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A B S T R A C T

Phononic crystal band gaps (BGs), which are realized by Bragg scattering, have a central frequency and width
related to the unit cell’s size and the impedance mismatch between material phases. BG tuning has generally
been performed by either trial and error or by computational tools such as topology optimization. In either
case, understanding how to systematically change the design for a particular band structure is missing. This
paper addresses this by closely studying the displacement modes within the wavebands that are responsible
for the BG. We look at the variation in different displacement modes due to the changes in the geometry and
correlate these changes to their corresponding band structures. We then use this insight to design the unit cell
for a particular application, for instance, for generating partial BGs.
1. Introduction

Phononic crystals (PnCs) are artificial materials that rely on the
periodicity of scatterers in a matrix to derive unusual properties, such
as band gaps (BGs), which are frequency ranges where mechanical
waves are attenuated [1,2]. These BGs are generated because of the
destructive interference of waves due to Bragg scattering at material
interfaces of the periodic unit cell (PUC) [3]. As a result, PnCs are
currently being explored in various applications, such as vibration
isolation [4], energy harvesting [5,6], wave steering [7,8], and acoustic
cloaking [9,10], among others [11,12].

BGs can be identified by means of the PnCs band structure (or
dispersion relation) [13], which is obtained by solving a series of
eigenvalue problems that are derived by considering a finite set of wave
vectors along the irreducible Brillouin zone (IBZ) [14] and prescribing
their corresponding Bloch–Floquet periodic boundary conditions [15].
The achieved band structure relates the frequency to the wave vector
and provides us with the wave speeds of different wavebands (fre-
quency bands present in the band structure) and BGs. An example is
shown in Fig. 1 with the PUC, its IBZ (marked inside the first Brillouin
zone), and the band structure with the BG (shaded region).

For designing PnCs, it is essential to understand how changing the
geometric features of the PUC affects the band structure. As BGs in
PnCs are generated due to Bragg scattering, the BG central frequency
is related to the dimensions of the PUC (Bragg’s law of diffraction [3]).
As a result, scaling the PUC geometry allows us to shift the BG in
the frequency domain. Moreover, the BG width is directly related to
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the impedance mismatch between the material phases within the PUC.
Hence, changing this feature allows tuning of the BG width. Band
structure manipulation, in general, is conducted either by trial and
error or by using existing designs with specific known BG properties
that can be subjected to minor changes—for instance, tuning partial
BGs (PBGs) of topological PnCs [16]. PBGs are intriguing features be-
cause unlike a complete BG, PBGs possess directional aspects, i.e., using
PBGs, we can control the propagation direction of incoming waves.
PBGs are used in applications including directional waveguiding [17]
and medical imaging [18]. However, to obtain PBGs, one needs to
break the spatial symmetry in the structure, thus making the design
process more intricate. Hence sophisticated computational tools such
as topology optimization [19] have also been used for designing PnCs
with PBG. Nevertheless, the relation between different wavebands,
variations of wavebands with regard to the PUC geometry, and other
factors affecting their changes have not fully been explored.

We proposes a design approach to make informed changes to the
PUC geometry to achieve a desired BG based on the displacement
modes associated with specific points in the band structure. We apply
this approach to design 2D PnCs possessing PBGs from an initial design
having a complete BG.

2. Analysis of a 2D solid phononic crystal

Consider a single phase 2D PnC composed of a solid material as
shown in Fig. 1(a) where the geometric parameters, 𝑎, 𝑤, and 𝑡, are
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Fig. 1. Schematic of a 2D PnC: (a) the PUC where the lattice length 𝑎 = 0.75mm,
width and thickness of the thin sections, 𝑤 = 0.1mm, and 𝑡 = 0.025mm, respectively,
are marked, (b) the complete Brillouin zone (dashed lines) with the dimension 𝑏 and
the triangular IBZ (solid lines), (c) corresponding band structure with the shaded region
representing the BG bounded by upper and lower wavebands.

marked using arrows. The particular shape of this initial design is
irrelevant since the only objective of this design is to possess a BG,
which can be achieved by various means. For instance, a two-phase
design where a spherical (or any other shaped) scatterer in a substrate
structure would also possess a BG and can be used as the initial design.
However, a single-phase design is easier to manufacture at smaller
scales than a two-phase design. The interior of the PUC (Fig. 1(a))
is considered to be void, and thus the wave propagation through this
geometry is governed by the elastic wave equation:

𝜌�̈� = (𝜆 + 2𝜇)𝛥𝒖 − 𝜇∇ × ∇ × 𝒖, (1)

where, 𝒖(𝒓) and �̈�(𝒓) are the spatial displacement field and acceleration,
respectively, and 𝒓 is the position vector. 𝜌 represents the density of
the material, and 𝜆 and 𝜇 are the Lamé coefficients, whereas 𝛥 and
∇×, respectively, are 2D Laplacian and curl operators. We consider
polysulfone (PSU) to be the preferred material for the analysis with
𝜌 = 1350 kg∕m3, elastic modulus, 𝐸 = 5.18GPa, and Poisson’s ratio,
𝜈 = 0.37.

We apply the Bloch–Floquet periodic boundary condition [15] while
sweeping the wave vector through the IBZ (highlighted using solid
lines in the Brillouin zone from Fig. 1(b), where 𝜞 = 𝟎) to obtain the
band structure response as shown in Fig. 1(c). The equation takes the
following form:

𝒖𝑛+1(𝒓) = 𝑒𝜄𝒌⋅𝒂𝑖𝒖𝑛(𝒓), (2)

where 𝑛 is the PUC’s index, 𝒌 =
(

𝒌𝑥,𝒌𝑦
)

is the wave vector in 2D [20],
𝒂𝑖 =

(

𝒂𝑥,𝒂𝑦
)

is the lattice vector, where ‖𝒂𝑥‖ = ‖𝒂𝑦‖ = 𝑎, and 𝜄 is the
complex number. The upper and lower wavebands bounding the BG are
also marked in Fig. 1(c). Starting from the given PUC, we would like
to design another PUC that possesses PBGs (BGs only in specific ranges
of the wave vector) instead. In that case, we need to influence these
bounding modes and create localized changes in the band structure.
Since geometry changes to the PUC may break its symmetry, we may
also need to change the IBZ and sweep through more branches to
obtain a complete band structure [21]. We instead use a half Brillouin
zone (HBZ) from the beginning, as any change in the geometry can be
accommodated by the band structure without modifying the HBZ [21].
Fig. 2(b) shows the same PUC from Fig. 1(a), with an HBZ, and
Fig. 2(a) shows the corresponding band structure represented using
dotted curves. Fig. 2(c) also shows a few displacement modes (marked
with arrows in Fig. 2(a)), which are selected at the HBZ’s first three
branches’ midpoints. The band structure and displacement modes are
obtained via the 𝜔(𝒌) approach using finite element analysis [22] by
2

solving the wave equation (1) subjected to Bloch–Floquet periodic
boundary condition (2). The superscripts 𝐿 and 𝑈 represent points
on the lower and upper BG wavebands (bounding bands) within the
band structure. To tune the band structure locally, we make necessary
modifications to the geometry, changing the corresponding displace-
ment mode by locally changing the stiffness or mass using concepts
from basic mechanics. Noteworthy is that the modifications in the
geometry are not particular to the initial design since the changes
are based on displacement modes that can be applied to any selected
initial design. Take, for instance, 𝑡1 through 𝑡4 and 𝐴1 through 𝐴4 as
design parameters (refer Fig. 2(b)). These can be considered as springs
and masses with the associated behaviors. Increasing thicknesses 𝑡2
and 𝑡4, in turn, increases stiffnesses (and, in effect, frequencies) of 𝐷𝐿

1
and 𝐷𝐿

3 more than 𝐷𝐿
2 since the latter is a combination of axial and

bending modes, which turns to a bending dominated mode because of
the asymmetries introduced (see the transition of the 3rd waveband in
Fig. 2(a)). Similarly, for masses, removing material from the center of
rotation has minimal effect on rotating modes (e.g., 𝐷𝑈

2 ) while having a
substantial effect on translational modes (e.g., 𝐷𝑈

1 ). The effect of local
changes can then be visualized by regenerating the band structure, as
we have done in Fig. 2(a).

3. Partial band gap generation by manipulating displacement
modes

Our objective is to obtain the topology of the PUC for the desired
band structure. As an example, we want to create a geometry with a
band structure possessing PBGs, which allow the propagation of waves
with short wavelengths closer to 𝒌 = 𝜞 while attenuating the rest of
the waves (refer Fig. 3(b)). This peculiar property would allow the
PnC structure to act as a polarizer for shear (S) waves, i.e., it permits
the propagation of S waves while suppressing pressure (P) waves in
the same direction. Consider, for instance, the initial PUC and the
band structure (Fig. 2). We need to manipulate the bounding bands
(3rd and 4th bands) such that they intersect at a particular position
(in the current case at 𝒌 = 𝜞 ). So we increased the thicknesses
𝑡2 and 𝑡4, which resulted in an increase in stiffness (as mentioned
already); therefore, corresponding points (from 3rd band) in the band
structure moved up. To further locally tune the band structure, we
introduced additional asymmetries by supplying 𝑡1 through 𝑡4 with
linearly variable thicknesses, thus moving only the points of the lower
BG waveband near 𝒌 = 𝜞 up. Further, 𝐴1 and 𝐴4 were increased (thus
increasing the corresponding masses), which resulted in shifting down
the 4th band closer to 𝜞 . We repeated this process for a few more steps
and obtained PBGs in the band structure. Fig. 3(a) shows the initial
and modified band structures, where we can see the shifting of the
upper and lower BG wavebands till they intersect. Fig. 3(b) and (c)
respectively represent the corresponding PUC geometry and displace-
ment modes. All design steps, together with their corresponding PUCs,
band structures, and selected displacement modes, are provided in the
supplementary material. It should be noted that the redistribution of
the material reduced the contrast in the stiffness and mass between
the adjacent phases within the PUC, thus reducing the BG width. A
transmission analysis is performed on an 8 × 8 PnC waveguide array
to verify the band structure, whose geometry and the result are also
provided in the supplementary material. Transmission of S waves shows
more than two orders of magnitude compared to P waves traveling in
the same direction; thus, we can infer that the obtained PnC design is
an S wave polarizer.

4. Introducing resonator modes to create partial band gaps

Instead of making local changes to the PUC, a PBG could also be
obtained by introducing a resonator. These resonators can produce
BGs (due to local resonance), as in the case of an acoustic metama-
terial [23,24]. By tuning the frequency and the spatial orientation of
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Fig. 2. Schematic showing (a) band structures of initial and updated PUCs with hatched and shaded regions showing corresponding BGs, (b) Initial PUC with HBZ, and (c) relevant
displacement modes. The PUC has been segmented to different portions such as thicknesses of ribs (𝑡1 through 𝑡4) and areas of triangular shapes (𝐴1 through 𝐴4). 𝐷1 through 𝐷3
are three displacement modes from the first three branches of the HBZ corresponding to the BG. Superscripts 𝐿 and 𝑈 respectively represent lower and upper BG wavebands.
Fig. 3. Schematic representing (a) Band structures of the initial and modified PUCs where hatched and shaded regions respectively show the initial BG and updated PBGs, (b)
modified PUC with HBZ, and (c) corresponding displacement modes. 𝐷𝐴 and 𝐷𝐵 are displacement modes close to the separation of two BGs by a transmission region. Their
locations in the bandstructure are marked in (a).
the resonator, PBGs can be generated at a given frequency range in the
original band structure (without the resonator). However, the introduc-
tion of the resonator changes the PUC topology, which may result in
drastic changes in the existing band structure depending upon the level
of coupling between the modes of the resonator and the remaining PUC.
Adding a resonator at a 45° to the PUC from Fig. 2 results in a strong
coupling between their modes because the resonator is connected to the
stiffer portion of the PUC. Thus we cannot create a localized change in
the band structure. Therefore no PBGs can be created (the geometry,
band structure, and relevant displacement modes are available in the
supplementary material). Hence, to obtain a PBG, we need to have a
weak coupling between these modes (in the current case, modes from
the lower BG waveband and the adjacent waveband introduced by
the resonator), such that changes in the desired resonator mode have
limited influences to the rest of the band structure.

For instance, by adding a resonator connected vertically to the PUC
of Fig. 2(a) (see Fig. 4(b)), we could introduce additional bands within
the BG of the initial PUC (as represented by solid curves in Fig. 4(a)).
𝐷𝐿

𝐴 and 𝐷𝐿
𝐵 From Fig. 4(c) are displacement modes corresponding to

the points of the lower BG waveband of the PUC. Since this band
and corresponding displacement modes are similar to the original PUC
from Fig. 2 (although 𝐷𝐿

𝐵 shows 90° rotation to that of 𝐷𝐿
1 because the

corresponding wave vector experiences the same rotation), we can state
that the resonator and the remaining PUC modes have a weak coupling.
Because, in the vertical orientation, the resonator is connected to the
flexible region of the PUC, thus, reducing their interactions. However,
3

both 𝐷𝑈
𝐴 and 𝐷𝑈

𝐵 are almost exclusively resonator modes; hence, we
can tune the corresponding band locally by changing these modes (𝐷𝑈

𝐴
and 𝐷𝑈

𝐵 ) with minimal effects on the rest of the band structure.
To create the PBG, we can bring this resonator-dominant waveband

closer to the lower BG waveband by reducing its frequency. For in-
stance, by increasing the area of the central square of the resonator,
as shown in Fig. 5(b), we could increase its mass to bring down the
frequency of the upper waveband. Fig. 5(a) shows the band structures
of the PUC with the resonator and the PUC with an updated resonator
where the upper and lower wavebands are connected at 𝒌 = 𝜞 to
form partial BGs. The corresponding displacement modes (see Fig. 5(c))
are virtually identical to that of the initial resonator (see Fig. 4(c)),
implying that the changes in the resonator did not modify the modes. In
comparison with the previous case (tuning existing bands to obtain the
desired band structure behavior), a resonator allows placing additional
wavebands at desired locations in the band structure. Moreover, the
changes in the resonator have very localized effects on the band struc-
ture (they affect the resonator wavebands). This can also be verified by
the fact that the lower waveband, where BG begins, experienced few
changes due to the introduction and modification of the resonator (see
Figs. 4(a) and 5(a)). Similar to the previous case described in Section 3,
a transmissibility analysis can be performed on a finite PnC waveguide
based on the PUC (Fig. 5(b)) geometry. Since the procedure is the same
as described in the supplementary material, we avoid it for brevity.
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Fig. 4. (a) comparison of band structures between initial and resonator PUCs where the resonator introduced wavebands are shown using solid curves, while the hatched region
represents the former’s BG, (b) schematic of the PUC with a vertical resonator and its HBZ, and (c) relevant displacement modes.
Fig. 5. (a) Band structure comparison between PUC with a resonator and the PUC with the modified resonator, where hatched and shaded regions are the BG of the initial PUC,
and PBGs of the PUC with modified resonator, (b) schematic of the resonator PUC with HBZ, and (c) relevant displacement modes.
5. Conclusion

In this work, we proposed an approach to understand the link be-
tween PUC geometry and the band structure effectively, and we showed
that it can be used to make predictable changes to the band structure by
locally tuning the PUC by either changing the geometry or by introduc-
ing a resonator. These local modifications follow from straightforward
mechanics’ principles. Starting from a given PUC geometry and its
corresponding band structure, we showed that PBGs could be generated
by following this approach, resulting in a new geometry by tuning
the relevant displacement modes. We also demonstrated that we can
manipulate the band structure further by introducing resonators with
particular resonance frequencies and spatial orientations. By tuning
distinct resonator modes after studying their influence on the band
structure, we effectively generated PBGs. Thus, we conclude that this
displacement mode-based approach is a useful tool for BG manipulation
and tuning the band structure for PnCs and PnC-inspired components.
Moreover, we could use the results of this approach as initial designs
for further tuning by systematic computational tools such as topology
optimization.
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