
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

Genetic sequence alignment on a supercomputing
platform

Erik Vermij

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-02

Genetic sequence alignment is an important tool for researchers. It
lets them see the differences and similarities between two genetic
sequences. This is used in several fields, like homology research,
auto immune disease research and protein shape estimation. There
are various algorithms that can perform this task and several hard-
ware platforms suitable to deliver the necessary computation power.
Given the large volume of the datasets used, throughput is nowadays
the major bottleneck in sequence alignment. In this thesis we discuss
some of the existing solutions for high throughput genetic sequence
alignment and present a new one.
Our solution implements the well known Smith-Waterman optimal
local alignment algorithm on the HC-1 hybrid supercomputer from
Convey Computer. This platform features four FPGAs which can
be used to accelerate the problem in question. The FPGAs, and the
CPU that controls them, live in the same virtual memory space and
share one large memory. We developed a hardware description for
the FPGAs and a software program for the CPU. Some focus points
were: a sustainable peak performance, being able to align sequences
of any length, FPGA area efficient computations and the cancellation
of unnecessary workload.

The result is a Smith-Waterman FPGA core that can run at 100% utilization for many alignments long.
They are packed per six on a FPGA running on 150 MHz, which results in a full system performance of 460
GCUPS (billion elementary operations per second). Our elementary processing element can deliver double
the work per clock cycle than a naive implementation, resulting in a better throughput per area ratio. At
a system level a notable amount of workload is cancelled. It is the most flexible implementation we are
aware of . We re-evaluate the use of FPGAs for accelerating Smith-Waterman and conclude that they will
continue to be a good choice per dollar and per watt, as long as we narrow the problem space.

Genetic sequence alignment on a supercomputing
platform

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Erik Vermij
born in Gouda, the Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Genetic sequence alignment on a supercomputing
platform

by Erik Vermij

Abstract

G
enetic sequence alignment is an important tool for researchers. It lets them see the dif-
ferences and similarities between two genetic sequences. This is used in several fields, like
homology research, auto immune disease research and protein shape estimation. There are

various algorithms that can perform this task and several hardware platforms suitable to deliver
the necessary computation power. Given the large volume of the datasets used, throughput is
nowadays the major bottleneck in sequence alignment. In this thesis we discuss some of the
existing solutions for high throughput genetic sequence alignment and present a new one.

Our solution implements the well known Smith-Waterman optimal local alignment algorithm
on the HC-1 hybrid supercomputer from Convey Computer. This platform features four FPGAs
which can be used to accelerate the problem in question. The FPGAs, and the CPU that
controls them, live in the same virtual memory space and share one large memory. We developed
a hardware description for the FPGAs and a software program for the CPU. Some focus points
were: a sustainable peak performance, being able to align sequences of any length, FPGA area
efficient computations and the cancellation of unnecessary workload.

The result is a Smith-Waterman FPGA core that can run at 100% utilization for many
alignments long. They are packed per six on a FPGA running on 150 MHz, which results in a full
system performance of 460 GCUPS (billion elementary operations per second). Our elementary
processing element can deliver double the work per clock cycle than a naive implementation,
resulting in a better throughput per area ratio. At a system level a notable amount of workload
is cancelled. It is the most flexible implementation we are aware of . We re-evaluate the use
of FPGAs for accelerating Smith-Waterman and conclude that they will continue to be a good
choice per dollar and per watt, as long as we narrow the problem space.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-02

Committee Members :

Advisor: Zaid Al-Ars, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Dick de Ridder, Bioinformatics Lab, TU Delft

Member: Stephan Wong, CE, TU Delft

i

ii

Contents

Acknowledgements vii

1 Introduction 1

1.1 Introduction to bioinformatics . 1

1.2 Genetic sequence alignment . 2

1.2.1 Dot matrix . 3

1.2.2 Creating useful alignments . 3

1.2.3 Applications of sequence alignment 5

1.3 Problem definition . 6

2 Genetic sequence alignment algorithms 7

2.1 Classification of algorithms . 7

2.2 Dynamic programming algorithms . 8

2.2.1 Needleman-Wunsch . 8

2.2.2 Smith-Waterman . 8

2.3 Heuristic algorithms . 10

2.3.1 FASTA . 10

2.3.2 BLAST . 11

2.4 Algorithm comparison and selection . 12

2.4.1 Evaluation criteria . 12

2.4.2 Comparison and selection . 13

2.5 Conclusion . 13

3 Smith-Waterman performance analyzed 15

3.1 Smith-Waterman performance . 15

3.1.1 Data depedencies in the S-W algorithm 15

3.1.2 Filling the S-W matrix . 15

3.1.3 Terminology . 16

3.2 CPU implementations . 17

3.2.1 SIMD technology . 17

3.2.2 Modern implementations . 17

3.2.3 Performance estimations for top-end and future CPUs 17

3.2.4 Performance estimations for a multiple CPU system 18

3.2.5 Summary . 19

3.3 FPGA implementations . 19

3.3.1 The processing element . 19

3.3.2 The linear systolic array . 19

3.3.3 Recursive variable expansion . 21

3.3.4 Modern implementations . 22

iii

3.3.5 Future FPGA implementations . 23

3.3.6 Summary . 23

3.4 GPU implementations . 23

3.5 Conclusion . 24

4 System implementation for accelerated S-W 25

4.1 Smith-Waterman in practice . 25

4.1.1 General usage . 25

4.1.2 Evaluating results . 25

4.2 The hardware platform . 26

4.2.1 System architecture . 26

4.2.2 The coprocessor . 26

4.2.3 Memory system . 27

4.2.4 Function dispatch . 29

4.3 System design . 29

4.3.1 Features . 30

4.3.2 Design decisions . 30

4.4 Hardware design . 32

4.4.1 The processing element and the linear systolic array 33

4.4.2 The functional unit . 34

4.4.3 The memory crossbar . 35

4.4.4 Design and testing . 38

4.4.5 Limitations . 40

4.4.6 Final implementation . 41

4.5 User application design . 42

4.5.1 Program layout . 42

4.5.2 Program workings . 43

4.5.3 Sending instructions to the coprocessor 44

5 Optimal processing element design 47

5.1 Recursive Variable Expansion in depth . 47

5.2 Automated design . 48

5.3 Results . 51

5.3.1 Comparison with previous work . 51

5.3.2 Frequency and latency . 52

5.3.3 Throughput and performance per area 53

5.4 The 1×2 RVE processing element . 54

5.4.1 Basic hardware design . 54

5.4.2 Hardware pipelining and optimization 56

5.5 Further exploration of PE sizes . 57

5.5.1 The 2×1 RVE processing element 58

5.5.2 The 1×3 RVE processing element 58

5.6 Conclusion . 58

iv

6 Implementation results 59
6.1 Isolated results . 59

6.1.1 Functional unit performance . 59
6.1.2 Memory crossbar performance . 60
6.1.3 User application & workload distribution 63

6.2 Implementation results . 65
6.2.1 Software S-W performance . 66
6.2.2 System performance . 66
6.2.3 System simulation results . 67

6.3 Comparison with other work . 68
6.3.1 Comparison between several hardware platforms 69
6.3.2 Comparison of functionality between FPGA implementations . . . 70
6.3.3 Comparison with the Convey S-W personality 70

7 Conclusions and recommendations 73
7.1 Conclusions . 73

7.1.1 Evaluation of our implementation 73
7.1.2 Using RVE for Smith-Waterman 74
7.1.3 Making an implementation on the HC-1 75

7.2 Recommendations for further research . 75
7.2.1 Possible improvements . 75
7.2.2 Re-evaluation of FPGA usage . 76

Bibliography 79

A Specification of code and support tools 81
A.1 Verilog code . 81
A.2 User application code . 82
A.3 Support tools . 83

B Automated RVE hardware design tool 85
B.1 Creating all the equations . 85
B.2 Optimizing the equations . 85
B.3 Dealing with the clipping error . 86
B.4 Generating HDL . 87

v

vi

Acknowledgements

First of all, I would like to thank Dr. Zaid Al-Ars for his supervision and support
throughout the work. I would like to thank Convey Computer, especially Glen Edwards,
for their help on the HC-1 personality development kit. I would like to thank Laiq Hasan
and Zubair Nawaz for their help and feedback. From Imperial College Londen, I would
like to thank Jose Gabriel de F. Coutinho and Brahim Betkaoui for letting me use their
HC-1 and helping me out with several problems. Last but not least, I would like to
thank Stephan Wong and Dick de Ridder for being on my graduation committee.

Erik Vermij
Delft, The Netherlands
March 11, 2011

vii

viii

Introduction 1
1.1 Introduction to bioinformatics

Over the last few decades, biologists have made major steps in trying to understand life;
humans, animals or plants. One of the largest projects was the Human Genome Project,
started in October 1990. Some of the goals of this project where to

• identify all the approximately 20,000-25,000 genes in human DNA,

• determine the sequences of the 3 billion chemical base pairs that make up human
DNA,

• store this information in databases.

The project was successfully completed in 2003 [30]. One of the major drives behind
research like this is the medical world. Understanding genetic diseases, autoimmune
diseases and protein related diseases (Creutzfeld-Jacob, cancer) can lead to (better)
medicines and treatment [7, 36].

Nowadays the challenge shifted from the data gathering to the data processing. While
tools exist to extract the DNA of a healthy and a sick person, the tools for analyzing the
significant differences (and find a remedy) are still largely not in place. Here is where
computer science comes in. With the help of algorithms and ever growing computer
power, computer scientists and biologists are now working together to crack problems.
This is a field that is generally referred to as bioinformatics.

For further understanding we take a look at the structure of the human genome. This
can best be explained in layers. A graphical view of the system is given in Figure 1.1.

Chromosomes
Every healthy human being has 23 chromosome pairs. 22 pairs are found in both men
and women, 1 pair is sex dependent. Chromosomes are made out of an enormous stretch
of DNA and are found in every cell [7].

DNA
DNA (or DeoxyriboNucleic Acid) is a very large double helix shaped molecule. On
every backbone you will find a sequence of four types of nucleotides, namely Adenine
(A), Thymine (T), Cytosine (C) and Guanine (G). The two backbones are connected
by the nucleotides via coupling, A with T and C with G, these couples are called base
pairs. This fixed coupling makes it possible to express the DNA with only 1 sequence of
nucleotides. There are over 3 billion base pairs in the human DNA [7].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic view of the human genome from chromosome to protein.

Genes
Genes are continuous subparts of DNA which have a coding function, for example the
color of ones eyes. Genes only occupy 1.5% of the total DNA; the function of the
remaining part is largely unknown or beyond the scope of this thesis. Humans have
somewhere between 20,000 and 25,000 different genes [7].

Proteins
Proteins are created by a complex biological process which is controlled and initialized
by a gene. The resulting protein can consist out of 20 types of amino acids and once
created, folds into a 3D shape. Together with other proteins and molecules it keeps the
cell alive, as well as communicating with its environment [7].

1.2 Genetic sequence alignment

Genetic sequence alignment is the science of aligning 2 or more genetic sequences (DNA,
proteins or others) in such a way, that you can extract the maximum amount of informa-
tion from their similarities or differences. Two possible alignments examples are visible
in Listing 1.1. The sequences are written in two rows and similar items are placed in the
same column. To optimize the alignment, inserts (-) can be introduced or items can stay
mismatched. Inserts are known by the term indel, since they occur due to mutational
inserts or deletions.

1.2. GENETIC SEQUENCE ALIGNMENT 3

A T A T C G G C

A • •
T • •
C • •
G • •

Table 1.1: Dot matrix

Listing 1.1: Genetic sequence alignment

Two sequences o f DNA
S1 : ATATCGGC
S2 : ATCG

Alignment 1
S1 : AtaTCgGc
S2 : A−−TC−G−

Alignment 2
S1 : atATCGgc
S2 : −−ATCG−−

1.2.1 Dot matrix

The dot matrix is a tool that can be used by researchers or algorithms to identify regions
of similarity (alignments) in two sequences. Its main concept (pair wise comparison) is
used in many other algorithms. When building the dot matrix, one of the sequences
defines the rows, the other one the columns. A matrix cell is filled with a dot if the
sequence item of its row matches that of its column. Regions of similarity (possible
alignments) between the two sequences are recognized by a diagonal line of dots. The
dot matrix for the sequences in Listing 1.1 can be seen in Table 1.1, with a region of
interest in the central 4×4 submatrix.

A way to filter out random matches is to use a sliding window. Instead of item to
item comparison, for example 20 items are compared, and only if the amount of hits is
greater than a certain threshold, a dot is drawn in the base of the window. The size of
the windows and the threshold can be different for DNA and protein sequences, driven
by the fact that a random match is much more likely in the former [36].

1.2.2 Creating useful alignments

The goal of genetic sequence alignment is to make an alignment that is as good as
possible. What a ‘good’ alignment is often depends on what the researcher in question
is trying to achieve. We will discuss two important factors that can steer the alignment
in the right direction.

Scoring scheme
An important aspect of creating alignments and evaluating them is the scoring scheme

4 CHAPTER 1. INTRODUCTION

[18]. Such a scheme gives a value to a match s(a, a), a mismatch s(a, b) and a gap
(indel) s(a, -) or s(-, a). Here is s(,) a function which returns a certain score depending
on its two parameters. The summation of all these score values defines the quality of
your alignment, and choosing the score scheme is therefore an important aspect of the
alignment process.

Genetic sequences can be constructed out of four letters for DNA, or 20 letters
for proteins. For DNA, match and mismatch scores can be the same for every letter
combination. This does not hold true for protein sequences. Some amino acids mutations
are more likely to happen than others, so a more complex scoring scheme is needed. The
s(a, a), s(a, b) and s(b, a) values for protein sequences can be found in 20×20 substitution
matrices like PAM and BLOSUM. These are families of matrices, each one of them
designed for a special biological problem. Some scoring schemes introduce dependencies
among the columns. This is mostly seen in creating a gap penalty depending on the
length of the gap using an affine gap penalty function. For example, when entering
a gap subsequence you get a startup penalty and a penalty for every consecutive gap
in the subsequence. This can help making alignment scores more realistic following
the biological phenomenon that opening a gap is harder than extending it [18]. The
alignments from Listing 1.1 are evaluated given a scoring scheme in Listing 1.2.

Listing 1.2: Evaluation of two alignments with a scoring scheme

Scor ing scheme :
s (a , a) = 2
s (a , b) = s (b , a) = −1
Opening gap = −3
Extending gap = −1

Alignment 1 :
S1 : A t a T C g G c
S2 : A − − T C − G −
Score : 2 −3 −1 2 2 −3 2 −3 = −2

Alignment 2 :
S1 : a t A T C G g c
S2 : − − A T C G − −
Score : −3 −1 2 2 2 2 −3 −1 = 0

Local and global alignments
Another important aspect is whether we are going for a local or global alignment. Let
us look at the following two DNA sequences and two possible alignments in Listing 1.3.

1.2. GENETIC SEQUENCE ALIGNMENT 5

Listing 1.3: Local and global alignments

Two sequences o f DNA
S1 : TCCCAGTTTGTGTCAGGGGACACGAG
S2 : CGCCTCGTTTTCAGCAGTTATGTGCAGATC

Alignment 1 :
S1 : −−−−−−−−−−−tccCAGTT−TGTGTCAGgggacacgag
S2 : cgcctcgttttcagCAGTTATGTG−CAGatc−−−−−−−

Alignment 2 :
S1 : tcCCa−GTTTgt−GtCAGggg−acaC−GA−g
S2 : cgCCtcGTTTtcaG−CAGttatgtgCaGAtc

Both alignments are valid, but totally different. Alignment 1 is aligned locally, while
alignment 2 is aligned globally. When aligning two sequences locally, you try to find long
subsequences with the highest possible matching score. This method can indicate similar
parts in long, further unrelated, sequences. In contrast, when aligning two sequences
globally, you try to maximize the number of matches between the two sequences along
their entire lengths. As can be seen in Listing 1.3, global alignments will not give you a
single high scoring region, and are therefore not used that much in practice.

1.2.3 Applications of sequence alignment

Here we would like to give some example applications of genetic sequence alignment.

Homology research, genetic diseases
Homology research focuses on creating evolutionary trees. This research can be done
by aligning large parts of DNA from various life forms, making the similarities and
differences visible. By doing so it can become clear which animals are close or distant
relatives. For example, humans share a lot of their DNA with monkeys and other large
primates, but not with jellyfish [7].

The same can be done on a human-only scale. This can be helpful for detecting the
genes responsible for genetic diseases. Aligning the DNA of a healthy and a sick family
will make the differences (and thereby hopefully the defects) visible [7].

Auto immune diseases
Auto immune diseases (AID) are a class of diseases where the body attacks itself. Nor-
mally, the defense mechanism of the body searches for cells with a protein sequence
fingerprint known to be bad (a virus for example). With an AID, some of the normal
and healthy body cells have a protein subsequence matching the fingerprint of a bad cell.
The result is an attack by the immune system, followed by degrading functionality of
the attacked body part [32].

Some well known AIDs are Multiple Sclerosis and Rheumatoid Arthritis. These, as
well as many other AIDs cannot be treated effectively. Sequence alignment can help
identify the similarities between the protein sequences in body cells of an AID patient,
and known viruses and bacteria. When significant similarities have been found, medicine

6 CHAPTER 1. INTRODUCTION

can be developed that changes the genetic code of the body, rendering the cells immune
again [36].

Protein functions
When created, proteins quickly fold into a 3D shape. This shape, together with the
amino acid composition defines the behavior and function of the protein. The folding
process is extremely complex, and it is therefore as good as impossible to predict the
3D shape of a protein, given its amino acid string. To make an estimation of the final
function based on the amino acid sequence, sequence alignment can be used. Comparing
the sequence to a database of known proteins and their function, and estimation can be
made [7]. This is of course not a fault free method, but it is easy and cheap compared
to most other solutions.

1.3 Problem definition

Sequence alignment as described in Section 1.2 is not a difficult problem in itself. The
challenge lies in the enormous amount of available sequences. Typical database sizes are
in the order of gigabytes, and growing. Searching them by applying alignment algorithms
currently takes a lot of time, thereby limiting the amount of practical work researchers
can do. There have been several attempts to accelerate the alignment of sequences, each
of them choosing its own approach. In this thesis we will discuss a couple of them, and
present another one based on our ideas. Hopefully this work is another brick in the
wall of knowledge, aimed at making sequence alignment fast en easy available for any
researcher.

Genetic sequence alignment
algorithms 2
In this chapter a classification of genetic sequence alignment algorithms is made. Three of
them are explained in detail, focusing on alignment accuracy and parallelization options.
Following their explaination, we discuss serveral selection criteria, to finally choose the
most suitable algorithm for acceleration in the conclusion.

2.1 Classification of algorithms

For the classification we will look at two different properties, whether the algorithm is
based on dynamic programming or heuristics and whether it produces a local of global
alignment. A schematic view including the algorithms to be discussed can be seen in
Figure 2.1.

Dynamic programming and heuristic algorithms
Dynamic programming is a method of solving a big problem by breaking it down into
smaller parts and solving them individually. From all the solved parts, the final solution
can be derived. This results in an optimal solution. As we will see later on, dynamic
programming algorithms often require a lot of computations and can therefore be con-
sidered as ‘slow’. Heuristic algorithms rely on the knowledge of their engineer and user
to produce an as good as possible result. The algorithm is steered by educated guesses
and parameters, and will not always find the optimal solution (but they may). They
do not rely so much on brute force computations as dynamic programming ones and
can therefore be considered as being ‘fast’. The validity of these statements obviously
depends on the problem that is addressed and the implementation used.

Figure 2.1: Classification of algorithms

7

8 CHAPTER 2. GENETIC SEQUENCE ALIGNMENT ALGORITHMS

2.2 Dynamic programming algorithms

In this section we will take a look at two genetic sequence alignment algorithms that are
based on dynamic programming.

2.2.1 Needleman-Wunsch

In 1970 Needleman and Wunsch suggested a general method to search for similarities
in two protein sequences [27], known as the Needleman-Wunsch (N-W) algorithm. The
algorithm always produces the optimal global alignment between two sequences. Since
global alignment algorithms are hardly used, a further analysis of N-W will not be done.
Most of the features of the Smith-Waterman algorithm, discussed in the following section,
have an analog in N-W.

2.2.2 Smith-Waterman

In 1984 Smith and Waterman suggested a variant on the N-W algorithm, known as the
Smith-Waterman (S-W) algorithm [37]. With a small alternation of existing formulas,
the algorithm is changed from finding the optimal global alignment into finding the
optimal local alignment. It fills a matrix which keeps track of the degree of similarity
between the two sequences compared. The definition for S-W with a linear gap model
is given in Equation 2.1. Where H is the similarity matrix, Si,j is the similarity score of
comparing sequence Ai with sequence Bj and d is the gap penalty. The sizes of the two
sequences being compared are n and m. The algorithm can be extended to use an affine
gap model, but this will not be shown here.

Hi,0 = 0, i ≤ n

H0,j = 0, j ≤ m

Hi,j = max

Hi−1,j−1 + Si,j

Hi−1,j − d

Hi,j−1 − d

0

i > 0, j > 0 (2.1)

With Equation 2.1 a similarity matrix can be built. First, it has to be initialized
using the first 2 lines the equation, after that; the matrix can be filled using the recurrent
part of the equation. The latter is referred to as the matrix fill step. In Table 2.1 an
example S-W matrix is given. The optimal local alignment (bold in Table 2.1) can be
found as follows:

• Find the maximum value in the similarity matrix; this is the starting point.

• From the starting point move towards the origin always choosing the cell with
the highest value. The alignment follows the path, creating indels for vertical and
horizontal movement.

2.2. DYNAMIC PROGRAMMING ALGORITHMS 9

- T C C T G T G T C G

- 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 2 0 2 0 0 2

T 0 2 0 0 2 0 2 0 4 2 0

G 0 0 1 0 0 4 2 4 2 3 4

T 0 2 0 0 2 2 6 4 6 4 2

G 0 0 1 0 0 4 4 8 6 5 6

G 0 0 0 0 0 2 3 6 7 5 7

T 0 2 0 0 2 0 4 4 8 6 5

C 0 0 4 2 0 1 2 3 6 10 8

A 0 0 2 3 1 0 0 1 4 8 9

Table 2.1: Smith-Waterman matrix, +2 for a match, -1 for a mismatch and -2 for a gap

• When you encounter a 0, the alignment is finished.

The matrix fill step requires m×n operations, rendering the process quadratic in time
complexity. The matrix itself requires m×n memory space, rendering the process also
quadratic in space.

Alignment accuracy
It is proven that the S-W algorithm finds the optimal local alignment [37]. However,
if you have two alignments which are disconnected by a gap, the S-W algorithm only
returns the best one.

Parallelization and speedup
The S-W algorithm is very suitable for massive parallelization. We will take a look at
some of the possibilities since they are an important aspect for the further evaluation of
the algorithm.

• Fine-grained parallelization. Since the matrix cells only depend on their three left-
upper neighbors, filling the matrix can be parallelized. Every cell which has its
dependency data available can be filled. This is the drive behind many vector pro-
cessing (like [38]) and FPGA (Field Programmable Gate Array) implementations
(like [2]).

• Coarse-grain parallelization. The algorithm is also suitable for coarse-grain par-
allelization. The matrix can be split into smaller parts which can be processed
in parallel; given their three left-upper neighbors are processed. This gives rise to
multithreaded (broad sense) implementations running on clusters of CPUs, FPGAs
or any other hardware platform.

10 CHAPTER 2. GENETIC SEQUENCE ALIGNMENT ALGORITHMS

Figure 2.2: The steps of the FASTA algorithm [12, 32]

2.3 Heuristic algorithms

Despite providing the optimal alignment, algorithms entirely based on dynamic program-
ming are not very popular because of the computational demands. There are numerous
algorithms proposed which ease the dynamic programming step by using some heuristics.
Other algorithms rely entirely on heuristics.

2.3.1 FASTA

In 1987 Pearson and Lipman proposed some new tools for the alignment of genetic
sequences [32]. One of them was FASTA. The algorithm consists out of four steps,
graphically shown in Figure 2.2. The algorithm first uses heuristic methods to make
the alignment problem smaller and then uses a dynamic programming step to find the
optimal solution of that sub problem. Each step is explained below.

1. First a dot matrix like plot is made. A setting called ktup defines how many con-
secutive matches are needed for a hit, like the sliding window technique discussed
in Section 1.2.1. A result can be seen in Figure 2.2 (a).

2. The found diagonals are rescanned with an actual score scheme, like PAM or
BLOSUM for proteins. During this scan, similarity matches smaller than ktup
may contribute to the score. Every diagonal is assigned an ‘initial region’, based
on the maximal score found. Around 10 of the best diagonals are kept and can be
seen in Figure 2.2 (b).

2.3. HEURISTIC ALGORITHMS 11

3. Given the location and score of the initial regions, FASTA calculates which diago-
nals can contribute to an optimal alignment. The rest is discarded. The result can
be seen in Figure 2.2 (c).

4. Smith-Waterman is used to calculate an optimal alignment in a restricted space
around the selected diagonals. The space restriction can be seen in Figure 2.2 (d)
by the dashed lines.

Alignment accuracy
A sensitivity study performed in 1991 [31] showed that FASTA with a ktup = 1, is beaten
by S-W on 8 out of 34 groups of proteins. The sensitivity becomes worse when the ktup
is increased.

Parallelization and speedup
Here we will take a look at the parallelization possibilities of the FASTA algorithm.

• Fine-grained parallelization. The first step of FASTA can be done entirely in paral-
lel. Every cell only depends on the sequences (input data), so no data dependencies
exist. This opens the door for fine-grained parallelization whether through vector
processing or FPGA implementations. No publications have been found consider-
ing this approach. In the second step the rescoring of every diagonal could also
benefit from vector processing.

• Coarse-grain parallelization. For the first step, the matrix can be split into sub
matrices, since there are no data dependencies at all. The second step can be
parallelized per diagonal. This, similar to S-W, gives rise to multithreaded (broad
sense) implementations running on clusters of CPUs, FPGAs or any other hardware
platform.

2.3.2 BLAST

In 1990 Altschul et. al. proposed a new entirely heuristic algorithm for local alignment
of sequences, BLAST (Basic Local Alignment Search Tool) [3]. The algorithm can be
described in three steps, but the modern implementations are far more complex.

1. Create all possible words of length w from the query sequence L. For every word,
find a list of words that, when matched, score above a certain threshold T using a
score scheme like PAM. Dependencies between neighbor words can be introduced.
All the matching words are stored in an efficient tree like structure.

2. The resulting list of words is compared to every sequence in a database. Sequences
with (multiple) word matches are stored, the rest is discarded.

3. The word matches are extended in both directions, to find alignments that score
above a certain threshold S.

12 CHAPTER 2. GENETIC SEQUENCE ALIGNMENT ALGORITHMS

The parameters w, L and S define the behavior of the algorithm. A low value for
w increases the sensitivity, but also increases the runtime and memory requirements. A
large value for S may result in missing local alignments; a small value may result in a
large amount of uninteresting alignments [5].

Alignment accuracy
The nature of BLAST suggests that the algorithm finds a large amount of relative small,
disconnected alignments. A comparison against S-W for large sequences was performed
in [22] with the conclusion that BLAST omits about 37% of the amino acid positions,
against 3% for S-W. In words this means that S-W finds most of the alignments found
by BLAST, but BLAST does not find all the alignments found by S-W. This behavior is
also visible in a comparison between BLAST and a S-W implementation called z-align
[6]. From [22, 6] it is visible that S-W tends to find longer alignments than BLAST, as
suggested above.

The original BLAST implementation from the NCBI (National Center for Biotech-
nology Information) is still under development so improvements can be expected in the
future.

Parallelization and speedup
Not much is written about the parallelization and speedup possibilities of BLAST. Most
accelerated versions focus on speedup through database or query splitting, which is a
form of speedup that can always be done and is of no interest here. Since the algorithm
itself is complex, a lot of non-fundamental improvements can be made. The ongoing
development of the BLAST tool will result in faster versions.

• Fine-grained parallelization. The first step might possibly be accelerated with
vector processing. The remaining steps are too complex to be accelerated with a
fine-grained method.

• Coarse-grain parallelization. The first step can be split into coarse blocks for
parallel processing. The possible word dependencies must be taken into account.
The second step, the match searching process can be done in parallel efficiently.
The third and last step can be done in parallel, but is tricky due to the possibilities
of connecting alignments.

2.4 Algorithm comparison and selection

From the discussed algorithms we will pick the one which fits our requirements and has
the best papers for a fast optimized implementation. First, we take a look at the criteria.

2.4.1 Evaluation criteria

The considered criteria are listed and explained below.

1. Alignment accuracy. The alignment accuracy, or in other words the value of the
result, is of major interest.

2.5. CONCLUSION 13

2. Baseline computational speed. To make a statement about the value of speedup
possibilities it is necessary to know what the inherent performance of each algo-
rithm is.

3. Speedup potential. Since this research is aiming at the speedup of one of the
algorithms, it is important to look at the possibilities for a speedup. One of the
possibilities is coarse-grain parallelization, and enables the algorithm be run in
a divide and conquer fashion. Another important speedup can be achieved due
to fine-grained parallelization like vector processing, or parallel processing on a
FPGA.

4. Memory bottlenecks. Implementation problems considering memory must be taken
into account.

2.4.2 Comparison and selection

The criteria discussed in Section 2.4.1 are evaluated for every algorithm and shown in
Table 2.2.

Whether we can accelerate an algorithm, the single most important aspect of it
is its ability to be cut into smaller pieces which can be solved individually, without
any dependencies. We are undoubtedly moving towards a many-core era so a simple,
regular algorithmic structure, which is easy to parallelize, is key. The shift towards
many-cores goes hand in hand with a move towards vector processing, currently still
implemented as rather simple instructions, but in the future possibly as highly specialized
high throughput units. Smith-Waterman is the only algorithm which can fully benefit
from these paradigm shifts. It is therefore, with an eye on the future, the most promising
algorithm for genetic sequence alignment.

2.5 Conclusion

Smith-Waterman outperforms FASTA and BLAST on scalability, alignment accuracy
and in some cases already in speed. Furthermore it can be implemented easily on a
FPGA for a potential speedup. It is for all these reasons the algorithm of choice for
further research.

14 CHAPTER 2. GENETIC SEQUENCE ALIGNMENT ALGORITHMS

Alignment accuracy

Smith-Waterman - Optimal.
- Reports only the best alignment.

FASTA - Sub-optimal.
- Reports only the best alignment.

BLAST - Sub-optimal.
- Reports all alignments.

Baseline computational speed

Smith-Waterman - Traditionally the slowest of the three.
- Pure software implementations of S-W using vector instructions have
beaten BLAST for large (300+ residues) sequences [38]. Whether this
advantage scales to much longer sequences is an open question.

FASTA - Traditionally slower than BLAST.

BLAST - Traditionally the fastest of the three.

Speedup potential

Smith-Waterman - Massive parallelization possible due simplicity and regularity.
- Vector processing can boost performance considerably [38].
- FPGA implementations are well researched and can be faster than
pure software [2].

FASTA - Massive parallelization for some steps possible.
- Vector processing might boost the performance for some parts of the
algorithm.

BLAST - Massive parallelization possible but complex.
- There are only a small number of FPGA implementations available,
but considerably faster than pure software [19].

Memory bottlenecks

Smith-Waterman - When aligning large (millions of base pairs) sequences, the memory
requirements can become infeasible. Nonetheless, implementations like
Z-Align solve this problem while maintaining the optimal performance
[6].

FASTA - No difficulties.

BLAST - No difficulties.

Table 2.2: Algorithm comparison

Smith-Waterman performance
analyzed 3
In this chapter we will first take a better look at how the S-W algorithm works and
how it can be parallelized. With this in mind we take a look at some of the possible
implementations on different platforms for S-W. For every platform, CPUs, FPGAs and
GPUs (Graphical Processing Units) some of the current cutting edge implementations
will be discussed as well as an estimate of future performance given the development
trends of the platform. In the conclusion we will choose a platform that is most promising
for a high speed optimized implementation.

3.1 Smith-Waterman performance

In this section we take a better look on how the S-W algorithm behaves with respect to
performance, or computational speed. As explained in Section 2.2.2 the S-W algorithm
consists out of three steps. First the top row and most left column of the similarity
matrix (‘the matrix’) are set to zero. Second, the matrix is filled with the recurrent
equations shown in Equation 2.1, followed by the last step, the trace back. The filling
of the matrix is by far the most intensive task, so accelerating S-W is mainly done by
speeding up this step.

3.1.1 Data depedencies in the S-W algorithm

If we look at the definition of S-W in Equation 2.1, we can see that every matrix cell
depends on its three upper-left neighbors. So every matrix cell has three data dependen-
cies which have to be resolved before its value can be calculated. This means we cannot
fill the matrix in a random fashion, but have to iterate through the cells so that we never
get blocked by an unresolved data dependency. In Figure 3.1 this is made visible for
a small matrix. For the left-most matrix, the top row and left-most column have been
initialized to zero, and all available data dependencies are visualized with an arrow. The
only cell that has all three dependencies fulfilled the shaded one. So this iteration we
can only calculate the value of that matrix cell. In the center matrix we are one iteration
further, and there are now two cells ready (shaded) to be calculated, and three cells in
the right-most matrix.

3.1.2 Filling the S-W matrix

If we want to fill the entire matrix, there are several ways to go.

Sequential
As can be seen in Figure 3.1 it is possible to fill the matrix column or row wise. When

15

16 CHAPTER 3. SMITH-WATERMAN PERFORMANCE ANALYZED

Figure 3.1: Data dependencies in the S-W algorithm

cell (1, 1) is calculated, we can fill (1, 2) and cell (1, 3) after that etc. This way we would,
for two sequences of length m and n, need m×n iterations, which can grow rapidly when
the sequences become larger. In Figure 3.2 it is visible in the most left matrix, that we
need 16 iterations to fill a simple 4×4 matrix using this method. We can reduce the
number of iterations needed if we take advantage of the independence between much of
the cells.

Full parallel
In Figure 3.1 it can be seen that the data dependencies allow us to calculate the values
of all the cells on every anti-diagonal at the same time. How this works out can be seen
in the center matrix in Figure 3.2. Instead of 16, we only need seven iterations, which
is (m + n - 1). This is the fastest way to fill a S-W matrix, but requires a maximum of
min(n,m) calculations to be done simultaneously, which can sometimes not be possible
due to hardware limitations.

Semi parallel
A compromise between sequential and full parallel is the semi parallel method. Here we
do not utilize all the available parallelism. An example of this can be seen in the right-
most matrix in Figure 3.2. Here we calculated the values of at most two cells in parallel,
thereby reducing the amount of hardware we need. This results in a slight increase in
required iterations as opposed to the full parallel method, but it is still a lot better than
the sequential one.

3.1.3 Terminology

Since the speed by which the S-W matrix is filled plays a major role in this thesis, we
will introduce the term GCUPS, or Giga Cell Updates Per Second. This is a widely
used performance metric for the Smith-Waterman algorithm and indicates how fast the
matrix can be filled. An implementation delivering 10 GCUPS can calculate 10 billion
matrix values per second.

Another term that will be used is CUs, or Cell Updates. This can be used to indicate
the amount of workload done, or to be done for example.

3.2. CPU IMPLEMENTATIONS 17

Figure 3.2: Iterations needed to fill the S-W matrix. From left to right: sequential,
full parallel, semi parallel. The anti-diagonal lines show which cells can be calculated
simultaneously

3.2 CPU implementations

In this section we will look at CPU technology and some known implementations of the
S-W algorithm. Furthermore an estimation will be made of the performance of future
systems.

3.2.1 SIMD technology

Single Instruction Multiple Data, or SIMD technology is a technique for doing the same
task on different pieces of data. SIMD is currently implemented in modern CPUs under
the name SSE (Streaming SIMD Extension) and features 128 bit wide registers. These
registers can be split up in 16 8-bit words, or eight 16-bit words etc. [38] A single
instruction can operate on all these words at the same time, resulting in a maximum of
16 operations per clock cycle. This technique can be used to accelerate S-W.

3.2.2 Modern implementations

The first CPU implementations used a sequential way of calculating all the matrix values.
These implementations were slow and therefore hardly used. In 2006, Farrar introduced a
SSE implementation for S-W [11]. His work used SSE2 instructions for an Intel processor
and was up to six times faster than existing S-W implementations. Two years later, in
2008, Szalkowski et. al. proposed a minor adjustment to Farrars code [38]. Their work
is known by the name SWPS3. A SWPS3 version optimized for multithreading was
released in 2010 [1]. The SSE implementations can be viewed as being semi parallel.
They, discarding startup and finish time, constantly calculate 16, eight or less values
at the same time. We will take a look at the performance achieved with these various
implementations on various CPU platforms in Table 3.1.

3.2.3 Performance estimations for top-end and future CPUs

With the data from Table 3.1, we can make an estimate of the performance on the current
top-end CPUs and take a look into the future. An overview is created in Table 3.2, with
estimated peak performances based on the SIMD register width, the number of cores,

18 CHAPTER 3. SMITH-WATERMAN PERFORMANCE ANALYZED

Farrar (2006) SWPS3 (2008) SWPS3 (2010)

Peak performance 2.998 GCUPS 15.7 GCUPS 35 GCUPS

Benchmark hard-
ware

2.0Ghz, Xeon Core 2
Duo, one thread

2.4Ghz, Core 2 Quad
Q6600, four threads

2.5Ghz, 2x Xeon Core
Quad E5420, eight
threads

Estimated peak per-
formance / thread @
2.5 Ghz

3.75 GCUPS 4.08 GCUPS 4.38 GCUPS

Table 3.1: Performance for different S-W implementations

Released SIMD register
width

Cores
(threads)

Clock speed Estimated peak
performance

Xeon Beckton 2010 128 8 (16) 2.26 GHz 32 GCUPS

Opteron
Magny-Cours

2010 128 12 (12) 2.3 GHz 48 GCUPS

Opteron Inter-
lagos

2011 128 16 (16) 2.3 GHz (est.) 64 GCUPS

Table 3.2: Estimated peak performance for current top-end and future CPUs

the clock speed and the known speed per core from Table 3.1 [4, 17]. Hereby we assumed
linear scaling in the number of cores (suggested by Table 3.1), and the given performances
may therefore not be reliable. Non-ideal inter-core communication, memory bandwidth
limitations and shared caches could lead to a lower peak performance. Furthermore, no
distinction in performance is made between Intel and AMD processors. Hence, Table 3.2
must be used as an indication where the S-W performance could go on modern and
future CPUs.

3.2.4 Performance estimations for a multiple CPU system

With the current product line, up to four Opteron CPUs can be linked together via a
Hyper Transport 3.0 bus [4]. We take a look at the estimated peak performance of such
a system in Table 3.3, assuming no scalability loss due to communication. The fastest
system shown can do 256 billion cell updates per second, which is already a lot, especially
when you realize multicore processors are around for only roughly six years.

1 CPU 4 CPU

Opteron Magny-Cours 48 GCUPS 192 GCUPS

Opteron Interlagos 64 GCUPS 256 GCUPS

Table 3.3: Estimated peak performance for a 4 CPU system

3.3. FPGA IMPLEMENTATIONS 19

3.2.5 Summary

Throughout this section we talked about peak performance. Real, average performance
could be as much as 25-50% lower [38]. We mainly discussed AMD processors; a study
for Intel products will probably give you roughly the same numbers. What we can learn
is that the current state of the art CPUs can already bring a lot of performance and that
this can grow rapidly through upcoming products. CPUs are very flexible, scalable and
a well known technology.

3.3 FPGA implementations

In this section we will take a look at FPGA implementations of the S-W algorithm.
FPGAs are pieces of hardware which you can program. An algorithm can be designed
using a hardware description language or tool, and mapped onto the flexible FPGA
layout. The flexibility, difficulty of design as well as the performance of FPGA imple-
mentations fall typically somewhere between pure software running on a CPU and an
ASIC (Application Specific Integrated Circuit).

FPGAs can be used to accelerate S-W. Implementations can rely on the ability to
create building blocks (processing elements or PEs) that can update one matrix cell
every clock cycle. Furthermore many of these building blocks can be linked together in
a linear systolic array to create massive fine-grained parallelism. We will discuss these
concepts before moving further.

3.3.1 The processing element

The PE is the workhorse of every FPGA S-W implementation. A example of how a S-W
PE looks like can be seen in Figure 3.3. It typically consists out of three adders, three
comparators and a score lookup, all needed for the calculation of a new matrix cell value.
Most of the implementations also have a separate path that keeps track of the matrix
maximum. Since these elements are the heart of the system, they need to be as fast and
as small as possible. Fast PEs give rise to a full implementation that can run on high
frequencies while small PEs let you use more of them.

3.3.2 The linear systolic array

The PEs are put together in a linear systolic array (LSA). Such an array works like the
SSE unit in a modern CPU. But instead of having a fixed length of lets say 16, the
FPGA based array can have any length. A example of the working of a LSA can be seen
in Figure 3.4. Here we can see a 4×8 matrix being filled by a LSA of length 4. In the
first clock cycle the first PE calculates the value of the upper-left matrix cell and passes
it to the second PE. In the second clock cycle, the first PE calculates the value of the
cell at (1,2), while the second PE calculates cell (2,1). In general, every PE handles one
column, and its right neighbor PE lags one row behind to fulfill the data dependencies
as discussed in Section 3.1.1.

In the example from Figure 3.4 the LSA can process a matrix with any number of
rows. But, if the matrix would have had any other amount of columns, our LSA would

20 CHAPTER 3. SMITH-WATERMAN PERFORMANCE ANALYZED

Figure 3.3: A view of a S-W processing element

Figure 3.4: A view of a S-W linear systolic array processing an 4×6 matrix. The anti-
diagonal lines show which cells can be calculated simultaneously

fail. Since the length of the used sequences can be considered random, the amount of
columns in the matrix is random as well. Instead of making an implementation for every
possible sequence length, you can clip the sequences to the length of your LSA, or pad
the sequence with zeros till it fits the length of the LSA. When your sequence is at least
twice the width of the LSA, you can shift your LSA to the right when you have reached
the last row to process the next columns. This is also done in every SSE based software
implementation, but doing it in hardware is far more complex. An example can be seen
in Figure 3.5.

3.3. FPGA IMPLEMENTATIONS 21

Figure 3.5: A S-W linear systolic array using shifting to process an 8×6 array. The
anti-diagonal lines show which cells can be calculated simultaneously

3.3.3 Recursive variable expansion

The Recursive Variable Expansion (RVE) technique, introduced by Nawaz in [25], is
a well discussed method to accelerate the S-W algorithm. The technique removes all
data dependencies from an algorithm, so that it can be parallelized in ways previously
impossible. This can best be explained with a figure. In Figure 3.6 we can again see three
S-W matrices. From Section 3.1.1 we know we can, in the first iteration, only calculate
the value of the shaded cell in the most left matrix. RVE makes it possible to calculate
the value of every possible cell in the first iteration by removing the intermediate steps.
This can be seen in the center and right-most matrix of Figure 3.6. Instead of having only
three data dependencies with its upper-left neighbors, we now can have any amount of
data dependencies, all back to the top row and left-most column of the matrix. It is clear
we cannot use the S-W definition from Equation 2.1 anymore. To calculate the value of
cell (2,2) (shaded in the right-most matrix in Figure 3.6) directly, we need to do a lot of
extra work. This can be seen in Equation 3.1, using the same notation as in Equation 2.1.
Instead of finding the maximum out of 4 equations, we now need to compare 8 equations,
which are in themselves also more complex than in the reference case. The existing S-W
implementations that use RVE are driven by PEs that can calculate the values of a 2×2
or 3×3 cell block every clock cycle. This results in a speedup of roughly a factor two
and three respectively. The drawback of this technique is that the PEs become larger
and the frequency on which they can run drops [15].

22 CHAPTER 3. SMITH-WATERMAN PERFORMANCE ANALYZED

Figure 3.6: The data dependencies in a S-W matrix using RVE

Hi,j = max

Hi,j−2 − 2×d,

Hi−1,j−2 − d + Si,j−1,

Hi−1,j−2 − d + Si,j ,

Hi−2,j−2 + Si,j + Si−1,j−1,

Hi−2,j−1 − d + Si,j ,

Hi−2,j−1 − d + Si−1,j ,

Hi−2,j − 2×d,

0.

(3.1)

3.3.4 Modern implementations

In Section 3.2.2 we discussed some existing S-W implementations running on a CPU.
A comparable analysis for FPGAs is a bit harder. There are very few real, complete
implementations that give results that are usable. Most research implementations only
discuss synthetic tests, giving very optimistic numbers for an implementation that could
never be used in practice. Furthermore, there is a great variety in the type of FPGA used.
Since all FPGA series have a different way of implementing circuitry, it is hard to make
a fair comparison. To make things even worse, the performance of the implementations
relies heavily on the data widths used. Smaller data widths lead to smaller PEs, which
lead to faster implementations. Researchers have the tendency not to mention these
numbers.

Nonetheless, a couple of implementations are mentioned in Table 3.4. The first two
implementations make the points made above clear, using the same FPGA device, these
two implementations differ a factor 23 in performance. The most reliable numbers are
from Convey and SciEngines, and since Xilinx already released the Virtex 6 FPGA, these
are also the ones that can be considered as being up-to-date. These implementations are
also ‘real; they work in practice and are build for maximal performance.

3.4. GPU IMPLEMENTATIONS 23

FPGA Freq. #PEs Perf. /FPGA Perf. /system

[33] Virtex2
XC2V6000

180 MHz 7000 1260 GCUPS

[13] Virtex2
XC2V6000

112 MHz 482 54 GCUPS

[24] Virtex2
XC2VP30

79 MHz 20 6.3 GCUPS

[24] Virtex2
XC2VP30

73 MHz 12 7.8 GCUPS

[14] Virtex2
XC2VP30

10 MHz 100 4 GCUPS

[2] Stratix2
EP2S180

66.7 MHz 384 25.6 GCUPS

Cray XD1 [9] Virtex4 200 MHz 120 24.1 GCUPS

Convey HC1 [8] Virtex5
LX330

150 MHz 1152 172.8 GCUPS 691.2 GCUPS

SciEngines
RIVYERA [35]

Spartan6
LX150

? ? 47 GCUPS 6046.0 GCUPS

Table 3.4: Performance of several FPGA implementations

3.3.5 Future FPGA implementations

The performance of S-W implementations on a FPGA can foremost be increased by
using larger and faster FPGAs. Larger FPGAs can contain more PEs and therefore
deliver more GCUPS. The largest Virtex 6 device has roughly 2.5 times more area than
the largest Virtex 5 [41], so the peak performance of the former can be estimated at
2.5×172.8 = 432 GCUPS (using the Convey implementation). If some new technology
(smaller gates for example) makes it possible to run at 200 MHz instead of 150 MHz, that
would also give you a 33% increase in performance, bringing the total to 576 GCUPS.
This is a major step forward, just by using a new device.

3.3.6 Summary

We can learn some interesting things from the numbers in Table 3.4. First, modern
FPGAs can deliver a lot of performance. Second, it is really hard to make an estimation
of the performance for a random FPGA given some results on other FPGAs. For a fair
comparison every publication should offer the same functionality, and use a platform
from the same product line.

3.4 GPU implementations

GPUs have in the last couple of years developed themselves from a fixed function graphics
processing unit into a flexible platform that can be used for high performance computing.
There are classes of algorithms that can run very efficient on these architectures, and

24 CHAPTER 3. SMITH-WATERMAN PERFORMANCE ANALYZED

some classes cannot. A very suitable task is the hashing of passwords; a very unsuitable
task is unfortunately S-W. Even when looking at recent publications [20], GPUs do not
present a major performance gain over CPUs. New GPUs will of course become faster,
but so will CPUs. We therefore decided to do no extensive study on S-W performance
on GPUs comparable to the ones presented in the previous sections.

3.5 Conclusion

From the summaries in Section 3.2.5 and Section 3.3.6 we can conclude that FPGAs are
an interesting choice to accelerate S-W. Currently neither has a huge performance ad-
vantage over the other. But, software implementations can be considered to be optimal:
years are spend optimizing them. When using FPGAs it might still be possible to make
a significant contribution to the subject. Therefore we choose to go with FPGAs.

System implementation for
accelerated S-W 4
In this chapter we will talk about our implementation of the S-W algorithm on a hybrid
supercomputer. First, we will look at the way the S-W algorithm is used in practice in
Section 4.1. Second, we will discuss the platform itself in Section 4.2. Items like the
memory system and function dispatch will be explained. This followed by the system
design in Section 4.3, the hardware design in Section 4.4 and the software design in
Section 4.5.

4.1 Smith-Waterman in practice

Here we will take a look at how the discussed Smith-Waterman algorithm is used in
practice. These details are necessary for making a good system implementation.

4.1.1 General usage

The S-W algorithm finds the optimal local alignment between two sequences. This
alignment is what researches are interested in, but getting there requires some more
steps. When a researcher has a piece of genetic sequence, DNA, protein or something
else, it is usually aligned against a database of known sequences. This can for example
be the SwissProt protein database, which contains hundreds of thousands of protein
sequences from humans and animals [10]. The result is a top list of sequences that have
the most resemblance with the query sequence. When necessary, it is possible to show
the alignments of your query with those top sequences.

4.1.2 Evaluating results

To create a top list of alignments we have to use some kind of scoring model. The most
important parameter is the maximal value found in the S-W similarity matrix. This
maximum value gives us some idea about the similarity of the two sequences, but must
be corrected for the sequence length. Longer sequences can reach a high matrix value
due to a large amount of random hits, where small sequences cannot. The equation
used to compute an alignment score can be seen in Equation 4.1 [26]. Here K and S
are parameters that can be chosen by the user, and are meant to scale the score to
useful proportions. The score can be interpreted as the probability that such a maximal
value would be reached at random, so, the smaller the score, the better the alignment.
There are all kinds of variations on this equation, all with a specific biological alignment
problem in mind. This one is the most trivial, and used throughout our work.

Score = K× sequence A length × sequence B length × e−S∗max (4.1)

25

26 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

Figure 4.1: Overview of the HC-1 hybrid computer architecture

4.2 The hardware platform

In this section we will give a short introduction into the Convey HC-1 hybrid supercom-
puter. Several items like the memory organization and the instruction handling will be
discussed.

4.2.1 System architecture

The HC-1 is a hybrid computer that consists out of an Intel Xeon processor on a com-
modity two socket motherboard. The other socket holds a FPGA based coprocessor.
The coprocessor has its own high bandwidth memory system that is incorporated into
the Intel coherent global memory space. This tight coupling makes it possible to see the
coprocessor as extension to the Intel instruction set. An executable can contain both
host and coprocessor instructions, and those instructions exist in the same virtual and
physical address space.

An overview of the system can be seen in Figure 4.1

4.2.2 The coprocessor

The coprocessor consists out of three major building blocks. We have the Application
Engine Hub (AEH), the Application Engines (AEs) and the Memory Controllers (MCs).
An overview can be seen in Figure 4.2

Application engine hub
The AEH has a number of tasks. First it handles the communication between the host-
and coprocessor. Second, it runs functions received from the host processor. These func-
tions can consist out of for example memory operations, simple arithmetic operations,
branches and the so-called custom instructions. The ‘normal’ scalar instructions are fed
to the scalar processor to be processed, which is the third task of the AEH. The custom

4.2. THE HARDWARE PLATFORM 27

Figure 4.2: Overview of the HC-1 coprocessor

instructions are instructions defined by the user that describe a (possibly complex) op-
eration implemented on the AEs, and are sent to those to be processed. These custom
instructions are handled like any other, and it is here where the HC-1 really shows its hy-
brid nature. The AEH is furthermore connected to all eight MCs for memory operations.
We will take a better look at how the dispatch of functions works in Section 4.2.4.

Application engine
The AEs are four Xilinx Virtex 5 LX330 FPGAs. They are used to implement user
defined instructions. A small portion of the FPGAs are used for a Convey provided
framework, to provide for example communication interfaces. The rest of the area is
available for the user to implement their custom instruction. An implementation on
the AEs is called a personality. So has Convey a personality to accelerate floating point
operations, and a personality for complex financial operations. An implementation made
by a user is also called a personality, or a Custom AE (CAE). Every FPGA is connected
to eight memory controllers.

Memory controller
The coprocessor has eight memory controllers, each connected to two DIMM banks,
resulting in 16 DDR2 memory channels. The memory systems provides a maximal
bandwidth of 80GB/second. We will take a better look at the memory system of the
HC-1 in Section 4.2.3.

4.2.3 Memory system

In this section we will discuss the memory model of the HC-1 computer in depth.

28 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

Figure 4.3: Composition of a virtual memory address

The memory model
Both the host- and coprocessor reside in the same virtual memory space. However,
the memory is physically split in two, one part for the host-, and a second part for
the coprocessor. Accessing data in the other physical part, introduces a large latency.
Therefore it is necessary for the user to have its data in the right place, otherwise any
computational performance advantage will likely be lost.

The MC - AE interface
Every AE has eight MC interfaces, connecting the user designed hardware with the
MCs outside the AE. The links between the MCs and the interfaces on the AEs run
at 300 MHz. Because running at this frequency is not possible for a lot of hardware
designs, the 300Mhz link is split into two 150Mhz links, which are called the even and
odd ports. So in the AE you basically have 16 MC interfaces available. Every interface
has a request and a response port and it is possible to do a request and receive data every
clock cycle, using memory blocks of one, two, four or eight bytes wide. This results in
a maximal bandwidth of 2× 150M×8 bytes= 2.4GB/second for every AE-MC interface.
We have four AEs with each eight MC interfaces, so the total system bandwidth is
4× 8× 2.4 = 76.8GB/second.

Virtual address composition
Every MC is connected to two out of the 16 DIMM banks, so not every physical memory
location is reachable from every MC. The hardware design running on the AEs must
therefore be careful which memory request to send to which MC. The system supports
two interleave modes, 31/31, and binary interleave, but we will only discuss (and use) the
latter. When using binary interleave, the virtual address is composed in a way visible in
Figure 4.3. In this Figure D is the targeted DIMM, and MC is the memory controller.
In practice, the hardware design should check bit 8:6 of the virtual address and send
the request to the appropriate MC. To be able to run at (near) peak bandwidth, all
the requests must be equally distributed over the MCs, but also over the banks and
sub busses. Luckily, if we want to read a large array from memory in a linear fashion,
using blocks of eight bytes, we automatically have to route our requests to the next MC
every eight requests. A same analysis holds for the banks and sub busses. Therefore,
when using the system in practice, we do not have to be really worried about equal load
distribution.

4.3. SYSTEM DESIGN 29

4.2.4 Function dispatch

In this section we will discuss the function dispatch of the HC-1 computer in depth.
Instructions that have to end up in the AEs go through the steps described below. A
detailed case study can be seen in Section 4.5.3;

In the C/C++ code
The host program is typically written in C/C++ or in Fortran. If we want to make
use of a custom instruction, we have to dispatch a function to the coprocessor. How
this is done can be seen in Listing 4.1. In this example fpga call is our function that
should run on the coprocessor. By using the copcall nowait fmt function (provided by
Convey), we dispatch our function to the coprocessor. The other parameters are sig to
indicate which personality we want to use, fpga instr handle to keep track of our call
and the last four, which are some user variables associated with the call.

On the coprocessor
Our fpga call function runs on the coprocessor, and consists out of instructions defined
by Conveys scalar instruction set. An example can be seen in Listing 4.2. The three
move instructions move the var1, var2 and var3 parameters from their aX coprocessor
registers to the aeg registers on the AE. Finally, the caep00 call calls the AE to execute
custom instruction 00.

On the AE
The AE receives the caep00 instruction to be executed. When the AE is finished, it can
return data to the coprocessor routine, or write a flag to memory for example.

Listing 4.1: Coprocessor call from C/C++ code

extern void f p g a c a l l () ;

cny hand l e t f p g a i n s t r h and l e ;
c opca l l nowa i t fmt (s ig , f p g a c a l l , &fpga i n s t r hand l e , ”AAA” , var1 ,

var2 , var3) ;

Listing 4.2: Assembly code running on the coprocessor

mov %a8 , $1 , %aeg
mov %a9 , $2 , %aeg
mov %a10 , $3 , %aeg

caep00
rtn

4.3 System design

In the current and following sections we will discuss the design of our S-W implementa-
tion. For our design we use the previously discussed HC-1 hybrid supercomputer, so we
need a hardware design to run on the coprocessor, and a software program controlling the
coprocessor and managing IO. First we will focus on some of the global design aspects.

30 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

4.3.1 Features

Here we will list some of the features that define our implementation. These are the
features that set our design apart from other S-W implementations, and to which we
will refer to later in the results section.

• The implementation should be as flexible and efficient as possible.

• The implementation should make use of the platform in a most efficient way by
creating a synergetic combination between CPU and FPGA.

• The implementation should make use of the available FPGA area in a most efficient
way.

4.3.2 Design decisions

Following the design features, we also made some major decisions before work started,
but also during the work. Most of them are listed below. A couple decisions make our
problem easier to handle. Given the small timeframe in which the implementation should
be made, this was often necessary. Other decisions however make our work flexible and
widely usable.

DNA alphabet and linear gaps
The S-W algorithm can be applied to all kinds of sequences, DNA, proteins etc. Since
the use of proteins would require a more advanced design (Section 1.2.2) we decided to
support only DNA. As discussed in Section 2.2.2 it is also possible to rewrite the S-W
algorithm for affine gap penalties. Because this, also, leads to a more complex design,
we restricted ourselves to linear gap penalties.

Instructions
Most (academic) S-W implementations [15, 24] name the two sequences involved
query sequence and database sequence, following the general use of the algorithm, where
you align a single sequence against a database. The query sequence is traditionally put
on the top of the similarity matrix, and the database sequence on the side. One step
further in this analysis can be to design your system with the assumption that the query
sequence is fixed for a long period of time. This can reduce the complexity of your design
significantly, but also reduces the flexibility. To make our system as flexible as possible,
we did not use the query/database terms, but based the workload on instructions. An
instruction is a packet consisting out of two sequences, sequence A and sequence B,
which should be aligned. Sequence A is defined to be on the top of the matrix. Every
instruction can contain two new sequences, so no simplification of the problem is made.
All the information in an instruction can be seen below:

• SequenceA, sequenceB: the memory addresses of the sequences. These base pairs
are stored in the host processor part of the memory.

• SequenceA compressed, sequenceB compressed: the memory address of the com-
pressed sequences. These compressed base pairs are held in coprocessor memory.

4.3. SYSTEM DESIGN 31

• DataB: the memory address of an array to store a part of the similarity matrix,
held in coprocessor memory.

• Done, max, last column max: the memory addresses of the three results, held in
host processor memory.

Optimal instruction processing
Instructions containing one of two small sequences are send to the CPU to be processed.
The instructions containing large sequences are sent to the coprocessor. Since our LSA
has a fixed length, we have to either clip sequence A to a multiple of the LSA length, or
pad it with null characters to obtain the right length (Section 3.3.2). Because sequence
padding results in useless computations, we decided to go with clipping. The resulting
partly filled matrix can be finished by the CPU. A schematic view of the system can be
seen in Figure 4.4. The design constantly keeps track of the best alignments. Since the
number of alignments is typically much larger than the number of items in the result
queue, the probability of an alignment to end up in that queue is small. This fact is
used to minimize the necessarily to finish the partly, by the AE, filled matrix by the
CPU. The coprocessor reports not only the maximum value of the alignment, but also
the maximum value of the last processed column. We know how much of the matrix is
left uncalculated, so we can easily calculate the maximum score that could possibly have
been reached by this alignment. If the alignment, even with this maximal possible score,
does not end up in top list, we do not have to finish the alignment by the CPU.

Multiple linear systolic arrays
The FPGAs used in the coprocessor are large enough to contain several hundred PEs.
Since one very large LSA would only allow aligning long sequences, we decided to split
the available area into pieces and create multiple LSAs. This way we can align multiple
small or large sequences at once, and this also reduces the amount of idle PEs at startup
and finish time. An complete analysis of this is done by Hasan [16] and his work shows
that using multiple smaller LSAs pays off in execution time and hardware utilization.
We decided to go with LSAs of length 64, what would give us the possibility to use
around eight of them.

Main memory as temporally storage
Modern FPGAs have large amounts of BRAM available. The FPGAs used in the HC-1
contain almost 12 megabyte of memory that is accessible in a single clock cycle [41]. It
is a very attractive to use this memory for the storage of your sequences and matrix
data. But as all good things, it has some drawbacks. So is it nearly impossible to use
a large part of this memory as one, at high speeds: the placement and routing needed
for a real implementation will become too complex. Another negative point is that,
when subtracting the amount of RAM needed for example for the MCs, and dividing
the remaining part among several LSAs, we end up with not that much memory at all.
Since we want to be able to align very long sequences, we decided to not make use of
the BRAM as sequence or data storage, and fetch/store everything from/in the main
memory.

32 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

Figure 4.4: System level view of our S-W implementation

Data compression
All the instructions are kept in memory, so if we want to store many of them at the
same time, they need to be as small as possible. Furthermore, the coprocessor needs
to request all its data from memory, restricted by its bandwidth. To keep the memory
footprint as low as possible, we compress the sequence and matrix data to a minimum.

The sequence data consist out of the four different DNA bases. This gives us the
ability to express a base in two bits. The largest memory read data width supported
by the HC-1 is 64 bits, so we are able to store 32 bases in one variable, and read those
from memory in one call. The naive method would be using eight bit chars or even 32
bit integers to store the sequences, so we achieved a compression ratio of four up to 16.

The matrix data used to process the instruction can be compressed as well. Here we
use the fact that the value in every matrix cell can only differ a maximum value from its
top neighbor, defined by the score model. If we use four bits to represent our scores, we
can represent the difference between two adjacent matrix cells in five bits. This can be
shown with a small example on sketch paper, and will not be done here. This behavior
is used to compress the matrix data differentially. Instead of storing the (for example)
full 16 bits of matrix data, we only store the five bit difference between a cell and its
top neighbor. In this case this results in a compression ratio of more than three, and the
ability to fetch 12 matrix values in one memory call.

4.4 Hardware design

In this section we will cover the hardware design of our accelerated S-W implementation.
Several of the major building blocks are discussed. In Figure 4.5 we can see the global
hardware layout, with the instruction dispatch, multiple functional units (FUs) which
keep and manage the LSAs and a memory crossbar. Instructions enter the design via
the instruction dispatch and are put in a queue. If a FU is idle, it receives an instruction
from this queue and starts processing. The FU computes, reads and writes data from
memory, and eventually writes the results to memory, to go idle again.

4.4. HARDWARE DESIGN 33

Figure 4.5: Our hardware design. This design is hold by a single AE.

4.4.1 The processing element and the linear systolic array

In order to use the optimal PE in our design, we did an extensive study. This is covered
separately, in Chapter 5. To use the PE in practice, we had to choose a data width
for the matrix values and the scores. Larger widths would allow the alignment of larger
sequences with higher/lower scores, but would also reduce the maximum frequency and
increase the area per PE. We found a tradeoff in 12 bits for the matrix values, and four
bits for the scores. To have an effective data width of 12 bits, the PE internally must
use 13 bits, since we need a sign bit for negative values.

The linear systolic array
The concept of the LSA is discussed in Section 3.3.2. In our implementation the LSA
behaves a bit differently, because we use pipelined RVE PEs. It takes two clock cycles
before the values of the two matrix cells are computed, which means the second PE
can only start after the second clock cycle, instead of after the first as in the reference
design. Together with the RVE size ratio, this results in a one to four ratio in ‘matrix fill
speed’ for the x and y direction. When fully operational, the LSA covers a sub matrix
of 64×256 cells.

To make use of the LSA in practice, we need some extra control signals. They are
listed below:

• A signal to indicate that the input data is valid.

• A signal to reset the stored maximum value when we start a new alignment.

• A signal to reset the stored matrix values every time we start a new 64 column
wide sub matrix (macro column).

These signals make the PE a bit larger, and also a bit slower.

34 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

4.4.2 The functional unit

This is the most complex part of the hardware design. In its core it has a LSA of
optimized PEs, surrounded by queues and logic to manage the instruction processing.
First we will discuss the functionality of the FU, followed by its design.

Functionality
The FU is designed to deliver a sustained peak performance, or in other words, process
multiple instructions in line having all the PEs busy at all time. The issued instructions
can contain sequences of any length, so the FU must implements the ‘array shifting’
technique as shown in Figure 3.5. How the FU processes a single instruction can be seen
in Figure 4.6. The Figure shows a matrix with sequence A, sequence B and data B.
Here data B is the linear block of memory provided by the instruction for temporary
storage in the main memory. It can be seen as a column of the similarity matrix. At
startup time, it is filled with zeros, by definition. The LSA is shown in two instances;
in the first it is processing the first column of 64 bases wide, in the second instance the
second macro column. In both cases the first PE of the LSA fetches a sequence B and
a data B item, and all PEs fetch sequence A data. The last PE of the array writes its
output data back to the data B memory. When the LSA starts a new macro column,
it automatically reads the right data B data. Using this method, the LSA can process
multiple macro columns without any drawbacks. The memory requirements are constant
and the complexity is totally hidden from the LSA.

The switching between instructions is also hidden from the LSA. A management
block detects when it has read the last data from the current instruction, and asks for a
new one. The data from the new instruction is pushed directly behind the old data in
several queues. Internal counters keep track of when the first instruction is finished and
the second started, so that the results get written to memory at the right moment. This
way the FU can process multiple instructions seamlessly.

Design
Figure 4.7 shows the design of the FU. The working is explained below.

• The LSA picks its data from three different queues. These queues need to hold
as much data as the LSA needs in the worst case memory access time. In the
HC-1 this can be up to 1000 cycles, so we need 128×64bit data B memory and
64×64bit sequence B memory. The data B data, before entering the LSA, needs
to be differential decompressed. The data B data leaving the LSA, is stored in
the data B output queue (8×64bit) per two items. If we would store them item
wise, and pack them together just before sending the data to the store queue, we
would create an unstable situation. When needing cycles to send the results, the
data B output queue would slowly grow and overflow after a couple of instructions.

• The read request manager is responsible for enough data in the sequence A,
sequence B and data B queues. It creates read requests, puts those in the
read request queue (8×56bit), and keeps track of the amount of requests in-flight.
The request type is stored in another queue (256×2bit), so we can identify the

4.4. HARDWARE DESIGN 35

Figure 4.6: The FU processing two large sequences

responses later on. When the last piece of data for an instruction is requested, fur-
ther requests are stalled and the FU manager is signaled. If the read request queue
is gets full, due to memory crossbar congestion, requests are stalled.

• In the center of the FU we find the FU manager. This block keeps track of the
position of the LSA in the matrix and sets some signals appropriately. For example,
when the LSA enters a new macro column, we need to reset the latched matrix
values in every PE, to make a fresh start. When the last matrix cell has been
processed, it signals the store manager that the results are valid. The manager
also manages the receiving of instructions.

• The store manager picks data from the data B output queue, compresses it and
puts it in the store request queue (8×112bit). As with the read requests, store
requests are stalled when the queue tends to overflow. When the results are valid,
the store manager switches from sending data B data, to sending the results to
the store request queue.

• Memory responses entering the FU are reordered in a reorder queue (256×64bit).

The queue and reorder queue modules are given by Convey.

4.4.3 The memory crossbar

Since we cannot just send every memory request to every MC (as discussed in Sec-
tion 4.2.3), we must use a memory crossbar. Using this, the LSA can keep an abstract
view of the memory, and does not have to be concerned with picking the right MC. At
the time we needed it, Convey could not deliver a working version of a crossbar, therefore
we created our own.

36 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

Figure 4.7: Design of a FU

Our hardware design does not require memory bandwidth in the order of the limits of
the system, but only around 0.4GB/second per FU or 3GB/second per AE. Nonetheless,
we designed a crossbar that could, theoretically, deliver a peak bandwidth of around
20GB/second per AE. This gives us the freedom for potential bandwidth demanding
changes later on, and more importantly, it gives us the security of a stable system.
Before diving into the design, we take a look at the request density that the crossbar
should be able to handle. In Table 4.1 we can see how often requests of a certain type are
send to the crossbar per FU and in Table 4.2 we can see the probability that a number
of requests go to the same MC. These numbers are obtained from a small simulation,
assuming that the address distribution is random, which is a safe one. In Appendix A
we discuss this tool in more detail. The moment at which read requests are created by
every FU depends partly on the moment they receive other data from the MCs, which
is random.

The read requests per FU add up to one request every 5.3 clocks (16/3 = 5.3), so in
the worst case, where all the FUs read requests are lined up, the crossbar needs to be
able to serve eight read requests in 5.3 clocks. From Table 4.2 we can learn that this is
possible most of the time, only in approximately one percent of the cases five or more
requests point to the same MC. However small, it does mean we need to have a queue
in the FU for those cases. All the read requests (and their response) are handled by the
even MC ports.

Store requests from all FUs lay a pressure of eight requests per eight clocks on the
crossbar, which is just on the boundary of needing a queue. To avoid problems, the
FU uses one. All the store requests are handled by the odd MC ports and therefore
independent from the read requests.

Memory responses, which enter the crossbar through the even response ports of every
MC, behave in a random way. Responses can enter in any order and at any rate; in the

4.4. HARDWARE DESIGN 37

worst case every MC can put out a continuous stream of responses all for the same FU.
Since the FU can only process items from one queue at a time, all the responses for other
FUs are blocked. It is hard to get numbers on this behavior, but by using fairly large
queues (64 responses deep) we should be fine.

4.4.3.1 Request composition

In Figure 4.8 we can see the composition of read/store requests leaving the FUs and the
responses leaving the MCs.

Read requests
Read requests leaving a FU consist out of a 48 bit virtual address and an eight bit request
id. The request id is used by the FU to indentify and reorder the response later on. In
the crossbar every read requests gets a three bit FU id which is padded to the request
id and together with 53 zeros, send to the 64 bit wide read control input of the right
MC. The FU id is used by the crossbar to send the response to the right FU. The virtual
address is passed to its 48 bit wide input.

Store requests
Store requests consist only out of a virtual address and data. The 48 bit address and
the 64 bit data are sent to the right MC for processing.

Memory response
A memory response enters the crossbar via two inputs. The read control input holds the
FU and request id, and the data input holds the data. The three bit FU id is used to
identify the right FU, and the data together with the request id is send to it.

4.4.3.2 Crossbar layout

Every FU connected to the crossbar has a read request queue, a store request queue
and a memory response finder. Every MC connected to the crossbar has a read request
finder, a store request finder and a memory response queue. All the finders check all
their queue counterparts for valid data, what means having the right FU or MC mask.
When valid data is found, it is passed on to the MC or FU, and a served signal is send
to the queue. To avoid timing issues, this signal is latched. This however means that
we cannot check the same queue twice in a row, since the old data is still there for one
clock cycle. This is solved by checking the first four queues at every even clock, and the
other four at odd clocks.

This model makes it possible to achieve high bandwidths. From a MC point of view,
it is possible to achieve a peak bandwidth in the order of the peak of the system. To
make this happen the top item in every request queue should point to a different MC,
and the top item in every memory response queue should point to a different FU. In
addition, every successive queue item should point to the other four-pack of MCs/FUs
as described above. That way, every clock cylce the crossbar can process 16 requests
and eight responses, good for almost 20GB/second of bandwidth per AE.

38 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

Request type Period

SeqA read Very large

SeqB read 16 clocks

DataB read 8 clocks

DataB store 8 clocks

Results store Very large

Table 4.1: Request density to the crossbar per FU

Requests to the same MC Probability

2 0.862

3 0.415

4 0.080

5 0.009

6 0.001

Table 4.2: Probability of request collision, using 8 MCs/FUs

However, from a FU standpoint, which is the one that matters, we can only reach
half of that. Since the served signal is latched one clock cycle, every request takes at
least two cycles to leave the queue. This results in a peak bandwidth of 10GB/second
per AE: still enough for our implementation.

4.4.4 Design and testing

Here we will take a brief look at the design and test process, and at the process of
generating hardware.

Design and HDL simulation
For the design of the hardware of our S-W implementation, we used a bottom up ap-
proach. The first thing we made was the PE, followed by the LSA and the FU. The
memory crossbar and the rest of the system followed after. Testing was done in the
same order, first only the PE, then the LSA containing the PEs, and later the FU con-
taining the LSA. Testing the crossbar was done only in combination with the FU. To
make this possible we had to simulate the MCs behavior in our testbench. This test-
bench was later extended so support multiple FUs, to make the test of the crossbar more
meaningful. The final, total system, was not tested with our own testbench but with the
Convey Architecture Simulator (CAS).

Convey architecture simulator
The CAS is a simulation suite provided by Convey, to test a CAE as if it was part of
the coprocessor, instead of testing it as a separate part. The CAS simulates everything
on the coprocessor, including the MCs. Input to the simulator is given by a user created
software program, which can be exactly the same as the final program the user would
use to control the real CAE. The simulation is therefore realistic and shows the behavior

4.4. HARDWARE DESIGN 39

Figure 4.8: Composition of memory requests/response and crossbar layout

40 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

of your total design. Running a design in the simulator is obviously slower than it would
in reality.

Our S-W implementation was tested in this way and adjusted until its behavior was
as intended.

4.4.5 Limitations

However designed with flexibility in mind, our implementation does have some limita-
tions. We will discuss the most important ones.

Bitwidths vs. sequence length
While the internal counters in the FU support sequences up to 16777216 base pairs,
the length is in practice limited by the bit width of the similarity matrix and the score
scheme. If we would use a (realistic) match score of +2, and have equal sequences, the
registers in the PEs will overflow after 2048 (212/2 = 2048) columns. In the worst case,
when using a match score of +7, this will happen after 585 (212/7=̃585) columns. It will
be up to the user to be aware of this; the FU does not have any detection of avoidance
for this limitation.

Memory latency vs. sequence length
Due to the large memory latency of the HC-1, the data B and sequence B buffers need to
be large. This also means that, since the data is fetched 2000 rows ahead, the minimum
length of sequence B is 2256 (2000 + 256 for the default LSA behavior) base pairs.
Because the data leaving the LSA is stored with latency as well, the final minimal length
is even larger. We choose a value of 3072 base pairs, assuming storing a value will not
take more than 816 clock cycles. This limitation is handled by the software running on
the host CPU.

This limitation could be solved by inserting a small memory cache in the hardware
design. FUs aligning small sequences could use that memory instead of the main, to
store dataB and sequenceB data. The FU could for example include a flag with every
memory request, whether it request is part of a small alignment or not. The crossbar
could have some queues to store the data. Implementing this and achieving the right
timings might not be easy.

Clipping in the sequence B direction
Our memory requests for the sequences consist out of 64 bits, or 32 bases. For sequenceA
this is no problem, since it is already clipped at multiples of 64 bases. For sequenceB it
is a problem, since by clipping the sequence to fit in whole memory reads, we can miss
up to 31 rows in our processing step. Our implementation does currently not take care
of this, foremost because it is hard to fix, but also because sequenceB is in most cases
quite long, so there is only a small chance that the alignment will be in the bottom 32
rows.

4.4. HARDWARE DESIGN 41

LUTs LUT % Registers Registers % Frequency
(MHz)

Function unit 22662 10,93% 10761 5,19% 186

Memory Xbar (8 FUs) 9352 4,51% 6132 2,96% 224

Convey logic 18448 8,90% 18448 8,90% unkown

System (7 FUs) 186434 89,91% 61372 29,60% 186

System (8 FUs) 209096 100,84% 67504 32,55% 186

Table 4.3: Resource utilization of our design

4.4.6 Final implementation

Here we will discuss the final specifications or our implementation. Because there is a
long way between the first design planning and the real implementation, we will split this
section in two. First we will discuss the implementation that is synthesizable and fits on
the device. Second, we will discuss the steps we took to make a realizable implementation
and the specifications of the result.

4.4.6.1 Synthesizable implementation

Our final system consists out of multiple FUs, the memory crossbar, the instruction
queue logic and some logic from Convey. In Table 4.3 we can see the amount resources
needed by the main building blocks. The size of the crossbar depends on the amount of
FUs attached; here we gave it eight slots.

We can see that it is possible to fit up to seven FUs on the device before the synthesize
tool thinks we run out of lookup tables (LUTs). A complete implementation with this
amount of FUs will synthesize and still has the possibility to run at 186 MHz.

4.4.6.2 Realizable implementation

When the implementation was found to be synthesizable, we continued to make it im-
plementable as well. After synthesizing the design it must be mapped in the resources
available on the Virtex 5 device. For example, the logic is mapped to look up tables
(LUTs). Note the difference with the synthesize tool, which only makes an estimation
of the amount of LUTs needed. After the complete design is represented in available
resources, it can be placed on the FGPA. Everything must be placed in such a way that
paths between registers are as short as possible. When everything is placed, the route
tool lays down the actual routing. To do the placement and routing for a large design
with strict timing requirements is a difficult task and can take up to a day to complete.
To make this process possible, we had to make several adjustment and additions to our
design:

• Make a floor plan to place our logic on sense full places. This helps the placer
by significantly reducing the search space, and gives us some idea of which wires
should be fine, and which can become a problem.

42 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

• Insert registers/buffers in long wires to make the timing possible. For example,
the final interconnect wires between our crossbar and the memory interfaces are
latched. Furthermore the crossbar needed some major adjustment as described in
the next paragraph.

• Rewrite some logic to avoid large feedback loops across the entire design. For
example, the serving of instructions to FUs is changed so that a FU does not have
to check every other FU whether it has the right to fetch an instruction. This can
be done by latching signals and making the control statements a bit more complex.

Floorplan
The designed floor plan can be seen in Figure 4.9. All the main design components are
shown. The instruction dispatch and all the MCs are placed by Convey, the other
placement is based upon an example from Convey, but adjusted to fit our needs. All
the logic of a certain component must be fitted inside its region, but other logic is
also possible to add. The large blocks, 0 till 5, are the FUs; they are connected to
the crossbar via small buffers in Xbar connection hubA/B. The FU0, FU1 and FU3
blocks are connected to hub A, the other three to hub B. Those hubs are connected to
both MC connection hub A and MC connection hub B, which are in turn connected
to MC0, 1, 4, 5 and MC2, 3, 5, 7, respectively. This way, in a few hops, every FU is
connected to every MC. This hub based design is very necessary for a correct placement.
Without it the design would reach about 10% of its intended frequency.

The instruction queue is located in the center of the design, next to the dispatch, so
that every FU can pick instructions from it easily.

Final specifications
While it might be possible to put seven FUs on the FPGA, we used only six, as can
be seen on the floor plan. This way the FU placement could be done in a 2×3 fashion,
and the connections to the crossbar are short and symmetric. Doing so for one FU more
might be a lot harder. The design was placed and routed for a 150 MHz clock.

4.5 User application design

The coprocessor is controlled by a program running on the Intel Xeon processor, written
in C++. The main tasks of this program are: feeding instructions to the CAE, running
S-W on small sequences and completing partly filled matrices returned by the CAE.
Most of the code is hidden from the user in a S-W library, which has a easy to use
interface. This way users can very easily speed up their alignments without knowing
anything about the underlying technology.

4.5.1 Program layout

The three tasks described above need to be performed simultaneously, and at high speed.
We therefore choose to use multiple threads (posix threads, [39]), taking advantage of
the multicore CPU. The storage of data as well as the communication between threads

4.5. USER APPLICATION DESIGN 43

Figure 4.9: Floor plan of the FPGA

Figure 4.10: Overview of the software program

is done via queues. An overview of the threads, their tasks and the queues is visible in
Figure 4.10. On the left side of this figure we can see the part that is visible to the end
user, on the right side the S-W library.

4.5.2 Program workings

The user loads a number of sequence databases into the program. When finished, multi-
ple S-W library calls can be done to align two databases or a database and a query with

44 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

each other. One of the arguments for this call is a result packet, in which the library
stores the best alignments. When the alignment process is finished, the user can read
his results.

• First, the user gives the assignment to load a certain database into the memory.
The sequences are stored in host memory, the compressed sequences in coprocessor
memory. When this is done, the user can give alignment instructions to the library,
which passes them to a thread which converts them to instructions. Since a single
instruction can, depending on the size of the sequences used, occupy a considerable
amount of memory, we limit the amount of instructions in the system to 4096. The
mentioned thread checks for finished instructions and overwrites them with new
ones, until all the work is done. This process can be seen as creating instructions
just in time. Note that all the sequence data resides in memory all the time, so
there is no bottleneck there.

• All these instructions are kept in a queue, and are constantly checked by the
instruction management thread. This thread is the heart of the program and
has multiple functions. It tries to find suitable instructions for the CAE, and the
CPU S-W implementation; when found, those instructions are put in a CAE/CPU
queue. On the other hand, the instruction management thread checks those two
queues for finished instructions, and does the final processing. This means checking
whether the resulting alignment should be put into the results list, or whether a
CAE instruction should be finished by the CPU. The score of an alignment is
calculated with Equation 4.1.

• The S-W CPU thread picks instructions from the CPU thread, and processes them
with a scalar S-W implementation. If the selected instruction is a partly finished
CAE instruction, the thread needs to decompress the data B data before it can
start. The matrices are processed column wise, and at every end it is checked
whether we need to finish the rest of the matrix. So here we also try to do only
the minimal amount of computations.

When all the instructions are processed, the user is signaled and can read the results.

4.5.3 Sending instructions to the coprocessor

Sending instructions to the coprocessor has proven to be a challenging task. A brief
description of this process can be seen in Section 4.2.4, here we will describe the final
design.

When we do a copcall nowait fmt call, we dispatch a function to the coprocessor.
This function can have multiple caep instructions, intended for the AEs. In our design,
one alignment instruction equals one caep instruction. The AE can halt the dispatch
of caep instructions by asserting a stalled signal. When an AE is finished with all the
instructions (and there are no more pending memory requests), it can assert the idle
signal. When the coprocessor receives this, the function dispatch is done. Only then,
the user can dispatch a new function to the coprocessor.

4.5. USER APPLICATION DESIGN 45

Hereby it is clear, that if we want to have multiple alignment instructions running on
the AEs, we cannot have only one caep instruction per function dispatch, since we can
only send the next function dispatch after the first is finished (i.e. the AE went idle).
To overcome this limitation, we designed a coprocessor function running a polling loop.
In the loop, a conditional statement checks the status of a data ready flag. If the host
software sets this flag to 1 (the host- and coprocessor are in the same memory space), the
coprocessor function fetches data from a predefined location and sends a caep instruction
to the AEs. The data ready flag is then set to 0 by the coprocessor and it returns to its
polling state. On the host processor code, the flag is checked for being 0, only then the
data repository can be overwritten and the flag changed.

This way, we can send any number of caep instructions to the AEs with only one
copcall nowait fmt call or function dispatch.

46 CHAPTER 4. SYSTEM IMPLEMENTATION FOR ACCELERATED S-W

Optimal processing element
design 5
Since the PE is the workhorse of any S-W hardware implementation, we will try to
make an optimal one. It must be as small as possible, while having the possibility to
run at high clock speeds. To do this, we turned to the RVE technique, introduced in
Section 3.3.3. A lot of research has been done on square RVE PEs which can update four
or nine matrix cells at once. We are interested in the behavior of larger and non-square
RVE PEs. To make this possible we will introduce a new, automated, way of creating
the hardware circuitry for a broad selection of PE sizes. Our approach will be checked
against published work and performance characteristics will be extracted. Finally we
will propose a PE design that performance better than a default one.

Throughout this chapter we will use the X×Y notation for indicating the dimensions
of a RVE PE. So a 2×3 PE means a rectangular PE which updates six matrix cells every
clock cycle.

5.1 Recursive Variable Expansion in depth

In this section we will add some depth to the already provided introduction into the
subject of RVE.

The main concept of RVE is explained in Section 3.3.3. Here we will explain how we
derived Equation 3.1. If we want to calculate the value of a matrix cell at (2,2) in the
first iteration, we need to replace the data dependencies with the formulas to calculate
that data. This process is made visible in the top row of figures in Figure 5.1. The
expansion is split into three parts for better understanding. If we count all the paths
from the cell in question to the edges of the matrix we find 13 of them. In other words,
the max{... statement in Hi,j = max{... would contain 13 equations. Luckily, we can
do better than that. Taking a better look at the resulting equations, we can see that
the result of some of them will always be smaller than the result of others. So is there
an equation consisting out of two match scores, and an equation from the same start,
consisting out of one match score and two gap penalties. When using practical score
models, the latter will always be smaller than the former and can therefore be dropped.
Following this analysis we can reduce the 13 equations to seven, shown in Equation 3.1
and the bottom row of Figure 5.1. This optimization process is an important part of the
RVE technique. Without it we would create an enormous amount of useless hardware,
reducing the performance.

47

48 CHAPTER 5. OPTIMAL PROCESSING ELEMENT DESIGN

Figure 5.1: Elimination of unnecessary equations

5.2 Automated design

In this section we will discuss the creation of a tool for automatic RVE S-W hardware
generation. The existing RVE S-W hardware can update four or nine matrix cells at
ones. These designs where made manually and took a lot of effort. Because we want to
investigate many more (and larger) designs, we made a tool to do it for us.

The created program works in several steps. First, the program generates all equa-
tions of which the maximum should be found for a certain (any) cell. These equations
get optimized by removing all those which never lead to the maximum (as explained
in Section 5.1). This is mainly done by an exhaustive worst/best case analysis. In Ta-
ble 5.1 we can see the amount of equations involved for some square RVE PEs, as well
as the amount of equations that got cancelled. From the table we can easily see that it
indeed becomes impractical to do the cancellation by hand for larger PEs. The resulting
equations are evaluated through random testing. Their result is compared with that of a
default S-W implementation. This ensures us that we have not missed an equation. On
the other hand, the program also checks whether every equation leads to the maximum
at least once. This way we can see that we do not have too many equations left. An
example of the program output for one cell can be seen in Listing 5.1, where F[] is the
input, g is the gap penalty and x[] is the match score.

In Appendix B we will discuss the workings of our RVE hardware generation tool in
depth.

5.2. AUTOMATED DESIGN 49

Total equations Cancelled equations Equations left Lines of HDL

1×1 3 0 3 72

2×2 23 8 15 169

3×3 127 80 47 351

4×4 679 552 127 731

5×5 3651 3320 331 1491

Table 5.1: Equations and lines of HDL for different RVE PE sizes

Listing 5.1: Automatically generated equations for a cell

0 : F[0 ,−3] + 3g
1 : F[−1 ,−3] + 2g + x [0 ,−2]
2 : F[−1 ,−3] + 2g + x [0 ,−1]
3 : F[−2 ,−3] + 1g + x [0 ,−1] + x[−1 ,−2]
4 : F[−1 ,−3] + 2g + x [0 , 0]
5 : F[−2 ,−3] + 1g + x [0 , 0] + x[−1 ,−2]
6 : F[−2 ,−3] + 1g + x [0 , 0] + x[−1 ,−1]
7 : F[−3 ,−3] + 0g + x [0 , 0] + x[−1 ,−1] + x[−2 ,−2]
8 : F[−3 ,−2] + 1g + x [0 , 0] + x[−1 ,−1]
9 : F[−3 ,−2] + 1g + x [0 , 0] + x[−2 ,−1]
10 : F[−3 ,−1] + 2g + x [0 , 0]
11 : F[−3 ,−2] + 1g + x [−1 ,0] + x[−2 ,−1]
12 : F[−3 ,−1] + 2g + x [−1 ,0]
13 : F[−3 ,−1] + 2g + x [−2 ,0]
14 : F[−3 ,0] + 3g

eq : 63 c an c e l l e d : 48 l e f t : 15
no unused equat ions

From the equations we generate a high level hardware description in Verilog. The
generated module is a combinatorial circuit without registers. Besides this module, the
program also generates a linear array layout which connects all the combinatorial blocks
to registers. In the last column of Table 5.1 we can see the amount of code needed
to describe the combinatorial behaviour. This column suggests that designing these
complex circuits by hand would be hard and error sensitive. The combinatorial RVE
PEs were found to be correct for some simple test cases. A code snippet of automatically
generated Verilog can be seen in code Listing 5.2.

50 CHAPTER 5. OPTIMAL PROCESSING ELEMENT DESIGN

Listing 5.2: Snippet of automatically generated HDL

function signed [0 : 9] PE RVE 1 3 function ;
input [0 : 1] seqA ;
input [0 : 5] seqB ;
input [0 : 9] dataA ;
input [0 : 3 9] dataB ;
input [0 : 3] match score , mismatch score , gap pena l ty ;

reg signed [0 : 9] match 0 0 ; reg signed [0 : 9] match 0 1 ; reg signed [0 : 9]
match 0 2 ;

reg signed [0 : 9] gap 1 ; reg signed [0 : 9] gap 2 ; reg signed [0 : 9] gap 3 ;
reg signed [0 : 9] equat ion 0 ; reg signed [0 : 9] equat ion 1 ; reg signed [0 : 9]

equat ion 2 ;
reg signed [0 : 9] equat ion 3 ; reg signed [0 : 9] equat ion 4 ;
reg signed [0 : 9] max ;
reg signed [0 : 9] max 0 ; reg signed [0 : 9] max 1 ; reg signed [0 : 9] max 2 ;
reg signed [0 : 9] max 3 ; reg signed [0 : 9] max 4 ; reg signed [0 : 9] temp max ;

begin

match 0 2 = getMatchValue (seqA [0 : 1] , seqB [0 : 1] , match score ,
mismatch score) ;

match 0 1 = getMatchValue (seqA [0 : 1] , seqB [2 : 3] , match score ,
mismatch score) ;

match 0 0 = getMatchValue (seqA [0 : 1] , seqB [4 : 5] , match score ,
mismatch score) ;

gap 1 = {6 ’ b111111 , gap pena l ty } ;
gap 2 = (gap 1 <<< 1) ;
gap 3 = (gap 1 <<< 1) + gap 1 ;

equat ion 0 = dataA [0 : 9] + gap 3 ;
equat ion 1 = dataB [0 : 9] + match 0 2 + gap 2 ;
equat ion 2 = dataB [1 0 : 1 9] + match 0 1 + gap 1 ;
equat ion 3 = dataB [2 0 : 2 9] + match 0 0 ;
equat ion 4 = dataB [3 0 : 3 9] + gap 1 ;

max 0 = getMax (0 , equat ion 0) ;
max 1 = getMax (equat ion 1 , equat ion 2) ;
max 2 = getMax (equat ion 3 , equat ion 4) ;
max 3 = getMax (max 0 , max 1) ;
max 4 = getMax (max 2 , max 3) ;
max = max 4 ;

PE RVE 1 3 function = max ;

end
endfunction

5.3. RESULTS 51

5.3 Results

In this section we will discuss how our new implementation holds against previously
published work. After that we will see how it behaves with respect to frequency, latency
and throughput. To create all the results, we used a 36×36 S-W matrix.

5.3.1 Comparison with previous work

The two major aspects of every high performance hardware design is its area, and its
frequency of operation. For the RVE implementations of S-W this is not different. The,
by Nawaz, handmade 2×2 and 3×3 designs were optimized to an incredible extend and
it is probably safe to say that those designs are optimal regarding hardware usage and
(theoretical) latency. For the automated case we assumed that a lot of optimizations
will be done by the compiler (Xilinx XST).

In Table 5.2 we can see a comparison between the hardware usage of some auto-
matically generated RVE PEs versus the handmade ones. The second column shows
the amount of adders in the resulting design, as well as the amount of ‘+’ signs in the
Verilog code. If the compiler would not do any optimizations, these two numbers would
be equal. However, they are not, so the compiler does some common sub expression
elimination. If we compare the numbers to the handmade designs, we can see that the
compiler does not come close to the optimal case. It can be said that detecting which
terms must be added first for optimal hardware savings is too hard to be left to the
compiler. After investigation, it was found that every equation is plainly processed from
left to right, barely paying attention to common sub expression detection.

What makes the comparison even worse for the automated case, is that we only
generated hardware for the outer cells, while Nawaz’ solution also computes the value
for the inner cells. For the 2×2 case this does not lead to more adders, but for the 3x3
and larger cases, it will.

Regarding the comparators, the automated case comes much closer to the hand-
made numbers. This is due to the fact that most of the comparators are used for the
tree that finds the maximum of every equation result. Creating such a tree is pretty
straightforward and generating efficient Verilog code is therefore easy.

As said, besides area, the maximal frequency is an important aspect of a hardware
design. However, this very much depends on the target FPGA and some design specifi-
cations, such as data width. We did not have the tools to test our design on the same
hardware as the existing solutions; therefore it is not possible to make a fair comparison.
But, it is safe to say, that our new implementation runs at frequencies at least as good as
the existing ones. Giving the compiler a high level behavioral description will probably
lead to faster hardware than with a low level schematic, as is done by Nawaz, since
the compiler is better aware of the underlying platform behavior than a hardly trained
human.

From the paragraphs above we can conclude that area wise our solution is not optimal,
but it is at least as good frequency wise. An investigation in how we can modify our

52 CHAPTER 5. OPTIMAL PROCESSING ELEMENT DESIGN

Automated design Handmade design
Adders (in code) Comparators Adders Comparators

2×2 19 (22) 16 14 17

3×3 85 (98) 63 54 54

4×4 300 (333) 188 unkown unkown

5×5 916 (1069) 481 unkown unkown

Table 5.2: Comparison between our automated and existing RVE designs

Figure 5.2: Left: Maximal frequency (MHz) of an PE versus its RVE dimensions. Right:
Time required (ns) to fill a 36×36 matrix versus the RVE dimension of the used PE

behavioral description so that the compiler can find common sub expressions, would be
worth an effort.

5.3.2 Frequency and latency

The research performed on RVE hardware focuses mainly on the latency between calcu-
lating the first and the last value of the matrix. In other words, how fast the matrix is
filled. Therefore, our research starts here as well. First, we will look at the frequency
each design can run on; this can be seen in Figure 5.2. The main diagonal represents
the square cases, and it is clear that every increase in size must be paid with a lower
frequency. All other forms run on lower frequencies as well, but the way the frequency
drops is less clear. For example, if we look at the 1×1 and 1×2 PE, we can see that they
can run at almost the same frequency, while the 1×3 PE has to give away 30 MHz. This
cannot be explained by the way the formulas expand (number of sequential additions)
and the depth of the ‘find maximum’ tree. For the 1×1, 1×2 and 1×3 case, the addition
depth is respectively two, three and three. The maximum tree depth is respectively two,
three and three. This shows that the way the circuitry gets implemented at a low level
plays a major role in determining the maximum frequency, and not only the theoretical
logic depth. The large drop in frequency from 1×n to 2×n designs come partly from

5.3. RESULTS 53

Figure 5.3: Left: Throughput (MCUPS) of a linear array versus its RVE dimensions.
Right: Throughput per area (GCUPS/slice) versus its RVE dimensions

the fact that with 1×n, we do not have to take care of the clipping error mentioned in
Nawaz’ work [23], while for 2×n we do.

Latency =
(36/PE X) + (36/PE Y)− 1

Frequency
(5.1)

From the frequency, we can calculate the latency with Formula 5.1. The results are
shown in Figure 5.2. For the square cases, we can see that the time required to fill
the matrix becomes smaller for larger PE sizes. This is expected and confirms Nawaz’
work, and in fact the cornerstone of the research in RVE. The improvement from 2×2
up becomes negligible, and suggests that there is not really a reason to go beyond this
size.

The latency tells us how fast the matrix will be filled, but since this is always in
the order of milliseconds or less for practical cases, it is not really of interest. Far more
important is how much work can be done every time unit. This is the throughput of the
system, and will be discussed in the next section.

5.3.3 Throughput and performance per area

In Section 5.3.2, we looked at the latency of different RVE designs, and showed that
latency is not really a useful metric. Here, we will look at the throughput of the array,
or in other words the amount of matrix cell updates, it can perform per second. In
Figure 5.3 we can see the throughput for the same RVE designs. We calculated the
values using Formula 5.2. As with the latency, we can see that the throughput becomes
better from 1×1 to 2×2 PEs, and that the improvement comes to almost a halt for larger
designs. This is due to the fact that the frequency rapidly decreases for larger PEs. Only
the 1×n PEs become increasingly better, this is due to the fact that the frequency does
not drop that fast here, as mentioned before in Section 5.3.2.

54 CHAPTER 5. OPTIMAL PROCESSING ELEMENT DESIGN

Throughput = PEs× PE size× Frequency (5.2)

Since our research is targeting a real implementation, only looking at the throughput
is not enough. We are making an implementation that will use every part of the FPGA
to squeeze every bit of performance out of it. Therefore we also have to look at the area
every implementation takes, giving rise to the throughput/area metric. We can calculate
this following Formula 5.3. As area metric we took the estimated amount of Virtex 5
slices the map tool gave us. The results are shown in Figure 5.3. It becomes clear that,
when taking the area into account, RVE does not perform better than the default 1×1
case at all for almost every case. Only the 1×2 RVE PE gives a better throughput per
area ratio than the default case. We will take a better look at this case in Section 5.4.

Throughput per area =
Throughput

Number of slices
(5.3)

5.4 The 1×2 RVE processing element

Since the 1×2 RVE case is the only design that gives a better performance per area ratio
than the default 1×1 design, we will examine this case further in this section.

5.4.1 Basic hardware design

First, we created a new 1×1 and 1×2 design. By designing them ourselves, we could
be sure they were both optimal. To evaluate the designs properly, we would need the
maximal frequency it can run on, and the area it takes. The former is easy, when
synthesizing the XST tool tells us the worst case register to register delay, and thereby
also the maximal frequency. Getting the accurate area is a bit harder. A lot of papers
synthesize their design for a Virtex 2 or Virtex 4 device. For these architectures the XST
tool makes an estimation of the number of slices the design would occupy. Researches
typically use this estimation as area metric. When synthesizing for Virtex 5 devices, you
only get the number of LUTs and registers the XST tool thinks the design would use.
To be as complete as possible, we did both ways of area measurement. The results can
be seen in Table 5.3. In the first two columns we can see the different area and frequency
data for the new 1×1 and 1×2 designs. In the bottom rows several throughput per area
ratios are shown. It can be seen that the 1×2 design performs worse regarding Virtex
5 LUTs as well as Virtex 4 slices. Since a Virtex 5 device contains the same amount of
LUTs as registers, we are mainly interested in the one that performs worse of these two,
the LUTs in this case. This result contradicts the results from the previous section, but
this can be explained by the fact that the automatically generated designs where only
rough approximations of the best results, focusing on the global picture of RVE behavior.
With the new designs, the 1×1 is relatively better. To improve the performance of the
1×2 design, we turned to the technique of pipelining.

The schematic of the (relevant aspects of the) 1×2 design can be seen in Figure 5.5.
For better understanding, a top level view of the data and sequence in- and outputs can
be seen in Figure 5.4.

5.4. THE 1×2 RVE PROCESSING ELEMENT 55

Figure 5.4: Dataflow around a 1×2 RVE PE

Figure 5.5: A 1×2 RVE PE

56 CHAPTER 5. OPTIMAL PROCESSING ELEMENT DESIGN

1x1 1x2 1x1 pipelined 1x2 pipelined

Virtex 5 LUTs 180 376 180 343

Virtex 5 registers 48 64 96 112

Virtex 4 slices 97 188 107 166

Virtex 5 frequency (Mhz) 176 148 226 186

Virtex 4 frequency (Mhz) 141 121 169 130

CU/clock 1 2 1 2

Throughput Virtex 5 (MCUPS) 176 296 226 372

Throughput Virtex 4 (MCUPS) 141 242 169 260

Throughput / Virtex 5 LUT 0,98 0,79 1,26 1,08

Throughput / Virtex 5 register 3,67 4,63 2,35 3,32

Throughput / Virtex 4 slice 1,45 1,29 1,58 1,57

Table 5.3: Results for various 1x1 and 1x2 designs

5.4.2 Hardware pipelining and optimization

Pipelining is a well known technique for increasing the maximal frequency and through-
put of a hardware design by placing registers between combinatorial logic parts. This is
also used by Nawaz to increase the frequency of his designs.

To see whether we could get the 1×2 design to perform better than the 1×1, we
made a pipelined version of both. The results can be seen in Table 5.3. The pipelined
1×1 design performance better than the default 1×1 design regarding Virtex 5 LUTs
and Virtex 4 slices. It uses more registers, which is not compensated for entirely by
the higher frequency, therefore the throughput per register is worse. The results for the
pipelined 1×2 PE can be seen in the last column. For this version we did not place
the registers on the most trivial place, between the adders and the find maximum tree.
Instead we tried to optimize the design in such a way that we ended up in the best
possible throughput per area ratio’s. These optimizations came down to the following
points:

• Removing as many adders and comparators as possible. This is done by rewrit-
ing some of the equations. For example, max(A + C,B + C) can be reduced to
max(A,B) + C. By doing so we remove one adder.

• Minimizing the amount of intermediate registers. This is achieved by doing as
much reduction (by the max operation) as possible in the first pipeline stage.

• Balancing the pipeline in such a way that the delay of both stages is as equal as
possible.

The resulting PE has a better Virtex 5 LUT and Virtex 4 slice performance than the
default 1×1 PE, which is a good result. When we compare it however with the pipelined
1×1 PE, it is equally good regarding Virtex 4 slices, but worse when looking at the
Virtex 5 LUTs. Finally we choose to use the pipelined 1×2 PE for two reasons. First,
given the way other researchers present their work, we tended to go with the Virtex 4

5.5. FURTHER EXPLORATION OF PE SIZES 57

Figure 5.6: View of an optimized and pipelined 1×2 RVE PE

slices as most important metric. Second, the RVE technique was suppose to be one of
the pillars on which this entire research should lean. Therefore we really wanted to use
it.

The schematic of the pipelined and optimized 1×2 PE can be seen in Figure 5.6. An
interesting thing to point out is that Data A1 makes its entrance in the circuitry in the
second stage. Using this value in the first stage would create a data hazard, since it is
still unknown by then. The Data B1, B2, B3 and the sequence data is available from
the start, and can therefore be used in the first pipeline stage.

5.5 Further exploration of PE sizes

Seeing the good results from the 1×2 PE, we took a step back and wondered whether
the used optimization techniques could be applied to other designs as well.

58 CHAPTER 5. OPTIMAL PROCESSING ELEMENT DESIGN

5.5.1 The 2×1 RVE processing element

Instead of 1×2, we could also position the PE in a 2×1 manner. This however, introduces
some difficulties. As pointed out at the end of Section 5.4.2, when using a 1×2 PE, we
need to wait for the value of Data A1 to become ready, before we can use it in a
calculation. If we would rotate the PE 90 degrees, we would not only have DataA1
unavailable in the first stage, but also a Data A2. These data dependencies lay some
extra pressure on the second pipeline stage, bringing the whole design out of balance.
The maximal frequency of a 2×1 PE is considerably lower than of its 1×2 counterpart.

5.5.2 The 1×3 RVE processing element

Despite the results from Section 5.3.3, we wanted to try using the optimization techniques
discussed on a 1×3 PE, and hopefully end up with even better results. Without going
into details, we can say that this is not possible. Going from 1×2 to 1×3 gives you a
50% boost in performance, while it is impossible to keep the growth of the hardware
design below 50%.

5.6 Conclusion

In this section we will draw some conclusion from our research in developing a fast and
efficient RVE based S-W PE.

Automated design and results
From our research into automatically generating RVE hardware, some things became
clear:

• The main optimizations of RVE hardware design cannot be handed to the XST
compiler. It does a poor job at detecting common expressions and the possibility
to rewrite (restructure) some parts.

• The maximal frequency of a PE is not as trivial as just the logic depth. This
became clear in numerous occasions, and showed that it is, for example, sometimes
not better to eliminate all common expressions due to a latency penalty. So when
designing circuitry, the underlying platform must always be taken into account.

• The RVE solutions published so far are not better if we take the area into account.
Our exploration suggests that it is worth it to look at rectangular cases like 1×2
PEs instead of square cases.

The 1×2 RVE PE
We showed that it is possible to create an RVE PE that performs better than a default
implementation, even when taking the area into account. The new design is almost 10%
better then a non pipelined 1×1 PE. When comparing it with a pipelined 1×1 PE it is
not clear which is best. We decided to go with a RVE PE because of mostly soft reasons.
We will come back to this subject in Section 7.1.2.

Implementation results 6
In this chapter we will take a look at how our implementation holds against several tests.
During the work we clearly did not only focus on GCUPS, but also on flexibility and
efficiency. We introduced a new paradigm to look at S-W processing, where workload
might be cancelled, and where the FPGA and CPU work together. Some of the results
are aimed at validating this concept, while other are still aimed at raw GCUPS. At
the end we take another look at S-W performance on different hardware platforms and
compare our implementation to a selection of other FPGA based realizations.

6.1 Isolated results

In this section we will look at the performance of several design blocks in simulation. Sev-
eral performance metrics will be extracted, and those will be mirrored to the theoretical
and ideal behavior.

6.1.1 Functional unit performance

Here we will simulate our FU design, and see whether the performance is as expected. We
wrote a small program that could generate the necessary Verilog statements for a sense
full test, and put those in a Verilog testbench format. In addition, we wrote a testbench
module to simulate the memory system and instruction dispatch, so we could focus on
the part in question. First we run two simulations of a single instruction, followed by
simulations of a stream of instructions. Timing was started at the moment the LSA
started processing, so the time for prefetching the data required for the first instruction
is discarded. We stopped recording at the moment the maximum value was written to
the store request queue. The results can be seen in Table 6.1. Here the first column
shows how many instructions we are simulating, followed by the sequence lengths, the
timings, the cell updates done, the performance and the percentage of the theoretical
peak. The theoretical peak of our FU is 19.2 GCUPS, calculated by multiplying the
frequency with the amount of PEs and the amount of cell updates per PE per clock
cycle (150M×64×2=19.2G).

Result A shows us that our FU does not run at peak performance, but at only 96.86%
of that. Result B, also one instruction, reaches 99.20%. This difference can be explained
by the startup and finish time required by the LSA. In the first 128 clock cycles, not
every PE is used, which is also true for the last 128 clock cycles. This amount of cycles
follows from the LSA length and the two pipeline stages. Since the sequences in result
B are larger, the time that PEs lay idle is relatively smaller. We can easily calculate
whether the not optimal performance really comes from this behavior. If we add 128
clock cycles to the start time, and subtract 128 clock cycles from the finish, we have

59

60 CHAPTER 6. IMPLEMENTATION RESULTS

Seq.
A
length

Seq.
B
length

Start
at (us)

Write max
at (us)

Total
time (us)

MCU
done

GCUPS %
peak

1 instr. (A) 128 4096 2,749 30,940 28,191 0,524 18,598 96,86%

1 instr. (B) 512 4096 2,789 112,892 110,103 2,097 19,047 99,20%

4 instr. (C) 256 3072 2,789 44,632

512 4096 153,848

768 5120 358,628

1024 6144 686,275 683,486 13,107 19,177 99,88%

8 instr. (D) 128 3072 2,749 24,115

256 4096 78,722

384 5120 181,112

512 6144 344,936

640 7168 583,845

768 8192 911,492

896 9216 1341,529

1024 10240 1887,608 1884,859 36,176 19,193 99,96%

Table 6.1: Results for simulating the functional unit

the time that the LSA is fully utilized. To correct the workload, we have to subtract
two triangles of matrix cells, 64×256 wide. For Result A, the total processing time than
becomes 26.741us, and the total workload 0,508 MCUs. A simple division results in
19,187 GCUPS, or 99.93% of the peak performance. The small difference left is caused
by a couple of extra register layers before data enters the LSA, and before the maximum
value is really written.

As we look at result C and result D, it is clear that the performance of our FU
reaches the theoretical limit. The time percentage some of the PEs are idle becomes
negligibly small, and the FU delivers a sustained peak performance while processing
multiple instruction, containing sequences of different lengths. This was one of the
design goals set in Section 4.4.2.

6.1.2 Memory crossbar performance

In this section we will look at the synthetic and practical performance of our crossbar.
To recap, we designed the crossbar so that it could deliver a comfortable amount of
bandwidth, far more than we actually needed. We wrote a small program to create
Verilog testbenches and used those to put our design to the test. First we take a look at
some synthetic tests, followed by more realistic scenarios.

Synthetic tests
To get an idea of the crossbar performance, we connected it to six queues, acting as
six FUs. Those queues where filled with 64 items each, and when they where full, the
crossbar could start serving them. The time was recorded from the moment the crossbar

6.1. ISOLATED RESULTS 61

Figure 6.1: Graph showing the peak, random and realistically used bandwidth of the
request side of our crossbar

could start, till every queue was empty. First the queues where filled with a random
MC distribution, the achieved bandwidth is visible in Figure 6.1. The crossbar reaches
about 75% of its possible peak bandwidth with these random datasets. Using stochastic
theory to explain this behavior is beyond the scope of this thesis. It does show however
that it does pretty well for large streams of random data.

The second part of the test consisted out of filling the queues with worst-case dis-
tributed data. What this means can be read in Section 4.4.3.2. Now the crossbar
performs at 100% of its peak bandwidth, just as it was designed for. This is visible in
Figure 6.1.

Realistic tests
We move on to the more realistic tests. Here we will simulate the behavior of a FU, and
see whether the crossbar can handle the amount of data. Instead of filling the queues
beforehand, we fill them during the run, at a rate representative for our FU design. First
we look at the store requests. They are issued every eight clock cycles by every FU, and
in this test we created a total of 64×6 of them. We aligned all the requests in time, so
that we ended up with a worst case test. When running, the average number of items
in the queues turned out to be zero, and the maximum one. This is easily explained by
the fact that we have six requestors, and eight clock cycles to serve. Therefore we will
always, even in the worst case (every request pointing to the same MC), be done in time
and have no requests pending. This is as expected and as discussed in Section 4.4.3. The
bandwidth used by store requests is only 12.5% of the peak, as can be seen in Figure 6.1.
Something similar holds for the read requests, only their density is a 1.5 times larger.
But, even when using worst case data the maximal queue size is two items (the first
serve signal is latched), and the average size zero. The used bandwidth is 18.75% of

62 CHAPTER 6. IMPLEMENTATION RESULTS

the possible peak. Remember that the read and store requests are send to a (virtual)
different memory port, so their bandwidths are independent. It is clear from Figure 6.1
that our crossbar has more than enough bandwidth to handle the read and store requests
from the FUs.

For the memory responses it is a lot harder: harder for us to make performance
estimation, and harder for the crossbar to handle, since the responses can come in any
order and at any rate. In our design the memory response queues are 64 items deep;
lets see if that is deep enough. If we consider a worst case scenario, where every FU
starts at exactly the same time with its first instruction. Every FU will create almost
200 read request to fill its data buffers in an equal amount of clock cycles. Since we are
talking worst case, the responses will enter the crossbar at a continuous rate of eight
responses per clock cycle, and the first 8×25 responses will point to the same FU. In this
scenario, our crossbar will fail. It will take up to 400 clock cycles before the last item of
these first 8×25 responses is served, by then the queue holding it will be long over flown.

For a more realistic picture, we ran several tests to check the memory response
behavior. In Figure 6.2 we can see the maximum size of all the memory response queues,
for different data arrival rates. To, again, simulate worst case behavior, all the responses
are aligned in time. The FU id in every response is random, and therefore a different
test run could give different results. We however believe that, after running several tests,
the numbers shown are realistic and representative. Using a stream of 256×8 responses,
we can see that the system is stable up to an arrival period of four clock cycles, a smaller
period will (eventually) lead to an overflow. We defined three regions of interest: realistic
steady state behavior, realistic worst case burst behavior and a queue overflow. On the
left we see the steady state behavior; our system will typically require that amount
of bandwidth, or less (5.3×(8/6)). In the middle there is a region where the crossbar
might end up during a burst of responses, which can only occur at startup time. The
upper bound for this region is set by 2×(8/6), or 2.33, the realistic worst case memory
response period. On the right we have the region where our crossbar would overflow.
Luckily there is a small gap between the worst case burst and overflow region. It shows
that the size we choose for the memory response queues is just right: they will probably
never overflow. This is consolidated further by the fact that it is, by design, impossible
for different FUs to start at the same moment, and that the duration of response bursts
will be smaller than in our testbench.

An interesting observation is that queue number three and number seven are the first
ones that could eventually overflow, while queues zero and four are fine. This is due to
the logic that selects a queue to serve. The logic always starts at the lowest queue, and
only if it does not find a response in the first three queues, it checks the fourth. This
biased queue serving clearly results in an unbalanced system, improving this might give
us better results.

Data compression analyzed
Recall that we compress our sequence and matrix data to a minimum to keep the memory
footprint and bandwidth as low as possible. The compression of sequence data can be
seen as trivial, there are probably (hopefully) no implementations around using 32 bits to
represent a DNA alphabet. To use differential compression for the matrix data however

6.1. ISOLATED RESULTS 63

Figure 6.2: Graph showing maximal queue size for different memory response arrival
rates

is not so trivial. When we would switch off the compression, the memory response rate
will double. The steady state behavior will still be in the safe zone, but during realistic
worst case bursts the system could definitely end up in a queue overflow.

On the request side we can see that the amount of store requests would become 2.5
times as large as without using compression. This would however still be okay most
of the time, but maybe an address alignment between several FUs could introduce a
temporally request stall. The amount of read requests would double in size, just as with
the memory responses, and result in a behavior like the store requests.

We can see that compressing the data might not be absolute necessary, but makes life
a lot easier. With compression we can say that our system is absolute stable in probably
every case, without we could not.

6.1.3 User application & workload distribution

Besides the isolated hardware tests, we also wanted to test our software program (Sec-
tion 4.5) without the coprocessor. There were several things we would like to verify:

• Cancellation of workload.

• Workload distribution between CPU and CAE.

• Creation of results.

To make it possible to test the program without the coprocessor, we came up with the
idea to use a lookup table to deliver the values that would otherwise have been calculated
by the CAEs. This lookup table was generated beforehand by a small program and looked
like Listing 6.1. Every line represents an instruction with from left to right: the first

64 CHAPTER 6. IMPLEMENTATION RESULTS

32 characters of sequence A, the first 32 characters of sequence B, the max for clipped
sequences, the last column max for clipped sequences and the max of the entire two
sequences. This lookup table was used in a separate thread to simulate the coprocessor.

Listing 6.1: Snippet from our result lookup table

gcggcaaacccggc tcacaccc t ccacgccgg tag taaaa t t aaa t t aa t t a t aaaa t t a t a t a 246 246 256
gcggcaaacccggc tcacaccc t ccacgccgg a t t t a aaa t a t aa t a t t a a t g t a c t aaaa c t t 243 243 264
. . .
a t tacaagagcgatgcacac tc tgaacgacac t ag t aaaa t t aaa t t aa t t a t aaaa t t a t a t a 333 333 333
at tacaagagcgatgcacac tc tgaacgacac a t t t a aaa t a t aa t a t t a a t g t a c t aaaa c t t 328 328 328
. . .

Test data & system
To test the program we used a database and some test queries. As a database we used
the latest (13/01/2011) release of the viral1.genomic file from the RefSeq repository [34].
This is a curated database containing a lot of full virus genomes, and several other virus
related sequences. There are more files in the viral section, but this one contained plenty
of data. It has 3093 sequences, with a total length of 61604948 base pairs. The smallest
sequence is 200 base pairs long, the largest 1181548. As queries we randomly selected
eight small pieces of sequence from this file, with a total length of 3389 base pairs.

Because our program is multithreaded, and the CPU in the HC-1 only has 2 cores
and no hyper threading, we decided to use a different platform to run our isolated test.
This way we could see the workings and performance of our program without having the
threads being de-scheduled every now and then. The used machine contained an Intel
Core i7 920 CPU, which has four cores and the ability to sustain eight threads.

Results
During our tests we aligned all the queries against the database in a single run, all the
results were stored in the same packet. This might not represent a sense full test (that
would for example be a single query against the database), but it is fine for our case.
The metrics we were looking at were the workload distribution between CPU and CAE,
the amount of workload that got cancelled, and the final alignments, while varying the
amount of alignment results kept in a top score list. In Figure 6.3 we can see the results.
We varied the amount of stored results between two and 25, and it is clear that our
workload cancellation system works. With only two stored results, the score boundary
for entering the top list is such that 11.5% of the matrix cells can be cancelled. In this
case, the CPU hardly does any work.

As we move towards a larger results list, we can see that the amount of work done by
the CPU converts to 5.7%, and the amount of matrix cells that got cancelled converts to
7.1%. The rest of the workload is done by the CAEs. This can be seen as a steady state
result, since we have multiple queries and a large results list. A CPU/CAE workload
distribution ratio of roughly 1:20 is a good and in practice useable result, since a mod-
ern CPU is just on the edge of delivering this amount of GCUPS compared to FPGA
implementations. To make the advantage of our setup even clearer, we also drew a line
representing the workload that should have been done if we would pad every sequence A
to a multiple of 64, instead of clipping it. In that case also small sequences would have

6.2. IMPLEMENTATION RESULTS 65

Figure 6.3: Workload distribution and cancellation for our test database and queries

Rank Query sequence Database sequence Score

1 #4 Heliothis virescens ascovirus 3e, complete genome 1,52E-64

2 #1 Heliothis zea virus 1, complete genome 1,33E-46

3 #0 Frog virus 3, complete genome 4,12E-34

4 #0 Soft-shelled turtle iridovirus, complete genome 3,36E-33

5 #3 Zaire ebolavirus, complete genome 6,15E-32

Table 6.2: Alignment results for our test database and queries

been send to the CAE. Our system has to do over 13% less work due to that early stage
design decision. The size of the results list can also be seen as a system parameter, you
can tune it depending on the CPU power available.

Lastly, we take a look at the actual alignment results. The top 5 alignments are
shown in Table 6.2. There are some interesting things to remark. First, the top two
alignments clearly stand out over the last three. Looking at our queries we can see that
#4 and #1 are indeed the largest queries, so that makes sense, since longer alignments
lead to better scores. Furthermore, from the double hit from query #0, we can conclude
that the genomes of the ‘Frog virus 3’ and the ‘Soft-shelled turtle iridovirus’ share a
large almost identical subsequence.

6.2 Implementation results

In this section we will discuss the results and characteristics of our full implementation.

66 CHAPTER 6. IMPLEMENTATION RESULTS

6.2.1 Software S-W performance

As discussed in Section 4.5.2 our software running on the host CPU features a S-W
implementation. Currently this is a scalar implementation, since it has been found hard
to integrate an SSE2 optimized version in our program. This however results in a S-W
version that is an order of magnitude slower than popular implementations. We achieve
up to 0.15 GCUPS per CPU core using our approach, against 4 GCUPS for solutions
presented in Section 3.2.2. Since our implementation does use the workload cancellation
paradigm, the practical speed can be much higher, depending on the dataset used.

6.2.2 System performance

The performance of a piece of hardware is easy to calculate, since it is always the same.
For our implementation, the peak performance in GCUPS for the CAEs is the amount
of FUs, times the amount of PEs per FU, times the amount of cell updates per PE per
clock, times the clock frequency. This comes down to 24×64×2×150M=460.8 GCUPS.
This is the peak performance of our CAE design, but should, by design, also be the
sustainable performance for millions of alignments long. The performance of our total
design however can be even higher, since we also use the CPU, and cancel some of the
workload. To test this all, we uploaded our personality to the coprocessor and run our
application. Sadly enough, we ran into some issues, discussed below.

Inperfect results
After running some tests and analyzing the results, it became clear that only the first
alignment of every FU is correct, the following returned values are garbage. We assume
this problem is caused by a fault in the data B differential en- or decoder. When starting
a new alignment, these blocks must reset their internal registers on the right moment,
so that we do not subtract the last value of the first matrix from the first value of the
second matrix. We assume we are one clock cycle early or late in this process. This
could probably have been fixed relatively easy, but since there were more reasons why
the full system did not work, we did not try this.

Slow CPU
A second and more serious problem was the speed of the CPU. Our program relies on
the CPU to finish instructions and to feed new instructions to the CAEs using multiple
threads. Since the CPU used in the HC-1 can only sustain two threads at the same time,
at certain moments, the instruction management thread gets de-scheduled. Unfortu-
nately, it showed that this off-time was too long to keep the CAEs busy: their queues
ran out of instructions before the thread was back online. This problem could be solved
by using larger queues, or preferably, by using a faster CPU with more cores.

We tried to improve this by implementing our design with an instruction queue three
times as large. This has proven to be impossible, the design would not place and route
anymore with the right timings. This is due to the large size of every instruction, 384
bits, and the inability to place that amount of memory in a small place.

6.2. IMPLEMENTATION RESULTS 67

6.2.3 System simulation results

Due to the inability to run benchmarks on a real system, we continued with the software
simulator described in Section 6.1.3. To make it realistic, we added a timing feature:
the instructions where only set as being done after the amount of time it would take in
reality on the CAEs.

Test data & system
For the simulations we did not use a existing database, but created one of our own.
This allowed us to control the workload and the sequence length distribution. Since it is
impossible in software to simulate the 100% FU utilization behavior, we used very long
sequences ranging from 100K to 1M base pairs, thereby eliminating any overhead cost
between separate instructions. The total database size was around 300M base pairs. As
queries we again randomly selected eight pieces of sequence from the database, varying
in length.

As a test system we used the same Core i7 as described in Section 6.1.3. The top
scores list has two slots.

Results
In Figure 6.4 we can see the performance results of our system. It shows the system
performance in GCUPS versus various query lengths. We can see that for queries with
a length which is a multiple of 64, our system performs at its peak performance of 460
GCUPS. If the queries become larger, our software post processing and cancellation
system must kick in. For sequences with two or three extra base pairs this works fine,
we are basically doing cell updates for free. If the queries become larger, the behavior
changes quite a bit. Instead of doing more and more cell updates for free (and thereby
having an increasing practical performance), the performance drops dramatically. It
is clear that our software post processing step cannot keep up with the performance
of the CAEs. This is as expected: in Section 6.2.1 we explained that our scalar S-W
implementation is a factor 20 times slower than it could (and as it shows should) be.
Note that, the slower the CPU, the longer it will take before certain high scores enter
the top list. This results on the same hand in less instructions being cancelled. So the
CPU kind of ruins the party for itself: by being so slow, it also has to do extra work.
The difference between the two showed graphs can be explained by the fact that they
use different datasets. The behavior we are checking heavily depends on the data used.

The same figure also shows the practical GCUPS when we would not have a CPU
bottleneck. Here we can see that the performance increases from queries with a length
modulo 64 = 0 to queries with a length modulo 64 = 63, as intended. A notable aspect is
the difference in peak performance in the two graphs shown. This is due to the relative
behavior in workload cancellation. For small sequences a relative larger portion may be
cancelled, thereby increasing the practical throughput.

68 CHAPTER 6. IMPLEMENTATION RESULTS

Figure 6.4: System performance for various query lengths

6.3 Comparison with other work

In this section we will compare our work with existing S-W implementations. Since it is
impossible to compare our implementation directly with ones on different platforms, or
even with ones on another FPGA platform, we divided the comparison in several layers.
First, we will look at the behavior of S-W on three hardware platforms regarding five
metrics. Hereafter we will discuss the functionality of our implementation versus some
other FPGA based implementations, followed by a comparison between the Convey S-W
personality and our own.

The reason why we cannot compare different implementations is the difference in
platform and implementation details. Aspects like the alphabet used, the gap model,

6.3. COMPARISON WITH OTHER WORK 69

the type of database and of course the hardware itself, mean such a great deal that
almost any comparison would be unfair.

6.3.1 Comparison between several hardware platforms

In Chapter 3 we discussed three different platforms and their potential to accelerate S-W.
With the knowledge developed during this work and our own implementation weighing
in, we would like to take another look at the status quo. The platforms are of course the
CPU, the GPU and FPGAs. For all the platforms we regarded a single, but maximal
equipped system. For the CPU this means a four way, 48 core Opteron machine. For
GPUs a fast PC with 4 high end graphics cards, and for FPGAs the fastest S-W system
known, the one from SciEngines [35].

The results can be seen in Figure 6.5. We will discuss them per metric:

• Performance / Euro. FPGAs can deliver the best amount of GCUPS per Euro,
followed closely by GPUs. The gap between GPUs and CPUs can be explained
by the extra money you have to pay for a 4 way CPU system, while plugging 4
GPUs on a commodity motherboard is free. This result is as expected, and the
reason why FPGAs are used for HPC. S-W might not be the algorithm of choice
to show a major performance per Euro gain from using FPGAs. Other algorithms,
like symmetric ciphers, are a better candidate for that [35].

• Performance / Watt. This is another important reason for using FPGAs. It is clear
that here, in contrast to the previous metric, FPGAs are the absolute winner. Full
systems can deliver thousands of GCUPS for around a 1000 Watts. Note that,
while not visible in the graphs, CPUs score around twice as good as GPUs.

• Flexibility. It is here where FPGAs bite the dust. To get numbers for this metric,
we did a little thought experiment. We tried to imagine how many hours it would
take to change a fast linear gap implementation to use affine gaps. A skilled
engineer will probably manage to do this in a day for a CPU implementation,
in a couple of days for GPU implementations, and many weeks for their FPGA
counterpart. By talking to Convey, it indeed showed to be a lot of work to change
their DNA/linear gap S-W personality to a more complex one.

• Scalability. Here we took CPUs as baseline. Given a suitable problem they are
very scalable, there is an entire industry build around their interconnects. GPUs
can take advantage of those, but will introduce some extra latency. Therefore they
score a bit lower than CPUs. FPGAs have no default implementation platform,
if you however take the effort to build a specific hardware framework, they scale
very well.

• Future prospect. There are interesting thinks going on in the HPC world. Cus-
tomers can choose between traditional many core CPUs, GPU HPC solutions [28]
or upcoming FPGA products. We believe that GPUs as we know them now (or as
we knew them a couple of years ago) will disappear in the future, to be replaced
by architectures like Knights Ferry [17, 40] and Fusion [4]. CPUs are therefore

70 CHAPTER 6. IMPLEMENTATION RESULTS

Figure 6.5: Five S-W metrics analyzed for different platforms

scoring pretty good on this metric. In the very specific HPC areas however, where
memory bandwidth requirements are low and the problem is very composable, FP-
GAs will likely continue to be the best choice. S-W is on the edge of being such
an algorithm, as we will discuss later in the conclusions and recommendations.

6.3.2 Comparison of functionality between FPGA implementations

Some of the features provided by our implementation are unique. Most of our features
are targeting at the goal of using the platform in a most efficient way. We designed every
component so that it can deliver a sustainable peak performance for a long period of
time, unseen in current implementations. In Table 6.3 we can see five S-W FPGA based
implementations and their behavior regarding three metrics, two targeting flexibility and
the sustainability of performance and one regarding peak performance. It is clear that
our proposed solution scores best the first two metrics: it is the most flexible and efficient
implementation known. It is however not optimized for a peak performance, while others
are.

6.3.3 Comparison with the Convey S-W personality

The difference in features between Conveys S-W approach and ours is discussed in the
previous section. Here we will take a look at the raw performance of both. Since they

6.3. COMPARISON WITH OTHER WORK 71

Align sequences of
any length

Align any number of
sequences seamlessly

Optimized for peak
performance

Propossed Yes Yes No

[8] (Convey) No, up to 128×n base
pairs

No Yes

[21] (Lloyd) Yes, 1 cycle overhead
per LSA stride

No No

[2] (Altera) Yes, large overhead cost
(10-15%)

No Yes

[29] (Oliver) Yes, some overhead No Yes

Table 6.3: Functionality of our and several other S-W implementations

run at the same platform, this is the only fair comparison possible. In Table 6.4 the
results can be seen. It is clear that the lack of features in the Convey solution, is paid
back in performance (fourth row): it is clearly faster than our attempt. Which one is
best obviously depends on your wish list.

As discussed in Section 4.4.6 we do not fully utilize the FPGA. First, there is room
for another FU and second, the design can run at higher frequencies. Both opportunities
to increase the performance where not taken, in both cases because they were out of
our league regarding time and knowledge. Fitting another FU would require extensive
knowledge of floor planning and letting the FU run at a higher frequency would require
creating a separate clock domain and would bring a lot of synchronization problems
along. If we would have had the opportunity to implement both optimizations, the
performance would be around 4×7×128×180M=645.1 GCUPS, still slower than the
version from Convey. This performance is showed at the bottom of the table. It is clear
that the features offered by our implementation lay some pressure on the maximum
performance attainable. In the middle of the table we can see the amount of resources
that are relatively spent on control logic per FU. If we for example would have chosen
not to support sequences of any length, we would for instance not need the differential
en- and decoding, saving major area (data B, the temporary matrix data, would not
exist). It might then be possible to support eight FUs instead of seven.

It is important to realize, that our attempt to create a optimal PE was partly aimed
at creating one that could run at high frequencies. By not utilizing that attempt, we
end up with a performance per area ratio that might be worse than a default 1×1 PE.
There is another note that can be placed on the 180 MHz mentioned. Our PE can run
at frequencies up to 30 MHz higher, so we lose a lot by interfacing it in our FU. A more
extensive knowledge of writing high performance Verilog, and a better understanding
of synthesizing software, might contribute to an even higher maximum frequency, and
thereby an even higher performance.

72 CHAPTER 6. IMPLEMENTATION RESULTS

Proposed Convey

FUs 6 18

CUs/FU/clock 128 64

Frequency (MHz) 150 150

Performance (GCUPS) 460,8 691,2

% LUTs used / FPGA 71,0% unkown

% LUTs control logic / FU 20,1% unkown

Synthesis frequency (MHz) 186 unkown

Achievable FUs 7

Achievable frequency (MHz) 180

Achievable performance (GCUPS) 645.1 691.2

Table 6.4: Comparison between Conveys and our S-W personality

Conclusions and
recommendations 7
In this chapter we will say some final words on our work, and give recommendations for
further research.

7.1 Conclusions

Here we will name several conclusions based on this thesis.

7.1.1 Evaluation of our implementation

We presented a novel approach to look at S-W acceleration methods. Instead of designing
an isolated high speed module, which gets its work from separate dispatches, we presented
a system design based on a sustainable peak performance. Furthermore we introduced a
work distribution system to utilize the FPGAs and CPU in a most efficient way. Lastly,
unnecessary cell updates are being cancelled to reduce the workload.

We did not succeed in running a full system test due to several issues. Therefore we
cannot say that every aspect we introduced will work out as planned. However, from
the isolated and simulated tests we can conclude several things:

• The functional unit works as planned. We designed a S-W systolic array which
can run at 100% utilization for a long period of time.

• The memory crossbar works as planned, it can easily deliver the required band-
width.

• We showed it is possible to make a PE that performance better per area than a
naive implementation. We furthermore showed that it is possible to use this RVE
PE is a full system design.

• The workload cancellation paradigm seems to work, we can indeed cancel a notice-
able amount of cell updates.

• The workload distribution system seems to work. Aligning small sequences on the
CPU makes sense.

• Making the complete system works would require more than just the HC-1 and
the code we wrote. Since the HC-1 is very limited in its CPU computing power,
it would have to be hooked up to some fast CPU cluster to run the software S-
W implementation and post processing steps. The host program as well as the
hardware design must be tuned to create a stable and fast environment.

73

74 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

The last bullet point makes an important point very clear. Our work must be seen
as a proof of concept for certain ideas, it will never work on this hardware platform in
the way presented.

Another important realization is that our efforts to create a system that could run
at 100% load might have been in vain. To make this happen, we had to sacrifice logic
resources and development time that possibly could have been spend better on a higher
peak performance. The amount of time we win by utilizing every clock cycle can be
estimated to be around a single percent or less. A simpler but faster design might in the
end be a better choice. This points out that it is always important to keep the impact of
your design decisions in mind. The workload cancellation paradigm however, especially
with the points from the next section in mind, really pays off in execution time. Doing
these checks cost little effort and can reduce the workload significantly.

7.1.2 Using RVE for Smith-Waterman

Using RVE PEs in a full system design was one of the reasons this entire research was
started. During the research described in Chapter 5 we discovered that the work done
on RVE so far, has not resulted in a usable PE: the throughput per area was not better
than with a default 1×1 PE. We tried to make a 1×2 PE that could perform better than
the default implementation. We succeeded in this, thanks to pipelining, with a small
margin. Far later however, we realized that the optimizations done for the pipelined 1×2
PE could also have been applied to the pipelined 1×1 PE. After doing this (in the final
stages of the project), we ended up with a pipelined 1×1 PE that performs far better
than all the other PEs discussed. This result eliminates every possible use RVE could
have had for S-W. Not using RVE furthermore makes the control logic and wiring far
less complex, and gives the place and route tool more freedom due to less spread logic.

So, when looking back, we made the wrong choice. We were so focused on getting
RVE working, that we turned a little blind for the alternatives and negative side effects
of using RVE. Furthermore, we believe that the estimated amount of Virtex 4 slices is
not the most important metric. With the insights we have now, we would only have
looked at the amount of Virtex 5 LUTs the design would take, since LUTs represented
the bottleneck for the final implementation.

We would like to say some final words on RVE. The S-W algorithm, or the class of
problems it can represent, is implemented on FPGAs by using a lot of PEs, as discussed
thoroughly. The final system performance comes from the frequency, the number of
PEs and the number of cell updates per PE per clock. Using a technique that makes
one aspect better (number of cell updates per PE per clock), but makes another one
(number of PEs) so much worse that the total performance drops, is not an appropriate
approach. More general, the whole idea of developing a technique that ‘is better when
taking area not in account’ while targeting HPC on FPGAs for dynamic programming
algorithms, means the same as designing a PE ‘without taking the frequency in account’,
or designing an airplane without taking the mass of materials in account.

7.2. RECOMMENDATIONS FOR FURTHER RESEARCH 75

7.1.3 Making an implementation on the HC-1

The gross of our time was spent on making our implementation on the HC-1 hybrid
supercomputer. Here we will discuss some notable aspects of the architecture.

• Memory system. In general, the memory system of the HC-1 is user friendly.
The scatter/gather architecture gave the pleasant ability to fetch and store small
amounts of data, and the interfaces where easy to use. The latency however was
a major drawback for our design. The HC-1 is built around the concept of global
memory which is cache coherent throughout the platform. For S-W both of these
features are not necessary: it would also be possible to do S-W alignments in
distributed memory. In that case, the memory latency could be much better.

• Instruction dispatch. Working with the instruction dispatch was not user friendly
at all. The whole concept of having a coprocessor and function dispatches is prob-
ably aimed at the general purpose computing Convey likes to see on their system,
but is completely unnecessary for simple HPC tasks. It severely interferes with
the way the user can communicate with the FPGAs and thereby might limit the
usability. We spent to many days on getting the communication between CPU and
FPGA right, while the concept of our design does not seem that farfetched at all.

Overall the HC-1 and its framework are nice to work with. We think it has a little
overkill on the technical aspects, which might not be necessary for most HPC applica-
tions.

7.2 Recommendations for further research

Of course we have several recommendations for the continuation of this research. First
we will describe two possible high level optimizations, followed by a re-evaluation of
FPGAs as platform for S-W acceleration.

7.2.1 Possible improvements

Before and during the implementation phase we came up with some optimizations that
could improve the performance significantly. We did not have the time to implement
them, so we would like to mention them here.

• Fast cancellation on the FPGAs. Instead of only looking at the last one up to 63
columns for possible cancellation, it is also possible to implement a cancellation
strategy on the FPGA. In parallel with the normal S-W work, a little control block
could check whether it pays off to continue the current similarity matrix. If not,
the FU could immediately jump to the next alignment. This does not have to
cost a large amount of resources so almost any amount of extra cancelled columns
would be a worthy result.

• LSAs of different lengths. When using LSAs all 64 matrix columns wide, the aver-
age number of columns unfinished is 31. If we would use LSAs of different lengths,

76 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

we might end up with a better coverage. After doing an automated exhaustive
search (Appendix A), it showed that six LSAs of for example 48, 66, 68, 69, 70
and 79 PEs wide would result in an average of seven uncalculated columns. This
significantly reduces the workload for the CPU, probably resulting in a more bal-
anced system. On the other hand, it also introduces less opportunity to cancel
workload (if only cancellation in software is used). For FPGA implementations
that use sequence padding instead of clipping, this optimization can be of even
more importance.

Both optimizations mentioned have not been seen in an implementation to date.

7.2.2 Re-evaluation of FPGA usage

In Section 6.3.1 we stated that FPGAs have a good future prospect regarding S-W
acceleration. Here we would like to add a little depth and discussion to that statement.
While it is proven possible to make a rather simple implementation that has a better
performance / Euro ratio than a software implementation, doing so for a more complex
case might be difficult. By supporting proteins, affine gaps and larger sequences the
performance might drop to a level from where the FPGAs no longer have an easy lead
over CPUs. When looking a bit deeper, at the core of the S-W algorithm, we will mainly
see additions, an operation where FPGAs do not have a huge advantage over CPUs.
If we compare an addition with a logic AND function, they both take one CPU cycle,
but the latter introduces a far smaller logic delay on a FPGA, since only a couple of
independent gates are required. Algorithms containing a lot of bit operations (hash
functions for example) are therefore a better candidate for a huge performance gain by
using FPGAs.

Furthermore S-W requires data input for every alignment. For simple implementa-
tions only the sequences are required, but when you want to support larger sequences,
you have to use some sort of matrix data storage. While the bandwidths are not a
problem (especially on the HC-1), it does require buffers, logic, IO etc. Algorithms that
generate their own data are therefore much easier to accelerate.

The conclusion is that S-W can be faster per Euro on a FPGA than on a CPU, but
only if you limit your problem space. Since the end of FPGA development is not in
sight, this behavior will continue into the future.

Bibliography

[1] Marco Aldinucci, Massimiliano Meneghin, and Massimo Torquati, Efficient s-w on
multi-core with fast-flow, Proceedings of the 2010 IEEE International Symposium
on Parallel and Distributed Processing (2010).

[2] Altera, Implementation of the smith-waterman algorithm on a reconfigurable super-
computing platform, Altera White Paper (2007).

[3] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman, Basic local alignment search tool, Journal of Molecular Biology (1990).

[4] AMD, Amd website, http://www.amd.com/, 2010.

[5] Geoffrey J. Barton, Protein sequence alignment and database scanning, Oxford Uni-
versity Press, 1996.

[6] Azzedine Boukerche, Rdolfo Bezerra Batista, and Alba Cristina Magalhaes Alves
de Melo, Exact pairwise alignment of megabase genome biological sequences using a
novel z-align parallel strategy, Proceedings of the 2009 IEEE International Sympo-
sium on Parallel and Distributed Processing (2009).

[7] Jacques Cohen, Bioinformatics, an introduction for computer scientists, ACM Com-
puting Surveys (CSUR) (2004).

[8] Convey, Convey website, http://www.convey.com, 2010.

[9] Cray, Cray website, http://www.cray.com/, 2010.

[10] EBI, Swissprot website, http://www.ebi.ac.uk/uniprot/, 2010.

[11] Michael Farrar, Striped s-w speeds database searches six times over other simd im-
plementations, Oxford Journal (2006).

[12] Center for bioinformatics Peking, Cbi website, http://www.cbi.pku.edu.cn/,
2010.

[13] Mustafa Gok and Caglar Yilmaz, Efficient cell design for systolic sw implemen-
tations, International Conference on Field Programmable Logic and Applications
(2006).

[14] Laiq Hasan and Zaid Al-Ars, An efficient and high performance linear recursive
variable expansion implementation of the smith-waterman algorithm, Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society
(2009).

[15] Laiq Hasan, Zaid Al-Ars, Zubair Nawaz, and Koen Bertels, Hardware implementa-
tion of the smith-waterman algorithm using recursive variable expansion, Proceed-
ings of 3rd International Design and Test Workshop IDT08 (2008).

77

78 BIBLIOGRAPHY

[16] Laiq Hasan, Zaid Al-Ars, and Mottaqiallah Taouil, High performance and resource
efficient biological sequence alignment, 32nd Annual International Conference of the
IEEE EMBS (2010).

[17] Intel, Intel website, http://www.intel.com/, 2010.

[18] Alexander Isaev, Introduction to mathematical methods in bioinformatics, Springerl,
2004.

[19] Server Kasap, Khaled Benkrid, and Ying Liu, High performance fpga-based core for
blast sequence alignment with the two-hit method, Unkown (2008).

[20] Marijn Kentie, Biological sequence alignment using graphics processing units, Mas-
ter’s thesis, TU Delft, 2010.

[21] Scott Lloyd and Quinn O. Snell, Sequence alignment with traceback on reconfig-
urable hardware, International Conference on Reconfigurable Computing and FP-
GAs (2008).

[22] Hadon Nash, Douglas Blair, and John Grefenstette, Comparing algorithms for large-
scale sequence analysis, Proceedings of the 2nd IEEE International Symposium on
Bioinformatics and Bioengineering (2001).

[23] Zubair Nawaz, Recursive variable expansion - a transformation for reconfigurable
computing, Ph.D. thesis, TU Delft.

[24] Zubair Nawaz, Koen Bertels, and H. Ekin Sumbul, Fast smith-waterman hardware
implementation, IEEE International Symposium on Parallel & Distributed Process-
ing (2010).

[25] Zubair Nawaz, Mudassir Shabbir, Zaid Al-Ars, and Koen Bertels, Acceleration
of biological sequence alignment using recursive variable expansion, ProRISC 2007
(2007).

[26] NCBI, Ncbi website, http://www.ncbi.nlm.nih.gov/BLAST/tutorial/

Altschul-1.html, 2010.

[27] Saul B Needleman and Christian D. Wunsch, A general method applicable to the
search for similarities in the amino acid sequence of two proteins, Journal of Molec-
ular Biology (1970).

[28] NVIDIA, Nvidia website, http://www.nvidia.com, 2010.

[29] Tim Oliver, Bertil Schmidt, and Douglas Maskell, Hyper customized processors for
bio-sequence database scanning on fpgas, ACM/SIGDA 13th international sympo-
sium on Field-programmable gate arrays (2005).

[30] ORNL, Human genome project website, http://www.ornl.gov/sci/

techresources/Human_Genome/home.shtml, 2010.

BIBLIOGRAPHY 79

[31] William R. Pearson, Searching protein sequence libraries: comparison of the sensi-
tivity and selectivity of the smith-waterman and fasta algorithms, Genomics (1988).

[32] William R. Pearson and David J. Lipman, Improved tools for biological sequence
comparison, Proc. Natl. Acad. Sci. USA (1988).

[33] Kiran Puttegowda, William Worek, Nicholas Pappas, Anusha Dandapani, and Pe-
ter Athanas, A run-time reconfigurable system for gene-sequence searching, 16th
International Conference on VLSI Design (2003).

[34] NCBI RefSeq, Refseq site, http://www.ncbi.nlm.nih.gov/RefSeq/, 2010.

[35] SciEngines, Sciengines website, http://www.sciengines.com/, 2010.

[36] Kal Renganathan Sharma, Bioinformatics: Sequence alignment and markov models,
McGraw-Hill Professional, 2008.

[37] Temple F. Smith and Michael S. Waterman, Identification of common molecular
subsequences, Journal of Molecular Biology (1981).

[38] Adam Szalkowski, Christian Ledergerber, Philipp Krhenbhl1, and Christophe Dessi-
moz, Swps3 - a fast multi-threaded vectorized smith-waterman for ibm cell/b.e. and
86/sse2, BioMed Central (2008).

[39] POSIX threads, Posix threads website, https://computing.llnl.gov/tutorials/
pthreads/, 2010.

[40] HPC Wire, Hpc wire, knights ferry versus fermi, http://www.hpcwire.com/

features/Compilers-and-More-Knights-Ferry-v-Fermi-100051864.html,
2010.

[41] Xilinx, Xilinx website, http://www.xilinx.com, 2010.

80 BIBLIOGRAPHY

Specification of code and
support tools A
Here we will take a look at our Verilog code for the hardware design, the code of the
user application and several tools we wrote to support the design and test process.

A.1 Verilog code

In Listing A.1 we can see the tree structure of the Verilog code of our hardware design.
The parts written by Convey are not shown. The nested structure of the functional
unit, LSA and the PE is clearly visible. We see only one PE, since the complete PE
array is created using a generate statement. The multiple FUs are not generated, but
instantiated separately and therefore all visible. Our memory crossbar is on the same
level as the FUs, and holds all the request and response finders.

The approximate number of lines is shown in the second column. An interesting
observation is that the LSA module is pretty small, clearly our generate statement and
smart wiring keeps the number of lines low.

Listing A.1: Structure of our Verilog code

| s t r u c tu r e | l i n e s o f code (appr .) |
| −− | −−−−−−−−−−−−−−−−−−−−−−
/ ca e pe r s	1000	
+−− f u n c t i o n a l un i t 0	950	
	+−− l i n e a r s y s t o l i c array	125
	+−− pro c e s s i ng element	200
+−− f u n c t i o n a l un i t . . .		
+−− f u n c t i o n a l un i t 5		
+−− memory c ro s sba r	1200	
	+−− s t o r e r eque s t f i n d e r 0	150
	+−− s t o r e r eque s t f i n d e r . . .	
	+−− s t o r e r eque s t f i n d e r 7	
	+−− read reques t f i n d e r 0	150
	+−− read reques t f i n d e r . . .	
	+−− read reques t f i n d e r 7	
	+−− memory response f i n d e r 0	130
	+−− memory response f i n d e r . . .	
	+−− memory response f i n d e r 5	
+−− i n s t r u c t i o n queue		
/ c on s t r a i n s . uc f	130	

81

82 APPENDIX A. SPECIFICATION OF CODE AND SUPPORT TOOLS

A.2 User application code

The layout of our user application code can be seen in Listing A.2. Only the main
methods are shown. We can see the user application itself, the S-W library, a S-W CPU
library and a list of some global methods.

The first mentioned is the part that the end user will see. This piece of code is pretty
small, indicating that the program is easy to use. The user application talks to the S-W
library as indicated in Section 4.5. In the listing we can see the three functions necessary
to load a database and to create alignment instructions. The library has furthermore a
start and stop function. The S-W CPU library contains our CPU S-W implementation.
It offers a default (full) implementation, and one that tries to cancel as many columns as
possible. The SW cpu finish fpga function decompresses the data B received from the
CAEs and calls one of the two software implementations to finish the last columns. This
library is called from the SW CPU thread.

Besides the two libraries, we also have a couple of functions that live in the global
space. The three most important ones are the ones that run in a separate thread.
These are also discussed in Section 4.5. Another method worth mentioning is the one
that actually sends an instruction to the coprocessor. It mainly consists out of copying
variables to the right position and setting the right flags. The encode DNA method
converts a char array to a unsigned long long array, where every 64 bits contain 32
bases.

Listing A.2: Structure of our C++ code

| s t r u c tu r e | l i n e s o f code (appr .) |
| −− | −−−−−−−−−−−−−−−−−−−−−−
/ User app l i c a t i o n	50
/ S−W l i b r a r y	
+−− a l i gn db aga i n s t db	5
+−− a l i g n s e q a g a i n s t db	85
+−− load db	110
+−− s t a r t p r o c e s s i n g	50
+−− s t op p r o c e s s i n g	5
/ S−W CPU l i b r a r y	
+−− SW cpu f in i sh fpga	40
+−− SW cpu ful l	45
+−− SW cpu with cancel	60
/ Global methods	
+−− manage ins t ruc t i ons (thread)	75
+−− manage workloads (thread)	140
+−− SW cpu (thread)	55
+−− s e n d i n s t r t o f p g a	70
+−− encode DNA	45
/ Coprocessor code	
+−− cop roc e s s o r func t i on	110
/ Al l code	1410

A.3. SUPPORT TOOLS 83

A.3 Support tools

During the design and test process we created several small tools to help us. Here we
will name and discuss them briefly.

Creating test databases
To not be dependent on existing DNA databases, we wrote a tool that could create
them. Some parameters are the total size, the minimal length and maximal length of
the sequences. Furthermore the user can specify how many of the sequences must be
smaller than a certain threshold. This way the resulting database could contain for
example more small sequences than large ones.

It is also possible to automatically generate some queries from the generated database.

Creating lookup tables
To create the lookup tables used to simulate the CAEs, we wrote a little tool. This is
actually not much more than a software S-W implementation, a bit of control code and
some in- and output code.

Crossbar collisions
To get the numbers in Table 4.2 we wrote a Monte Carlo simulation. The tool generates
arrays of random numbers and interprets them as memory requests. By doing many
runs, we end up with the probabilities shown in the table. It would also have been
possible to get these numbers from theory, but would probably have taken us far more
time.

Creating crossbar and functional unit testbenches
To test our crossbar and functional unit we used large Verilog testbenches.

For the crossbar this meant a number of assignments to queues or registers. Since
the tests required code in the order of hundreds of assignments, these statements where
automatically generated with a tool. Its output is a piece of code, with a correct syntax,
that could be copy pasted in the testbench framework.

For the FU testbenches the tool generated Verilog statements that filled the simulator
memory with sequence data. When testing multiple large sequences, this could also be
in the hundreds of lines of Verilog code.

Linear systolic arrays of different lengths
To get the different LSA lengths mentioned in Section 7.2.1 we wrote a small program.
It does an exhaustive search for the optimal LSA lengths with the following limitations:

• The total amount of PEs should be between 6×64 (384) and 6×64 + 16 (400).

• The minimal length of a LSA is 64-16 (48), the maximum length is 64+16 (80).

• The sequence contains between 64 and 4096 base pairs.

84 APPENDIX A. SPECIFICATION OF CODE AND SUPPORT TOOLS

We searched for the LSA lengths where, first, the modulo is minimal, and second, the
number of PEs is a large as possible. There are many solutions that give the same best
outcome, one example is: 48, 66, 68, 69, 70 and 79. In this case the average modulo is
seven and the total number of PEs is 400.

Automated RVE hardware
design tool B
To create RVE PEs of various sizes we wrote a tool. It creates and optimizes all the
equations for a certain RVE dimension, and outputs a Verilog description of the PE.

B.1 Creating all the equations

RVE is invented as a loop transform. By recursively expanding the loop variables, one
can eliminate all data dependencies. In our case we want to rewrite the S-W definition
so that we can calculate the value of any matrix cell at ones. To do so we did not look
at RVE as a loop transform, but as a tree problem. The equations involved in S-W then
become paths from a root (the cell we want to calculate) to a known cell. An example
of this is shown in Figure B.1 for a 3x3 matrix. For the sake of clarity, only a small
portion of the tree is drawn. We want to calculate the cell with the X, so we spawn
three children (the data dependencies). Since the value of these children is unknown,
every child spawns again three children. This process is continued until every leaf node is
a known value, or as in the example, a letter. Every node to node connection represents
a gap or a match score. As said, an equation is now represented by a path from the root
to a known cell, and the number of equations is therefore equal to the amount of leaf
nodes.

This is implemented with a class structure, where every class creates three children,
until it has reached the necessary depth. Every node has a list of matches and gaps
which represent the equation until then. When creating new children, the parent passes
this list including a new match to one of them, and including an extra gap to the other
two children. Since a lot of equations use the same matches, these matches are stored
in a separate structure. This can be seen as a matrix where every cell holds the score
for the transition from that cell to its lower-left neighbor. In the next section such a
structure is called a score matrix.

When the entire tree is created, we traverse it depth first. At arrival at a leaf node,
we write the corresponding equation to a useable Equation format, and store it in a list.

B.2 Optimizing the equations

Since a lot of equations are not needed for the correct calculation of our unknown cell,
we can cancel them. In our program this is mainly done in a brute force way. First,
we create every possible match matrix. That way we have every possible combination
between matches and mismatches that can happen for our RVE dimension. For every
matrix we calculate the score of every equation and keep track of the best score. Before
we switch to the next matrix, we check which equations are the ones that have lead

85

86 APPENDIX B. AUTOMATED RVE HARDWARE DESIGN TOOL

Figure B.1: RVE as a tree problem

to the maximal score found, and give them a flag. After we have processed all the
match matrices, we check for equations without a flag. Clearly they have never been the
equation that leads to the maximal score, and can therefore be discarded.

This method works for elimination almost every unnecessary equation. There are
however some cases in which this system fails. If we look at the two cases shown in
Figure B.2, our described method will not work. If we use a score system with +2 for a
match, -1 for a mismatch and -2 for a gap, the left path (or equation) will give us a best
case score of -2. The right path will give us a worst case score of -2. Our brute force
system will keep both, since they both reach the maximum in their own best case match
matrix. Analyzing these two equations together will however lead to the conclusion that
you need only the right one, since it is always at least as good as the other one.

To deal with these difficult cases we wrote a piece of code that detects ‘mismatch’
versus ‘gap - gap’ patterns, and cancels the latter equation. This is also done for ‘match -
match’ versus ‘gap - match - gap’ patterns, since the same analysis holds here. For larger
matrices and more complex paths such an analysis becomes very non-trivial, and the
scoring scheme used becomes a contributing factor. However, during extensive random
testing of our final equations, it seems like our cancellation algorithm is doing a good
job.

B.3 Dealing with the clipping error

The clipping error as described in [23] makes life a bit more complicated. Figure B.3
illustrates the problem. In the path shown, it might be possible that the score of the

B.4. GENERATING HDL 87

Figure B.2: Difficult case for our automated equation cancellation

Figure B.3: Clipping error when using RVE

first intermediate step drops below zero. Following the S-W definition, it is clipped at
zero, as visible in the bottom subfigure. Using RVE however, this intermediate clipping
step no longer exists. The result is that, in this case, the final result is too low, as can
be seen in the middle subfigure. When this clipping error can occur, and how it can be
treated can be read in detail in Nawaz’ work [23]. Therefore we will not repeat it here.

To cope with the error we check every equation for the possibility of clipping. If the
equation falls in the definition, we give it a flag. This flag is used later on when we
calculated scores (as discussed in the previous section), and when we generate hardware
in the final step of our program. These equations are hardware is not written as in the
example in Listing 5.2. Instead, all the terms are added in the right order, and clipped
at zero before going to the next addition.

When testing RVE sizes of 5×5 and larger, we encountered an error in the clipping
handling. Whether this comes from a bad implementation, or a faulty clipping error
handling definition cannot be said. But as explained before, analyzing long paths through
large matrices becomes very non-trivial; therefore we think that the definition is not
universal enough and only works for small matrices. Since we would not use such large
PEs anyway, we did not bother.

B.4 Generating HDL

When all the equations are ready, it is time to generate Verilog code. An example of
this can be seen in Listing 5.2. The lion’s share of the code is pretty straightforward.
To create the final find maximum tree code however we did some extra work. Since
the XST compiler does a poor job at high level code optimization, it cannot create a

88 APPENDIX B. AUTOMATED RVE HARDWARE DESIGN TOOL

minimum depth tree from a given number of max operations. Therefore, we wrote a
small algorithm that does that automatically. Another small optimization that we do
is group the match and gap scores together, so they do not have to be recalculated for
every equation.

We looked at the possibility of eliminating common subexpression ourselves. Which
terms could be grouped together for a maximal performance and area gain showed to be
a difficult task. Even for simple cases, the XST compiler had a different opinion about
what is fast and what is not than we had. This led us to do no common subexpression
elimination at all.

