adversaries successfully reconstruct private data, then the graph must
have at least one cycle of length at most 2¢, i.e. the graph’s girth is at most 2¢. We
conclude that, if there are at most £ adversaries, it is sufficient to remove all cycles with
length below 2¢. We term the process of increasing the girth of a graph “stretching”,
analogous to the action of stretching the holes in a set of plastic six-pack rings. Since
cycle detection and removal can be performed locally in distributed networks, graph
stretching is the first fully-distributed reconstruction prevention method.

Cycle detection. In Chapter 5, we proposed a novel peer-to-peer cycle detection pro-
tocol. Previous works are either centralised or leak significant amounts of information.
Our protocol relies on flooding, and uses a novel key exchange algorithm to recognise
when cycles occur, after which a simple cycle recovery sub-protocol follows. Due to
the high communication complexity, our protocol is best-suited for low-degree graphs.

Cycle removal. In Chapter 6, we compared various methods for removing cycles
from graphs in terms of their impact on the performance of distributed averaging
protocols. We find that removing the edges that are in the largest number of short
cycles is the best amongst the compared methods, but random edge removal is a close
second. Since determining the number of short cycles that each edge is in is a complex
task, we instead count only the number of shortest cycles that each edge is in, and
show that the resulting effect is nearly identical.

Distributed averaging. In Chapter 6, apart from the cycle removal method, we also
investigated other relations between girth and distributed averaging performance.
Based on measurements over millions of graphs, we found that while removing cycles
decreases performance significantly, the main cause is not the removal of cycles
themselves, but the removal of edges. We thus proposed to counteract the effects of
graph stretching by a subsequent edge addition phase, which heuristically selects which
edges to add to the graph to improve performance. All in all, edge addition compensates
for a significant portion of the performance deterioration due to stretching.

7.2 LIMITATIONS

The works presented in this dissertation do not provide a full answer to the question of
how to prevent reconstruction attacks. Additionally, our works are subject to various
assumptions, and can thus yet be generalised.

Trivial attacks. The graph girth criterion from Chapter 4 works only to defend against
non-trivial attacks. In the most trivial attack, an adversary calculates a “privacy-
preserving” summation of only one neighbour. Despite the total absence of cycles
in the resulting graph, the adversary clearly learns the other user’s private value.
Luckily, this trivial attack is easily defended against, since the user can simply reject
participation if no other users take part in the summation. However, in general,
adversaries have access to colluders whom they can include in summations, and whose
values they can subtract from the total to uncover the honest user’s value. Again,

130 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

despite the absence of cycles, the adversary still learns private data.

We do not consider this a flaw in our work. In our work, we assume that individual
summations are secure, and determine the additional leakage that occurs as a result
of composition. In the trivial attacks outlined above, the leakage occurs not because
of composition, but because there is a single faulty summation. For completeness’
sake, however, we note that we can extend our graph criterion to include these trivial
attacks: To protect against m adversaries, the graph must have at least girth 2m + 1
and at least degree m + 2. Unfortunately, real-world networks typically do not have
high minimum degrees [BAgg, LO14, BSZ15].

Partial leakage. Our work focuses on detecting situations in which users’ values
leak in their entirety. We did not consider other types of leakage, such as partial
leakage and relative linear combinations. Partial leakage occurs when a sequence of
summations narrows down the range that a private value is in. For example, when
working with non-negative numbers, the sum A + B + C = 100 implies that each value
is at most 100; after subsequently also learning that A + D + E = 15, the adversaries
additionally learn that A < 15 and 85 < B + C < 100. Relative linear combinations
occur when adversaries learn to express private values in terms of other private values.
For example, after learning that A + B = 80 and A + C = 90, adversaries know that
C — B = 10, which may be private information in its own right.

Auxiliary knowledge. Adversaries may have an advantage if they obtain auxiliary
knowledge from outside the protocol. For example, if one dataset publishes A+ B+ C =
100, and another publishes A + B = 50, then combining the two reveals C = 50, even
though neither individual dataset contains any cycles. Our core results are independent
of the existence of auxiliary knowledge: We simply model the additional leakage that
occurs as a result of sequences of summations, regardless of where those summations
come from.

If there is no way of knowing whether auxiliary knowledge may be obtained, and
no way to model the worst-case scope of what such knowledge could entail, then our
results are not applicable. Indeed, inherent to the kind of syntactic requirements we
impose, our results are mostly applicable to situations in which it is feasible to exert
some amount of control over which summations take place. Modeling and tracking
the exact leakage that occurs over time, as noted earlier, may provide a partial remedy.

7.3 FUTURE WORK

Entropy-based analysis. Perhaps the most interesting potential avenue for future
work would be to combine our results with those presented by Baccarini, Blanton and
Zou [BBZ24]. While our work shows the family of graphs that fully leaks users’ private
inputs, Baccarini, Blanton and Zou provide a more granular method of determining
leakage, at least under the assumption that users’ values follow a given distribution.
Combining their methodology with ours could provide us with heuristics (or exact
functions) that assign leakage scores based only on (sub)structures of the full network.
Overall, future work could provide improved guidance on privacy-preserving network
designs.

Formal security. Several of our contributions would benefit from deeper scrutiny into
the exact privacy guarantees provided. Amongst others, mpvas (see Chapter 3) would

CHAPTER 7 & Discussion 131

benefit from formal security proofs, including proofs in composition frameworks, and
our cycle detection protocol (see Chapter 5) would benefit from a complete proof.

Differential privacy. Differential privacy aims to reduce information loss by adding
random noise to outputs. The added noise is calibrated in a precise way to make
privacy loss measurable. The privacy loss guarantees of multiple operations can be
composed elegantly, while the design of the noise mechanism in each operation is
agnostic of the remaining design. Meanwhile, in our work, we show that restricting
which summations may take place prevents data from leaking. We argue that allowing
such restrictions to be made in differentially private pipelines allows one to reduce the
amount of noise required for each operation. As long as it is feasible to assume that
some operations will not take place, this hybrid approach could significantly increase
the accuracy of differentially private outputs.

132 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

[ABo1]

[AC11]

[AF20]

[AHz0a]

[AH20b]

[AHLo2]

[ALM20]

[AMKai9]

[AOdR22]

[Ara+17]

PrrPN

o

Bibliography

Réka Albert and Albert-Laszl6 Barabasi. Statistical mechanics of complex
networks. 2001. arXiv: cond-mat /0106096 (cited on page 101).

Gergely Acs and Claude Castelluccia. “I have a DREAM! (DiffeRentially
privatE smArt Metering)”. In: IH 2011: Proceedings of the 13th International
Conference on Information Hiding. Volume 6958. Lecture Notes in Com-
puter Science. 2011, pages 118-132. DOI: 10.1007/978-3-642-24178-
9_9 (cited on page 16).

Anders Aslund and Julia Friedlander. Defending the United States against
Russian dark money. Nov. 2020. URL: https://www.atlanticcoun
cil.org/in-depth-research- reports/report/defending-
the-united-states-against-russian-dark-money/ (visited
on 16th June 2025) (cited on page 92).

Patrick Ah-Fat and Michael Huth. “Protecting private inputs: Bounded
distortion guarantees with randomised approximations”. In: Proceedings
on Privacy Enhancing Technologies. Volume 2020.3. 2020, pages 284—-303.
DOI: 10.2478/POPETS-2020-0053 (cited on page 6).

Patrick Ah-Fat and Michael Huth. Two and three-party digital goods
auctions: Scalable privacy analysis. 2020. arXiv: 2009 . 09524 (cited on
page 6).

Noga Alon, Shlomo Hoory and Nathan Linial. “The Moore bound for
irregular graphs”. In: Graphs and Combinatorics 18.1 (2002), pages 53-57.
DOI: 10.1007/5003730200002 (cited on pages 108, 112).

Adi Akavia, Rio LaVigne and Tal Moran. “Topology-hiding computation
on all graphs”. In: Journal of Cryptology 33.1 (2020), pages 176—227. DOI:
10.1007/500145-019-09318-Y (cited on page 94).

Alireza Ahadipour, Mojtaba Mohammadi and Alireza Keshavarz-Haddad.
Statistical-based privacy-preserving scheme with malicious consumers iden-
tification for smart grid. 2019. arXiv: 1904 . 06576 (cited on page 17).

Wirawan Agahari, Hosea Ofe and Mark de Reuver. “It is not (only) about
privacy: How multi-party computation redefines control, trust, and risk
in data sharing”. In: Electronic Markets 32.3 (2022), pages 1577-1602. DOI:
10.1007/512525-022-00572-W (cited on page 4).

Anees Ara, Mznah Al-Rodhaan, Yuan Tian and Abdullah Al-Dhelaan. “A
secure privacy-preserving data aggregation scheme based on bilinear
ElGamal cryptosystem for remote health monitoring systems”. In: IEEE
Access 5 (2017), pages 12601-12617. DOI: 10.1109/ACCESS.2017.2716
439 (cited on page 53).

https://arxiv.org/abs/cond-mat/0106096
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-24178-9_9
https://www.atlanticcouncil.org/in-depth-research-reports/report/defending-the-united-states-against-russian-dark-money/
https://www.atlanticcouncil.org/in-depth-research-reports/report/defending-the-united-states-against-russian-dark-money/
https://www.atlanticcouncil.org/in-depth-research-reports/report/defending-the-united-states-against-russian-dark-money/
https://doi.org/10.2478/POPETS-2020-0053
https://arxiv.org/abs/2009.09524
https://doi.org/10.1007/S003730200002
https://doi.org/10.1007/S00145-019-09318-Y
https://arxiv.org/abs/1904.06576
https://doi.org/10.1007/S12525-022-00572-W
https://doi.org/10.1109/ACCESS.2017.2716439
https://doi.org/10.1109/ACCESS.2017.2716439

[Ate+os]

[ATKis5]

[BAgo]

[Bak+15]

[Bal+23]

[BBZ24]

[BC18]

[BD20]

[Bel+18]

[Bel+20]

136

Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger and Breno de
Medeiros. “Practical group signatures without random oracles”. In: IACR
Cryptology ePrint Archive (2005). URL: https://ia.cr/2005/385
(cited on pages 40—41).

Leman Akoglu, Hanghang Tong and Danai Koutra. “Graph based anomaly
detection and description: A survey”. In: Data Mining and Knowledge
Discovery 29.3 (2015), pages 626—688. DOI: 10 . 1007 /S10618 - 014 -
0365-Y (cited on page 93).

Albert-Laszl6 Barabasi and Réka Albert. “Emergence of scaling in ran-
dom networks”. In: Science 286.5439 (1999), pages 509—512. ISSN: 0036-
8075,1095-9203. DOI: 10 . 1126 /science. 286 .5439 . 509 (cited on
page 131).

Bence Gabor Bakondi, Andreas Peter, Maarten H. Everts, Pieter H. Hartel
and Willem Jonker. “Publicly verifiable private aggregation of time-series
data”. In: ARES 2015: Proceedings of the 1oth International Conference on
Availability, Reliability and Security. 2015, pages 50-59. DOI: 10.1109/
ARES. 2015 .82 (cited on pages 36—39, 41, 52—53, 58, 61).

Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre
Meyer and Tal Moran. “Topology-hiding communication from minimal
assumptions”. In: Journal of Cryptology 36.4, 39 (2023). DOL: 10.1007/
S00145-023-09473-3 (cited on page 93).

Alessandro N. Baccarini, Marina Blanton and Shaofeng Zou. “Understand-
ing information disclosure from secure computation output: A study of
average salary computation”. In: CODASPY zo024: Proceedings of the 14th
ACM Conference on Data and Application Security and Privacy. 2024,
pages 187-198. DOI: 10 . 1145/3626232.3653280 (cited on pages 6,
131).

Anna D. Broido and Aaron Clauset. Scale-free networks are rare. 2018.
arXiv: 1801.03400 (cited on page 101).

David Balson and William Dixon. Cyber information sharing: Building
collective security. 2020. URL: https://www.weforum.org/public
ations/cyber-information-sharing-building-collective-
security/ (visited on 16th June 2025) (cited on page 4).

Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki and Marc Tommasi. “Per-
sonalized and private peer-to-peer machine learning”. In: AISTATS 2018:
Proceedings of the z1st International Conference on Artificial Intelligence
and Statistics. Volume 84. Proceedings of Machine Learning Research.
2018, pages 473—481. URL: https://proceedings.mlr.press/v84/
bellet18a.html (cited on pages 68, 71-72).

James Henry Bell, Kallista A. Bonawitz, Adria Gascon, Tancréde Lepoint
and Mariana Raykova. “Secure single-server aggregation with (poly)log-
arithmic overhead”. In: CCS 20z0: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 2020, pages 1253—
1269. DOI: 10.1145/3372297.3417885 (cited on pages 39, 68).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://ia.cr/2005/385
https://doi.org/10.1007/S10618-014-0365-Y
https://doi.org/10.1007/S10618-014-0365-Y
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1109/ARES.2015.82
https://doi.org/10.1109/ARES.2015.82
https://doi.org/10.1007/S00145-023-09473-3
https://doi.org/10.1007/S00145-023-09473-3
https://doi.org/10.1145/3626232.3653280
https://arxiv.org/abs/1801.03400
https://www.weforum.org/publications/cyber-information-sharing-building-collective-security/
https://www.weforum.org/publications/cyber-information-sharing-building-collective-security/
https://www.weforum.org/publications/cyber-information-sharing-building-collective-security/
https://proceedings.mlr.press/v84/bellet18a.html
https://proceedings.mlr.press/v84/bellet18a.html
https://doi.org/10.1145/3372297.3417885

[Ben+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh and Michael Riabzev. “Scal-
able, transparent, and post-quantum secure computational integrity”. In:
IACR Cryptology ePrint Archive (2018). URL: ht tps: //ia.cr/2018/046
(cited on page 18).

[Bigos] Norman Biggs. Algebraic graph theory. 2nd edition. Cambridge Mathem-
atical Library. 1993. ISBN: 0-521-45897-8 (cited on page 112).

[Bit+17] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés
and Bernhard Seefeld. “Prochlo: Strong privacy for analytics in the crowd”.
In: SOSP zo17: Proceedings of the 26th Symposium on Operating Systems
Principles. 2017, pages 441-459. DOL: 10.1145/3132747 .3132769 (cited
on page 16).

[Bla79] G. R. Blakley. “Safeguarding cryptographic keys”. In: 1979 International
Workshop on Managing Requirements Knowledge, MARK. 1979, pages 313—
318. DOI: 10.1109/MARK.1979.8817296 (cited on page 53).

[BLSo4] Dan Boneh, Ben Lynn and Hovav Shacham. “Short signatures from the
Weil pairing”. In: Journal of Cryptology 17.4 (2004), pages 297-319. DOI:
10.1007/S00145-004-0314-9 (cited on page 61).

[Blu+os] Avrim Blum, Cynthia Dwork, Frank McSherry and Kobbi Nissim. “Prac-
tical privacy: The SuLQ framework”. In: PODS z005: Proceedings of the
24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. 2005, pages 128—-138. DOL: 10.1145/1065167.1065184 (cited
on pages 6, 17, 69, 129).

[BN15] Finn Brunton and Helen Nissenbaum. Obfuscation: A user’s guide for
privacy and protest. 2015. DOI: 10.7551/mitpress/9780262029735.
001.0001 (cited on page 3).

[Bog+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Kreigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach and Tomas
Toft. “Secure multiparty computation goes live”. In: FC 2009: Proceed-
ings of the 13th International Conference on Financial Cryptography and
Data Security. Volume 5628. Lecture Notes in Computer Science. 2009,
pages 325-343. DOI: 10 . 1007 /978-3-642-03549-4 20 (cited on
page 4).

[Bog+14] Dan Bogdanov, Peeter Laud, Sven Laur and Pille Pullonen. “From input
private to universally composable secure multi-party computation prim-
itives”. In: CSF 2014: Proceedings of the 27th IEEE Computer Security Found-
ations Symposium. 2014, pages 184-198. DOI: 10.1109/CSF.2014 .21
(cited on page 71).

BIBLIOGRAPHY X! 137

https://ia.cr/2018/046
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1007/S00145-004-0314-9
https://doi.org/10.1145/1065167.1065184
https://doi.org/10.7551/mitpress/9780262029735.001.0001
https://doi.org/10.7551/mitpress/9780262029735.001.0001
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1109/CSF.2014.21

[Bon+17]

[Bou+20]

[Bouoo]

[Boy+os]

[Boy+06]

[BPo2]

[BPWo7]

[BR19]

[BSZ15]

138

Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal and
Karn Seth. “Practical secure aggregation for privacy-preserving machine
learning”. In: CCS zo01y: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 2017, pages 1175-1191. DOIL:
10.1145/3133956.3133982 (cited on pages 16, 39, 68).

Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Em-
manuel Thomé and Paul Zimmermann. “Comparing the difficulty of fac-
torization and discrete logarithm: A 240-digit experiment”. In: Advances
in Cryptology — CRYPTO 20z0: Proceedings of the 4oth Annual Interna-
tional Cryptology Conference. Volume 12171. Lecture Notes in Computer
Science. 2020, pages 62—91. DOI: 10.1007/978-3-030-56880-1_3
(cited on page 101).

Fabrice Boudot. “Efficient proofs that a committed number lies in an
interval”. In: Advances in Cryptology — EUROCRYPT 2000: Proceedings of
the 2000 International Conference on the Theory and Application of Cryp-
tographic Techniques. Volume 1807. Lecture Notes in Computer Science.
2000, pages 431-444. DOL: 10 . 1007 /3-540-45539-6_31 (cited on
pages 16, 18).

Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar and Devavrat Shah.
“Gossip algorithms: Design, analysis and applications”. In: INFOCOM
2005: Proceedings of the 24th IEEE Annual Joint Conference of the IEEE
Computer and Communications Societies. 2005, pages 1653-1664. DOI:
10.1109/INFCOM.2005.1498447 (cited on pages 108, 113).

Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar and Devavrat Shah.
“Randomized gossip algorithms”. In: IEEE Transactions on Information
Theory 52.6 (2006), pages 2508-2530. DOI: 10.1109/TIT.2006.874516
(cited on pages 74, 109).

Mauricio Barahona and Louis M. Pecora. “Synchronization in small-
world systems”. In: Physical Review Letters 89, 054101 (5 July 2002). DOTI:
10.1103/PhysRevLett.89.054101 (cited on pages 108, 110).

Michael Backes, Birgit Pfitzmann and Michael Waidner. “The reactive
simulatability (RSIM) framework for asynchronous systems”. In: Inform-
ation and Computation 205.12 (2007), pages 1685-1720. DOL: 10.1016/7 .
ic.2007.05.002 (cited on pages 5, 71).

Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic
algorithms and key lengths. Mar. 2019. DOI: 10. 6028 /NIST.SP.800-
131Ar2 (cited on pages 53, 101).

Shankar Bhamidi, J. Michael Steele and Tauhid Zaman. “Twitter event
networks and the superstar model”. In: The Annals of Applied Probability
25.5 (2015), pages 2462—2502. ISSN: 1050-5164,2168-8737. DOI: 10.1214/
14-AAP1053 (cited on page 131).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1109/INFCOM.2005.1498447
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.1214/14-AAP1053
https://doi.org/10.1214/14-AAP1053

[Biin+18]

[Bur+06]

[Can+22]

[Canoi]

(CB17]

[CBU24]

[CD21]

[Cen+21]

[Chaos]

[Che+18a]

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wauille and Gregory Maxwell. “Bulletproofs: Short proofs for confidential
transactions and more”. In: S&P 2018: Proceedings of the 2018 IEEE Sym-
posium on Security and Privacy. 2018, pages 315-334. DOI: 10.1109/SP.
2018.00020 (cited on pages 18, 28—29, 49).

Jeff Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya Ra-
manathan, Sasank Reddy and Mani B. Srivastava. “Participatory sens-
ing”. In: WSW 2006: Workshop on World-Sensor-Web. 2006. URL: ht tps:
//escholarship.org/uc/item/19h777qd (cited on page 16).

Ran Canetti, Gabe Kaptchuk, Leonid Reyzin, Adam Smith and Mayank
Varia. Response to the RFI on advancing privacy-enhancing technologies.
8th July 2022. URL: https://www.nitrd.gov/rfi/2022/87-fr-
35250 /Canetti - Kaptchuk - Reyzin- Smith-Varia- PET - RFI -
Response-2022.pdf (visited on 16th June 2025) (cited on page 4).

Ran Canetti. “Universally composable security: A new paradigm for
cryptographic protocols”. In: FOCS zoo1: Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science. 2001, pages 136—145. DOL:
10.1109/SFCS.2001.959888 (cited on pages 5, 71).

Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, robust, and scalable
computation of aggregate statistics”. In: NSDI 2017: Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation.
2017, pages 259—282. URL: https://www.usenix.org/conference/
nsdil7/technical-sessions/presentation/corrigan-gibbs
(cited on pages 18, 28-29).

Edwige Cyffers, Aurélien Bellet and Jalaj Upadhyay. Differentially private
decentralized learning with random walks. 2024. arXiv: 2402 . 07471
(cited on pages 82, 88).

Bennett Cyphers and Cory Doctorow. Privacy without monopoly: Data
protection and interoperability. 12th Feb. 2021. URL: https://www.eff.
org/wp/interoperability-and-privacy (visited on 16th June
2025) (cited on page 3).

Keren Censor-Hillel, Orr Fischer, Tzlil Gonen, Francois Le Gall, Dean
Leitersdorf and Rotem Oshman. Fast distributed algorithms for girth, cycles
and small subgraphs. 2021. arXiv: 2101.07590 (cited on pages 82, 89).

L. Sunil Chandran. “A high girth graph construction”. In: SIAM Journal
on Discrete Mathematics 16.3 (2003), pages 366—370. DOI: 10 . 1137/
S0895480101387893 (cited on page 112).

Xuhui Chen, Jinlong Ji, Changging Luo, Weixian Liao and Pan Li. “When
machine learning meets blockchain: A decentralized, privacy-preserving
and secure design”. In: 2018 IEEE International Conference on Big Data.
2018, pages 1178-1187. DOI: 10.1109/Bighata.2018.8622598 (cited
on page 68).

BIBLIOGRAPHY X! 139

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://escholarship.org/uc/item/19h777qd
https://escholarship.org/uc/item/19h777qd
https://www.nitrd.gov/rfi/2022/87-fr-35250/Canetti-Kaptchuk-Reyzin-Smith-Varia-PET-RFI-Response-2022.pdf
https://www.nitrd.gov/rfi/2022/87-fr-35250/Canetti-Kaptchuk-Reyzin-Smith-Varia-PET-RFI-Response-2022.pdf
https://www.nitrd.gov/rfi/2022/87-fr-35250/Canetti-Kaptchuk-Reyzin-Smith-Varia-PET-RFI-Response-2022.pdf
https://doi.org/10.1109/SFCS.2001.959888
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://arxiv.org/abs/2402.07471
https://www.eff.org/wp/interoperability-and-privacy
https://www.eff.org/wp/interoperability-and-privacy
https://arxiv.org/abs/2101.07590
https://doi.org/10.1137/S0895480101387893
https://doi.org/10.1137/S0895480101387893
https://doi.org/10.1109/BigData.2018.8622598

[Che+18b]

[Chi78]

[Chr16]

[CO82]

[Cor+13]

[CT13]

[Cui+18]

[Cyf+22]

[Dan+18]

[Dano3s]

140

Hsin-Pai Cheng, Patrick Yu, Haojing Hu, Feng Yan, Shiyu Li, Hai Li and
Yiran Chen. LEASGD: An efficient and privacy-preserving decentralized
algorithm for distributed learning. 2018. arXiv: 1811 . 11124 (cited on
pages 82, 88).

Francis Y. L. Chin. “Security in statistical databases for queries with small
counts”. In: ACM Transactions on Database Systems 3.1 (1978), pages 92—
104. DOL: 10.1145/320241.320250 (cited on pages 5, 70).

Delphine Christin. “Privacy in mobile participatory sensing: Current
trends and future challenges”. In: Journal of Systems and Software 116
(2016), pages 57-68. DOI: 10.1016/J.JSS.2015.03.067 (cited on
page 16).

Francis Y. L. Chin and Gultekin Ozsoyoglu. “Auditing and inference con-
trol in statistical databases”. In: IEEE Transactions on Software Engineering
8.6 (1982), pages 574-582. DOI: 10.1109/TSE.1982.236161 (cited on
pages 5, 69—70).

Graham Cormode, Cecilia M. Procopiuc, Entong Shen, Divesh Srivastava
and Ting Yu. “Empirical privacy and empirical utility of anonymized data”.
In: ICDEW 2013: Workshops Proceedings of the zg9th IEEE International
Conference on Data Engineering. 2013, pages 77—-82.DOI: 10. 1109/ ICDEW.
2013.6547431 (cited on pages 69, 73).

Chris Clifton and Tamir Tassa. “On syntactic anonymity and differential
privacy”. In: Transactions on Data Privacy 6.2 (2013), pages 161-183. URL:
https://www.tdp.cat/issues11/abs.al24al13. php (cited on
pages 5, 69, 73).

Hui Cui, Zhiguo Wan, Robert H. Deng, Guilin Wang and Yingjiu Li.
“Efficient and expressive keyword search over encrypted data in cloud”.
In: IEEE Transactions on Dependable and Secure Computing 15.3 (2018),
pages 409—422. DOI: 10.1109/TDSC.2016.2599883 (cited on page 53).

Edwige Cyffers, Mathieu Even, Aurélien Bellet and Laurent Massoulié.
“Muffliato: Peer-to-peer privacy amplification for decentralized optimiz-
ation and averaging”. In: NeurIPS zo022: Advances in Neural Information
Processing Systems. 2022. URL: https : / /proceedings . neurips .
cc/paper /2022 /hash/65d32185£73¢cbf4535449a792¢c63926f -
Abstract-Conference.html (cited on pages 68—-69, 71).

Gabor Danner, Arpad Berta, Istvan Hegediis and Mark Jelasity. “Robust
fully distributed minibatch gradient descent with privacy preservation”.
In: Security and Communication Networks 2018 (2018). DOI: 10. 1155/
2018/6728020 (cited on pages 68, 72).

George Danezis. “Statistical disclosure attacks: Traffic confirmation in
open environments”. In: SEC2003: Proceedings of the 18th IFIP TCu In-
ternational Conference on Information Security: Security and Privacy in
the Age of Uncertainty. Volume 250. IFIP Conference Proceedings. 2003,
pages 421-426 (cited on page 70).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://arxiv.org/abs/1811.11124
https://doi.org/10.1145/320241.320250
https://doi.org/10.1016/J.JSS.2015.03.067
https://doi.org/10.1109/TSE.1982.236161
https://doi.org/10.1109/ICDEW.2013.6547431
https://doi.org/10.1109/ICDEW.2013.6547431
https://www.tdp.cat/issues11/abs.a124a13.php
https://doi.org/10.1109/TDSC.2016.2599883
https://proceedings.neurips.cc/paper/2022/hash/65d32185f73cbf4535449a792c63926f-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2022/hash/65d32185f73cbf4535449a792c63926f-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2022/hash/65d32185f73cbf4535449a792c63926f-Abstract-Conference.html
https://doi.org/10.1155/2018/6728020
https://doi.org/10.1155/2018/6728020

[DBB22]

[DE21]

[DE25]

[DEC25a]

[DEC25b]

[DEC25¢]

[Dek2s]

[Dem+88]

[Dengo]

[DH76]

[DHMos5]

Bogdan Dumitrescu, Andra Baltoiu and Stefania Budulan. “Anomaly
detection in graphs of bank transactions for anti money laundering
applications”. In: IEEE Access 10 (2022), pages 47699—47714. DOL: 10 .
1109/ACCESS.2022.3170467 (cited on pages 92—93).

Florine W. Dekker and Zekeriya Erkin. “Privacy-preserving data aggreg-
ation with probabilistic range validation”. In: ACNS zoz1: Proceedings
of the 19th International Conference on Applied Cryptography and Net-
work Security. Volume 12727. Lecture Notes in Computer Science. 2021,
pages 79—98. DOI: 10.1007/978-3-030-78375-4_4 (cited on pages 6,
9,15, 72).

Florine W. Dekker and Zekeriya Erkin. Source code underlying the pub-
lication: Privacy-preserving data aggregation with probabilistic range val-
idation. 15th May 2025. DOT: 10.4121/b9db276f-5522-4986-9d98-
€9710134fd71.v1 (cited on pages 10, 29).

Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Optimal graph
stretching for distributed averaging. 2025. arXiv: 2504 . 10289 (cited on
pages 8-9, 107).

Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Source code under-
lying the publication: Topology-based reconstruction prevention for decent-
ralised learning. 13th Jan. 2025. por: 10.4121/21572601.v2 (cited on
pages 10, 79, 88).

Florine W. Dekker, Zekeriya Erkin and Mauro Conti. “Topology-based
reconstruction prevention for decentralised learning”. In: Proceedings
on Privacy Enhancing Technologies 2025.1 (2025), pages 553—566. DOI:
10.56553/POPETS-2025-0030 (cited on pages 7, 9—10, 67, 108).

Florine W. Dekker. Source code underlying the publication: Optimal graph
stretching for distributed averaging. 16th June 2025. DOI: 10.4121/e64c
61d3-deb5-4aad-af60-92d92755781f.v3 (cited on pages 10, 113).

Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard E. Sturgis, Daniel C. Swinehart and Douglas
B. Terry. “Epidemic algorithms for replicated database maintenance”.
In: ACM SIGOPS Operating Systems Review 22.1 (1988), pages 8—32. DOI:
10.1145/43921.43922 (cited on page 110).

Dorothy E. Denning. “Secure statistical databases with random sample
queries”. In: ACM Transactions on Database Systems 5.3 (1980), pages 291—
315. DOI: 10.1145/320613.320616 (cited on pages 5, 69—70).

Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”.
In: IEEE Transactions on Information Theory 22.6 (1976), pages 644—654.
DOI: 10.1109/TIT.1976.1055638 (cited on page 97).

Luca Donetti, Pablo I. Hurtado and Miguel A. Mufioz. “Entangled net-
works, synchronization, and optimal network topology”. In: Physical
Review Letters 95, 188701 (18 Oct. 2005). DOI: 10.1103/PhysRevLett.
95.188701 (cited on pages 110-111).

BIBLIOGRAPHY X! 141

https://doi.org/10.1109/ACCESS.2022.3170467
https://doi.org/10.1109/ACCESS.2022.3170467
https://doi.org/10.1007/978-3-030-78375-4_4
https://doi.org/10.4121/b9db276f-5522-4986-9d98-e9710134fd71.v1
https://doi.org/10.4121/b9db276f-5522-4986-9d98-e9710134fd71.v1
https://arxiv.org/abs/2504.10289
https://doi.org/10.4121/21572601.v2
https://doi.org/10.56553/POPETS-2025-0030
https://doi.org/10.4121/e64c61d3-deb5-4aad-af60-92d92755781f.v3
https://doi.org/10.4121/e64c61d3-deb5-4aad-af60-92d92755781f.v3
https://doi.org/10.1145/43921.43922
https://doi.org/10.1145/320613.320616
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1103/PhysRevLett.95.188701
https://doi.org/10.1103/PhysRevLett.95.188701

[DHMo8]

[Dhr+20]

[DKo3]

[DNMo6]

[DR14]

[dSil+o4]

[DT19]

[Dwoo6]

[EDF21]

142

Luca Donetti, Pablo I. Hurtado and Miguel A. Mufioz. “Network syn-
chronization: Optimal and pessimal scale-free topologies”. In: Journal
of Physics A: Mathematical and Theoretical 41.22, 224008 (2008). ISSN:
1751-8113,1751-8121. DOI: 10.1088/1751-8113/41/22/224008 (cited
on page 111).

Sanket S. Dhruva, Joseph S. Ross, Joseph G. Akar, Brittany Caldwell,
Karla Childers, Wing Chow, Laura Ciaccio, Paul Coplan, Jun Dong, Hay-
ley J. Dykhoft, Stephen Johnston, Todd Kellogg, Cynthia Long, Peter A.
Noseworthy, Kurt Roberts, Anindita Saha, Andrew Yoo and Nilay D. Shah.
“Aggregating multiple real-world data sources using a patient-centered
health-data-sharing platform”. In: npj Digital Medicine 3 (2020). DOT:
10.1038/541746-020-0265-z (cited on page 36).

Shlomi Dolev and Ronen 1. Kat. “HyperTree for self-stabilizing peer-to-
peer systems”. In: Distributed Computing 20.5 (2008), pages 375-388. DOI:
10.1007/s00446-007-0038-9 (cited on pages 82, 89).

Luca Donetti, Franco Neri and Miguel A. Mufioz. “Optimal network
topologies: Expanders, cages, Ramanujan graphs, entangled networks
and all that”. In: Journal of Statistical Mechanics: Theory and Experiment
2006.08, P08007 (2006). DOI: 10.1088/1742-5468/2006/08/P08007
(cited on page 111).

Cynthia Dwork and Aaron Roth. “The algorithmic foundations of dif-
ferential privacy”. In: Foundations and Trends in Theoretical Computer
Science 9.3-4 (2014), pages 211-407. DOI: 10.1561/0400000042 (cited
on pages 69, 71, 130).

Josenildo Costa da Silva, Matthias Klusch, Stefano Lodi and Gianluca
Moro. “Inference attacks in peer-to-peer homogeneous distributed data
mining”. In: ECAI’2004: Proceedings of the 16th European Conference on
Artificial Intelligence. 2004, pages 450-454 (cited on pages 69, 71).

Nora A. Draper and Joseph Turow. “The corporate cultivation of digital
resignation”. In: New Media & Society 21.8 (2019), pages 1824—1839. DOI:
10.1177/1461444819833331 (cited on page 3).

Cynthia Dwork. “Differential privacy”. In: ICALP 2006: Proceedings on the
33rd International Colloquium on Automata, Languages and Programming.
Volume 4052. Lecture Notes in Computer Science. 2006, pages 1-12. DOI:
10.1007/11787006 1 (cited on pages 5, 69—71).

European Commission, Directorate-General for Financial Stability and
Financial Services and Capital Markets Union. Impact assessment accom-
panying the anti-money laundering package. CELEX number 52021SCo190.
July 2021. URL: https://eur-lex.europa.eu/legal -content/
EN/TXT/?uri=CELEX:520215C0190 (visited on 16th June 2025) (cited
on page 92).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1088/1751-8113/41/22/224008
https://doi.org/10.1038/s41746-020-0265-z
https://doi.org/10.1007/s00446-007-0038-9
https://doi.org/10.1088/1742-5468/2006/08/P08007
https://doi.org/10.1561/0400000042
https://doi.org/10.1177/1461444819833331
https://doi.org/10.1007/11787006_1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021SC0190
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021SC0190

[EGSo3]

[Eiso8]

[Emu+19]

[ER60]

[Erkis]

[ET12]

[Fan+12]

[Fel72]

[Fie73]

[FLC15]

Alexandre V. Evfimievski, Johannes Gehrke and Ramakrishnan Srikant.
“Limiting privacy breaches in privacy preserving data mining”. In: PODS
2003: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems. 2003, pages 211-222. DOI: 10.1145/
773153.773174 (cited on page 71).

Bennett Eisenberg. “On the expectation of the maximum of iid geomet-
ric random variables”. In: Statistics and Probability Letters 78.2 (2008),
pages 135-143. ISSN: 01677152. DOI: 10.1016/j .spl.2007.05.011
(cited on page 30).

Keita Emura, Hayato Kimura, Toshihiro Ohigashi and Tatsuya Suzuki.
“Privacy-preserving aggregation of time-series data with public verifiabil-
ity from simple assumptions and its implementations”. In: The Computer
Journal 62.4 (2019), pages 614—-630. DOI: 10 . 1093 /comjnl /bxy135
(cited on pages 58, 61).

Paul Erd6s and Alfréd Rényi. “On the evolution of random graphs”.
In: A Magyar Tudomanyos Akadémia. Matematikai Kutat6 Intézetének
Kozleményei 5 (1960), pages 17-61. ISSN: 0541-9514 (cited on page 114).

Zekeriya Erkin. “Private data aggregation with groups for smart grids in
a dynamic setting using CRT”. In: WIFS 2015: Proceedings of the 2015 IEEE
International Workshop on Information Forensics and Security. 2015. DOT:
10.1109/WIFS.2015.7368584 (cited on pages 16, 18, 25, 27).

Zekeriya Erkin and Gene Tsudik. “Private computation of spatial and
temporal power consumption with smart meters”. In: ACNS 2012: Pro-
ceedings of the 10th International Conference on Applied Cryptography
and Network Security. Volume 7341. Lecture Notes in Computer Science.
2012, pages 561-577. DOL: 10.1007/978-3-642-31284-7 33 (cited
on pages 16, 18, 21, 25, 36).

Xi Fang, Satyajayant Misra, Guoliang Xue and Dejun Yang. “Smart grid —
The new and improved power grid: A survey”. In: IEEE Communications
Surveys & Tutorials 14.4 (2012), pages 944—980. DOI: 10.1109/SURV .
2011.101911.00087 (cited on page 36).

Ivan P. Fellegi. “On the question of statistical confidentiality”. In: Journal
of the American Statistical Association 67.337 (1972), pages 7-18. DOI: 10.
1080/01621459.1972.10481199 (cited on pages 4, 69—70).

Miroslav Fiedler. “Algebraic connectivity of graphs”. In: Czechoslovak
Mathematical Journal 23(98) (1973), pages 298-305. ISSN: 0011-4642 (cited
on page 109).

Jingyao Fan, Qinghua Li and Guohong Cao. “Privacy-aware and trust-
worthy data aggregation in mobile sensing”. In: CNS 2015: Proceedings
of the IEEE Conference on Communications and Network Security. 2015,
pages 31-39. DOI: 10.1109/CNS.2015.7346807 (cited on page 36).

BIBLIOGRAPHY X 143

https://doi.org/10.1145/773153.773174
https://doi.org/10.1145/773153.773174
https://doi.org/10.1016/j.spl.2007.05.011
https://doi.org/10.1093/comjnl/bxy135
https://doi.org/10.1109/WIFS.2015.7368584
https://doi.org/10.1007/978-3-642-31284-7_33
https://doi.org/10.1109/SURV.2011.101911.00087
https://doi.org/10.1109/SURV.2011.101911.00087
https://doi.org/10.1080/01621459.1972.10481199
https://doi.org/10.1080/01621459.1972.10481199
https://doi.org/10.1109/CNS.2015.7346807

[FPE16]

[FS86]

[FTC19]

[Fun21]

[Fun24]

[GBo6]

[GGP10]

[GJ10]

[GM32]

144

Giulia Fanti, Vasyl Pihur and Ulfar Erlingsson. “Building a RAPPOR
with the unknown: Privacy-preserving learning of associations and data
dictionaries”. In: Proceedings on Privacy Enhancing Technologies 2016.3
(2016), pages 41-61. DOI: 10 . 1515 / POPETS - 2016 - 0015 (cited on
page 16).

Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions
to identification and signature problems”. In: Advanced in Cryptology
— CRYPTO 1986: Proceedings. Volume 263. Lecture Notes in Computer
Science. 1986, pages 186—-194. DOI: 10.1007/3-540-47721-7_12 (cited
on page 41).

Federal Trade Commission. “FTC imposes $5 billion penalty and sweeping
new privacy restrictions on Facebook”. In: Federal Trade Commission
(24th July 2019). URL: https://www.ftc.gov/news-events/news/
press-releases/2019/07/ftc-imposes-5-billion-penalty-
sweeping - new - privacy - restrictions - facebook (visited on
16th June 2025) (cited on page 3).

Brian Fung. “Amazon hit by record $887 million EU privacy fine”. In:
CNN (30th July 2021). URL: https://edition.cnn.com/2021/07/
30/tech/amazon-eu-privacy-fine/ (visited on 16th June 2025)
(cited on page 3).

Brian Fung. “FCC fines wireless carriers millions for sharing user loca-
tions without consent”. In: CNN (29th Apr. 2024). URL: https://editi
on.cnn.com/2024/04/29/tech/fcc-fines-att-verizon-200-
million/ (visited on 16th June 2025) (cited on page 3).

Arpita Ghosh and Stephen P. Boyd. “Growing well-connected graphs”. In:
CDC 2006: Proceedings of the 45th IEEE Conference on Decision and Control.
2006, pages 6605—6611. DOI: 10. 1109 /CDC. 2006 . 377282 (cited on
pages 108, 111, 116).

Rosario Gennaro, Craig Gentry and Bryan Parno. “Non-interactive veri-
fiable computing: Outsourcing computation to untrusted workers”. In:
Advances in Cryptology — CRYPTO 2010: Proceedings of the 30th Annual
Cryptology Conference. Volume 6223. Lecture Notes in Computer Science.
2010, pages 465-482. DOL: 10.1007/978-3-642-14623-7 25 (cited
on page 39).

Flavio D. Garcia and Bart Jacobs. “Privacy-friendly energy-metering via
homomorphic encryption”. In: STM 2010: Proceedings of the 6th Interna-
tional Workshop on Security and Trust Management. Volume 6710. Lecture
Notes in Computer Science. 2010, pages 226-238. DOI: 10.1007/978-
3-642-22444-7_15 (cited on pages 16, 36, 69).

Shafi Goldwasser and Silvio Micali. “Probabilistic encryption and how to
play mental poker keeping secret all partial information”. In: STOC 1982:
Proceedings of the 14th Annual ACM Symposium on Theory of Computing.
1982, pages 365-377. DOL: 10.1145/800070.802212 (cited on page 4).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1515/POPETS-2016-0015
https://doi.org/10.1007/3-540-47721-7_12
https://www.ftc.gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions-facebook
https://www.ftc.gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions-facebook
https://www.ftc.gov/news-events/news/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions-facebook
https://edition.cnn.com/2021/07/30/tech/amazon-eu-privacy-fine/
https://edition.cnn.com/2021/07/30/tech/amazon-eu-privacy-fine/
https://edition.cnn.com/2024/04/29/tech/fcc-fines-att-verizon-200-million/
https://edition.cnn.com/2024/04/29/tech/fcc-fines-att-verizon-200-million/
https://edition.cnn.com/2024/04/29/tech/fcc-fines-att-verizon-200-million/
https://doi.org/10.1109/CDC.2006.377282
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-22444-7_15
https://doi.org/10.1007/978-3-642-22444-7_15
https://doi.org/10.1145/800070.802212

[GMSgo]

[Gor+15]

[Guo+21]

[Guo+22]

[Guo22]

[Hah+23]

[HAP17]

[HDC18]

[HEAo5]

Robert Grone, Russell Merris and V. S. Sunder. “The Laplacian spectrum
of a graph”. In: SIAM Journal on Matrix Analysis and Applications 11.2
(1990), pages 218—238. 1SSN: 0895-4798. DOI: 10.1137 /0611016 (cited
on page 109).

S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi and Hong-Sheng
Zhou. “Multi-client verifiable computation with stronger security guar-
antees”. In: TCC zo15: Proceedings of the 1zth International Conference
on Theory of Cryptography. Volume 9o15. Lecture Notes in Computer
Science. 2015, pages 144-168. DOI: 10.1007/978-3-662-46497-7_6
(cited on page 39).

Xiaojie Guo, Zheli Liu, Jin Li, Jigiang Gao, Boyu Hou, Changyu Dong
and Thar Baker. “VeriFL: Communication-efficient and fast verifiable
aggregation for federated learning”. In: IEEE Transactions on Information
Forensics and Security 16 (2021), pages 1736—1751. DOL: 10.1109/TIFS.
2020.3043139 (cited on pages 36—39).

Shangwei Guo, Tianwei Zhang, Guowen Xu, Han Yu, Tao Xiang and
Yang Liu. “Topology-aware differential privacy for decentralized image
classification”. In: IEEE Transactions on Circuits and Systems for Video
Technology 32.6 (2022), pages 4016—4027. DOI: 10.1109/TCSVT.2021.
3105723 (cited on pages 69, 71).

Xiaojie Guo. “Fixing issues and achieving maliciously secure verifiable
aggregation in ‘VeriFL: Communication-efficient and fast verifiable ag-

gregation for federated learning’”. In: JACR Cryptology ePrint Archive
(2022). URL: https://ia.cr/2022/1073 (cited on page 39).

Changhee Hahn, Hodong Kim, Minjae Kim and Junbeom Hur. “VerSA:
Verifiable secure aggregation for cross-device federated learning”. In: IEEE
Transactions on Dependable and Secure Computing 20.1 (2023), pages 36—
52.DOI: 10.1109/TDSC.2021.3126323 (cited on pages 36—39).

Briland Hitaj, Giuseppe Ateniese and Fernando Pérez-Cruz. “Deep models
under the GAN: Information leakage from collaborative deep learning”.
In: CCS 2017: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2017, pages 603-618. DOI: 10.1145/3133
956.3134012 (cited on page 71).

Christoforos N. Hadjicostis, Alejandro D. Dominguez-Garcia and Themis-
toklis Charalambous. “Distributed averaging and balancing in network
systems: With applications to coordination and control”. In: Founda-
tions and Trends in Systems and Control 5.2-3 (2018), pages 99—292. DOI:
10.1561/2600000016 (cited on pages 108-109).

Xiao-Yu Hu, Evangelos Eleftheriou and Dieter-Michael Arnold. “Regular
and irregular progressive edge-growth Tanner graphs”. In: IEEE Transac-
tions on Information Theory 51.1 (2005), pages 386—398. DOI: 10.1109/
TIT.2004.839541 (cited on pages 108, 112).

BIBLIOGRAPHY X 145

https://doi.org/10.1137/0611016
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1109/TIFS.2020.3043139
https://doi.org/10.1109/TIFS.2020.3043139
https://doi.org/10.1109/TCSVT.2021.3105723
https://doi.org/10.1109/TCSVT.2021.3105723
https://ia.cr/2022/1073
https://doi.org/10.1109/TDSC.2021.3126323
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1561/2600000016
https://doi.org/10.1109/TIT.2004.839541
https://doi.org/10.1109/TIT.2004.839541

[HGY22]

[HK20]

[HSo8]

[Hul+06]

[I[PB19]

[JD25]

[JE19]

[Jen+25]

[JRog]

[JSJ19]

146

Waleed Hilal, S. Andrew Gadsden and John Yawney. “Financial fraud: A
review of anomaly detection techniques and recent advances”. In: Expert
Systems with Applications 193, 116429 (2022). DOI: 10.1016/J . ESWA.
2021.116429 (cited on page 93).

Léaszl6 Hajdu and Miklds Krész. “Temporal network analytics for fraud
detection in the banking sector”. In: ADBIS, TPDL and EDA 2020 Common
Workshops and Doctoral Consortium. Volume 1260. Commun. in Comput.
and Inf. Science. 2020, pages 145-157. DOI: 10 . 1007 /978 - 3 - 030 -
55814-7_12 (cited on page 92).

Aric Hagberg and Daniel A. Schult. “Rewiring networks for synchron-
ization”. In: Chaos 18.3, 037105 (2008). ISSN: 1054-1500,1089-7682. DOI:
10.1063/1.2975842 (cited on pages 108, 111).

Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Gor-
aczko, Allen Miu, Eugene Shih, Hari Balakrishnan and Samuel Madden.
“CarTel: A distributed mobile sensor computing system”. In: SenSys 2006:
Proceedings of the 4th ACM Conference on Embedded Networked Sensor
Systems. 2006, pages 125-138. DOI: 10.1145/1182807.1182821 (cited
on page 36).

Paul Irofti, Andrei Patrascu and Andra Baltoiu. Fraud detection in net-
works: State-of-the-art. 2019. arXiv: 1910. 11299 (cited on page 93).

Juno Jense and Florine W. Dekker. Source code underlying the publication:
Privacy-preserving peer-to-peer cycle detection. 17th June 2025. DOI: 10 .
4121/d23e6d7d-15d9-4c83-86de-5a3fc1fd5aa6 . v1 (cited on
pages 10, 101).

Bargav Jayaraman and David Evans. “Evaluating differentially private
machine learning in practice”. In: USENIX Security 2019: Proceedings of
the 28th USENIX Security Symposium. 2019, pages 1895-1912. URL: https:
//www.usenix.org/conference/usenixsecurityl9/presenta
tion/jayaraman (cited on page 5).

Juno Jense, Florine W. Dekker, Zekeriya Erkin and Mauro Conti. Privacy-
preserving peer-to-peer cycle detection. 2025. In preparation (cited on
pages 7, 9, 91).

Mahdi Jalili and Ali Ajdari Rad. “Comment on ‘Rewiring networks for
synchronization’”. In: Chaos 19.2, 028101 (2009). ISSN: 1054-1500,1089-
7682. DOL: 10.1063/1.3130929 (cited on page 120).

Adel Jebali, Salma Sassi and Abderrazak Jemai. “Inference control in
distributed environment: A comparison study”. In: CRiSIS 2019: Proceed-
ings of the 14th International Conference on Risks and Security of Internet
and Systems. Volume 12026. Lecture Notes in Computer Science. 2019,
pages 69—83.DOI: 10.1007/978-3-030-41568-6_5 (cited on page 71).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1016/J.ESWA.2021.116429
https://doi.org/10.1016/J.ESWA.2021.116429
https://doi.org/10.1007/978-3-030-55814-7_12
https://doi.org/10.1007/978-3-030-55814-7_12
https://doi.org/10.1063/1.2975842
https://doi.org/10.1145/1182807.1182821
https://arxiv.org/abs/1910.11299
https://doi.org/10.4121/d23e6d7d-15d9-4c83-86de-5a3fc1fd5aa6.v1
https://doi.org/10.4121/d23e6d7d-15d9-4c83-86de-5a3fc1fd5aa6.v1
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://doi.org/10.1063/1.3130929
https://doi.org/10.1007/978-3-030-41568-6_5

[Kai+21]

[KAMo6]

[Kan+20]

[Kap16]

[Kas+08]

[KDK11]

[Kha-+11]

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Me-
hdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert
Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adria Gascon, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,
Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson,
Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
Koneé¢ny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tan-
crede Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Ozgﬁr, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar,
Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Trameér, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu
and Sen Zhao. “Advances and open problems in federated learning”. In:
Foundations and Trends in Machine Learning 14.1-2 (2021), pages 1—-210.
DOI: 10.1561/2200000083 (cited on page 68).

Soummya Kar, Saeed A. Aldosari and José M. F. Moura. Topology for dis-
tributed inference on graphs. 2006. arXiv: cs/0606052 (cited on page 110).

Renuga Kanagavelu, Zengxiang Li, Juniarto Samsudin, Yechao Yang,
Feng Yang, Rick Siow Mong Goh, Mervyn Cheah, Praewpiraya Wiwat-
phonthana, Khajonpong Akkarajitsakul and Shangguang Wang. “Two-
phase multi-party computation enabled privacy-preserving federated
learning”. In: CCGRID 20z20: Proceedings of the 2oth IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing. 2020,
pages 410-419. DOI: 10.1109/CCGrid49817.2020.00-52 (cited on
page 68).

Bonnie Kaplan. “How should health data be used?” In: Cambridge Quar-
terly of Healthcare Ethics 25.2 (2016), pages 312—329. ISSN: 1469-2147. DOI:
10.1017/50963180115000614 (cited on page 36).

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Rask-
hodnikova and Adam D. Smith. “What can we learn privately?” In: FOCS
2008: Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science. 2008, pages 531-540. DOI: 10.1109/F0CS.2008.27

(cited on page 71).

Klaus Kursawe, George Danezis and Markulf Kohlweiss. “Privacy-friendly
aggregation for the smart-grid”. In: PETS zo11: Proceedings of the 11th
International Symposium on Privacy Enhancing Technologies. Volume 6794.
Lecture Notes in Computer Science. 2011, pages 175-191. DOI: 10.1007/
978-3-642-22263-4_10 (cited on pages 16, 18, 25, 36, 39).

M. Amin Khajehnejad, Arash Saber Tehrani, Alexandros G. Dimakis
and Babak Hassibi. “Explicit matrices for sparse approximation”. In: ISIT
zo011: Proceedings of the zou1 IEEE International Symposium on Information
Theory Proceedings. 2011, pages 469—473. DOI: 10.1109/ISIT. 2011 .
6034170 (cited on page 108).

BIBLIOGRAPHY X! 147

https://doi.org/10.1561/2200000083
https://arxiv.org/abs/cs/0606052
https://doi.org/10.1109/CCGrid49817.2020.00-52
https://doi.org/10.1017/S0963180115000614
https://doi.org/10.1109/FOCS.2008.27
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1109/ISIT.2011.6034170
https://doi.org/10.1109/ISIT.2011.6034170

[KL14]

[KOB21]

[KR19]

[Kurio]

[Lap+18]

[LeM+o07]

[Leo+15]

[Li+10]

[Li+11]

[Li+16]

148

Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
2nd edition. 2014. ISBN: 9781466570269 (cited on page 40).

Ferhat Karakoc, Melek Onen and Zeki Bilgin. “Secure aggregation against
malicious users”. In: SACMAT 2021: Proceedings of the 26th ACM Sym-
posium on Access Control Models and Technologies. 2021, pages 115-124.
DOL: 10.1145/3450569.3463572 (cited on page 36).

Diptendu Mohan Kar and Indrajit Ray. Systematization of knowledge and
implementation: Short identity-based signatures. 2019. arXiv: 1908. 05366
(cited on page 53).

Klaus Kursawe. “Some ideas on privacy preserving meter aggregation”.
In: Radboud Universiteit Nijmegen, Technical Report ICIS-R11002 (2010).
URL: https://hdl.handle.net/2066/290003 (cited on pages 16—
17).

Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin,
Mayank Varia and Azer Bestavros. “Accessible privacy-preserving web-
based data analysis for assessing and addressing economic inequalities”.
In: COMPASS 2018: Proceedings of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies. 2018, 48. DOI: 10.1145/3209811.
3212701 (cited on page 4).

Michael LeMay, George Gross, Carl A. Gunter and Sanjam Garg. “Unified
architecture for large-scale attested metering”. In: HICCS-4o0: Proceedings
of the 4oth Hawaii International International Conference on Systems Sci-
ence. 2007, pages 115-124. DOL: 10. 1109 /HICSS. 2007 . 586 (cited on
page 16).

Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Onen and Refik Molva.
“PUDA - Privacy and unforgeability for data aggregation”. In: CANS
2015: Proceedings of the 14th International Conference on Cryptology and
Network Security. Volume 9476. Lecture Notes in Computer Science. 2015,
pages 3-18. DOI: 10.1007/978-3-319-26823-1 1 (cited on pages 36—
41, 52, 58, 61).

Zhongkui Li, Zhisheng Duan, Guanrong Chen and Lin Huang. “Con-
sensus of multiagent systems and synchronization of complex networks:
A unified viewpoint”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 57-1.1 (2010), pages 213—224. DOI: 10.1109/TCSI.2009.
2023937 (cited on page 108).

Tao Li, Minyue Fu, Lihua Xie and Ji-Feng Zhang. “Distributed consensus
with limited communication data rate”. In: IEEE Transactions on Automatic
Control 56.2 (2011), pages 279-292. DOI: 10.1109/TAC.2010.2052384
(cited on page 110).

Yongkai Li, Shubo Liu, Jun Wang and Mengjun Liu. “Collusion-tolerable
and efficient privacy-preserving time-series data aggregation protocol”.
In: International Journal of Distributed Sensor Networks 12.9, 1341606 (2016).
DOI: 10.1177/155014771341606 (cited on page 41).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1145/3450569.3463572
https://arxiv.org/abs/1908.05366
https://hdl.handle.net/2066/290003
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1109/HICSS.2007.586
https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1109/TCSI.2009.2023937
https://doi.org/10.1109/TCSI.2009.2023937
https://doi.org/10.1109/TAC.2010.2052384
https://doi.org/10.1177/155014771341606

[Lia+17]

[Lino3]

[Linzo]

[Liu+14]

[LJ16]

[LL21]

[LLW24]

(LM17]

(LO14]

[LS21]

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang and Ji
Liu. “Can decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent”. In: NIPS
2017: Advances in Neural Information Processing Systems. Volume 30. 2017,
pages 5330-5340. URL: https://proceedings.neurips.cc/paper/
2017 /hash/ £75526659f31040afeb61cb7133e4e6d - Abstract .
html (cited on page 68).

Yehuda Lindell. Composition of secure multi-party protocols: A compre-
hensive study. Volume 2815. Lecture Notes in Computer Science. 2003.
DOL: 10.1007/b13246 (cited on page 71).

Yehuda Lindell. “Secure multiparty computation (MPC)”. In: IACR Crypto-
logy ePrint Archive (2020). URL: https://ia.cr/2020/300 (cited on
page 4).

Ying Liu, Cuili Yang, Wallace Kit-Sang Tang and Chunguang Li. “Optimal
topological design for distributed estimation over sensor networks”. In:
Information Sciences 254 (2014), pages 83—97. DOI: 10 . 1016 /7 . INS .
2013.07.012 (cited on pages 110-111).

Rutger Leukfeldt and Jurjen Jansen. “Cyber criminal networks and money
mules: An analysis of low-tech and high-tech fraud attacks in the Nether-
lands”. In: International Journal of Cyber Criminology 9.2 (2016), pages 173—
184. DOL: 10.5281/zenodo. 56210 (cited on page 92).

Iraklis Leontiadis and Ming Li. “Secure and collusion-resistant data ag-
gregation from convertible tags”. In: International Journal of Information
Security 20.1 (2021), pages 1-20. DOI: 10.1007/s10207-019-00485-4
(cited on pages 36—39, 52—53, 58, 61).

Yingxin Li, Fukang Liu and Gaoli Wang. “New records in collision attacks
on SHA-2”. In: Advances in Cryptology — EUROCRYPT z02z4: Proceedings of
the 43rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Volume 14651. Lecture Notes in Computer
Science. 2024, pages 158-186. DOI: 10.1007/978-3-031-58716-0_6
(cited on page 101).

David Lie and Petros Maniatis. “Glimmers: Resolving the privacy/trust
quagmire”. In: HotOS 2017: Proceedings of the 16th Workshop on Hot Topics
in Operating Systems. 2017, pages 94—99. DOI: 10.1145/3102980.3102
996 (cited on page 16).

JooYoung Lee and Jae C. Oh. “Estimating the degrees of neighboring
nodes in online social networks”. In: PRIMA 2014: Proceedings of the 17th
International Conference on Principles and Practice of Multi-Agent Systems.
Volume 8861. Lecture Notes in Computer Science. 2014, pages 42—56. DOI:
10.1007/978-3-319-13191-7 4 (cited on page 131).

Nati Linial and Michael Simkin. “A randomized construction of high
girth regular graphs”. In: Random Structures & Algorithms 58.2 (2021),
pages 345-369. DOI: 10.1002/RSA. 20976 (cited on page 112).

BIBLIOGRAPHY X! 149

https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://doi.org/10.1007/b13246
https://ia.cr/2020/300
https://doi.org/10.1016/J.INS.2013.07.012
https://doi.org/10.1016/J.INS.2013.07.012
https://doi.org/10.5281/zenodo.56210
https://doi.org/10.1007/s10207-019-00485-4
https://doi.org/10.1007/978-3-031-58716-0_6
https://doi.org/10.1145/3102980.3102996
https://doi.org/10.1145/3102980.3102996
https://doi.org/10.1007/978-3-319-13191-7_4
https://doi.org/10.1002/RSA.20976

[LTT1]

[LUogs]

[LUWo5]

[LV16]

[LWY24]

(LX13]

[Mar23]

[Mar82]

[Mau1]

[McL+13]

150

Francis Chung-Ming Lau, Wai Man Tam and Chi Kong Tse. “Increasing
the local girth of irregular low-density parity-check codes based on
degree-spectrum analysis”. In: IET Communications 5.11 (2011), pages 1506 —
1511. DOL: 10.1049/IET-COM.2010.0366 (cited on pages 108, 112).

Felix Lazebnik and Vasiliy A. Ustimenko. “Explicit construction of graphs
with an arbitrary large girth and of large size”. In: Discrete Applied Math-
ematics 60.1-3 (1995), pages 275-284. DOI: 10.1016/0166-218X(94)
00058-L (cited on page 82).

Felix Lazebnik, Vasiliy A. Ustimenko and Andrew J. Woldar. “A new series
of dense graphs of high girth”. In: Bulletin of the American Mathematical
Society 32.1(1995), pages 73—79. ISSN: 0273-0979,1088-9485. DOI: 10. 1090/
S0273-0979-1995-00569-0 (cited on page 112).

Felipe Lillo and Rodrigo Valdés. “Dynamics of financial markets and
transaction costs: A graph-based study”. In: Research in International
Business and Finance 38 (Sept. 2016), pages 455-465. ISSN: 0275-5319. DOI:
10.1016/j.ribaf.2016.07.024 (cited on page 101).

Fucai Luo, Haiyan Wang and Xingfu Yan. “Comments on ‘VERSA: Verifi-
able secure aggregation for cross-device federated learning’”. In: IEEE
Transactions on Dependable and Secure Computing 21.1 (2024), pages 499—
500. DOL: 10.1109/TDSC.2023.3253082 (cited on page 39).

Xin-Ji Liu and Shu-Tao Xia. “Reconstruction guarantee analysis of bin-
ary measurement matrices based on girth”. In: ISIT z013: Proceedings
of the 2013 IEEE International Symposium on Information Theory. 2013,
pages 474—478.DOL: 10.1109/ISIT.2013.6620271 (cited on page 108).

Célio Porsius Martins. “Private cycle detection in financial transactions”.
English. Master’s thesis. Delft University of Technology, Jan. 2023. URL:
https://resolver. tudelft.nl/uuid: lebcedc4-85cc-42e8-
912e-2b3e8b9603cc (visited on 16th June 2025) (cited on pages 93-94).

G. A. Margulis. “Explicit constructions of graphs without short cycles
and low density codes”. In: Combinatorica 2.1 (1982), pages 71-78. DOIL:
10.1007/BF02579283 (cited on page 108).

Ueli Maurer. “Constructive cryptography — A new paradigm for security
definitions and proofs”. In: TOSCA zoi1: Proceedings of the zou1 Joint
Workshop on Theory of Security and Applications. Volume 6993. Lecture
Notes in Computer Science. 2011, pages 33-56. DOI: 10.1007/978-3-
642-27375-9 3 (cited on pages 5, 71).

Stephen E. McLaughlin, Brett Holbert, Ahmed M. Fawaz, Robin Berthier
and Saman A. Zonouz. “A multi-sensor energy theft detection framework
for advanced metering infrastructures”. In: IEEE Journal on Selected Areas
in Communications 31.7 (2013), pages 1319—1330. DOI: 10. 1109 /JSAC.
2013.130714 (cited on page 16).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1049/IET-COM.2010.0366
https://doi.org/10.1016/0166-218X(94)00058-L
https://doi.org/10.1016/0166-218X(94)00058-L
https://doi.org/10.1090/S0273-0979-1995-00569-0
https://doi.org/10.1090/S0273-0979-1995-00569-0
https://doi.org/10.1016/j.ribaf.2016.07.024
https://doi.org/10.1109/TDSC.2023.3253082
https://doi.org/10.1109/ISIT.2013.6620271
https://resolver.tudelft.nl/uuid:1ebcedc4-85cc-42e8-912e-2b3e8b9603cc
https://resolver.tudelft.nl/uuid:1ebcedc4-85cc-42e8-912e-2b3e8b9603cc
https://doi.org/10.1007/BF02579283
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1109/JSAC.2013.130714
https://doi.org/10.1109/JSAC.2013.130714

[McM+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson and
Blaise Agiiera y Arcas. “Communication-efficient learning of deep net-
works from decentralized data”. In: AISTATS zo1y: Proceedings of the zoth
International Conference on Artificial Intelligence and Statistics. Volume 54.
Proceedings of Machine Learning Research. 2017, pages 1273-1282. URL:
https : / /proceedings . mlr . press /v54 /mcmahan17a . html
(cited on page 68).

[MEO13] Bradley A. Malin, Khaled El Emam and Christine M. O’Keefe. “Biomedical
data privacy: Problems, perspectives, and recent advances”. In: Journal
of the American Medical Informatics Association 20.1 (2013), pages 2—6.
DOL: 10.1136/amiajnl-2012-001509 (cited on page 36).

[Mero1] Russell Merris. “The number of eigenvalues greater than two in the
Laplacian spectrum of a graph”. In: Portugaliae Mathematica 48.3 (1991),
pages 345-349. ISSN: 0032-5155,1662-2758 (cited on page 109).

[Mor+19] Eduardo Morais, Tommy Koens, Cees van Wijk and Aleksei Koren. A
survey on zero knowledge range proofs and applications. 2019. arXiv: 1907 .
06381 (cited on pages 16, 18).

[Mouzo0] Foivi Mouzakiti. “Cooperation between financial intelligence units in
the European Union: Stuck in the middle between the General Data
Protection Regulation and the Police Data Protection Directive”. In: New
Journal of European Criminal Law 11.3 (2020), pages 351—374. DOI: 10 .
1177/2032284420943303 (cited on page 92).

[MT21] Dimitris Mouris and Nektarios Georgios Tsoutsos. “Masquerade: Verifi-
able multi-party aggregation with secure multiplicative commitments”.
In: JACR Cryptology ePrint Archive (2021). URL: https://ia.cr/2021/
1370 (cited on pages 36, 38, 40, 52).

[MvOVg6] Alfred Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook
of applied cryptography. 1996. po1: 10.1201/9781439821916 (cited on
page 100).

[New21] Gemma Newlands. “Algorithmic surveillance in the gig economy: The or-
ganization of work through Lefebvrian conceived space”. In: Organization
Studies 42.5 (2021), pages 719—737. DOI: 10.1177/0170840620937900
(cited on page 3).

[Ni+15] Jianbing Ni, Khalid Nawaf Alharbi, Xiaodong Lin and Xuemin Shen.
“Security-enhanced data aggregation against malicious gateways in smart
grid”. In: GLOBECOM 2015: Proceedings of the 2015 IEEE Global Communic-
ations Conference. 2015. DOL: 10.1109/GLOCOM. 2014 .7417140 (cited
on pages 36—39).

BIBLIOGRAPHY X 151

https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1136/amiajnl-2012-001509
https://arxiv.org/abs/1907.06381
https://arxiv.org/abs/1907.06381
https://doi.org/10.1177/2032284420943303
https://doi.org/10.1177/2032284420943303
https://ia.cr/2021/1370
https://ia.cr/2021/1370
https://doi.org/10.1201/9781439821916
https://doi.org/10.1177/0170840620937900
https://doi.org/10.1109/GLOCOM.2014.7417140

[NSTC23]

[Okag2]

[Oli+18]

[OMo3]

[Pal+24]

[Pan+20]

[Par21]

[PCo8]

[PD25]

152

Fast-Track Action Committee on Advancing Privacy-Preserving Data
Sharing and Analytics and Networking and Information Technology
Research and Development Subcommittee. National strategy to advance
privacy-preserving data sharing and analytics. Mar. 2023. URL: https://
bidenwhitehouse.archives.gov/wp-content/uploads/2023/
03 /National - Strategy- to- Advance-Privacy-Preserving -
Data - Sharing - and - Analytics . pdf (visited on 16th June 2025)
(cited on page 4).

Tatsuaki Okamoto. “Provably secure and practical identification schemes
and corresponding signature schemes”. In: Advances in Cryptology —
CRYPTO 199z: Proceedings of the 12th Annual International Cryptology Con-
ference. Volume 740. Lecture Notes in Computer Science. 1992, pages 31—
53.DOI: 10.1007/3-540-48071-4 3 (cited on page 41).

Gabriele Oliva, Roberto Setola, Luigi Glielmo and Christoforos N. Hadji-
costis. “Distributed cycle detection and removal”. In: IEEE Transactions
on Control of Network Systems 5.1 (2018), pages 194—204. DOI: 10.1109/
TCNS.2016.2593264 (cited on pages 82, 89).

Reza Olfati-Saber and Richard M. Murray. “Consensus protocols for
networks of dynamic agents”. In: ACC 2003: Proceedings of the 2003
American Control Conference. 2003, pages 951-956. DOI: 10.1109/ACC.
2003.1239709 (cited on page 109).

Marco Palazzo, Florine W. Dekker, Alessandro Brighente, Mauro Conti
and Zekeriya Erkin. “Privacy-preserving data aggregation with pub-
lic verifiability against internal adversaries”. In: USENIX Security 2024:
Proceedings of the 33rd USENIX Security Symposium. 2024. URL: https:
//www.usenix.org/conference/usenixsecurity24/presenta
tion/palazzo (cited on pages 7, 9, 35).

Guansong Pang, Chunhua Shen, Longbing Cao and Anton van den Hen-
gel. Deep learning for anomaly detection: A review. 2020. arXiv: 2007 .
02500 (cited on page 93).

Pedro Paredes. “Spectrum preserving short cycle removal on regular
graphs”. In: STACS 2021: Proceedings of the 38th International Symposium
on Theoretical Aspects of Computer Science. Volume 187. Leibniz Inter-
national Proceedings in Informatics. 2021, 55. DoI: 10.4230/LIPICS.
STACS.2021.55 (cited on pages 108, 112).

Louis M. Pecora and Thomas L. Carroll. “Master stability functions for
synchronized coupled systems”. In: Physical Review Letters 8o (10 Mar.
1998), pages 2109—2112. DOI: 10.1103/PhysRevLett.80.2109 (cited
on pages 108, 110).

Marco Palazzo and Florine W. Dekker. Source code underlying the public-
ation: Privacy-preserving data aggregation with public verifiability against
internal adversaries. 11th June 2025. DOI: 10.4121/56552¢cc8-7ebf -
46ce-a6e0-668dd6065eb2.v1 (cited on pages 10, 53).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/03/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1109/TCNS.2016.2593264
https://doi.org/10.1109/TCNS.2016.2593264
https://doi.org/10.1109/ACC.2003.1239709
https://doi.org/10.1109/ACC.2003.1239709
https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo
https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo
https://www.usenix.org/conference/usenixsecurity24/presentation/palazzo
https://arxiv.org/abs/2007.02500
https://arxiv.org/abs/2007.02500
https://doi.org/10.4230/LIPICS.STACS.2021.55
https://doi.org/10.4230/LIPICS.STACS.2021.55
https://doi.org/10.1103/PhysRevLett.80.2109
https://doi.org/10.4121/56552cc8-7ebf-46ce-a6e0-668dd6065eb2.v1
https://doi.org/10.4121/56552cc8-7ebf-46ce-a6e0-668dd6065eb2.v1

[Peng7]

[Pou+20]

[Qiu+18]

[Qu+20]

[Rai18]

[Ren+22]

[Rie+11]

[RJHo8]

[RN10]

Mathew D. Penrose. “The longest edge of the random minimal spanning
tree”. In: The Annals of Applied Probability 7.2 (1997), pages 340-361.
ISSN: 1050-5164,2168-8737. DOI: 10.1214/aoap/1034625335 (cited on
page 114).

Tahereh Pourhabibi, Kok-Leong Ong, Booi Kam and Yee Ling Boo. “Fraud
detection: A systematic literature review of graph-based anomaly detec-
tion approaches”. In: Decision Support Systems 133, 113303 (2020). DOI:
10.1016/7.DSS.2020.113303 (cited on page 93).

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin
Lin and Jingren Zhou. “Real-time constrained cycle detection in large
dynamic graphs”. In: Proceedings of the VLDB Endowment 11.12 (2018),
pages 1876—1888. DoL: 10.14778/3229863.3229874 (cited on pages 92,
100-101).

Youyang Qu, Longxiang Gao, Tom H. Luan, Yong Xiang, Shui Yu, Bai
Li and Gavin Zheng. “Decentralized privacy using blockchain-enabled
federated learning in fog computing”. In: IEEE Internet of Things Journal
7.6 (2020), pages 5171-5183. DOL: 10.1109/J10T.2020.2977383 (cited
on page 68).

Lee Rainie. “Americans’ complicated feelings about social media in an
era of privacy concerns”. In: Pew Research Center (27th Mar. 2018). URL:
https://www.pewresearch.org/short-reads/2018/03/27/
americans-complicated-feelings-about-social-media-in-
an-era-of-privacy-concerns/ (visited on 16th June 2025) (cited
on page 3).

Yanli Ren, Yerong Li, Guorui Feng and Xinpeng Zhang. “Privacy-enhanced
and verification-traceable aggregation for federated learning”. In: IEEE
Internet of Things Journal 9.24 (2022), pages 24933-24948. DOI: 10.1109/
JIOT.2022.3194930 (cited on pages 36-38, 40, 52).

Konrad Rieck, Philipp Trinius, Carsten Willems and Thorsten Holz. “Auto-
matic analysis of malware behavior using machine learning”. In: Journal
of Computer Security 19.4 (2011), pages 639—668. DOI: 10 . 3233 /JCS -
2010-0410 (cited on page 68).

Ali Ajdari Rad, Mahdi Jalili and Martin Hasler. “Efficient rewirings for
enhancing synchronizability of dynamical networks”. In: Chaos 18.3,
037104 (2008). ISSN: 1054-1500,1089-7682. DOI: 10 . 1063 /1.2967738
(cited on page 111).

Vibhor Rastogi and Suman Nath. “Differentially private aggregation of
distributed time-series with transformation and encryption”. In: SIGMOD
2010: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. 2010, pages 735-746. DOI: 10 . 1145/1807167 .
1807247 (cited on page 16).

BIBLIOGRAPHY X! 153

https://doi.org/10.1214/aoap/1034625335
https://doi.org/10.1016/J.DSS.2020.113303
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.1109/JIOT.2020.2977383
https://www.pewresearch.org/short-reads/2018/03/27/americans-complicated-feelings-about-social-media-in-an-era-of-privacy-concerns/
https://www.pewresearch.org/short-reads/2018/03/27/americans-complicated-feelings-about-social-media-in-an-era-of-privacy-concerns/
https://www.pewresearch.org/short-reads/2018/03/27/americans-complicated-feelings-about-social-media-in-an-era-of-privacy-concerns/
https://doi.org/10.1109/JIOT.2022.3194930
https://doi.org/10.1109/JIOT.2022.3194930
https://doi.org/10.3233/JCS-2010-0410
https://doi.org/10.3233/JCS-2010-0410
https://doi.org/10.1063/1.2967738
https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1145/1807167.1807247

[RW13]

[SB22]

[Sch+20]

[Sch2s]

[Shi+11]

[Shi+15]

[Shiog]

[Smai6]

[SRA79]

[ST21]

154

Yannis Rouselakis and Brent Waters. “Practical constructions and new
proof methods for large universe attribute-based encryption”. In: CCS
2013: Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security. 2013, pages 463-474. DOI: 10.1145/2508859.
2516672 (cited on page 53).

Christel Sirocchi and Alessandro Bogliolo. “Topological network features
determine convergence rate of distributed average algorithms”. In: Sci-
entific Reports 12.1, 21831 (Dec. 2022). ISSN: 2045-2322. DOL: 10 . 1038/
$41598-022-25974-w (cited on pages 108, 111, 114, 116).

Robert Schmid, Bjarne Pfitzner, Jossekin Beilharz, Bert Arnrich and An-
dreas Polze. “Tangle ledger for decentralized learning”. In: IPDPSW 202z0:
Proceedings of the 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops. 2020, pages 852—859. DOI: 10 . 1109/
IPDPSW50202.2020.00144 (cited on page 68).

Berry Schoenmakers. Lecture notes cryptographic protocols, version 1.10.
Feb. 2025. URL: https://www.win.tue.nl/~berry/Cryptograph
icProtocols/LectureNotes.pdf (visited on 16th June 2025) (cited
on page 41).

FElaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel, Richard Chow
and Dawn Song. “Privacy-preserving aggregation of time-series data”.
In: NDSS zoi1: Proceedings of the zo11 Network and Distributed System
Security Symposium. 2011. URL: https : / /www . ndss - symposium .
org/ndss2011/privacy-preserving-aggregation-of-time-
series-data (cited on pages 16, 18, 36, 39—40, 58).

Zhiguo Shi, Ruixue Sun, Rongxing Lu, Le Chen, Jiming Chen and Xuemin
Sherman Shen. “Diverse grouping-based aggregation protocol with error
detection for smart grid communications”. In: IEEE Transactions on Smart
Grid 6.6 (2015), pages 2856—2868. DOI: 10.1109/TSG.2015.2443011
(cited on pages 17, 28).

Katie Shilton. “Four billion little brothers?: Privacy, mobile phones, and

ubiquitous data collection”. In: Communications of the ACM 52.11 (2009),
pages 48-53. DOI: 10.1145/1592761.1592778 (cited on page 36).
Nigel P. Smart. Cryptography made simple. Information Security and
Cryptography. 2016. por: 10.1007/978-3-319-21936- 3 (cited on
page 37).

Adi Shamir, Ronald L. Rivest and Leonard M. Adleman. Mental poker.

Massachusetts Institute of Technology, Laboratory for Computer Science,
29th Jan. 1979. po1: 1721.1/148953 (cited on page 4).

Durgesh Samariya and Amit Thakkar. “A comprehensive survey of anom-
aly detection algorithms”. In: Annals of Data Science 10 (2021), pages 829—
850. DOI: 10.1007/540745-021-00362-9 (cited on page 93).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.1145/2508859.2516672
https://doi.org/10.1145/2508859.2516672
https://doi.org/10.1038/s41598-022-25974-w
https://doi.org/10.1038/s41598-022-25974-w
https://doi.org/10.1109/IPDPSW50202.2020.00144
https://doi.org/10.1109/IPDPSW50202.2020.00144
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://doi.org/10.1109/TSG.2015.2443011
https://doi.org/10.1145/1592761.1592778
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/1721.1/148953
https://doi.org/10.1007/s40745-021-00362-9

[STPO22]

[Sun+13]

[Szyos]

[Tan+18]

[TDP16]

[TL24]

[Tra+21]

[Tro+17]

[Ull+21]

Office of Science and Technology Policy. Request for information on
advancing privacy-enhancing technologies. 9th June 2022. URL: https:
//www.federalregister.gov/documents/2022/06/09/2022-
12432 /request-for-information-on-advancing-privacy-e
nhancing-technologies (visited on 16th June 2025) (cited on page 4).

Ruixue Sun, Zhiguo Shi, Rongxing Lu, Min Lu and Xuemin Shen. “APED:
An efficient aggregation protocol with error detection for smart grid
communications”. In: GLOBECOM zo013: Proceedings of the 2013 IEEE
Global Communications Conference. 2013, pages 432—437. DOL: 10.1109/
GLOCOM. 2013.6831109 (cited on pages 17, 28).

Ted H. Szymanski. ““Hypermeshes’: Optical intercomnnection network
for parallel computing”. In: Journal of Parallel and Distributed Computing
26.1 (1995), pages 1-23. DOL: 10 . 1006 /JPDC . 1995 . 1043 (cited on
page 20).

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang and Ji Liu. “D?: De-
centralized training over decentralized data”. In: ICML 2018: Proceedings
of the 35th International Conference on Machine Learning. Volume 8o.
Proceedings of Machine Learning Research. 2018, pages 4855-4863. URL:
https://proceedings.mlr.press/v80/tangl8a.html (cited on
page 68).

Ngoc Hieu Tran, Robert H. Deng and HweeHwa Pang. “Privacy-preserving
and verifiable data aggregation”. In: SG-CRC z016: Proceedings of the Singa-
pore Cyber-Security Conference. Volume 14. Cryptology and Information
Security Series. 2016, pages 115-122. DOI: 10 .3233/978-1-61499 -
617-0-115 (cited on pages 58, 61).

Carmela Troncoso and Wouter Lueks. “Designing for data protection”.
In: Handbook on Data Protection in Humanitarian Action. 2024. Chapter 6,
pages 76—95. DOI: 10.1017/9781009414630.011 (cited on page 3).

Anh-Tu Tran, The-Dung Luong, Jessada Karnjana and Van-Nam Huynh.
“An efficient approach for privacy preserving decentralized deep learning
models based on secure multi-party computation”. In: Neurocomputing
422 (2021), pages 245-262. DOI: 10.1016/j .neucom.2020.10.014
(cited on page 68).

Carmela Troncoso, Marios Isaakidis, George Danezis and Harry Halpin.
“Systematizing decentralization and privacy: Lessons from 15 years of
research and deployments”. In: Proceedings on Privacy Enhancing Techno-
logies 2017.4 (2017), pages 404—426.DOI: 10.1515/popets-2017-0056
(cited on page 68).

Ata Ullah, Muhammad Azeem, Humaira Ashraf, Abdulellah A. Alaboudi,
Mamoona Humayun and N. Z. Jhanjhi. “Secure healthcare data aggreg-

ation and transmission in IoT - A survey”. In: IEEE Access 9 (2021),
pages 16849—-16865. DOL: 10.1109/ACCESS. 2021 .3052850 (cited on

page 36).

BIBLIOGRAPHY X! 155

https://www.federalregister.gov/documents/2022/06/09/2022-12432/request-for-information-on-advancing-privacy-enhancing-technologies
https://www.federalregister.gov/documents/2022/06/09/2022-12432/request-for-information-on-advancing-privacy-enhancing-technologies
https://www.federalregister.gov/documents/2022/06/09/2022-12432/request-for-information-on-advancing-privacy-enhancing-technologies
https://www.federalregister.gov/documents/2022/06/09/2022-12432/request-for-information-on-advancing-privacy-enhancing-technologies
https://doi.org/10.1109/GLOCOM.2013.6831109
https://doi.org/10.1109/GLOCOM.2013.6831109
https://doi.org/10.1006/JPDC.1995.1043
https://proceedings.mlr.press/v80/tang18a.html
https://doi.org/10.3233/978-1-61499-617-0-115
https://doi.org/10.3233/978-1-61499-617-0-115
https://doi.org/10.1017/9781009414630.011
https://doi.org/10.1016/j.neucom.2020.10.014
https://doi.org/10.1515/popets-2017-0056
https://doi.org/10.1109/ACCESS.2021.3052850

[UQ25]

[VBT17]

[VEgm+21]

[Vor23]

[Wan+o7]

[Wan+19]

[Wan+23]

[War6s]

[Wei+16]

156

Aysun Urhan and Yasel Quintero. CODECHECK certificate 2025-003. May
2025. DOI: 10.5281/zenodo. 15333601 (cited on page 10).

Paul Vanhaesebrouck, Aurélien Bellet and Marc Tommasi. “Decentral-
ized collaborative learning of personalized models over networks”. In:
AISTATS zo17: Proceedings of the zoth International Conference on Artificial
Intelligence and Statistics. Volume 54. Proceedings of Machine Learning
Research. 2017, pages 509—517. URL: https : //proceedings . mlr .
press/v54/vanhaesebrouckl17a.html (cited on pages 68, 71-72, 82,
88, 108).

Marie Beth van Egmond, Gabriele Spini, Onno van der Galién, Arne [Jpma,
Thijs Veugen, Wessel Kraaij, Alex Sangers, Thomas Rooijakkers, Peter
Langenkamp, Bart Kamphorst, Natasja van de L’Isle and Milena Kooij-
Janic. “Privacy-preserving dataset combination and Lasso regression for
healthcare predictions”. In: BMC Medical Informatics and Decision Making
21.1, 266 (2021). DOL: 10.1186/512911-021-01582-Y (cited on page 4).

Marc H.L. Vorstermans. “Secure graph algorithms and oblivious data
structures for multiparty computation”. English. Master’s thesis. Eind-
hoven University of Technology, Mar. 2023. URL: https://research.
tue . nl / en/ studentTheses /d171ddd4 - aba0 - 4063 - 96dd -
46£396de2369 (cited on page 94).

Bing Wang, Tao Zhou, Zhilong Xiu and Beom Jun Kim. “Optimal syn-
chronizability of networks”. In: The European Physical Journal B 60.1
(Nov. 2007), pages 89—95. ISSN: 1434-6036. DOL: 10.1140/epjb/e2007-
00324-y (cited on page 111).

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang and
Hairong Qi. “Beyond inferring class representatives: User-level privacy
leakage from federated learning”. In: INFOCOM z019: Proceedings of the
2019 IEEE Conference on Computer Communications. 2019, pages 2512—
2520. DOL: 10.1109/INFOCOM. 2019.8737416 (cited on page 71).

Yong Wang, Aiqing Zhang, Shu Wu and Shui Yu. “VOSA: Verifiable
and oblivious secure aggregation for privacy-preserving federated learn-
ing”. In: IEEE Transactions on Dependable and Secure Computing 20.5
(2023), pages 3601-3616. DOI: 10.1109/TDSC.2022.3226508 (cited on
pages 36—39).

Stanley L. Warner. “Randomized response: A survey technique for elim-
inating evasive answer bias”. In: Journal of the American Statistical As-
sociation 60.309 (1965), pages 63—69. DOI: 10.1080/01621459.1965.
10480775 (cited on page 71).

Gary M. Weiss, Jessica L. Timko, Catherine M. Gallagher, Kenichi Yoneda
and Andrew J. Schreiber. “Smartwatch-based activity recognition: A
machine learning approach”. In: BHI 2016: Proceedings of the 2016 IEEE-
EMBS International Conference on Biomedical and Health Informatics. 2016,
pages 426—429. DOL: 10.1109/BHT.2016.7455925 (cited on page 68).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://doi.org/10.5281/zenodo.15333601
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://doi.org/10.1186/S12911-021-01582-Y
https://research.tue.nl/en/studentTheses/d171ddd4-aba0-4063-96dd-46f396de2369
https://research.tue.nl/en/studentTheses/d171ddd4-aba0-4063-96dd-46f396de2369
https://research.tue.nl/en/studentTheses/d171ddd4-aba0-4063-96dd-46f396de2369
https://doi.org/10.1140/epjb/e2007-00324-y
https://doi.org/10.1140/epjb/e2007-00324-y
https://doi.org/10.1109/INFOCOM.2019.8737416
https://doi.org/10.1109/TDSC.2022.3226508
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1109/BHI.2016.7455925

[Wor+20]

[WW]Jo2]

[XBog]

[Yan+10]

[Yeu+12]

[YL13]

[YT11]

[ZBTzo0]

[Zia23]

Daniél Worm, Bart Kamphorst, Thomas Rooijakkers, Thijs Veugen, Mat-
teo Cellamare, Gijs Geleijnse, Daan Knoors and Frank Martin. CON-
VINCED - Enabling privacy-preserving survival analyses using multi-
party computation. 2020. URL: https://resolver.tno.nl/uuid:
1¢4885d6-8cf3-4443-h952-e887e1b41207 (visited on 16th June
2025) (cited on page 4).

Lingyu Wang, Duminda Wijesekera and Sushil Jajodia. “Cardinality-
based inference control in sum-only data cubes”. In: ESORICS 2002: Pro-
ceedings of the 7th European Symposium on Research in Computer Security.
Volume 2502. Lecture Notes in Computer Science. 2002, pages 55-71. DOI:
10.1007/3-540-45853-0_4 (cited on pages 5, 70, 78).

Lin Xiao and Stephen P. Boyd. “Fast linear iterations for distributed
averaging”. In: Systems & Control Letters 53.1 (2004), pages 65—78. DOI:
10.1016/J .SYSCONLE . 2004 .02 . 022 (cited on pages 87, 108-109,
113).

Bin Yang, Hiroshi Nakagawa, Issei Sato and Jun Sakuma. “Collusion-
resistant privacy-preserving data mining”. In: KDD zo10: Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2010, pages 483-492. DOL: 10.1145/1835804.18358
67 (cited on page 71).

Ka Wai Yeung, Cuili Yang, Wallace Kit-Sang Tang and Ying Liu. “A
meta-heuristic algorithm for enhancing the synchronizability of com-
plex networks”. In: ISIE zo12: Proceedings of the zist IEEE International
Symposium on Industrial Electronics. 2012, pages 792—796. DOI: 10.1109/
ISIE.2012.6237189 (cited on page 111).

Lei Yang and Fengjun Li. “Detecting false data injection in smart grid
in-network aggregation”. In: SmartGridComm 2013: Proceedings of the
4th IEEE International Conference on Smart Grid Communications. 2013,
pages 408—413. DOI: 10.1109/SMARTGRIDCOMM. 2013 . 6687992 (cited
on pages 16, 18, 28—29).

Cuili Yang and Wallace Kit-Sang Tang. “Enhancing the synchronizab-
ility of networks by rewiring based on tabu search and a local greedy
algorithm”. In: Chinese Physics B 20.12, 128901 (Dec. 2011). DOI: 10. 1088/
1674-1056/20/12/128901 (cited on page 111).

Valentina Zantedeschi, Aurélien Bellet and Marc Tommasi. “Fully decent-
ralized joint learning of personalized models and collaboration graphs”.
In: AISTATS z020: Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics. Volume 108. Proceedings of Machine
Learning Research. 2020, pages 864-874. URL: https://proceedings.
mlr.press/v108/zantedeschi20a.html (cited on pages 68, 71-72).

Hanna Ziady. “Meta slapped with record $1.3 billion EU fine over data
privacy”. In: CNN (22nd May 2023). URL: https://edition.cnn.com/
2023/05/22/tech/meta-facebook-data-privacy-eu-fine/
(visited on 16th June 2025) (cited on page 3).

BIBLIOGRAPHY X! 157

https://resolver.tno.nl/uuid:1c4885d6-8cf3-4443-b952-e887e1b41207
https://resolver.tno.nl/uuid:1c4885d6-8cf3-4443-b952-e887e1b41207
https://doi.org/10.1007/3-540-45853-0_4
https://doi.org/10.1016/J.SYSCONLE.2004.02.022
https://doi.org/10.1145/1835804.1835867
https://doi.org/10.1145/1835804.1835867
https://doi.org/10.1109/ISIE.2012.6237189
https://doi.org/10.1109/ISIE.2012.6237189
https://doi.org/10.1109/SMARTGRIDCOMM.2013.6687992
https://doi.org/10.1088/1674-1056/20/12/128901
https://doi.org/10.1088/1674-1056/20/12/128901
https://proceedings.mlr.press/v108/zantedeschi20a.html
https://proceedings.mlr.press/v108/zantedeschi20a.html
https://edition.cnn.com/2023/05/22/tech/meta-facebook-data-privacy-eu-fine/
https://edition.cnn.com/2023/05/22/tech/meta-facebook-data-privacy-eu-fine/

[ZMW17]

158

Kai Zheng, Wenlong Mou and Liwei Wang. “Collect at once, use effect-
ively: Making non-interactive locally private learning possible”. In: ICML
zo17: Proceedings of the 34th International Conference on Machine Learning.
Volume 70. Proceedings of Machine Learning Research. 2017, pages 4130-
4139. URL: https : //proceedings . mlr . press/v70/zhengl7c.
html (cited on pages 69, 71).

% GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

https://proceedings.mlr.press/v70/zheng17c.html
https://proceedings.mlr.press/v70/zheng17c.html

)

-

Acknowledgements

most readers won’t do much more than search for their names before moving

on. Personally, I've always enjoyed reading the acknowledgements in others’
dissertations. They provide a wholesome glimpse into the author’s life, and sometimes
reveal that you may not have known your colleague as well as you thought. Having
said that, here follows a dry enumeration of heartfelt acknowledgements. I'm not a
woman of many words, but that’s just because I choose my words very carefully.

I will start with my two promotors. Thank you, Zeki, for providing me with the
space to work in the way that best suit me. Thank you, Mauro, for nudging the
steering wheel whenever it was required.

I want to thank the defence committee for taking the time to read this entire
dissertation, for giving valuable feedback, and for traveling to Delft to wear silly hats
and ask tough questions.

I've seen office mates come and go, but loved them all. The evenings spent together
were the favourite days of my PhD, and never failed to invigorate me. Thank you,
Jelle for your selflessness and thoughtfulness. Thank you, Jests for sharing your
delicious food. Thank you, Jorrit for your straightforwardness and assertiveness.
Thank you, Miray, for your comical incredulity. Thank you, Ozzy, for showing me
the ropes. Thank you, Tianyu for your determination and for lending me your F1IFA
skills. Thank you, Tjitske for your humour and positivity.

I also want to thank my many colleagues, who always created an incredibly lively
atmosphere on the work floor and made me feel welcome. I know that’s a platitude,
but I'm genuine! Thank you, Alexios, for your unabashedly loud laughter. Thank
you, Giovane, for your honest words. Thank you, Georgios, for your unreserved
generosity. Thank you, Huimin, for the nice conversations in Darmstadt. Thank you,
Lilika, for hearing out my outlandish talk. Thank you, Sandra, for being the glue
that holds this group together. And I also want to thank you, Alin, Clinton, Daniél,
Dario', Dazhuang, Harm, Huanhuan, Jing, Kaitai, Lichao, Maarten, Marina,
Martin®, Murtuza, Roland, Stefanos, Stjepan, Yu, and Yugqian, for being such
lovely people.

I also want to thank Bart and Ruud for their technical assistance.

My dissertation would (literally) not have been the same without my collaborators. I
have learnt a lot from working with each of you. Thank you, Alessandro, for making
sure the mPvAs paper was in order and tying up some of the loose ends. Thank you,
Juno, for your infinite stream of incredible stories. Thank you, Marco, for your
humble genius. And, while our project didn’t bear fruit, I want to thank you, Ankit,
Dario', Giovanni, and Giuseppe, for working with me on the GBoard project.

There are also several people who have fulfilled somewhat of a mentorship role,
however briefly. Each of you has inspired me, professionally or personally, and are part

N ENDLESS ENUMERATION of thank yous can be a bit dry at times, but I expect
@

'These are different Darios.
2These are different Martins.

of the reason that I am where I am, and am heading where I am heading. Without you,
I might have given up on my PhD long ago. Thank you, Dion, for your welcoming
smile, for your genuine interest, and for pointing me in the right direction when I
was lost in algebra. Thank you, Seda, for teaching me so much about privacy, about
the real world, and for your many kind and encouraging words. Thank you, VP, for
helping me collect myself at the end of the third year, and for making me realise how
tremendous my progress had actually already been. And thank you, Wouter, for
asking the right questions when I was in despair.

Thank you, Amber, for the motivation and inspiration, which may be more mutual
than you think. Thank you, Jeff, for providing me with the code of your beautiful
dissertation (and of course also for many a good conversation). I also want to thank
the many people, whose names are too many to list, but have asked great questions
during my presentations (or vice versa), inspired research questions, or were just jolly
good to talk with at conferences and dinners.

There are also many students I want to think. Firstly, the students whom I supervised.
Thank you, Andrei, Célio, Davis, Juno, Marco, and Martin?, for teaching me about
teaching, for your patience, and for your gifts. Secondly, I want to thank the many
other master students that I did not supervise, but have given feedback to, lunched
with, and always had many stories to tell. Finally, I want to thank the students who
attended my lectures or had to suffer through one of my assignments.

I want to thank the anonymous reviewers of my scientific works. Those who
provided constructive feedback, anyway.

I also want to thank the many hardware devices that have supported me in my
endeavours. First of all, thank you, Lauren, my laptop, for suffering through so much
computing hours that I had to put you upside down on my desk to stop you from
overheating. Thank you, Helmut, my now-retired desktop pc, for loyally running
experiments for many years. Thank you, Jonna, my current desktop pc, for your
reliability, and for the fun playing vr games. Thank you, Susumu, my old phone, and
Joel, my current phone, for keeping me sane between long working hours. Thank
you, Theodore, for heating our office in the winter and for running some last-minute
experiments. Finally, thank you, everyone at paic (formerly iNsy-apc), for running
the high-performance computing servers that enabled me to scale up my experiments
several orders of magnitude.

All work and no play makes Florine a dull girl. Therefore, I want to thank my
awesome lifelong friends. The time spent together playing video games, going on
holidays, spilling butter on stairs, and watching movies and shows, I could not have
done without. I could fill pages praising you as friends, but words do not do justice to
how much I love each of you. Thank you, Christa, for radiating your deeply chaotic
pevil energies. Thank you, Daryl, for your perpetual calmness. Thank you, Luc, for
the mystery brews. Thank you, Romano, for your boundless enthusiasm. Thank you,
Tim, for going on adventures with me. Beyond that, I want to thank my many other
friends who've frequently cheered me up.

Thank you, papa en mama, for your boundless love and for always being there to
fall back on. When I don’t know what to do, I ask myself what you would do in my
place, and thus far the results have been excellent. Thank you for inviting yourself
over for coffee: Talking with you always helps me see the forest despite the trees. And

162 % GRAPH-BASED RECONSTRUCTION IN SUMMATION SEQUENCES

I thank my family for accepting me for who I am; that means a lot to me.

As the very last but absolutely not the very least, I want to thank Marija. I forget
we’ve only known each other a few years, because it feels like we’ve known each other
a lifetime. Your unconditional love and acceptance of me has shown me how to love
myself, too. Thank you for your help when I was working late, for your understanding
when I was frustrated, for your comfort when I was demotivated, and for your love
always. When I fear for the future, I think of you and feel at rest again.

Florine W. DEKKER
16th June 2025
Delft, the Netherlands

o #

ACKNOWLEDGEMENTS %! 163

1997

2009-2015

2015-2018

2018-2020

2020—2025

Sy

4 A D

Curriculum Vitae

Florine W. DEKKER

Born June 17th
in Zwijndrecht, the Netherlands

Gymnasium diploma
Johan de Witt-gymnasium in Dordrecht

BSc in Computer Science & Engineering
Delft University of Technology in Delft
Minor Computer Science at University of Waterloo, Canada

MSc Computer Science
Delft University of Technology in Delft
Specialising in Cybersecurity

PhD Computer Science

Delft University of Technology in Delft
Cybersecurity research group

P4
T

	English Summary
	Nederlandse Samenvatting
	I Prologue
	Introduction
	Reconstruction Attacks
	Composability and Disclosure
	Research Objectives
	Contributions
	About This Dissertation

	II Privacy-Preserving Summation
	Privacy-Preserving Aggregation with Probabilistic Range Validation
	Introduction
	Related Work
	Probabilistic Range-Limited Private Data Aggregation
	Analyses
	Conclusion

	Privacy-Preserving Aggregation with Public Verifiability Against Internal Adversaries
	Introduction
	System Model and Assumptions
	Related Work
	Preliminaries
	mPVAS: Publicly Verifiable Aggregate Signatures with Malicious Users and a Malicious Aggregator
	mPVAS+: mPVAS with Lower Communication Overhead
	mPVAS-IV: mPVAS with Input Validation
	mPVAS-UD: mPVAS with User Dropouts
	Complexity Analysis of the mPVAS Family
	Conclusions
	Security Arguments for the mPVAS Family

	III Reconstruction Attacks
	Topology-Based Reconstruction Prevention for Decentralised Learning
	Introduction
	Related Work
	Preliminaries
	Reconstruction in Multi-party Summation
	Girth as a Reconstruction Countermeasure
	Conclusion

	Privacy-Preserving Peer-to-Peer Cycle Detection
	Introduction
	Related Work
	Our Proposal: Decentralised Cycle Detection
	Performance
	Security Analysis
	Conclusion

	Optimal Graph Stretching for Distributed Averaging
	Introduction
	Preliminaries
	Related work
	Optimal Graph Stretching Problem
	Method
	Results
	Conclusion

	IV Epilogue
	Discussion
	Achievements
	Limitations
	Future Work

	Bibliography
	Acknowledgements
	Curriculum Vitae

