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Summary

Modern satellite ranging lasers emit short pulses at a low beam diver-
gence and therefore require accurate satellite position predictidns.
This study aims at investigating the possibilities to use the laser
range observations acquired at only one groundstation to provide real-
time position prediction updates during each pass, and also better
predictions for subsequent passes over that groundstation. A computer

_program, called SORKA, has been developed which is based on a sequen-

tial extended Kalman filter scheme. The objectives were to keep the
program relatively simple to be compatible with small local computers,
while still meeting the required accuracy level.

This report describes in some detail the computational approach adopted
in SORKA. In particular, the methods to compute the state-transition
matrix and the state-noise covariance matrix are emphasized. The depen-
dence of the Kalman gain matrix on the reference state is shown and

the techniques used in SORKA to improve the stability of the filter and
to detect divergence are discussed. Some preliminary results using
laser data acquired during 8 passes of GEOS-1 over the Kootwijk
gkoundstation (The Netherlands) are presented.
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1. Introduction ,

Since August 1976 the Department of Geodesy of Delft University of
Technology operates a satellite laser ranging system at Kootwijk in

the Netherlands. From there, the Working Group for Satellite Geodesy
(WSG) acquires on a routine basis day and night ranging data for

the geodetic satellites STARLETTE and GEOS-3, and‘on1y at night for
LAGEOS. The ruby pulse-laser system consists of a multi-mode Q-switched
oscillator, a spark-gap activated pulse chopper and two amplifier
stages (Ref. 1, 2). The output energy in routine operation is 1 to 2 J,
with a maximum of 3 J. The transmitted laser beam has a diameter of

19 cm and the divergence_is adjustable from 1' to 20'. Until summer
1980, the system produced 4 ns wide pulses at a maximum rate of 15
pulses per minute. The measurements have shown an accuracy level of
about 25 cm root-mean-square. Recently, a new chopper has been in-
stalled with a pulse-width of 2 ns, and a new range-gate generator
having a manually adjustable time window with a minimum half-width of
0.1 us. The latter facility would possibly give the capability of
ranging to LAGEOS in daytime.

For many years there exists a close cooperation between WSG and the
Section Orbital Mechanics (SOM) of the Department of Aerospace Engin-
eering of Delft University of Technology. This Section supports WSG in
the field of orbit computations for the geodetic satellites used in

~the laser ranging activities. This support ranges from satellite
position predictions, needed for the automatic pointing of the laser,
to orbit determination from laser observations acquired at Kootwijk
and other laser ranging stations.

w1£hin the period 1976 to 1979 more than 49,500 observations were
obtained at Kootwijk during 1108 passes of BEACON-C, GE0S-1, GE0S-2,
GEOS-3, SEASAT, STARLETTE and LAGEQS (Ref. 2). In 1979 alone, more
than 20,000 observations were acquired during 369 satellite passes.
It was found that quite often the actual satellite position deviated



so much from its predicted position that the laser pulse would have
missed the satellite if the laser system would have operated in a
fully-automatic blind-firing mode. To increase the accuracy of the
laser pointings, it was decided in 1978 to investigate the possibili-
ties to use laser observations from Kootwijk in a (semi-) real-time
mode. This report describes part of the preliminary results of that
study. .

2. Laser pointing predictions

For the routine operations of pointing the laser at the satellite, at
present use is made of the AIMLASER computer program, developed at the
~ Smithsonian Astrophysical Observatory (SAG). This program has been
modified by SOM to satisfy the specific needs of WSG and is regularly
improved and updated. This Delft-version of AIMLASER (Ref. 3) is also
in use at a number of other European laser stations. The input for the
orbit prediction program consists of a set of mean orbital elements,
distributed weekly by SAQ. These parameters are determined by SAQ0 from
the so-called quick-look Taser ranging data as returned to SAO by many
ground-stations distributed all over the world.

Experience has shown that quite often the satellite positioh\predictions
on basis of these SAO elements and using the AIMLASER program reach a
Tevel of inaccuracy which is not compatible with lasers emitting a Tow-
divergence beam. To give an indication of the accuracy needed, consider
a satellite which passes over Kootwijk at a distance of 1000 km. When
the beam divergence is 2', the diameter of the beam at the altitude of
the satellite is 580 m. So, in this case a position prediction accuracy
of about 500 m 15 needed in order to guarantee that the satellite is
hit by the laser pulse.

To correct for positionprediction errors, the Kootwijk laser systemhas been
equipped with a manually controlable firing-time adjustment switch.
During nighttime passes, if the satellite is sunlit, the operator may
Took through the laser telescope in order to estimate by what amount

the firing time has to be delayed or advanced. This is possible for



satellites up to a visual magnitude of +13. Usually, however, if at the
beginning of a pass no return signal is received, a systematic
variation of the time adjustment is appiied until returns are being
registered. Sometimes, the adjustment can remain constant during a
pass, but on other occasions re-adjustments are necessary. By this
technique, the operator in fact corrects for position errors in the
direction of the satellite's path across the sky. As an example, Fig.

1 shows the number of laser pulses, n, within intervals of 40 s during
a pass of GEOS-3 and STARLETTE over Kootwijk on January 18 and Septem-
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Fig. 1: The effect of the laser firing—time correction on the number

of laser returns.



ber 14, 1977, respectively (Ref. 4). The laser operated at a rate of
15 pulses per minute and with a beam divergence of 3.5'. The shaded
areas indicate the number of laser returns during each 40 s interval.
Also shown is the time correction, At, applied by the operator.
Clearly visible is the improvement obtained by the manual control of
the laser firing-time.

One of the main disadvantages of this technique is that it corrects
for in-track position errors only, while errors perpendicular to the
satellite's path cannot be corrected for. It actually has occurred
that the observer saw through the telescope that the satellite was too
far from the predicted track without being able to apply corrections.
Therefore, a need exists for more precise position predictions. This
need becomes even more stringent with the development of more-advanced
laser systems operating with a smaller beam divergence. But there is
still another need for more accurate predictions.

To minimize the chances of false triggerings by noise pulses, a laser
system uses a range-gate generator, which determines the time window
in which the return signal is expected. For daytime ranging to distant
satellites, like LAGEQOS, very short windows of up to 0.1 us are re-
quired. But this implies that the radial distance to the satellite has
to be predicted with an accuracy of better than 30 m.

To increase the accuracy of the predicted satellite positions a number
of possibilities exists. For instance, it would be possible to replace
the SAO elements by more accurate orbital parameters and to use a satel-
1ite position prediction program that is more accurate than AIMLASER.
In that case, laser observations from a number of groundstations are
used to determine the orbit of the satellite very accurately. From this
orbit determination an extremely accurate orbit is extrapolated for a
long time in advance to yield one or more state vectors for each day.
From these state'vectors, the station generates its own laser pointing
angles and computes the satellite's distance by numerical integration
of the equations of motion. At Kootwijk, research is going on along



this line to improve the predictions for LAGEOS. It is doubtful, how-
ever, if such a technique will yield prediction accuracies for satel-
lites below 1500 km altitude that satisfy the needs of the/narrow-beam
laser stations. Therefore, it is felt that it would be attractive to
process in real time the laser range measurements registered during a
pass over Kootwijk in order to increase the accuracy of the next laser
pointings and window settings during that pass. This means that all
computations have to be performed on an on-Tine computer within the
period between two successive laser firings. The range measurements
can also be used, however, in an off-Tine mode to improve the orbit
for the next pass over Kootwijk. This also makes the station less

- dependent on a distant large computing center. This aspect could be of
great importance for the mobile laser rangfng systems now under devel-
opment. These systems, however, are designed around low-power lasers
(about 10 mJ per shot) operating with a beam divergence of about

0.5' and a high repetition rate of about 10 pulses per second. For
these systems, signal levels are on the average below one photoelectron
per shot for LAGEOS and in the order of ten photoelectrons per shot
for satellites in lower orbits. As a result, large numbers of false
returns are recorded which need to be identified in order not to upset
the real-time orbit improvement scheme. Whether this is possible will
not be discussed in this report, but a separate study on this subject
is planned. o

The main objective against the real-time laser pointing update approach
is the fact that from the orbital mechanics point of view, it is very
precarious to use range measurements from only one groundstation to
imprové the satellite's orbit. It is evident that from such obser-
-vations during one pass very little information is gained on the orien-
tation of the orbital plane. Therefore, the basic scheme presently
envisaged is that range measurements obtained during several passes
over Kootwijk yield the orientation of the orbit to such a level of
accuracy that during the next pass the range measurements can be used
in real time mainly.to improve the prediction of the satellite's.



position in the orbital plane. During the very first part of a pass
some satellite searching process may be required. In that phase, the
laser mount's angular position read-outs can possibly also be used as
observation quantities. Though these angles will, in general, contain
systematic errors, the inclusion of these quantities for the whole
tracking period as quasi-observations with a.relatively low weight
might also be attractive to stabilize the orbit improvement process.
Nevertheless, it is anticipated that, periodically, after Tong obser-
. vation gaps, additional orbital information will be required which is
derived from tracking data acquired at other groundstations.

3. The extended Kalman filter
It is well known that, basically,there exist two methods for processing

satellite tracking data to estimate the orbit of a satellite. The batch
processor, which yields the estimate at some reference epoch, requires
that the entire sequence of observations be processed before the
estimate can be made. On the other hand, the sequentiaT orbit deter-
mination procedure processes one observation at a time and produces an
estimate of the state vector at the observation time. So, this sequen-
tial procedure suits best the requirements for real-time orbit improve-
ment, althoughit can also be used to predict the next satellite pass
over the station. While the formal mathematical equivalence between
the sequential estimation algorithm and the batch estimation algorithm
can be shown, it is known from practical experience that the sequential
process is much more sensitive to errors introduced by 11nearizatiohs
of the non-linear equations of motion and the observation-state rela-
tionships. These errors may result in estimate divergence problems.

The technique selected in this study is the extended Kalman filter,
which is described in many textbooks (e.g. Ref. 5). An interesting
geometric derivation of the Kalman filter equations is given in Ref. 6.
Applications of the extended Kalman filter to orbit dynamics problems
are discussed extensively in Refs. 7-12. For this study a computer
program, called SORKA (Satellite Orbit Refinement using a KAlman filter)



‘has been developed, which at the moment functions primarily as a test
program. It contains different options and alternatives to investigate
in detail the Kalman filter characteristics for this application. It
is emphasized here that the aim of SORKA is not to reach the high
accuracy level and the extensive capabilities of computer programs
Tike GEODYN or UTOPIA, but merely to satisfy the accuracy level needed
for laser pointings and to be compatible with small local computers.
To e]Ucidate the description of the computational approach adopted in
SORKA, a brief outline of the filter scheme will be given.

The satellite motion can be described by the set of equations

X =F (X, t) 3 X(t

AR _0)=X

X0 ' (1)
where X denotes the state vector. When Xy s specified and F is known,
the orbit of the satellite, and thus its state at a later time t, can
be obtained from integration of Eq.(l). In orbit determinations, 50

is not known perfectly and therefore observations of the motion must
be processed to obtain a more-accurate estimate for the state vector.
Assume that a best estimate 20 of the state atAt0 is known with an
accuracy represented by the covariance matrix PO' Integration of Eq.(1)
yields an initial state estimate at the time of the first observation

t Xl' Its covariance matrix, Pl’ is computed from

1 .
p. = p T
1-%,0% %1,0% 9,0

where ¢ 0 is the state-transition matrix, used to map the state from
to to’t1 and defined by

IGSANS
P10 = WA,

and Q1 0 is the state-noise covariance matrix, representing errors
]
occurring during the state vector integration. These errors, which
are assumed in this study to be Gaussian distributed with a zero mean,



include such effects as deterministic model errors, numerical integra-
tion errors and random process noise. The way this matrix is chosen
will be discussed in Section 5.

The combutation of Xl and P1 from 20 and 60 is called the time-update
step. In the subsequent observation-update step the Kalman filter adds
the information of the observatioxs 4 az t; to the initial estimates,
yielding more-accurate estimates Xl and Pl' For this, in SORKA the
general non-linear relations between the measured- quantities and the

state vector are used:

Z=6 (X, t)+V (2)
where the stochastic vector V represents Gaussian distributed measure-
ment errors with a zero mean and a covariance matrix R. The observation
residuals at t,: z,, are defined by

_ _ ok
z3=12; -4
where Zf denotes the predicted observations as computed from Eq.(2)
and the initial estimate X,:

* =6 (x

L =G (&t

1)

A
The new estimateE(_1 is given by

where K1 is a weight matrix. This matrix has to be chosen such that
the new state estimate is optimal in some sense. A minimum-variance
state estimate is obtained if K1 is chosen to be the Kalman gain
matrix, satisfying:
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T
1

_ T -1
Ky = Py H' (Hy P

1 H

1 B+ Ry

where H1 is the observation matrix, defined by

1= (3,

So, the matrix H is evaluated for the most accurate state estimate

H

available at this stage: the reference state X;. The state covariance
matrix at t1 corresponding to the optimal state estimate can be found
from

A
P. = (I - K, H

1 1 )P

1

'where I is a unit matrix of appropriate dimensions. Once 21 and 61
are known; the same process is repeated to compute the state and the
state covariance matrix at the time of the next observation. In this
way, the best estimate at any time contains the information of the
last and all previous observations. It should be realized that the
Kalman filter was developed for Tinear systems. Because thevequations
encountered in orbit dynamics are highly non-linear, appropriate
linearizations had to be introduced. These lead to errors, which, as
will be shown in Section 6, may cause serious problems.

The scheme given above holds for all types of observations. In this
study, the observations are ranges from the laser to the satellite,

but SORKA has been designed such that in the future also azimuth and
elevation observations can be dealt with. As a reasonable assumption,
range, azimuth and elevation can be considered independent observa-
tions. Then, a computational simplification is possible by permitting
the individual observations at each observation time to enter the al-
gorithm one after another as scalars. In that case, the term in
brackets in Eq.(3) reduces to a scalar. So, the inversion of this term
reduces to a division by a scalar, which avoids possible numerical pro-
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blems occurring in matrix inversions.

For each time-update step, the function F, the state-transition matrix,
¢, and the state-noise covariance matrix, Q, have to be evaluated. For
the integfation of the state equations, Eq.(1l), a relatively simple
force field has been assumed, accounting only for the first five zonal
harmonics (J2 to J6) and the first tesseral harmonic (JZ,Z) of the geo-
potential. For the required partial derivatives 3U/oX, where U repre-
sents the geopotential, analytical expressions have been derived (Sec-
tion 4). The dynamical equations are integrated with a fourth-order
Runge-Kutta method. The stepsize depends on the time between subsequent
measurements and has an upper Timit of 40 s. The computation of the
state-transition matrix and the state-noise covariance matrix is des-
cribed in the next Sections.

In each observation-update step, the function G and the matrices R

and H are required. The measurement-noise covariance matrix is assigned
the values of the known measurement noise variances. The observation
matrix is evaluated at a reference state, usually taken as X;. In
Section 6 an alternative for this reference state will be introduced.

4. The state-transition matrix

From Eq.(1) a differential equation can be derived for the state-tran-
sition matrix:

SN £ 1A\ : .
b0 (B, Pr0 39071 ()

These so-called variational equations can be integrated numerically,
together with the state equations. An alternative approach is to avoid
the use of ¢ and to directly integrate a matrix Riccati differential
equation in P (Refs. 9, 10). Such a direct numerical integration pro-
vides a hathematica]]y rigorous solution and is readily applicable in
the presence of all types of disturbing forces. The method, however,
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necessitates the simultaneous integration of a large set of differen-
tial equations, thus making the procedure time consuming. As SORKA

is designed for real-time operations, it was therefore decided to com-
pute the state-transition matrix in some approximative analytical way.
It is realized that this approach may entail subtle but important Y
effects which impair the accuracy of the results, in particular when
the analytical expressions for the computation of ¢ require a simpli-
fication of the force field while for the state integration a more-
extensive force field is used (Ref. 13). At the moment, two alternative
analytical techniques have been explored. Experience will show which
technique has to be used under specified conditions.

The first method can only be applied if the period between successive
measurements is relatively short. It is based on the assumption that
the orbit is only affected by earth gravitational forces, and that

the expressions for the gradient of the geopotential can be linearized
over the time interval between successive measurements. Then, from
Eq.(4) the approximative relation

91,0 = Mo 91,0 (5)

can be derived (Ref. 14), where the matrix MO can be partitioned into
four sub-matrices: two being a 3x3 nullmatrix, onea 3x3unit matrix and
one a 3x3matrix containing the second-order partial derivatives of Uwith
respect to the X, Y and Z components of the state vector. Integration
of Eq.(5) leads to an exponential function which can be approximated
by the series expansion:

bp g =1+ My At + Sy A%+ 2y at)® L
where At = t1 - tO' Analytical expressions have been derived for
the second-order derivatives of the geopotential where the effects of
the zonal harmonics J2 upto J6 and the first tesseral harmonic J2’2
were accounted for. These expressions, as well as the expressions for



13

the first-order partial derivatives which are required for the state
integration, were composed by applying the REDUCE formula-manipulation
computer program, which is available on the DEC-10 computer of Twente
University of Technology. Though this analytical technique of computing
¢ has been implemented in SORKA and has been tested extensively, for
the computations described in this report a second analytical technique
has been used exclusively.

This second technique was developed primarily for the computation of
the state-transition matrix for longer periods between two successive
measurements, such as between two different passes. In this technique,
the analytical expressions for the elements of the state-transition
matrix Were obtained by applying the chain-rule to the relations that
exist between the state vector and the orbital elements at any time,
and to the relations between the orbital e]ements at a time ty and
those at t,:

0
9X X ap9°¢ ap®=¢
_;1_2/—\_31 _/R>O_
Xy \ngscjl 32850 \3X
osc

where p denotes the vector of osculating orbital elements. The ma-
trices in brackets can be derived easily from the geometrical expres-
sions describing a Keplerian orbit relative to the non-rotating geo-
centric reference frame (e.g. Ref. 15). To avoid thé classical pro-
blems for orbits with very low eccentricity or inclination, in princi-
ple the use of non-singular orbital elements is preferable. It was de-
monstrated in Ref. 16, however, that in practice, if the computations
are performed on a computer with a reasonable word-length, the problems
occur only at extremely Tow values of eccentricity or inclination.

For a word-length of 64 bits, for example, the classical elements can

10 ko simplicity, there-

be used if e and sin(i) are larger than 10
fore the classical elements were adopted in SORKA to compute the state-
transition matrix. To guarantee that singularity problems will never

occur, a simple engineering measure can be introduced which precludes
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that e and sin(i) can take values smaller than 10'10.

It has been sﬁown in Ref. 16 that, for the application described in
this report, the matrix aggsc/aggsc can be computed with sufficient
accuracy by neglecting short-periodic and Tong-periodic perturbations
in the osculating elements, and by taking into account only the secular
perturbations due to the oblateness of the earth (JZ)‘ If the orbital
altitude is less than 400 km, which is very unlikely for geodetic sa-
tellites, also the secular perturbations due to atmospheric drag
should be accounted for. Ana]ytiéa] expressions were derived to com-
pute the matrix when only these two types of perturbations are con-
sidered. In SORKA only the J2 secular perturbations are taken into
account when the state-transition matrix is computed in this way.

The computation sequence is as follows. From the state estimate at

the start of the filter process, the osculating elements are computed.
These are converted into "mean" orbital elements by subtracting the
short-periodic J2 perturbations, according to the non-singular ele-
ments conversion technique described in Ref. 17. The values of the
orbital elements at the start of a pass, to, are computed by assuming
that the elements show only a secular variation (e.g. Ref. 18). Then,
the quantities BEO/BXO are computed, applying the usual transformation
relations between (osculating) orbital elements and position and velo-
city. Subsequently, the quantities 321/320 and 3%4/321 are computed.
Finally, the quantities X,/9Xy can be evaluated. It is realized that
the accuracy of this technique is questionable. In particular, the
assumptions that the "mean" elements vary approximately linear with
time, and that in the geometrical relations between the rectangular
state components and the orbital elements, the "mean" elements can be
substituted, may introduce serious errors. This will be investigated
in a follow-on study.

As an example of the actual variations of 3X/3X,, Fig. 2 shows the be-
havior of two elements over-one orbital revolution starting at one day
after tO‘ The plots refer to a near-circular orbit at an altitude of
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J

425 km and an inclination of 97°. The dashed lines represent the un-
perturbed variations. When the atmospheric drag perturbations were in-
cluded, the variations on this scale completely coincided with the
dashed line, clearly indicating that contributions due to atmospheric
drag are negligible for this period. The solid line holds for the J2
perturbations, which are shown to have a small but discernable effect.

5. The state-noise covariance matrix

[t is well known that Kalman filter applications often suffer from
state estimate divergence problems. In principal, these are a result
of non-linearities, errors due to an incomplete mathematical model and
to a lesser extend also of computational truncation and round-off
errors. Physically, the state divergence can be explained as follows.
When during the observations processing the state estimates become
more accurate, and hence the covariance matrix becomes smaller, the
Kalman gain matrix will decrease. As a result, new observations, which
reflect the true state, have a smaller effect on the solution than the.
previous observations. If there is any error in the dynamical model
that is not accounted for properly by the assumed model errors, repre-
sented by the state-noise covariance matrix Q, then successive estim-
ates of the state may tend to follow the erroneous "learned" dynamical
model and to diverge from the true state. Consequently, the estimated
state covariance matrix fails to represent the true estimation error.

In the time-update step the state vector and its covariance matrix are
integrated. During this integration, errors will be introduced due to
dynamic modeling errors and integration errors. Generally, the errors
will be non-random. Methods have been developed (e.g. Ref. 8, 9, 11,
19) to account for the model errors in some way. For computational sim-
plicity, in SORKA the crude assumption has been made that the errors
are random and can be handled by a proper choice of the covariance
matrix Q. A suitable choice for Q that prevents filter divergence

has to come from experience gathered during a sufficient number of
tests on the filter performance. In SORKA, two methods are used to
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compute the state-noise covariance matrix.

For the short time intervals between successive laser observations
during a pass, the computation is based on the assumption that the un-
modeled forces acting on the satellite yield accelerations that Have
the same root-mean-square value in all three coordinate directions. At
the moment, a value of 10 m/s/day has been selected. From these acce-
lerations, the standard deviations of the velocity errors after a time-
update step can be found by simply multiplying the acceleration by the
length of the time interval. These three standard deviations of the
velocity are the only components of Q that are used. The standard
deviations of the position error after the next time-update step evolve
from these components’ through the state-transition matrix. Though this
assumption looks questionable, it was found that this method gives
realistic results. The along-track position error standard deviation
“shows the well-known secular trend, while the behavior of the standard
deviations in the other two components corresponds to a sinusoidal
behavior of these componénts.

For the integration interval between successive passes, the computation
of Q is done in another way. Fixed values are chosen for the along-
track, cross-track and radial position errors and for the correspon-
ding velocity errors, which are assumed to be a specified fraction-

of the position errors. The values selected are 400 m and 0.4 m/s for
the cross-track and radial position and velocity components, and

200 m/day and 0.2 m/s/day for .the along-track components. So, the
along-track components depend on the length of the time interval be-
tween the passes and show the well-known secular trend. A few dominant
correlations are also introduced in the state-noise covariance matrix
in cross-track, radial and along-track components. Finally, an ortho-
gonal transformation is applied to obtain the corresponding matrix in
X, Y and Z components. The Q-matrix is then added to the state cova-
riance matrix, P, which has been integrated in one step over the com-
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plete time interval between the passes, using the analytically computed
state-transition matrix. '

6. Behavior of the Kalman gain matrix

The Kalman filter technique has been developed for linear systems. When
the filter is applied to orbit dynamics, approximations linearized
about a reference state are used. For the filter to work properly, the
Kalman gain matrix, being a function of the observétion matrix, H,
should be nearly independent of the chosen reference state.

From the behavior of the Kalman filter in the observation-update step
it was foundr(Ref. 20) during testruns with simulated data of GEQS-3
(Section 8) that when only range measurements are processed the gain
matrix is sometimes strongly dependent on the reference state. To in-
vestigate this phenomenon in detail, the predicted state vector and its
covariance matrix were extracted out of a Kalman filter simulation run
at the time of the fourth observation, when problems first occurred.
The state vector and the covariance matrix wére used to compute the
observation matrix and the Kalman gain matrix, which reduce to a row
matrix and a column matrix, respectively, as only range measurements
are processed. Then, the state vector was varied systematically in the
direction indicated by Kz, as this is the direction in which the state
corrections will occur in the observation-update step. For each new
state.vectOr, used then és an alternative reference state, new gain
matrices were computed. As range-only measurements are used, primari-
ly containing ‘information on the satellite's position, the variation

in the position components of the gain matrix was considered to be the
most important for the investigation of the phenomenon.

The computations were made for three different measurement standard
deviations, Tobs * of 10 m, 1 m and 0.1 m, respectively. As the corre-
lations in the state covariance matrix will have a large effect on the
gain matrix, the computations were repeated with slightly smaller
values for the correlations. This was simply achieved by multiplying
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these numbers by a factor n

cor OF 0.9999, 0.9998 and 0.9997, respecti-
vely. The computed results for the elements of the gain matrix that
affect the X- and Y-components of the state vector are shown in Fig. 3.
For the Z-component similar results were obtained. The plots clearly
show that for a measurement accuracy of 10 m, only a slight depen-
dency of the gain on the reference state exists, while the correlations
also hardly affect the results. For measurement accuracies of 1 m and
0.1 m, which are commonly met in laser ranging, the behavior of the
gain matrix, however, shows a nearly-singular trend. Relatively small
changes in the reference state may lead to large changes in the gain
matrix and hence to large variations in the state correction. The plots
also show that the reduction of the correlations has a smoothing
effect on the gain in the region where near-singularity occurs.

The high correlations are almost unavoidable when processing highly-
accurate Taser range data, in particular at the start of a pass.

They are caused by the use of a fast sequence of very-accurate obser-
vations. Because of the short time interval, the different observations
are almost in the same direction, thus containing almost identical in-
formation. As the observations give no direct information on the ve-
~locity of the satellite, the state covariance matrix will inevitably
contain high correlations. In Ref. 20 a geometrical explanation of the
gain behavior is given and an iteration scheme in the observation-
update step is proposed to find a reference state that yields better
filter performance than the reference state 51, usually app]ied to com-
pute the observation matrix, H. In the first iteration step, the ini-
tial state estimate X, is used as the referepce state. In subsequent
iterations the mean of the updated estimate X, and the initial estim-
ate Kl
puted values for the reference state have converged. During the iter-

is used for the reference state. This process stops if the com-

ations the matrix P, and the residuals, z,, are held fixed, while at
each iteration new values of H,, K;, Ql and ﬁl are obtained.
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Although this iteration schemé improved the stability of the filter,
the high values of the gain matrix still occurred and sometimes the
iteration scheme did not converge. The basic reason for this is that
the iteration scheme results in a reference state that still may not
be the "real optimum" for the Kalman filter. So, errors can still be
present in the state estimate and these errors are not accounted for in
the Tinear Kalman filter theory. Especially in the near-singularity
region, these errors can be very large. To reduce the errors, the de-
pendency of the Kalman gain matrix on the reference state should be
reduced. This reduction can be achieved by chénging the measurement
covariance matrix or by changing the state covariance matrix, as is
clearly indicated in Fig. 3.

The selection of larger values for the standard deviations of the ob-
servations must be done very carefully as it also affects the gain
matrix when singularity is not a problem. Then, it will lead to pessi-
mistic state estimates. A more selective and more powerful method is
to modify the correlations in the state covariance matrix. As can be
seen in Fig. 3, a small decrease of the corre]atiohs by 0.01 percent
has a treméndous effect on the gain matrix in the near-singularity
region. Outside this region, the gain matrix remains almost unchanged.
It proved that this modification of the correlations is a most effi-
cient way to stabilize the filter, and, in the testcases investigated,
more effective than the iteration process. '

In SORKA, both methods are applied. Before each observation—update
step, the correlations in the state covariance matrix are implicitely
decreased by multiplying the diagonal terms by a factor slightly
greater than one (by default 1.0001). If, occasionally, the iteration
process in the observation-update step does not converge, a combination
of applying the correction factor and larger observation standard de-
viations is used to try to achieve convergence. If convergencé still
cannot be achieved the observation is rejected.
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7. Divergence detection

A proper use of the techniques described in the previous Sections will
in general lead to a stable Kalman filter behavior when processing
laser range observations. In this context, it should be realized that
the effect of accounting for the model errors by the matrix Q, dis-
cussed in Section 5, is principaily different from the effect of the
correction factor Neor? described in Section 6. The first one increases
the state covariance matrix resulting in larger state corrections
during the observation-update step. The factor Neor decreases the

gain matrix, resulting in smaller state corrections and larger state
covariance matrices. Thus, both methods result in larger covariance
matrices, but the first method increases the state vector corrections,
while the second method decreases the corrections. Both features can

be used to tune the filter process, depending on the number and type
of observations, the characteristics of the orbit, etc. Nevertheless,
sometimes divergence of the filter occurs, which results in incorrect
and useless state vector estimates. In simulations, divergence can be
detected very easily. In those cases, divergence is recognized if the
estimated state vectors deviate considerably more from the simulated
state vector, from which the simulated observations are computed, than -
the estimated state vector standard deviations given by the state co-
variance matrix. If real observations are processed, such a comparison,
of course, is not possible.

The only way to detect divergence in real observations processing is to
study the observation residuals, z. The observation residuals relative
to the predicted state vector at the time of an observation are used
in the observation-update step. The covariance matrix of the residual

T, is used in the computation of the Kalman gain

vector, i.e. R + HPH
matrix. Thus, for divergence detection there is available a sample of
a stochastic variable (the residual vector), which in the Kalman fil=
ter is assumed to have a Gaussian distribution with zero mean and known
covariance matrix, and which is assumed not to be correlated in time.
Methods can be developed to test the validity of one or a combination

of these assumptions.
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The two divergence detection methods implemented in SORKA are based on
testing the validity of the residual covariance matrix. Therefore, the
squared residual is weighted with the covariance matrix. This squared
weighted residual is a stochastic variable which should have a chi-
squared distribution, with, in case of range-only measurements, one de-
gree of freedom per observation. The sum of these variables can be
used to test, with a given degree of confidence, if the variables in-
deed correspond with their distribution. However, as after a number of
processed observations this method will become very slow, in SORKA two
faster divergence detection techniques are inciuded. One method is
based on a fading-memory fi]ter; in which the most recent residuals
have a greater weight in the sum. The other is based on the Tow-pass
filter technique described in Ref. 21, which also results in a test
which is more sensitive to the last measurements. The two methods are
at present not fully tested, and no definite preference for one of
them exists. Both methods are handicapped if only a few observations
during a pass ‘are available, but were found to work satisfactory if
many observations are processed.

8. Results

To investigate the general behavior of SORKA when processing laser
range observations from only one groundstation many simulations were
performed. In these tests simulated observations of GEOS-3 (Table 1)
were processed. The first results of these simulations are reported in
Refs. 22, 23; the final results are discussed in Ref. 20. In these
final simulations,.four passes of GE0S-3 over Kootwijk were selected,
for which also corresponding real observations were available. These
passes took place within a 30-hour period on November 27, 1977. For
the simulations, an initial state vector was chosen which led to an
orbit that closely resembied the real orbit of GEOS-3 at that time.
From an accurate numerical integration simulated state vectors and
simulated observations were computed with an interval of 12 s between
successive observations during a pass. All observations that were not
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Table 1: Satellite data

GEOS-1 GEOS-3
Satellite number 6508901 7502701
Launch date Nov. 6 April 9

Shape

Dimensions (cm)

Mass (kg)
Stabilization

Transmitters

Laser reflectors

Orbit

®

(km)

(deg)
(min)

v I S ¢]

octagonal prism
with hemispherical
cap on down end
and octagonal
pyramid on top

132 wide
81 high

172.5
gravity-gradient

TRANSIT and MINI-
TRACK beacon.
SECOR and GRARR
transponders

322 reﬁlectors on
0.18 m bottom-
mounted flat
array

8073
0.0717
59.4
120

octagonal prism

with radar altimeter
dish on down end and
octagonal pyramid on
top

132 wide
81 high

345.9
gravity-gradient

doppler beacon,
C-band and S-band
transponders.
Radar altimeter.

264 reflectors in
conical ring around
the periphery of
bottom side

7221
0.0014
115.0
102

*

Mean elements for mid 1978.

present in the real data were removed. These simulated observations

were then contaminated with noise of 1 m standard deviation. The
initial state estimate was also contaminated with noise of 1 km
standard deviation in the position components and of 1 m/s in the
velocity components. To summarize the results, it can be stated that
SORKA proved to be able to yield acceptable state estimates. It was
found that the effects of applying the correction factor Neor? des-
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cribed in Section 6, were very significant: a simulation without the
correction factor diverged immediately after the fourth observation.
Changing the values for the root-mean-square of the unmodeled accele-
rations from 10 m/s/day to zero, or by-passing the iteration scheme in
the observation-update step, showed to have much smaller effects in
these tests. A few simulations with slightly different values for the
initial state vector, however, demonstrated that the errors in the
state estimates, and the effects of the various stabilizing features
incorporated in SORKA, are heavily dependent on the accuracy of the
initial state.

The first experiences with SORKA in processing real range observations
look also very pkomising. Another set of measurements was selected. -
These measurements were acquired at Kootwijk during 8 pasées of GEOS-1
(Table 1) in the period July 11 to July 13, 1978. The data-arc with a
Tength of 54 hour comprised 611 measurements. During this period the '
satellite completed 27 revolutions. These observations were also used
in studies, described in Refs. 24, 25 to estimate from laser range
data acquired at Kootwijk and Wettzell (Fed. Rep. Germany) the coordi-
nates of the Wettzell laser station. In those studies the orbit was
determined using the least-squares batch-processing GEODYN computer
program (Ref. 26). Because of the very high accuracies obtainable with
GEODYN, that solution for the orbit could serve as the reference to
which the SORKA results are compared. The initial state was taken to
be the state estimated by GEODYN; the initial standard deviations for
the radial, cross-track and a]ong-tkack position and velocity compo-
nents were assumed to be 1m and 0.03 m/s, respectively. So, this ex-
periment reflects the (hypothetical) situation of extremely accurate
initial state estimates. The standard deviation of the observations
was taken to be 0.25 m, which is about the actual accuracy of the
Kootwijk laser system. ’

In Fig. 4 the sub-satellite points at the times of the observations
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Fig. 4: The GEOS-1 sub-satellite points at the observation times. The

general dirvection of the satellitemotionis from west to east.

are plotted. The range residuals for all eight passes are shown in
Fig. 5. The results for the different passes are plotted one after
another, neglecting the different periods between the passes. From
this Figure, it can be concluded that the Kalman filter showed a
satisfactory stable behavior for all passes. For more-detailed infor-
mation on the performance of the filter, in Fig. 6 the differences
between the state components as computed by SORKA and the values com-
puted by GEODYN are depicted for the first two passes over Kootwijk.
These differences, which are considered as the Kalman estimate errors,
are given in terms of cross-track, radial and along-track errors. The
solid lines indicate the standard deviations of the state estimates,
as provided by‘the Kalman filter. The Figure shows that the errors in
the position components are generally less than 100 m, with the largest
errors occurring in the cross-track component. This result could be
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expected because range observations from a single or a few passes
contain almost no information on the orientation of the orbital plane.
Consequently, cross-track errors are not filtered out easily. At the
very beginning of the second pass larger position errors of up to 1 km
.are encountered. As soon as new observations are processed,. these
errors decrease very fast. The estimated accuracy of the position com-
ponents shows up to be rather conservative, in particular during the
second pass. The errors in the velocity components during the first
pass are less than 0.3 m/s, with the Targest errors occurring in the
radial and along-track components. At the start of the second pass
errors of up to 0.8 m/s are found. Again, these errors decrease very
fast as new observations are processed to generally less fhan 0.03 m/s..
Also for the velocity components the accuracy estimation yields conser-
vative values. As for the estimated position errors these are probably
due to over-pessimistic model accuracy estimates.

The total position and velocity errors for the whole period are
depicted in Fig. 7. To show both the short-term behavior and the
increase of the errors and the estimated standard deviations during

the 40-hour period between the third and the fourth pass, a logarith-
mic scale (to the base 10) has been applied. State errors are plotted
at 20-minute intervals. It is clearly visible that during the 40-hour
period inwhichno observations are available the position error increased
to about 14 km, and the velocity error to 12 m/s. As soon as the first
observations of the fourth pass have been processed, the errors immedi-
ately decrease to the level of the first passes.

In this numerical experiment, actual observations were processed. It
will be evident that when SORKA, in its current version, would have
been used to point the laser at the satellite, some searching process
would have been necessary in order to acquire the first observations
during a pass. For instance, assuming that the distance of GE0S-1 to
the laser at the start of the fourth pass is 2500 km, the position
error of 14 km corresponds, depending of the pass geometry, to a topo-
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centric angular error of 10' to 20', or about the same magnitude as

the maximum beam divergence of the Kootwijk laser. Because, usually,
much narrower beams are applied, a systematic search would have to be
performed to acquire the first returns. Even if smaller position errors
can be obtained with future versions of SORKA, such searching procedures
might still remain necessary. Which procedure will be selected has not
yet been determined.

9. Conclusions and prospects

For investigating the possibilities to use laser range observations
acquired at the Kootwijk satellite observatory for (semi-) real-time
improvement of the predicted satellite positions, a computer program
called SORKA has been developed. The main requirements were that SORKA
could satisfy both the accuracy level needed for the laser to hit the
satellite and the capabilities of a small local computer. Until now,
SORKA runs on an IBM 370/158 computer and the implementation on a
Tocal computer still has to be studied. In the design of SORKA precau-
tions have been taken to make such an 1mp1ementation possible.

The first tests in applying SORKA to simulated and real observations
Took promising and justify the continuation of the efforts to improve
the computations scheme such that the Taser pointing capabilities are
optimized. It has been demonstrated that a stable Kalman filter process
can be obtained when using only laser range measurements from one
ground-station. It was found that divergence, which very easily may
occur due to high correlations in the state covariance matrix, which

in turn are a direct result of processing only laser rénge measure-
ments, could effectively be suppressed by applying a correlation
correction factor and an iteration scheme in the observation-update
step. .
The -study has revealed specific shortcomings of the current SORKA
program and has indicated directions to improve the program's capa-
bilities. Only a few of these future improvements will be mentioned
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below.

To decrease the errors -in the predicted state after a period between
two succéssive passes, both the state estimate at the end of the pre-
ceeding pass and the mathematical model describing the motion during
that intermediate period have to be improved. To increase the accuracy
of the state estimate at the end of a pass a global iteration scheme
will be introduced where the final state vector is integrated back-
wards over a few passes. The number of passes has to be selected such
that sufficient information will be gained on the orientation of the
orbital plane. Then the observations are processed again. For the pe-
riod in between two successive passes, which period may last for many
hours, as well as for the second and higher steps in the global iter-
ation, a more-extensive dynamical model will be used.

Both changes do not affect the real-time performances of the program
as the computations are performed during the idle periods between the
passes. Furthermore, the various parameters which are used to tune the
filter process will be optimized to yield the most accurate results,
and one of the divergence detection methods will be linked in a closed-
Toop mode to correct for divergence as soon as such a tendency is de-
tected.

As mentioned in Section 2, it may be attractive to use the laser
pointing angles during the search process as observations. Although
the accuracy of these observations is very low in comparison with

the range measurements it will be investigated if the inciusion of
these angles will have a stabilizing effect on the filter. Also, it
will be investigated if non-linear filtering techniques (e.g. Ref. 27)
will offer practical advantages over the currently applied extended
Kalman filter.
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