ALGEMEEN UITBREIDING/PLAN VAN AM/TERDAM

Harvest / P5 "Materials Bank" among the community

Applying the concept of buildings as material banks for the Western Garden Cities of Amsterdam

ARCHITECTURAL ENGINEERING GRADUATION STUDIO P5 Presentation Architectural Engineering Graduation Studio

/CHAAL 1A10000

151, 152

Yujia Ren 5323576 30-06-2022

Design Tutor: Mo Smit Research Tutor: Olga Ioannou BT Tutor: Ger Warries

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

Bijlmermeer, in 1975, before renovation

Bijlmermeer, now, after renovation

Amsterdam built many **social housing units** after World War II, which quickly met the city's high demand for housing in a short period with low technology. After the year 2000, this overly dense housing pattern became incompatible with **contemporary living requirements**, like the small size of housing and poor thermal insulation performance.

Amsterdam government released a document called "Richting Parkstad 2015" in 2001, which presented a plan to renovate post-war housings, especially in Western Garden Cities (Havinga et al., 2020).

Among the dwellings in the Western Garden Cities, 60% consist of *slab blocks with point access* (Havinga et al., 2020).

post-war housings in the Western Garden Cities (Havinga et al., 2020)

houses built between 1945 and 1970 were demolished in 2014, 58.9% of the total (EIB and Metabolic, 2020)

houses built between 1945 and 1970 were renovated in 2018 (City of Amsterdam, 2020)

6817kt

built environment waste was disposed of in 2018 (City of Amsterdam, 2020)

built environment materials were produced in Amsterdam in 2018 (City of Amsterdam, 2020)

of the annual waste is generated by the demolition of buildings (Ministerie van I&M & Ministerie van EZ, 2016).

The widespread **post-war housing renovation projects** have posed a great **challenge** to the **management of waste** through destruction, landfill incineration.

ARCHITECTURAL ENGINEERI

(Circular Economy for a Sustainable Built Environment, 2021)

The solution to the problem of too much waste and not enough resources should start with a change in people's idea of waste. Treating waste as another form of resource can provide the waste which still have use value opportunities to use again.

TREATING WASTE AS RESOURCE

RESEARCH PART

1. Problem Statement 2. Research Part 3. BAMB Implement 4. Design Proposal

CIRCULAR ECONOMY

(Circular Economy for a Sustainable Built Environment, 2021)

Circular Economy decouples economic activity from the consumption of finite resources (Ellen MacArthur Foundation, 2013), and attempts to eliminate the notion of waste by maintaining the efficiency and value of products (Dokter, Thuvander and Rahe, 2020).

CIRCULAR ECONOMY

10R STRATEGIES

	RO Refuse	Make product redundant by abandoning its functionwith a radically different product		
smarter product use and manufacture	R1 Rethink	Make product use more intensive (e.g. putting multi-functional products on the market)		
	R2 Reduce	Increase efficiency in product manufacture by consuming fewer natural resources and materials		
	R3 Re-use	Re-use by another consumer of discarded product which is still in good condition and fulfils its original function		
	R4 Repair	Repair and maintenance of defective product so it can be used with its original function		
Extend lifespan of product and its parts	R5 Refurbish	Restore an old product and bring it up to date		
	R6 Remanufacture	Use parts of discarded product in a new product with the same function		
	R7 Repurpose	Use discarded product or its parts in a new product with a different function		
Useful application	R8 Recycle	Process materials to obtain the same (high grade) or lower (low grade) quality		
of materials	R9 Recover	Incineration of materials with energy recovery		

linear economy

Circularity strategies towards circular economy. According to PBL Netherlands Environmental Assessment Agency

circular economy

BUILDINGS AS MATERIALS BANK

Buildings as Material Banks (BAMB) can be seen as an approach to achieve a circular economy in the construction industry. According to the notion of BAMB, materials can be seen as only temporarily stored in the building and can be reused in the long term (Leising, Quist and Bocken, 2018). So, in BAMB projects, it will be reversible deign, so that most of building components can maintain them value after disassembly.

MATERIALS PASSPORT

BUILDING NAME Training The Arc

COMPANY NAME

OWNER

Trainer Madaster

Madaster Training

Sander Beeks

PUBLISHER

PUBLISHING DATE 11/12/2020

M,

PORTFOLIO NAME

PORTFOLIO OWNER

BUILDING NAME Training The Arc

ADDRESS DETAILS Address: Marconibaan 12

Postal code: 3439MS Nieuwege

Cadastral designation

Cadastral surface area

Restriction of public law

Classification method

Lot numbe

Laren

Trainer Madaste

BREEAM GPR-score Indicative MPG score LEED

WELL SCORE

Training The Arc

MATERIALS PASSPORT

- 1. Production information (time / manufacturer)
- 2. Basic information (*dimension / color*)
- 3. Traits information (*waterproof / insulation rate / fireproof*)
- 4. Life expectancy and usage history
- 5. Potential performance over time

One of the tools of the BAMB is the use of Material Passports. MPs are electronic and actionable datasets that collect material properties. All information about the material is recorded. For example. Reliable and standardized databases can help bridge information gaps and communication between relevant stakeholders in the construction industry.

TRAINING THE ARC | GENERAL INFORMATION

CADASTRAL INFORMATION

Jutphaas
7100 /m ²
JPS00 - D - 2819
Geen

MADASTER INFORMATION

NL	SfB
11	12/2020 3:20 PM
Off	ices (Office >= 1000m2
18	00 /m ²
1/2	3/2019

Good 0.69 €/m²

Page 2

Material Passport sample on MADASTER.COM

CASE STUDIES

Name	Year	Architect	Area	Function	Recycle Part	Use Method	Detac hable
The Resource Rows	2015	Lendager	9148 m ²	Dwelling	Facade	Cut the abandoned brick wall into larger modules for the facade	No
People's Pavilion	2017	bureau SLA + Overtreders W	250 m ²	Pavilion	A11	All materials used in the project are old. The materials not only come from the suppliers but also from the garbage of the local residents.	Yes
Afvalbrengsta tion	2017	SuperUse Studio	2700 m ²	Garbage transfer station	Except for the steel structure	The facade is made of an industrial remnant material. Supplemented by second-hand Azobé sheet piles	No
The Circle	2017	Cie Architect		Pavilion	Floor and roof	Discarded wooden frames are made into wooden floors, and jeans are used as insulation material	No
Tijdelijke rechtbank amsterdam	2016	cepezed	5400 m ²	law court	None	Because of special attachment system, this building can be reassembled completely in at a different location	Yes
Triodos bank Netherlands	2019	RAU Architect	12994 m ²	Bank office	None	All materials used in the building are accurately recorded, which facilitates the reuse of materials if user needs change or the house is not in use.	Yes
Villa Welpeloo	2009	Superuse	400 m ²	Housing	Load- bearing structure and façade cladding	The structure is made of steel girders from a paternoster, formerly used in the textile industry. The wooden façade cladding is made of redundant cable reels	No

TEMPORARY COURT AMSTERDAM

CEPEZED | AMSTERDAM | 2016

Cruciaal: demontabele verbinding vloer-liege

1. sleuven maken in twee kanalen van de kanaalplaat 2. DEMU-ankers aanbrengen 3. slouven dichtstorten en kenasiplaat vastbouten aan van verstelbäre drukpunten voorzien SFB-ligger detail aansluiting kanaalplaat-ligge 1:10 1. worsteilbare bout yoor kanaalplaat 2. aan mor 3. DEMU-hulsanker 4. bout voor bevestiging ka BOUWEN MET STAAL 257 | JUNI 2017

The building developed a special connection system for the hollow slab, which simplifies the disassembly of the slab as much as possible and promotes reuse. The building can be reassembled in its entirety in different locations.

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

De stekken worden achteraf aangegoten met beton.

14

THE RESOURCE ROWS

LENDAGER GROUP | DENMARK | 2015

By cutting the bricks facades of the abandoned building and installing them in steel frames, they can be used as facade in the new building.

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

Construction

5. Fitted with brackets, panel is attached to internal wall and insulation

Finished assembly

6. Masonry elements can be produced in varying sizes according to same principles

BAMB IMPLEMENT

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

THEORETICAL CONTEXT

BAMB currently does not have a clear and unified implementation standard, and the only practical BAMB projects funded by the EU are only attempts based on building scale.

COLLECTION

Collection programs are designed and built to collect material from operational, pre-consumer and post consumer waste streams.

Neo magnets are harvested from EOL products using a focused extraction methodology. No shredding technology is used.

ZERO LANDFILL

SORTING

Materials are separated into individual components using automated tools (magnets, steel, Al, Cu, plastics, etc.).

Based on the combination of the BAMB project and Urban Mining, I proposes to divide the implementation of BAMB into five phases: inventorying, harvesting, processing, distributing, and reusing.

The purpose of the inventory is to clarify the reusability of components in the building

The creation of the inventory requires the participation of stakeholders from different fields. The inventory will help to reduce construction waste by recycling as much usable material as possible.

MAKING INVENTORY

Removing the components from the post-war housings, and also separating the parts that are still usable in a way that maintains as much value as possible.

This requires knowledge of assembly and disassembly among the demolition workers, and perhaps even need training in advance of the formal demolition

POLICY & TRAINING

Materials separated from the post-war buildings will be transported to a local material processing center, where they will be initially sorted, processed, documented, and stored.

The collected waste materials need to be initially sorted to ensure a more targeted treatment for the following process.

R strategies

Directly Reusable

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

After sorting, the treatment is decided according to the characteristics of the material. After that, the processed material will be recorded in the form of MP and stored.

PROCESS FLOW

DISTRIBUTION

Diversified distribution channels can break down information barriers and allow all kinds of people to have access to recycled materials

DISTRIBUTION DESTINATION

Manufactures

After professional treatment, these materials can be sold almost as new products again

Designers

Those selected materials will be delivered directly to the site during the construction phase

be sold locally as thrifted goods or exchanged by residents with still valuable materials

For the realization of BAMB, it is not enough to focus only on the process from harvesting to distribution of materials.

BAMB is concerned with the approach of using and maintaining the value of materials over a long time. The long-term value of materials that enter the BAMB system should be given more attention than their use in the present. To achieve it, the different stakeholders will have their responsibilities for materials at different stages of design

REUSABLE MATERIALS

YUJIA REN 2022

29

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

30

The whole BAMB Flow. This is a complex process that has many details. We have to do many things to achieve it.

BAMB FLOW

The implementation of BAMB requires the close cooperation of the stakeholders. There are many steps required to implement BAMB in the neighborhood, and often these steps involve stakeholders from various fields.

STAKEHOLDERS INVOVLED

The implement of BAMB is a complex and long-term process that involves many people. Therefore, the implantation of BAMB in the community needs to be controlled by a coordinating center.

COMPLEX AND LONG TERM

DESIGN PROPOSAL

4. Design Proposal

1. Problem Statement 2. Research Part 3. BAMB Implement

DESIGN AMBITION

circular materials flow come true

Select a site in the western garden city. Materials that have been discarded due to building renovation will be transported here

transported to a nearby waste center. And those materials that have been disposed of at the materials center will have the opportunity to be returned to the post-war housing renovation.

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

FIELD RESEARCH

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

BAMB OFFICE

ACTIVITY CENTER

thrift shop 150m² + repair shop 150m² + display hall of BAMB 300m² + training room for workers 200m² + workshop for citizens 100m² + café 150m² + activity rooms 200m²

╋

1250 M²

initial process of materials 1000m² + temporary storage of materials 500m² + warehouse office 50m² + administration 50m² + meeting room 50m² + document 50m²

1700 M²

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

USERS

WORKERS

Workers work here to process recycled materials and receive professional training.

CITIZENS

The neighborhood organizes activities and receives knowledge about reusing materials.

OFFICERS

BAMB staff manage the materials here and control the entire process of harvesting and reuse of materials.

PROJECT DESIGN

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

MASS GENERATION

CHOOSE SITE

Choose a suitable site in the community, which is close to the citizens and also close to the garbage station in the area.

SEPARATE MASS

Since the renovation of the post-war residence will end at any time, the material recycling center and the activity center are divided into two volumes.

What is offered to the public should not only be a good indoor space, but also a good outdoor space. So a block is set back to form an outdoor activity space.

SECONDARY FACADE

A second façade is placed on the south side of the building for shading. Materials collected from the post-war buildings will be placed here for shading.

MORE GREENLAND

Green space is placed in the front plaza of the building and on the roof to maximize the greenery of the site.

GROUND FLOOR

- 1. storage
- 2. repair shop
- 3. thrift shop
- 4. entrance hall
- 5. cafe
- 6. temporary strorage
- 7. materials process center

FIRST FLOOR

- 1. storage
- 2. BAMB display
- 3. bridge to materials center
- 4. platform

SECOND FLOOR

- 1. BAMB office
- 2. workshop
- 3. training room
- 4. activity room
- 5. workshop

FACADE FACE TO MATERIALS CENTER (MORTHWESTERN FACADE)

them.

CIRCULARITY DESIGN

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

CIRCULARITY STATEGY

In order to achieve recycling and sustainability, the building has adopted a recycling strategy in all aspects

Modular and high-efficiency

Care SHOP

Concrete slabs recovered from post-war homes serve as *sunshades*

55

ENERGY CAUCULATION

Rough calculation of the annual energy requirement of the building

Calculate the number of solar panels needed based on the annual energy requirement

You need 152 modules to provide your electricity demand! ?

Your PV system contains 152 solar panels. This number was estimated based on your yearly electricity demand of 45468 kWh. It is calculated that there fit 187 solar panels at your location.

GCR

Installed capacity	45.5 kWp	
Yearly electricity use	Not specified	
Available area	340m ²	17m x 20m
Desired area	-	-
Required area (based on your electricity use)	271.52m ²	16.86m x 16.1m
Required field area		272 m ²
Required ground area		176 m ²
Required active area		249 m ²

Α

0.65

187 modules

152 modules

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

CLIMATE DESIGN

Sufficient solar panels to absorb solar energy

Skylights absorb heat from the st

Underground GEOthermal

Underground water tank

18:00 p.m.

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

STRUCTURE DESIGN

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

STRUCTURE GENERATION

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

PUT PILES UNDER FOUNDATION

1

Î

Î

Because of the soft soil in the Amsterdam area, 25 meters of piles had to be placed underground to support the building.

The foundation part of the building consists of three types of concrete blocks. Each concrete block is connected by a dry joint.

STRUCTURE GENERATION

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

The steel columns of size HEB180 are fixed to the concrete foundation by square steel members and screws.

STRUCTURE GENERATION

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

The main beam of size IPE400 and the secondary beam of HEA180 are fixed to the steel column by rigid connection.

YUJIA REN 2022

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

Add diagonal bracing reinforcement on three sides of the building.

STRUCTURE GENERATION

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

STRUCTURE GENERATION

RECYCLED ALUMINUM ON FACADE

Recycled aluminum is used as the façade of the building. The aluminum may come from all over the Netherlands, so the style of the facade may change depending on the look of the recycled material.

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

U-Build is a modular wooden construction system developed by Studio Bark to be easy to build, pleasant to inhabit, and simple to deconstruct at the end of its useful life. U-Build is essentially a system of giant building blocks. They arrive flat packed, are assembled into 'human-scale' boxes, and are stacked up to form walls, roofs and floors: the fundamental building blocks for any design project.

FAQs

About Us

USE 6 TIMBER PANEL TO MAKE ONR TUBE

USE 6 TIMBER PANEL TO MAKE ONR TUBE

CONNECT TUBES BY A SMALL COMPONENT

3 TUBES BECOME A SIDE OF U-BUILD PANEL

4 SIDES MAKE A FRAME

MAKE TWO SIZES OF UNIT

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

MAKE THEM TOGHTER

PUT THE UNIT IN THE FRAME

PUT THE UNIT IN THE FRAME

A FINISHED U-BUILD PANEL

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

MATERIALS PASSPORT

All materials used in the building are recorded in an online database. Basic information such as material size, color and manufacturer is recorded, which facilitates the reuse of materials in the future.

POTENTIAL TO USE OLD MATERIALS

Every material used in the building is used in standard sizes as much as possible so that the ratio of old materials used for the building can be increased.

Component E

POTENTIAL TO USE IN THE FUTURE

Every material used in the building is used in standard sizes as much as possible so that the ratio of reused materials for other building can be increased.

83

1:50 DETAILS

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

(From left to lright)
Interiors covering
Timber battens
Fermacell panel
U-build timber panel 20mm
Waterprof layer
Insulation
U-build timber panel 20mm
Recycled aluminum

(from top to bottom) Floor covering Underfloor heating pipe Timber Battens Waterprof layer U-build timber panel 20mm Vapen layer U-build timber panel 20mm

Underfloor heating pipe U-build timber panel 20mm Impact sound insulation layer U-build timber panel 20mm

DETAIL ABOUT FOUDATION

Floor covering Reflective layer Timber Battens Waterprof layer Vapen layer

(from top to bottom) Underfloor heating pipe Impact sound insulation layer U-build timber panel 20mm U-build timber panel 20mm

DETAIL ABOUT SECONDARY FACADE

FUTURE VISION

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

STRUCTURE ANALYSIS

Airey-woningen:

Common in four and below floors, especially in "slotermeer and sloterhof" districts.

- 1. inner partition walls are free
- 2. facade is concrete panel
- 3. plastic window frames + double glazing
- 4. roof tiles

MUWI-system:

Common in Western Garden Cities.

- 1. Walls use prefabricated hollow concrete elements
- 2. brick as a facade decoration
- 3. concrete filled with origianal without rebar

494

SECONDARY FACADE

The roof of the materials processing centre will become a showcase for the potential of recycled materials for the community. Various materials collected from the post-war housing areas will be placed on top of the roof as sunshades. This façade can be changed depending on the season and the type of recyclable material. The community will be able to visualise the changes in the roof to see the potential of the materials.

SEASON: summer

MATERIALS: solar panel 33% glasss 33% roof tiles 33%

Concrete pane

SEASON: summer

MATERIALS: solar panel 33% glasss 33% concrete panel 33%

SEASON: autumn

MATERIALS: solar panel 33% glasss 33%

FUTURE VISION

In the future, when the renewal of the western garden city is over, the material handling center can be demolished. The demolished materials will be used in the construction of other buildings. The activity center can be added in the future in the form of a 6*6 module.

FOR SURROUNDINGS

Provide Energy

The solar panels installed on the building not only provide the building's energy consumption, but the excess energy can also be used to serve the community. For example, charging electric cars and powering street lights.

Space for Activities

The project provides good indoor and outdoor space for community residents who lack activity space. People can move around here and have the opportunity to learn about recycling old materials.

Educational case

The building is not only an activity center, but also a example of circularity. As the building's façade is replaced with different recycled materials from post-war housing depending on the season, people around the building can get a more realistic sense of the potential for reuse of old materials.

Thanks

ARCHITECTURAL ENGINEERING GRADUATION STUDIO

