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André Pauss . Jean-Philippe Steyer

Published online: 22 October 2015

� Springer Science+Business Media Dordrecht 2015

Abstract To enhance energy production from

methane or resource recovery from digestate, anaerobic

digestion processes require advanced instrumentation

and control tools. Over the years, research on these

topics has evolved and followed the main fields of

application of anaerobic digestion processes: from

municipal sewage sludge to liquid—mainly indus-

trial—then municipal organic fraction of solid waste

and agricultural residues. Time constants of the

processes have also changed with respect to the treated

waste from minutes or hours to weeks or months. Since

fast closed loop control is needed for short time constant

processes, human operator is now included in the loop

when taking decisions to optimize anaerobic digestion

plants dealing with complex solid waste over a long

retention time. Control objectives have also moved

from the regulation of key variables—measured on-

line—to the prediction of overall process perfor-

mance—based on global off-line measurements—to

optimize the feeding of the processes. Additionally, the

need for more accurate prediction of methane
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production and organic matter biodegradation has

impacted the complexity of instrumentation and should

include a more detailed characterization of the waste

(e.g., biochemical fractions like proteins, lipids and

carbohydrates) and their bioaccessibility and biodegrad-

ability characteristics. However, even if in the literature

several methodologies have been developed to deter-

mine biodegradability based on organic matter charac-

terization, only a few papers deal with bioaccessibility

assessment. In this review, we emphasize the high

potential of some promising techniques, such as spectral

analysis, and we discuss issues that could appear in the

near future concerning control of AD processes.

Keywords Anaerobic digestion � Organic matter �
Characterization � Instrumentation � Control �
Diagnosis
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ADM1 Anaerobic digestion model No 1

AFM Atomic force microscopy

BCA Bicinchonic acid

BD Ultimate anaerobic biodegradability

BMP Biochemical methane potential

BOD Biochemical oxygen demand

CH4 Methane

CLSM Confocal laser-scanning microscopy

CO2 Carbon dioxide

COD Chemical oxygen demand

Da Dalton

EPS Extracellular polymeric substances

FOG Fats, oils, and greases

FTIR Fourier transform infrared spectroscopy
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GC/MS Gas chromatography coupled with mass

spectroscopy

GISCOD Eneral integrated solid waste co-digestion

model

HA Humic acids

HPLC High performance liquid chromatography

HRT Hydraulic retention time

ICA Instrumentation, control and automation

IWA International water association

LCFA Long chain fatty acids

MPR Methane production rate

MSW Municipal solid waste

NIRS Near infra-red spectroscopy

NMR Nuclear magnetic resonance spectroscopy

OLR Organic load rate

PLS Partial least square

R2 Regression coefficient

RI4 Respiration index 4 days

SEM Scanning electron microscopy

STP Standard conditions of temperature and

pressure

S/X Substrate to biomass ratio

TEM Transmission electron microscopy

TKN Total kjeldahl nitrogen

TOC Total organic carbon

TS Total suspended solids
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1 Introduction

One of the key issues for global sustainable develop-

ment is the energy consumption, particularly as fossil

fuels, which represents up to 80 % of the global energy

consumption. Moreover, fossil fuels are considered

the main source of acidifying contaminants and

greenhouse gasses, as well as the main factor

contributing to global warming and climate change.

Hence, one big challenge for this century is to develop

new competitive sources of renewable energy, capable

of replacing fossil fuels with a minimum impact on

both the environment and society, while maintaining

energy (electricity or gas) grid stability (Szarka et al.

2013). In this respect, alternative energy sources such

as methane from organic residues must be considered.

Anaerobic Digestion (AD) is a biological process in

which the organic carbon is converted through oxida-

tion–reduction reactions to both its most oxidized state

(CO2) and its most reduced form (CH4). The methane

produced is an energy source that can be valorized as

electricity, heat, biofuel or can be injected into the

natural gas grid. In the context of a widely perceived

energetic and climatic crisis, AD has become a very

interesting alternative for organic waste disposal. For

example, in France, wastewater treatment plant

(WWTP) energy consumption is about 20 kWh per

year per person equivalent, based on a 100,000 person

equivalent plant. From these observations and the fact

that wastewater sludge potentially contains a high

amount of energy that can be recovered, it is clear that

WWTPs of the future—or water resource reclamation

facilities (WRRFs) as they are now called—should aim

at a positive energy balance (Cao and Pawlowski 2012).

1.1 From municipal wastewater solids

to industrial and agricultural wastes

AD has been used to stabilize municipal wastewater

solids for over 80 years, probably with the first heated,

mixed system being employed in Germany in 1927

(Imhoff 1938). During the last 30 years, the total

number of papers on AD and industrial applications

increased rapidly, mainly due to a favorable environ-

mental policy: the Kyoto protocol (2005), national or

international legislation promoting AD, special rates

for selling electricity produced from biogas. The

evolution of the market also led to a higher complexity

of the substrates considered for AD valorization.

In the eighties, industrial wastewater treated by

AD began to grow and worldwide, the overall

number of anaerobic reactors treating industrial

wastewater reached 2266 references in 2007 (van

Lier 2008) and kept on increasing since then. The

main focus of AD optimization has been about

kinetics of soluble substrates, considering acetoge-

nesis and methanogenesis as the limiting steps

(Mata-Alvarez et al. 2000).

At the end of the eighties, AD applications

focused on the conversion of solid waste began to

increase. Solid wastes then included mainly munic-

ipal solid waste (MSW) and green wastes. The

increasing production of solid waste combined with

waste management policies aiming at reducing

long-term environmental impacts of landfill dis-

posal have created a need for alternative treatment.

The use of AD to treat the organic fraction of

municipal solid waste became a reality (De Baere

2000, 2008): from three plants in 1990 to 55 plants

referenced in 2010 in Europe and at least 4 in

North America today, for example. From a process

control standpoint, the disintegration/hydrolysis

step received considerable attention for solid waste

since it is the rate-limiting step for substrates

containing mainly particulates (Mata-Alvarez et al.

2000; Lauwers et al. 2013).

Concomitantly, farmers have become increasingly

interested in the AD process, both as an additional

source of revenue and as an alternative energy source

without greenhouse gas emission to the atmosphere.

AD is indeed one of the technologies that fulfil

European criteria for second generation biofuel pro-

duction (fuels manufactured from various types of

complex organic carbon sources such as lignocellulose

biomass or agricultural residues, e.g., manure). The

case of Germany where more than 7850 plants

generate over 3.5 GW of electricity is an example or

in China where more than 35 million household

digesters and 25,000 digesters for agricultural residues

have been deployed (Fang 2012).

1.2 Biodegradability, bioavailability

and bioaccessibility

Hydrolysis rate of complex substrates has been identi-

fied for a long time as an important factor for AD

modelling and process optimization (Vavilin et al.

1997), especially considering substrate characterization
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and hydrolysis kinetics. Modern dynamical models of

AD are very useful for optimization of biogas produc-

tion. For example, the IWAAnaerobicDigestionModel

No 1 ADM1 (Batstone et al. 2002) has a detailed

pathway description, but the model’s main drawback is

that it also needs detailed input variables and data that

may not be available for a specific application (Astals

et al. 2013a). Indeed, a key-point for the successful

description of a bioprocess is appropriate influent

characterization data (Huete et al. 2006; Buffiere et al.

2006; Kleerebezem and van Loosdrecht 2006).

Lately, three major concepts have been shown to be

of prime importance to characterize organic matter

biodegradation: biodegradability, bioavailability and

bioaccessibility (Jimenez et al. 2014). Biodegradabil-

ity is the ability of a substrate to be broken down by a

microorganism into simpler compounds but this

biodegradation is limited by molecule’s bioavailabil-

ity, complexity and/or toxicity. Bioavailability is

defined as the direct access to the molecule to be

degraded while Aquino et al. (2008) defined bioac-

cessibility as the possible access to the molecule

depending on several factors such as the contact time

between the substrate and the microorganism, the

efficiency of hydrolytic activity or ultimately any pre-

treatment applied to the waste. There is thus a notion

of physical accessibility as in the case of the cellulose

protection by lignin or vegetal walls acting as a barrier

and needing chemical or physical break-up to make

cellulose accessible to microorganisms (Motte et al.

2014, Reilly et al. 2015). Consequently, the bioavail-

able organic matter is included in the bioaccessible

fraction such as the organic fraction able to be

degraded by secreted exo-cellular enzymes (Jimenez

et al. 2014).

In parallel, the control problem associated with

anaerobic biological waste or wastewater treatment

processes must involve—like in any aerobic pro-

cesses—process configurations that remain robust

against unpredicted perturbations (e.g., physicochem-

ical, mechanical, etc.) and uncertainties in relation to:

(a) initial conditions, (b) kinetic and hydrodynamic

parameters, (c) yield coefficients, and (d) input con-

centrations. All these aspects strongly influence the

overall objectives of instrumentation and control and

are currently profoundly impacting the technical

challenges and optimization criteria applied to AD

processes.

2 Instrumentation of anaerobic digestion

processes

The following section first focuses on classical instru-

mentation that is very often encountered in practice.

On-line instruments that can be used in fast closed-loop

control scheme and have proven to be very useful for

monitoring any type of digester will be presented first

(See also Spanjers and van Lier 2006 for additional

information). Next, because of the development of the

solid AD process—with long residence time—some

techniques that are not yet available in an on-line

context will be discussed. They can indeed provide

very informative measurements that can help to

optimize AD plants with long solid retention time,

such as those dealing with municipal or agricultural

waste. Sensor dynamics are likely to be less important

than static characteristics and other cost benefit

considerations in most cases, as the process dynamics

are seldomchallenging to the sensor technologies used.

2.1 On-line instrumentation

2.1.1 Flow, temperature, pH and ORP

Instruments to monitor gas and liquid flows are

ubiquitous in wastewater treatment. For example,

Harremoës et al. (1993) provided an extensive over-

view of liquid flow measurement techniques and

pointed out the importance of proper installation for

guaranteed accuracy. Measurements are based on

pressure differentials resulting from restrictions (ven-

turi, orifice plates, and meshes) placed in the flow path.

In addition, electromagnetic and ultrasonic sensors

can also be applied.

Temperature is a rather important variable for

anaerobic digesters and temperature control is often

implemented. Three commonly used types of process

measuring instruments are available for measuring

temperature: resistance thermometer, thermo-element,

and thermistor.

It is normal practice to install pH electrodes in a

treatment plant. Immersion of these probes in ‘sticky’

sludge has encouraged the development of different

cleaning strategies: hydraulic (water spray), mechan-

ical (brush), chemical (rinsing with cleaning agent) or

ultrasonic cleaning. With these techniques, longer

periods without maintenance can be attained. Poor or
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no automatic cleaning may indeed cause problems and

self-diagnosis has been integrated in advanced sys-

tems. More sophisticated set-ups include automated

checks of the impedance of the diaphragm and the

glass electrode, while tests performed during (auto-

matic) calibration may be used to indicate other sensor

deficiencies. Although pH is a variable that is impor-

tant in all biological processes, its value is especially

critical in anaerobic digestion, eventually leading to

acidification and process failure. Hence, its measure-

ment and control are important. However, in the case

of wastewaters with high buffering capacity, pH

measurements may be rather insensitive to indicate

process changes and are therefore not advisable for

process supervision and control. In such cases, they

may be replaced with bicarbonate and/or alkalinity

measuring systems (Di Pinto et al. 1990; Hawkes et al.

1993 and Guwy et al. 1997—see also Sect. 2.1.3).

Oxidation–reduction potential (ORP) sensors are

also sometimes installed since an increase in ORP

indicates a possible presence of oxygen in the process.

In this respect, it is recommended to maintain an ORP

potential below -300 mV relative to a standard

hydrogen electrode (depending on the wastewater

characteristics) in order to not adversely affect anaer-

obic methanogenic archaea activity. ORP is also

sometimes used to monitor sulfate reduction in

digesters and H2S in the biogas throughmicro-aeration

(Nghiem et al. 2014).

As biogas formation rate is one of the most

commonly monitored variables in anaerobic digestion

processes, gas flow sensors are very often part of

digester instrumentation. Pressure measurements can

be found in AD plants as well, especially for alarm

functions.

2.1.2 Biogas composition

Gas composition measurements are also required in

lab processes and full-scale plants. Typically, specific

gas analyzers monitor the content of a component

directly and infrared absorption measurements are

used to determine carbon dioxide and methane con-

centrations. There are several of such sensors available

today in the market. It has to be kept in mind that,

although not always straightforward to predict from

measurements in the gas phase, the corresponding

concentrations of gasses in the liquid phase are

important as they represent the environment the

microorganisms operate in. It is possible to use

Henry’s law to calculate equilibrium aqueous concen-

tration, however it is necessary to know the gas

composition and the Henry’s constant for each com-

ponent at the required temperature and in aqueous

solutions of variable ionic strength. Also, gas–liquid

partitioning in digesters is very dynamic and equilib-

rium conditions may not be present.

The presence of hydrogen sulphide in the gas and

the explosive character of biogas also require careful

precautions. Hydrogen sulphide measurement in the

gas phase may be performed by monitoring the

reaction of sulphide with a Pb-strip. Subsequently,

the black PbS that is produced is quantified by

colorimetry. No direct on-line measurement of hydro-

gen sulphide in the liquid phase has been reported

though. Membrane inlet mass spectrometry (Ryhiner

et al. 1992) is another method to directly measure a

large number of dissolved gasses and volatile com-

pounds. The MS membrane probe response is often

linear over very large concentration ranges. For

application of thin membranes—that are required for

sufficiently fast response and high sensitivity—the

analyzer should be protected because of the rather high

risk of membrane rupture. A fast safety shut-off

system including fast pressure measurement is thus

advised to be installed.

Specific hydrogen (H2) analyzers have been devel-

oped—mainly in laboratories—based for example on

electrochemical cells (Mathiot et al. 1992). Immer-

sible sensors have been developed to measure dis-

solved hydrogen concentrations directly in the liquid

phase down to partial pressures of 1 Pa (10-5 atm).

Their reliability and long-term stability have been

reported (Pauss and Nyns 1993). An inexpensive

amperometric dissolved hydrogen probe has been used

to determine the onset of digester failure by substrate

overloading (Cord-Ruwisch et al. 1997). The measur-

ing principle is based on the oxidation of hydrogen at a

platinum black electrode at an adjusted potential. The

current flowing to the electrode is directly related to

the hydrogen concentration in the bulk liquid but H2S

has to be trapped and removed before the biogas flows

into the hydrogen monitor. Björnsson et al. (2001a)

applied a hydrogen-sensitive palladium–metal oxide

semiconductor (Pd-MOS) sensor in combination with

a Teflon membrane for liquid-to-gas transfer for the

detection of dissolved hydrogen and the monitoring of

a laboratory-scale anaerobic digestion process,
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employing mixed sludge containing mainly food/

industrial waste. The sensor gave valuable information

about approaching process overload, and can serve as

a good alternative for volatile fatty acids (VFA)

monitoring. The sensor was stable and robust during

3 months of operation, and therefore it was concluded

that hydrogen sulfide, which is known to poison the

Pd-MOS sensor, could not penetrate the Teflon

membrane.

2.1.3 Alkalinity

The incentive to measure the bicarbonate content of

the mixed liquor indeed originates from the fact that

imbalance in anaerobic digestion (due to the accumu-

lation of volatile fatty acids, VFA) cannot easily be

detected on the basis of pH measurements, especially

when the alkalinity of the mixed liquor is high

(Hawkes et al. 1993). Because the alkalinity is often

mainly due to the bicarbonate buffer, it has been

proposed since the early sixties that its measurement

can be used in control strategies for anaerobic

digesters (McCarty 1964). One way to do so is by

titration. Such methods involve titrating the sample

down to pH 3.5 to determine the bicarbonate content

with a correction for the volatile fatty acids present

[see for example Ripley et al. (1985) or Anderson and

Yang (1992)]. The method is based on quantifying the

gaseous carbon dioxide evolved from the sample as it

is acidified. The volume of gas may be measured in

two different ways. The overpressure in a closed

constant volume vessel can be measured, or the gas

volume produced can be measured with a sensitive gas

flow meter in a constant pressure system. During

titration, interferences from other weak acid/base

constituents cannot be excluded and overestimation

of VFA may sometimes occur (Purser et al. 2014).

2.1.4 Volatile fatty acids

Total VFA concentrations have been monitored for a

long time as process performance indicators. It gives

fast and reliable information of process status com-

pared to other common indicators such as pH,

alkalinity, gas production, and gas composition

(Ahring et al. 1992; Björnsson et al. 2001b; Boe

et al. 2007). Automated bicarbonate and total VFA

instruments based on titrimetry have been developed

and applied in practice for some years—see for

example Feitkenhauer et al. (2002) or Ruiz et al.

(2005).

Compared to total VFA concentration, individual

VFA (acetate, propionate, butyrate etc.) can provide

more information of the process status. Several studies

have highlighted the importance of individual VFA as

an early warning of process imbalance (Boe et al.

2010; Pind et al. 2003; Pratt et al. 2003, 2012; Van

Ginkel and Logan 2005). Ahring et al. (1992)

suggested the overall level of n-butyric and iso-butyric

was the best indicator of process stress. Boe et al.

(2010) advised propionate as the most persistent

parameter which was effective indicator of stress

status of the process. Individual VFA are easily

measured off-line using GC or HPLC, provided that

all particulate matter has been removed from the

sample.

However, only a few studies reported the develop-

ment of an on-line individual VFA monitoring system

because when dealing with anaerobic waste treatment,

the presence of particulate matter is often high.

Ryhiner et al. (1993) used GC for on-line analysis of

acetic, propionic, butyric, valeric, and iso-valeric in a

UASB reactor treating whey powder solution. The

sample was purified by membrane filtration, acidified

by phosphoric acid, and injected into the GC column

by an auto-sampler with a specially constructed flow-

through vial. However, no performance data was

shown for this system. Zumbusch et al. (1994) used a

HPLC for VFA monitoring in a UASB reactor treating

baker’s yeast wastewater using an ultra-filtration

module for sample purification. The main problem

of this process was membrane fouling requiring a high

level of maintenance of the filtration system. Pind

et al. (2003) used a GC for on-line analysis of VFA in a

CSTR reactor treating manure and sample purification

employed a three step filtration; pre-filtration by a

rotating filter inside the reactor, ultra-filtration by a

membrane cartridge, and a mini-filter for final purifi-

cation. The system showed good correlation with the

off-line measurement. However, membrane fouling

was still the crucial problem and themembrane needed

to be cleaned every 15–18 h to obtain sufficient flow.

Boe et al. (2007) developed a new method to measure

individual VFA based on headspace gas chromatog-

raphy (HSGC). The method applies ex situ VFA

stripping with variable headspace volume and gas

analysis by gas chromatography-flame ionization

detection (GC-FID). In each extraction, digester
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sample was acidified with H3PO4 and NaHSO4, and

then heated to strip the VFA into the gas phase. The

system has been tested for on-line monitoring of a lab-

scale CSTR reactor treating manure for more than

6 months and has shown good agreement with off-line

analysis.

2.1.5 Spectral sensors

Spectral techniques—UV/visisible spectroscopy (UV/

vis), Mid InfraRed spectroscopy (MIR), Near Infra-

Red spectroscopy (NIRS)—are beginning to provide

very useful information about the complexity of

organic matter.

UV/vis spectroscopic probes in the range of

190–750 nm are often used in wastewater treatment

plants to measure COD, TOC and NO3-N (Sarraguça

et al. 2009). Wolf et al. (2013) developed a UV/vis

spectroscopic system for VFA measurement

(1.1–3 g L-1) in AD plants. An UV/vis probe from

S::CAN was used in combination with a custom-built

dilution system to monitor the absorption of fully

fermented sludge. To validate the approach, on-line

measurements have been taken at a full-scale 1.3 MW

industrial biogas plant. Results showed that VFA

concentrations can be predicted with an accuracy of

87 %. Nevertheless, the necessary dilution system is a

disadvantage compared to NIR andMIR spectroscopic

systems.

NIRS presents great potential for monitoring the

AD process. Holm-Nielsen et al. (2008) evaluated the

use of NIRS technology on-line (Transflexive Embed-

ded Near Infra-Red Sensor or TENIRS) to monitor a

thermophilic digester treating manure and organic

food industrial waste. Good correlation was obtained

between on-line NIRS measurement of glycerol and

VFA content in the anaerobic digester. Further works

documented the potential to monitor VFA as well as

VS in on-line installations at lab-scale and full-scale

plants (Krapf et al. 2013; Jacobi et al. 2009).

Mid InfraRed (MIR) spectroscopy is another inter-

esting technique to characterize waste organic matter.

One major advantage against existing NIR sensors is

that process variables such as VFA, total alkalinity

(TA), NH4-N and TS show distinctive peaks in the

MIR spectrum between 1800 and 800 cm-1, which

makes it easier to correlate peak intensity to actual

concentrations. Provenzano et al. (2014) used Fourier

Transform InfraRed (FTIR) and fluorescence

spectroscopy to characterize the organic matter evo-

lution during AD and composting of pig slurry. Steyer

et al. (2002) also used for several years a FTIR

spectrometer for on-line measurements of COD, TOC,

VFA, total and partial alkalinity of an AD fixed bed

treating industrial wine distillery wastewater. Spanjers

et al. (2006) applied the same technique at a full scale

plant for the on-line monitoring of VFA, COD,

alkalinity, sulphate, and, since aerobic post-treatment

was considered, total nitrogen, ammonia and nitrate

concentrations. Based on these studies, Wolf et al.

(2014) developed an on-line MIR system with an

FTIR probe using Polychristalline-Infrared (PIR)

fibres that allow for higher signal to noise ratio (S/N)

ratios as well as longer fibres. Furthermore, a fully

automated process interface for cleaning and recali-

bration was used in order to reduce maintenance to a

minimum. Good calibration results were obtained for

VFA (R2 = 0.97, RMSE 0.372 g L-1), TA (R2 =

0.99, RMSE = 0.259 g L-1) and NH4-N (R2 = 0.99,

RMSE = 0.11 g L-1). In spite of all advantages and

advances in infrared spectroscopic on-line measure-

ment systems, twomain challenges remain: (1) despite

the great interest in infrared spectroscopy on organic

matter characterization, this technique is not sensitive

enough for structural interpretation of complex

molecules and does not account for the bioaccessibil-

ity of organic constituents; (2) prices for infrared

spectroscopic measurement systems, NIR and MIR,

are still far too expensive to be widely used in AD

plants, so that financial feasibility is mostly not

provided.

2.1.6 Other on-line instrumentation

Other examples of advanced instrumentation can be

seen in electronic tongues and noses and microwave or

acoustic chemometrics (Madsen et al. 2011). A gas

chromatograph or mass spectrometer coupled to a

sample preparation unit can also be used, but so far no

full-scale applications for these methods have been

reported.

Liquid phase electrical conductivity is defined as

the ability of a solution to conduct electrical current

and is directly proportional to ion concentrations.

Moreover, it can be easily monitored on-line: a cell

formed by two electrodes is placed in the sample and

the current between both electrodes is measured by

means of the application of a potential difference
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(Colombié et al. 2007). Conductivity measurements

could bring very informative measurements for mon-

itoring and control of AD processes since ion

concentrations are mainly affected by both VFA and

bicarbonate concentrations (Hawkes et al. 1994), two

of the most reliable indicators of AD process perfor-

mance. Several studies have been published on the

feasibility of electrical conductivity sensors for bio-

process monitoring (see, for instance, Hoffmann et al.

2000; Varley et al. 2004; Aguado et al. 2006; Ellison

et al. 2007). However, there is still a lack of knowledge

regarding its applicability to AD processes, despite

some applications in dark fermentation processes for

H2 production (Aceves-Lara et al. 2010).

2.2 Off-line instrumentation

With long HRTs or SRTs, off-line characterization of

the waste and biomass can be considered as a way to

provide operators with useful information to optimize

AD plants, even though the data are yet not on-line.

Several techniques exist and they are presented below.

2.2.1 Global characterization methodologies

From an analytical point of view, the performance of

AD in wastewater or waste treatment is traditionally

evaluated using parameters such as chemical oxygen

demand (COD), total organic carbon (TOC) and

biochemical oxygen demand (BOD). In order to

optimize plant design and operation, Raunkjær et al.

(1994) proposed to link COD fractions and biodegrad-

ability. Kayhanian (1995) showed that the content of

biodegradable volatile solids (VS) impacted the pre-

diction of biogas production rate and the computation

of the organic loading rate and the carbon/nitrogen (C/

N) ratio. Since the seventies, the most widely used

indicator to assess the performance of digesters has

been the amount of methane produced per unit of total

solid (TS) or volatile solids (VS) of any given

substrate (Chynoweth et al. 1993).

2.2.2 Biodegradability and organic matter

characterization

One of the key issues in operating and optimizing AD

plants is to assess the quantity of methane that can be

produced from an organic residue. To this end, the

most commonly used method to measure anaerobic

biodegradability is the biochemical methane potential

(BMP) test (ISO 11734 1995).

2.2.2.1 BMP data and use for process modeling The

BMP assay is a procedure developed to determine the

methane yield of an organic material during its

anaerobic decomposition by a mixed microbial

community in a defined medium. The procedure was

developed for a serum-bottle technique by Owen et al.

(1979). Angelidaki and Sanders (2004) described the

procedure and the calculations. The test ends when the

cumulative biogas curve closely approaches an

asymptote, usually after 30 days of incubation but it

may be much longer for non-easily degradable

material such as fibers. Therefore, the main

inconvenience of the test is the long time required in

its execution. Other negative points are the variability

of the results obtained through the BMP tests and their

ability to predict continuous digester performances.

Concerning the first point, several studies made inter-

laboratory assays to compare the BMP test results.

Kinetic rates were widely different among different

participating laboratories, standard deviations ranged

from 57 to 68 % (Jensen et al. 2009). The relative

standard deviation of BMP values ranged from 15 to

24 % and decreased to 10 % when outliers were not

considered (Raposo et al. 2011). Currently, only one

inter-laboratory (French Inter-laboratory assay

2013–2014) proposes new guidelines and protocol

after 2 test rounds achieved on solid substrates. This

last study has shown good intra-laboratory repeatability

(equal to 4 %), reproducibility (between 5 and 7 %)

and reproducibility (between 13 and 21 %)—see

Cresson et al. (2014).

Concerning the second drawback, according to

Jensen et al. (2009), the biodegradability and the

bioaccessibility of hydrolysis-limited substrates could

be defined by the parameters B0 and k calculated from

the Gompertz equation applied to a BMP curve

(cumulative methane production vs. time), B = B0

9 (1 - e-kt), where B is the cumulative methane

production, B0 is the maximal methane production and

k is the hydrolysis rate constant. However, the authors

discuss the conservative feature of these parameters

measured in a BMP test. Several opinions are found in

the literature concerning the use ofB0 and k parameters

obtained in batch tests in order to model continuous

digesters (see, for example, Val del Rio et al. 2011;

Nielfa et al. 2015; Strömberg et al. 2015). Batstone
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et al. (2009) found that the BMP test’s parameters

should not be used for dynamic modelling of contin-

uous digesters. While the final value of BMP was

found to be consistent with continuous data, these

authors found that the hydrolysis rate parameter value

was lower in a BMP test than in a continuous digester

treating thermally a waste activated sludge (i.e.,

0.15–0.25 vs.[5 day-1). According to Labatut et al.

(2011), the BMP test is not suitable for predicting

methane production kinetics for continuous digesters

because it is conducted under diluted conditions, so

preventing any inhibition response from being

observed. Nevertheless, Jensen et al. (2009) found

that the batch test was slightly conservative in terms of

estimating degradability and rate, when applied to

slowly degradable substrates such as waste activated

sludge. Fannin et al. (1987) concluded that the

maximum theoretical methane yield determination

was useful to evaluate digester performance and to

provide basis for experimental work. On the other

hand, biodegradation tests performed sequentially in

batch reactors using a slightly different protocol than

the one used in BMP tests (Ganesh et al. 2013) were

shown to be very informative in assessing the

biodegradation kinetics of a broad spectrum of

biowaste (Garcı́a-Gen et al. 2015).

2.2.2.2 More rapid prediction of methane

potential Over the years, several authors developed

relationships between the organic matter composition

and the methane production or the anaerobic

biodegradability. Static models are correlations

(obtained by linear regression or partial least square

(PLS) regression) where the parameters of interest are

expressed as a function of one or more variables based

on some analytical composition of the given substrate.

Static implies neither kinetic equation nor variation

over time. Three kinds of static models appeared in the

literature to predict biodegradability of solid organic

waste. Table 1 summarizes the comparative analysis,

including benefits and drawbacks, of the different

characterization methodologies involved in the

integrative tools.

Initial biogas production modelling Some authors

used the initial rate of biogas production modelling in

order to predict the final value of BMP (Donoso-Bravo

et al. 2011; Strömberg et al. 2015). For example, based

on a database, Strömberg et al. (2015) proposed an

algorithm to predict the BMP value from incubation

experimental data operated during 6 days with an

error less than 10 %. Donoso-Bravo et al. (2011) used

similar technique with incubation during 3–4 days.

However, the modelled methane production of a

continuous digester was underestimated by 20 % with

these parameters.

Organic matter characterization Over the last two

decades, several authors also tried to build other static

integrative tools based on organic matter characteri-

zation but they were mainly applied to municipal solid

waste (Buffiere et al. 2006), kitchen, fruits and

vegetables wastes (Gunaseelan 2007, 2009). Few

studies dealt with municipal sludge although the

methodologies used on solid waste can be transposed

to sludge. The most recent publications have been

presented by Mottet et al. (2010), Appels et al. (2011)

and Jimenez et al. (2014).

First, the theoretical BMP obtained from the

empirical formula has been calculated since 1930

using the Buswell equation (Neave and Buswell

1930). This stoichiometric equation is based on the

elemental composition (CnHaOb) where organic mat-

ter is reduced to methane and oxidized into carbon

dioxide, with the assumption of a total conversion.

However, these relationships remain theoretical and

they assume that organic matter is fully converted.

They did not consider (i) the fraction of substrate used

for bacterial growth, (ii) the refractory organic matter

(such as lignin) contained in the substrate, (iii) the

fraction of the organic matter remains inaccessible due

to binding within particles and (iv) the limitation of

nutrients (Angelidaki and Sanders 2004). Several

authors showed that biodegradability was overesti-

mated using this technique (Shanmugam and Horan

2009, Labatut et al. 2011). Additionally, when applied

to municipal solid waste, Davidsson et al. (2007)

showed that theoretical methane potential is more

realistic when the calculation is based on biochemical

composition (lipids, carbohydrates, proteins) rather

than on elemental composition analysis.

From Table 1, correlations obtained depend on the

nature of different waste molecules. For example, fiber

characterization would be more suitable for lignocel-

lulose-like substrates such as green wastes, fruits and

vegetables wastes (Buffiere et al. 2006) than for

sewage sludge. Indeed, Mottet et al. (2010) applied the

Van Soest fractionation (Van Soest 1963) to charac-

terize organic matter frommunicipal sludge in order to

build a biodegradability indicator. The error for the
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Table 1 Summary of the different methodologies used in integrative tools found in the litterature

Integrative

tools

Characterization methods Benefits Drawbacks References

Static model

PLS,

correlations

Stoechiometric

reaction

Biochemical characterization

Proteins, carbohydrates,

lipids

COD/TOC, TOC soluble

Analytical simple and

rapid methods

Model validation not yet achieved

Based on one type of sludge

(secondary)

Care to be taken of the accuracy of

methods used

Not take into account complexity and

accessibility

Mottet et al.

(2010)

CHNOS elemental analysis Fast and practical method Consideration of the whole organic

matter degradation: the

biodegradable fraction is not used

Over-estimation of BMP tests

Shanmugam

and Horan

(2009)

Van Soest and fibers analysis Faster and practical

method

Validation on several

solids wastes

Accessibility taking into

account with growing

extraction power

Not suitable for sewage sludge in

terms of protocol (porosity)

Model validation not conclusive

Chandler

et al.

(1980)

Gunaseelan

(2007)

Mottet et al.

(2010)

Aerobic respiration rate Faster than a BMP test

(4 days instead of

21–30 days)

Promising on solid wastes

Only readily substrate taken into

account

No accessibility taken into account

Assumption on the same

biodegradability under aerobic and

AD

Cossu and

Raga

(2008)

Scaglia et al.

(2010)

Initial rate technique Faster method than BMP

Maximum production

rate and affinity

constant determined

Extrapolation in continuous digester

underestimate methane production

Not information on substrate

bioaccessibility

Donoso-

Bravo et al.

(2011)

Strömberg

et al.

(2015)

Biochemical characterization

Bioaccessibility

compartiment

Bioaccessibility taken

into account

Biochemical fractions

calculated from

practical analysis

Necessity of long batch test for

fractions assessment

Yasui et al.

(2006,

2008)

Mottet et al.

(2010)

NIRS Biodegradability

assessment

Fast

Various type of substrates

Necessity of drying and freezing the

sample

Bioaccessibility not tkan into account

Lesteur et al.

(2010)

Doublet

et al.

(2013)

3D fluorescence spectroscopy

combined with accessibility

characterization

Bioaccessibility taken

into account

Both biodegradability

and bioaccessibility

predicted

Fast method

Calibrated on sludge-like samples Jimenez

et al.

(2014)
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validation of the Partial Least Square (PLS) model was

about 35 %. Van Soest fractionation targets fibers and

carbohydrates (i.e., cellulose, hemicellulose, lignin)

but sewage sludge are also composed of proteins,

humic acids and lipids (Jimenez et al. 2013). In the

second part of their work, the authors found a better

correlation between anaerobic biodegradability and

the specific biochemical fractions of organic matter,

such as proteins, carbohydrates, lipids and the degree

of oxidation of organic molecules. Only Gunaseelan

(2007, 2009) considered fibers, carbohydrates, lipids

and proteins.

Concerning biomolecules characterization, several

methods exist and are summarized in the Table 2.

Initially conceived to analyze proteins, lipids and

carbohydrates in serum samples, colorimetric methods

have been applied in environmental engineering to

characterize organic fractions. They are now coupled

with analytical improvements such as organic matter

extraction techniques (Park and Novak 2007; Ras et al.

2008). Table 2 summarizes some of the available

methods used to determine the main components of

organic matter. Depending on the nature of the

substrate (total sludge or EPS solubilized in an

extracting agent) the methods are more or less

adequate (Jimenez et al. 2013). Recently, several

reported works used a more advanced methodology:

gas chromatography with mass spectroscopy (GC/

MS) was used in order to determine the detailed

composition of carbohydrates, proteins and lipids

present in the sample. Huang et al. (2010) used this

technology for wastewater characterization.

Aerobic tests Indirect correlations between aerobic

activity tests and anaerobic tests such as BMP are also

Table 2 Analytical protocols for biochemical compounds determination

Organic

fraction

Method type Concentration (mg/

L)

Reagent used Standard Reference

Proteins Colorimetric 0–200 Folin reagent

Copper sulfate 0.5 % (w/

w)

Bovine

albumin

serum

Lowry et al. (1951)

Frølund et al. (1996)

Colorimetric 0–200 Bicinchonic acid Smith et al. (1985)

Colorimetric 0–100 Gornall biuret reagent

and NaCl

Gornall et al. (1949)

Colorimetric 2–120 Coomassie brilliant blue

G-250 reagent

Bradford (1976)

Standard method for

TKN assessement

N content 9 6.25 g

proteins/gN

Mineralisation and

ammonia dosage

None Kjeldahl (1883)

Humic acids

like

Colorimetric 0–200 Folin reagent Humic acids

(Aldrich)

Frølund et al. (1996)

Polysaccharides Colorimetric 0–100 Phenol 5 % (w/w)

Sulfuric acid 95 %

Glucose Dubois et al. (1956)

Colorimetric 0–100 Anthrone 0.125 % (w/v)

Sulfuric acid 95 %

Dreywood (1946)

Raunkjær et al.

(1994)

Fibers Extractions – Weende method

Van Soest

None Henneberg and

Stohmann, (1860)

Van Soest (1963)

Lipids Colorimetric 0–1000 Vanillin 0.6 % (w/w)

Phosphoric acid 85 %

Sulfuric acid 95 %

Commercial

olive oil

Frings and Dunn

(1970)

Extraction

Infrared spectroscopy

– CCl4, Uvasol, Al2O3,

Na2SO4, HCL 6M

Cornoil APHA (2005)

Extraction

Gravimetry

Organic solvent – APHA (2005)
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often proposed. Aerobic tests are less time consuming

than anaerobic tests and they can be easier from a

practical point of view (e.g., no need for anaerobic

conditions and precautions working in an air environ-

ment). Although the respirometric test takes less time

than the BMP test, there are some limitations in using

it to determine the BMP. First, only the readily

biodegradable organic matter is considered (the more

complex organic matter, such as cellulose, are

degraded more slowly and are not measured in the

short-term test) (Lesteur et al. 2010). The second

limitation is the assumption that the organic matter in

sludge presents the same biodegradability under

aerobic and anaerobic conditions (Ekama et al.

2007). Buendı́a et al. (2008) used long anaerobic and

aerobic batch tests in order to estimate readily and

slowly biodegradable fractions and found a good

correlation between the anaerobic and the aerobic

readily biodegradable fraction. However, the slowly

biodegradable fraction was underestimated by the

aerobic batch testing. In the same way, Park et al.

(2008) showed some proteins bound to divalent

cations were bioaccessible only under aerobic condi-

tions but were not bioaccessible under anaerobic

conditions. Higher volatile solids removal was

observed under aerobic conditions (48 %) compared

to AD (39 %).

2.2.2.3 Emerging techniques for organic matter

characterization Progress in analytical chemistry

has led to the development of new instruments and

techniques to characterize organic matter. Among

them, NIRS and 3D fluorescence spectroscopy are the

most promising for instrumentation and biodegradability

measurement.

Recently, NIRS is used for BMP assessment

following two different approaches. The first approach

is to determine the composition of the input material

using NIRS and to calculate the BMP value by

regression using static models. The second approach

to predict the biodegradability uses directly the spectra

through a dedicated calibration. Jacobi et al. (2012)

used both approaches for the determination of the

biogas production from maize, which is commonly

used in Germany. The calibration allowed errors for

volatile solids of 0.74 % fresh matter and for biogas

production of 5.26–11.14 l/kg fresh matter. Applica-

tion of the technique for off-line prediction of

continuously gathered data allowed, together with

first order degradation kinetics, the prediction of the

biogas production of a full-scale biogas plant over

several months. Zhang et al. (2009) succeeded in

building PLS models between NIRS results and

ethanol, acetate, propionate and butyrate concentra-

tions in a H2 producing reactor fed on synthetic

wastewater. Lignin concentration has also been cor-

related to NIRS measurement by Brinkmann et al.

(2002). However, so far NIRS has not yet found its

way into practical implementation at biogas plants.

One obstacle seems to be the transfer of calibrations of

a given sample set to new samples and the reliability of

the predicted values.

Lesteur et al. (2011), Doublet et al. (2013) and

Triolo et al. (2011) have successfully developed PLS

models for BMP prediction of different waste organic

matter BMP values using Near InfraRed Spectroscopy

(NIRS). Lesteur et al. (2011) and Doublet et al. (2013)

found a direct correlation between the NIRS analysis

and the biodegradability provided by the BMP tests for

municipal solid waste. The prediction demonstrated

good accuracy (standard deviation of 28 mLCH4/gVS

and relative error of 13 % respectively). However,

NIRS measurement for biodegradability assessment is

still performed on dried-frozen samples and does not

consider accessibility of the organic matter.

Another promising technique is the fluorescence

spectroscopy. Fluorescence allows the characteriza-

tion of the analyzed organic material in both liquid and

solid phases. The technique gives a topographic map

of the organic matter complexity. Identification of

molecular-like groups is possible based on the exci-

tation and emission wavelength coordinates (Jimenez

et al. 2014). It is indeed a selective and sensitive

method since fluorescence characteristics are related

to the structure and the functional groups in the

molecules. Some studies have revealed the potential of

fluorescence spectroscopy to link to the complexity of

a substrate and its biodegradability (Tartakovsky et al.

1996; Reynolds and Ahmad 1997) and results on

establishing a link between complexity, sludge stabi-

lization degree and accessibility, were encouraging

(He et al. 2011; Wan et al. 2012). Recently, Jimenez

et al. (2014) proposed a sewage sludge characteriza-

tion methodology to assess both biodegradability and

bioaccessibility needed for modified ADM1 input

variables and thus for further optimization of AD

plants. These authors combined basic chemical

extractions with 3D fluorescence spectroscopy in a
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5 days long methodology and predicted successfully

both parameters using a PLS regression model. A wide

range of biodegradability (0–60 %) and of readily/

slowly biodegradable fractions (0–46 %), represent-

ing bioaccessibility, were predicted with errors of 6 %

for both. However, this technique was specific to

sewage sludge, as far as proteins compose the main

part of the organic matter in this organic waste.

2.3 Dynamical models and software sensors

As previously presented, static models have been

proposed as an alternative solution to predict

biodegradability with several kind of organic matter

characterization as explicative variables. However, all

the static models were not able to predict simultane-

ously the bioaccessibility and the biodegradability as

the digester dynamics.

Dynamical models accounts for evolution in kinetic

equation and biomasses. This leads to more complex

models generally based on ordinary differential equa-

tions representing mass balance within the process.

The first dynamical AD digestion models were

proposed in the mid-sixties by Andrews and Pearson

(1965) and Andrews and Graef (1971). Only a single

stage was considered gathering acidogenesis and

methanogenesis. A Haldane kinetic equation was

proposed to account for acetoclastic methanogenesis

inhibition at high concentration of acetate. Mosey

(1983) and Hobson (1985) extended the model with

hydrogenotrophic methanogenesis. The models were

then extended depending on the different substrates

(wastewater, sludge or manure). More than 10 years

ago, the IWA Task Group onMathematical Modelling

of Anaerobic Digestion Processes proposed the Anaer-

obic Digestion Model No1 (ADM1), as a consensual

modelling of anaerobic digestion (Batstone et al.

2002). The biochemical reactions represented in the

model describe: (i) an extracellular disintegration step

converting composite particulate matter into carbohy-

drates, lipids, proteins and inert compounds, (ii) an

extracellular enzymatic hydrolysis step that converts

the degradation products into their chemical building

blocks, i.e., LCFA, monosaccharides and amino acids,

(iii) acidogenesis or fermentation into hydrogen,

acetate andVFA, (iv) acetogenesis of VFA into acetate

and (v) acetoclastic and hydrogenotrophic methano-

genesis. The extracellular reactions are assumed to be

of first-order, while the intracellular biochemical

reactions useMonod-type kinetics for substrate uptake

and biomass growth. Variants to the ADM1 model

given by Batstone et al. (2002) are available for plant

wide modelling (Rosén and Jeppsson 2006; Grau et al.

2007; De Gracia et al. 2009; Barat et al. 2012). Many

applications of the ADM1 model have been published

for a wide variety of substrates (see e.g., Batstone et al.

2009; Lauwers et al. 2013) and some models account

for both the biodegradability and the bioaccessibility of

the waste (Mottet et al. 2013; Garcı́a-Gen et al. 2015).

On the other hand, simpler models have been devel-

oped, more suitable to support monitoring or control

strategies. For example, the model of Bernard et al.

(2001a) includes two reactions and turns out to

approximate efficiently the ADM1 model (Bernard

et al. 2005b) for modeling AD processes treating

industrial wastewater.

In many occasions, on-line or off-line measure-

ments are not enough to evaluate and to assess the

operating conditions of AD plants but, when combined

with dynamical models, these measurements can lead

to very useful additional information about non

measured variables. This methodology leads to the

so-called ‘‘software sensors’’. It is possible to distin-

guish the approaches based on data sets, those founded

on expert knowledge (in the broad sense of the term)

and those founded upon an analytical—mathemati-

cal—description of the system. In this section, we

focus particularly on the estimation for the efficient

development and implementation of state estimation

schemes. These estimation schemes are called esti-

mators, state observers, software sensors, or simply

observers, and they can be used for design or

optimization strategies in a wide class of biochemical

processes. As underlined, these algorithms are able to

estimate both state variables, that are normally not

measured, and unknown parameters from the available

measurements. In biological processes, observers are

mainly useful in on-line estimations for control

purposes. The most popular approaches used in the

past have been the well-known classical extended

Kalman filters (EKF) and extended Luenberger

observers (ELO). One of the reasons for the popularity

of EKF/ELO is that they are easy to implement since

the algorithms can be directly derived from the state

space model. However, since these estimators are

based on a linearized model of the process, the

stability and convergence properties are essentially

local; it is difficult to guarantee its stability over a wide
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operating range. As a matter of fact, very few works

deal with the observability of nonlinear biochemical

processes (e.g., Gauthier and Kupka 1994) and they

are usually concerned with particular process appli-

cations. Another problem is that the theory for EKF/

ELO is developed assuming a perfect knowledge of

the system model and parameters, in particular of the

process kinetics, and as a consequence, it is difficult to

develop error bounds to take into account the large

uncertainty of these parameters.

In order to overcome these drawbacks, several other

approaches have been proposed from the early seven-

ties (Misawa and Hedrick 1989; Perrier et al. 2000;

Dochain 2003; Alcaraz-González and González-

Álvarez 2007). For example, adaptive observers

(Bastin and Dochain 1990; Dochain 2003) belong to

the class of observers allowing the estimation of both

kinetic parameters and states. As in the EKF, the

poorly known (or unknown) parameters are consid-

ered to be extra states with no dynamics. One of the

original features of the adaptive observer is to consider

a nominal process model, i.e., a model with nominal

values of the poorly known parameters (Chen 1990).

The design of nonlinear observers in general has been

a very active research area. Most of the nonlinear

approaches are placed in the category of ‘‘high gain’’

observers (HGO) since they tend to split the dynamics

into a linear part and a nonlinear part and to choose the

gain of the observer so that the linear part dominates

the nonlinear one (Gauthier et al. 1992; Gauthier and

Kupka 1994; Dochain 2003).

Several linearization methods also have been pro-

posed (Baumann and Rugh 1986). Nevertheless, like

EFK/ELO, only local behavior can be guaranteed as

theymiss practical results on performance and stability.

Other approaches are sliding observers based on the

theory of variable structure systems (Xiong and

Mehrdad 2003) but their design involve conditions that

must be assumed a priori or that are usually hard to

verify (Misawa and Hedrick 1989). All these

approaches solve some of the problems described

above but in most of the cases, the complexity of the

resulting estimating algorithms is a limitation for real

time computation. Indeed, monitoring algorithms can

prove to be efficient if they are able to incorporate the

important well-known information on the process while

being able to deal with the missing information in a

robust way. They include the lack of on-line measure-

ments and the uncertainty on the process dynamics.

Two relatively new robust nonlinear observers have

found a wide acceptation in biological process,

including of course anaerobic digestion. Such robust

observers are capable of coping simultaneously with

the aforementioned problems while remaining easy to

implement with a minimum number of straightfor-

ward conditions to verify. The first one, the asymptotic

observer (Bastin and Dochain 1990; Alcaraz-Gonzá-

lez and González-Álvarez 2007), although requiring

the knowledge of the process inputs, has the main

advantage that it permits the exact cancellation of the

nonlinear terms of the systems, and so facilitates its

design, stability analysis and implementation. The

second one, the interval observer, allows for the

reconstruction of a guaranteed interval on the unmea-

sured states instead of reconstructing their precise

numerical values assuming that only guaranteed lower

and upper limits on the process inputs and model

parameters are available (Gouzé et al. 2000; Alcaraz-

González et al. 2005a; Rapaport and Dochain 2005;

Moisan et al. 2009).

The main disadvantage of the aforementioned

asymptotic observer is that the process operational

conditions (mainly the hydraulic retention time)

establish its convergence properties and it is not

possible to modify the convergence rate by choosing a

gain like in the classical observers or the HGO.

However, adapting the design features of the HGO and

adaptive observers, a Tunable Asymptotic Observer

(TAO) has been proposed for AD processes (Bernard

and Gouzé 2004, Alcaraz-González et al. 2005b).

Furthermore, in a more diverse sense, super-twisting

observers have also been demonstrated recently to be

very useful in achieving a very fast convergence

without loss of robustness, (Sbarciog et al. 2012).

Concerning the drawback of influent uncertainty—

very common in AD plants—, the general problem of

simultaneous estimation of unmeasured state variables

and inputs for nonlinear systems has been addressed

from a number of different robust approaches. With

respect to AD processes, Theilliol et al. (2003)

proposed a simultaneous input-and-state concentra-

tions observer that required the full knowledge of the

process kinetics. Also, Aceves-Lara et al. (2010)

simultaneously estimated state space variables and the

input concentrations in a biohydrogen production

process in which input and state estimations were

performed using a state transformation and an asymp-

totic observer. More recently, Jáuregui-Medina et al.

628 Rev Environ Sci Biotechnol (2015) 14:615–648

123



(2009) proposed an observer-based estimator, named

the ‘‘Virtually Controlled Observer’’ (VCO) because

one of the observer’s inputs (the hypothetical—

unmeasured—influent substrate concentration) is

updated by a feedback control that regulates the

estimation error of a measured output. In a fixed bed

configuration, several of these approaches have also

been applied to distributed parameter systems (see

e.g., Delattre et al. 2004; Aguilar-Garnica et al. 2009).

3 Control of anaerobic digestion processes

Because of the inherent complexity and necessity for

safety in biotechnological processes, efficient moni-

toring and decision support systems are required in

order to optimize their operation. Indeed, even in

normal operational conditions, several types of dis-

turbances may occur with serious consequences in the

performance of the process. Fluctuations in the

influent to be treated is an illustration and a typical

example would be an integrated dairy producing 100

different products that, over the course of a week, re-

sult in a wastewater stream with flow/total COD/TSS/

FOG/temperature variations of 209/109/59/39/

1.59, some of these changes taking place in a matter

of hours. Hence, the last two decades have seen an

increasing interest to improve the operation of AD

processes by applying advanced control schemes.

Optimized and stable performances are indeed

required to be guaranteed consistently and this has

major consequences for instrumentation, control and

automation (Huntington 1998; Olsson and Newell

1998). Two main factors (which can be interpreted as

both, incentives and constraints) have contributed to

this new paradigm: (1) the need for optimally

controlled plants due to environmental regulatory

norms and (2) the need to reduce cost. In order to fulfill

these requirements, the optimal control of AD pro-

cesses faces important uncertainties arising from the

intrinsic complexity of plant design. Among others,

the main disturbances that can be observed are the

following: acidification, inhibition and toxicant expo-

sure (McCartney and Oleszkiewicz 1991, 1993;

O’Flaherty et al. 1998; Hao 2003; Appels et al.

2008; Chen et al. 2008; Cirne et al. 2008), overload

(Waewsak et al. 2010; Wijekoon et al. 2011), alkalin-

ity, variability of inputs, water content and rheology,

foaming, stirring and mixing problems (McMahon

2001; Dalmau et al. 2010) and lack of macro- and

micro-nutrients (Speece 2008).

By far, the most developed control laws in the

literature use the dilution rate as manipulated variable

(see Fig. 1) but it is mainly in simulation and only few

full-scale applications are available. Manipulating the

dilution rate is indeed difficult in practice and AD

processes are facing the problem of the lack of

actuators. Examples for other manipulated variables

Fig. 1 Percentage

distribution of manipulated

variable (121 publications),

size of digester (134

publications) and substrates

(109 publications) of the

reviewed publications
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are liquid recirculation rates and the addition of bases

to stabilize the process. In case of a co-digestion plant,

only one substrate or a constant substrate mix is

usually controlled using the dilution rate as manipu-

lated variable. The other substrates then must be

calculated based on boundary conditions such as

hydraulic retention time, organic loading rate or

restrictions defined by funding schemes (Zhou et al.

2012).

Whilst experimentation is required for the tuning of

regulators, either on the plant itself or within a

simulation environment, design techniques have been

developed that allow devising the optimal controller

for a particular process model and performance index.

Certain constraints imposed on the control action, such

as a minimization of the control effort, can be

accommodated during the design.

3.1 Classical control in AD

PID and on/off controllers belong to classical control

methods. Table ESM.1 and ESM.2 in Online Resource

1 illustrates some examples of application of these

control methodologies in AD.

The first application of on/off control in AD was

reported in the 70 s (see Table ESM.1 in Online

Resource 1), which aimed at setting the manipulated

variable to a binary value depending on predefined

threshold values. They were followed by PID controls

including P, PI, and PID controls. For instance,

Marsili-Libelli and Beni (1996) applied PID control

for stabilising alkalinity and pH by manipulating the

addition of bicarbonate. On the other hand, von Sachs

et al. (2003) proposed a PI structure for controlling

biogas flow rate by modifying the dilution rate in a

two-phase AD system.

PID cascade controls (see Table ESM.2 in Online

Resource 1) are a simple but effective approach for

feed control. Their advantages are that two possibly

conflictive set-points can be simultaneously controlled

whilst the set-point of the master loop can be set by an

expert system. Approaches such as Liu et al. (2004a,

b), Alferes et al. (2008), and Alferes and Irizar (2010)

are dedicated to control biogas production at a given

set-point or to operate the digester at high organic

load. Therefore, these approaches try to maximize the

economical benefit of the digester, whereas the set-

point is established in order to avoid digester

overloads.

As regards adaptive control, Zhou et al. (2012), for

instance, proposed a PID aimed at controlling the

methane flow rate based on measurements of VFA and

VFA/TA.

Another control strategy lies on minimizing the

COD or VFA content in the effluent (see e.g., Alvarez-

Ramirez et al. 2002; Mu et al. 2007). The key goal of

control strategies of this type is to stabilize digester

performance whilst maximizing COD degradation. On

the other hand, Garcı́a-Diéguez et al. (2011) proposed

an approach capable to maximize methane flow rate

whilst tracking a set-point for effluent VFAs.

3.2 Advanced control in AD

Since classical PID controllers are usually limited to

single–input–single–output control loops and to lin-

ear, simple cases, different advanced control

approaches have been theoretically analyzed and

experimentally validated in order to control AD

processes.

3.2.1 Expert systems

Expert systems can be classified in rule-based and

fuzzy systems (Tables ESM.3 and ESM.4 in Online

Resource 1) and systems extended with a surrogate

model such as an artificial neural network or special

fuzzy systems (Table ESM.5 in Online Resource 1).

Applying nonlinear control methods comes quite

natural since biogas plants are nonlinear processes.

Such expert systems are quite popular for AD control

because of: (1) their intuitive design based on rules,

and (2) their non-linearity coping with the non-

linearity of the plant. The first approach is performed

by rule-based systems such as the well-known fuzzy

control, whilst the latter one is performed by the use of

neural networks. Furthermore, expert systems can

easily incorporate all measured variables and are

easily extensible if an additional process value is

measured in the future.

Fuzzy logic is a problem-solving tool that can

achieve a definite conclusion from imprecise infor-

mation, allowing intermediate values rather than

simple yes/no evaluations (Garcı́a-Gen 2015). The

main benefit of this approach is that it can be used to

control non-linear systems. A fuzzy-logic controller

(Zadeh 1965) is indeed capable of optimizing different

kinds of processes under dynamic operating and
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loading conditions by applying valuable expert

knowledge (Verbruggen and Bruijn 1997). Moreover,

fuzzy-logic control does not require a large amount of

data and/or a rigorous mathematical model, and allows

for the development of multiple-input-multiple-output

control schemes. Hence, fuzzy logic is a powerful tool

for AD control (Olsson et al. 2005).

Different examples of rule-based and fuzzy-logic-

based systems for AD control can be found in

literature (see Tables ESM.3 and ESM.4). For

instance, Pullammanappallil et al. (1991, 1998)

developed an expert system aimed to control methane

production by switching between different control

strategies (set-point control, constant yield control,

batch operation and constant dilution rate) based on a

t test. Puñal et al. (2003) proposed a PI-based fuzzy

logic system for monitoring the effluent VFA concen-

tration in anaerobic wastewater treatment plants, using

the dilution rate as manipulated variable. Murnleitner

et al. (2002) and Grepmeier (2002) proposed expert

systems based on fuzzy theory for overload avoidance

in AD process. Different inputs were used for such

purpose: H2 concentration, CH4 concentration, biogas

flow rate, pH, and filling level of the buffer tank.

Table ESM.5 in Online Resource 1 summarises

different examples of expert systems for AD control

consisting of neural networks and special fuzzy

systems. For instance, Steyer et al. (1997) proposed

a hierarchical fuzzy control for VFA concentration

which used the control error of pH, temperature and

biogas flow rate as input variables. Holubar et al.

(2002, 2003) used a neural network to maximize

methane production and COD degradation by modi-

fying OLR on the basis of different inputs: pH, VFA,

and biogas production and composition. Carlos-Her-

nandez et al. (2007) developed a fuzzy supervisory

controller to optimise process performance by regu-

lating the addition of base and the dilution rate; whilst

this control system was later modified (Carlos-Her-

nandez et al. 2010) following a neural fuzzy structure

for estimating methanogenic biomass performance.

3.2.2 Model-based and linearizing control

Linearizing approach is popular for feed control

purposes in AD (see Table ESM.6 in Online Resource

1). Moreover, much effort has been applied to develop

new model-based control laws that will achieve

suitable process performances (Méndez-Acosta et al.

2010). In this context, simple models like AM2

(Bernard et al. 2001b) are preferred to more complex

ones like ADM1 (Batstone et al. 2002).

Linearizing control is based on a non-linear

controller, which is precisely designed to achieve

linear closed-loop dynamics (Isidori 1989; Ignatova

et al. 2008). The main aim of linearizing control is to

take advantage of available mathematical models.

They allow controlling very efficiently the functioning

of a plant and may allow the achievement of finer

actions than those controllers that decide only upon the

difference between measurements and set points

(Olsson et al. 2005). Linearizing controllers are

designed by a two-step procedure (Kurtz and Henson

1997). First, a non-linear process model is used in

order to synthesize the non-linear state feed-back

controller that linearizes the map between a ‘‘new’’

manipulated input and the controlled output. In the

second step, a linear pole placement controller is

designed for the feed-back linearized system. How-

ever, due to the strongly non-linear relationships

existing between both inlet and outlet of an anaerobic

process, linearizing controllers only attain proper

results when the process dynamics are bounded by a

defined linear zone (Simeonov and Queinnec 2006).

Applications of adaptive linearizing control have

been presented for anaerobic digestion (Renard et al.

1988). However, an important problem with adaptive

control systems is the necessity for on-line identifica-

tion of the process model while the plant is in closed-

loop operation. An approach to deal with the identi-

fication problem consists of considering that the

process model belongs to a bounded class of possible

models with fixed parameters. The identification is

then reduced to the choice of the correct model, or, as

in the Model Weighting Adaptive Control (MWAC)

approach (Gendron et al. 1993), by weighting the

different models into a composite process model.

Another method in this category is the interval-based

approach. Concerning Interval Observers, a recent

control approach that uses the partial information

provided by this kind of observers has been designed

to exponentially stabilize a regulated variable in a

neighborhood of a predetermined set-point (Rapaport

and Harmand 2002). As for observers, these approaches

have been also applied to distributed parameter systems

applied to fixed-bed bioreactors (e.g., Dochain et al.

1997; Babary et al. 1999; Antoniades and Christofides

2001; Aguilar-Garnica et al. 2009).
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Some other recent approaches for control of this

kind of processes have been derived from the theory

based on differential geometry (Isidori 1989; Henson

and Seborg 1997). Control approaches based on

differential geometry allow for the transformation of

a nonlinear system into a partially or totally linear one,

by means of a nonlinear state transformation, which is

obtained from directional derivatives of the output. It

is important to remark that geometric control differs

totally from the linear approximation of dynamics by

calculation of the Jacobian. Either state-space (Hunt

and Su 1983) or input–output linearization (Méndez-

Acosta et al. 2004, 2005, 2008) have been employed.

More recently, sliding mode approaches have been

also usedmainly to control Anaerobic Sequential Batch

Reactors (ASBR), (Vargas et al. 2008), as well as in

continuous bioreactors (Lara-Cisneros et al. 2015). In

general, the sliding mode approaches are widely used

due to robustness with respect to uncertainties.

3.2.3 Other advanced controllers

Table ESM.7 in Online Resource 1 summarizes other

advanced control approaches, including, for instance,

disturbance monitoring, non-linear, adaptive, and

robust control.

A nonlinear adaptive control law for bioreactors

which is robust in the face of unknown kinetics has

been proposed recently for the global stabilization of

bioreactors and then applied to the regulation of

anaerobic digestion processes (Mailleret et al. 2004).

Similar to linearizing control, different interval-based

approaches have been used to exponentially stabilize a

regulated variable in a neighborhood of a predeter-

mined set-point (Alcaraz-González et al. 2005a).

On the other hand, most of the controllers reviewed

before were developed to regulate known set-points or

to track well defined trajectories. However, in AD

operation, the control objective could be to optimize a

criterion that is dependent of unknown parameters in

order to keep a performance criterion at its optimal

value. Also, it is well known that the explicit form of

the performance function in AD processes is highly

uncertain (e.g., the growth rate of methanogenesis or

growth rate of acidogenesis) (Lara-Cisneros et al.

2015). Extremum-Seeking-Control (ESC) and probing

control are two techniques to handle these kinds of

dynamic optimization problems (Dochain et al. 2011;

Guay et al. 2004; Liu et al. 2006; Marcos et al. 2004a,

b; Steyer et al. 1999). The goals of ESC schemes and

probing control is to find the operating setpoints, a

priori unknown, such that a performance function

reaches its extremum value. Steyer et al. (1999)

developed a probing control approach based on the

analysis of disturbances added on purpose to the

influent flow rate. By increasing the influent flow rate

for a short period of time, the increased biogas yield

was compared to the expected one. Overloading or

inhibition could be interpreted as a negative effect of

the disturbance (i.e., an unsatisfactory gas yield). Liu

et al. (2006) developed a cascade controller system

that is embedded into a rule-based supervisory system

based on ESC. This controller was applied to intensify

biogas production in an anaerobic up-flow fixed bed

reactor at laboratory scale and achieved good perfor-

mance, especially during the early startup and during

rejection of disturbances. In particular, the process

was operated at maximum productivity and had safety

margins adequate to ensure reliable operation, react

fast on disturbances and avoid unstable process con-

ditions. Lara-Cisneros et al. (2015) proposed an ESC

scheme with sliding mode to achieve the dynamic

optimization of methane outflow rate in anaerobic

processes. The control law was designed to regulate

VFA concentration at the optimal value whilst max-

imizing methane production. However, only numeri-

cal experiments illustrated the performance and

robustness of the proposed control approach.

Concerning the need of sensors for control pur-

poses, even if there now exists a large variety of

devices for measuring almost all key variables, they

still remain relatively expensive for medium and small

enterprises, mainly in developing countries. In this

sense, the challenge to control AD processes is to do it

with a minimum of information, even if it is obtained

off-line. In this context, discrete control approaches

are beginning to be used (Méndez-Acosta et al. 2011).

3.3 Control in anaerobic co-digestion (AcoD)

Anaerobic co-digestion (AcoD) presents higher poten-

tial energy recovery than conventional single substrate

AD. Therefore, high effort has been focussed on AcoD

in order to: (1) enhance process performance thus

maximising biogas production; (2) navigate into the

use of new co-substrates; and (3) increase process

feasibility by the application of digestates for agricul-

tural purposes (Mata-Alvarez et al. 2014).
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For instance, biogas production has been classically

improved by co-digesting manure and organic waste

(see, for instance, Ahring et al. 1992; Tafdrup 1994).

Since manures are often associated with poor methane

yields, AcoD of manure with other organic wastes has

been identified as a cost-effective alternative for

improving process efficiency (Mata-Alvarez et al.

2011; Frigon et al. 2012; Astals et al. 2013b). This co-

digestion process is usually optimised when biogas

yield is above 30 m3 biogas per m3 biomass treated,

which normally requires a 25 % organic waste ratio

(Boe 2006). Nevertheless, lower ratios may be enough

when treating concentrated wastes (Gregersen 2003).

Other classical AcoD process is the co-digestion of

sewage sludge with the organic fraction of municipal

solid waste (OFMSW). Besides the biowaste compo-

sition (food waste, market waste, etc.), biogas pro-

duction during the co-digestion of sewage sludge and

biowaste highly depends on several factors such as

sewage sludge composition (primary, secondary or

mixed), OLR, reactor configuration, operating tem-

perature or mixing conditions (Mata-Alvarez et al.

2011). For instance, Silvestre et al. (2015) assessed the

effect of OFMSW loading rate and particulate size on

sewage sludge mesophilic anaerobic co-digestion in a

CSTR operating at 20 days of SRT. This study

revealed that sewage-sludge–OFMSW mixture com-

posed by 54 % of inlet volatile solids (OLR of 3.1 kg

COD m-3 day-1; 1.9 kg VS m-3 day-1) resulted in

an increased in volumetric methane production and

methane yield of up to 200 and 59 %, respectively.

Recent literature has reported increasing interest by

the scientific community on the applicability of AcoD

to new biowastes. For instance, co-digesting sewage

sludge and microalgae is considered one promising

technology for energy production, whilst representing

a key step for recycling nutrients for algal cultivation

(Ward et al. 2014). Recent research has shown that

AcoD can increase anaerobic degradability of algae by

improving substrate composition. Nevertheless, fur-

ther research is needed since the quantity and quality

of the produced biogas vary considerably depending

on anaerobic inocula, waste composition and operat-

ing conditions (Ajeej et al. 2015).

The control of AcoD processes can be addressed

following the same strategies used for classical AD

processes. However, it is crucial to characterise com-

prehensively the co-substrates and to choose adequately

the blend of substrates to be treated (Garcı́a-Gen 2015).

Alvarez et al. (2010) developed a methodology for

optimising feed composition in AcoD of agro-indus-

trial wastes. This optimisation protocol was based on a

linear programming method aimed to set up different

blends for maximising the total substrate biodegrada-

tion potential (LCH4 kg
-1 substrate) or the biokinetic

potential (LCH4 kg
-1 substrate day-1). To this aim,

the controller defined restrictions on several charac-

teristics of the mixture, such as NH4
?, lipids or C/N

ratio. The methodology was validated using three

types of agro-industrial biowaste: pig manure, fish

waste and biodiesel waste. Validation results were

related to the mixture of biowaste to be feed to the

AcoD process in order to maximise biodegradation

potential and methane production. Linear program-

ming was proved to be a powerful, useful and easy-to-

use tool to estimate methane production in co-

digestion units where different substrates can be fed

(Alvarez et al. 2010).

Wang et al. (2012) proposed optimizing the feeding

composition and the carbon/nitrogen (C/N) ratio for

improving methane yield during AcoD of multi-

component substrates (dairy, chicken manure and

wheat straw). The results showed that co-digestion

performed better than individual digestion in terms of

methane potential. Maximum methane productions

were achieved with a dairy/chicken manure ratio of

40:60 and a C/N ratio of 27:1 (after optimization using

response surface methodology). The results suggested

therefore that better performance of AcoD can be

fulfilled by optimizing feeding composition and C/N

ratio.

Wang et al. (2013a) evaluated two statistical

methods for optimizing feeding composition in AcoD

systems. To this aim, a simplex-centroid mixture

design (SCMD) and central composite design (CCD)

were evaluated using methane potential as response

variable. Each co-substrate (dairy manure, chicken

manure, swine manure and rice straw) served as an

independent variable in SCMD and CCD, involving

two factors: the manure and C/N ratios together with

the C/N ratio of the blend. Experiments demonstrated

that co-digestion of three-component substrates

resulted in higher methane potentials, as well as on

better fitted models to predict the response based on

selected variables. In response surface plots, SCMD

showed the interactions among each component in the

co-substrates and CCD presented the interaction

between the ratio of manures and the C/N ratio.
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SCMD and CCD were both suitable methods for

optimizing feeding composition during anaerobic co-

digestion.

Jiménez et al. (2014) optimised methanogenic

activity using the response surface methodology

during the AcoD of agriculture and industrial wastes.

This optimisation accounted for microbial community

performance, taking into account the effect of each

substrate concentration and their interactive effects on

specific methanogenic activity and microbial commu-

nity diversity. The results showed a significant inter-

action among the substrates and an enhancement of the

methane production and specific methanogenic activ-

ity. The optimization allowed identifying substrate

interaction effects in a concentration range with a

reduced number of experiments. The model validation

proved to be useful for defining optimal combination

of wastes in AcoD systems.

Garcı́a-Gen et al. (2015) proposed a control strategy

for optimising AcoD in terms of methane productivity,

digestate quality and process stability. To this aim, a

linear programming approach was adopted to calcu-

late the feeding of multiple substrates for maximum

methane productivity, taking into account restrictions

based on experimental and heuristic knowledge.

Alkalinity ratio measurements against reference val-

ues were used for quantitatively assessing process

stability by using an empirical diagnosis function. A

second empirical diagnosis function was defined to

compare methane flow rate measurements against a

reference value of maximum capacity. The quantita-

tive change applied to the most active constraint of the

substrate blend optimisation problem (leading to a

new set-point of feeding substrates blend) was calcu-

lated by a variable-gain control function derived from

the previously commented diagnosis functions. This

closed-loop control architecture was successfully

validated in a 1 m3 hybrid Upflow Anaerobic Sludge

Blanket-Anaerobic Filter (UASB-AF) reactor, treating

blends of substrates (gelatine, glycerine and pig

manure supernatant) at OLR values between 0.71

and 6.33 gCOD L-1 day-1. The proposed controller

was capable to increase methane productivity whilst

recovering the system from transient acidifications.

3.4 Sulphide control

Different control strategies can be applied to minimize

problems related to sulphide in the system (Cirne et al.

2008). Themonitoring of sulphate in the influent cannot

be considered as a realistic option since sulphate

concentration in the influent cannot be predicted nor

monitored. Final removal of sulphide (e.g., desulphu-

ration of biogas) is based on the application of different

physico-chemical or biological techniques sometimes

requiring additional treatment units:

• Selective inhibition of SRB using compounds such

as nitrite, antibiotics, or molybdate. However,

these actions are not very effective when operating

continuous AD processes and they also present a

negative effect on MA.

• pH increase in order to move the H2S/HS
-

equilibrium towards less toxic HS-.

• Sulphur precipitation using organic or inorganic

compounds (mainly iron salts). The main draw-

backs of this technique are the reagent cost, the

increase in sludge production and possible pipes

obstructions from precipitates.

• H2S stripping by high stirring in the reactor,

recycling the produced biogas after scrubber or

other H2S removal technologies.

• Oxidation of sulphide with oxygen or nitrate using

chemical or biological processes. This process

consists of introducing small amounts of these

compounds without affecting process performance

(van der Zee et al. 2007; Cirne et al. 2008; Fdz-

Polanco et al. 2009a, b).

3.5 Control of anaerobic membrane bioreactors

(AnMBR)

Several operating strategies to control membrane

fouling in anaerobic or aerobic membrane reactors

have been experimentally validated. For example,

Jeison and van Lier (2006) developed an on-line cake-

layer management protocol that monitored critical flux

constantly and prevented excessive cake-layer from

building up on the membrane surface; Smith et al.

(2006) developed a control system to optimize back-

flushing which reduced the water needed for back-

flushing by up to 40 %; Vargas et al. (2008)

established a control algorithm for fouling prevention

which regulated back-flushing and Park et al. (2010)

studied how membrane fouling could be reduced by

successively increasing and decreasing membrane gas

sparging intensities, and recorded the effectiveness in

reducing membrane fouling.
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Anaerobic membrane bioreactors (AnMBR) can be

very efficiently used to treat urban wastewater but they

require more sophisticated process control systems

than for aerobic MBR systems or other conventional

anaerobic systems—such as up-flow anaerobic sludge

blanket (UASB); expanded granular sludge blanket

(EGSB); or anaerobic filters (AF). For example,

Robles et al. (2014) implemented a model-based

supervisory controller to optimize filtration in an

AnMBR demonstration plant. Energy savings of up to

25 % were achieved when using gas sparging to scour

membranes and the downtime for physical cleaning

was about 2.4 % of operating time. The operating cost

of the AnMBR system after implementing the pro-

posed supervisory controller was about €0.045/m3,

53.3 % of which were energy costs. In another

application, Robles et al. (2013, 2015) obtained

similar results using a 2-layer control system measur-

ing the treatment flow rate (controlling the HRT), the

sludge wasting volume (controlling the SRT), the

temperature, and the gas sparging intensity in the

anaerobic reactor and controlling the permeate flow

rate, the trans-membrane pressure (TMP), the sludge

flow-rate recycled through the membrane tanks, and

the gas sparging intensity in the membrane tanks.

4 What is next?

Many ideas and many perspectives arise from all the

above details about current scientific and technical

achievements.

4.1 Instrumentation

With respect to instrumentation, it is indeed believed

that (1) more and more advanced sensors will be

soon available (2) confidence index associated to the

measurements will provide human operators with the

ability to decide on the best actions based on the

quality of the measurements (3) sensors network will

allow the human operator to anticipate future prob-

lems, (4) software sensors and (5) use of large data

base and all of this will improve by far the

information content currently retrieved from AD

plants. The simultaneous use of a sensor network

(Steyer et al. 2004) and of numerical models will

clearly help in extending and qualifying the available

measurements.

As pointed out earlier in the paper, the analysis of

individual VFA species has often been proposed as an

important measurement parameter for the diagnosis,

optimisation and control of anaerobic processes. Most

of this information is today collected off-line and are

mainly based on either GC or HPLC analysis and have

been benchmarked comprehensively in Raposo et al.

(2013). As off-line monitoring of VFAs is likely to

have a significant lag in measuring VFA and inputting

the data into a feedback control loop would have

significant draw backs due to the time delay in analysis

and inputting the data. There is a significant challenge

to overcome in producing an instrument for on-line or

at-line species specific VFA analysis that is relatively

easy to operate at low capital and operational cost.

There has been a significant amount of activity

directed automating off-line techniques in particular

GC headspace techniques (Boe et al. 2007; Boe et al.

2008) but there has been limited uptake for this

method beyond the initial publications. An alternative

approach has been the use of Near Infra Red

Spectroscopy (NIRS) for acetate, propionate and

TVFA analysis but the NIR analyser despite requiring

relatively little maintenance was found to have a too

high error of prediction for accurate quantification

(Ward et al. 2011). An alternative approach to the

traditional analytical techniques of GC, HPLC or IR

spectroscopy may be to use biosensors as the mea-

surement system. This offers the potential of a

relatively low cost sensor system, with high specificity

and sensitivity and no requirement for continuous

supply of a chemical or gaseous mobile phase as

required by GC or HPLC techniques. An approach

based on microbial fuel cells (Kaur et al. 2013, 2014)

and genetically engineered light emitting bacteria (Li

and Yu 2015) have been proposed as possible

solutions to develop a more effective on-line VFA

instrument. A microbial fuel cell based biosensor was

able to discriminate between acetate, propionate and

butyrate, with a response time of 1–2 min with a

sensitivity of 5 mg L-1 when cyclic voltammetry

analysis was utilised (Kaur et al. 2013). The sensor

linearity was limited to 5–40 mg L-1 but this could be

addressed with appropriate sample dilution. An alter-

nate biosensor approach using a genetically engi-

neered E. coli based biosensor with light emitting

response to propionate has been demonstrated with a

linear response of 1–10 mM (Li and Yu 2015),

however other VFAs such as acetate and butyrate are
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important species in anaerobic digestion require

measurement. Despite a number of innovative

approaches taken to measuring individual VFA

species, an effective and low cost instrument for the

on-line or at line measurement has yet to be identified.

In the first section dedicated to the instrumentation,

the lack of ‘‘sensors’’ for monitoring biodegradability

and bioaccessibility has been highlighted. As pointed

out by the substrate evolution, agricultural and

municipal solid wastes are more and more used. This

kind of complex substrates need long HRT and the off-

line option can be acceptable in order to drive their

digestion or co-digestion.

Despite the fact that several tools are promising like

NIRS for biodegradability prediction, this technique

is, until now, applied on dried-frozen samples and the

impact of drying samples on the BMP values obtain

with not prepared sample has not been studied. As

previously mentioned, NIRS technology has a great

potential as sensor, and work has to be followed to

develop a probe able to predict BMP value on raw

samples. However, this technique does not give

bioaccessibility or biodegradation rate parameters. In

the case of co-digestion for example, these parameters

are crucial. Other study does it in a faster way than

BMP test (for example, Jimenez et al. 2014) but it

needs advanced knowledge of the methodology used

and advanced and expensive material (i.e., 3D fluo-

rescence spectroscopy). Therefore, more efforts have

to be done on how to transpose these promising but

complex techniques into a cheap and practical ‘‘sen-

sors’’. For example, research on multi-excitation

wavelength fluorescence probes would be done, and,

associated with an optimized chemical extraction

protocol would be able to predict both biodegradabil-

ity and bioaccessibility. These kinds of information

would be very valuable in order to predict the optimal

mixture to do during co-digestion for example.

As previously mentioned, spectroscopic on-line

sensors are of particular interest to the AD industry

and research as they allow the on-line monitoring of

crucial process variables. Nevertheless, high prices

and complex calibration routines hinder commercial

success. Newly developed tunable Micro-Electronic-

Mechanical-System (MEMS) based Fabry-Pérot inter-

ferometers for the UV/vis, NIR and MIR wavelength

ranges provide a very promising solution. Not only are

these spectrometers on a chip very small 5 9 10 cm

but also relatively cheap, if manufactured in big

numbers. Currently, two different system designs

exist. Neumann et al. (2010) introduced a tunable

MEMS interferometer for the middle- and long-

infrared range using a pyro-detector. The different

wavelengths can be generated by two bragg reflectors

whose distance can be changed by a spring suspension.

Although, the presented performance results are good,

the spring suspension is considered to be a weakness

as it makes the spectrometer sensitive to vibration and

wear. Therefore, the Technical Research Centre of

Finland (VTT) developed an interferometer design

with piezo-effect based tuning of the gap between the

reflectors (Antila et al. 2014; Mäkynen et al. 2014). In

general, these MEMS systems allow for completely

new probe designs where the spectrometer is directly

integrated into the probe so that the fibre length can be

reduced significantly, increasing the S/N ratio. Thus,

not only the sensitivity of a sensor is increased but also

the size of the whole sensor system is reduced. This

particularly important for MIR sensors where a short

fibre length is crucial to guarantee a high S/N ratio.

Malinen et al. (2014) gives a broad overview of the

possibilities in various applications. In high quantities,

prices for MEMS spectrometers are expected to drop

to 70-100€ per piece, which makes spectroscopic

sensors attractive for the use in AD plants.

Confidence indexes are information about the way

measurements are obtained. One important lesson

from applying ICA in AD plants is that some sensor

technologies are more useful than other ones. Indeed,

if all on-line sensors provide numerical values of the

measured variables, some (e.g., spectrometer or

titrimeter) also provide information on how the

measurements have been obtained (Steyer et al.

2006). This information can then be used as a

confidence index on the measurement and is of great

help to decide – in a closed loop context—if a control

law can rely or not on the obtained measurements. In

order to guarantee a safe operation of the plant, the

controller can indeed be turned off in case of sensor

fouling or any other dysfunctionning in the instrument.

However, this increase in complexity in the man-

agement of the sensor data and the automation of the

process may involve dedicated highly qualified oper-

ators for permanently recalibrating and adapting the

complex implemented algorithms. Indeed, most of the

monitoring, diagnosis or control advanced strategies

which are described on Table ESM (cf. attachment to

the manuscript) have been tested (when they have
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been experimented) on short time periods (generally

less than a few weeks), with a precalibrated set of

parameters and initial conditions. These additional

degrees of freedom, which are rarely clearly stated,

must be managed on the long term for operational

perspectives. Better accounting for such degrees of

freedom, automating these aspects to reach robust

autoadaptive algorithms, or allowing a remote expert

to manage them (Bernard et al. 2005a, b) is thus a

challenge for the future years.

4.2 Models and virtual sensors

Even if modeling AD has been an active research topic

these last two decades, improving the models sup-

porting monitoring and control strategies is also very

challenging. Due to the increasing complexity of the

substrates, hydrolysis was considered as the limiting

step introducing the notion of bioaccessibility. Based

on the degradation kinetics of the sludge, new

variables appeared by taking into account the bioac-

cessibility of the substrate. A better knowledge of the

sludge composition indeed leads to more realistic

although more complex models. However, despite the

techniques described the literature until now, input

variables of ADM1 are still difficult to characterize.

Advanced analytical techniques could provide a

higher degree of information on the composition of

any given substrate. Promising new tools can be used

for direct measurement, such as NIRS, 3D-EEM SPF

and LIF probes in order to describe the biodegrad-

ability of a waste. However, with the biodegradability,

the bioaccessibility is a key concept of the model input

variables characterization. Some studies proposed

bioaccessibility assessment specific to sewage sludge.

Further investigations need to be performed in order to

find a relevant and rapid tool for organic matter

characterization of more solid wastes in order to obtain

reliable parameters for the biological processes mod-

els. ADM1 is sensitive to the substrate composition,

and a methodology providing characterization rules

based on substrate type using either upstream knowl-

edge, chemical analysis (for simple substrates), or

biochemical testing would greatly improve the pre-

dictability potential of the models (Batstone 2013),

and then their further efficiency in monitoring and

control strategies.

A more accurate description of the physicochem-

ical models, and especially of the precipitation related

to calcium and phosphorus (Batstone et al. 2012) is a

difficult yet necessary step to better under the cycle of

phosphorous. Even if it may strongly increase the

model complexity, considering sulfur reduction and

oxidation processes are also challenges for the future.

Also, the spatial distribution of the chemicals and

biomasses within the reactor should now be accounted

for and integrated in the models. These points should

be seen in a larger context than AD, and a plant wide

approach (see e.g., Olsson et al. 2014) must prevail.

For example, physicochemical models must describe

phosphate speciation and release under aerobic and

anaerobic conditions, while micropollutants must be

tracked along the full treatment plant.

Soft sensing or virtual sensing is the use ofmodels to

predict process parameters that are expensive or

difficult to measure from more accessible process

measurements. They are an effective method of

providing in-line estimates of quantities that are

difficult to measure on-line, and as such offer the

possibility of providing enhanced monitoring of pro-

cesses, both in terms of providing additional process

information and acting as a reference for sensor fault

detection. They have previously been demonstrated for

estimating parameters such alkalinity, chemical oxy-

gen demand, inorganic carbon, and volatile fatty acids

in waste water treatment plants (Bernard 2011) and

more recently for total alkalinity in biogas plants

(Ward et al. 2011). However, development and updat-

ing of soft sensor models requires expert knowledge

due to the complex modeling techniques required and

the need for tailored training data, putting them beyond

the research of most small scale biogas plant operators.

Newly developed powerful Machine Learning meth-

ods facilitate soft sensor development because of their

ability to learn vastly complex and nonlinear relation-

ships (Gaida et al. 2012). Further research in this area is

necessary to tap the full potential of the existing

methods with regard to AD processes.

4.3 Control

With respect to both observer and control design, one

may also expect the development of high power

computation capacity will fundamentally change our

way of thinking. Modern control techniques usually

necessitate the use of a limited order model to be able

to guarantee stability and performance robustness.

Techniques based on particulate filters [Cf. for

Rev Environ Sci Biotechnol (2015) 14:615–648 637

123



instance Goffaux and Van de Wouwer (2005) and

Benyahia et al. (2012) for applications to chemostat

models] coupled with the use of nonlinear optimal

controllers present the advantage of being able to use

complex model while dealing with uncertainty. Of

course, the price to pay is a relatively less degree of

guarantee but the higher the on-line computer capa-

bilities, the higher the state space to be investigated

and the lower the probability to push the process

towards a dangerous functioning zone. Another

promising route concerns the use of innovative passive

control approaches in which control objectives are

considered at the initial conception step of the process.

In terms of performances, it is for instance well known

that series of reactors perform better than single

processes. However, this design may penalize both

investment costs and the stability of the process since

reducing the size of the first reactor. The introduction

of alternative configurations of the different reactors

and the judicious choice for their respective volumes

may lead to a more robust global system with respect

to specific uncertainty and disturbances (if compared

to a single tank reactor), cf. for instance the work by

Rapaport et al. (2014) on the stabilization of chemo-

stats with substrate-inhibited kinetics.

It is usually expected that a controller using a more

complex model would lead to better performances.

Assuming the on-line computation capability is avail-

able, it may be true. But the use of very simple models

from which a control may ‘‘really’’ be optimal with

respect to a given performance index, from a math-

ematical viewpoint, may be helpful to think of new

control strategies. For instance, the work by Sbarciog

et al. (2010) allowed us to propose a new control

strategy able to guarantee sub-optimal performances

while preserving the stability of the whole process

(Rodriguez et al. 2013).

Microbial management of bioprocesses is another

emerging topic with a great potential. This is partic-

ularly true for AD which involves a huge biodiversity

(Carballa et al. 2015). Thanks to the development of

molecular analytical tools (denaturing gradient gel

electrophoresis, single-strand conformation polymor-

phism…), the anaerobic microbiome has been more

and more characterized (Vanwonterghem et al. 2014,

Sundberg et al. 2013). Considering the biodiversity

can give raise to a new paradigm for the control and

optimization of AD. Until now, the principal objective

of control was to stabilize the digester. Nonetheless, a

stable process tends to reduce the biodiversity through

the section of the fittest species in the imposed

environment. Although this selection process could

increase the steady-state performance, it could seri-

ously alter the resilience of the process (Ramirez et al.

2009). Dynamical feeding has been proposed in order

to select a microbiome with a high ability to adapt to

disturbances (De Vrieze et al. 2013). Bioaugmentation

have been also applied, in particular in response to

stress (e.g., Schauer-Gimenez et al. 2010; Tale et al.

2011). Concerning the model-based control laws, most

of them are designed assuming one population for one

function. Recently, Mairet and Bernard (2014) have

proposed to evaluate the performances of such control

laws when several species are present. Using the

control law proposed by Mailleret et al. (2004) as an

example, they have shown that a slow-growing species

can lead to reactor shutdown. This framework can be

used to design robust control laws which better tame

biodiversity. Rapaport and Harmand (2002) also

proposed a ‘‘biocontrol’’ strategy using biotic micro-

bial ecosystem capabilities to select certain species.

Although attractive, these approaches remain studied

in simulations only. The control of the microbiome

involved in AD is an exciting challenge for the future,

but the lack of on-line instrumentation for biodiversity

monitoring can limit process implementation.

Recently, on-line flow cytometers have been proposed

for AD (Koch et al. 2014) and can open new directions

for closed-loop microbial control strategies.

Recently, novel potential actuators emerged to

control methanogenic pathways (Liu et al. 2013; Lin

et al. 2013). Indeed, methanogenic pathways (i.e.,

acetoclastic or hydrogenotrophic) have been analyzed

using stable carbon isotope signature. This analysis is

made on the biogas phase and thanks to an isoprime

mass spectrometer linked with a gas chromatography,

a carbon fractionation can be performed. This infor-

mation is very valuable because it points out the

contribution of the different methanogenic pathways

producing methane and carbon dioxide. For example,

Liu et al. (2013) made cartography of the methanogens

type depending on ammonium and acetate high

concentrations. In the same way, Lin et al. (2013)

showed the impact of the addition of bicarbonate on

the methanogenic biodiversity. This kind of informa-

tion would be very valuable in order to drive a digester

in case of acid or/and ammonia inhibition, without

loose energetic performance.
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The balance between the synergistic production and

consumption of VFA intermediates in the AD with

respect to process stability is important and has been

outlines in Sect. 3.1. Disagregation of the trophic

groups in the AD process by physically separating

them into an acidogenic stage reactor and a methano-

genic stage reactor is not a new idea. Two stage AD,

often with the intention of improving hydrolytic

processes, has been studied by many researcher over

the last 40 years e.g., Ghosh et al. (1975). However,

increased scope for control actuation may be available

by such stage separation especially with the ability to

monitor and manage microbial populations more

effectively in recent years. Furthermore, the stages

can be integrated with each other and other processes

to improve gas yields as reported byMassanet-Nicolau

et al. (2013). Guwy et al. (2011) described how the

integration of multi stage bioprocesses can be used to

extract or utilize the products. The extraction of VFAs

for example may simultaneously deliver valuable

chemicals and controlled supply of substrate for

methanogenesis to a subsequent stage. This VFA

extraction may be achieved by conventional electro-

dialysis, as proposed by Jones et al. (2015) in an

acidogenic stage also generating hydrogen. VFAs are

also an appropriate substrate for bioelectrochemical

systems as has been demonstrated by many research-

ers and reviewed by Pant et al. (2010). The application

of multivariable control strategies as described in this

paper may deliver optimal system performance,

although control of each of the stages or sub-processes

may be independently controllable under a system

level supervisory regime.

The capacity of ADs to utilize additional CO2 was

demonstrated by several authors, which could provide

a potential solution for on-site sequestration of CO2

streams while enhancing methane production by CO2

sparging. CO2 could then become an efficient actuator

to improve AD performances. Few studies have

indeed considered the potential of CO2 biological

conversion in anaerobic processes, reporting benefits

both in terms of carbon uptake and renewable energy

production (Salomoni and Petazzoni 2006; Salomoni

et al. 2011). Interestingly, microorganisms operating

under CO2 saturated conditions continue to synthesize

CH4. Alimahmoodi and Mulligan (2008) stated a

69–86 % CO2 uptake when dissolving this gas in the

influent of an upflow anaerobic sludge blanket

(UASB) reactor. Francioso et al. (2010) and Salomoni

et al. (2011) further confirmed the potential of CO2

biological conversion in two phase anaerobic diges-

tion (TPAD), and observed 25 %methane (CH4) yield

enhancement when sparging CO2 into the first stage.

Moreover, the net production of CO2 in CO2-recircu-

lating AD units can be reduced by a factor of 4.

Fernández et al. (2014) addressed the reduction of CO2

emissions and enhancement of biogas production

associated with CO2 enrichment of anaerobic digesters

(ADs). The benefits of CO2 enrichment were exam-

ined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions

into batch ADs treating food waste or sewage sludge.

Daily specific methane (CH4) production increased

11–16 % for food waste and 96–138 % for sewage

sludge. Potential CO2 reductions of 8–34 % for

sewage sludge and 3–11 % for food waste were

estimated. Mohd Yasin et al. (2015) used CO2 as the

substrate to generate methane by enriched methano-

gens after anaerobic enrichment of waste activated

sludge (WAS) and they demonstrated that methano-

gens from WAS have significant potential for con-

verting the greenhouse gas CO2 into the fuel methane.

Moreover, methane production was increased 70 fold

by active methanogens in the enriched methanogens

culture after 3 days in the presence of H2 and CO2.

Indeed, the addition of H2 into an anaerobic

digestion has been performed in several studies (Luo

et al. 2012; Luo and Angelidaki 2013; Wang et al.

2013b; Dı́az et al. 2015) in order to remove CO2 from

biogas while methane production increased, through

the hydrogenotrophic pathway. For example, Luo

et al. (2012) showed that increasing both hydrogen

partial pressure and mixing intensity would give 22 %

of methane production. One main barrier highlighted

was the gas–liquid mass transfer of H2 because of the

low solubility of this gas.

5 Conclusions and perspectives

Over the years, knowledge on anaerobic digestion has

increased and several instruments are now available to

monitor efficiently the AD processes. Global param-

eters for organic matter characterization can indeed be

used and biodegradability, bioavailability and bioac-

cessibility of complex solid substrates can be assessed.

Modelling, especially through the development and

consolidation of the ADM1 model, has successfully

proven its ability to translate the biological steps
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occurring in the AD. Since its creation, many

improvements have been carried out, and ADM1 has

been tailored to a broad variety of substrates. But there

are still progresses to be accomplished to better

manage the influent composition, and further represent

physicochemical processes such as precipitation.

There is still a gap between these more and more

accurate models, but also involving higher degrees of

freedoms, and simpler models which support most of

the monitoring, diagnosis and control algorithms.

Bridging this gap, combining these theoretical

approaches with information provided by innovative

sensors, and reducing expert needs to run these

algorithms will probably significantly improve the

attractiveness of the approach together with its

efficiency.

These developments will also contribute to improve

emerging processes such as thermophilic and ultra-

high rate processes (Ge et al. 2011), or supporting co-

digestion strategies (Mata-Alvarez et al. 2011).

Modelling, monitoring and control are also expected

in the objective of recovering nutrients (Mehta and

Batstone 2013) and for tracking micropollutants, trace

organics, pathogens and recalcitrant (Fountoulakis

et al. 2008).
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topics in dynamics and control of chemical and biological

processes. Springer, Berlin
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gènes—Final report (in French) ADEME

Dalmau J, Comas J, Rodrı́guez-Roda I, Pagilla K, Steyer JP

(2010) Model development and simulation for predicting

risk of foaming in anaerobic digestion systems. Bioresour

Technol 101:4306–4314

Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jan-

sen J (2007) Methane yield in source-sorted organic frac-

tion of municipal solid waste. Waste Manage 27:406–414

De Baere L (2000) Anaerobic digestion of solid waste: state-of-

the-art. Water Sci Technol 41:283–290

De Baere L (2008) Partial stream digestion of residual municipal

solid waste. Water Sci Technol 57:1073–1077

De Gracia M, Grau P, Huete E et al (2009) New generic

mathematical model for WWTP sludge digesters operating

under aerobic and anaerobic conditions: model building

and experimental verification. Water Res 43:4626–4642

De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse

feeding induces functional stability in anaerobic digestion.

Microb Biotechnol 6:414–424

Delattre C, Dochain D, Winkin J (2004) Observability analysis

of nonlinear tubular (bio)reactor models: a case study.

J Process Control 14:661–669

Di Pinto AC, Limoni N, Passino R, Rozzi A, Tomei MC (1990)

Instrumentation, control and automation of water and

wastewater treatment and transport systems. In: Proceed-

ings of the 5th IAWPRC workshop, pp 51–58
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