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Abstract: The WRW model serves the geoscientists’ community as a global language 
dedicated to deliver a better insight into the seismic reflection experiment. The model 
formulates such an experiment as a multiplication of matrices. In today’s numerical 
modeling, wave equation-based techniques such as implemented in the WRW model are used 
more and more, while it becomes clear that ray tracing methods do not have the required 
accuracy. The reflectivity matrix R is undoubtedly one of the most essential parts of the WRW 
model since it contains the angle dependent reflectivity information of the subsurface 
structures. It is this information that is to be retrieved from the seismic experiment. This 
paper provides insight in the formation process of this matrix. Different properties of the 
reflectivity matrix are investigated through the numerical modeling of three different cases. 
Moreover, the accuracy of the WRW approach is compared to that of ray tracing. The 
numerical results highlight the superiority of the WRW approach, i.e., the wave theory based 
approach, particularly in the case of a laterally variant reflector. 
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1. INTRODUCTION  

The main goal of the seismic reflection experiment is to obtain reflectivity information of 
subsurface structures. This can be done by means of structural imaging and reflectivity 
inversion processes on the acquired seismic data. Therefore, the forward modeling algorithm 
has a crucial impact on the inversion output. Among numerical modeling techniques, wave 
equation based modeling algorithms such as wave field extrapolation, and ray tracing are well 



 

known. The WRW model, as introduced in [1], provides an efficient way to describe and 
handle mathematically the inversion parameters.  

In the ray tracing approach, each ray path represents a seismic wave-front from a source to 
a receiver [2]. As the ray reaches an interface a part of it is transmitted and the rest is 
reflected depending only on the local reflectivity properties and the angle of incidence. As a 
result, the effect of irregularities on the reflectors cannot be properly taken into account [3].  

On the other hand, according to the wave field extrapolation approach, wave propagation 
can be described by the contribution of secondary sources placed along the spherical wave 
front (Huygens’ Principle). Therefore, in order to obtain the reflectivity information at a 
certain grid point on the reflective interface, the effect of neighboring grid points is also taken 
into account. Fig. 1 schematically represents the difference between the two methods. Wave 
field extrapolation based modeling can be described by means of the WRW model [1]. 

In this paper the WRW model will be analyzed with special attention given to the 
reflectivity matrix. 2D numerical examples will be presented and the results obtained from 
the two methods will be compared. The R matrices of the examples shall give an insight into 
the reflection mechanism and its impact on the final dataset. Finally, the deficiencies of the 
ray tracing approach with respect to the WRW approach will be discussed. 

2. THE WRW MODEL 

The key feature of the WRW model is that it describes the seismic data in terms of matrix 
operators in the frequency domain [1]. According to this model, each monochromatic 
component (single frequency) of the primary wave field P(z0,z0) that is recorded at the 
surface z0, can be described in the space-frequency domain by:  
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In eq. 1, zm denotes the steps in depth of the algorithm, thus, the depth levels that are 
investigated for reflective boundaries. The designation ‘WRW model’ stems from the two 
propagation matrix - operators W, and the matrix operator R, whose functions are explained 
below. It is worthwhile to mention that the WRW concept serves also as the vehicle for the 
CFP technology [4]. Fig. 2a shows a schematic representation of the WRW model. 

The lateral coordinates x and y and the frequency ω have been left out for convenience.  
 

 
 
Fig.1: Different approaches to the reflection problem. (a) Wave theory (b) Ray tracing 



 

The matrix operators in eq. 1 have the following meaning: 
 S(z0): source matrix. It contains the amplitude and phase of the source wavelet at 

the frequency under consideration. One column represents one source (array) and 
determines its position in space 

 W(zm, z0): forward wave field propagation matrix. Each column contains a discrete 
version of the Green’s function that describes the wave propagation from one point 
(one lateral location) at the surface z0 to many points at depth level zm. 

 R(zm, zm): reflectivity matrix. It describes the conversion of an incident wave field 
into a reflected wave field, as will be further explained below. 

 W(z0, zm): forward wave field propagation matrix. It describes the wave 
propagation from one point at the depth level zm to many points at the surface z0. 

 D(z0): detector matrix. It contains the detector wavelet. One row represents one 
detector (array) and determines its position in space. 

It follows that the element Pij of the data matrix P(z0, z0) corresponds to the configuration: 
source at the location j and detector at the location i. Therefore, one column of the data 
matrix represents a common source gather (shot record) and one row represents a common 
receiver gather. Other data gathers, such as CMP gathers or common offset gathers, can also 
be identified in the data matrix. This equation is valid for stationary acquisition geometries 
and stationary parts of non-stationary acquisition geometries. 

3. REFLECTIVITY MATRIX  

In the previous section, the general description of the WRW model was reviewed, in 
which the reflectivity matrix R was introduced as a matrix in the space-frequency domain 
containing operators that convert the incident wave field into the reflected wave field. These 
operators can be derived from the reflectivity operator in the wavenumber-frequency domain. 
In the case of a horizontal reflector between two homogeneous media it is given by [5]:   
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where ρ1,2 denotes the density of the two media and kz is the z-axis component of k - the 
wavenumber (as shown in eq. 3). By αi,t we denote the angle of incidence and angle of 
transmission respectively.  

The reflectivity matrix R is a convolution matrix based on the operator R (eq. 1): the 
multiplication by R in the kx – ω domain can be expressed in terms of a matrix multiplication 
by R in the x – ω domain. Fig. 2b represents schematically the formation of a convolution 
matrix from an operator. Each row of the reflectivity matrix R(zm,zm) contains an operator in 
the space-frequency domain which corresponds to a certain grid point at depth zm. 



 

 
 

Fig. 2: (a) The WRW model, after the formulation of equation 1. For each reflection, a WRW-
term is added to the total expression for the measured pressure P(z0,z0), (b) Forming a 

convolution matrix 

In the simple case that all grid points at a certain depth have the same reflective properties 
(i.e. no lateral changes), the reflectivity matrix has a Toeplitz structure.  

The angle dependent properties of the reflectivity operator are obtained from eq. 2 and 3. 
From eq. 3 it follows that each value of the reflectivity operator in the wavenumber - 
frequency domain represents reflectivity for a certain angle of incidence [6]. Two extreme 
cases are: 

 Only diagonal elements of the reflectivity matrix are filled with non-zero values. In 
this case, the operator is constant over a range of wavenumbers, thus angles (angle 
independent reflector). In this case the grid points are treated as point diffractors. 

 Constant values along the columns of the reflectivity matrix. In this case, the 
reflectivity operators in the wavenumber domain are non-zero for kx = 0 only. 
Therefore, the grid points on the reflector reflect only the horizontal plane waves. 
One should note though that this is not a realistic situation. 

In general, the matrix R is completely filled with various complex values. Note that the 
diagonal elements represent x = 0 (i.e. the grid-point under consideration). From Fourier 
theory it follows that this corresponds to a summation over the wavenumbers (or angles). 
Therefore, the diagonal elements of the reflectivity matrix represent angle-averaged 
reflectivity. Angle-averaged reflectivity is the result the many migration algorithms deliver, 
hence the importance of the diagonal elements of R. The off-diagonal elements of R contain 
information related to the angle-dependency of the reflectivity. 

4. NUMERICAL EXAMPLES 

The main aim of this section is to illustrate - through numerical examples - the properties 
of WRW wave equation modeling compared to those of ray tracing, as well as to analyze 
angle dependent reflectivity. Therefore, a number of simple, 2-D numerical examples have 



 

been modeled. The velocity model consists of a single horizontal reflector at the depth of 
100 m that forms the boundary between two media. Different cases will be considered with 
different medium properties. In all cases, the velocity is laterally invariant whereas density 
may vary along the reflector. The acquisition geometry consists of a 1.5 km long aperture 
with 5 m receiver spacing and a single source in the middle of the array. Medium properties 
for the different cases are listed in Table 1. 

 

Configuration ρ1  
(kg/m3) 

ρ2 
(kg/m3) 

c1  
[m/s] 

c2  
[m/s] 

Case 1 1500 2200 2000 3500 
Case 2 2000 1000 2000 2500 
Case 3 1000-3500 1000-3500 2000 2200 

  
Table 1: Medium properties of different cases studied 

4.1. Case 1 – Homogeneous media 

As shown in Table 3.1, the medium properties in case 1 refer to the simple situation of two 
homogeneous layers with layer 2 having a higher acoustic impedance than layer 1. Therefore, 
all the grid points on the reflector have the same impedance contrast, hence, the same 
reflectivity operator in the wavenumber domain (homogeneous reflector). Fig. 3a and 3b 
show the shot records obtained from WRW and ray tracing modeling, respectively. Due to 
the simple properties of the reflector, no significant difference can be observed in the 
modeled shot records between the two methods. Fig. 3c displays the absolute value of the 
reflectivity operator in the wavenumber-frequency (kx, ω) domain. As illustrated in this 
figure, three different areas are clearly separated by dipping boundaries. 

 The central turquoise area corresponds to reflection angles of incidence from 0o 
(i.e. vertical incidence) up to the critical angle. 

 The second, red, area consists of post-critical angles up to 90o. For these angles 
total reflection occurs, thus, the reflectivity values are close to 1. 

 The last, blue, area corresponds to reflectivity over 90o and refers to the evanescent 
part of the reflected wave field. More information on evanescent wave fields can 
be found in [5]. 

The angle dependent reflectivity can be better observed in Fig. 3d in which the real part 
and the absolute value of the reflectivity are depicted as a function of angle of incidence. The 
real part of the reflectivity reaches its minimum for 0o angle of incidence and its maximum 
value at critical angle. It collapses after the critical angle, while the absolute value remains 1 
till 90o. Fig. 3e shows the reflectivity matrix R with dominant diagonal elements which 
represent angle-averaged reflectivity, as mentioned before.  

4.2. Case 2 – Homogeneous media & polarity reversal effect 

In this case, the bottom layer has lower acoustic impedance than the upper layer. 
Therefore, one expects to have a negative reflection coefficient. However, in this specific 
situation, the angle dependency plays an essential role in the simulated output.  



 

 
 

Fig. 3: Shot records obtained by the WRW modeling (a) and the ray tracing approach (b) for 
case 1. Different forms of the R operator follow: (c) in the kx − ω domain, (d) versus angle 

and (e) the actual image of the reflectivity matrix as used in the WRW formulation. 

It even causes the reflection coefficient to change its polarity as the angle of incidence 
increases. This is illustrated in Fig. 4a and 4b for the WRW model and the ray tracing method 
respectively. For narrow offsets (small angles), the reflector has a negative polarity. The 
amplitude goes smoothly to zero for further offsets and becomes positive again for larger 
offsets (larger angles), with a reversed, positive polarity. However, the range of offsets with 
very low amplitude is different for the two simulated results. The WRW modeling result 
displays a wider range of offsets with very low amplitude level.  As illustrated, the 
reflectivity is negative for small angles; it becomes zero for a certain angle and then steeply 
reaches the critical angle. There is only a small difference between the angle at which zero 
reflectivity occurs and the critical angle.  

4.3. Case 3 – Media with random density along the lateral direction 

In this case the density is randomly varying between 1000 kg/m3 and 3500 kg/m3 along the 
top and the bottom of the boundary but the velocity remains laterally invariant in each layer. 
Therefore, the wave propagation in the upper medium remains simple. Because of the 
random density effect, low impedance contrasts may occur along the reflector. These produce 
the no-reflectivity gaps on the event in the case of ray-tracing, and the diffraction patterns in  



 

  
Fig. 4: Shot records obtained by the WRW modeling (a) and the ray tracing approach (b) for 
case 2. Different forms of the R operator follow: (c) in the kx − ω domain, (d) versus angle 

and (e) the actual image of the reflectivity matrix as used in the WRW formulation. 
 
the case of wave equation modeling. By comparing Fig. 5a and 5b, it can indeed be seen that 
diffraction patterns due to the irregularities in the reflector are not included in the simulated  
result obtained by ray tracing, since each grid point on the reflector is treated individually. 
This example illustrates that the wave equation approach is clearly preferred in this case. 

5. DISCUSSION AND CONCLUSION 

In this paper, the reflectivity matrix in the general context of the WRW model is studied and 
different examples are provided to highlight its properties as well as its effect on the final 
shot record. The general frame of this study consists of the modeling of a horizontal reflector 
based on two different approaches, the wave equation approach (using the aforementioned 
reflectivity matrix) and the ray tracing approach. Differences between the outcome of these 
two methods comprise the limitations of ray tracing, while pointing out the virtues of the 
WRW concept. As shown in Fig. 1(a), the essence of the wave equation approach is that the 
reflectivity matrix acts as a spatial convolution operator on the downgoing wave field. On the 
contrary, ray tracing only applies an amplitude coefficient on each ray. Fig. 5a and 5b 
illustrate characteristically the outcome. The R matrix, applied on the wave field in the spatial 
domain, produces a main uninterrupted event with diffraction patterns due to the random 
lateral density variations that are present in this case. On the other hand, the ray tracing  



 

 
 

Fig. 5: Shot records obtained by the WRW modeling (a) and the ray tracing approach (b) for 
case 3.  

technique fails to model these diffraction patterns, as it is based on the local impedance 
contrast at each grid point. Hence, non-realistic gaps are produced on the reflection event.  

In conclusion, the distinguishing features of the wave theory modeling (WRW approach) 
appear when there is irregularity or variability in the subsurface structures, especially in the 
lateral direction. This situation happens often in reality and ray tracing is unable to invert 
correctly for amplitudes during the migration process. This example illustrates once more the 
importance of wave equation based modeling. 
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