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 Abstract — Background and Objective: Long-term electrocardiography monitoring comes at the expense of signal 

quality. During unconstrained movements, the electrocardiogram is often corrupted by motion artefacts, which can lead to 

inaccurate physiological information. In this situation, automated quality assessment methods are useful to increase the 

reliability of the measurements. A generic machine learning pipeline that generates classification models for electrocardiogram 

quality assessment is presented in this article. The presented pipeline is tested on signals from varied acquisition sources, 

towards selecting segments that can be used for heart rate analysis in lifestyle applications. 

 Methods: Electrocardiogram recordings from traditional, wearable and ubiquitous devices, are segmented in 10 s windows 

and manually labeled by experienced researchers into two quality classes. To capture the electrocardiogram dynamics, a 

comprehensive set of 43 features is extracted from each segment, based on the time-domain signal, its Fast Fourier Transform, 

the Autocorrelation function and the Stationary Wavelet Transform. To select the most relevant features for each acquisition 

source we employ both a customized hybrid approach and the state-of-the-art Neighborhood Component Analysis method and 

compare them. Support Vector Machines (SVM), Decision Trees, K-Nearest-Neighbors and supervised ensemble methods are 

tested as possible binary classifiers. 

 Results: The results for the best performing models on traditional, wearable and ubiquitous electrocardiogram datasets are, 

respectively: balanced-accuracy: 89%, F1-score: 93% with the Fine Gaussian SVM model and 10 features; balanced-accuracy: 

93%, F1-score: 93% with the Fine Gaussian SVM model and 11 features; balanced-accuracy: 95%, F1-score: 86%, with the 

Fine Gaussian SVM model and 8 features. 

 Conclusions: According to the results, our generic pipeline can generate classification models tailored to individual 

acquisition sources, provided that a standard Lead I or Lead II is available. Such models accurately establish whether the 

electrocardiogram quality is good or bad for heart rate analysis. Furthermore, removing bad quality segments decreases errors 

in heart rate calculation. 

     Keywords: Electrocardiogram; wearables; ubiquitous; non-contact; classification; feature selection; motion artefact; 

signal quality. 

I. INTRODUCTION

The electrocardiography (ECG) captures the electrical activity of the heart through a set of electrodes placed on the body 
surface. The electrode placement relative to the heart (i.e. lead configuration) defines the expected morphology of the ECG 
waveform. Due to its stability and well-known properties (i.e. normal patterns and pathological deviations), the ECG is widely 
used for health monitoring. The ECG has been collected in portable devices ever since the Holter system was developed in the 
1940’s [1][2] and allows for long-term ECG monitoring. This system is widely used in intensive care units, cardiology wards 
and follow-up after disease onset. Recent technological advancements provide the capability for collecting ECG signals during 
longer periods, up to months [3]. Moreover, non-contact ECG devices (using capacitive coupled electrodes) and radar-based 
heart rate (HR) monitors are now used for ubiquitous sensing [4]. Together, these technologies enable early anomaly detection 
and life-style monitoring with little hassle for the user. 

Figure 1: Common ECG signal artefacts: baseline wander; muscle tremor; contact loss of the sensors with the skin and 

motion artefacts. 

However, long-term wearable ECG monitoring comes at the expense of signal quality. ECG signals are usually contaminated 
with: 1) power line interference, 2) muscle activity (tremor), 3) baseline wander (respiration), and 4) motion-related artefacts 

(cf. Figure 1). Such added noise results in deformed ECG morphology and increases the possibility of wrong medical 

© 2021 Manuscript version made available under CC-BY-NC-ND 4.0 license https://
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conclusions if left untreated. Artefacts that are out of the frequency range of interest for ECG analysis, can be eliminated with 
adequate filtering. On the other hand, in-band noise, that overlaps with the ECG spectral components, can be difficult to address, 
especially when movements are unconstrained as in wearable and ubiquitous setups. While visual inspection can be performed 
to identify and remove corrupted segments, manual quality control is not scalable for long records. Therefore, automated 
algorithms are needed to aid for long-term ECG quality assessment. 
The ECG quality requirements depend on the objective of the analysis. For instance, in the case of morphology analysis aimed 

at detecting malfunctions in specific parts of the heart, the waveform of the whole ECG cycle should be intact, and several leads 

might be required for better diagnosis. On the other hand, HR and HR variability (HRV) analysis mainly requires clean R-peaks 

and a single lead recording will usually be enough. Our work is aimed at tackling quality issues pertaining HR and HRV analysis 

for lifestyle and wellbeing applications. 

Approaches to address the artefact problem in previous literature can be categorized into three main classes: 1) denoising the 

whole signal using various signal processing techniques [5], 2) identifying low quality segments and excluding them from 

further analysis, or 3) combining the previous two approaches in order to identify noisy ECG segments and denoise them [6]. 

In this work, we focus on the second approach. 

The ECG signal quality problem has been broadly explored in the literature, especially after the Physionet/Computing in 

Cardiology (CinC) [7][8] challenge in 2011. Table 1 provides a summary of selected publications in the field of ECG signal 

quality assessment. All solutions concern binary quality assessment, i.e. good or bad quality. The proposed solutions either 

utilize statistical and signal processing techniques to characterize the signal, combined with heuristic hard thresholds 

[9][10][11][12][13], or use diverse signal descriptors (i.e. signal features) coupled with machine learning (ML) pipelines to 

provide a holistic signal quality score [14][14][16][17][18]. It can be noted that in most cases, only one ECG dataset was used 

for developing a solution. Moreover, none of these works explored ubiquitous ECG signals. 

Table 1: Summary of selected publications related to ECG signal quality assessment. 

Year Title Datasets [name, description, 

acquisition (traditional or holter/ 

wearable/ ubiquitous)] 

Processing methodology [approach 

(heuristic/machine learning), description]  

Results [best performance metrics] 

2019 Artefact detection and quality 

assessment of ambulatory ECG signals 

[14] 

• SWEET (wearable) 

• PhysioNet/CinC Challenge 

2017 (wearable) 

ML 

Uses the posterior probabilities of RUSBoost 

model for detecting artefacts in ECG 

segments. 

Sensitivity = 96.6%  

Specificity = 84.8% 

AUC = 97.0% 

(Balanced Acc = 90.7%) 

2019 Signal Quality Assessment and 

Lightweight QRS Detection for 

Wearable ECG SmartVest System [16] 

• PhysioNet/CinC Challenge 

2014 (wearable) 

ML 

7 signal quality indices are used along with 

an SVM classifier. 

Accuracy = 96.4% 

2018 SQI Quality Evaluation Mechanism of 

Single-Lead ECG Signal Based on 

Simple Heuristic Fusion and Fuzzy 

Comprehensive Evaluation [9] 

• Physionet/Cinc Challenge 

2011 (traditional) 

• Physionet/Cinc Challenge 

2017 (wearable) 

Heuristic 

Fuzzy comprehensive evaluation using four 

quality indexes: R peak detection match, 

QRS power spectrum distribution, kurtosis, 

and relative power of the baseline. 

Accuracy = 94.7% 

Sensitivity = 90.3%  

Specificity = 93.0% 

(Balanced Acc = 91.7%) 

2018 An automated ECG signal quality 

assessment method for unsupervised 

diagnostic systems [19] 

• Allengers virgo EEG kit 

(traditional) 

• Bioradio wireless 

physiology 

monitor (wearable)

• MIT-BIH arrhythmia 

(traditional) 

ML 

Unsupervised learning model based on 

wavelets along with statistical features 

computed on low frequency and high 

frequency spectral bands. 

Accuracy = 95.7% 

Sensitivity = 97.5% 

Specificity = 92.0% 

(Balanced Acc = 94.7%) 

2017 Quality Assessment of Ambulatory 

ECG Using Wavelet Entropy of the 

HRV Signal [17] 

• Recordings obtained from 

ambulatory patients 

(wearable) 

ML 

Wavelet entropy of RR intervals along with 

an SVM classifier. 

Accuracy = 95.0% 

Sensitivity = 92.5% 

Specificity = 97.5% 

(Balanced Acc = 95.0%) 

2015 Electrocardiogram signal quality 

assessment using an artificially 

reconstructed target lead [13] 

• Physionet/Cinc Challenge 

2011 (traditional) 

• High resolution ECG from 

DAY hospital[20] 

(traditional) 

Heuristic 

Energy-concavity index: energy and 

concavity of ECG. 

Correlation based quality index: correlation 

between ECG leads generated by a neural 

network. 

Accuracy = 93.6% 

Sensitivity = 92.4% 

PPV = 94.8% 

2015 Quality estimation of the ECG using 

cross-correlation among leads [18] 
• Physionet/Cinc Challenge 

2011 (traditional) 

ML 

Cross-covariance matrix among different 

leads. Classification based on the 

eigenvalues. 

Accuracy = 92.7% 

Specificity = 95.5% 

AUC = 91.0% 

2015 Signal-Quality Indices for the 

Electrocardiogram and 

Photoplethysmogram: Derivation and 

Applications to Wireless Monitoring 

[10] 

• Ambulant hospital database 

(wearable) 

Heuristic  

Template matching: correlation between 

QRS complex and QRS template (based on 

averaging all detected QRS complexes on a 

window). 

Sensitivity = 94.0% 

Specificity = 97.0% 

(Balanced Acc = 95.5%)  

2012 Automatic motion and noise artifact 

detection in Holter ECG data using 

empirical mode decomposition and 

statistical approaches [11] 

• 5-lead ECG recordings 

(traditional) 

Heuristic 

Mean value, standard deviation, entropy of 

normalized first-order intrinsic 

mode function of Raw ECG. 

Accuracy = 96.6% 

Specificity = 94.7% 

Sensitivity = 96.6% 

(Balanced Acc = 95.6%)  
2012 QRS detection-based ECG quality 

assessment [12]  

• Physionet/Cinc Challenge 

2011 (traditional) 

Heuristic 

Empty lead detection, spike detection, 

number of lead crossing points, and stability 

of the QRS detection. 

Accuracy = 91.6%  

In this work, we study the possibility of a unified framework to cater for varied signal acquisition sources (cf. Figure 2), by 

proposing a ML pipeline that can generate binary classification models capable of accurately classifying the signal quality of 

ECG segments acquired from traditional, wearable, and ubiquitous devices. The presented pipeline consists of a generic feature 

space to characterize the ECG quality, along with two alternative methods for feature selection and an array of classification 

algorithms that are trained on the selected features towards finding the best performing solution. All resulting models attained 

an acceptable performance, with balanced accuracies (BAcc)1 [21] above 87%. MATLAB R2018a functions and toolboxes 

were used throughout the work. 

1 Balanced accuracy: a performance metric for unbalanced datasets, that is equal to (sensitivity + specificity)/2. 
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Figure 2: Proposed ML pipeline for the quality evaluation of ECG signals from diverse acquisition sources. * Resampling 

with anti-aliasing filter. 

The remaining sections of this paper are structured as follows: Section II presents the methods and summarizes the main steps 

of the proposed pipeline; Section III includes the results from the feature selection, training and validation of classification 

algorithms, and the test of each model on new data from three different datasets. A use case for the quality indicators is also 

presented. Results are discussed in Section IV, and conclusions are drawn upon Section V. 

II. METHODS 

A. Datasets and Annotations 

Three different ECG datasets are employed in this work (cf. Table 2): Wearable ECG (wDS), Non-contact ECG (ccDS), and 

Physionet ECG (phyDS). To establish a quality ground truth, the ECG was manually labelled by several annotators with 

experience in ECG processing. To achieve a fine-grained quality assessment, the ECG time series was divided into small 

segments of 10 or 15 seconds, and each was individually labeled. Table 2 provides a summary of the ECG datasets used in 

this work. It should be noticed that phyDS includes pathological patterns (e.g. atrial fibrillation, atrial fluttering), in this case 

abnormal beats that maintain a detectable R-peak are still labelled as good quality segments.   
 

Table 2: ECG Datasets: protocol, acquisition setup, data contents and quality classes. 

Dataset Protocol Acquisition setup 
Original data 

contents 
Quality classes 

wDS 

12 subjects were asked to perform 

everyday tasks under controlled and 

uncontrolled conditions. 

Wearable ECG from Health 

Patch (imec-Leuven, 

Belgium); lead II; 256 Hz. 

9693 segments, 

each with 10 

seconds 

Label 1: good quality; clear QRS complex. (4724 segments) 

Label 0: bad quality; unclear QRS complex due to noise. (4969 

segments) 

ccDS 

109 subjects at diverse scenarios such 

like sitting on an office chair, car seat 

while driving, and lying over bed 

mattress. 

Capacitive coupled ECG 

sensors (ccECG) from the 

work of Miller [22] 

UnoVis dataset [23]; 512 Hz. 

9910 ECG 

segments, each 

with 15 seconds 

 

Label 1: good quality; clear ccECG, which can be used be used for 

HR estimations. (1937 segments) 

Label 0: bad quality; no ccECG or ccECG with noise, which 

affects HR estimations. (7973 segments) 

phyDS 

Standard 12-lead ECG recordings, 

acquired by medical professionals with 

varied degrees of experience and under 

diverse acquisition conditions. 

Standard 12-lead ECG from 

the open source database of 

2011 Physionet challenge [8]; 

lead II; 500 Hz. 

1307 of ECG 

segments, each 

with 10 seconds 

 

Label 1: good quality; QRS complexes are identifiable. (1017 

segments) 

Label 0: bad quality; QRS complexes are unidentifiable. (290 

segments) 

B. Preprocessing 

The preprocessing step consists of resampling, segmentation, filtering, and normalization of the ECG signals. A frequency of 

256 Hz is considered an acceptable acquisition frequency when targeting HR/HRV applications [24][25] and is also the lowest 

sampling frequency among datasets. In the case of ccDS and phyDS, data was down sampled using the MATLAB function 

decimate, which incorporates an anti-aliasing filtering step based on a Chebyshev type 1 low pass filter of order 8. The 

segmentation used for quality annotation is maintained. Though, to exclude the influence of segment size from the analysis, 

in the case of ccDS, the last 5 seconds of each segment are discarded. Each resulting 10-second segment is independently 

processed in the following steps. The filtering procedure consists of a zero-phase 3rd order Butterworth band-pass filter, with 

0.5 Hz and 40 Hz cut-off frequencies (MATLAB function zerophase). This allows to detrend (low pass) and denoise (high 

pass) the ECG waveform, while preserving the information in the frequency band of interest. Lastly, the amplitudes of the 

ECG signals are normalized in the minimum-maximum range within each segment according to Eq. (1), where ynorm represents 

the normalized segment, y represents the original segment, and t is the number of samples. 

 

 

𝑦𝑛𝑜𝑟𝑚(𝑡) =  
𝑦(𝑡) − min (𝑦)

max(𝑦) − min (𝑦)
 , 𝑡 ∈ {0, . . ,10} 𝑠 

(1) 

C. Training, validation and testing data splits 

Each of the original datasets is randomly split (cf. Figure 2) into training/validation (80% of the segments) and testing (20% 

of the segments) subsets. The training/validation subset is employed in finding the features that are most relevant for the 

classification problem, and in training and validating a set of models using 5-fold cross-validation [26]. The best performing 

classification models are then tested on the testing subset (not used in previous steps), to attain the final unbiased performance 

metrics. 
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D. Performance evaluation 

The performance of the classification models, is reported in terms of statistical metrics commonly used for binary classification 
problems, namely: accuracy (Acc), sensitivity (Sen), specificity (Spe), precision (Prec) and F1-score (F1) [27]. Since two of the 
datasets (i.e. ccDS and phyDS) are unbalanced in terms of the number of good and bad segments, the BAcc metric [21], 
expressed in Eq. (2), is employed for choosing the best performing models. 

𝐵𝐴𝑐𝑐  =   
𝑆𝑒𝑛 +  𝑆𝑝𝑒

2
 

(2) 

The BAcc includes information about the sensitivity and specificity on a single value, hence, providing a better understanding 
of the classification errors than Acc. 

E. Multidimensional feature space 

A diverse set of descriptive features is put together to describe the signal quality of ECG segments. The ECG characteristics 

are investigated using the properties of the time-domain signal, the frequency-domain signal from the Discrete Fourier 

Transform (DFT), the multiresolution frequency-domain signal from the Stationary Wavelet Transform (SWT), and the time-

series behavior as depicted by the Autocorrelation Function (ACF). After extraction, the features are normalized in the min-

max range within the whole dataset, to reduce the computation time in the following steps.  

Time domain signal analysis: The morphological differences between a good and a bad quality ECG segment are depicted 

in Figure 3. It is noticeable that different ECG acquisition setups present different artefacts. To characterize these behaviours, 

6 features are derived from the ECG segments: 1) mean (mean_raw); 2) standard deviation (std_raw); 3) kurtosis (kurt_raw); 

4) skewness (skew_raw); 5) median absolute deviation (mad_raw.); 6) approximate entropy (apen_raw). 

 

 
Figure 3: ECG segments (10 s) in the time domain. a) good quality segment from wDS; b, c, and d) bad quality segments 

from wDS, phyDS, and ccDS, respectively. 

Discrete Fourier Transform (DFT) analysis [28]: The DFT converts the signal form the time domain to the frequency 

domain, revealing the spectrum of its frequency components. The mean HR can be derived from the frequency of the highest 

peak in the spectrum of a clean ECG.  

In this work, the Fast Fourier Transform (FFT) algorithm [29] is applied on each pre-processed ECG segment using the 

MATLAB function fft. The output amplitude is normalized and converted to a single sided spectrum and truncated in the range 

0 to 40 Hz. As illustrated in Figure 4, when artefacts are introduced the spectrum of the ECG segment is affected in diverse 

ways. To quantify the different spectral components, 6 features are extracted: 1) mean (mean_fft); 2) maximum value 

(max_fft); 3) standard deviation (std_fft); 4) kurtosis (kurt_fft); 5) skewness (skew_fft); 6) approximate entropy (ent_fft). 

 

 
Figure 4: ECG segments after applying the FFT. These frequency-domain depictions correspond to the time-domain 

segments in Figure 3. a) spectrum of a good quality segment from wDS; b, c, and d) spectrum of bad quality segments from 

wDS, phyDS, and ccDS, respectively. 

Stationary Wavelet Transform (SWT) analysis [30]–[32]: the SWT can be pictured as a filter bank, where the input signal 

is passed repeatedly through a low pass filter (LPF) (i.e. the scaling filter) and a high pass filter (HPF) (i.e. the wavelet filter), 
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with each filtering step constituting a level of decomposition. The filter impulse response is modulated by the mother wavelet 

function, that has a specific shape. It is worth mentioning that in the SWT, the wavelet function and the number of 

decomposition levels are application dependent. The output of the HPF (i.e. the detail coefficient) is in the range [Fmax/2, 

Fmax], where Fmax is the maximum frequency of interest (i.e. the Nyquist frequency), and the output of the LPF is (i.e. the 

approximation coefficient) is in the range [0, Fmax/2]. Since half of the signal frequencies are removed, according to Nyquist 

theorem, half of the samples are redundant and can be discarded by down sampling the signal by a factor of 2. However, in 

the SWT algorithm, no samples are discarded [33], hence it is shift invariant. At the next decomposition level, the previously 

obtained approximation coefficients can be further decomposed by applying the LPF and the HPF again, each having half the 

cut-off frequency. The main advantage of the SWT over DFT is that it captures, in the same output, both the frequency and 

time domain information. On a clean ECG, each level of decomposition will depict the ECG waves (PQRST) on that frequency 

range. 

The Daubechies wavelets are recurrent in ECG processing literature because of their structural similarity to the QRS complex 

[34][35] and its ability to capture changes in signals [36]. Therefore, the Daubechies wavelet of order 6 is used in this work. 

The SWT is performed using the MATLAB function swt (with ‘db6’ wavelet and 6 levels decomposition), covering a 

frequency range from 2 to 128 Hz. Figure 5 demonstrates how different acquisition conditions result in different SWT outputs 

at different frequency ranges. To describe each wavelet level, 4 features are extracted: 1) mean of the absolute value 

(mean_swt_level); 2) standard deviation (std_swt_level); 3) median absolute deviation (mad_swt_level); 4) approximate 

entropy (apen_swt_level). 

  

 

 

Figure 5: SWT decomposition showing the wavelet detail coefficients up to level 6. These four decompositions correspond to 

the time-domain segments in Figure 3. a) 6 levels of decomposition of a good quality segment from wDS; b, c, and d) 6 

levels of decomposition of a bad quality segment from wDS, phyDS, and ccDS, respectively. 

Autocorrelation Function (ACF) analysis [37]: The ACF measures the self-similarity of a signal, and is used in finding 

periodic patterns. This is done by calculating the correlation between the original signal and a shifted copy of itself for a set 

of time lags. The ACF of a normal ECG will present a correlation degradation as the time lag increase, related to the small, 

but continuous tuning of the cardiac activity overtime. 

Previous ECG literature used a maximum time lag of 250 ms to measure the beat-to-beat autocorrelation [14]. In this work, 

we set the maximum time lag to be the segment length (MATLAB function acf  [38], with a maximum time lag of 2560 

samples), see Figure 6. This enables the evaluation of important ACF characteristic in an averaged form. To capture relevant 

information, 7 features are derived from the ACF: 1) amplitude (Fpmax) and 2) location (Fploc) of the first local maximum; 

3) amplitude (fm_amp) and 4) location (fm_loc) of the first local minimum; 5) abscissa of the first zero-crossing (Fzloc); 6) 

zero-crossing rate (Zcr); 7) standard deviation of zero-point to zero-point intervals (Zxistd). 
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Figure 6: ACF of the ECG segments with a maximum lag of 2560 samples. These ACF depictions correspond to the time-

domain segments in Figure 3. a) ACF of a good quality segment from wDS; b, c, and d) ACF of bad quality segments from 

wDS, phyDS, and ccDS, respectively. 

F. Feature selection 

In this work, a customized hybrid method and the Neighbourhood Component Analysis (NCA) are employed in selecting the 

most relevant features, and their results are compared. The subsets of features resulting from each feature selection method, 

are used to train/validate and test the predictive models. 

1) Hybrid method: 

In this approach three methods with different characteristics are used consecutively to select the best feature subset. The first 

two are filter methods (i.e. features that are not relevant according to some metric are filtered out of the subset), and the last 

one is a wrapper method (i.e. a classifier is trained with different subsets of features, and the best performing subset is chosen). 

Such combination minimizes the selection bias, presented when using each of the methods alone. 

Wilcoxon signed-rank test (WSRt): a non-parametric test that statistically verifies whether two samples come from different 

populations. The test tries to disprove the null hypothesis (H0) that the differences (X) between pairs of observations from two 

related samples follow a symmetric distribution around zero (i.e. come from populations with similar median), at a given 

significance level defined as the p-value (i.e. the probability of the occurrence of H0). When H0 holds, Eq. (3) is true, and one 

can conclude that the two samples are not significantly different. 

𝐻0 ∶ 𝑃(𝑋 > 0) = 𝑃(0 > 𝑋) (3) 

For each feature, the MATLAB function signrank is used to test a sample of observations corresponding to bad quality 

segments, against a sample of observations corresponding to good quality segments. Each pair of observations comes from 

the same dataset, and the sample is randomly chosen from within the observations in the training set. A significance threshold 

of p=0.01 is used for rejecting H0. When H0 holds, good and bad quality samples are not statistically different, and the feature 

under evaluation is excluded. 

Correlation-based feature selection (CFS) [39]: an optimal feature set contains entries that are highly correlated with the 

target class (i.e. relevant) and uncorrelated with each other (i.e. non-redundant). To find the optimal feature subset, CFS 

calculates the merit (Sn) of a series of subsets consisting of n features according to Eq. (4), where n is an integer varying from 

1 to N (total number of features after WSRt), 𝑟𝑓𝑓̅̅ ̅̅  is the mean value of the feature-to-feature Pearson’s correlation coefficients, 

and 𝑟𝑐𝑓̅̅ ̅̅  is the mean value of the feature-to-class Pearson’s correlation coefficients within each n-feature subset [39]. 

𝑆𝑛 =
𝑛 × 𝑟𝑐𝑓̅̅ ̅̅

√𝑛 + 𝑛(𝑛 − 1) × 𝑟𝑓𝑓̅̅ ̅̅ ̅̅ ̅
 

(4) 

In this work, greedy forward selection is used as the search strategy to find the best subset of features. Starting from a null 

subset, each possible feature is iteratively added to the subset. The feature resulting in the highest Sn is kept, and the procedure 

is repeated with the remaining features. The merits Sn are then ranked, and the subset with the highest merit is selected. 

Recursive feature elimination with Support Vector Machines (SVM-RFE) [40] and cross-validation: finds the best subset 

of features by considering the performance of a linear SVM2, when iterating over an array of candidate feature subsets. 

A backward search strategy is implemented, that starting with the whole set of features (𝑁′) produces candidate subsets of n 

features (𝑛 ∈ {1, … 𝑁′}, where 𝑁′ is the total number of features elected by CFS). Each n-feature subset is obtained by randomly 

and iteratively eliminating one feature from the n+1 subset. The SVM is trained and validated using a 5-fold cross-validation 

scheme, on all possible n-feature subsets. The best performing subset is the one that minimizes the loss function (α) in Eq. (5), 

and will be the basis for the next backward search iteration. 

𝛼 = (1 −
𝑆𝑒𝑛 + 𝑆𝑝𝑒

2
)    

(5) 

Considering all best performing n-feature candidate subsets, the overall best feature set is the one that yields the highest BAcc, 

obtained according to Eq. (6). 

𝐵𝐴𝑐𝑐 = 100 − (𝛼 × 100) (6) 

The MATLAB functions sequentialfs and cvpartition are used to implement the SVM-REF method. 

2) Neighbourhood Component Analysis: 

NCA is a non-parametric approach used for dimensionality reduction [41]. It attributes a measure of importance (i.e. a weight) 

to each feature, after maximizing the expected accuracy of a leave-one-out classification3, based on a stochastic nearest-

neighbor method [41]. The closer the weight is to zero, the less important the corresponding feature is. A regularization 

 
2 SVM (cf. chapter II.G) is a deterministic classifier, widely used in machine learning related to its robustness and simplicity. 
3 Leave-one-out classification: attributes a class to a single observation based on the consensus of the observations within its neighborhood. 
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parameter (λ) is applied to scale the feature weights and assist in the detection of relevant features. This value is selected as 

the one producing the least classification error, after a 5-fold cross validation is ran for each λ within the empirical interval of 

[0: 1.05: 20]/𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡). Since the algorithm is not deterministic, to ensure robust results the NCA 

procedure is repeated 100 times with the same data input. The weight of each feature is then taken as the median value over 

the 100 repetitions. The MATLAB function fscnca is used here for implementing the NCA-based feature selection. 

G. Classification: algorithms, training and validation 

A set of supervised ML algorithms is employed for binary quality classification on each feature subset. The hyperparameters 

of the models are tuned over a finite range of possibilities, and each model is weighted on the training data. Three elementary 

classifiers were exploited in this work, plus ensemble methods: 

• k-Nearest-Neighbors (KNN): uses the majority vote of k closest training observations in order to assign another 

observation to a class [42]. The hyperparameter k is bounded to the number of classes in the problem. The MATLAB 

function fitcknn is used to train the KNN models. Table 2 lists the hyperparameter configuration in the KNN models. 

• Support Vector Machine (SVM): finds the optimal hyperplane, serving as the decision boundary to separate different 

classes of observations [43]. The hyperparameters include the kernel function, scale, order, offset, and the box constraint. 

The MATLAB function fitcsvm is used to train the SVM models. Table 2 lists the hyperparameter configuration in the 

SVM models. 

• Decision Trees [44]: a divide-and-conquer model that uses a tree-like scheme. The leaf nodes represent the constraints 

on the feature values, leading to an end node that attributes the constrained observation to a class. The hyperparameters 

include the split criterion and the maximum number of splits. The MATLAB function fitctree is used to train Fine, 

Medium, and Coarse decision trees models, with Gini’s diversity index as that split criterion, and a maximum number of 

splits equal 100, 20, and 4, respectively. 

• Ensemble learning methods [45]: combine several weak learning methods into one ensemble predictor, yielding a higher 

performance predictor. The MATLAB function fitcensemble was used to train Boosted, Bagged, and RUSBoosted trees 

as well as Subspace KNN models, all of which using number of learning cycles equal 30. 

 

Table 3: Models and hyperparameters for SVM and KNN. 

Model Hyperparameter Model Hyperparameter 

Linear 

SVM 

BoxConstraint: 1 / KernalScale: Auto 

KernalFunction: Linear 

PolynomialOrder: NA 

Fine KNN 

Distance: Euclidean 

DistanceWeight: Equal 

Exponent: NA / NumNeighbors: 1 

Quadratic 

SVM 

BoxConstraint: 1 / KernalScale: Auto 

KernalFunction: Polynomial 

PolynomialOrder: 2 

Medium 

KNN 

Distance: Euclidean 

DistanceWeight: Equal 

Exponent: NA / NumNeighbors: 10 

Cubic SVM 

BoxConstraint: 1 / KernalScale: Auto 

KernalFunction: Polynomial 

PolynomialOrder: 3 

Coarse 

KNN 

Distance: Euclidean 

DistanceWeight: Equal 

Exponent: NA / NumNeighbors: 100 

Fine 

Gaussian 

SVM 

BoxConstraint: 1 / KernalScale: 2 

KernalFunction: Gaussian 

PolynomialOrder: NA 

Cosine 

KNN 

Distance: Cosine 

DistanceWeight: Equal 

Exponent: NA / NumNeighbors: 10 

Medium 

Gaussian 

SVM 

BoxConstraint: 1 / KernalScale: 7.9 

KernalFunction: Gaussian 

PolynomialOrder: NA 

Cubic 

KNN 

Distance: Minkowski 

DistanceWeight: Equal 

Exponent: 3 / NumNeighbors: 10 

Coarse 

Gaussian 

SVM 

BoxConstraint: 1 / KernalScale: 31 

KernalFunction: Gaussian 

PolynomialOrder: NA 

Weighted 

KNN 

Distance: Euclidean 

DistanceWeight: SquaredInverse 

Exponent: NA / NumNeighbors: 10 

 
To understand if the trained classification models were generalizable across datasets, the one achieving the overall highest 
performance was applied on the testing subsets of the two remaining datasets. 

H. Use case 

The final objective of employing our quality indicator is to decrease the errors when calculating HR. To test the usability of the 
proposed algorithm towards such end, three 10-min ECG segments, with variable signal quality, were extracted from each 
dataset (wDS, ccDS, and phyDS). For each 10-s window in the three segments, the mean HR estimate was calculated based on 
R-peaks found by the Pan-Tompkins QRS detection algorithm [46], while the mean HR ground truth was calculated based on 
manually detected R-peaks. HR estimates (E) were compared to the ground truth HR (T), based on the root mean squared error 
(RMSE), normalized by the number of 10-s ECG windows (n), as depicted in Eq. (7). For each of the three datasets, the RMSE 
was first calculated on the whole set of windows, and afterwards on a reduced set of windows, after discarding those classified 
as low-quality by the best performing algorithm. Both values are compared to understand if the HR error decreases after 
discarding low quality sections from the calculation. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑇𝑖 − 𝐸𝑖)2𝑛

𝑖=1

𝑛
   

(7) 

III. RESULTS 

A. Feature selection 

The hybrid method and the NCA were used independently towards feature selection. The results for the feature selection based 
on the hybrid method are presented in Table 3. The computation times for the hybrid method were 4.18 min, 4.81 min, and 0.38 
min, respectively for the wDS, ccDS, and phyDS.  
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Table 3: Results of the hybrid feature selection for the wDS, ccDS, and phyDS. 

Dataset Wearable ECG (wDS) 
Non-contact ECG (ccDS) Physionet ECG (phyDS) 

Method WRSt CSF SVM-REF WRSt CSF SVM-REF WRSt CSF SVM-REF 

# of selected 

features 
39 11 7 40 12 7 31 12 10 

Final subset 
apen_swt_1; apen_swt_2; std_swt_3; std_swt_5; 

apen_swt_5; Fploc; fz_loc 

mean_fft; max_fft; kurt_fft; skew_fft; 

mad_swt_3; mad_swt_5; fz_loc 

mean_raw; apen_raw; std_fft; skew_fft; ent_fft; 

mad_swt_1; mean_swt_2; Fpmax; fm_amp; fz_loc 

For the NCA-based feature selection, all features with median weights higher than 0.5 were selected. The results of NCA on the 
three datasets are presented in Figure 7. The computation times for the NCA-based feature selection were 156.69 min, 157.25 
min, and 21.07 min, respectively for wDS, ccDS, and phyD. 

 

 

 

Figure 7: NCA feature weights across 100 iterations for each dataset: a) wDS, b) ccDS and c) phyDS. The green boxes 

indicate the selected features. Features described as DWT respect in fact to SWT. 

B. Classification 

For the three ECG dataset, each of the 19 classification models considered in this work were trained on three subsets of features: 
those resulting hybrid feature selection, the NCA-based subset, and the full set of 43 features. The results concerning the best 
performing models, as established on the testing partition of each dataset, are graphically illustrated in Figure 8 and numerically 
summarized in Table 4. 
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Figure 8: Balanced accuracy scores of the best performing models on the testing partition for each ECG dataset using: all 

features, NCA, and Hybrid method feature subsets. 

Table 4: Evaluation metrics for the best performing models on the testing partition of each ECG dataset. The differences 

between each pair of models (All-NCA, All-hybrid, NCA-hybrid) developed on each dataset are always statistically 

significant (p<<0.01) 4. 

Dataset 
Feature 

set 
Model 

Cross-

Validation 

BAcc 

[mean, std] 

BAcc Sen Spe Prec F1 Acc 
Computation 

time [s] 

wDS 

All 

features 
Bagged Trees 0.93, 0.01 0.93 0.93 0.92 0.92 0.92 0.93 6.18 

NCA 
Fine Gaussian 

SVM 
0.93, 0.01 0.93 0.95 0.91 0.91 0.93 0.93 4.09 

Hybrid 
Fine Gaussian 

SVM 
0.91, 0.01 0.91 0.93 0.88 0.88 0.91 0.91 4.04 

ccDS 

All 

features 
Quadratic SVM 0.95, 0.01 0.96 0.99 0.94 0.79 0.88 0.95 11.50 

NCA 
Fine Gaussian 

SVM 
0.95, 0.01 0.95 0.98 0.93 0.76 0.86 0.94 3.31 

Hybrid 
Fine Gaussian 

SVM 
0.92, 0.01 0.92 0.95 0.88 0.66 0.78 0.90 4.02 

phyDS 

All 

features 

Medium 

Gaussian SVM 
0.89, 0.02 0.90 0.91 0.90 0.97 0.94 0.93 0.20 

NCA 
Medium 

Gaussian SVM 
0.88, 0.01 0.87 0.90 0.84 0.95 0.92 0.92 0.13 

Hybrid 
Fine Gaussian 

SVM 
0.87, 0.02 0.89 0.90 0.88 0.96 0.93 0.90 0.16 

The model with highest overall performance among those developed on a feature subset (Fine Gaussian SVM with the ccDS-
NCA feature subset) was applied to features extracted on wDS and phsDS testing partitions, resulting on 0.49 and 0.48 BAcc, 
respectively. 

C. Use case

When considering the HR estimates for all 10-s windows on each 10-min segment from wDS, ccDS, and phyDSm, the resulting 
RMSEs are 1.88, 3.53, and 5.54 beats per minute (bpm), respectively. When considering only HR estimates for windows with 
good quality ratings, the resulting RMSEs were 0.69, 1.54, and 1.87 bpm, respectively for wDS, ccDS, and phyDS. 

IV. DISCUSSION

The proposed feature space (43 features) covers a wide range of ECG dynamics. However, utilizing the full feature space is not 
always necessary to achieve acceptable results. Feature selection is therefore applied to find the best trade-off. The minimal 
impact of feature elimination on the classification performance is well illustrated in Table 3:  and Figure 8. When it comes to 
the hybrid method, the features are selected in a complete data driven manner and the method is deterministic. In this case, the 
user may still decide to rely on the feature subsets resulting from the WRSt, CFS or SVM-RFE steps. On the other hand, the 
NCA algorithm produces a ranking of the feature weights, allowing for flexible cut-off threshold setting. However, the NCA 
requires a high computation time (up to 157 min), compared to 5 min in the case of the hybrid method. This high computation 
time is due to the 100 repetitions of the procedure, to account for the nondeterministic behaviour of NCA algorithm. Thus, 
different users are free to opt for the method that better fits their requirements. 
All feature families (i.e. raw, FFT, SWT, and ACF) were represented in the final feature subsets, but only 28 features were 
included at least once. Within the same selection method (i.e. hybrid or NCA), the final feature subsets appear to be inconsistent 
across datasets, which is expected due to the differences in ECG morphology and artefacts across different datasets. The feature 
fz_loc was among the features selected by the hybrid method for all datasets. Concerning NCA, std_swt_3, std_swt_4, and 
fm_amp were among the features selected on all datasets. The selected features, within the same dataset, were also inconsistent, 
which can be traced back to the different analytical nature of the selection methods. Overall, the SWT-based features appeared 
to be important in all ECG datasets, but this is especially noticeable and consistent across feature selection methods in the case 
of wDS. The remaining two datasets may be more challenging to model, related to inclusion of pathological patterns (phyDS) 
and impactful artefacts related to loss of contact (ccDS), resulting in higher variability related to the features that may 
characterize them. 

4 Based on ROC comparisons using DeLonge test for paired designs, with the r-package: pROC. 
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The best performing classifiers presented BAccs above 87% in the training/validation and testing phases (cf. Table 3 and 4). 
Out the 9 best performing models, 8 belong to the SVM family, with different hyperparameters. In the case of ccDS, the 
classification models presented highest BAccs (92-96%) but low precision (66-79%), which may be attributed to the highly 
unbalanced classes, with large number of bad segments. The models with most stable performances respected the wDS case 
(BAcc 91-93%, Prec/Spe>88%). The phyDS, being an unbalanced dataset, with higher number of good segments, and including 
ectopic beats resulted in lowest BAcc scores (87-90%).   
A model trained on one dataset is not generalizable to the other datasets, as depicted by the poor performance (BAcc<50%) of 
the overall best performing model on the remaining data sets (wDS and physDS). 
The use case shows that discarding low quality windows flagged by the quality indicators, substantially decreases the RMSE 
when calculating HR based on the input from an automated QRS detection method. 
The physionet/Cinc Challenge 2011 data (i.e. phyDS) was employed here in order to establish a benchmark with previous 
literature. When comparing the performance of our models on phyDS (Acc=90-93%) to the results presented by [14], [18] and 
[13] (Acc=91.6-93.6%, cf. Table 1), we verify that our models have comparable performance. The remaining methods presented
in Table 1 cannot be directly compared to our work as they use different datasets, though, they provide a guideline for the 
expected quality assessment performance in wearable data. Thus, we can conclude that our results are within the expected range
for wearable data.

A. Limitations

The proposed pipeline, at its current state, is limited by the following factors: 

• Sampling frequency dependency: some of the extracted features are dependent on the ECG sampling frequency. This was

overcome by resampling the input ECG signals to the lowest sampling frequency across datasets (256 Hz).

• Normalization of the extracted features: as shown in Figure 2, all extracted features undergo a normalization step before

the feature selection and the classification steps over the whole dataset. This is important to enhance computation time in

the coming steps. However, this limits the application of the proposed pipeline to offline applications.

• Binary-class vs. multi-class: the current work separates the low-quality ECG segments from those of high quality, which

may leave out some nuances. Especially relevant if the objective was to estimate mean HR, in which case the quality

requirements would be lower, or if the objective was morphology analysis, in which case the requirements would be

higher. For the current objective of estimating instantaneous HR and HRV, more classes would not provide added value.

• ECG lead configuration: only ECG Lead I and Lead II signals were explored in this work.

• Pathological patterns: although ECG beats with pathological morphologies were presented in the some of the phyDS

ECG segments, no sensitivity analysis towards ectopic beats was performed, which limits the use of the proposed solution

to lifestyle applications (e.g. activity and wellbeing tracking).

B. Future work:

A thorough evaluation of the capabilities of each feature to detect specific kinds of artefacts, could enrich the understanding 

of the ECG and the effects of noise at a more fundamental level. Testing the proposed pipeline using different medical signals 

(e.g. body impedance) will be performed in a future research. 

V. CONCLUSION

A generic pipeline for generating automatic ECG signal quality indicators, targeting lifestyle applications, was presented and 

evaluated. Unlike other state-of-the-art solutions presented in previous literature, we propose a generic framework that can be 

used on diverse ECG datasets to train classification models in order to assess ECG quality. Moreover, with this framework we 

managed to obtain a high performing classifier for non-contact ECG, something that was not addressed in previous work. The 

models attain a high performance when tested on data from the same acquisition source. Though, they are not generalizable 

across different acquisition sources. 
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