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1. Introduction
Nitrogen oxides (NOx, NO + NO2) are important precursors of tropospheric ozone (O3) and secondary nitrate aer-
osols, affecting air quality, human health, and climate (Grewe et al., 2012; Hesterberg et al., 2009; Jacob, 1999; 
Seinfeld & Pandis, 2006; Stocker et al., 2013). Regulated under the Clean Air Act and its Amendments, surface 
O3 and aerosol concentrations have decreased in the last decade, although some US cities can still violate the 
National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency (EPA) (Coop-
er et al., 2015; Lin et al., 2012; McClure & Jaffe, 2018). Several studies evaluated chemical transport models 
(CTMs) with atmospheric field observations highlighting potential uncertainties with emissions of NOx, a key 

Abstract Nitrogen oxides (NOx) are air pollutants critical to ozone and fine particle production in the 
troposphere. Here, we present fuel-based emission inventories updated to 2018, including for mobile source 
engines using the Fuel-based Inventory of Vehicle Emissions (FIVEs) and oil and gas production using the 
Fuel-based Oil and Gas (FOG) inventory. The updated FIVE emissions are now consistent with the NEI17 
estimates differing within 2% across the contiguous US (CONUS). Tropospheric NO2 columns modeled by 
the Weather Research and Forecasting with Chemistry model (WRF-Chem) are compared with those observed 
by TROPOspheric Monitoring Instrument (TROPOMI) and Ozone Monitoring Instrument (OMI) during the 
summer of 2018. Modeled NO2 columns show strong temporal and spatial correlations with TROPOMI (OMI), 
identified with biases of −3% (−21%) over CONUS, and +8% (−6%) over point sources plus urban regions. 
Taking account of the negative bias (∼20%) in early version of TROPOMI over polluted regions, WRF-
Chem shows good performance with updated FIVE and FOG emissions. Our model tends to under-predict 
the tropospheric NO2 columns over background and rural regions (bias of −21% to −3%). Through model 
sensitivity analyses, we demonstrate the important roles of emissions from soils (11.7% average over CONUS), 
oil and gas production (4.1%), wildfires (10.6%), and lightning (2.3%) with greater contributions at regional 
scales. This work provides a roadmap for satellite-based evaluations for emission updates from various sources.

Plain Language Summary Satellite observations of tropospheric NO2 columns provide important 
constraints on air pollutants from space, which have been widely used to validate the performance of 
atmospheric models. To gain better knowledge of the accuracy of the recently updated fuel-based emissions 
inventory, we conducted NO2 assessments between a regional chemical transport model (Weather Research and 
Forecasting with Chemistry model, WRF-Chem), with the TROPOspheric Monitoring Instrument (TROPOMI) 
and Ozone Monitoring Instrument (OMI) over the contiguous United States. We find that model simulation 
results show strong spatial and temporal correlations with satellite observations across point sources, urban, oil 
and gas production, and rural regions. With updated emissions, our regional atmospheric model can reconcile 
with satellite retrievals differing from −3% (TROPOMI) to −21% (OMI) overall. Soils, oil and gas production, 
wildfires and lightning emissions can play key roles in regional air quality. This work provides an important 
baseline of a pre-COVID year by which sharp changes in anthropogenic NOx emissions due to the pandemic 
can be assessed.
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precursor to tropospheric ozone formation (Brown-Steiner et al., 2015; Canty et al., 2015; Lin et al., 2012; Mc-
Donald et  al.,  2018; Travis et  al.,  2016). Quantifying NOx emissions and resolving their spatial and sectoral 
distributions are essential for atmospheric modeling and design of ozone and particulate matter control measures 
from city to regional scales (Duncan et al., 2013; Frost et al., 2006; Jiang et al., 2018; McDonald et al., 2018; 
Sillman, 1999).

NO2 is detectable from space and is currently retrieved with wide spatial coverage at a relatively high spa-
tial resolution, providing important top-down observational constraints on emissions from various sources 
(Boersma et al., 2008; Duncan et al., 2013; Kim et al., 2006; Lamsal et al., 2015; Russell et al., 2012; Vinken 
et al., 2014a, 2014b). Satellite NO2 retrievals with the highest spatial resolution before 2018 are from the Ozone 
Monitoring Instrument (OMI) onboard the Aura satellite, with a spatial resolution of 13 × 24 km2 at nadir (Levelt 
et al., 2006, 2018). Top-down inversion estimates of NOx using regional CTMs and OMI retrievals have been 
developed, such as Daily Emission estimates Constrained by Satellite Observations (DESCO) using an extended 
Kalman filter (Ding et al., 2018; Ding et al., 2017; Mijling & van der A, 2012), and multi-year inversions using 
a hybrid 4D-Var/mass balance inversion method (Qu et al., 2017). Forward modeling is another straight-forward 
technique to provide top-down evaluation of a-priori emissions based on the remote sensing NO2 columns (Coop-
er et al., 2017; Lamsal et al., 2010, 2011; Li et al., 2018; Martin et al., 2003). Previous work have pointed out the 
importance of applying high temporal and spatial resolution NO2 vertical profiles to produce satellite retrievals 
when comparing to regional models (Lamsal et al., 2010; Laughner et al., 2016). As the successor of OMI, the 
TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor mission was launched in 
October 2017 (Veefkind et al., 2012). Global NO2 concentration maps are retrieved daily with a higher spatial 
resolution (3.5 × 7 km2 at nadir, 3.5 × 5.6 km2 since August 6, 2019) and a high signal-to-noise ratio compared 
to the OMI retrieved data (Beirle et al., 2019; Ding et al., 2020; Goldberg et al., 2019; van Geffen et al., 2020; 
Veefkind et  al.,  2012). Recent studies have demonstrated the enhanced capabilities of TROPOMI to provide 
top-down constraints on NOx emissions and lifetime over power plants and cities (Beirle et al., 2019; Goldberg 
et al., 2019; Lorente et al., 2019), even to detect the emission changes due to the COVID-19 pandemic's societal 
disruption (Ding et al., 2020; Gkatzelis et al., 2021; Liu et al., 2020). Given the plethora of studies that have 
been published on the air quality impacts during the COVID-19 pandemic (Gkatzelis et al., 2021), including for 
changes in NOx emissions, it is even more critical to understand biases in model-satellite NO2 comparisons that 
existed before the pandemic.

According to the most recent estimates from the US EPA, ∼55% of the nation's NOx emissions are contributed by 
mobile sources (33% from highway vehicles, 22% from off-highway engines), ∼12% by power plants, and ∼33% 
by industry and other areawide sources (EPA, 2020). These estimates have significant uncertainties, as indicated 
by previous work based on ground, airborne and satellite observations, especially for agricultural, industrial, and 
off-road sources (Anderson et al., 2014; Jiang et al., 2018; McDonald et al., 2018; Souri et al., 2016). Satellite 
data provide essential top-down evaluations to quantify the impacts from emissions of various sectors (Jiang 
et al., 2018; Liu et al., 2017; Sha et al., 2021). Jiang et al. (2018) suggested discrepancies in the trend of mobile 
source emissions when compared with ground and satellite observations across the contiguous United States 
(CONUS). The NO2 lifetime has also changed as a result of reduced NOx emissions and nonlinear chemistry over 
US cities (Laughner & Cohen, 2019). On the other hand, due to the emission reductions from mobile sources and 
power plants, the free tropospheric NO2 background is becoming relatively more important, according to recent 
satellite evaluations (Qu et al., 2021; Silvern et al., 2018, 2019).

Since there is often a lag of a few years in the availability of emission inventories, an up-to-date evaluation of US 
bottom-up NOx inventories is challenging to create. For example, the National Emissions Inventory (NEI) 2017 
was released in 2020, and detailed analyses of the inventory are still forthcoming (EPA, 2020). To support NOAA 
air quality forecasting efforts, the Fuel-based Inventory of Vehicle Emissions (FIVEs) have been developed for 
mobile source engines and implemented in the Weather Research and Forecasting with Chemistry (WRF-Chem) 
model (Kim et al., 2016; McDonald et al., 2018) and has been implemented in the Rapid Refresh with Chemistry 
(RAP-Chem) forecast model (https://rapidrefresh.noaa.gov/RAPchem/). Recently, the FIVE inventory has been 
updated through the end of 2020 and captures changes through the COVID-19 pandemic (Harkins et al., 2021). 
In this study, we focus on evaluations of FIVE with TROPOMI NO2 data from 2018, leveraging prior modeling 
by the NOAA Chemical Sciences Laboratory performed for the Long Island Sound Tropospheric Ozone Study 
(LISTOS) (Coggon et al., 2021). Here, we extend the analysis to CONUS and evaluate urban-rural distributions 

https://rapidrefresh.noaa.gov/RAPchem/


Journal of Geophysical Research: Atmospheres

LI ET AL.

10.1029/2021JD035484

3 of 21

in NO2 columns. In rural regions, we also assess NOx emissions from oil and gas development activities, along 
with other anthropogenic (e.g., agricultural soils) and natural (e.g., lightning) sources. The objectives of this 
study are to: (a) reconcile US anthropogenic NOx emissions with NO2 retrievals of TROPOMI through the use 
of a regional 3-D CTM; and (b) provide insights about how further development in biogenic and anthropogenic 
emission inventories could improve the reconciliation of NOx inventories with remote sensing tropospheric NO2 
columns. We relied on the construction of bottom-up inventories in conjunction with forward chemical transport 
modeling to address these objectives. Finally, through a systematic evaluation of a pre-COVID-19 years, we aim 
to establish a baseline by which to evaluate changes in satellite NO2 columns due to the COVID-19 pandemic in 
the future.

2. Materials, Methods, and Data
2.1. WRF-Chem Model Setup

The Weather Research and Forecasting with Chemistry (WRF-Chem) (version 4.0) model was set up to simulate 
air quality (Grell et al., 2005) at a horizontal spatial resolution of 12 × 12 km2 over the CONUS during summer 
(June–August) in 2018. The modeled NO2 concentrations between 13:00 and 14:00 local time for each grid cell 
are extracted and averaged to make consistent comparisons with TROPOMI. The model configurations in this 
study are summarized in Table S1 in Supporting Information S1. Vertically, the model extends from the surface 
to 50 hPa, with the intervening atmosphere divided into 50 layers. We use the Grell-Devenyi (GD) ensemble 
cumulus scheme in the WRF model. The model chemistry was based on the RACM_ESRL gas phase chemistry 
mechanism (Stockwell et al., 1997), with updated isoprene reaction rates (Kim et al., 2009). The North American 
Mesoscale Model data was used to provide initial and boundary conditions for the meteorology in the model. 
We applied the default lightning scheme based on the convective cloud-top height in WRF-Chem to simulate 
contributions from lightning NOx (Wong et al., 2013). Anthropogenic and other natural emissions provided to the 
model are described below.

2.1.1. Anthropogenic Emissions

We updated the anthropogenic emissions inventory to 2018 levels by:

1.  Utilizing the FIVEs for mobile sources including both on-road and off-road engines (McDonald 
et  al.,  2014,  2018). The inventory utilizes fuel sales records to quantify mobile source activity, and NOx 
emission factors normalized to fuel use based on near-roadway and tunnel study measurements and labo-
ratory studies. More details on the development of FIVE can be found in previous publications (McDonald 
et al., 2014). The FIVE inventory has been evaluated with ground and aircraft-based measurements at both 
regional (Kim et al., 2016) and continental scales (McDonald et al., 2018). FIVE was shown to improve mod-
el predictions of NOx and O3 when compared to the NEI (McDonald et al., 2014). The FIVE inventory has 
been updated from 2018 through the end of 2020, including the period of the COVID-19 pandemic (Harkins 
et al., 2021). Here, we use the FIVE emissions for 2018 (denoted FIVE18) in the baseline simulations.

2.  Utilizing the Fuel-based Oil and Gas (FOG) Inventory for oil and natural gas production regions over CONUS 
(Francoeur et al., 2021). According to the top-down evaluations using aircraft observations, over basins ac-
counting for ∼25% of US onshore oil and gas production, oil and gas NOx emissions from the FOG inventory 
are within ∼10% of the aircraft-derived emissions (Francoeur et al., 2021).

3.  Updating power plant emissions to 2018 based on the stack monitoring data from the plants' Continuous Emis-
sion Monitoring Systems (CEMS; https://www.epa.gov/emc/emc-continuous-emission-monitoring-systems).

4.  For other point and area sources (e.g., large industrial facilities), emissions are from the NEI 2014 or 2017. 
Most of the sensitivity runs were performed using the NEI 2014. We added a baseline simulation incorporat-
ing the NEI17 to reflect the most recent emission updates and ensure our results did not change significantly. 
It is been shown that relative to power plants and mobile sources, industrial and area source emissions have 
not changed much in recent years (Jiang et al., 2018).

5.  Canada and Mexico emissions are potentially important for background sources to the US. They are not in-
cluded in NEI 17 or NEI 14, and were initially taken from defaults provided by the WRF-Chem community, 
which were based on the NEI 2005 and emissions scaled to more recent years based on the Community Emis-
sions Data System (CEDS) (Hoesly et al., 2018). We also perform the baseline simulation updating Canada 
and Mexico emissions using the Copernicus Atmosphere Monitoring Service (CAMS) inventory (Granier 
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et al., 2019), which is gridded at 0.1° × 0.1° globally. We include the shipping emissions from CAMS, and 
exclude these emissions from the NEI 2017 to avoid double-counting.

We define two baseline emission cases summarized in Table 1. The first baseline case (Baseline I) is defined as 
FIVE18 (mobile source) + CEMS (power plant) + FOG (oil & gas) + NEI17 (other area/point) + CAMS (CAN/
MEX/Ocean) emissions. Baseline I is set up to reflect that the combination of NEI17 for other area and point 
source emissions and the FIVE18 for mobile sources. This baseline represents the most up-to-date emissions 
available for our period of interest. To analyze the model performance by sectors, we group the grid cells ac-
cording to the locations of point sources and cities, and conduct sensitivity simulations to identify the dominant 
background sources (soil, oil and gas production, wildfire, and lightning). Since the NEI17 case was released in 
the past year, many of the sensitivity runs were performed previously using the NEI14. We rely on Baseline II, 
which utilizes the NEI14 for other area and point source emissions instead of NEI17, to assess relative changes 
in tropospheric NO2 columns due to individual emission sectors.

2.1.2. Biogenic Emissions

For biogenic emissions, we utilized the Biogenic Emissions Inventory System (BEIS3.13) model with predicted 
isoprene emissions reduced by a factor of two (Pierce et al., 1998, 2002). An adjustment of isoprene emissions 
was performed to reconcile the modeled HCHO columns as well as chemistry with TROPOMI observations. 
Figure S1 in Supporting  Information S1 demonstrates that with the 50% isoprene scaling factor applied, the 
model-TROPOMI correlations are significantly improved over the Southeastern US (bias was improved from 
+40% to +8%).

BEIS3.13 estimates the biogenic NOx emissions that result from microbial activity from soil in the growing 
season (April–October) and non-growing season (November–March) for both agricultural and non-agricultural 
areas. BEIS3.13 resolves the forest canopy coverage by tree species based on a 1-km resolution vegetation data-
base. For the summer growing season in our study, the model applies a soil NOx emission estimation algorithm 
that accounts for soil moisture, crop canopy coverage, and fertilizer application (Guenther et al., 2000; Pouliot & 
Pierce, 2009; Vukovich & Pierce, 2015). The soil emissions are calculated in-line with the meteorology within 
the CTM.

2.1.3. Wildfire Emissions

The wildfire emissions are estimated from the Brazilian Biomass Burning Emission Model (3BEM), which com-
bines remote-sensing fire products and field observations (Longo et al., 2010). Following the approach of Freitas 
et al. (2005), 3BEM estimates the mass of targeted species by multiplying the amount of above-ground biomass 
by the combustion factor, the emission factor, and the burnt area (Freitas et al., 2005; Longo et al., 2010). The 
burnt area estimates are based on three fire products from satellite retrievals using a hybrid algorithm or statis-
tical analyses of the fire scars. Emissions of chemical tracers are calculated based on the vegetation-related fire 
properties from field observations. Top-down evaluations using MOPITT data suggest the 3BEM model emission 
estimates are reliable at regional scales (Longo et al., 2010). 3BEM is the default fire package for WRF-Chem 

Model cases

Emissions by cases

Mobile Biogenic Point Other O&G Fire Lightning Canada/Mexico

Baseline I FIVE18 BEIS CEMS NEI17 FOG n/a n/a CAMS

Baseline II FIVE18 BEIS CEMS NEI14 FOG n/a n/a NEI05b

Soil FIVE18 BEIS, excluding soil NOx CEMS NEI14 FOG n/a n/a NEI05b

Oil & Gas FIVE18 BEIS CEMS NEI14 n/a n/a n/a NEI05b

Fire FIVE18 BEIS CEMS NEI14 FOG 3BEMa n/a NEI05b

Lightning FIVE18 BEIS CEMS NEI14 FOG n/a Wong et al. (2013) NEI05b

aThe Brazilian Biomass Burning Emission Model (3BEM) (Longo et  al.,  2010). bNEI05 emissions scaled to 2014 using trends for Canada and Mexico from the 
Community Emissions Database System (CEDS) inventory (Hoesly et al., 2018).

Table 1 
Baseline and Sensitivity Model Cases Set Up in WRF-Chem
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with RACM chemistry, and it's under development according to the information derived from field measurements 
in the US (Grell et al., 2011). Assessing various fire emission inventories is important but beyond the scope of 
this paper. In this work, we applied 3BEM in the sensitivity case simulations to evaluate the contributions to NO2 
columns from fires.

2.1.4. Lightning NOx

We applied the lightning parameterization in WRF-Chem based on cloud-top height (ztop) (Price and Rind, 1992; 
Wong et al., 2013). These relationships between lightning flash rate and cloud-top height were established via an 
empirical framework combined with observational data (Williams, 1985). The equations of lightning flash rate 
(fc) over continental and marine clouds are:

   5 4.93.44 10c topf z continental (1)

f z marinec top   
6 2 10

4 1 73
.

. (2)

By using a 12-km grid spacing in our simulations, the Grell-Devenyi ensemble convection parameterization 
scheme computes the cloud top height using the level of neutral buoyancy (LNB) which is based on the maximum 
moist static energy. The partitioning ratio between intra-cloud and cloud-to-ground flashes (IC:CG ratio) was 
determined from the prescribed climatological mean of Boccippio et al. (2001), based on the Optical Transient 
Detector and the National Lightning Detection Network (Boccippio et al., 2001). We applied a moderate NOx pro-
duction rate of 125 moles per flash in the calculation (Pickering et al., 2016; Pollack et al., 2016; Schumann and 
Huntrieser, 2007). The vertical distribution of the lightning-generated NOx places most of the NOx in the upper 
troposphere (Ott et al., 2010). The detailed parameterizations are listed in Table S1 in Supporting Information S1. 
The monthly averaged lightning NOx emissions are 2,660 metric tons of NO2 per day (6% of the total emissions 
over the whole domain), concentrating in the Gulf of Mexico, Arizona, and Southeast US, as shown in Figure S2 
in Supporting Information S1.

2.2. TROPOMI/OMI NO2 Product

The NO2 column data of TROPOMI is processed by the Royal Netherlands Meteorological Institute (KNMI) 
and made available from the Sentinel-5P data portal (https://s5phub.copernicus.eu/dhus/#/home, Last access: 
November 19, 2019). We obtained the daily NO2 level 2 swath data (version 1.2.2) from the Reprocessing stream 
(RPRO), and processed the data into summer-averaged tropospheric NO2 columns for model evaluation. To re-
duce retrieval uncertainties, daily data with high quality flag values (qf ≥ 0.75) are included, which screens out 
pixels that are covered at least partially by cloud (cloud radiance fraction >0.5), by snow/ice, and those that have 
problematic retrievals (Eskes et al., 2020).

The tropospheric NO2 columns are sensitive to the NO2 vertical profiles and the calculated air mass factor (AMF). 
It is important to incorporate the AMF and averaging kernels into the comparison between modeled and TRO-
POMI columns (Boersma et al., 2004; Eskes & Boersma, 2003a; Lamsal et al., 2010). In this work, we combined 
the averaging kernels (Ak is the total, Ak

trop is the tropospheric kernel) at each level k for filtered swath pixels 
with the NO2 vertical profile shapes (Xk

wc) from the WRF-Chem simulation. This process eliminates the bias in 
model-satellite comparisons introduced by the a-priori profile assumptions from a global transport model Tracer 
Model 5 (TM5) (Huijnen et al., 2010). It is shown that such revisions utilizing the NO2 vertical profile shapes de-
rived from WRF-Chem and averaging kernels make the comparisons more consistent (Eskes & Boersma, 2003b; 
Lamsal et al., 2010). The standard TROPOMI NO2 data were revised based on Equations 3–5 as below (Eskes 
et al., 2020; Lamsal et al., 2010; Palmer et al., 2001):

 _Ω Ω
trop

wc tmtrop wc
M

M
 (3)





_

trop trop wc
trop wc k k k

wc
k k

M A XM
X (4)

trop
k ktrop

MA A
M

 (5)

https://s5phub.copernicus.eu/dhus/
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where k is the tropopause, Ωwc/Ωtm denote the revised/standard satellite tropospheric vertical NO2 column density 
(in molecules cm−2), M/Mtrop are the total/tropospheric AMF derived from the a-priori TM5 model, and Mtrop_wc is 
the derived tropospheric AMF with WRF-Chem simulated vertical profile shape (Xk

wc). Updating the AMF using 
the higher-resolution WRF-Chem model results in 20% higher concentrations on average over urban areas, and 
3% decreases over lower concentration areas in background and rural regions. These significant effects further 
demonstrate the importance of AMF revision based on high resolution regional models and averaging kernels. 
All available swath daily data were resampled based on a “conservative” algorithm (https://xesmf.readthedocs.io) 
to model grids at a resolution of 12 × 12 km2 to match the model resolution, and further averaged for the period 
of the summer of 2018. By averaging the TROPOMI data over a long time period (3 months in our study) and 
applying the AMF correction based on NO2 profiles from our regional model, we assume that the random errors 
due to instrumental noise are partly eliminated.

The systematic error in the TROPOMI NO2 tropospheric column is mainly related to the slant column spectral 
fitting, separation of stratospheric and tropospheric columns, and uncertainties in model parameters to derive 
AMFs (Veefkind et al., 2012). Validation using ground-based Multi-Axis Differential Optical Absorption Spec-
troscopy (MAX-DOAS) NO2 measurements shows that TROPOMI tropospheric column data are biased low by 
−23% to −37% in slightly polluted regions, and up to −51% in highly polluted conditions (Verhoelst et al., 2021). 
Compared to the airborne and ground-based measurements of PANDORA (NASA Goddard Space Flight Center) 
(Herman et al., 2009) for the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS), TROPOMI tropo-
spheric NO2 columns show an overall negative bias of 19%–33% (Judd et al., 2020). The bias estimate is reduced 
to −7% to −19% with updated profiles from regional models (Judd et al., 2020). Similarly, Wang et al. (2020) 
found a low bias of 30%–50% in the TROPOMI trop. NO2 columns as evaluated based on ground MAX-DOAS 
instruments in China. Identified causes of the systematic low bias are the surface albedo (the TROPOMI retrieval 
still uses the OMI Lambert Equivalent Reflectance data, with a suspected high bias), the cloud retrieval (and 
implicit aerosol correction) and the profile shapes. Surface albedo uncertainties can lead to 20% uncertainties of 
NO2 locally and systematic biases regionally. In TROPOMI versions 1.2.x and 1.3.x the cloud pressure was found 
to be overestimated, leading to a low NO2 bias of the order of 12% over the US compared to the OMI QA4ECV 
product in winter, and smaller biases in summer. The a-priori profile shape used in the retrieval strongly influenc-
es the direct comparisons with MAX-DOAS, PANDORA, and CTMs, but does not influence comparisons with 
models when the averaging kernels are used in this study. Accounting for this, we still expect in general a low 
bias up to −20% in the TROPOMI tropospheric NO2 data over polluted regions depending on locations and sea-
sons. We further conduct similar ground-based evaluations of the TROPOMI tropospheric NO2 data with AMF 
correction using the PANDORA measurements over New York City (shown in Figure S3 in Supporting Informa-
tion S1). A systematically 20% low bias is found in TROPOMO over polluted cities, consistent with the findings 
in previous satellite validation work (Lambert et al., 2021).

The sum of stratospheric and upper tropospheric NO2 columns is kept consistent with the TROPOMI observa-
tions through the assimilation step in the retrieval, but the separation of the column into a stratospheric and trop-
ospheric part is based on the modeled profiles of the TM5-MP model. A bias between the free tropospheric col-
umn in TM5-MP and WRF-Chem will directly manifest itself in biases over rural background regions with low 
tropospheric column amounts. We estimate the seasonal averaged error of TROPOMI NO2 data by propagation 
of errors with the averaging kernels applied in each swath (as shown in Figure S4 in Supporting Information S1). 
The spatial pattern indicate that the standard deviations of satellite retrievals can be large over remote regions 
with low concentrations, and averaging over a long period of time is especially important to interpret these data. 
We filter out those grids with very large uncertainties (standard deviation >100%) in our statistical analyses.

OMI provides an independent satellite retrieval of NO2 by which to assess uncertainties in TROPOMI NO2 in the 
model comparison and evaluation. The OMI tropospheric NO2 column V003 Level 2 swath data at NASA God-
dard Earth Science (GES) Data and Information Services (DISC) were obtained from the NASA's Earth Observ-
ing System Data and Information System (EOSDIS) (https://earthdata.nasa.gov/, Last access: January 14, 2021) 
for June–August in 2018 (Krotkov et al., 2019), and then further processed into seasonal averages. We screened 
out pixels of OMI following the principles of TROPOMI filtering. Daily pixels with cloud fraction >30% (in 
accordance with cloud radiance fraction >50%), solar zenith angle >85°, or those affected by the row anom-
aly are excluded before averaging following the user manual guide (https://aura.gesdisc.eosdis.nasa.gov/data/
Aura_OMI_Level2/OMNO2.003/doc/README.OMNO2.pdf). Only grids with more than 10 valid observations 

https://xesmf.readthedocs.io/
https://earthdata.nasa.gov/
https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMNO2.003/doc/README.OMNO2.pdf
https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMNO2.003/doc/README.OMNO2.pdf
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during the summer (3 months) are included in the statistical analyses. Compared to the ground measurements, 
OMI standard tropospheric NO2 product tend to be biased low by up to 50% over polluted regions (Compernolle 
et al., 2020; Lamsal et al., 2014; Wang et al., 2020), and biased high in remote areas (Lamsal et al., 2014). To 
exclude the effect of the a-priori vertical profiles from global models, the OMI NO2 standard product data also 
follow the same AMF revision procedure as above to compare with WRF-Chem in the assessment.

3. Results and Discussions
3.1. Model Evaluations Over the CONUS

The sectoral emissions used in this study are summarized in Table 2. In contrast to McDonald et al. (2018), which 
suggested that mobile source (on-road + off-road) NOx emissions in the NEI 2011–14 were ∼30% higher than 
FIVE in 2013, we note that the emission estimates in the most recent years are in better agreement. As shown in 
Table 2, the mobile source emissions totals from FIVE18 and NEI17 are within 2%, and differ by 8% for on-road 
sources. This convergence can be explained by faster decreases in NEI emissions than in FIVE in the intervening 
years between 2013 and 2018 (Jiang et al., 2018). The areawide emissions increased by 34% from 2014 to 2017 
as estimated by NEI, which may reflect differences in methodology in how these emissions are processed. Soil, 
lightning, and Canada/Mexico/ocean-going vessels NOx emissions contribute 11%, 6%, and 20% of the total for 
the whole domain, respectively.

Before evaluating the emissions inventory in the WRF-Chem model and with TROPOMI NO2 columns, we 
perform a meteorological evaluation with the NOAA Integrated Surface Database (https://www.ncdc.noaa.gov/
isd), as summarized in Table 3. The evaluation is conducted over the 9 NOAA climate regions (https://www.ncdc.
noaa.gov/monitoring-references/maps/us-climate-regions.php). For each region, we plot a time series of the me-
dian, 25th and 75th percentiles from the model and with the surface observations for surface temperature, wind 
speed, and water vapor concentration at the satellite overpass time (see Figure S5 in Supporting Information S1 
for example). The bias and R2 are calculated on the median of the model and observations across the time series. 
In a broad regional sense, the model performance regarding meteorology is generally good, with biases lying in 
the range of −0.5% to +0.1% for surface temperature, −0.2% to +15.5% for water vapor density, and −10.8% 
to +6.3% for wind speed, and quite high correlation coefficients for all meteorological fields (R2 = 0.63–0.98).

Figure 1 compares the tropospheric NO2 columns modeled by WRF-Chem and those from TROPOMI during 
the summer of 2018 for the Baseline NEI17 emissions case. Comparisons between model and TROPOMI by the 
US regions (West, Midwest, South, and Northeast) are demonstrated in Figure S6 in Supporting Information S1. 
Qualitatively, our model and the satellite show generally consistent spatial patterns (see Figures 1a and 1b). Over-
all, the Baseline NEI17 simulation of NO2 columns agrees well with the TROPOMI NO2 data at a continental 
scale (R2 = 0.78, slope = 0.93, Theil-Sen linear regression with fixed intercept as zero, NMB = −3%). Enhanced 

Sources FIVE18a NEI14b NEI17c

On-road 10,300 13,368 9,575

Off-road 4,010 5,790d 4,572d

Areawide 3,160 4,220

Point 6,240 6,260

Total Anthropogenic—Baseline I (FIVE18 + NEI17) 24,790

Total Anthropogenic—Baseline II (FIVE18 + NEI14) 23,710

Total Anthropogenic—Reference (NEI17) 24,627

Soil NOx 4,541

Lightning NOx 2,660

Canada/Mexico/Ocean (CAMSa) 7,800
aYear: 2018. bYear: 2014. cYear: 2017. dIncluding non-road equipment (diesel, gasoline, and other) and locomotives.

Table 2 
NOx Emissions by Sectors in Summer for Different Inventories Used in the Baseline Modeling (Unit: Metric Tons of NO2 
per Day)

https://www.ncdc.noaa.gov/isd
https://www.ncdc.noaa.gov/isd
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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NO2 columns due to emissions from cities, point sources, and oil and gas basins are seen in both the model and 
satellite data. However, discrepancies are also found over several hotspot regions (e.g., New York, Chicago), as 
well as the rural regions over the Eastern US (see Figures 1c and 1d). Emissions, meteorology and chemistry 
can all contribute to the model-satellite differences at regional scales. Based on the above analyses, it is unlikely 
that biases in meteorology (maximum of −10.8% for wind speed) can explain the regional model biases in NO2.

We evaluated different emission sectors in the inventory with TROPOMI, leveraging the high spatial resolution of 
the satellite retrieval and the fact that various emission sectors exhibit different spatial patterns in the inventory. 
We grouped grid cells by those dominated by emissions from point, cities and background sources (agriculture, 

Region T2 (°C) WS (m/s) CH2O (g/m3)

Northeast −0.3%, R2 = 0.96 +7.4%, R2 = 0.84 +1.2%, R2 = 0.98

Southeast +0.0%, R2 = 0.89 +12.6%, R2 = 0.82 −0.6%, R2 = 0.96

Ohio Valley +0.0%, R2 = 0.93 +12.5%, R2 = 0.92 −2.7%, R2 = 0.94

Upper Midwest +0.1%, R2 = 0.92 +15.5%, R2 = 0.90 −1.6%, R2 = 0.97

South +0.0%, R2 = 0.88 +2.5%, R2 = 0.83 −1.5%, R2 = 0.85

Rockies +0.0%, R2 = 0.96 +1.1%, R2 = 0.88 −8.0%, R2 = 0.83

Southwest −0.5%, R2 = 0.87 +7.6%, R2 = 0.82 +5.6%, R2 = 0.94

Northwest −0.4%, R2 = 0.94 +6.8%, R2 = 0.79 +6.3%, R2 = 0.63

West −0.3%, R2 = 0.93 −0.2%, R2 = 0.74 −10.8%, R2 = 0.86

Table 3 
Evaluation of WRF-Chem Meteorological Fields With NOAA Integrated Surface Database (June–August) Around 
TROPOMI Overpass Time (13:30 p.m. Local Time)

Figure 1. NO2 tropospheric columns in (a) WRF-Chem simulated with the updated fuel-based inventories for June–August 2018, (b) TROPOMI retrievals with AMF 
revisions, (c) Absolute differences and (d) Relative differences between WRF-Chem and TROPOMI. The top 10 densely populated cities (solid rectangles) and oil and 
gas production basins (dotted rectangles) are marked in (c) and (d).
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oil and gas production, lightning, and wildfire). Grids were assigned to each source group according to the fol-
lowing procedures. First, if the a-priori emission proportion of point sources/mobile sources is greater than 60% 
as determined by the bottom-up inventory, then the grid is marked as “point”/“city.” Point sources consist of 
power plants and industrial sources, and we define point source regions as within 50 km distance of a designated 
point source. This distance-based limit is derived by assuming NO2 lifetime is 3 h for point sources and an average 
wind speed of 5 m s−1 in summer (Liu et al., 2016). In Figure 2b, we compare “point sources” and “city” grids 
together because often these sources are in close proximity to one another. Some point sources are isolated from 
cities, and these are shown in panel 2c. Panel 2d shows results for the grid cells over the top 10 urbanized areas 
in the US (cities listed in Table 4). Grids that were neither affected by “point sources” nor “city” are marked as 
“background and rural” in panel 2e.

We explore the effect of various linear regression methods on the model-satellite evaluation, including Theil-Sen 
regression (TSR), Orthogonal distance regression (ODR), and ordinary least square regression (OLS). As shown 
in Figure S7 in Supporting  Information S1, for each statistical method, fixing the intercept or not has minor 
effects on our analysis. The regression slopes using OLS and ODR can be 13%–29% higher than the TSR's. As 
discussed in Vigouroux et al. (2020), TSR is recommended for satellite validation because it can give reliable 
results in the presence of outliners and/or heteroscedasticity (Vigouroux et al., 2020). In the following analyses, 
we apply TSR with zero-intercept, and NMB as statistical metrics to perform model-satellite evaluations using 
TROPOMI and OMI data.

As shown in Figure 2a, the overall bias of WRF-Chem over CONUS compared to TROPOMI is −3% (NMB, 
panel a), +8% for point sources plus cities (panel b), and −3% for background and rural regions (panel e). The 
good correlation statistics (slope = 0.94, R2 = 0.78) demonstrate the consistent spatial distributions for the emis-
sions and model-simulated and the satellite columns. WRF-Chem agrees well with TROPOMI for point and city 
sources (Figure 2b), within 10%. For background regions, the uncertainties of the satellite data (see Figure S4 in 
Supporting Information S1), as well as the free tropospheric NO2 simulations in models (Silvern et al., 2019) are 
higher than the polluted areas. Figure 2e demonstrates that the performance of model is also good (slope = 0.94, 
R2 = 0.78, NMB = −3%) compared to the TROPOMI observations and within the uncertainty of the TROPOMI 
NO2 background values.

OMI provides the uncertainty bounds from satellite retrievals along with TROPOMI. The OMI NO2 columns are 
higher than TROPOMI observations by 22% overall (see Figure S8 in Supporting Information S1). The ∼20% 
differences between TROPOMI and OMI data are consistent with other validation results (Wang et al., 2020), due 
to different cloud masks, AMFs, a-priori vertical shapes, row anomalies, spatial resolutions, and so on. While we 
concentrate our emissions inventory and model evaluation below with TROPOMI NO2, we use OMI as a means 
to bound the uncertainty in satellite retrievals of NO2 over different emission source regions (Kim et al., 2009). 
As shown in Figure 2, in general, the correlations between WRF-Chem and OMI are not as high as those with 
TROPOMI. Over CONUS, modeled columns tend to be lower than those observed by OMI by 21% (slope = 0.78, 
R2 = 0.69). Like with TROPOMI, we find good agreement over point and city sources between WRF-Chem and 
OMI (slope = 0.85, NMB = −6%, Figure 2b). For background regions and oil and gas (O&G) basins, columns 
modeled by WRF-Chem are ∼20% lower than those observed by OMI (see Figures 2e and 2f). In summary, de-
spite the uncertainties in the satellite data inferred by differences in TROPOMI and OMI, modeled tropospheric 
NO2 columns can reconcile with satellite data within ∼20% over point sources, cities, and background regions. 
More evaluations based on aircraft or ground measurements of TROPOMI and OMI tropospheric NO2 data over 
background regions with low concentrations are needed in future work. Next, we focus our results and discussion 
on more targeted analysis of emission source regions.

3.2. Model Evaluation Over Isolated Point Sources

We show the relative column differences between WRF-Chem and TROPOMI, labeled with the locations of 
point sources in Figure S9 in Supporting Information S1. It should be noted that the point sources include power 
plants that have CEMS installed and monitored on an hourly basis, and industrial point sources without online 
stack monitoring. To exclude the effect of cities, we selected the 565 isolated point sources away from cities 
(>50 km) and show the correlations in Figure 2c. The systematic bias of isolated point sources across the US is 
−8% (slope = 0.91, R2 = 0.66), which is consistent with recent top-down emission derivations using TROPOMI 
over point sources using model independent techniques (Goldberg et al., 2019). Below we provide an assessment 
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Figure 2. Comparison of July–August 2018 averaged tropospheric NO2 columns from WRF-Chem versus TROPOMI/OMI 
over (a) The whole CONUS domain, (b) Point sources and cities, (c) Isolated point sources, (d) Top 10 cities by population, 
(e) Background and rural, (e) Oil and gas basins. The criteria for grid selection by emission source are described in the 
main text of Section 3. We performed the Theil-Sen multivariate linear regressions with intercept fixed as zero. OMI-
model comparisons (orange circles) are included to provide bounds for satellite data. Less data points are available for OMI 
compared to TROPOMI in these comparisons, due to the row anomalies and the relatively coarse spatial resolution in OMI. .
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of whether this bias is significant based on uncertainties in bottom-up emission inventories, effects of non-linear 
chemistry, and satellite NO2 observations.

Previous evaluations of power plant emissions from CEMS based on aircraft measurements derived a total 2σ 
uncertainty of ±24%, and an accuracy of stationary emissions of NOx within 10% (Frost et  al.,  2006; Placet 
et al., 2000), providing an uncertainty limit of CEMS power plant emissions of 10%–24%. Apart from uncertainty 
in bottom-up emissions, the non-linear chemistry of NO2 is another potential factor contributing to the model 
biases. Previous work has shown that regional models at a resolution of 4–12 km are sufficient to minimize biases 
associated with the nonlinear chemistry of NO2 during plume dilution downwind of power plants, within 10% 
(Valin et al., 2011). Finally, the standard deviations provided by TROPOMI NO2 over these isolated point sources 
are 17%–97% (median average of 42%), illustrating the large variability in satellite observations (see Figure S4 in 
Supporting Information S1) and the need to perform model-satellite evaluations over multiple months to enhance 
signal-to-noise in the satellite NO2 data. Following the method of Kim et al. (2009), we assign 20% uncertainties 
in the satellite retrievals through comparisons between TROPOMI and OMI tropospheric NO2 data (Figure S8 
in Supporting Information S1). Overall, we are able to reconcile isolated point source emissions simulated in a 
12 × 12 km2 CONUS WRF-Chem model to within ∼20% of satellite TROPOMI and OMI NO2 observations. 
The model-satellite differences are within the uncertainty of the point source emissions inventory (10%–24%), 
non-linear chemistry (10%), and satellite NO2 retrievals (±20%) (Kim et al., 2009).

3.3. Model Evaluation Over the 10 Most Densely Populated Cities

WRF-Chem NO2 columns simulated with the Baseline I are 27% and 4% higher than the TROPOMI and OMI 
columns, respectively, over the 10 most populated US cities (see Figure 2d). Previous validation work on TRO-
POMI using MAX-DOAS and PANDORA ground measurements demonstrate that TROPOMI NO2 columns 
are biased low by ∼50% over polluted urban areas (Verhoelst et al., 2021; Wang et al., 2020). We also found 
−20% biases in the current version of TROPOMI NO2 data with AMF correction over cities (as illustrated in 
Section 2.2), which can largely explain the differences between WRF-Chem and TROPOMI in this compari-
son. Uncertainties in the bottom-up mobile source NOx emissions are estimated to be ±15% from FIVE (Jiang 
et al., 2018). We chose to limit our analysis to the top 10 biggest cities so we can also assess the spatial variability 
of NO2 across the metropolitan region in the model with TROPOMI data (in each case, there are at least 24 grid 
cells per city). The statistics for the top 10 cities in terms of population size are summarized in Table 4. The grid 
numbers are between 24 and 64, and the averaged valid satellite retrievals for each grid are 18–78 over summer 
for these cities. Thus the numbers of valid retrievals for the top biggest 10 cities are in the range of 432–3,282 
over the investigated period (3 months). The large amount of observations provide confidence in the statistical 
analyses of our study. Los Angeles (LA) NO2 columns are biased +15% in WRF-Chem compared to TROPOMI, 

Top 10 cities

WRF-Chem (1015 mole cm−2) TROPOMI (1015 mole cm−2)

Number of grids NMBa R2Mean STDb Mean STDb

New York City, NY 5.90 3.45 4.29 2.19 64 38% 0.82

Los Angeles, CA 6.42 3.80 5.58 2.43 43 15% 0.64

Chicago, IL 5.89 2.03 4.33 1.13 45 36% 0.72

Houston, TX 4.97 2.09 3.36 1.20 32 48% 0.72

Phoenix, AZ 3.48 1.47 3.24 0.89 24 7% 0.25

Philadelphia, PA 4.20 1.34 3.34 0.61 35 26% 0.74

Atlanta, GA 3.23 1.17 2.96 0.59 50 9% 0.50

Miami, FL 2.90 0.68 2.33 0.57 24 25% 0.74

Dallas-Fort Worth, TX 4.82 1.45 3.63 0.77 30 33% 0.73

Washington, DC/Baltimore 3.78 1.11 3.05 0.47 38 24% 0.83
aNMB: Normalized mean bias. bSTD: Standard deviation within the city.

Table 4 
Summary Statistics of the Model-Satellite Comparison for the Top 10 Densely Populated Cities



Journal of Geophysical Research: Atmospheres

LI ET AL.

10.1029/2021JD035484

12 of 21

consistent with the fuel-based inventory evaluations based on P-3 aircraft and DOAS measurements during the 
California Nexus Study in 2010 (Kim et al., 2016). The normalized mean bias of the model relative to TROPOMI 
NO2 observations range from 7% to 48% across these cities. Houston shows the largest difference (+48%) in the 
model compared to TROPOMI. The potential low bias in satellite data due to uncertainties of cloud pressure 
retrievals can be one of the factors to the discrepancies for cities near oceans with low-lying cloud. It is possible 
that the emissions are overestimated in the current inventory for Houston, which is a city with high industrial and 
port-related emissions, and exhibits strong gradients in NO2 with environmental justice implications (Demetillo 
et al., 2020). The coefficients of determination of Phoenix (0.25) and Atlanta (0.50) are relatively low compared 
to other cities, indicating spatial discrepancies between model and satellite data within these cities that could be 
related to emissions. The retrieval uncertainties from surface albedo can also contribute to these discrepancies. 
Overall, 7 out of the 10 cities exhibited a high R2 value (>0.70), illustrating the fidelity of intra-urban variations 
of model and TROPOMI NO2, and relevant for assessing environmental justice and variations in NO2 exposure 
across communities (Demetillo et al., 2020).

The weekday-weekend variations over cities can provide additional information on the potential sources of biases 
(Marr & Harley, 2002). Specifically, heavy-duty diesel truck emissions are known to decrease significantly on 
weekends versus weekdays (Kim et al., 2016; Marr & Harley, 2002), and this weekend-weekday difference has 
been observed from space previously (Russell et al., 2010). Here, the decline of NOx emissions from heavy-duty 
diesel trucks during weekends is confirmed both from our bottom-up emissions inventory and from TROPOMI 
NO2 columns as shown in Figure 3. During the weekend, the traffic emissions are dominated by light-duty vehi-
cles at 13:00 p.m. local daylight time both in urban and rural areas around the city. On weekdays, the NOx emis-
sions and NO2 columns include significant contributions from heavy-duty diesel trucks (Marr and Harley, 2002). 
As demonstrated by Figure S10 in Supporting Information S1, the model biases decrease with increasing fractions 
of the on-road. This suggests that on-road emissions may be better estimated compared to other more uncertain 
sources (off-road, areawide) in urban areas. Taking Los Angeles (LA) as an example, the increase of the model 
bias in LA on weekends compared to that on weekdays (11% vs. 35%) suggests that there is potentially an overes-
timate in emissions from a source that does not vary greatly between weekdays and weekends, such as passenger 
vehicles (McDonald et al., 2014). Since on-road transportation emissions account for ∼70% of the anthropogenic 
NOx emissions in Los Angeles (Table S2 in Supporting Information S1), it is possible that light-duty gasoline ve-
hicle emissions are slightly overestimated in FIVE for California. A recent analysis by Yu et al. (2021) shows that 
EMFAC reports light-duty gasoline NOx emissions that are lower than FIVE, albeit within the uncertainty limits 
of FIVE (Yu et al., 2021). California implements tailpipe emission standards that can precede and differ from 
other regions of the country (Council, 2006). There could also be uncertainties in other sources of NOx emissions 
such as from ports, railyards, and point sources that require a more detailed investigation. Nationally, the mix of 
light-duty and heavy-duty vehicle NOx emissions, along with point and area source emissions, simulated in WRF-
Chem appear to capture weekday/weekend modulation in NO2 columns. The WRF-Chem model reflects changes 
in weekday/weekend emissions input into the model, as well as resulting impacts on NO2 lifetime and chemistry 
which are explicitly accounted for in a CTM (Valin et al., 2014). At a spatial resolution of 12 × 12 km2, the biases 
associated with model resolution on NO2 lifetimes is expected to be minimal for urban areas (Valin et al., 2011).

3.4. Model Evaluations Over Background and Rural Regions

As illustrated in Figure 2e, WRF-Chem agrees well with TROPOMI (slope = 0.94, NMB = −3%), and 21% lower 
than OMI observed NO2 data over background and rural regions. We grouped the “background and rural” grid 
cells that are located far away from point sources or cities (>50 km). Like for point sources and large cities, the 
agreement between the model and satellite tropospheric NO2 is within the uncertainties of both. The model-sat-
ellite differences of up to 20% is expected and consistent with previous studies (Silvern et al., 2019). The better 
correlation coefficient of TROPOMI versus OMI (R2 = 0.78 vs. 0.68) over relatively clean area benefits from the 
higher spatial resolution, and more valid data (17,951 vs. 15,042) in TROPOMI.

Steady decreases of NOx emissions from transportation and power generation over urban areas suggest that the 
contributions from other sectors (areawide, soil, O&G production, fire, lightning, etc.) are becoming increasingly 
important and should be accounted for carefully (Silvern et al., 2019). To address this issue, we conducted a series 
of sensitivity model simulations for July 15 to August 14 to identify the regions with various dominant sources: 
soil, oil & gas production, wildfires, and lightning. The details of sensitivity model setup are summarized in 
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Table 1. We used the “zero-out” method to estimate the emission contributions to tropospheric NO2 columns for 
each source, as shown in Figure 4. For regions with sectoral contribution >20%, we show the histograms of WRF-
Chem and TROPOMI NO2 columns (see right columns of Figure 4). We did not include wildfire or lightning 
NOx emissions in our baseline runs, but illustrate their importance in sensitivity test runs as follows, considering 
the high uncertainties involved, and the minor impact on tropospheric NO2 columns over CONUS on cloud-free 
pixels in pre-COVID period, which are detailed and illustrated below.

Figure 3. Weekday-weekend variations of NO2 tropospheric columns for the top 10 cities by population in WRF-Chem (red) and TROPOMI (blue). The whiskers 
denote the standard deviations of the NO2 columns within the city. Gray dots show the normalized mean biases of WRF-Chem versus the TROPOMI NO2 trop. 
columns.
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Figure 4. Percent contributions of emissions from non-point and non-urban sources to CONUS tropospheric NO2 columns for (a) Soil, (b) Oil and gas production, 
(c) Wildfire, and (d) Lightning at TROPOMI passing time (13:00–14:00 p.m). Results are based on the sensitivity simulations for July 15 to August 14 in 2018. The 
histogram figures in the right panels are for the regions where the column contributions of NOx source is greater than 20%.
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3.4.1. Soil

BEIS3 calculates the soil NOx emissions online with meteorology in WRF-Chem as 4541 Mg d−1 (expressed as 
metric tons of NO2 per day) during the sensitivity study period, and contributes 11% of the domain-wide emis-
sions total (Table 2). These estimates (0.04 Tg N−1 month−1) are consistent with a previous bottom-up inventory 
of NOx from soil (∼0.06 Tg N−1 month−1) (Hudman et al., 2012) in July 2005. It has been shown that soil NOx 
inventories (Hudman et al., 2012) have overestimated 40% over Central US through top-down inversions of OMI 
observations (Vinken et al., 2014a). Airborne measurements demonstrate that agricultural soil NOx emissions 
have been largely overlooked in California, which would potentially increase the NOx budget by 20%–51% (Al-
maraz et al., 2018). Recent modeling work based on an updated soil scheme estimates that soil contributes 40.1% 
of the total NOx emissions in July 2018 over California (Sha et al., 2021). The above top-down evaluations indi-
cate that uncertainties are still high for the soil NOx emissions regionally.

Figure 4a demonstrates that the highest sensitivities of soil emissions to the tropospheric NO2 column are over 
the central US and the Central Valley of California with relative contributions larger than 20%. The modeled NO2 
columns over the central US grid cells are dominated by those emissions from agricultural activities (with contri-
butions >40%). Over these two regions, WRF-Chem agrees with the TROPOMI observed NO2 columns (see Fig-
ure 4). Excluding the soil emissions worsens the bias from −7% to −15% over CONUS, and from −10% to −27% 
over the soil dominant regions. If the model-satellite discrepancies are solely due to soil NOx emissions over 
background regions, we estimate BEIS could underestimate soil emissions by 8% (TROPOMI) to 57% (OMI). 
The differences between TROPOMI and OMI tropospheric columns can be presumably due to the different cloud 
retrievals and AMFs (Wang et al., 2020). Especially over the background and rural regions, TROPOMI data tend 
to be 20% lower than those of OMI (as shown in Figure 2). OMI retrievals are biased high in remote areas within 
20% differences (Lamsal et al., 2014), and this can partly explain the discrepancies. More independent validations 
of TROPOMI NO2 retrievals over soil-dominant regions are needed in future work.

3.4.2. Oil and Gas Production

Because of a large increase in oil and gas production activities between 2017 and 2019, an increasing trend of 
NO2 columns over O&G basins is visible from space (Dix et al., 2020). In this work, we included the FOG In-
ventory with up-to-date oil and gas NOx and VOC emissions over CONUS in our base case modeling (Francoeur 
et al., 2021; Gorchov Negron et al., 2018). NOx emissions from drilling, oil and gas production, and flaring pro-
vide an additional source of background NO2 than agricultural soils over the central US. WRF-Chem shows good 
correlations with TROPOMI over O&G basins as shown in Figure 2f (R2 = 0.78, slope = 1.02, NMB = +4%). 
Excluding oil and gas emissions increases the model bias from +5% to −20% in the major O&G production ba-
sins (see Figure 4b), including the Permian, Eagle Ford, Haynesville, Barnett, Bakken over the central US, and 
Marcellus over the eastern US, illustrating the importance of O&G sources in certain regions of CONUS.

3.4.3. Wildfires

During the summer of 2018, there were several wildfires affecting the air quality over the western US (Lindaas 
et al., 2021). Wildfire emission inventories are highly uncertain (>100%) when applied in regional air quality 
models, due to the difficulties in quantifying the burned area, the fuel and fire conditions, and the height of 
the plumes (French et al., 2004; Urbanski et al., 2011). We conducted a sensitivity test with the 3BEM (Longo 
et al., 2010) fire emission estimates during wildfire season (July 15 to August 14) in 2018. As shown in Figure 4c, 
wildfire emissions lead to NO2 column increases of up to 30% over the western US, reducing the bias from −7% 
to −1% over the CONUS, and from −17% to +13% over wildfire dominant areas. The wildfire emissions' impact 
on the background tropospheric NO2 columns is comparable with those from soils, although located in different 
regions (Western US vs. Central US). Wildfires also impact the accuracy of the TROPOMI NO2 data due to high 
aerosol loads, which interfere with the satellite trace gas retrieval.

3.4.4. Lightning

The inclusion of lightning NOx in the free troposphere can substantially contribute to the NO2 vertical profile and 
AMF, and thus satellite retrievals (Allen et al., 2021; Pickering et al., 2016; Zhu et al., 2019). Currently, there is a 
range of an order of magnitude in the lightning NOx emissions reported in the literature (Nault et al., 2017; Schu-
mann & Huntrieser, 2007; Zhu et al., 2019), because of the dependence of lightning NOx on lightning flash rates 
and potentially other factors like the length of the flash (Pollack et al., 2016) which depend on storm parameters 



Journal of Geophysical Research: Atmospheres

LI ET AL.

10.1029/2021JD035484

16 of 21

and their uncertainties (Barth et al., 2019). Aircraft measurements along with modeling studies have shown that 
lightning is the major source of upper tropospheric NO2 columns over the eastern US (Bertram et al., 2007; Coop-
er et al., 2006, 2007, 2009; Lapierre et al., 2020; Nault et al., 2017; Zhu et al., 2019). The average contribution 
to NO2 columns is expected to be 19% on average over the Southeast US although with large variations (Zhu 
et al., 2019). In this study, we applied one of the default lightning schemes based on cloud top height in WRF-
Chem in the sensitivity test (Wong et al., 2013), as described in Section 2.1. Lightning contributes ∼6% of the to-
tal NOx emissions over the whole domain, and exceeds 20% of the tropospheric NO2 columns at a regional scale, 
especially over Southeast US, where mid-day convective storms are prevalent, and southern Arizona, where 
outflow from the Sierra Madre storms likely occur (see Figure 4d and Figure S2 in Supporting Information S1). 
In this case, lightning NOx appears to have limited impacts on model-satellite comparisons over CONUS with 
lightning turned on (NMB = −4%) and off (NMB = −7%) when applying the high filtering factor (qf > 0.75) in 
satellite data resampling. Without performing a detailed evaluation of flash rate prediction or additional sensi-
tivity simulations of the lightning and lightning-NOx parameterization, there is some uncertainty in these results. 
For example, Wong et al. (2013) and Zhu et al. (2019) reduced the flash rate prediction by a factor of 9 and 2, 
respectively, for their simulations using cloud top height to predict flash rate. In addition, Zhu et al. (2019) used 
a much higher NO production per flash (500 moles/flash) than we used here (125 moles/flash).

Apart from the above sources, full aviation emissions can also affect the modeled NO2 vertical profiles, AMFs, 
and the satellite retrievals. In this study, we did not apply aviation emissions for cruising in model simulations 
because they are not included in the default WRF-Chem package, and not updated on a regular basis like NEI/
FIVE. Only take-off and landing emissions are included here. The contribution of NOx emissions from aviation 
to the total emissions in the United States is reported to be less than 1% in 2005 (FAA, 2005). But in recent years, 
aviation emissions are expected to have increased due to increased flight activities, while the trends of mobile 
source NOx emissions at the surface have been declining (McDonald et al., 2012; Yu et al., 2021). The mod-
el-ready aviation emission inventory with resolved vertical distributions are outdated and should be updated in 
the near future (Simone et al., 2013; Stettler et al., 2011, 2013). Additionally, satellite retrievals are more sensitive 
to NOx released at high altitude, like the emissions from aircraft. Better correlations between model and satellite 
observations are expected especially over remote regions where −3 ∼ −21% biases are found in our assessment.

4. Conclusions
In this study, we applied the high-resolution NO2 column retrievals from TROPOMI to evaluate WRF-Chem 
using an updated fuel-based emission inventory over the CONUS for summer 2018. We updated fuel-based emis-
sion inventories to 2018, including FIVE for mobile sources, FOG for oil & gas production, and combined the 
fuel-based inventory with CEMS data for point sources, CAMS for Canada/Mexico, and NEI17 for other point 
and areawide sources. We find that the FIVE18 and NEI17 are in good agreement in contrast to discrepancies 
reported between FIVE and the NEI in the past. This study then performs a sector-by-sector analysis of the newly 
developed inventory with TROPOMI and OMI NO2 data. The NO2 vertical profiles in the model are used to re-
vise the AMF in the standard NO2 product to facilitate a direct comparison. Applying the updated AMF based on 
our regional CTM increased the tropospheric NO2 columns by 20% over urban areas, and decreases the columns 
by 3% on average over background and rural regions. Revising the AMF with a regional CTM reduces half of the 
low bias of TROPOMI tropospheric NO2 (∼50%) reported previously when compared to surface-based remote 
sensing.

Tropospheric NO2 columns of WRF-Chem and TROPOMI (OMI) show good spatial and temporal correlations 
over the whole domain with correlation coefficients up to 0.78 (0.69) and a normalized mean bias of −3% 
(−21%). WRF-Chem reproduces tropospheric NO2 columns over isolated point sources plus urban regions within 
−6% (OMI) to +8% (TROPOMI), but tends to under-predicts tropospheric NO2 columns over background and 
rural regions by −21% (OMI) to −3% (TROPOMI). Strong agreement between model and satellite data is found 
for point sources (±10% differences), which is expected because of the direct stack monitoring data (CEMS) 
used to develop the power plant emissions. The modeled columns are 27% higher than those of TROPOMI, and 
4% higher than the OMI data for the top 10 most populated cities. These differences can be largely attributed to 
the low biases of TROPOMI (∼20%) over polluted regions, which have been assessed comprehensively based 
on ground measurements in previous work. The decline of NOx emissions from heavy-duty diesel trucks during 
weekends is confirmed both from our bottom-up emissions inventory and from TROPOMI NO2 columns.
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We found a good agreement between model and TROPOMI over the background and rural regions across 
the CONUS (R2 = 0.78, slope = 0.94, NMB = −3%), and 21% model low bias compared to OMI (R2 = 0.68, 
slope = 0.78, NMB = −21%). Acknowledging the potential satellite bias for low concentrations which can be 
related to the stratosphere-troposphere separation, more validations over background regions is needed in future 
work. Further sensitivity analyses were conducted to identify the dominant source for each grid and the effect 
of emission updates on NO2 columns at continental and regional scales. The results illustrate the important con-
tributions of tropospheric NO2 columns from various non-point and non-urban sources, including soils (11.7% 
average over CONUS), oil and gas production (4.1%), wildfires (10.6%), and lightning (2.3%). Regionally, over 
the central US, soils can be the major contributing source (>20%), with additional contribution from oil and 
gas production activities. Soils and wildfires are important contributing sources over the rural and background 
regions in the western US. Lightning NOx can be one of the major contributors to the model bias over Southeast 
US and southern Arizona with large regional variations. Note these sensitivity results are limited to summertime, 
and source contributions may change by season across the country. Acknowledging the ±20% uncertainty in 
satellite tropospheric NO2 retrievals as inferred from the comparisons of TROPOMI and OMI, as well as satellite 
validation results based on ground-based measurements, overall we do not find significant discrepancies of online 
simulations of soil and lightning NOx between WRF-Chem and satellite data.

Another potentially important NOx emission source currently not included in the model is domestic and interna-
tional aviation at cruising altitude in the free troposphere; only takeoff and landing emissions are included here. 
Future work is needed to quantify the impact of updated aviation emissions on the satellite retrievals and model 
simulations over urban, as well as background and rural regions. Future development of FIVE may consider the 
inclusion of aviation along with other mobile source engine categories. This work also provides an important 
baseline of a typical year against which sharp changes in anthropogenic NOx emissions due to the COVID-19 
pandemic can be assessed.

Data Availability Statement
The TROPOMI L2 NO2 swath data are downloaded from the Sentinel-5P Pre-Operations Data Hub (https://
s5phub.copernicus.eu/dhus/#/home). The OMI tropospheric NO2 column V003 Level 2 swath data were obtained 
from the NASA's Earth Observing System Data and Information System (EOSDIS). The PANDORA spectrome-
ter observations are accessed from the NASA Pandora project (https://pandora.gsfc.nasa.gov/). The 2018 anthro-
pogenic emissions files are publicly archived at the NOAA Chemical Sciences Laboratory (CSL) COVID Air 
Quality Study website: https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/.
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