
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

3D Kinematics
Estimation with
Biomechanics Model
Zhi-Yi Lin

3D Kinematics
Estimation with

Biomechanics Model
by

Zhi-Yi Lin
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday July 21, 2023 at 13:00.

Student number: 5458617
Project duration: Sep 1, 2022 – July 21, 2023
Thesis committee: Dr. J. C. van Gemert, TU Delft, Thesis advisor & Chair

Dr. X. Zhang, TU Delft, Daily supervisor
Dr. P. Kellnhofer, TU Delft, Committee member

This thesis is confidential and cannot be made public until June 1, 2024.

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This research report documents the results of my master’s thesis project ”3D Kinematics Estimation
with Biomechanics Model” at Delft University of Technology.

Having an interest in combining advanced computer vision techniques with healthcare applications,
I consider this project as a great opportunity to explore the solutions for overcoming the challenges of
data collection and to bridge the gap between the research fields of computer vision and biomechanical
engineering. Hopefully, one day the integration of computer vision aids in clinical settings will become
standard practice.

First, I would like to express my deepest gratitude to my daily supervisor, Dr. Xucong Zhang, for
his invaluable guidance and insightful comments. His support has been instrumental in keeping me on
the right track throughout this project. I also want to thank Dr. Jan van Gemert for giving me thought-
provoking feedback to better wrap up the entire work and for being the chair of my committee. I would
like to extend my thanks to Dr. Ajay Seth, Dr. Eline van der Kruk, Bofan Lyu, Judith Cueto Fernandez,
and Akshath Ram Veeravalli Hari from the Department of Biomedical Engineering for their support in
all matters related to the field of biomechanics. Special thanks to Dr. Petr Kellnhofer for his willingness
to be on my thesis committee.

Finally, I would like to express my appreciation to my family and my friends. It would not have been
such a great journey without your unconditional support. Thank you for being there for me in my bad
and good times.

Zhi-Yi Lin
Delft, July 2023

i

Contents

Preface i

1 Introduction 1

2 Scientific Article 2

3 Deep Learning in Computer Vision 15
3.1 Fully Connected Layers . 16
3.2 Convolutional Neural Networks . 16

3.2.1 Stacked Hourglass Network . 16
3.2.2 U-Net . 17

3.3 Recurrent Neural Networks . 17
3.3.1 Long Short-Term Memory . 18
3.3.2 Gated Recurrent Unit . 18

3.4 Transformer . 19
3.4.1 Bidirectional Encoder Representations from Transformers (BERT) 21
3.4.2 Generative Pre-training Transformer (GPT) . 21
3.4.3 Vision Transformer (ViT) . 22

4 Domain Generalization 23
4.1 Problem Definition . 23
4.2 Methodology . 23

4.2.1 Data Manipulation . 24
4.2.2 Representation Learning . 24
4.2.3 Learning Strategy . 25

5 Deep 3D Human Pose Estimation 26
5.1 3D HPE Overview . 26

5.1.1 Shaped-based Direct 3D HPE . 28
5.1.2 Skeleton-based direct 3D HPE . 28
5.1.3 Skeleton-based 2D to 3D Lifting HPE . 29

5.2 3D HPE with Musculoskeletal Model . 30
5.3 Evaluation Metrics . 32
5.4 Datasets . 33

6 Musculoskeletal Model – OpenSim 34
6.1 Model Components . 34
6.2 Scaling Tool and Inverse Kinematics Tool . 35
6.3 Forward Kinematics . 36

References 37

ii

1
Introduction

3D kinematics estimation is the study of the mechanics of human movements, with the primary aim of
measuring kinematics variables such as joint angles and body segment scales. The goal is to quantify
human movements for standardized and objective human motion analysis. This field has applications
in robotics, entertainment, healthcare, sports sciences, and beyond. Conventional approaches rely on
marker-based motion capturing. However, it is characterized by its high cost, time-consuming data
acquisition, movement restrictions, marker error from skin motion, and subject discomfort caused by
markers. As a result, researchers have increasingly directed their attention towards markerless motion
capture methods, which only rely on visual inputs and do not require specialized expertise.

Due to the advancements in machine learning algorithms and computer hardware, deep learning
has experienced a resurgence since 2010. Its capability to learn complex non-linear approximation
functions from large-scale datasets has achieved breakthroughs in many computer vision tasks, in-
cluding image classification, object detection, style transfer, pose estimation, action recognition, and
human-computer interaction. Specifically, the achievements in 3D Human Pose Estimation (HPE) pro-
vide valuable insights into the development of markerless motion capture methods, which can be further
improved through the integration of deep 3D HPE techniques and biomechanics models.

Nevertheless, some challenges remained for deep-learning-based 3D kinematics estimation with
the biomechanics model. Firstly, the joint annotations in most of the datasets are anatomically wrong,
leading to methods using those datasets cannot have predictions with accurate biomechanics meaning.
Secondly, the scarcity of large-scale datasets due to the high cost of obtaining accurate 3D kinematics
labels results in a significant performance drop when the deep-learning models are tested on in-the-wild
datasets. Lastly, current 3D HPE methods tend to overlook biomechanical constraints. Therefore, the
predictions often deviate from human biomechanics. This is particularly problematic for 3D kinematics
estimation because it demands a higher level of biomechanical fidelity.

To overcome the challenges posed by the limited availability of large-scale datasets with accurate
3D kinematics annotations, we propose a pipeline to create synthetic data with precise biomechanics
annotations by aligning the body mesh from the SMPL-X model and the biomechanics skeleton from
OpenSim. The resulting dataset, named OpenSim Driven Animated Human (ODAH), encompasses
diverse variations in body shapes, clothing, lighting, and camera positions. Training deep-learning
models on such a dataset are expected to yield improved performance in 3D kinematics accuracy and
domain generalization. To validate this concept, we also propose an end-to-end biomechanics-aware
model specifically designed for 3D kinematics estimation and train this model exclusively on ODAH.

For detailed scientific contents, readers can refer to Chapter 2. We also provide background knowl-
edge about deep learning (Chapter 3), domain generalization (Chapter 4), 3D HPE (Chapter 5), and
OpenSim (Chapter 6) for better understanding of this research work.

1

2
Scientific Article

2

3D Kinematics Estimation with Biomechanics Model

Zhi-Yi Lin
Computer Vision Lab

Delft University of Technology

Abstract

Human 3D kinematics estimation involves measuring
joint angles and body segment scales to quantify and an-
alyze the mechanics of human movements. It has appli-
cations in areas such as injury prevention, disease iden-
tification, and sports science. Conventional marker-based
motion capture methods are expensive both in terms of
financial investment and the expertise required. On the
other hand, due to the scarcity of large-scale annotated
datasets, existing markerless motion capture methods suf-
fer from challenges including unreliable 2D keypoint detec-
tion, limited anatomic accuracy, and low generalization ca-
pability. In this work, we are the first to propose a pipeline
to create synthetic data with accurate kinematics annota-
tions by aligning the body mesh from the SMPL-X model
and the biomechanics skeleton from OpenSim. The gen-
erated dataset, named ODAH, exhibits diverse variations
in body shapes, clothing, lighting, and camera views. For
kinematics estimation, we develop a novel biomechanics-
aware model that is exclusively trained on ODAH, and di-
rectly tested on real-world data. Our extensive experiments
demonstrate that the proposed approach outperforms previ-
ous state-of-the-art methods when evaluated across multi-
ple datasets, revealing the potential for advancing the reso-
lution of human 3D kinematics estimation.

1. Introduction
Human 3D kinematics is the biomechanical analysis of

human motion, with a primary focus on inferring kinematic
variables such as joint angles and body segment scales. This
field contributes to our understanding of human movements
and finds applications in robotics, entertainment, health-
care, sports sciences, and beyond. The conventional ap-
proaches rely on marker-based motion capture, which has
limitations such as high cost, time-consuming data acqui-
sition, movement restrictions, marker error from skin mo-
tion, and subject discomfort caused by markers [9, 22]. To
address these issues, researchers have focused on develop-
ing markerless motion capture methods that utilize visual

Figure 1. The proposed framework consists of a frame feature
encoder and a spatio-temporal feature refinement module, which
collectively infer 3D kinematics from two-view video inputs. Par-
ticularly, the end-to-end biomechanics-aware 3D kinematics esti-
mation model is exclusively trained on synthetic data.

inputs and machine learning techniques to estimate human
motion without the need for physical markers and special-
ized expertise [1, 24, 32]. Although markerless methods of-
fer a non-invasive and cost-effective alternative, they often
follow the multi-step paradigm and heavily depend on ac-
curate 2D body keypoint detection methods.

In recent years, deep learning has propelled substan-
tial advancements in the field of 3D Human Pose Esti-
mation (HPE) [5, 12, 13, 18–20, 27, 28, 36, 37, 39, 40, 42],
which demonstrates significant enhancements in the per-
formance of various computer vision tasks, including hu-
man action recognition, human activity recognition, and
human-computer interaction. The achievements made in
3D HPE also provide valuable insights into the develop-

3

ment of markerless motion capture methods, which can be
further improved through the integration of deep 3D HPE
techniques and biomechanics models.

However, there exist significant gaps between the two
research fields. One primary concern is the prevalent
use of the 2D-to-3D lifting in many 3D HPE methods
[5, 18–20, 26, 27, 35, 37, 40, 42]. These methods infer 3D
poses from detected 2D joints. Unfortunately, the 2D joint
annotations are often anatomically wrong, resulting in im-
precise 3D kinematics estimation. Another challenge is the
scarcity of large-scale datasets with accurate 3D biome-
chanics annotations. Although some datasets incorporate
markerless motion capture systems [10, 30, 32], they suf-
fer from sensor noise and lack synchronization with the
recording videos. Additionally, the expensive and time-
consuming nature of marker-based motion capturing further
impedes the construction of large-scale datasets necessary
for deep-learning-based markerless motion capture mod-
els [1]. Last, many 3D HPE methods overlook the incorpo-
ration of biomechanical constraints, leading to predictions
that deviate from human biomechanics. This discrepancy is
especially problematic for 3D kinematics estimation, which
demands a higher level of biomechanical fidelity.

To address the limited availability of large-scale datasets
with biomechanics annotations, we propose a novel pipeline
to create animated humans by aligning the SMPL-X model
[25] and the OpenSim biomechanics model [29] and subse-
quently driving the OpenSim model using joint kinematics
derived from AMASS dataset [21], which includes diverse
motions captured by marker-based motion capture systems.
Furthermore, this pipeline allows for unlimited augmenta-
tions in terms of body shapes, clothing, lighting, and camera
positions, resulting in a large-scale synthetic dataset called
OpenSim Driven Animated Human (ODAH).

For 3D kinematics estimation, we propose a marker-
less motion capture framework comprising a biomechanics-
aware model, as illustrated in Figure 1. The model lever-
ages two-view videos as inputs and performs feature extrac-
tion [7], followed by a feature aggregation step for frame
feature generation. Given the dynamic nature of human
motion, the frame features are further refined by integrat-
ing temporal information through a transformer-based U-
Net architecture. Finally, the model outputs a sequence of
joint angles and a set of body segment scales.

The proposed model is trained exclusively on ODAH and
is tested on ODAH and three real-world datasets. Through
extensive experiments, we demonstrate that our framework
outperforms three state-of-the-art markerless motion cap-
ture methods on average joint angle error across all datasets.
The main contributions of this paper are:

• We are the first to propose a pipeline to create a large-
scale OpenSim-annotated synthetic dataset with varied
subject appearance, motions, and scene settings.

• We introduce an end-to-end biomechanics-aware 3D
kinematics estimation model that predicts joint kine-
matics and body segment scales of an OpenSim model.

• Our experiments show that the model, exclusively
trained on synthetic data, can achieve superior perfor-
mance in average joint angle error across all datasets,
indicating its potential for improving kinematics esti-
mation and domain generalization.

2. Related Works

2.1. Markerless Motion Capture with OpenSim

Advancements in 3D HPE have enabled the integration
of 3D HPE techniques with biomechanics models such as
OpenSim [8], allowing for a comprehensive analysis of hu-
man biomechanics. Most of the existing methods use multi-
step processing for kinematics estimation [24,32]. The pro-
cess starts with deriving 3D joint positions by triangulating
the detected 2D landmarks [4] from multiple views. Next,
the 3D joint positions are treated as marker positions in
the Inverse Kinematics (IK) tool and scaling tool in Open-
Sim software to derive joint kinematics and body segment
scales. The mapping from the detected 3D joints to the real
3D joints can be encoded in the marker offsets defined in
the OpenSim model [24]. Another way is to train a model to
learn the mapping function [32]. To further improve the per-
formance, the landmark confidence scores are considered to
remove low-confidence landmarks [24,32]. Video trimming
can also be applied to drop low-quality frames [32].

However, as demonstrated in [1], the intensive human
intervention in the intermediate steps introduces potential
error. Therefore, end-to-end solutions are preferred for ro-
bust 3D kinematics estimation. D3KE [1], an end-to-end
method, utilizes CNNs to estimate joint kinematics and
body segment scales for each frame from monocular videos.
A lifting transformer encoder [17] is included to refine the
predicted joint angles and body segment scales by incorpo-
rating temporal information.

Following the end-to-end approach, the proposed model
simultaneously estimates joint kinematics and body scales
based on visual inputs. Nevertheless, unlike D3KE, the
backbone of the proposed network is particularly designed
for HPE, two views are utilized to better handle occlusions,
and the model is trained on a large-scale synthetic dataset
with accurate annotations and varied augmentations.

2.2. 3D Human Pose Estimation

The two primary approaches are 2D-to-3D lifting and
direct 3D estimation. The 2D-to-3D lifting approach re-
quires feature learning from a sequence of 2D poses. This
allows for the consideration of temporal information inher-
ent in human motions. Additionally, it compensates for the

4

loss of 3D information from monocular inputs. Tempo-
ral dilated Convolution Networks (TCNs) are widely used
[5, 20, 27, 37] because they can effectively learn spatial and
temporal features that are essential for lifting 2D joints and
improving motion coherence. In recent years, transform-
ers have gained popularity in handling long-range sequen-
tial data [18, 19, 40, 42]. These methods typically involve
lifting the 2D pose to 3D ones through transformer-based
networks, followed by spatial and temporal refinements.
Multi-view 3D HPE [12, 13, 28] are also explored to over-
come performance drops caused by occlusions.

The direct 3D HPE approach eliminates the reliance on
2D landmark detection by directly predicting 3D poses, of-
fering advantages such as avoiding biases towards specific
camera views and mitigating ambiguities associated with
2D landmarks [7, 36, 39, 39]. Without guidance from 2D
landmarks, multi-view inputs, and temporal feature learn-
ing become necessary in such frameworks.

The proposed method follows the direct 3D approach,
consisting of a frame feature encoder and a spatio-temporal
refinement module. The frame feature encoder is responsi-
ble for mapping input frames into frame features, while the
spatio-temporal refinement module refines these features by
incorporating temporal cues. Notably, the frame feature en-
coder includes a stacked hourglass network pretrained us-
ing synthetic data [7] as the image feature extractor. The
spatio-temporal refinement module is a transformer-based
U-Net architecture, which is originally proposed for image
denoise [38]. The combination of transformer and U-Net
facilitates temporal feature learning across different tempo-
ral resolutions while concurrently refining local spatial fea-
tures. To further ensure the model’s biomechanics fidelity
and prevent abnormal kinematics from extreme movements,
a biomechanical constraint loss is included for supervision.

2.3. Domain Generalization

Domain Generalization (DG) emerges to address the do-
main shifts problems caused by the independent and identi-
cally distributed (i.i.d.) assumption in the machine learning
paradigm. DG assumes that the test domain labels are in-
accessible during the training process [3, 34]. DG can be
achieved by data manipulation, representation learning, and
optimizing learning strategy.

Data manipulation is especially important for applica-
tions that are more difficult to obtain annotations. For in-
stance, in the context of 3D HPE, acquiring 3D annota-
tions is expensive and time-consuming. Therefore, [21]
generates animated SMPL-X model [25] correspondences
to multiple MoCap datasets, offering opportunities for mo-
tion prior training and realistic motion standards as present
in [15, 16, 41]. Incorporating varied textures into SMPL-X
models and placing rendered subjects in diverse scenes can
further enhance the visual quality of the synthetic datasets

and in turn improve the performance on the target tasks [33].
SMPL-X models with 3D clothing and enhanced human-
scene interactions further lead to more realistic synthetic
data [2]. The authors demonstrated that pretraining models
on the proposed synthetic data and subsequently fine-tuning
them on real datasets yields state-of-the-art performance in
3D mesh-based human pose estimation.

Similar to 3D HPE, acquiring kinematics labels is trou-
blesome, making domain generalization particularly impor-
tant in this field. Thus, we propose a large-scale synthetic
dataset with embedded biomechanics labels, and augmenta-
tions on body shapes, camera positions, lighting, and cloth-
ing for enhancing domain generalization.

3. Method
3.1. Overview

The proposed 3D kinematic estimation framework con-
sists of two parts: a synthetic data generation pipeline and
a biomechanics-aware model. To generate the animated hu-
mans with kinematics annotations, we propose a pipeline
encompassing a combination of the skeleton from Open-
Sim [29], meshes from SMPL-X [25], textures from [33],
and motions from AMASS [21]. We first bind the textured
SMPL-X model with the OpenSim skeleton to create the
subjects after a manual alignment of these two models. The
SMPL-X is posed by the OpenSim skeleton, whose move-
ments are driven by the joint kinematics extracted from the
AMASS dataset [21]. The proposed synthetic data genera-
tion pipeline and examples are present in Figure 2.

For 3D kinematics estimation, the proposed end-to-end
biomechanics-aware model first encodes each frame, cap-
tured from two different views, into a frame feature using a
stacked hourglass network [23] and Multilayer Perceptron
(MLP). Once the frame features of the entire sequence are
obtained, a spatio-temporal feature refinement is performed
to jointly consider spatial and temporal information.

3.2. Synthetic Data Creation

Body shapes and scales. To create diverse body shapes
and body segment scales, subjects with varying physiques
are selected from the BMLMovi subset of AMASS dataset.
The body segment scales of the selected SMPL-X mod-
els are determined by manually scaling a generic OpenSim
model to the SMPL-X mesh in Blender [6]. After bind-
ing the SMPL-X mesh and the scaled OpenSim model, new
subjects with diverse body shapes and segment scales can be
generated through the manipulation of body segment scales.
Motion. We utilize the OpenSim IK tool to obtain the
ground truth joint kinematics. The required inputs to the
OpenSim IK tool include marker trajectories and body seg-
ment scales. For marker trajectories, we extract the trajec-
tories from the virtual markers that we place on the selected

5

Figure 2. The proposed synthetic data generation pipeline (top) and examples with OpenSim ground truth overlays (bottom). The OpenSim
IK tool requires marker trajectories and body segment scales to find the optimal joint kinematics. The marker trajectories are extracted
from the AMASS dataset, and the body segment scales are measured by manually scaling the OpenSim model to the SMPL-X mesh. After
combining the OpenSim skeleton with different body shapes, clothing, lighting, and camera positions, we can obtain two-view videos
containing diverse animated humans.

SMPL-X model obtained from the AMASS dataset. As for
the body segment scales, they are measured by manually
scaling the OpenSim model to the SMPL-X mesh.
Visual quality improvements. To reduce the artifacts ob-
served at some joints from the vanilla integration of the
SMPL-X mesh and the OpenSim skeleton, we employ the
pose corrective shapes defined in the SMPL-X model to
make frame-by-frame adjustments to the SMPL-X mesh
around the joints based on the joint rotation angles. To fur-
ther preserve the volume of the SMPL-X mesh, in Blender,
we introduce supplementary bones at joints with larger
movements such as the shoulders, knees, and elbows.
Textures and lighting. For appearance augmentation, a va-
riety of textured UV maps provided by [33] are utilized to
generate subjects with different clothing and skin colors.
The augmentation in lighting conditions includes changes
in the direction of the light source and the color temperature.
It is done by applying random rotations to the environment
textures that we collect from open-source platforms.
Cameras. We employ two static cameras for video render-
ing. Both cameras are positioned at an approximate height
of 1.2 ± 0.5 meters. One camera captures the frontal view,
while the other one captures the sagittal view. To enhance
diversity, the positions of the cameras are randomly per-
turbed within a small range. Both cameras are configured
in landscape mode, with a fixed focal length of 26.23 mm.
The sensor fit of the cameras is set to horizontal, and the

sensor width is defined as 52.45 mm.
Rendering. The videos in our synthetic dataset are ren-
dered using the Metal-accelerated BLENDER EEVEE en-
gine in Blender 3.5. The resolution of the videos is set to
720P, and the framerate is configured to 60 fps. Motion blur
effects are enabled. The videos are encoded in the H264
format with high-quality configuration.

3.3. Network Architecture

3.3.1 Frame Feature Encoder

The biomechanics-aware model comprises a frame feature
encoder and a spatio-temporal refinement module. The
frame feature encoder is in charge of generating frame fea-
tures from two-view frames. More specifically, the image
feature of each view in a frame is extracted by a stacked
hourglass network, which has demonstrated exceptional
performance in HPE tasks [23]. To effectively combine the
image features of two views, we first sample candidate 3D
points based on the camera rays and the camera parame-
ters. Then, N points are randomly selected from candidates
whose 2D projections on both views fall within the human
segmentation masks detected by YOLO [14]. Last, the point
feature, denoted as zpointi ∈ RL for point i, is obtained by
concatenating the 3D point coordinates and the image local
features allocated from two views.

To generate one compact frame feature based on the

6

Figure 3. Architecture of the frame feature encoder. Image fea-
tures are extracted by a stacked hourglass network. The locations
to extract the local image features are calculated by projecting the
3D sampled point on two views. Subsequently, point features are
derived by concatenating the local image features and the 3D coor-
dinates of the sampled 3D points. Finally, MLP encodes all point
features into one compact frame feature.

Figure 4. The transformer-based U-Net architecture for spatio-
temporal feature refinement takes a sequence of frame features as
inputs and outputs a sequence of joint angles and a set of body
segment scales.

given N point features, we perform a two-stage feature
encoding. In the first stage, each point feature is trans-
formed into a more compact representation, denoted as
z̃pointi ∈ RL′

for point i, using a shared MLP. In the sec-
ond stage, the resulting N compact point features in frame
j are concatenated and further encoded into a frame feature
Zframe

j ∈ RD, for frame j, using another MLP. The archi-
tecture of the frame feature encoder is shown in Figure 3.

3.3.2 Spatio-temporal Feature Refinement

The spatio-temporal feature refinement is applied to refine
a sequence of frame features with temporal information. As
shown in Figure 4, this module adopts a transformer-based
U-Net architecture to extract multi-range spatio-temporal
features from a given sequence of frame features. The adap-
tations include the downsizing of the U-Net, the temporal-
only downsampling and upsampling, and the removal of the
skip connection from input to output.

The input to the transformer-based U-Net is generated
by concatenating a sequence of frame features along the

temporal axis to create a feature map, denoted as Zseq
0 ∈

RD×T×1, where T is the number of frames in the sequence.
The feature map then undergoes processing through the
transformer blocks and the U-Net architecture to extract
multi-resolution spatio-temporal features along the con-
tracting and expanding paths of the U-Net. During the con-
tracting path, the feature map at level l, Zseq

l ∈ RD×t×c, is
downsampled to Zseq

l+1 ∈ RD×(t/r)×rc, where r represents
the downsampling factor from level k to level l+ 1, t is the
temporal length, and c is the number of channels. During
the expanding path, refined features are generated by hier-
archically combining the latent features from different lev-
els using multiple transformer blocks. Finally, regression
heads are employed to output a sequence of per-frame joint
angles θ̂ ∈ RC and the per-sequence body segment scales
ŝ ∈ RB×3, where C denotes the number of predicted joint
angles and B represents the number of body segments.

3.4. Loss Function

For supervision, we utilize a range of factors such as
joint angles, body segment scales, biomechanical con-
straints, and keypoints, including positions, velocities, and
motion smoothness. The final loss function is written as:

Ltotal = Langle+Lscale + Lbio+

λ1Lpos + λ2Lvel + λ3Lsmooth

(1)

, where λ1 is the weight for Lpos, λ2 is the weight for Lvel,
and λ3 is the weight for Lsmooth.
Joint angles. The joint angles refer to the coordinates de-
fined in the generic OpenSim model. The angle loss is cal-
culated differently based on whether the rotation of the cor-
responding joint is constrained.

The angle loss for free joints, denoted as Lθf , is cal-
culated as in Eq. (2). This term measures the L1 distance
between the predicted and the ground truth when the an-
gles are represented on a unit circle as commonly seen in
trigonometry. This representation helps to avoid singulari-
ties and angle ambiguities caused by free rotation angles.

Lθf =
1

T

T−1∑
t=0

∥ ât − at ∥1 (2)

, where ât = (cosθ̂
f

t , sinθ̂
f

t), at = (cosθf
t , sinθ

f
t), θ̂

f

t

and θf
t are the predicted and ground truth joint angles of the

free joints at time t, respectively. T is the number of frames
in a sequence.

The angle loss for constrained joints, denoted as Lθc ,
is calculated as the L1 distance between the predicted and
ground truth joint angles:

Lθc =
1

T

T−1∑
t=0

∥ θ̂
c

t − θc
t ∥1 (3)

7

, where θ̂
c

t and θc
t are the predicted and ground truth joint

angles of the constrained joints at time t, respectively. T is
the number of frames in a sequence.
Biomechanical constraints. Predefined constraints are
commonly used to ensure biomechanical plausibility by
regulating movement. The constraints are further imposed
on the network by incorporating Lbio

θ in the loss function to
penalize joint angle predictions that violate the constraints
as in [31]. The calculation for Lbio

θ is:

Lbio =
1

T

T−1∑
t=0

∥ (θ̂
c

t ≥ θc
max) · (ât − amax) ∥1

+ ∥ (θ̂
c

t ≤ θc
min) · (ât − amin) ∥1

(4)

, where ât, amin, and amax are derived as in Eq. (2). θ̂
c

t is
the predicted joint angles, and [θc

min, θc
max] is the allowed

range for each joint. The term T denotes the number of
frames in a sequence.
Body segment scales. The body segment scale loss, de-
noted as Lscale, is the L1 distance between predicted and
ground truth body segment scales. The calculation is:

Lscale =
1

B

B−1∑
i=0

∥ŝi − si∥1 (5)

, where ŝi and si represent the predicted and ground truth
body segment scales of body segment i, respectively. B is
the total number of body segments.
Keypoints. We define the position of the joints and mass
center of the body segments in the OpenSim model as the
keypoints for loss calculation. Supervision of the position
and velocity of the keypoints implicitly considers the body
segment scales and the skeleton topology in 3D space. The
acceleration of the keypoints is employed as a regularization
term to improve motion smoothness.

Given the joint angles at frame t, denoted as θ̂t ∈ RJ ,
and the body segment scales, denoted as ŝ ∈ RB×3, the
keypoint P̂t ∈ RK×3 are derived as Φforward(θ̂t, ŝ),
where K is the number of keypoints, Φforward is the kine-
matics forward function define in the OpenSim model.

The keypoint position loss Lpos is defined as the L1 dis-
tance between the prediction and the ground truth keypoint
positions. The derivation is:

Lpos =
1

TK

T−1∑
t=0

K−1∑
i=0

∥p̂i,t − pi,t∥1 (6)

, where p̂i,t and pi,t are the predicted and the ground truth
keypoint positions, respectively. T is the number of frames,
and K is the number of keypoints. Note that all the posi-
tions are relative to the pelvis.

The keypoint velocity loss Lvel is defined as the L1 dis-
tance between the velocity of the prediction and the ground

truth keypoint. The calculation is formulated as:

Lvel =
1

(T − 1)K

T−2∑
t=0

K−1∑
i=0

∥v̂i,t − vi,t∥1 (7)

, where v̂i,t = p̂i,t+1 − p̂i,t, and vi,t = pi,t+1 − pi,t. T is
the number of frames, and K is the number of keypoints.

The regularization term, Lsmooth, is the L2-norm of the
keypoint acceleration:

Lsmooth =
1

(T − 2)K

T−3∑
t=0

K−1∑
i=0

∥v̂i,t+1 − v̂i,t∥22 (8)

, where v̂i,t and vi,t are the predicted keypoint velocity, T
is the number of frames, and K is the number of keypoints.

4. Experiments

4.1. Datasets

Training. For ODAH creation, we select 47 subjects from
the BMLMovi [10] subset in the AMASS [21] dataset and
extract 13 actions from each, including kicking, jumping
jacks, stretching, running in place, jogging, crawling, walk-
ing, waving, vertical jumping, sitting down on a chair,
throwing and catching, side gallop, and freestyle. Addition-
ally, we include three actions from a small-scale lab experi-
ment, namely sit-and-stand, sit-and-walk, and running on a
treadmill. Overall, ODAH consists of 199 distinct subjects
and 1583 videos. The source materials are 47 subjects and
675 trials of MoCap data. We extract 167 subjects for train-
ing, 22 subjects for validation, and 10 subjects for testing.
Testing. To evaluate the model’s performance and the gen-
eralization capability in real-world settings, we conducted
experiments on three real datasets, HumanEva [30], Open-
Cap [32], and BMLMovi [10], as well as the proposed syn-
thetic ODAH. HumanEva includes three subjects perform-
ing actions such as boxing, walking, jogging, throwing and
catching, and gesturing. It was recorded using three RGB
cameras and a marker-based motion capture system. Open-
Cap consists of ten subjects performing actions including
walking, squatting, rising from a chair, drop jumps, and
the asymmetric counterparts. It was recorded using five
RGB cameras and a marker-based motion capture system.
OpenCap also provides processed MoCap data and Open-
Sim annotations. BMLMovi involves 90 subjects perform-
ing 21 actions, recorded using two cameras and a marker-
based motion capture system. The selected subjects and clip
names for all the testing sets are listed in Appendix A.2.
Note that the 3D kinematics labels for HumanEva and
BMLMovi were obtained by utilizing their corresponding
SMPL-X models in AMASS dataset and OpenSim IK tool.

8

4.2. Implementation Details

An NVIDIA A40 GPU is employed for training and eval-
uation. Due to the memory limit of the GPU, we only fine-
tune the pretrained stacked hourglass network [7] without
spatio-temporal refinement. The stacked hourglass network
is frozen after being integrated into the proposed network
architecture. The training of the stacked hourglass network
takes nine epochs, with batch size set to nine. The training
of the entire network takes 8 epochs, with batch size set to 2.
Adam optimizer with β1 = 0.5 and β2 = 0.999 is applied,
and the learning rate is set to 1 × 5 × 10−5. Input frames
are resized to 3× 256× 256 before feature extraction. The
loss weights are set as λ1 = 100, λ2 = 100, and λ3=0.001.

We sample 500, denoted as N , 3D points for point fea-
ture extraction, and the point feature length, L, is 1027,
while the reduced one, L′, is 32. The final frame feature
length, D, is 102. The sequence length, T , is set to 64.
The U-Net consists of three encoder-decoder levels, with
downsampling factors, r, set to two for level two, and four
for level three. The number of transformer blocks for each
level is [2, 4, 6], the number of attention heads is [1, 2, 4],
and the number of channels is [48, 96, 384].

In the generic OpenSim model, the number of the joint
angles J is 36. The number of body segments B is 22, and
the number of joint keypoints K is 44. Our generic model
has nine unconstrained joint angles, controlling the pelvis,
and left and right arms. Therefore, only 17 joint angles are
restricted by biomechanical constraints. The details of the
generic model can be found in Appendix A.1.

4.3. Metrics

To make the evaluation focus more on the performance
of the 3D joint kinematics, Procrustes alignment [11] is ap-
plied as the first step to align the global translation, rotation,
and scaling between the predictions and the ground truth.

Mean Absolute Error (MAE) is used to evaluate joint an-
gle error as

MAEangle =
1

T

T∑
t=1

∥θ̂t − θt∥1, (9)

where θ̂t is the predicted angles, θt is the grdountruth an-
gles, and T is the number of frames in a sequence.

Mean Per Joint Position Error with Procrustes Alignment
(PA-MPJPE) is widely used in 3D HPE to measure the Eu-
clidean distance between the predicted and the ground truth
3D joint keypoint positions. The calculation is

PA-MPJPE =
1

TB

T−1∑
t=0

B−1∑
i=0

∥p̂PA
i,t − pi,t∥2, (10)

where B is the number of joint keypoints, p̂PA
i,t is the pre-

dicted joint keypoint positions relative to the root joint after

Procrustes alignment, and pi,t represents the ground truth
joint positions relative to the root joint.

4.4. Baselines

We compare the performance of the proposed method
against state-of-the-art methods of two multi-step meth-
ods Pose2Sim [24] and OpenCap [32], and one end-to-end
method D3KE [1].

For Pose2Sim and OpenCap, frontal and sagittal views
are taken as inputs, and the Body25 model in OpenPose [4]
is the 2D landmark detection backbone. We use Pose2Sim’s
default Butterworth low-pass filter with a cut-off frequency
of 6 Hz as the smoothing filter. For OpenCap, the cut-off
frequency is set to half of the framerate. To ensure a fair
comparison, we disable the landmark synchronization and
the video trimming in OpenCap. For D3KE, only the frontal
view is utilized as the input, and we choose the transformer-
based temporal model with the sequence length set to 243
frames. Additionally, we only compare joint angles present
in our generic OpenSim model and exclude arm flexion
since D3KE’s generic OpenSim model does not have a joint
angle defined for arm flexion for the sake of fair compari-
son.

4.5. Comparison with State-of-the-Art

Table 1 shows the experimental results of Pose2Sim,
OpenCap, D3KE, and our method on HumanEva, Open-
Cap, BMLMovi, and ODAH. For joint angle estimation, our
method achieves an average error of 9.32 degrees across all
datasets. This is equivalent to a 20% error reduction com-
pared to the best baseline, Pose2Sim. For joint keypoint
position error, although our method only shows superior re-
sults in ODAH, it still achieves the second-best average er-
ror across all datasets. Compared to Pose2Sim, the error
of 61.93 mm is a 4% error increase, which is much smaller
than the improvement in joint angle estimation.

More importantly, since our model is solely trained on
synthetic ODAH without finetuning on any real data, the
superior average results indicate the effectiveness of using
synthetic data with augmentations on subject appearance
and environment settings for improving domain generaliza-
tion. These results also confirm the biomechanics fidelity of
the proposed data generation pipeline. More detailed results
can be found in Appendix A.3.

4.6. Ablation Study

4.6.1 Training Data Size

To make sure that the enhancement of domain generaliza-
tion is from the dataset improvements, we train the pro-
posed model on datasets with three different sizes, and test
the resulting model on the four test datasets. The small set
has 50 subjects and 333 clips, the medium set has 100 sub-
jects and 684 clips, and the large set has 167 subjects and

9

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓
Pose2Sim OpenCap D3KE Ours Pose2Sim OpenCap D3KE Ours

HumanEva 12.15 10.53 15.57 10.14 50.66 49.20 87.76 62.86
OpenCap 10.02 7.20 12.47 10.93 69.44 52.72 95.64 85.78
BMLmovi 12.02 16.05 10.30 10.24 52.27 112.81 49.59 71.20
ODAH 12.82 15.55 18.43 5.97 65.78 84.42 168.30 27.86
Mean 11.75 12.33 14.19 9.32 59.54 74.79 100.32 61.93

Table 1. Comparison between Pose2Sim, OpenCap, D3KE, and our method on the joint angle error and joint keypoint error. The evaluation
is performed on HumanEva, OpenCap, BMLMovi, and ODAH, respectively. The last row shows the average error across all datasets.

1306 clips. In Table 2, the average error across all datasets
indicates that more data ensures better generalization for
kinematics estimation. Since it is feasible to generate large
synthetic data with the proposed pipeline, there is great po-
tential for future method development.

4.6.2 Frame-based vs. Sequence-based

To investigate the effectiveness of temporal information,
we perform an evaluation of frame-based and sequence-
based methods. More specifically, frame-based prediction
is implemented by removing the spatio-temporal refinement
module in the proposed framework. From Table 3, it shows
that except for the joint angle in ODAH, including tem-
poral information improves the performance of kinemat-
ics estimation. Moreover, the improvements in the motion
coherence, as indicated by Mean Per Joint Velocity Error
(MPJVE), are much more significant than joint angle and
joint position estimation.

4.6.3 Sequence Length

To explore the impact of the number of frames in the in-
put sequence, we train the proposed model using sequence
lengths 16, 32, and 64. Note the frame rates of the test
video are 30 FPS, therefore, we evaluated the temporal win-
dows of half second, one second, and two seconds. Table 4
shows that training with longer sequences yields better per-
formance, and the enhancement is notably larger on motion
coherence. Thus, incorporating longer temporal informa-
tion is beneficial to kinematics estimation.

4.6.4 Loss Function

We further conduct incremental tests to examine the contri-
bution of each loss term. The results are present in Table 5.
Although the Lbio loss term does not lead to significant per-
formance changes in the testing datasets, it is still included
in the final loss function to mitigate abnormal kinematics
that may occur during extreme movements, ensuring the ro-
bustness and reliability of the model. The implicit weights
introduced by Lpos can improve the joint position error and

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓
small medium large small medium large

HumanEva 10.55 10.16 10.14 67.95 63.42 62.86
OpenCap 11.67 11.87 10.93 83.61 86.59 85.78
BMLmovi 10.48 10.41 10.24 71.35 70.15 71.20
ODAH 7.69 6.63 5.97 41.79 33.37 27.86
Mean 10.10 9.77 9.32 66.18 63.38 61.93

Table 2. Ablation study on different data sizes. The evaluation is
performed on HumanEva, OpenCap, BMLMovi, and ODAH. We
configure ODAH into small, medium, and large datasets.

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓ PA-MPJVE (mm/s) ↓
Frame Sequence Frame Sequence Frame Sequence

HumanEva 10.23 10.14 64.26 62.86 683.7 308.0
OpenCap 11.61 10.93 87.50 85.78 1090.3 482.8
BMLmovi 10.58 10.24 75.57 71.20 494.5 254.2
ODAH 5.89 5.97 28.45 27.86 360.5 182.0
Mean 9.58 9.32 63.95 61.93 657.3 306.8

Table 3. Ablation study on the effectiveness of temporal infor-
mation. The evaluation is performed on HumanEva, OpenCap,
BMLMovi, and ODAH. Frame-based prediction is the proposed
network without spatio-temporal refinement, and sequence-based
prediction is the same as the proposed network.

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓ PA-MPJVE (mm/s) ↓
of frames 16 32 64 16 32 64 16 32 64
HumanEva 10.17 10.25 10.14 63.41 63.13 62.86 342.7 322.7 308.0
OpenCap 11.40 11.53 10.93 86.37 88.04 85.78 551.9 519.7 482.8
BMLmovi 10.36 10.31 10.24 75.36 71.84 71.20 294.1 270.3 254.2
ODAH 5.93 5.96 5.97 27.91 27.33 27.86 207.1 193.6 182.0
Mean 9.47 9.51 9.32 63.26 62.59 61.93 349.0 326.6 306.8

Table 4. Ablation study on different sequence lengths. The eval-
uation is performed on HumanEva, OpenCap, BMLMovi, and
ODAH. We test sequence length set to 16, 32, and 64 frames.

the joint velocity error, but the joint angle error would in-
crease. After adding Lvel and Lsmooth for motion coher-
ence improvement, the increased joint angle error is par-
tially compensated, and the performance on joint position
error and joint velocity error is further boosted. To achieve
optimal performance overall metrics, we choose to include
all loss terms shown here in the final loss function.

10

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓ PA-MPJVE (mm/s) ↓
Langle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lscale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lbio ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lpos ✓ ✓ ✓ ✓ ✓ ✓
Lvel ✓ ✓ ✓
Lsmooth ✓ ✓ ✓
HumanEva 9.80 9.83 10.16 10.14 64.82 65.52 62.84 62.86 349.7 354.4 327.7 308.0
OpenCap 11.30 11.32 11.08 10.93 89.37 89.08 85.53 85.78 527.0 541.9 526.3 482.8
BMLmovi 10.28 10.26 10.32 10.24 77.09 76.78 74.02 71.20 285.6 284.3 268.2 254.2
ODAH 5.68 5.73 5.95 5.97 33.23 32.83 28.10 27.86 268.7 274.3 208.6 182.1
Mean 9.27 9.29 9.38 9.32 66.13 66.05 62.62 61.93 357.8 363.7 332.7 306.8

Table 5. Ablation study on the loss function. The evaluation is performed on HumanEva, OpenCap, BMLMovi, and ODAH. We incre-
mentally test the effects of biomechanical constraints (+ Langle), the keypoint positions (+ Lpos), and the keypoint velocity and motion
smoothness (+ Lvel + Lsmooth).

5. Discussion

In this paper, we propose a pipeline to create syn-
thetic data with biomechanics annotations and an end-to-
end biomechanics-aware model that is solely trained on syn-
thetic. The model’s superior performance on joint angle es-
timation across all datasets demonstrates the effectiveness
of using synthetic data as a large-scale database for improv-
ing kinematics estimation and enhancing domain general-
ization. The improved performance on kinematics estima-
tion also validates the biomechanics fidelity of the proposed
dataset generation pipeline. To conclude, this work illumi-
nates a promising future for finetuning-free deep-learning-
based markerless motion capture systems. A generalizable
model is particularly beneficial for kinematics estimation in
clinical settings, as it is unlikely to acquire biomechanics
annotations for model finetuning.

The limitations include visual quality, variations in mo-
tions, and model size. To address these limitations, fu-
ture research could focus on enhancing the visual quality
of animated humans by incorporating elements such as 3D
clothing, hair, and dynamic body shape, and reducing ar-
tifacts. Additionally, exploring different augmentations to
determine the ones that yield the greatest performance im-
provement would be valuable. To improve the model’s per-
formance on unseen actions, more diverse motions can be
included or simulated to enrich. Lastly, improvements in
model efficiency can be achieved by finding the optimal bal-
ance between the model and dataset sizes.

References

[1] Marian Bittner, Wei-Tse Yang, Xucong Zhang, Ajay Seth,
Jan van Gemert, and Frans CT van der Helm. Towards single
camera human 3d-kinematics. Sensors, 23(1):341, 2022. 1,
2, 7

[2] Michael J. Black, Priyanka Patel, Joachim Tesch, and Jin-
long Yang. BEDLAM: A synthetic dataset of bodies ex-
hibiting detailed lifelike animated motion. In Proceedings
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), June 2023. 3

[3] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Gener-
alizing from several related classification tasks to a new un-
labeled sample. Advances in neural information processing
systems, 24, 2011. 3

[4] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and
Yaser Sheikh. Openpose: Realtime multi-person 2d pose
estimation using part affinity fields, 2019. 2, 7

[5] Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu,
Zhili Chen, and Jiebo Luo. Anatomy-aware 3d human
pose estimation with bone-based pose decomposition. IEEE
Transactions on Circuits and Systems for Video Technology,
32(1):198–209, 2021. 1, 2, 3

[6] Blender Online Community. Blender - a 3d modelling and
rendering package. 3

[7] Enric Corona, Gerard Pons-Moll, Guillem Alenyà, and
Francesc Moreno-Noguer. Learned vertex descent: a new
direction for 3d human model fitting. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part II, pages 146–165.
Springer, 2022. 2, 3, 7

[8] Scott L Delp, Frank C Anderson, Allison S Arnold, Peter
Loan, Ayman Habib, Chand T John, Eran Guendelman, and
Darryl G Thelen. Opensim: open-source software to cre-
ate and analyze dynamic simulations of movement. IEEE
transactions on biomedical engineering, 54(11):1940–1950,
2007. 2

[9] Glenn S Fleisig, Jonathan S Slowik, Derek Wassom, Yuki
Yanagita, Jasper Bishop, and Alek Diffendaffer. Comparison
of marker-less and marker-based motion capture for base-
ball pitching kinematics. Sports Biomechanics, pages 1–10,
2022. 1

[10] Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad
Kording, Douglas James Cook, Gunnar Blohm, and Niko-

11

laus F Troje. Movi: A large multi-purpose human motion
and video dataset. Plos one, 16(6):e0253157, 2021. 2, 6

[11] John C Gower. Generalized procrustes analysis. Psychome-
trika, 40:33–51, 1975. 7

[12] Yihui He, Rui Yan, Katerina Fragkiadaki, and Shoou-I Yu.
Epipolar transformers. In Proceedings of the ieee/cvf con-
ference on computer vision and pattern recognition, pages
7779–7788, 2020. 1, 3

[13] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury
Malkov. Learnable triangulation of human pose. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 7718–7727, 2019. 1, 3

[14] Glenn Jocher, Chaurasia Ayush, and Jing Qiu. Yolo by ultr-
alytics. 4

[15] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7122–7131, 2018. 3

[16] Muhammed Kocabas, Nikos Athanasiou, and Michael J
Black. Vibe: Video inference for human body pose and
shape estimation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5253–5263, 2020. 3

[17] Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, and
Pichao Wang. Lifting transformer for 3d human pose esti-
mation in video. arXiv preprint arXiv:2103.14304, 2, 2021.
2

[18] Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao
Wang, and Wenming Yang. Exploiting temporal contexts
with strided transformer for 3d human pose estimation. IEEE
Transactions on Multimedia, 2022. 1, 2, 3

[19] Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc
Van Gool. Mhformer: Multi-hypothesis transformer for 3d
human pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13147–13156, 2022. 1, 2, 3

[20] Ruixu Liu, Ju Shen, He Wang, Chen Chen, Sen-ching Che-
ung, and Vijayan Asari. Attention mechanism exploits tem-
poral contexts: Real-time 3d human pose reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5064–5073, 2020. 1, 2,
3

[21] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In International Confer-
ence on Computer Vision, pages 5442–5451, Oct. 2019. 2,
3, 6

[22] Lars Mündermann, Stefano Corazza, and Thomas P Andri-
acchi. The evolution of methods for the capture of human
movement leading to markerless motion capture for biome-
chanical applications. Journal of neuroengineering and re-
habilitation, 3(1):1–11, 2006. 1

[23] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In Computer
Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part VIII 14, pages 483–499. Springer, 2016. 3, 4

[24] David Pagnon, Mathieu Domalain, and Lionel Reveret.
Pose2sim: An open-source python package for multiview
markerless kinematics. Journal of Open Source Software,
2022. 1, 2, 7

[25] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3D hands, face,
and body from a single image. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
10975–10985, 2019. 2, 3

[26] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-
nis, and Kostas Daniilidis. Harvesting multiple views for
marker-less 3d human pose annotations. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 6988–6997, 2017. 2

[27] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with tem-
poral convolutions and semi-supervised training. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7753–7762, 2019. 1, 2, 3

[28] Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang,
and Wenjun Zeng. Cross view fusion for 3d human pose
estimation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4342–4351, 2019. 1,
3

[29] Apoorva Rajagopal, Christopher L Dembia, Matthew S De-
Mers, Denny D Delp, Jennifer L Hicks, and Scott L Delp.
Full-body musculoskeletal model for muscle-driven simula-
tion of human gait. IEEE transactions on biomedical engi-
neering, 63(10):2068–2079, 2016. 2, 3, 11

[30] Leonid Sigal, Alexandru O Balan, and Michael J Black. Hu-
maneva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human mo-
tion. International journal of computer vision, 87(1-2):4,
2010. 2, 6

[31] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,
and Jan Kautz. Weakly supervised 3d hand pose estima-
tion via biomechanical constraints. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part XVII 16, pages 211–
228. Springer, 2020. 6

[32] Scott D Uhlrich, Antoine Falisse, Łukasz Kidziński, Julie
Muccini, Michael Ko, Akshay S Chaudhari, Jennifer L
Hicks, and Scott L Delp. Opencap: 3d human movement
dynamics from smartphone videos. bioRxiv, pages 2022–07,
2022. 1, 2, 6, 7

[33] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In CVPR, 2017. 3, 4

[34] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and Philip
Yu. Generalizing to unseen domains: A survey on domain
generalization. IEEE Transactions on Knowledge and Data
Engineering, 2022. 3

[35] Jingbo Wang, Sijie Yan, Yuanjun Xiong, and Dahua Lin.
Motion guided 3d pose estimation from videos. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,

12

UK, August 23–28, 2020, Proceedings, Part XIII 16, pages
764–780. Springer, 2020. 2

[36] Size Wu, Sheng Jin, Wentao Liu, Lei Bai, Chen Qian,
Dong Liu, and Wanli Ouyang. Graph-based 3d multi-person
pose estimation using multi-view images. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 11148–11157, 2021. 1, 3

[37] Jingwei Xu, Zhenbo Yu, Bingbing Ni, Jiancheng Yang, Xi-
aokang Yang, and Wenjun Zhang. Deep kinematics analysis
for monocular 3d human pose estimation. In Proceedings of
the IEEE/CVF Conference on computer vision and Pattern
recognition, pages 899–908, 2020. 1, 2, 3

[38] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022. 3

[39] Jianfeng Zhang, Yujun Cai, Shuicheng Yan, Jiashi Feng,
et al. Direct multi-view multi-person 3d pose estima-
tion. Advances in Neural Information Processing Systems,
34:13153–13164, 2021. 1, 3

[40] Jinlu Zhang, Zhigang Tu, Jianyu Yang, Yujin Chen, and Jun-
song Yuan. Mixste: Seq2seq mixed spatio-temporal encoder
for 3d human pose estimation in video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13232–13242, 2022. 1, 2, 3

[41] Siwei Zhang, Yan Zhang, Federica Bogo, Marc Pollefeys,
and Siyu Tang. Learning motion priors for 4d human body
capture in 3d scenes. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 11343–
11353, 2021. 3

[42] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose estima-
tion with spatial and temporal transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 11656–11665, 2021. 1, 2, 3

A. Supplematary Matierials
A.1. Generic OpenSim Model

The OpenSim model proposed by [29] is utilized as our
generic OpenSim model. It contains 22 bodies, 22 joints,
and 36 coordinates defined as joint angles to control all joint
kinematics. In Figure 5, we show the joint-body pairs in our
generic OpenSim model. Table 6 listed the coordinates cor-
responding to each joint. In our generic model, the pelvis,
left arm, and right arm can freely move, resulting in nine
unconstrained joint angles, while the rest 27 joint angles
are restricted by biomechanical constraints.

Joint Coordinate
ground pelvis pelvis tilt, pelvis list, pelvis rotation

, pelvis tx, pelvis ty, pelvis tz
hip r/l hip flextion r/l, hip adduction r/l

, hip rotation r/l
patellofemoral r/l knee angle beta r/l

walker knee r/l knee angle r/l
ankle r/l ankle angle r/l

subtalar r/l subtalar angle r/l
mtp r/l mtp angle r/l

back lumbar extension, lumbar bending
, lumbar rotation

acromial r/l arm flex r/l, arm add r/l, arm rot r/l
elbow r/l elbow flex r/l

radioulnar r/l pro sup r/l
radiushand r/l wrist flex r/l, wrist dev r/l

Table 6. Joint names and their corresponding coordinate axes.

A.2. Lists of testing data

We list the testing subject and vidoe clip names in each
dataset for reference. The test data list of HumanEva is:

• Subject 1: Box 1, Jog 1, ThrowCatch 1, Gestures 1

• Subject 2: Box 1, Jog 1, Walking 1, Gestures 1

• Subject 3: Box 1, Jog 1, ThrowCatch 1, Gestures 1

The test data list of OpenCap is:

• Subject 3: DJ1, DJAsym1, STS1, STSweakLegs1,
Squats1, SquatsAsym1, Walking1, walkingTS2

• Subject 5: DJ2, DJAsym1, STS1, STSweakLegs1,
Squats1, SquatsAsym1, Walking1, walkingTS2

• Subject 6: DJ2, DJAsym3, STS1, STSweakLegs1,
Squats1, SquatsAsym1, Walking1, walkingTS2

• Subject 9: DJ1, DJAsym1, STS1, STSweakLegs1,
Squats1, SquatsAsym1, Walking1, walkingTS2

13

Figure 5. A generic OpenSim model and the joint-body pairs. The
joints are marked in yellow. Bodies are marked in white.

• Subject 10: DJ1, DJAsym1, STS1, STSweak-
Legs1, Squats1, SquatsAsym1, DJ1, DJAsym5, STS1,
STSweakLegs1, Squats1, SquatsAsym1, Walking2,
walkingTS2

For BMLMovi, the test subjects are Subject 2, 13, 19, 29,
51, 72, 76, and 77. Each of them has 21 clips, namely F 1
∼ F 21.

A.3. Breakdown of Joint Angle Error

Table 7 – Table 10 are the breakdowns of the joint angle
error averaged across subjects and movements.

HumaEva Pose2Sim OpenCap D3KE Ours
Mean Std. Mean Std. Mean Std. Mean Std.

hip flexion 14.23 6.19 10.38 6.83 20.92 8.90 9.23 5.63
hip adduction 4.19 1.77 4.37 1.78 4.40 1.45 3.87 1.48
hip rotation 12.32 4.10 9.86 3.42 9.78 2.79 7.10 2.39
knee angle 8.08 3.05 6.66 4.41 33.67 6.04 8.17 4.55
ankle angle 12.33 3.39 7.24 1.60 9.47 3.22 7.65 2.59
subtalar angle 7.89 2.20 8.91 2.46 9.34 2.77 7.4 2.12
mtp angle 6.83 3.45 13.85 3.86 4.89 1.55 5.05 1.98
lumbar extension 12.85 7.38 10.52 8.14 5.80 2.46 5.24 2.22
lumbar bending 4.36 1.59 5.07 2.12 4.19 1.77 3.07 1.38
lumbar rotation 6.34 6.02 8.53 2.03 5.29 2.49 5.55 2.78
arm flex 9.66 3.14 9.74 3.64 – – 11.95 7.37
arm add 8.48 1.80 6.61 1.89 28.00 6.12 8.58 2.37
arm rot 31.64 29.55 17.46 5.69 31.08 6.09 19.98 8.25
elbow flex 12.31 8.39 10.05 1.75 16.24 8.19 13.29 5.16
pro sup 19.33 6.65 22.34 5.87 18.16 5.55 21.53 6.3

Table 7. The per-joint joint angle error averaged across subjects
and movements in HumanEva.

OpenCap Pose2Sim OpenCap D3KE Ours
Mean Std. Mean Std. Mean Std. Mean Std.

hip flexion 9.22 3.76 8.15 4.50 15.39 7.12 18.64 7.72
hip adduction 7.20 2.26 3.23 1.24 4.12 1.80 4.5 1.95
hip rotation 10.94 3.07 4.16 1.52 5.08 1.42 4.62 1.59
knee angle 7.15 2.75 5.73 1.61 15.81 7.14 10.32 3.47
ankle angle 16.80 27.51 5.64 2.52 8.74 3.36 7.98 2.58
subtalar angle 6.93 2.25 6.07 2.12 8.31 2.70 8.33 3.64
mtp angle 7.19 0.35 0.23 0.26 14.71 0.36 7.6 1.3
lumbar extension 18.01 8.11 9.26 8.37 10.79 7.37 10.78 4.49
lumbar bending 3.48 3.38 3.91 3.11 3.61 3.40 3.43 2.52
lumbar rotation 3.42 2.06 8.09 5.27 3.76 2.19 3.69 1.48
arm flex 18.34 8.49 14.21 9.16 – – 20.52 12.47
arm add 11.89 5.44 9.89 4.01 34.43 7.20 12.29 3.51
arm rot 27.09 27.92 15.07 9.06 28.75 16.73 17.8 7.48
elbow flex 13.95 9.22 15.72 5.87 30.86 16.49 18.38 5.56
pro sup 11.87 4.14 18.58 7.46 10.22 3.71 12.06 3.99

Table 8. The per-joint joint angle error averaged across subjects
and movements in OpenCap.

BMLMovi Pose2Sim OpenCap D3KE Ours
Mean Std. Mean Std. Mean Std. Mean Std.

hip flexion 14.98 8.97 13.99 7.89 12.00 4.01 9.81 6.94
hip adduction 4.94 3.85 5.56 3.24 3.08 1.93 4.09 2.35
hip rotation 11.30 3.82 8.13 3.67 4.48 1.98 7.31 4.47
knee angle 7.19 4.01 6.45 6.15 7.43 4.01 8.6 4.69
ankle angle 21.95 31.80 7.65 4.83 6.46 3.18 9.06 4.17
subtalar angle 9.89 3.32 11.95 5.36 6.69 3.35 8.07 4.45
mtp angle 5.45 3.99 9.68 3.61 8.09 5.18 5.31 3.22
lumbar extension 15.49 11.29 28.10 22.83 8.29 5.25 6.28 3.86
lumbar bending 3.36 2.58 19.09 14.28 3.30 2.50 3.59 2.6
lumbar rotation 3.71 2.25 29.15 22.80 3.14 2.21 4.89 2.74
arm flex 17.81 19.79 37.74 29.80 – – 18.84 18.48
arm add 9.30 5.96 15.90 10.41 23.18 12.49 8.84 4.21
arm rot 25.43 16.76 35.55 22.64 36.30 17.11 20.03 11.8
elbow flex 15.83 8.68 14.66 8.79 7.99 4.13 18.82 8.02
pro sup 19.85 5.82 35.49 12.72 18.03 7.61 22.49 6.04

Table 9. The per-joint joint angle error averaged across subjects
and movements in BMLMovi .

ODAH Pose2Sim OpenCap D3KE Ours
Mean Std. Mean Std. Mean Std. Mean Std.

hip flexion 19.25 11.49 25.79 21.45 26.05 10.82 5.19 3.71
hip adduction 5.78 4.74 7.94 4.21 5.7 2.72 2.77 2.08
hip rotation 9.37 4.17 10.3 6.43 7.62 3.06 4.24 2.31
knee angle 12.1 9.32 14.95 10.38 40.2 17.57 4.24 2.54
ankle angle 23.84 18.54 14.45 6.56 12.75 5.58 5.2 2.6
subtalar angle 9.72 2.93 11.6 5.84 7.67 3.65 4.84 2.7
mtp angle 4.11 3.89 8.58 2.65 8.34 4.09 3.58 2.9
lumbar extension 20.52 14.4 23.81 17.52 17.4 8.4 4.77 3.38
lumbar bending 4.76 2.83 9.85 6.8 4.95 2.99 2.78 1.76
lumbar rotation 4.75 3.81 11.85 8.52 5.06 3.56 3.17 2.4
arm flex 20.12 27.45 20.38 22.04 – – 11.33 24.34
arm add 8.74 7.18 11.67 6.54 33.94 14.65 3.3 2.53
arm rot 23.2 17.84 25.56 18.46 32.27 19.25 9.88 8.37
elbow flex 12.36 8.31 15.43 9.89 31.01 18.69 6.46 3.97
pro sup 7.55 7.96 16.27 8.47 15.81 8.15 4.65 4.78

Table 10. The per-joint joint angle error averaged across subjects
and movements in ODAH.

14

3
Deep Learning in Computer Vision

This chapter provides a brief overview of deep learning, which is a branch of machine learning that relies
on artificial neural networks. Deep neural networks have more layers than traditional neural networks,
allowing them to learn more complex features.

Figure 3.1 shows a simple feed-forward network. Each node is called a neuron, and the connections
between them are tied with weights. The information is aggregated at each node and then passed to
the next level. For example, in Figure 3.1, S1 gets a weighted sum of x1 and x2, and the information
at S1 will be passed to S3 and S4 with different weights. The process can be rewritten as a matrix
multiplication, where the matrix is composed of the weights connecting all neurons. By convention, the
first layer is called the input layer, which takes the input data and passes it to the hidden layers. The
hidden layers are in charge of learning latent features, which are then mapped to the target space by
the output layer.

The process of learning involves adjusting the weights to minimize a loss function using gradient
descent and back-propagation. Readers can refer to Chapter 4 in [44] for more details. Activation
functions such as Sigmoid, ReLU, and hyperbolic tangent can introduce non-linearity into the network.
Some examples are shown in Figure 3.2. Various optimizers such as SGD, RMSProp, AdaGrad, and
Adam are used to improve learning efficiency and stability. A more detailed introduction can be found
in Chapter 8 of [44].

There are multiple explanations for the success of deep neural networks [80, 79]. Examples are:

1. Mainfold disentangle [18]
2. Modularization [114]
3. Invariances and generalization [80]
4. Expressibility and Efficiency [64]

Figure 3.1: A simple feed forwrd network [39].
Figure 3.2: Common activation functions [50].

15

3.1. Fully Connected Layers 16

Most of them comprise the concept of space folding and learning hierarchical features. However, read-
ers should keep in mind that there is no one true answer, it depends on the problem being tackled.

In the following sections, we will go through different designs of neural networks that are widely
used in the computer vision research field, including the design concepts and applications.

3.1. Fully Connected Layers
Fully Connected (FC) layers, also known as Multi-Layer Perceptron (MLP), are the simplest type of
feed-forward neural network. When FC layers are utilized for image feature learning, each neuron
takes one pixel as input, and the output layer maps the learned features back to the target space.
Figure 3.3 shows an example in handwritten digit recognition on images of size 28 × 28. There are
784 nodes for all pixels, and the output layer has 10 nodes representing class scores for the ten digits.
The predicted class is typically the one with the highest score. Despite their simplicity, FC layers are
widely used in combination with different frameworks to map learned latent features to target output
space. Notably, even with such a simple design, FC layers can achieve an accuracy of almost 99% on
handwritten digit classification in the MNIST dataset [35].

Figure 3.3: An example of handwritten digit recognition with
pure FCN [1].

Figure 3.4: An example of handwritten digit recognition with
CNN followed by FCN [2].

3.2. Convolutional Neural Networks
The use of FC layers for image feature learning is inefficient due to the quadratic increase in network
size with respect to image width/height, and the redundancy of weights for pixels with low correlation.
These inefficiencies led to the development of Convolutional Neural Networks (CNNs), which possess
properties better suited for image data, such as transition invariance and localized filtering. For exam-
ple, patterns in images are often repeated and have different scales, and pixels with high correlation are
usually located within a local region. These similarities enable CNNs to generate good priors for image
data, and the learning process becomes more efficient as kernel weights are shared across all pixels.
For patterns with different scales, CNNs use pooling layers to achieve size invariance, enabling the
network to learn local features at shallower layers and global features at deeper layers. A handwritten
digit recognition example is shown in Figure 3.4.

Although CNNs have demonstrated state-of-the-art performance in various computer vision tasks,
CNNs are not rotation invariant, meaning that the same image with different rotations is considered two
different images. Additionally, since CNNs are translation invariant, it is easy to deceive the network
by changing the spatial layout of an image without changing what is perceived by CNNs. This creates
a loophole that provides opportunities for attackers to target existing CNN models. To address this
problem, methods like adversarial learning are developed.

The following two subsections will introduce twoCNN-based networks that are widely used in human
pose estimation and image processing.

3.2.1. Stacked Hourglass Network
Stacked hourglass network [81] is designed for pose estimation. A single HG network (Figure 3.5b) is
a convolutional encoder-decoder network capable of multi-scale feature learning, which is especially
crucial for pose estimation. This is because while local evidence is essential for identifying features like
faces and hands, a final pose estimate requires a coherent understanding of the full body. The person’s

3.3. Recurrent Neural Networks 17

orientation, the arrangement of their limbs, and the relationships of adjacent joints are among the many
cues that are best recognized at different scales in the image. The stacked architecture (Figure 3.5a) is
to enable repeated bottom-up, top-down processing used in conjunction with intermediate supervision,
allowing for re-evaluation of initial estimations and features across the whole image.

(a) Multiple stacked hourglass modules. (b) A single hourglass network.

Figure 3.5: Stacked hourglass network [81].

3.2.2. U-Net
U-Net [93] is also a convolutional endoer-decoder network. The U-shaped architecture as shown in
Section 3.2.2 was proposed for biomedical image segmentation. For precise localization, U-Net has
a contracting path to capture context from different resolutions and a symmetric expanding path that
gradually assembles features learned from different resolutions. The skip connections are crucial to
preserving detailed information as features pass through the contracting and expanding path.

U-Net has achieved state-of-the-art performance in various image segmentation tasks, such as
medical image segmentation, cell segmentation, and road segmentation. It has also been extended
and modified to improve its performance and adapt to different tasks, for example, image restoration
[23, 21, 113].

Figure 3.6: U-Net architecture [93].

3.3. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) stand for neural networks with part of the inputs from the previous
outputs. A typical example of RNNs is shown in Section 3.3, where the network is unfolded over time.
More specifically, the blue rectangles represent the same hidden block over time. A hidden state α is
taken as the input to the hidden block at the next time step. Therefore, the network can learn features
from the past, and the network size does not grow as the receptive time range increases. In computer

3.3. Recurrent Neural Networks 18

vision, RNNs are suitable for problems that would benefit from considering information across time. For
example, image captioning [73] and video summarization [118]. With proper modifications, RNNs can
also be used for image classification [78].

However, RNNs are notoriously known for their difficulty in convergence due to the gradient vanish
or explode problem. Without good controls over the hidden states, it is also difficult to access historical
information from a long time ago. Furthermore, the computation time is longer since the data can only
be processed sequentially. To overcome these issues, two more complex variations of memory units,
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), were proposed.

Figure 3.7: A vanilla RNNs architecture [3].

3.3.1. Long Short-Term Memory
Instead of using the hidden state as the previous information, Long short-term memory (LSTM) [47]
introduces cell state (Ct) as the main memory through time. In addition, a forget gate decides how
much of the previous cell state will be in the current cell state. The input gate is designed to control
how much of the current candidate cell state will be in the current cell state. Last, the output gate
controls how much of the current cell state will be in the current hidden state. The computation is listed
as:

F t = σ(XtW xf +Ht−1W hf + bf),

It = σ(XtW xi +Ht−1W hi + bi),

C̃t = tanh(XtW xc +Ht−1W hc + bc),

Ct = F t ⊙Ct−1 + It ⊙ C̃t,

Ot = σ(XtW xo +Ht−1W ho + bo),

Ht = Ot ⊙ tanh(Ct)

(3.1)

, where Xt is the input at time t, Ht−1 is the hidden state at the previous time step, F t is the forget
gate, It is the input gate, C̃t is the candidate cell state, Ct is the cell state, Ot is the output gate, and
Ht is the hidden state at the current time step. W xf ,W hf ,W xi,W hi,W xc,W hc,W xo, andW ho are
weight matrices and bf , bi, bc, and bo are bias vectors that are learned during training. The σ function is
the sigmoid function, tanh is the hyperbolic tangent function, and ⊙ is the element-wise multiplication
operator.

To learn features from both past and future, LSTM has a bidirectional type, in which information is
passed in two directions as shown in Figure 3.9. This way, a prediction can be made according to the
feature learned from the past and future time steps. Examples of using LSTM for computer vision tasks
are pedestrian trajectory prediction [112], traffic speed prediction [32], and so on. In general, LSTM is
widely used as the baseline RNN.

3.3.2. Gated Recurrent Unit
The design of Gated recurrent unit (GRU) [27] is simpler compared to LSTM. It only has a reset gate
and an update gate to control the state updates. The reset gate is used to control how much of the
previous hidden state will be included in the candidate’s hidden state. The update gate controls how
much of the candidate’s hidden state and the previous hidden state will be in the current hidden state.
Compared to LSTM, GRU is easier to train and faster to run. The computation of a single GRU can be

3.4. Transformer 19

Figure 3.8: Long short-term memory cell [4]. Figure 3.9: Bi-directional long short-term memory [32].

written as:
Rt = σ(XtW xr +Ht−1W hr + br),

Zt = σ(XtW xz +Ht−1W hz + bz),

H̃t = tanh(XtW xh + (Rt ⊙Ht−1)W hh + bh),

Ht = Zt ⊙Ht−1 + (1−Zt)⊙ H̃t

(3.2)

, where Xt is the input at time step t, Ht−1 is the hidden state at the previous time step, Rt is the
reset gate, Zt is the update gate, H̃t is the candidate hidden state, and Ht is the updated hidden
state. W xr, W hr, W xz, W hz, W xh, W hh are weight matrices and br, bz, bh, and bo are bias vectors
that are learned during training. σ and tanh are the sigmoid and hyperbolic tangent activation functions,
respectively. The ◦ symbol represents the element-wise multiplication.

Figure 3.10: Gated recurrent unit [5].

3.4. Transformer
The transformer was first proposed in [102] for language translation tasks. The combination of self-
attention layers, layer normalization, and feedforward layers overcome the RNNs’ difficulty in learning
long-range data dependencies.

As present in Figure 3.11, the transformer architecture consists of an encoder and a decoder. The
transformer encoder can be seen as a feature learner that aggregates useful information into input
tokens for the transformer decoder. It is composed of a stack of identical layers that each contain a self-
attention layer and a feed-forward neural network. The self-attention layer allows the encoder to capture
the relationships between different parts of the input sequence, while the feed-forward network applies
a non-linear transformation to the output of the self-attention mechanism. Having a similar composition
to the transformer encoder, the transformer decoder works as a decipherer, which considers the latent
features from the transformer encoder and the decoder’s predictions in previous time steps to make
predictions.

Multi-head attention consists of h attention modules, each of which attends to different characteris-
tics (e.g., longer-term dependencies versus shorter-term dependencies) in the input data, and all the
attention heads are computed in parallel. The final output of the attention layer is a linear combination
of the output from each head. The computation is written as in Equation (3.3).

3.4. Transformer 20

Figure 3.11: Architecture of transformer [102]. The left-hand
side is the transformer encoder, and the right-hand side is the

transformer decoder.

Figure 3.12: Details of multi-head attention [102]. The input
sequence is first mapped to query (Q), value (V), and query (Q)

for attention calculation.

MultiHead (Q,K,V) = [head1, . . . , headh]W 0,

headi = Attention(QWQ
i ,KWK

i ,V W V
i)

(3.3)

, where W 0 is a learnable matrix that combines all attention outputs, WQ
i , W

Q
i , and WQ

i are also
learned to map the given query vector (Q), key vector (K), and value vector (V) for different heads,
which will be explained in the next paragraph.

Self-attention layers first maps the input sequence to three different vectors: the query vector (Q),
the key vector (K), and the value vector (V) following the computation in Equation (3.4). Figure 3.13
shows the illustration of the attention layers.

Q = XWQ K = XWK V = XW V (3.4)

, where the matrices WK , WQ, and W V are learned during training.
Next, the query vector of each input will score the key vectors for each input of the sequence using

the dot product. The resulting score is then treated as the weight for the value vectors, representing
the information to be carried on, for each input of the sequence. Last, the output of the current input
is the summation of the weighted vectors in the sequence. The whole process can be re-written to
Equation (3.5)

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (3.5)

, where dk is the dimension of the key vectors, and softmax is the softmax function applied over the
rows of the scaled dot-product of Q and QT .

This mechanism allows the model to selectively attend to different parts of the input sequence
based on their relevance to the task. Since the attention is calculated over the entire input sequence,
it is particularly effective for tasks that involve long-term dependencies and non-local relationships.
Moreover, the computation can be done in parallel, unlike the sequential operations in RNNs.

Despite its impressive capabilities, training transformers can be challenging and computationally
demanding. Transformers typically have a large network size, requiring a substantial amount of data for

3.4. Transformer 21

Figure 3.13: Attention layer [6]. The inputs (green) are mapped to the key (orange), value (purple), and query (red). To
calculate the output of the first input, the scores derived from the query are used as weights to combine the values of all the

inputs.

effective training. Without an adequate amount of dataset, transformers may not achieve comparable
performance to CNN-based models, and they are also more susceptible to overfitting.

3.4.1. Bidirectional Encoder Representations from Transformers (BERT)
Bidirectional Encoder Representations from Transformers (BERT) [36] is a pre-trained neural network
architecture for natural language processing (NLP) tasks. It processes input from both left to right
and right to left Figure 3.14, such that the learned token can encapsulate information from both the
past and future. The power of Bert-based models is that they can aggregate information from an input
sequence and then handle sophisticated tasks based on the context in it. Some related works based on
BERT are RoBERTa [69], ALBERT [56], and DeBERTa [46]. Commonly seen applications are question
answering, sentiment analysis, named entity recognition, and natural language inference.

Figure 3.14: Architecture of BERT [36]. Bert takes bi-directional input to learn high-level features in the context.

3.4.2. Generative Pre-training Transformer (GPT)
The Generative Pre-trained Transformer (GPT) was proposed in [88] as a generative language model,
which is a decoder-only module. Unlike most of the language models that are trained on a specific task,
GPT is first trained on a large text corpus by self-supervised learning. At this stage, the model learns to
predict the next word in a sentence based on the previous context. After learning from a large corpus,

3.4. Transformer 22

the model can be fine-tuned to its target tasks with a small amount of data as illustrated in Figure 3.15.
Further improved models are GPT-2 [89], GPT-3 [20], and ChatGPT [7]. Commonly seen applications
are language translation, text summarization, and chatbot development.

Figure 3.15: Architecture of GPT and its extended applications [88].

3.4.3. Vision Transformer (ViT)
The Vision Transformer (ViT) is a transformer-based network proposed by [37] to learn long-range
image features. Compared to CNNs, ViT has a larger receptive field that allows it to learn global
features at lower layers without dropping details from the input data. To apply transformers to image
data, modifications such as dividing the image into patches and flattening and embedding them with
their spatial positions in the original image are necessary (Figure 3.16). The resulting patch tokens are
fed to a transformer encoder, resulting in the same number of encoded tokens, which are then taken
as inputs of a linear layer or another neural network for downstream tasks. ViT has been successfully
applied to various computer vision tasks, including video/image classification, image segmentation, and
object detection [10, 70, 24, 108].

Figure 3.16: Architecture of vision transformer [37].

4
Domain Generalization

4.1. Problem Definition
Machine learning relies on the strong assumption that data is independent and identically distributed
(i.i.d.). However, in reality, this assumption often does not hold, leading to out-of-distribution (OOD)
scenarios or domain shift problems. Domain shift refers to the shift in distribution between the training
data (source domain) and the test data (target domain) [92]. This discrepancy can cause a significant
performance drop, particularly for deep learning models due to their high capacity and flexibility in
learning complex patterns.

Various approaches have been proposed to address the domain shift problem. For instance, do-
main adaptation has been extensively explored [14, 29, 42]. Meta-learning has also gained significant
attention [40, 59, 98, 67], along with transfer learning [84, 122, 90] and other related methods. These
approaches share a common objective of utilizing acquired knowledge from training data to facilitate
tasks or domains with limited labeled data Figure 4.1. However, such approaches are not always feasi-
ble in numerous applications. For instance, in medical applications, it is impractical to gather prior data
from each individual patient. Similarly, in biomechanics applications, the process of collecting data via
marker-based motion capture systems is time-consuming and expensive.

Consequently, the concept of domain generalization (DG) emerged as a viable approach that miti-
gates the reliance on domain-specific information or labeled data during the training process [17]. DG
methods involve training models exclusively on a collection of source domains, with the objective of
capturing shared knowledge or features that can be effectively transferred across diverse domains.

4.2. Methodology
In this section, we provide an overview of the existing DG methods. The categorization shown in
Figure 4.2 follows the classification proposed by [106]. Readers are encouraged to delve into further
research publications for a more comprehensive understanding of DG.

Figure 4.1: Comparison between domain generalization and the related topics [106]. Si is the data set for domain i. Y i is the
label set for domain i. P (Si) is the data distribution of data set in domain i.

23

4.2. Methodology 24

Figure 4.2: The general categorization of domain generalization methods, adopted from [106].

4.2.1. Data Manipulation
Data manipulation can be further classified into two branches. The first branch is data augmentation,
also known as image transformation. Data augmentation is a common practice used during model
training for many vision tasks. It involves introducing random variations to the input data [95, 55] by
gamma adjustments for color images, modifications in lighting, noise addition, rotation, flipping, and
more. Some examples are shown in Figure 4.3. When the target domain is known, specific augmen-
tations can be applied. For instance, in medical image processing, noise or color bias introduced by
scanners from different medical centers can be simulated. It is important to note that data augmentation
should be executed with caution, as it may lead to confusing labels. For example, in the case of hand
digit recognition, flipping an image may yield digits that do not exist. Rather than using a predefined pol-
icy for data augmentation, some works leverage adversarial learning [9, 31, 30] to learn augmentation
policy for better generalization capabilities.

The second branch is data generation, which focuses on generating a substantial and diverse
dataset to improve the generalization of models on unseen data [101, 16]. Most of the effort put into
this branch is to improve the visual quality of the synthetic data (Figure 4.4). Adversarial augmentation
techniques [9, 103, 105, 58] are widely used to incorporate a discriminator that in turn improves the
authenticity of the synthetic data.

Figure 4.3: Examples of data augmentation [121].
Figure 4.4: Synthetic data for human pose estimation [16].

4.2.2. Representation Learning
The second category consists of two branches: domain invariant feature learning and feature disentan-
glement. Domain invariant feature learning aims to enhance the similarity of features across different
domains [77, 26, 104, 57]. A common approach is to incorporate the similarity between features ex-
tracted from different domain sources into the final loss function. Contrastive learning is often applied to
prevent feature collapse in limited domain source [77, 26]. This technique further includes an inductive
bias to move the feature embeddings apart from each other across different samples within the same
domain, as depicted in Figure 4.5.

4.2. Methodology 25

Figure 4.5: The framework proposed by [26]. Domain invariant features are learned by simultaneously pulling together the
features embeddings from models trained on the synthetic data (blue) and the model trained on real datasets (gray), while also

pushing away feature embeddings for different images in the same domain.

Regarding feature disentanglement, the objective is to separate components that are shared across
domains and domain-specific. In [94], the model learns domain-shared and domain-specific feature
embeddings and then uses the combination of these two feature sets to trick the network into perceiving
nonexistent data as part of the training set. [119] disentangles the features of individual frames into
groups of sub-features, each corresponding to specific semantic attributes (e.g., head, bag, shoes,
etc.). These sub-features are subsequently weighted based on attribute recognition confidence and
are aggregated across the temporal domain to form the final representation.

Another direction is to utilize domain-shared and domain-specific features for data generation [54,
60, 115]. For instance, [115] proposes a generator that employs both domain-shared and domain-
specific features for data generation. The domain-shared features are learned using a variation en-
coder, while the domain-specific features are learned using a semantic encoder. Figure 4.6 provides
an illustration of the data generated by combining domain-shared and domain-specific features.

4.2.3. Learning Strategy
Learning Strategy aims to adjust the training process to improve the generalization capability of the
model. One well-knownmethod is model ensembling, which involves combining multiple weak learners
to create a stronger one. Examples are Random Forest [19], Adaboost [41], and voting ensembling
[11]. In the context of deep learning, the same principle applies. For instance, predictions from models
trained on different domains can be combined using weighted averaging, as demonstrated in [33].

Figure 4.6: The augmented data generated by combining domain-specific and domain-shared features as proposed in [115].

5
Deep 3D Human Pose Estimation

The goal of 3D Human Pose Estimation (HPE) in the computer vision research field is to estimate 3D
poses based on visual inputs. The underlying 3D poses can be poses of a shaped-based human model
or a skeleton-based human model. In recent years, there has been a notable increase in attention
toward 3D HPE following milestones achieved in 2D HPE. This shift can be attributed to the advantages
offered by 3D HPE, such as its ability to capture more realistic human poses, and the widespread
applications, including human-computer interaction, human activity recognition, autonomous driving,
healthcare, and sports performance analysis.

Compared to 2D HPE, 3D HPE has challenges including depth ambiguity, perspective bias, and
the scarcity of datasets with 3D annotations. Depth ambiguity refers to situations where different 3D
poses can result in the same 2D pose when projected onto 2D images. Mitigating this challenge often
requires additional inputs (e.g., multi-view images) or temporal information. Another approach involves
considering pose priors.

The limited availability of datasets with 3D annotations poses another obstacle in 3D HPE. This
scarcity restricts the potential of deep learning techniques. Consequently, instead of directly estimating
3D poses, most existing 3D HPE methods rely on lifting 2D poses to 3D poses. Moreover, the existing
datasets with 2D annotations usually deviate from real human anatomy, leading to potential limitations
when applying learned 3D human kinematics in healthcare applications.

This chapter provides an overview of the current research advancements in 3D HPE and how re-
searchers are tackling the aforementioned challenges. The chapter begins by defining branches of 3D
HPE in Section 5.1. Subsequently, existing methods are introduced. Section 5.2 delves into research
works specifically focusing on 3D HPE with musculoskeletal models. To assess the performance of 3D
HPEmethods, Commonly used evaluationmetrics for 3DHPE are described in Section 5.3. Section 5.4
provides an overview of popular datasets in 3D HPE research.

5.1. 3D HPE Overview
We categorize all 3D HPE methods based on three indices: 1) the types of human modeling, 2) 3D
prediction methodology, and 3) input data types.

1. Human modeling: skeleton-based or shape-based
Skeleton-based human models aim to predict the 3D joint locations required to pose a predefined
skeleton model, also known as a landmark topology. The specific joint definitions and the num-
ber of joints may vary across different skeleton models. For instance, OpenPose [22] supports
body_25 (25 keypoints), COCO (17 keypoints) [66], and MPI (16 keypoints) [8]. MediaPipe [72]
employs a 33-joint skeleton derived from BlazePose [13]. AlphaPose [38] introduces a novel
topology comprising 136 keypoints, including 26 for body joints and the remaining keypoints for
facial expressions and hand poses. Figure 5.1 shows an illustration of the aforementioned skele-
ton models. In contrast, shape-based human models, notably the SMPL family, such as SMPL
[71], SMPL-X [85], and STAR [82], focus on predicting 3D human body shapes rather than joint
locations. An SMPL-based model includes blend weights (W), shape parameters (β), and pose

26

5.1. 3D HPE Overview 27

parameters (θ). Blend weights W encode how a joint rotation affects the position of the vertices,
while shape parameters determine body shape, including body physique and scales. Pose pa-
rameters (θ) define body pose and shape pose corrective shapes and refine the body shapes
according to the current joint rotations. The posing process depicted in Figure 5.2 is consistent
across all SMPL-based models, with variations in joint numbers and model training process.

(a) Body_25 [22]. (b) COCO [22]. (c) MPII [22]. (d) BlazePose [13]. (e) AlphaPose [38].

Figure 5.1: Skeleton models for human pose estimation.

Figure 5.2: SMPL model explanation. (a) Template mesh with blend weights indicated by color and joints shown in white. (b)
With identity-driven blend shape contribution only; vertex and joint locations are linear in shape vector. (c) With the addition of
pose blend shapes in preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual

quaternion skinning for the split pose [71].

2. 3D prediction methodology: 2D-to-3D or direct 3D
3D pose estimation can be accomplished using two primary approaches: direct estimation of 3D
pose and lifting 2D poses derived from existing methods. The prevailing focus of current research
lies within the realm of 2D-to-3D prediction, owing to the success of prominent 2D pose estima-
tion techniques, such as OpenPose [22], MediaPipe [72], and AlphaPose [38]. In this approach,
2D poses are elevated to their corresponding 3D counterparts by employing multi-view images
and epipolar geometry as illustrated in Figure 5.3. Alternatively, in the case of monocular inputs,
temporal information can be leveraged. Compared to direct 3D, the 2D-to-3D lifting task is rela-
tively simpler, as the input data already encompasses reliable 2D pose information. In contrast,
direct 3D prediction entails inferring 3D poses directly from images or videos through end-to-end
learning. The main advantage of this method is its independence from the performance limita-
tions of any specific 2D pose estimation methods. However, it typically requires the utilization of
multi-view inputs to achieve robust performance.

3. Input data types: monocular or multi-view inputs
In recent years, there has been a strong emphasis in research on utilizing monocular input due
to its simplicity in managing input data. However, when dealing with monocular inputs, the depth
ambiguity problem poses a significant challenge, as there is insufficient information for accurate
3D pose reconstruction. Consequently, in applications where high accuracy is essential, the use
of multi-view inputs is preferred, despite the additional effort involved in camera calibration and
synchronization.

5.1. 3D HPE Overview 28

Figure 5.3: Illustration of epipolar geometry [109].

5.1.1. Shaped-based Direct 3D HPE
Shape-based pose estimation using the SMPL model is a common approach for direct 3D human pose
estimation, involving the prediction of humanmodel parameters or vertices to reconstruct the 3D human
mesh. Table 5.1 provides a summary of the methods discussed in this section.

Due to the success of CNNs in learning visual features, CNNs are widely used as the network
backbone [52, 28]. Recently, more works are adapting transformer architecture for visual tasks to learn
long-range image features [65]. While some works focus on predicting SMPL shape β and pose θ
parameters [52], it is also possible to directly predict vertex positions [65, 28] for pose estimation. To
deal with the lack of 3D annotations, the supervision can be a combination of 2D and 3D joint positions
[52, 53]. Sequence-to-sequence prediction is present in VIBE [53], which also has a CNNs backbone
for frame feature encoding and a Gated Recurrent Unit (GRU) to capture temporal dependencies of
SMPL parameters, as shown in Figure 5.4. Adversarial learning can be applied to improve the realism
of the predicted pose [52, 53].

Figure 5.4: VIBE architecture [53].

Methods Year Input Highlights Datasets

HMR [52] 2018 single image frame2frame direct 3D CNN image encoder,
weakly-supervised 2D-to-3D,
discriminator

Human3.6M,
MPI-INF-3DHP

VIBE [53] 2020 monocular video seq2seq direct 3D CNN, GRU, adversarial learning 3DPW,
MPI- INF-3DHP,
Human3.6M

METRO [65] 2021 single image frame2frame direct 3D CNN, transformer encoder with joint
queries and vertex queries

Human3.6M,
MPI-INF-3DHP

LVD [28] 2022 single image frame2frame direct 3D Displacements of vertex, hour-glass
network, learned human prior

RenderPeople

Table 5.1: Shape-based 3D HPE methods.

5.1.2. Skeleton-based direct 3D HPE
Compared to 2D-to-3D lifting methods, the number of skeleton-based approaches for direct 3D pose
estimation is limited. The majority of direct 3D methods employ multi-view inputs. Therefore. effective
feature learning from different views for 3D HPE becomes the key to achieving favorable performance.

5.1. 3D HPE Overview 29

In [116], a transformer decoder is utilized to effectively model pairwise interactions among all joints
from all individuals within a view. Features from multiple views are then aggregated using a projective
attention layer. It is also possible to use graph modules for 3D HPE [110], as long as the HPE problem
can be interpreted into graph modules properly. For example, the 2D projection of a 3D point is treated
as a node, and information from the 2D images is exchanged across views through graph edges as
shown in Figure 5.5.

Figure 5.5: Multi-view pose graph proposed in [110].

5.1.3. Skeleton-based 2D to 3D Lifting HPE
State-of-the-art 2D pose estimation methodologies serve as the fundamental building blocks for 2D to
3D Lifting HPE. These approaches aim to leverage 2D poses extracted from multi-view images or a
sequence of frames and subsequently lift them to the corresponding 3D pose representations. Among
all types of inputs, monocular videos represent a prevalent input modality in this domain due to their
ease of processing input data. Table 5.2 summarizes all skeleton-based methods introduced in this
section.

CNN-based approaches. Temporal Convolutional Network (TCN) was first proposed in [12] to enable
temporal feature learning via CNNs. Because temporal information provides crucial cues for 3D pose
reconstruction, TCNs are widely used to process a sequence of 2D joint positions and learn temporal
features for reconstructing the 3D pose of the center frame [87, 25]. Some works also propose to
consider human anatomy, predicting bone lengths and directions instead of 3D joint positions, for better
pose estimation [25].

For the sequence-to-sequence predictions, the task becomes more complex since the network
needs to generate realistic movements. The primary objective is to deliver high-quality 2D poses and
subsequently employ a network to learn realistic movements based on 2D poses. A concatenation of
2D pose refinement and joint-wise temporal refinement is present in [111], as illustrated in Figure 5.6.
Utilization of graphs is also viable since the skeleton topology and the connections of each joint across
time can be easily represented as a spatio-temporal graph for human pose modeling [107].

RNN-based approaches. LSTM can be utilized as the temporal feature learner to better estimate
3D human pose along time [48]. To better reduce temporal incoherence and motion jitters, a tempo-
ral smoothness constraint is included in the final loss function. However, since recurrent networks

Figure 5.6: The TCN-based sequence-to-sequence 3D HPE framework proposed in [111].

5.2. 3D HPE with Musculoskeletal Model 30

are notoriously unstable when training, there is not much research using recurrent networks as the
backbone.

Transformer-based approaches. Transformers can learn spatial and temporal features depending
on how the input data is configured. Most of the works comprise one spatial module and one temporal
module [120, 61, 117]. The spatial and temporal feature learning can be done in a different order. Pose-
former [120] refines spatial features first, [61] refines spatial features last, and [117] refines spatial and
temporal feature in iterations, as shown in Figure 5.7. The concept of multiple hypotheses is brought up
by MHFormer [63]. Instead of predicting the best 3D pose directly, a combination of transformer-based
modules is utilized to find the best 3D pose from multiple possible 3D poses generated from the 2D
pose detected in each view.

Figure 5.7: The transformer-based iterative spatio-temporal encoder proposed in [117].

Multi-view 3D pose estimation methods offer performance improvements but are hindered by the
need for camera calibration. This limitation can be addressed by using a transformer-based multi-view
fusion module to refine global features mapped from the 2D poses [96]. It is also possible to eliminate
the requirement of using extrinsic camera parameters by predicting both view-dependent pelvis poses
and view-independent joint rotations and bone lengths [45]. This approach allows the model to implicitly
learn the relative transformation between the cameras.

5.2. 3D HPE with Musculoskeletal Model
Advancements in 3D HPE have facilitated the integration of these techniques with biomechanics mod-
els like OpenSim [34]. This fusion enables a comprehensive analysis of human movement and biome-
chanics, offering insights into kinematics, dynamics, and forces involved in various activities. Table 5.3
summarizes methods introduced in this section.

Building upon the advancements in 2D pose estimation, numerous markerless motion capture meth-
ods adopt the 2D-to-3D paradigm, which involves inferring 3D joint positions through triangulation of
2D joint positions detected from multiple views [83, 100]. Pose2Sim [83] proposes a pipeline to predict
3D joint kinematics. The 2D landmark detection backbone can be selected from OpenPose [22], Deep-
CutLab [75], BlazePose [13], and AlphaPose [38]. During OpenSim IK, the triangulated 3D joints are
defined asmarkers in an OpenSimmodel. To avoid motion jitters, low-pass filtering is also applied to the
3D joint positions for motion smoothness. OpenCap [100] further introduces an LSTM model to bridge
the gap between triangulated 3D landmarks and the 3D joints in an OpenSim model. In comparison
to Pose2Sim, OpenCap applies more extensive processing to the detected 2D landmarks, including
synchronization, interpolation, and smoothing filtering. After 3D triangulation, RANSAC is employed to

5.2. 3D HPE with Musculoskeletal Model 31

Methods Year Input Highlights Datasets

Pavlakos et al. [86] 2017 multi-view images frame2frame 2D-to-3D lifting ConvNet, 3D pictorial structures,
autonomous 3D annotation,

KTH Multiview
Football II,
Human3.6M

Hossain et al. [48] 2018 monocular video seq2seq 2D-to-3D lifting LSTM, temporal smoothness loss Human3.6M,
HumanEva

Pavllo et al. [87] 2019 monocular video seq2frame 2D-to-3D lifting Semi-supervised, TCNs, global
position, camera intrinsics

Human3.6M,
HumanEva

Xu et al. [111] 2020 monocular video seq2seq 2D-to-3D lifting TCNs, 2D temporal refinement,
decomposed 3D pose estimation, 3D
trajectory refinement

Human3.6M,
HumanEva

Liu et al. [68] 2020 monocular video seq2frame 2D-to-3D lifting Multi-scale TCNs, temporal attention
layer

Human3.6M,
HumanEva

UGCN [107] 2020 monocular video seq2seq 2D-to-3D lifting Spatial-temporal graph, U-shaped
Graph Convolution Networks (UGCN),
motion loss

Human3.6M,
MPI-INF-3DHP

Chen et al. [25] 2021 monocular video seq2frame 2D-to-3D lifting Fully-convolutional architecture,
attention on 2D visibility scores,
per-sequence bone lengths

Human3.6M,
MPI-INF-3DHP

Poseformer [120] 2021 monocular video seq2frame 2D-to-3D lifting Pure transformer, spatial transformer,
temporal transformer

Human3.6M,
MPI-INF-3DHP

MvP [116] 2021 multi-view frame frame2frame direct 3D Transformer decoder, camera ray in
frame features, feature extraction with
3D to 2D projection on different views

Panoptic

Wu et al. [110] 2021 multi-view images frame2frame direct 3D GNN, multi-view Matching Graph
Module (MMG), Center Refinement
Graph Module (CRG), Pose
Regression Graph Module (PRG)

CMU Panopti,
Shelf

MTF-Transform [96] 2022 multi-view video seq2frame 2D-to-3D lifting Transformer, Multi-view fusion
transformer, temporal fusion
transformer

Human3.6M,
TotalCapture,
KTH Multiview
Football II

FLEX [45] 2022 multi-view video seq2seq 2D-to-3D lifting Camera extrinsic parameter free,
discriminator for motion, global
rotation/position, per-sequence bone
lengths

Human3.6M

Strided Transformer [61] 2022 monocular video seq2frame 2D-to-3D lifting Transformer with stride convolution
after vanilla transformer for feature
aggregation, full-to-single supervision

Human3.6M,
HumanEva

MHFormer [63] 2022 monocular video seq2frame 2D-to-3D lifting Transformer, multi-hypothesis Human3.6M,
MPI-INF-3DHP

MixSTE [117] 2022 monocular video seq2seq 2D-to-3D lifting Transformer, alternated spatial and
temporal transformer blocks

Human3.6M,
MPI-INF-3DHP,
HumanEva

Table 5.2: Skeleton-based 3D HPE methods.

remove outliers of the 3D keypoints. Also, the video is automatically trimmed based on the confidence
scores obtained from the triangulation process.

Both Pose2Sim and OpenCap employ multi-step processing to obtain accurate joint kinematics and
body scales for OpenSimmodels. However, the manual intervention required during these intermediate
stages introduces the potential for errors. In order to mitigate this limitation, there is a growing pref-
erence for end-to-end frameworks that can simultaneously estimate joint kinematics and body scales.
D3KE [15] introduces an end-to-end solution for joint kinematics and body scale estimation as illustrated
in Figure 5.8. The proposed method employs CNNs to estimate joint kinematics and body scales for
each frame of a monocular video input. Subsequently, a lifting transformer encoder [62] is utilized to re-
fine and aggregate the predictions, producing a 3D pose for the target frame by incorporating temporal
information. Experimental evaluations validate the effectiveness of the end-to-end approach, exhibiting
superior performance compared to conventional multi-step methods.

5.3. Evaluation Metrics 32

Figure 5.8: The comparison of multi-step and end-to-end methods for 3D HPE based on OpenSim model [15].

Methods Year Input Highlights Datasets

Pagnon et al. [83] 2022 multi-view video seq2seq 2D-to-3D lifting 2D keypoints triangulation, refinement
with re-projection error and keypoint
scores, smoothing filtering on
triangulated 3D keypoints

N/A

Uhlrich et al. [100] 2022 multi-view video seq2seq 2D-to-3D lifting 2D keypoints triangulation, refinement
with re-projection error, keypoint
scores, RANSAC, smoothing filtering
on 2D keypoints, synchronize 2D
keypoints, trim low-quality frames

OpenCap

Bittner et al. [15] 2022 monocular video seq2frame direct 3D End-to-end framework, CNNs for
spatial prediction, Transformer for
temporal smoothing, predict marker
positions as auxiliary during training

BMLMovi

Table 5.3: 3D HPE with OpenSim.

5.3. Evaluation Metrics
Mean Per Joint Position Error (MPJPE)
The Mean Per Joint Position Error (MPJPE) is a metric that measures the average Euclidean distance
between the predicted 3D joints and the ground truth 3D joints. All positions in MPJPE are relative to
the root joint. The equation is shown in Equation (5.1).

MPJPE =
1

N

N∑
i=1

∥p̂i − pi∥2, (5.1)

, whereN is the number of joints, p̂i and pi is the predicted and ground truth 3D position of joint i. Note
that the positions are first centered on the root joint, such that the joint positions are all relative to the
root joint. ∥·∥2 denotes the L2-norm, also known as Euclidean distance, between two vectors.

Mean Per Joint Position Error after Procrustes Analysis (PA-MPJPE)
PA-MPJPE not only excludes the error from global translation but also accounts for global rotation and
scaling. To achieve this, a similarity transform obtained through Procrustes Analysis (PA) is applied to
the predicted pose prior to calculating MPJPE. This ensures that the predicted pose is better aligned
with the ground truth pose in terms of global translation, rotation, and scaling. The equation is shown
in Equation (5.2).

PA-MPJPE =
1

N

N∑
i=1

∥p̂PA
i − pi∥2,

p̂PA
i = M × p̂i × s+ t

(5.2)

5.4. Datasets 33

, where N is the number of joints, p̂i and pi are the predicted and ground truth joint positions relative
to the root joint. p̂PA

i is the joint position after being rotated, scaled, and translated with a similarity
transform matrix M derived from Procrustes analysis. Note that M ∈ R3x3, t ∈ R3x1, and s is a scalar.
The notation ∥·∥2 denotes the L2-norm between two vectors.

Mean Per Joint Velocity Error (MPJVE)
For evaluating the smoothness of predicted human pose sequences, the Mean Per Joint Velocity Error
(MPJVE) measures the average error between the predicted joint velocities and the ground truth joint
velocities, providing an assessment of the temporal coherence and smoothness of the predicted pose
sequence. The equation is shown in Equation (5.3).

MPJV E =
1

(T − 1)N

T∑
t=2

N∑
i=1

∥v̂i,t − vi,t∥2 (5.3)

, where N is the number of joints, T is the total number of frames, and v̂i,t and vi,t are the predicted
and ground truth joint displacements in frame t−1, respectively. The notation ∥·∥2 denotes the L2-norm
between two vectors. Note that MPJVE can also be calculated after applying Procrustes analysis.

Point to Vertex Error (PVE)
In the context of shape-based human modeling, the Percentage of Vertex Error (PVE) metric assesses
the similarity between the predicted mesh and the ground truth. Both the predicted and ground truth
meshes undergo alignment by aligning their respective root vertices. The equation is shown in Equa-
tion (5.4).

PV E =
1

N

N∑
i=1

∥pi − vi∥2 (5.4)

, whereN represents the number of points/vertices, pi is the position of the i-th point, and vi denotes the
position of the corresponding i-th vertex. The notation ∥·∥2 denotes the L2-norm between two vectors.

5.4. Datasets
In this section, we provide Table 5.4 to summarize some popular datasets for 3D HPE.

Dataset Year Subjects Actions Frames Cameras MoCap Notes

HumanEva [97] 2010 4 5 ∼80k 7 v Studio, Natural clothes

Human3.6M [49] 2013 11 11 3.6M 4 v Studio, Natural clothes

CMU Panoptic [51] 2015 ∼8 >10 1.1M 31 Studio, Natural clothes,
Multi-person,
social interaction

TotalCapture [99] 2017 5 4 ∼1.9M 8 v Studio , Suit

MPI-INF-3DH [76] 2017 8 8 >1.3M 14 Studio, Natural clothes,
Augmented backgrounds

SURREAL [101] 2017 145 23 >6M 1 Synthetic data

3DPW [74] 2018 7 n/a ∼51k 1 In-the-wild, Natural clothes,
Moving camera

BMLMovi [43] 2020 90 21 3.6M 4 v Studio, Suit and normal clothes

OpenCap [100] 2022 10 8 100k 5 v Studio, Minimum clothes,
Asymmetrical movements,
OpenSim annotation

Table 5.4: Datasets for 3D human pose estimation.

6
Musculoskeletal Model – OpenSim

OpenSim [34] is an open-source software platform that has been specifically developed to facilitate
the creation and simulation of musculoskeletal models for human movement analysis. This software
enables users to construct detailed models of the musculoskeletal system, encompassing elements
such as bones, muscles, tendons, and ligaments, and subsequently simulate the corresponding move-
ments of the human body. Furthermore, OpenSim provides an extensive array of tools and function-
alities for the analysis of kinematics, kinetics, and muscle forces implicated in movement, as well as
for the optimization of movement patterns and the development of rehabilitation protocols. Owing to
its comprehensive features, OpenSim has gained widespread utilization across various disciplines, en-
compassing a diverse range of studies for human movement analysis, such as gait analysis, sports
performance assessment, and planning for orthopedic surgery.

In the following sections, we will present an overview of the essential elements that constitute an
OpenSim model. Additionally, we will discuss the scaling and inverse kinematics tool, and delve into
the joint kinematics forward calculation in OpenSim.

6.1. Model Components
Body
The bodies in an OpenSimmodel are defined as the segments in the human body. In our generic model
[91], there are 22 bodies, including pelvis, femur_r, tibia_r, patella_r, talus_r, calcn_r, toes_r, femur_l,
tibia_l, patella_l, talus_l, calcn_l, toes_l, torso, humerus_r, ulna_r, radius_r, hand_r, humerus_l, ulna_l,
radius_l, and hand_l. An illustration of the generic model and the corresponding bodies and joints is
shown in Figure 6.1. The 22 bodies are connected via joints, which control the position and rotation of
each body.

Body Segment Scales
In OpenSim, the size of each body is defined by 3D scaling factors, a total of 22×3 values, to the same
body in a referenced model.

Joints
OpenSim joints serve as pivotal components in establishing connections among all bodies in a model.
Each joint is defined by a parent frame and a child frame. Both consist of offset frames representing
a fixed 3D translation relative to a body. Changes in the position and rotation of a joint directly alter
the position and rotation of the associated child offset frame. Since the parent offset frame of the child
joint is tied with the child offset frame of the current joint, the position and rotation of the child joint will
change accordingly. Following the hierarchical structure of the skeleton, the joint movements will be
propagated to bodies at lower hierarchical levels. The generic model we used [91] encompasses a
total of 22 joints, and the corresponding bodies associated with each joint are visually represented in
Figure 6.1.

34

6.2. Scaling Tool and Inverse Kinematics Tool 35

Figure 6.1: The OpenSim model proposed in [91] and its joint-body pairs. The joints are marked in yellow. Bodies are marked
in white.

Coordinates
Coordinates, commonly referred to as joint angles, control the joint rotation and translation through
user-defined mapping functions. Our generic model comprises a total of 39 coordinates. The joints
and their corresponding coordinates are presented in Table 6.1.

Joint Coordinate
ground_pelvis pelvis_tilt, pelvis_list, pelvis_rotation, pelvis_tx, pelvis_ty, pelvis_tz

hip_r/l hip_flextion_r/l, hip_adduction_r/l, hip_rotation_r/l
patellofemoral_r/l knee_angle_beta_r/l
walker_knee_r/l knee_angle_r/l

ankle_r/l ankle_angle_r/l
subtalar_r/l subtalar_angle_r/l
mtp_r/l mtp_angle_r/l
back lumbar_extension, lumbar_bending, lumbar_rotation

acromial_r/l arm_flex_r/l, arm_add_r/l, arm_rot_r/l
elbow_r/l elbow_flex_r/l

radioulnar_r/l pro_sup_r/l
radiushand_r/l wrist_flex_r/l, wrist_dev_r/l

Table 6.1: Joint names and their corresponding coordinates.

6.2. Scaling Tool and Inverse Kinematics Tool
OpenSim offers functionalities for performing body scale computation and inverse kinematics analy-
sis. Users can specify the markers that are used to derive the segment scales of each body. On the
other hand, inverse kinematics involves the estimation of joint angles and positions using measured
marker trajectories. Typically, the scaling tool is employed initially to obtain the subject’s body scales.
Subsequently, the scaled model and the marker trajectories are utilized in conjunction with the inverse
kinematics tool.

6.3. Forward Kinematics 36

6.3. Forward Kinematics
The 3D joint kinematics, including positions and rotations, can be derived given the coordinates and
body segment scales. This computation involves a series of matrix multiplications. We will provide an
example of knee movement to explain the computation, as depicted in Figure 6.2.

In Figure 6.2, red represents the transformation matrix between joints (marked in yellow) and body
(marked in white). The joint walker_knee_l consists of a parent offset frame kneeP and a child offset
frame kneeC. Both offset frames are defined by a 3D translation of their parent body. The parent body
of kneeP is femur_l, andXfemur_kneeP is a transformation matrix with the defined 3D offset. Likewise,
the parent body of kneeC is tibial, andXtibia_kneeC is the defined 3D offset. The positions and rotations
of body femur_l and body tibia_l with respect to the ground are represented by transformation matri-
ces XG_femur and XG_tibia, respectively. Finally, the transformation from kneeP to kneeC is defined
by a transformation matrix XkneeP_kneeC . Among these matrices, Xfemur_kneeP and Xtibia_kneeC are
defined in the model and remain fixed, whileXG_femur,XG_tibia, andXkneeP_kneeC change as the pose
changes.

The transformationmatrixXkneeP_kneeC , which determines themovement of the jointwalker_knee_l,
is derived by coordinate knee_angle_l. The computation from coordinate knee_angle_l toXkneeP_kneeC
is as follows:

XkneeP_kneeC = [RkneeP_kneeC |TkneeP_kneeC],

RkneeP_kneeC = euler_to_matrix(fr0(C17), fr1(C17), fr2(C17), euler_mode),

TkneeP_kneeC = [ftx(C17, scalefemur), fty(C17, scalefemur), ftz(C17, scalefemur)]

, where C17 represents the value of coordinate knee_angle_l. The functions fri(·), where i = 0, 1, 2,
are pre-defined mapping functions that convert the coordinate value to the 3D rotation angles around
different axes. Similarly, the functions fti(·), where i = x, y, z, are pre-defined mapping functions
that determine the translation between kneeP and kneeC given the coordinate value. The mapping
functions can be defined by arbitrary functions, for instance, spline functions, linear functions, constants,
and so on. The function euler_to_matrix(·) is used to convert the Euler angles to rotation matrices.
The order of rotation axes, denoted by euler_mode, is also specified by the users. Additionally, it should
be noted that the translation vector TkneeP_kneeC is influenced by the body segment scales of the parent
offset frame’s parent body.

After obtaining XkneeP_kneeC , we can derive the transformation matrix of the child joint kneeC and
body tibia_l with respect to ground, using XG_femur and Xfemur_kneeP . The computation is given by:

XG_kneeC = XG_femur ·Xfemur_kneeP ·XkneeP_kneeC

XG_tibia = XG_kneeC · (Xtibia_kneeC)
−1

Figure 6.2: Illustration of joint kinematics forward computation. The joints are marked in yellow. Bodies are marked in white.
Transformation matrices are in red.

References

[1] URL: https://www.digitalocean.com/community/tutorials/how-to-build-a-neural-
network-to-recognize-handwritten-digits-with-tensorflow.

[2] URL: https://towardsdatascience.com/mnist- handwritten- digits- classification-
using-a-convolutional-neural-network-cnn-af5fafbc35e9.

[3] URL: https:https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-
neural-networks.

[4] URL: https://d2l.ai/chapter_recurrent-modern/lstm.html.
[5] URL: https://d2l.ai/chapter_recurrent-modern/gru.html.
[6] URL: https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a.
[7] URL: https://openai.com/blog/chatgpt.
[8] Mykhaylo Andriluka et al. “2d human pose estimation: New benchmark and state of the art

analysis”. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition.
2014, pp. 3686–3693.

[9] Antreas Antoniou, Amos Storkey, and Harrison Edwards. “Data augmentation generative adver-
sarial networks”. In: arXiv preprint arXiv:1711.04340 (2017).

[10] Anurag Arnab et al. “ViViT: A Video Vision Transformer”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). Oct. 2021, pp. 6836–6846.

[11] Rahma Atallah and Amjed Al-Mousa. “Heart disease detection using machine learning majority
voting ensemble method”. In: 2019 2nd international conference on new trends in computing
sciences (ictcs). IEEE. 2019, pp. 1–6.

[12] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling”. In: arXiv preprint arXiv:1803.01271 (2018).

[13] Valentin Bazarevsky et al. “Blazepose: On-device real-time body pose tracking”. In: arXiv preprint
arXiv:2006.10204 (2020).

[14] Shai Ben-David et al. “Analysis of representations for domain adaptation”. In:Advances in neural
information processing systems 19 (2006).

[15] Marian Bittner et al. “Towards Single Camera Human 3D-Kinematics”. In: Sensors 23.1 (2022),
p. 341.

[16] Michael J. Black et al. “BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike An-
imated Motion”. In: Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR). June 2023.

[17] Gilles Blanchard, Gyemin Lee, and Clayton Scott. “Generalizing from several related classifica-
tion tasks to a new unlabeled sample”. In: Advances in neural information processing systems
24 (2011).

[18] Pratik Prabhanjan Brahma, DapengWu, and Yiyuan She. “Why deep learning works: A manifold
disentanglement perspective”. In: IEEE transactions on neural networks and learning systems
27.10 (2015), pp. 1997–2008.

[19] Leo Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32.
[20] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information

processing systems 33 (2020), pp. 1877–1901.
[21] Hu Cao et al. “Swin-unet: Unet-like pure transformer for medical image segmentation”. In: Com-

puter Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
III. Springer. 2023, pp. 205–218.

37

https://www.digitalocean.com/community/tutorials/how-to-build-a-neural-network-to-recognize-handwritten-digits-with-tensorflow
https://www.digitalocean.com/community/tutorials/how-to-build-a-neural-network-to-recognize-handwritten-digits-with-tensorflow
https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9
https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9
https:https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https:https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://d2l.ai/chapter_recurrent-modern/lstm.html
https://d2l.ai/chapter_recurrent-modern/gru.html
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://openai.com/blog/chatgpt

References 38

[22] Zhe Cao et al. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields.
2019. arXiv: 1812.08008 [cs.CV].

[23] Chen Chen et al. “Learning to see in the dark”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 3291–3300.

[24] Chun-Fu (Richard) Chen, Quanfu Fan, and Rameswar Panda. “CrossViT: Cross-Attention Multi-
Scale Vision Transformer for Image Classification”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). Oct. 2021, pp. 357–366.

[25] Tianlang Chen et al. “Anatomy-aware 3d human pose estimation with bone-based pose decom-
position”. In: IEEE Transactions on Circuits and Systems for Video Technology 32.1 (2021),
pp. 198–209.

[26] Wuyang Chen et al. “Contrastive syn-to-real generalization”. In: arXiv preprint arXiv:2104.02290
(2021).

[27] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[28] Enric Corona et al. “Learned vertex descent: a new direction for 3D human model fitting”. In:
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part II. Springer. 2022, pp. 146–165.

[29] Gabriela Csurka. “Domain adaptation for visual applications: A comprehensive survey”. In: arXiv
preprint arXiv:1702.05374 (2017).

[30] Ekin D Cubuk et al. “Autoaugment: Learning augmentation policies from data”. In: arXiv preprint
arXiv:1805.09501 (2018).

[31] Ekin D Cubuk et al. “Autoaugment: Learning augmentation strategies from data”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. 2019, pp. 113–
123.

[32] Zhiyong Cui et al. “Deep bidirectional and unidirectional LSTM recurrent neural network for
network-wide traffic speed prediction”. In: arXiv preprint arXiv:1801.02143 (2018).

[33] Antonio D’Innocente and Barbara Caputo. “Domain generalization with domain-specific aggre-
gation modules”. In: Pattern Recognition: 40th German Conference, GCPR 2018, Stuttgart, Ger-
many, October 9-12, 2018, Proceedings 40. Springer. 2019, pp. 187–198.

[34] Scott L Delp et al. “OpenSim: open-source software to create and analyze dynamic simulations
of movement”. In: IEEE transactions on biomedical engineering 54.11 (2007), pp. 1940–1950.

[35] Li Deng. “The mnist database of handwritten digit images for machine learning research”. In:
IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[36] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language under-
standing”. In: arXiv preprint arXiv:1810.04805 (2018).

[37] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition
at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[38] Hao-Shu Fang et al. “AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and
Tracking in Real-Time”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2022).

[39] Feedforward Neural Networks. URL: https://brilliant.org/wiki/feedforward-neural-
networks/.

[40] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast adapta-
tion of deep networks”. In: International conference onmachine learning. PMLR. 2017, pp. 1126–
1135.

[41] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting algorithm”. In: icml.
Vol. 96. Citeseer. 1996, pp. 148–156.

[42] Yaroslav Ganin and Victor Lempitsky. “Unsupervised domain adaptation by backpropagation”.
In: International conference on machine learning. PMLR. 2015, pp. 1180–1189.

https://arxiv.org/abs/1812.08008
https://brilliant.org/wiki/feedforward-neural-networks/
https://brilliant.org/wiki/feedforward-neural-networks/

References 39

[43] Saeed Ghorbani et al. “MoVi: A large multi-purpose human motion and video dataset”. In: Plos
one 16.6 (2021), e0253157.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearn
ingbook.org. MIT Press, 2016.

[45] Brian Gordon et al. “FLEX: Extrinsic Parameters-free Multi-view 3D Human Motion Reconstruc-
tion”. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXIII. Springer. 2022, pp. 176–196.

[46] Pengcheng He et al. “Deberta: Decoding-enhanced bert with disentangled attention”. In: arXiv
preprint arXiv:2006.03654 (2020).

[47] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[48] Mir Rayat Imtiaz Hossain and James J Little. “Exploiting temporal information for 3d human pose
estimation”. In: Proceedings of the European conference on computer vision (ECCV). 2018,
pp. 68–84.

[49] Catalin Ionescu et al. “Human3. 6m: Large scale datasets and predictive methods for 3d hu-
man sensing in natural environments”. In: IEEE transactions on pattern analysis and machine
intelligence 36.7 (2013), pp. 1325–1339.

[50] NS Johnson et al. “Machine Learning for Materials Developments in Metals Additive Manufac-
turing”. In: arXiv preprint arXiv:2005.05235 (2020).

[51] Hanbyul Joo et al. “Panoptic studio: A massively multiview system for social motion capture”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 3334–3342.

[52] Angjoo Kanazawa et al. “End-to-end recovery of human shape and pose”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018, pp. 7122–7131.

[53] Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. “Vibe: Video inference for human
body pose and shape estimation”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 5253–5263.

[54] Ruho Kondo et al. “Flow-based image-to-image translation with feature disentanglement”. In:
Advances in Neural Information Processing Systems 32 (2019).

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep con-
volutional neural networks”. In: Communications of the ACM 60.6 (2017), pp. 84–90.

[56] Zhenzhong Lan et al. “Albert: A lite bert for self-supervised learning of language representations”.
In: arXiv preprint arXiv:1909.11942 (2019).

[57] Sohyun Lee, Taeyoung Son, and Suha Kwak. “Fifo: Learning fog-invariant features for foggy
scene segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 18911–18921.

[58] Alexander Lehner et al. “3D-VField: Adversarial Augmentation of Point Clouds for Domain Gen-
eralization in 3D Object Detection”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 17295–17304.

[59] Da Li et al. “Learning to generalize: Meta-learning for domain generalization”. In: Proceedings
of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[60] Yu-Jhe Li et al. “Cross-dataset person re-identification via unsupervised pose disentanglement
and adaptation”. In: Proceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 7919–7929.

[61] Wenhao Li et al. “Exploiting temporal contexts with strided transformer for 3d human pose esti-
mation”. In: IEEE Transactions on Multimedia (2022).

[62] Wenhao Li et al. “Lifting transformer for 3d human pose estimation in video”. In: arXiv preprint
arXiv:2103.14304 2 (2021).

[63] Wenhao Li et al. “Mhformer: Multi-hypothesis transformer for 3d human pose estimation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 13147–13156.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

References 40

[64] Henry W Lin, Max Tegmark, and David Rolnick. “Why does deep and cheap learning work so
well?” In: Journal of Statistical Physics 168 (2017), pp. 1223–1247.

[65] Kevin Lin, Lijuan Wang, and Zicheng Liu. “End-to-end human pose and mesh reconstruction
with transformers”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 1954–1963.

[66] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2015. arXiv: 1405 . 0312
[cs.CV].

[67] Chang Liu et al. “Learning to learn across diverse data biases in deep face recognition”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 4072–4082.

[68] Ruixu Liu et al. “Attention mechanism exploits temporal contexts: Real-time 3d human pose
reconstruction”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 5064–5073.

[69] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv preprint
arXiv:1907.11692 (2019).

[70] Ze Liu et al. “Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2021,
pp. 10012–10022.

[71] Matthew Loper et al. “SMPL: A Skinned Multi-Person Linear Model”. In: ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34.6 (Oct. 2015), 248:1–248:16.

[72] Camillo Lugaresi et al. MediaPipe: A Framework for Building Perception Pipelines. 2019. arXiv:
1906.08172 [cs.DC].

[73] JunhuaMao et al. “Deep captioning with multimodal recurrent neural networks (m-rnn)”. In: arXiv
preprint arXiv:1412.6632 (2014).

[74] Timo von Marcard et al. “Recovering Accurate 3D Human Pose in The Wild Using IMUs and a
Moving Camera”. In: European Conference on Computer Vision (ECCV). Sept. 2018.

[75] Alexander Mathis et al. “DeepLabCut: markerless pose estimation of user-defined body parts
with deep learning”. In: Nature neuroscience 21.9 (2018), pp. 1281–1289.

[76] Dushyant Mehta et al. “Monocular 3D Human Pose Estimation In The Wild Using Improved
CNN Supervision”. In: 3D Vision (3DV), 2017 Fifth International Conference on. IEEE. 2017.
DOI: 10.1109/3dv.2017.00064. URL: http://gvv.mpi-inf.mpg.de/3dhp_dataset.

[77] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretext-invariant rep-
resentations”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 6707–6717.

[78] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. “Recurrent models of visual attention”. In:
Advances in neural information processing systems 27 (2014).

[79] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for interpreting and
understanding deep neural networks”. In: Digital signal processing 73 (2018), pp. 1–15.

[80] Guido F Montufar et al. “On the number of linear regions of deep neural networks”. In: Advances
in neural information processing systems 27 (2014).

[81] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for human pose
estimation”. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part VIII 14. Springer. 2016, pp. 483–499.

[82] Ahmed A A Osman, Timo Bolkart, and Michael J. Black. “STAR: A Sparse Trained Articulated
Human Body Regressor”. In:European Conference on Computer Vision (ECCV). 2020, pp. 598–
613. URL: https://star.is.tue.mpg.de.

[83] David Pagnon, Mathieu Domalain, and Lionel Reveret. “Pose2Sim: An open-source Python
package for multiview markerless kinematics”. In: Journal of Open Source Software (2022).
DOI: 10.21105/joss.04362. URL: https://joss.theoj.org/papers/10.21105/joss.04362.

https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1906.08172
https://doi.org/10.1109/3dv.2017.00064
http://gvv.mpi-inf.mpg.de/3dhp_dataset
https://star.is.tue.mpg.de
https://doi.org/10.21105/joss.04362
https://joss.theoj.org/papers/10.21105/joss.04362

References 41

[84] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transactions on
knowledge and data engineering 22.10 (2010), pp. 1345–1359.

[85] Georgios Pavlakos et al. “Expressive Body Capture: 3D Hands, Face, and Body from a Single
Image”. In:Proceedings IEEEConf. on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 10975–10985.

[86] Georgios Pavlakos et al. “Harvesting multiple views for marker-less 3d human pose annota-
tions”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 6988–6997.

[87] Dario Pavllo et al. “3d human pose estimation in video with temporal convolutions and semi-
supervised training”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2019, pp. 7753–7762.

[88] Alec Radford et al. “Improving language understanding by generative pre-training”. In: (2018).
[89] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog

1.8 (2019), p. 9.
[90] Maithra Raghu et al. “Transfusion: Understanding transfer learning for medical imaging”. In:

Advances in neural information processing systems 32 (2019).
[91] Apoorva Rajagopal et al. “Full-body musculoskeletal model for muscle-driven simulation of hu-

man gait”. In: IEEE transactions on biomedical engineering 63.10 (2016), pp. 2068–2079.
[92] Benjamin Recht et al. “Do imagenet classifiers generalize to imagenet?” In: International con-

ference on machine learning. PMLR. 2019, pp. 5389–5400.
[93] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for biomed-

ical image segmentation”. In: Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18. Springer. 2015, pp. 234–241.

[94] Nirat Saini, Khoi Pham, and Abhinav Shrivastava. “Disentangling visual embeddings for at-
tributes and objects”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2022, pp. 13658–13667.

[95] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmentation for deep
learning”. In: Journal of big data 6.1 (2019), pp. 1–48.

[96] Hui Shuai, Lele Wu, and Qingshan Liu. “Adaptive multi-view and temporal fusing transformer for
3d human pose estimation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2022).

[97] Leonid Sigal, Alexandru O Balan, and Michael J Black. “Humaneva: Synchronized video and
motion capture dataset and baseline algorithm for evaluation of articulated human motion”. In:
International journal of computer vision 87.1-2 (2010), p. 4.

[98] Flood Sung et al. “Learning to compare: Relation network for few-shot learning”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018, pp. 1199–1208.

[99] Matt Trumble et al. “Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sen-
sors”. In: 2017 British Machine Vision Conference (BMVC). 2017.

[100] Scott D Uhlrich et al. “OpenCap: 3D human movement dynamics from smartphone videos”. In:
bioRxiv (2022), pp. 2022–07.

[101] Gül Varol et al. “Learning from Synthetic Humans”. In: CVPR. 2017.
[102] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing

systems 30 (2017).
[103] Riccardo Volpi et al. “Generalizing to unseen domains via adversarial data augmentation”. In:

Advances in neural information processing systems 31 (2018).
[104] Fan Wang et al. “Exploring domain-invariant parameters for source free domain adaptation”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 7151–7160.

References 42

[105] Haotao Wang et al. “Augmax: Adversarial composition of random augmentations for robust
training”. In: Advances in neural information processing systems 34 (2021), pp. 237–250.

[106] Jindong Wang et al. “Generalizing to unseen domains: A survey on domain generalization”. In:
IEEE Transactions on Knowledge and Data Engineering (2022).

[107] Jingbo Wang et al. “Motion guided 3d pose estimation from videos”. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII
16. Springer. 2020, pp. 764–780.

[108] Wenhai Wang et al. “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
Without Convolutions”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). Oct. 2021, pp. 568–578.

[109] Wikipedia. Epipolar geometry — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org / w / index . php ? title = Epipolar % 20geometry & oldid = 1125486185. [Online; accessed
07-April-2023]. 2023.

[110] Size Wu et al. “Graph-based 3d multi-person pose estimation using multi-view images”. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision. 2021, pp. 11148–11157.

[111] Jingwei Xu et al. “Deep kinematics analysis for monocular 3d human pose estimation”. In:
Proceedings of the IEEE/CVF Conference on computer vision and Pattern recognition. 2020,
pp. 899–908.

[112] Hao Xue, Du Q Huynh, and Mark Reynolds. “SS-LSTM: A hierarchical LSTM model for pedes-
trian trajectory prediction”. In: 2018 IEEEWinter Conference on Applications of Computer Vision
(WACV). IEEE. 2018, pp. 1186–1194.

[113] Syed Waqas Zamir et al. “Multi-Stage Progressive Image Restoration”. In: Proceedings of the
IEEE/CVFConference onComputer Vision and Pattern Recognition (CVPR). June 2021, pp. 14821–
14831.

[114] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional networks”. In:
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part I 13. Springer. 2014, pp. 818–833.

[115] Hanlin Zhang et al. “Towards principled disentanglement for domain generalization”. In:Proceed-
ings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. 2022, pp. 8024–
8034.

[116] Jianfeng Zhang et al. “Direct multi-viewmulti-person 3d pose estimation”. In:Advances in Neural
Information Processing Systems 34 (2021), pp. 13153–13164.

[117] Jinlu Zhang et al. “Mixste: Seq2seq mixed spatio-temporal encoder for 3d human pose estima-
tion in video”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 13232–13242.

[118] Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Hierarchical Recurrent Neural Network for Video Sum-
marization. 2019. arXiv: 1904.12251 [cs.CV].

[119] Yiru Zhao et al. “Attribute-driven feature disentangling and temporal aggregation for video per-
son re-identification”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2019, pp. 4913–4922.

[120] Ce Zheng et al. “3d human pose estimation with spatial and temporal transformers”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 11656–11665.

[121] Kaiyang Zhou et al. “Domain generalization: A survey”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2022).

[122] Fuzhen Zhuang et al. “A comprehensive survey on transfer learning”. In: Proceedings of the
IEEE 109.1 (2020), pp. 43–76.

http://en.wikipedia.org/w/index.php?title=Epipolar%20geometry&oldid=1125486185
http://en.wikipedia.org/w/index.php?title=Epipolar%20geometry&oldid=1125486185
https://arxiv.org/abs/1904.12251

	Preface
	Introduction
	Scientific Article
	Deep Learning in Computer Vision
	Fully Connected Layers
	Convolutional Neural Networks
	Stacked Hourglass Network
	U-Net

	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Transformer
	Bidirectional Encoder Representations from Transformers (BERT)
	Generative Pre-training Transformer (GPT)
	Vision Transformer (ViT)

	Domain Generalization
	Problem Definition
	Methodology
	Data Manipulation
	Representation Learning
	Learning Strategy

	Deep 3D Human Pose Estimation
	3D HPE Overview
	Shaped-based Direct 3D HPE
	Skeleton-based direct 3D HPE
	Skeleton-based 2D to 3D Lifting HPE

	3D HPE with Musculoskeletal Model
	Evaluation Metrics
	Datasets

	Musculoskeletal Model – OpenSim
	Model Components
	Scaling Tool and Inverse Kinematics Tool
	Forward Kinematics

	References

