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Abstract. Side channel attacks are recognized as one of the most pow-
erful attacks due to their ability to extract secret key information by ana-
lyzing the unintended leakage generated during operation. This makes
them highly attractive for attackers. The current countermeasures focus
on either randomizing the leakage by obfuscating the power consump-
tion of all operations or blinding the leakage by maintaining a similar
power consumption for all operations. Although these techniques help
hiding the power-leakage correlation, they do not remove the correlation
completely. This paper proposes a new countermeasure type, referred
to as confusion, that aims to break the linear correlation between the
leakage model and the power consumption and hence confuses attack-
ers. It realizes this by replacing the traditional SBOX implementation
with a neural network referred to as S-NET. As a case study, the secu-
rity of Advanced Encryption Standard (AES) software implementations
with both conventional SBOX and S-NET are evaluated. Based on our
experimental results, S-NET leaks no information and is resilient against
popular attacks such as differential and correlation power analysis.

Keywords: S-NET · Side channel analysis · Neural network · SBOX ·
Advanced Encryption Standard

1 Introduction

Since it was selected by National Institute of Standards and Technology (NIST)
in 2001 as the official standard for block cipher cryptography [1], Advanced
Encryption Standard (AES) gain a massive adoption in network communica-
tion protocols [2]. Nowadays AES is the most widely used symmetric encryption
algorithm [2]. Hence, it is attractive for attackers to comprise keys which may
lead to massive data breaches. A recent study made by IBM and Ponemon Insti-
tute showed that the average cost of a single data breach is estimated to be
c© Springer Nature Switzerland AG 2020
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$3.86 million [3], not to mention the additional reputation damage. Theoreti-
cally, AES is considered to be resistant against all attacks with the exception of
brute force attacks. However, attackers found means to compromise the security
of such algorithms based on their implementation [4]. One of the most popular
techniques to retrieve the key is by analyzing the physical characteristics such
as power consumption known as side channel attack (SCA). SCA poses a serious
threat to the security of current encryption algorithms. As a consequence, the
implementations of these algorithms have to be reevaluated and secure imple-
mentations have to be developed.

The current developed countermeasures can be classified into two groups
referred to as randomization and blinding. Randomization aims at obfuscating
the power consumption irrespective of the executed operation, while blinding
aims at leveling the power consumption (i.e., keep as constant as possible) dur-
ing the encryption/decryption. Randomization was first proposed in 1999 by
Chari et al. [5] shortly after the first power attack was introduced in 1998 [6].
The authors split the operation using a random factor known as masking. How-
ever, this masking technique does not protect against second-order power attacks
[7]. Higher order masking [8] was thereafter introduced to defend against the
attacks; unfortunately, it decreased the performance significantly without guar-
anteeing protection. Other randomization countermeasure techniques such as
dummy delay insertion [9] and shuffling [10] were also proposed. These tech-
niques made attacks harder but could not necessarily prevent them [11,12]. In
the second group of countermeasures, i.e. blinding, also several countermeasures
have been proposed. In [13] the authors proposed dual-rail logic, a technique
where all input and output signals of a gate also have complementary values.
Hence, the technique balances the number of transitions. Another example of
blinding consists of duplicating the design where one part operates on the origi-
nal message while the other on the complementary message [14]. However, both
these techniques still leak information due two reasons. First, a difference in load
capacitance between the two complementary logic gates may cause an unbal-
anced power leakage for different input values. Second, different arrival times
of signals leaks information as well [15]. Hence, both randomizing and blinding
countermeasures are susceptible to power attacks as both techniques are focus-
ing on covering the problem instead of solving it. To solve the leakage issue, the
linear correlation between the power consumption and leakage model must be
broken.

This paper proposes a radical new countermeasure type that aims to break
the linear correlation between the power consumption and the leakage model. We
realize this by substituting the SBOX operation of AES with a neural network
which we call S-NET (short for substitution neural network). Due to the chaotic
nature of S-NET and removal of the linear power-leakage relation, we classify
this countermeasure as confusion. The main contributions of this paper can be
summarized as follow:

– Proposal of S-NET: a new countermeasure based on confusion. It nullifies
power attacks by invalidating the existing power-leakage models.



S-NET: A Confusion Based Countermeasure 297

– Implementation of S-NET. This includes designing, training, and testing of
an appropriate neural network.

– Validating S-NET security using conformance testing by applying signal-to-
noise ratio analysis as a leakage assessment and evaluation style testing by
applying key ranking analysis based on the most popular power attacks.

The rest of the paper is organized as follows. Section 2 provides a background
on SBOX, side channel attacks, and neural networks. Section 3 explains the con-
fusion countermeasure and the methodology applied to design S-NET. Section 4
validates its security. Section 5 discusses the benefits and limitations of S-NET.
Finally, Sect. 6 concludes this paper.

2 Background

This section provides a background on SBOX, the most targeted component in
SCA and the different SCA types. Thereafter, it introduces neural networks.

2.1 Substitution Box (SBOX)

An SBOX (or so called SubByte in AES) is an essential nonlinear substitution
operation that is used in every block cipher. The purpose of an SBOX is to
create confusion, i.e., to obscure the relationship between the private key and
the ciphertext [16]. Among all the operations in block ciphers, the SBOX leaks
the most information; hence it is typically the target of side channel attackers.
The SBOX in AES has an 8-bit input and works as follows [1]:

1. The multiplicative inverse of the 8-bit input is calculated based on the finite
Galois Field GF (28) and the irreducible polynomial p(x) = x8+x4+x3+x+1.

2. The intermediate result of the previous step is transformed using a predefined
affine transformation.

To speed the calculations up, typically a 256-input Look-Up Table (LUT) is
used containing pre-calculated values. Note that AES also contains other oper-
ations such as AddRoundKey MixColumns, and ShitfRows [1]. However, these
are less relevant for side channel attacks and hence not addressed.

2.2 Side Channel Analysis

Side channels are observable characteristics such as time, power consumption,
electromagnetic radiation, light, noise, heat, etc. that may leak secret infor-
mation unintentionally. By analyzing these characteristics, i.e., perform a side
channel attack, cryptographic keys can be retrieved [17]. Most of these type of
attacks are non-invasive, as the observable characteristics can be observed from
outside the chip and hence SCA attacks are relatively cheap. From the SCA
attacks, power attacks are the most popular ones and hence the topic of this
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paper. Power attacks are statistical analysis of the power consumption measure-
ments at an intermediate target (e.g., SBOX operation) that are correlated to a
leakage model. Leakage models make assumptions on how the secret information
is leaked based on the operations and switching activity. Examples are [18]:

– hamming weight: HW = ones(Intermediate AES function)
– hamming distance: HD = ones(plain-/ciphertext

⊕
HW)

The function ones() represent the number of ones in a byte, while Intermediate
AES function is the targeted function of the AES ecnryption/decryption process.
Examples are:

– AddRoundKey = plaintext
⊕

key
– SubByte =SBOX[plaintext

⊕
key]

– LastRound =SBOX−1[ciphertext
⊕

key]

Power attacks can be classified in non-profiled and profiled attacks. Each
class is briefly explained next.

– Non-profiled power attacks: in these attacks, an attacker gets access to
a target electronic device that runs a cryptographic algorithm. Thereafter,
he or she tries to perform a key recovery by correlating a leakage model
with obtained power traces during the execution of the cryptographic algo-
rithm. Famous examples of this type of attacks are Differential Power Attack
(DPA) [6] and Correlation Power Attack (CPA) [18].

– Profiled power attacks: unlike the non-profiled attacks, in these attacks,
an attacker holds a device under his control similar to the target device in
order to build a leakage template. Thereafter, he or she takes advantage
of this template to exploit the leakage of the target device and performs a
key recovery. Famous examples of these types of attacks are template based
power attacks (TBA) [19] and Deep Learning based Side Channel Attacks
(DL-SCA) [20].In this paper we will focus only on non-profiled attacks.

2.3 Neural Network

A neural network (NN) is a simplified mathematical representation of a biological
network of neurons, where each biological neuron is represented by an artificial
neuron [21]. In its simplest form, an NN consists of a single node; it is also know as
a Logistic Regression (LR) model that consists of two steps. First, it calculates∑n

i=1 xiwi + bias; here xi presents the ith input value and wi its associated
weight. Subsequently, a nonlinear activation function is applied. The output of
this model is a probabilistic decision. More complex NNs can be constructed by
forming a network of multiple layers of neurons to form the so-called Multilayer
Perceptron (MLP). MLP mainly consists of three types of layers. The first layer is
called the input layer and serves as the data entry point to the neural network.
The second type of layer is called the hidden layer. The hidden layers of the
NN are responsible for the extraction of features of the input data. The size of
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Fig. 1. Linear power-leakage correlation (modified from [23]).

the hidden layers is specified by the width and depth; the width represents the
number of neurons in each layer while the depth refers to the number of layers.
The final layer is called the output layer and is responsible for making decisions.

NNs can be used to map any finite or continues mathematical function inde-
pendent of its complexity. According to the Universality Approximation Theo-
rem (UAT) [22], a feed-forward neural network with a single hidden layer with
a finite number of neurons and an arbitrary activation function can be used
to approximate any continuous function. As the SBOX described in Sect. 2.1 is
based on mathematical functions, it can theoretically be implemented using a
neural network. In the next section we describe how we achieve this.

3 S-NET: A Countermeasure Based on Confusion

This section explains the confusion countermeasure, the idea behind S-NET and
finally, the methodology to design it.

3.1 Confusion: Invalidating the Leakage Model

In side channel analysis (SCA), an attacker correlates the power consumption
with a leakage model assuming a linear relation between them. In other words, a
higher power consumption results in a larger hamming weight/distance as illus-
trated in the left part of Fig. 1. Hence, the different hamming weights/distances
are traceable in the power traces. Note that the countermeasures based on ran-
domization and blinding try to make this harder, but are typically not able to
completely hide this linear relation when statistical analysis are performed. The
reason for this is that these countermeasures only try to modify the power con-
sumption, as shown in the left part of Fig. 2. On the other hand, it would be much
more difficult for attackers to analyze power traces when the relation between the
hamming weight/distance is nonlinear with the actual power consumption as the
right part of Fig. 1 shows. In such a scenario, based on the message-key combina-
tion, different hamming weights/distances might have the same power consump-
tion and message-key combinations with the same hamming weights/distances
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Fig. 2. Visual explanation of the confusion concept.

Fig. 3. SBOX representation in S-NET

might have a different power consumption; hence, attacks based on hamming
weight/distance are confusing and not effective. The reason for this is that such
a countermeasure confuses the leakage in relation to the power consumption.
Therefore, this countermeasure targets the leakage model as illustrated in the
right part of Fig. 2.

Note that the implementation of S-NET inherits the non-linearity from the
stochastic properties of neural networks. Generally any mathematical function
that tries to break the linear power-leakage behaviour can be categorized as a
countermeasure based on confusion.

3.2 Motivation Behind S-NET

Besides their stochastic properties, neural networks also have other benefits.
Neural networks can be considered to a certain degree as black boxes as it is
unclear how their internals precisely work. This property makes neural network
based implementations difficult to be characterized. Hence, finding a good leak-
age model against it is extremely hard.

3.3 Design Methodology

Figure 3 shows the concept of S-NET. S-NET implements the SBOX operation
using a neural network without affecting the remaining AES operations. The size
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and weights of the neural network can be achieved by iterating over three steps,
namely design, training, and optimization until a satisfying solution is reached.
Thereafter, in the final and fourth step, the neural network is integrated with
the other parts of AES. Each step is described in detail next.

1. Designing S-NET: This step describes the methodology used to define the
sizes of the input, output and hidden layers of S-NET.

The SBOX is typically represented by the look-up-table (LUT) shown in
left side of Fig. 3. The LUT contains 256 elements arranged in a table with 16
rows and 16 columns. The row index is specified by the first 4 input bits and
the column index by the latter 4 input bits. Since a neural network is not a
table, S-NET is designed differently. The input layer of S-NET is fixed to 8
neurons, each representing a single bit of the input, respectively. To improve
the resilience against attacks, only a single neuron in the output layer has been
used that generates the output byte of the SBOX. The size of the hidden layer,
i.e., its width and depth, depends on how easy it is for the neural network to
learn the content of the LUT. We have tried different widths and depths to
find the optimal solution in term of computation and memory efficiency. We
observed that the cheapest solution from a computational and memory point of
view consists of using a single hidden layer for two reasons: 1) as the inputs are
binary, no multiplications are required in the hidden layer, and 2) by reducing
the depth to a single layer, data can be represented using less number of bits.
Note that the range of intermediate values increases for a larger depth.

2. Training S-NET: This step describes the training process and how the
weights and biases of S-NET are determined. Usually the data set consists of
three subsets during the training of a neural network. One subset is used for
the training of the network, one for the validation of the network, and one for
evaluating the performance after the training is completed. However, in case of
S-NET, only a single data set is used for training. The validation and evaluation
are not needed as S-NET must be 100% functional, i.e., it must generate correct
outputs for all 256 SBOX inputs.

3. Optimizing S-NET: This step describes the optimization techniques used
to increase the performance and reduce the overhead of S-NET.

The computational complexity and memory overhead of neural networks
make them undesirable solutions for both hardware and software applications.
Therefore, to reduce the cost of the proposed solution, multiple optimization
techniques are applied before, during, and after the training process. These tech-
niques are highlighted next.
Integer Weights: It is well understood that integer operations have a signif-
icant performance benefit in comparison with floating point operations. There-
fore, the weights of the neural network are rounded to the nearest integers after
the training phase. After this step, all the inputs of the SBOX are reevaluated
to guarantee correct operation.
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Constrain Weights: The neural network typically produces a wide range of
values for the weight set and hence floating point numbers are used by default
during training. An implementation of a neural network in hardware and software
would be more optimal if the weight set is restricted to a limited number of bits.
In S-NET, we fixed the sizes of the weights to 16 bit integers, thereby speeding up
the operations and lowering the memory overhead, especially when customized
hardware operations are used.
Reduce Multiplications: Multiplications are one of the most expensive oper-
ations in the neural network. For this reason, S-NET is designed to have a
single hidden layer where no multiplications are needed as the input neurons are
represented by a single bit. In the output layer, the number of multiplication
is reduced by setting a threshold for the weight. Any weight value below this
threshold is skipped. Hence, it results in a lower computational overhead.
Use Simple Activation Functions: Each neuron contains an activation func-
tion. The input to this activation is equal to the sum of the product of the inputs
and weights of the neuron plus the bias. Many functions have been used as acti-
vation function such as tanh, sigmoid, Rectified Linear Unit (ReLU), etc. The
computational complexity of these functions varies. In our design we intention-
ally chose Relu for the hidden layer and no activation function in the final layer
to achieve simplicity in both software and hardware implementations.

4. Integrating S-NET in this final step, the designed S-NET component is
integrated into the AES implementation by replacing the conventional SBOX.

4 Validation

This section describes the platform and validates the security of S-NET by ana-
lyzing the power traces using evaluation and conformance style testing.

4.1 Experiment Setup

To validate the proposed concept of the countermeasure, we compare the security
of an unprotected and protected software implementation of AES128, where the
protected implementation uses S-NET. The software implementations run on
the Chipwhisperer board from NewAE Technology Inc [24]. It is a development
board that comes with the Atmel XMEGA microcontroller as target device. We
used the unprotected open source AES128 implementation that comes with the
board as our reference for the unprotected AES128 implementation. The power
consumption is measured with an ADC that is integrated in the development
board. Finally, the development board is connected to a computer to control the
execution and storage of the power traces.
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DPA CPA

Fig. 4. Ranking analysis results of unprotected SBOX implementation

DPA CPA

Fig. 5. Ranking analysis results of S-NET implementation

4.2 Results Analysis

To analyze the security of both the unprotected and protected AES implemen-
tations, two analysis methods are applied. They are referred to in literature as
evaluation-style and conformance-style testing.

First, in evaluation-style testing traces are examined based on real attacks
scenarios, preferably by advanced state-of-the-art attacks. They reveal whether
the implementations are resilient against these attacks or not. Here, we limit
ourselves to the most famous power attacks; they are: differential power analy-
sis (DPA), and correlation power analysis (CPA). Second, in conformance-style
testing the traces are checked to meet certain leakage requirements, without con-
sidering attacks. Examples of such analysis are TVLA [25] and signal-to-noise
ratio (SNR) analysis [26]. Due to space limitations, we only limit ourselves to
SNR analysis. The results of both analysis methods are provided next.
Evaluation-style Testing: Two popular attacks (i.e. DPA and CPA) are per-
formed on the recorded traces of the unprotected and protected implementa-
tions.The traces are generated based on fixed keys. For each attack, we evaluate
the rank of the correct sub-key values (i.e., 8 bits of the 128-bit key). A rank of
zero means that the attacker is able to retrieve the correct sub-key, while a rank
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Table 1. Number of correctly predicted sub-keys

Unprotected Protected (S-NET)

Leakage Model & Attack DPA CPA DPA CPA

HW(AddRoundKey) 0 0 0 0

HW/HD(SubByte) 16 16 0 0

HW/HD(LastRound) 16 16 0 0

of 255 represents the lowest confidence of guessing the right sub-key. Figure 4
shows the rank analysis of the first 6 bytes for both attacks for the unprotected
implementation. The figure clearly shows, as expected, that the sub-key can be
retrieved successfully when approximately 400 traces are used; this applies for
both attacks. In contrast, the two attacks were unsuccessful for the protected
S-NET implementation as shown in Fig. 5. The rank of the correct key behaves
chaotically and never reaches zero and hence the correct sub-key could not be
retrieved. The analysis have been done using only a single weight set for S-NET.

Unprotected SBOX implementation S-NET implementation

Fig. 6. SNR analysis results

Conformance-style Testing: Figures 6a and 6b show the SNR analysis of
the unprotected and protected implementation, respectively. The traces for the
analysis are generated based on random keys. The maximum SNR value of both
figures differs. For the unprotected case, a high SNR value of 37.6 is observed
around sample 3000 which is higher than the considered threshold value (which
equals 25 [27]); hence, information leakes. However, for the protected case, the
highest observed SNR value is 21.5 around sample 14000, which is below the
minimum threshold value. Hence, it is hard to extract the secret key.

The results based on both evaluation-style and conformance-style testing
clearly show that S-NET is secure against CPA and DPA power attacks. This
can also be seen in Table 1. In the protected case, we were not able to recover



S-NET: A Confusion Based Countermeasure 305

any of the sub-key values. However, for the unprotected case, all the 16 sub-
keys were successfully retrieved for attacks based on SubByte and LastRound
(see Sect. 2.2), for both DPA and CPA using both hamming distance (HD) and
hamming weight (HW).

5 Discussion

This work proposes a new countermeasure type against SCA. Based on our
experiments, we conclude the following:
Security: S-NET provides a unique solution to the leakage problem which is
different from the randomization and blinding techniques, as it tries to break
the linear correlation between power consumption and leakage model. It has
additional benefits as it makes characterization difficult due to the inherent
nature of neural networks.
Performance: The software implementation of S-NET has a large timing over-
head. The protected AES runs 75 times slower than the unprotected AES imple-
mentation. However, this delay overhead is comparable to other countermeasures
such as masking where the timing overhead is larger than 100x [28].
Hardware Implementation: One way to speed-up S-NET is to implement
the neural network in hardware. In hardware, S-NET can be implemented in a
single or a couple of cycles which increases the performance. However, it might
impact the area overhead negatively.
Optimization: To tackle the area and performance issues two possible solutions
can be investigated. The first method is based on the usage of emerging memory
technologies. Several articles already showed that neural networks implemented
with resistive memories have a huge area reduction compared to CMOS imple-
mentations [29]. Another way of trying to improve the performance is by looking
at other (mathematical) functions that create a nonlinear power-leakage corre-
lation. In case such a function exists, its implementation is most likely cheaper
than using a neural network.
Applicability: Due to its widely usage, the SBOX of AES has been used to
implement S-NET. However, the S-NET countermeasure technique can be eas-
ily applied to other block ciphers such as Data Encryption Standard (DES),
Blowfish, Towfish, etc. In addition to that, it can be used to secure lightweight
encryption systems such as PRESENT, which lately are gaining increasing atten-
tion due to increase in Internet-of-Things (IoT) applications.
Analysis: In this paper we proved that S-NET was able to secure AES against
power attacks. However, other side channel attacks such as timing and electro-
magnetic field have not been investigated. Nevertheless, we believe that they are
less powerful than power attacks.

6 Conclusion

This paper introduced a new countermeasure type against side channel power
attacks referred to as confusion. In contrast to blinding and masking, that try
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to hide the leakage, confusion countermeasure solves the leakage problem by
removing the linear correlation between the power consumption and leakage
model. We realized this by deploying a neural network, referred to as S-NET.
The experimental results showed that S-NET is immune against DPA and CPA.
However, the performance results showed a 75 times higher execution time than
the conventional implementation. Overall, S-NET has the potential to replace
existing countermeasures due to its high security.

Acknowledgments. This work was labelled by the EUREKA cluster PENTA and
funded by Dutch authorities under grant agreement PENTA-2018e-17004-SunRISE.
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