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Summary 
 
When a vehicle moves across a bridge, there is always an interaction between the 
vehicle and the bridge and within the vehicle itself. It is important to predetermine the 
vibrations in the bridge and vehicle. This way, the Ultimate Limit State (ULS) and 
Serviceability Limit State (SLS) can be more accurately determined, compared to a static 
approach. Ultimate Limit State refers to the safety of the bridge and vehicle. 
Serviceability Limit State refers to the usability of the bridge and comfort of the 
passengers. The behaviour of a bridge subjected to a moving load has been researched 
before. In these studies, the moving vehicle was simplified to a one or two degrees of 
freedom mass-spring system, which might be insufficient. This thesis aims to investigate 
the influence of a multiple degrees of freedom oscillator, where the wheels, bogies and 
wagons are taken into account in the model. The main goal for this thesis is to 
investigate and describe the vibrations when a vehicle crosses a bridge. More 
specifically, the importance of the inertia of the vehicle will be assessed for the 
serviceability limit state (SLS), and ultimate limit state (ULS).  
 
For the vehicle, a passenger train is studied. A train consists of multiple wagons, bogies 
and wheels, which are all connected with damped springs. To model the train, there are 
multiple possibilities to reduce the complexity. It is important to start with a relatively 
simple model and end with an advanced one. The first model consists of a one degree of 
freedom mass-spring system moving across the bridge with a constant velocity. The 
second model consists of a two degrees of freedom mass-spring system with rotational 
inertia. The third model consists of a mass-spring system with six degrees of freedom. 
All models can consist of one or multiple wagons. For the bridge, the Euler-Bernoulli 
beam theory is used. This is solved by means of modal expansion. For a moving point 
load, the equation is solved analytically. For a moving mass-spring system, a numerical 
approach using the state-space form is applied.  
 
It can be concluded that inertia and the complexity of the vehicle model have a minimal 
influence on the deflections and moments in the bridge. However, the complexity of the 
vehicle model has a significant impact on the displacements vertical accelerations of the 
vehicle itself. However, this is not always the case. Therefore, the influence of the 
complexity of the vehicle model strongly depends on the properties of the bridge and 
the velocity of the vehicle. The influence of the velocity on the deflections is large. This is 
mainly due to resonance of the bridge at critical velocities. At multiple velocities, the 
different vehicle models show similar results for the deflection of the bridge. When the 
length of the train is increased to multiple wagons, the results are different compared to 
a single wagon and resonance peaks can be found at different velocities. The Eurocodes 
prescribe a static calculation with a dynamic loading factor and disregards the 
resonance, which is an unsafe approach. According to the findings in this thesis, it might 
be recommended to prescribe the dynamic calculations in the Eurocodes. In conclusion, 
neither inertia nor the complexity of the vehicle model have a significant impact on the 
ultimate limit state and serviceability limit state of the bridge. However, for the ultimate 
limit state and serviceability limit state of the vehicle the impact is large, since it may 
lead to lack of comfort or derailment.  
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1 Introduction 
 
When a vehicle moves across a bridge, there is always an interaction between the 
vehicle and the bridge and within the vehicle itself. This interaction depends on the 
physical properties of the bridge and the vehicle and can be challenging to model. It is 
important to predetermine the vibrations in the bridge and vehicle. This way, the 
Ultimate Limit State (ULS) and Serviceability Limit State (SLS) can be more accurately 
determined, compared to a static approach. Ultimate Limit State refers to the safety of 
the bridge and vehicle. Serviceability Limit State refers to the usability of the bridge and 
comfort of the passengers. 
The behaviour of a bridge subjected to a moving load has been researched before. Karl 
Graff has determined the behaviour of a beam with to a constant moving load. He solved 
this analytically by means of modal expansion (Graff, 1975). Yang, Yau and Wu have 
investigated the non-linear dynamic interaction between a beam and a two degrees of 
freedom mass-spring system, they solved this numerically (Yang, Yau, Wu, 2004). Bilal 
Ouchene has determined the dynamic interaction of a moving vehicle on a simply 
supported beam. He compared the results of the point load model with a mass-spring 
system. The solution was obtained by means of the Green’s function approach where the 
Green’s function of the beam was obtained using the modal expansion. (Ouchene, 2017). 
Anne de Graaf expanded this model with rotational inertia. She used the same numerical 
method as Ouchene (De Graaf, 2018). In these studies, the moving vehicle was greatly 
simplified to a one or two degrees of freedom mass-spring system, which might be 
insufficient. This thesis aims to investigate the influence of a multiple degrees of 
freedom oscillator, where the wheels, bogies and wagons are taken into account in the 
model. Also, the solution method differs: the modal expansion method is employed and 
the resulting set of coupled ordinary differential equations is solved using a time-
integration solver. 
 
The main goal for this thesis is to investigate and describe the vibrations when a vehicle 
crosses a bridge. More specifically, the importance of inertia and complexity of the 
vehicle model for the serviceability limit state, and ultimate limit state will be assessed. 
There are multiple methods to study and model the vibrations of a moving vehicle on a 
bridge, each of which has their own (dis)advantages. Different options are: Finite 
element method, Finite Volume Method or modal expansion. For the validation of the 
model, it is possible to compare to the literature or test this in reality. Finite element 
method and finite volume method are an option, but they are computationally 
expensive. On the other hand, modal expansion involves a lot of mathematics and 
programming, but leads to a fewer amount of degrees of freedom, which can be solved 
quicker. Therefore, this method is chosen. It is, however, recommended to use different 
vehicle models to gradually build up complexity. Testing in reality is one of the ways to 
validate the model. However, this is expensive and time consuming. Due to the limited 
time span of this thesis, this is not possible. Comparing the results to the literature is 
also a valuable option. Therefore, the results are compared to the theory of Graff (Graff, 
1975).  
 
Chapter 2: Vehicle model will study the physical properties a passenger train, describe 
the modelling options and present the three applied models.  
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Chapter 3: Bridge model will give a short description of the Euler-Bernoulli beam theory 
and its solution. Also, the properties of four common bridges are presented. The 
analytical derivations of the Euler-Bernoulli beam theory are described in Appendix A.  
Chapter 4: Numerical models combines the vehicle and bridge model and describes the 
equations of motion. A detailed description and the numerical method can be found in 
Appendix B. The Python code can be found in Appendix C.  
Chapter 5: Validation of the model shows that the numerical solution is correct and 
accurate, and validates the vehicle models with limit cases. Also the number of required 
vibration modes is determined.  
Chapter 6: Results presents a comparison between the models. It describes the 
importance of inertia and the influence of the velocity. 
Chapter 7: Conclusion and recommendations summarises the results and discusses 
valuable options for further research.  
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The following symbols and units are used. Note that 𝐸𝐼, 𝜌𝐴 and 𝑣𝑡𝑖  are double letter 
symbols, which are regarded as one quantity.  
 

Table 1.1: Quantities and units. 
Quantity Symbol Unit 

angle of the vehicle 𝜃𝑖  𝑟𝑎𝑑 
bending stiffness of the bridge 𝐸𝐼 𝑁𝑚2 
contact force (positive in compression) 𝑄𝑖 𝑁 
damping 𝑐 𝑁𝑠/𝑚 
Damping ratio of the bridge  − 
deflection of the bridge (positive downward) 𝑤 𝑚 
displacement of the vehicle (positive downward) 𝑢𝑖  𝑚 
eigenfrequency of the bridge 𝜔𝑛 𝐻𝑧 
general transverse loading on the bridge 𝑞 𝑁/𝑚 
gravitational acceleration 𝑔 𝑚/𝑠2 
length between the wheels of a wagon 𝑏 𝑚 
length of a wagon 𝑠 𝑚 
length of the bridge 𝑙 𝑚 
mass of the vehicle 𝑚 𝑘𝑔 
mass per unit length of the bridge 𝜌𝐴 𝑘𝑔/𝑚 
moment of inertia of the vehicle 𝐽 𝑘𝑔 𝑚2 
position of the front wheel of a wagon 𝑣𝑡𝑖 𝑚 
second moment of area 𝐼 𝑚4 
spring stiffness of the vehicle 𝑘 𝑁/𝑚 
time 𝑡 𝑠 
vibration mode 𝑛 − 
Young's modulus 𝐸 𝑁/𝑚2 
 
Abstract quantities 
 

𝛽𝑛 =
𝑛𝜋

𝑙
, 

𝜔𝑛 = √
𝐸𝐼

𝜌𝐴
 (

𝑛𝜋

𝑙
)

2

 

 
Dirac delta function: 𝛿(𝑥 − 𝑣𝑡) 
Box function: 𝐻(𝑣𝑡) ⋅ 𝐻(𝑙 − 𝑣𝑡) * 
 
 
 
 
 
 
 
 
 
* Note that this is a function of the position of a wheel (𝑣𝑡), usually the time is directly 

implemented. 
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2 Vehicle model 
 
For the vehicle, a passenger train is chosen because it may lead to large deflections, 
induced by the relatively large mass and the amount of springs and dampers. Also, in 
recent years, cracks and other types of deterioration have been observed in train 
bridges. In order to understand the importance of inertia, multiple models are made to 
gradually build up complexity. This way, the results can be compared.  
To model a train, it is important to have a good idea of the different elements and how 
these can be implemented, so that the models can be justified. Therefore, this chapter 
gives a detailed picture and the physical properties of a passenger train, shows different 
modelling options, determines the relevant ones and elaborates mathematically on three 
suitable train models.  
 
First of all, an analysis of the vehicle is made. A passenger train consists of multiple 
wagons, bogies and wheels. Figure 2.1 shows that every wagon is carried by two bogies, 
each are supported by four wheels. Figures 2.2 and 2.3 take a closer look at two different 
bogies and show that the connection with the wagon and wheels contains springs and 
dampers. Furthermore, it becomes visible that there is a direct steel-on-steel contact 
between the rails and the wheels. Table 2.1 presents the relevant properties of a 
passenger train. 
 

 
Figure 2.1: side view of a train (Tee USA, 2007) 

 

  
Figure 2.2: bogie of a train 

(Wikipedia, 2018) 
Figure 2.3: alternative bogie 

(Wikipedia, 2018) 
 

Table 2.1: Train properties (Canetta, 2017) 
Quantity Symbol Value Unit 

length of a wagon 𝑠 24.9 𝑚 
distance between the wheels 𝑏 17.4 𝑚 
velocity 𝑣 50 - 100 𝑚/𝑠 
mass of a wagon 𝑚1 15.6 ⋅ 103 𝑘𝑔 
mass of a bogie 𝑚2 3.2 ⋅ 103 𝑘𝑔 
mass of a wheel 𝑚3 1.5 ⋅ 103 𝑘𝑔 
stiffness wagon-bogie 𝑘1 1.2 ⋅ 106 𝑁/𝑚 
stiffness bogie-wheel 𝑘2 4.4 ⋅ 106 𝑁/𝑚 
stiffness wheel-rails 𝑘3 1.27 ⋅ 109 𝑁/𝑚 
damping wagon-bogie 𝑐1 34.44 ⋅ 103 𝑁𝑠/𝑚 
damping bogie-wheel 𝑐2 52.21 ⋅ 103 𝑁𝑠/𝑚 
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Secondly, the modelling options are further examined. To model the train, there are 
multiple possibilities to reduce the complexity: there is the possibility to model a single 
wagon or multiple wagons; a wagon (or two half wagons) can be modelled to have a 
single bogie, or a wagon can be modelled to have two bogies with the rotational inertia 
of the wagon itself; a bogie can be modelled with a two wheels or four wheels, where 
rotational inertia of the bogie is taken into account. The connections between the 
different elements can be modelled as a direct (stiff) connection or with springs and 
dampers. Since the wheels could come lose from the rails, its connection can be 
modelled as a bilinear spring, so that only a compressive force can be applied. The 
rotational inertia of the bogies is difficult to model and the distance between the wheels 
is relatively short. Therefore, the bogies will be modelled with a set of two wheels on the 
same place. Apart from that, every complexing step that is mentioned here, is utilized.  
 
It is important to start with a relatively simple model and end with an advanced model. 
This way, every model can be verified with the previous one and shows the influence of 
the added degree of freedom. This thesis elaborates on three models: a one degree of 
freedom moving oscillator, a two degrees of freedom moving oscillator with rotational 
inertia and a moving oscillator with six degrees of freedom. All three are mathematically 
described.  

Moving oscillator 
The first model consists of one or more mass-spring systems moving across the bridge 
with a constant velocity. Since this model is a simplification, the parameters are adapted. 
Every mass consists of half the mass of a wagon. The connection with the beam is 
modelled with a single spring and damper. The calculations of the spring stiffness and 
damping constant are shown in equation 2.1. Figure 2.4 gives a graphical representation 
of the moving oscillator.  
 

𝑚 =
𝑚1

2
+ 𝑚2 + 4𝑚3 

𝑘 = (
1

𝑘1
+

1

4k2
+

1

4𝑘3
)

−1

 

𝑐 = (
1

𝑐1
+

1

4𝑐2
)

−1

 

(2.1) 

 
Figure 2.4: Moving oscillator 

Moving oscillator with rotational inertia 
The second model consists of one or more mass-spring systems with rotational inertia 
moving across the bridge with a constant velocity. Since this model is also a 
simplification, the parameters are adapted. Every mass consists of the total mass of a 
wagon. The connection with the beam is modelled with a two springs and dampers, 
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which have the same properties as in the previous model. The calculations of the mass 
and rotational inertia are shown in equation 2.2. Figure 2.5 gives a graphical 
representation of the moving oscillator with rotational inertia. 
 

𝑚 = 𝑚1 + 2𝑚2 + 8𝑚3 

𝐽 =
1

12
𝑚1𝑠2 + (2𝑚2 + 8𝑚3) (

𝑏

2
)

2

 
(2.2) 

 
Figure 2.5: Moving oscillator with rotational inertia 

Moving oscillator with six degrees of freedom 
The third model consists of one or more mass-spring systems with six degrees of 
freedom moving across the bridge with a constant velocity. This model describes the 
reality rather accurately: masses, spring stiffness’s and damping constants can be 
directly implemented. The connections within the train itself are modelled with springs 
and dampers. The connection between the train and the bridge is modelled with a 
bilinear spring, which only applies a force in compression. This way, the wheels can lift 
from the rails. Equation 2.3 presents the value for the rotational inertia, which differs 
from the previous model. Figure 2.6 gives a graphical representation of the moving 
oscillator with six degrees of freedom.  
 

𝐽 =
1

12
𝑚1𝑠2 (2.3) 

 
Figure 2.6: Moving oscillator with six degrees of freedom 
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3 Bridge model 
 
For the bridge model, either the Euler-Bernoulli or Timoshenko beam theory can be 
used. To make a comparison: the Euler-Bernoulli is derived from the linear theory of 
elasticity; it is used to calculate the stresses and deflection of a beam. This theory is 
suitable in case of lateral loads and small deflections (Ravetz, 1962). Timoshenko, on the 
other hand, also takes into account shear deformation and torsion. This makes it suitable 
for describing relatively thick beams with bigger deflections or wavelengths that 
approach the thickness of the beam (Timoshenko, 1932). Since the relatively thin beam 
in this thesis contains only lateral loads, contains small deflections and is not subjected 
to rotational bending, the Euler-Bernoulli beam theory is a logical choice. Therefore, this 
method is further elaborated.  
 
The bridge is assumed to be a simply supported beam, the bridgeheads are assumed to 
be rigid. The load is defined as the sum of multiple point loads, moving across the bridge 
with a constant velocity. These are further specified in chapter 4. For the simply 
supported bridge, the deflections and moments are zero at the supports, which means 
that the boundary conditions are zero. The intrinsic weight of the bridge is generally 
taken into account during the construction of the bridge, which means that the bridge is 
flat at completion. This means the initial conditions are zero as well. These assumptions 
lead to the following set of equations. 
 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) + 𝑐𝑑𝐼

𝜕5𝑤

𝜕𝑥4𝜕𝑡
(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) (3.1) 

𝑞(𝑥, 𝑡) = ∑ 𝑄𝑖(𝑡) ⋅ 𝛿(𝑥 − 𝑣𝑡𝑖) ⋅ 𝐻(𝑣𝑡𝑖) ⋅ 𝐻(𝑙 − 𝑣𝑡𝑖)

𝑖

 

𝑣𝑡𝑖 = 𝑣 ⋅ 𝑡 − 𝑠𝑖 − 𝑏𝑖 

(3.2) 

𝑤(0, 𝑡) = 0 
𝜕2𝑤

𝜕𝑥2
(0, 𝑡) = 0 

𝑤(𝑙, 𝑡) = 0 
𝜕2𝑤

𝜕𝑥2
(𝑙, 𝑡) = 0 

𝑤(𝑥, 0) = 0 
𝜕𝑤

𝜕𝑡
(𝑥, 0) = 0 

 

(3.3) 

The Euler-Bernoulli beam equation is solved by means of modal expansion. For each 
vibration mode, the 𝑥-dependant part of the deflection is determined analytically. A 
step-by-step derivation of this can be found in appendix A. The time dependant part of 
the deflection cannot (yet) be solved analytically for a moving mass-spring system. 
Therefore, this is done numerically. Appendices B and C elaborate further on this. The 
total solution is the multiplication of the time dependant and 𝑥-dependant part of the 
deflection of the beam, summed for each mode. This is shown mathematically in the 
following equations.  
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𝑤(𝑥, 𝑡) = ∑ 𝑤𝑥𝑛(𝑥) ⋅ 𝑤𝑡𝑛(𝑡)

∞

𝑛=1

 (3.4) 

𝑤𝑥𝑛(𝑥) = sin(𝛽𝑛𝑥) (3.5) 

𝜕2𝑤𝑡𝑛

𝜕𝑡2
(𝑡) + 2 𝜔𝑛

𝜕𝑤𝑡𝑛

𝜕𝑡
(𝑡) + 𝜔𝑛

2 𝑤𝑡𝑛(𝑡) = ∑ 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖(𝑡)

𝑖

 

𝑓𝑛(𝑣𝑡) =
2 sin(𝛽𝑛𝑣𝑡)

𝜌𝐴𝑙
⋅ 𝐻(𝑣𝑡) ⋅ 𝐻(𝑙 − 𝑣𝑡) 

 =
𝑐𝑑𝐼

2√𝐸𝐼 𝜌𝐴
(

𝑛𝜋

𝑙
)

2

 

(3.6) 

Equation 3.7 presents the analytical solution to this differential equation (Graff, 1975). 
The solution only holds when 𝑄𝑖 is on the bridge and consist of a single moving point 
load, not influenced by the bridge. Also the damping is not taken into account.  
 

𝑤(𝑥, 𝑡) =
2𝑄

𝜌𝐴𝑙
∑

sin(𝛽𝑛𝑥)

𝜔𝑛(𝛽𝑛
2𝑣2 − 𝜔𝑛

2)

∞

𝑛=1

(𝛽𝑛𝑣 sin(𝜔𝑛 𝑡) − 𝜔𝑛 sin(𝛽𝑛 𝑣𝑡)) (3.7) 

There are many different bridges, all with varying properties. In order to study the 
importance of inertia and obtain a complete picture, four bridges are selected. These are 
varying in length and are representable for commonly constructed bridges. Table 3.1 
shows the characteristics of these bridges (Arvidsson, Karoumi, Pacoste, 2013). 
 

Table 3.1: Bridge properties 
Quantity Bridge 1 Bridge 2 Bridge 3 Bridge 4 Unit 

𝑙 6 12 24 36  𝑚 
𝐸𝐼 3.33 12.55 53.38 172.2 ⋅ 109 𝑁𝑚2 
𝜌𝐴 8.83 12.3 19.3 17.0 ⋅ 103 𝑘𝑔/𝑚 
 2.48 2.06 1.50 0.50  % 
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4 Numerical models 

Introduction 
It is important to make multiple models to gradually build up complexity, this way the 
results can be compared. Therefore, this chapter covers three different models of the 
vehicle: a one degree of freedom moving oscillator, a two degrees of freedom moving 
oscillator with rotational inertia, and a moving oscillator with six degrees of freedom. 
The analytical solution for a moving mass-spring system interacting with a simply 
supported bridge is (yet) unknown. Therefore, the solution is obtained numerically, this 
is done by rewriting the equations in state-space form. A detailed description of the 
numerical models is covered in Appendix B. The Python code is presented in Appendix 
C. To calculate the moment distribution in the bridge and the vertical accelerations of 
the train, the second derivative of the deflection to 𝑥, respectively to time are needed. 
Therefore, spline interpolation is applied. This way, the results are more accurate, 
compared to other numerical methods. A side note should be added that for the relative 
vertical velocity of the vehicle and the bridge, there is not accounted for the influence of 
the horizontal velocity of the vehicle (equation 4.2, 4.5 and 4.8). 

4.1 Moving oscillator 
The first model consists of one or more mass-spring systems moving across the bridge 
with a constant velocity. Every oscillator represents half a wagon, where the rotational 
inertia is disregarded, and the connections are simplified to a single spring and damper. 
The mass of the vehicle is subjected to gravity and the contact force with the bridge. This 
contact force depends on the relative displacement and vertical velocity of the vehicle, 
compared to the bridge. The vehicle is assumed to be in the steady state position when 
entering the bridge. This leads to the following set of equations and graphical 
representation. 
 

𝑚𝑢̈𝑖(𝑡) = 𝑚𝑔 − 𝑄𝑖(𝑡) (4.1) 

𝑄𝑖,1(𝑡) = 𝑘 (𝑢𝑖,1(𝑡) − 𝑤(𝑣𝑡𝑖, 𝑡)) + 𝑐 (𝑢̇𝑖,1(𝑡) − 𝑤̇(𝑣𝑡𝑖, 𝑡)) 

𝑄𝑖,2(𝑡) = 𝑘 (𝑢𝑖,2(𝑡) − 𝑤(𝑣𝑡𝑖 − 𝑏, 𝑡)) + 𝑐 (𝑢̇𝑖,2(𝑡) − 𝑤̇(𝑣𝑡𝑖 − 𝑏, 𝑡)) 
(4.2) 

𝑢𝑖(0) =
𝑚𝑔

𝑘
 𝑢̇𝑖(0) = 0 

 

(4.3) 

 

 
Figure 4.1: Moving oscillator 
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4.2 Moving oscillator with rotational inertia 
The second model consists of one or more mass-spring systems with rotational inertia 
moving across the bridge with a constant velocity. Every moving oscillator represents a 
wagon, where the rotational inertia is taken into account and the connections are 
simplified to a single spring and damper. This leads to the following set of equations and 
graphical representation.   
 

𝑚𝑢̈𝑖(𝑡) = 𝑚𝑔 − 𝑄𝑖,𝑣𝑡(𝑡) − 𝑄𝑖,𝑣𝑡−𝑏(𝑡) 

𝐽𝜃̈𝑖(𝑡) =
𝑏

2
(𝑄𝑖,𝑣𝑡(𝑡) − 𝑄𝑖,𝑣𝑡−𝑏(𝑡)) 

(4.4) 

𝑄𝑖,𝑣𝑡(𝑡) = (𝑢𝑖(𝑡) −
1

2
𝑏 𝜃𝑖(𝑡) − 𝑤(𝑣𝑡𝑖 , 𝑡)) + 𝑐 (𝑢̇𝑖(𝑡) −

1

2
𝑏 𝜃̇𝑖(𝑡) − 𝑤̇(𝑣𝑡𝑖, 𝑡)) 

𝑄𝑖,𝑣𝑡−𝑏(𝑡) = 𝑘 (𝑢𝑖(𝑡) +
1

2
𝑏 𝜃𝑖(𝑡) − 𝑤(𝑣𝑡𝑖 − 𝑏, 𝑡)) + 𝑐 (𝑢̇𝑖(𝑡) +

1

2
𝑏 𝜃̇𝑖(𝑡) − 𝑤̇(𝑣𝑡𝑖 − 𝑏, 𝑡)) 

(4.5) 

𝑢𝑖(0) =
𝑚𝑔

2𝑘
 𝑢̇𝑖(0) = 0 

𝜃𝑖(0) = 0 𝜃̇𝑖(0) = 0 
 

(4.6) 

 

 
Figure 4.2: Moving oscillator with rotational inertia 

 

4.3 Moving oscillator with six degrees of freedom 
The third model consists of one or more mass-spring systems with six degrees of 
freedom moving across the bridge with a constant velocity. Every moving oscillator 
represents a wagon, where the rotational inertia, mass of the bogies and wheels are 
taken into account. The mass of the wagon is subjected to gravity and the contact force 
with the bogies. The wheels are also subjected to the contact force with the bridge, 
which is only applied in compression. The contact forces consist of the relative 
displacement and vertical velocity of the relevant parts. All parts of the vehicle are 
assumed to be in the steady state position when entering the bridge. This leads to the set 
of equations and graphical representation on the next page.   
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𝑚1𝑢̈𝑖1(𝑡) = 𝑚1𝑔 − 𝑄𝑖1,𝑣𝑡(𝑡) − 𝑄𝑖1,𝑣𝑡−𝑏(𝑡) 

𝐽𝜃̈𝑖(𝑡) =
𝑏

2
(𝑄𝑖1,𝑣𝑡(𝑡) − 𝑄𝑖1,𝑣𝑡−𝑏(𝑡)) 

 
𝑚2𝑢̈𝑖2,𝑣𝑡(𝑡) = 𝑚2𝑔 + 𝑄𝑖1,𝑣𝑡(𝑡) − 𝑄𝑖2,𝑣𝑡(𝑡) 

𝑚2𝑢̈𝑖2,𝑣𝑡−𝑏(𝑡) = 𝑚2𝑔 + 𝑄𝑖1,𝑣𝑡−𝑏(𝑡) − 𝑄𝑖2,𝑣𝑡−𝑏(𝑡) 

 
𝑚3𝑢̈𝑖3,𝑣𝑡(𝑡) = 𝑚3𝑔 + 𝑄𝑖2,𝑣𝑡(𝑡) − 𝑄𝑖3,𝑣𝑡(𝑡) 

𝑚3𝑢̈𝑖3,𝑣𝑡−𝑏(𝑡) = 𝑚3𝑔 + 𝑄𝑖2,𝑣𝑡−𝑏(𝑡) − 𝑄𝑖3,𝑣𝑡−𝑏(𝑡) 

(4.7) 
 

 

𝑄𝑖,1,𝑣𝑡(𝑡) = 𝑘1 (𝑢𝑖,1(𝑡) −
1

2
𝑏 𝜃𝑖(𝑡) − 𝑢𝑖,2,𝑣𝑡) + 𝑐1 (𝑢̇𝑖,1(𝑡) −

1

2
𝑏 𝜃̇𝑖(𝑡) − 𝑢̇𝑖,2,𝑣𝑡) 

𝑄𝑖,1,𝑣𝑡−𝑏(𝑡) = 𝑘1 (𝑢𝑖,1(𝑡) +
1

2
𝑏 𝜃𝑖(𝑡) − 𝑢𝑖,2,𝑣𝑡−𝑏) + 𝑐1 (𝑢̇𝑖,1(𝑡) +

1

2
𝑏 𝜃̇𝑖(𝑡) − 𝑢̇𝑖,2,𝑣𝑡−𝑏) 

 
𝑄𝑖,2,𝑣𝑡 = 𝑘2(𝑢𝑖,2,𝑣𝑡 − 𝑢𝑖,3,𝑣𝑡) + 𝑐2(𝑢̇𝑖,2,𝑣𝑡 − 𝑢̇𝑖,3,𝑣𝑡) 

𝑄𝑖,2,𝑣𝑡−𝑏 = 𝑘2(𝑢𝑖,2,𝑣𝑡−𝑏 − 𝑢𝑖,3,𝑣𝑡−𝑏) + 𝑐2(𝑢̇𝑖,2,𝑣𝑡−𝑏 − 𝑢̇𝑖,3,𝑣𝑡−𝑏) 

 

𝑄𝑖,3,𝑣𝑡 = 𝑘3 (𝑢𝑖,3,𝑣𝑡(𝑡) − 𝑤(𝑣𝑡𝑖 , 𝑡))  ⋅ 𝐻 (𝑢𝑖,3,𝑣𝑡(𝑡) − 𝑤(𝑣𝑡𝑖, 𝑡)) 

𝑄𝑖,3,𝑣𝑡−𝑏 = 𝑘3 (𝑢𝑖,3,𝑣𝑡−𝑏(𝑡) − 𝑤(𝑣𝑡𝑖 − 𝑏, 𝑡))  ⋅ 𝐻 (𝑢𝑖,3,𝑣𝑡−𝑏(𝑡) − 𝑤(𝑣𝑡𝑖 − 𝑏, 𝑡)) 

 

(4.8) 
 

𝑢𝑖,1(0) = 𝑢𝑖,2(0) +
𝑚1

2𝑘1
𝑔 𝑢̇𝑖,1(0) = 0 

𝜃𝑖(0) = 0 𝜃̇𝑖(0) = 0 

𝑢𝑖,2(0) = 𝑢𝑖,3(0) +
𝑚1 + 2𝑚2

2𝑘2
𝑔 𝑢̇𝑖,2(0) = 0 

𝑢𝑖,3(0) =
𝑚1 + 2𝑚2 + 2𝑚3

2𝑘3
𝑔 𝑢̇𝑖,3(0) = 0 

 

(4.9) 

 
Figure 4.3: Moving oscillator with six degrees of freedom  
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5 Validation of the model 

Introduction 
In order to present reliable results, it is important to compare these to the literature. In 
this case, the numerical model is compared to Graff’s solution (Graff, 1975). Then the 
more advanced models are validated by considering limit cases against each other. The 
moving oscillator is compared to point loads considering the limit case 𝑚 → 0 to see if 
the extra degree of freedom for the vehicle is well implemented. Then the moving 
oscillator with rotational inertia is compared to the moving oscillator considering the 
limit case 𝑏 = 0 to see if the rotational inertia is well implemented. Finally, the moving 
oscillator with six degrees of freedom is tested against the moving oscillator with 
rotational inertia considering the limit case 𝑚2 = 𝑚3 → 0 to see if the extra degrees of 
freedom are well implemented. Equation 5.1 defines the relative error, where the sum of 
the errors over time are calculated. All figures in this chapter show a comparison 
between two methods, with the bridge response on the left and the relative errors on 
the right. Comparisons are made utilizing bridge 4, considering 10 vibration modes.  
 

𝑒 =
∑ |𝑤(𝑥, 𝑡) − 𝑤𝑟𝑒𝑓(𝑥, 𝑡)|𝑡

∑ |𝑤𝑟𝑒𝑓(𝑥, 𝑡)|𝑡

 (5.1) 

5.1 Numerical solution 
The numerical solution is checked against the solution presented by Graff (equation 3.7) 
(Graff, 1975). This is done with a single moving point load (equations B.1-B.4). Figure 
5.1 shows the deflection of the bridge and the error over the length of the bridge. This 
results in an average relative error of 3.3 ⋅ 10−9, which means that the model is precise.  
 

 

 

Figure 5.1: Numerical against analytical solution 
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5.2 Moving oscillator 
The moving oscillator is then compared to the moving point load model by considering 
the limit case 𝑚 → 0. This is done by modelling a single moving point load, where the 
gravitation of the low mass is compensated with an external force. Figure 5.2 shows the 
deflection of the bridge and relative error over the length of the bridge. This results in an 
average relative error of 2.4 ⋅ 10−6. This means that the extra degree of freedom for the 
vehicle is well implemented. 
 

 

 

Figure 5.2: The moving oscillator compared to the moving point loads considering the 
limit case 𝑚 → 0 

 

5.3 Moving oscillator with rotational inertia 
The moving oscillator with rotational inertia is compared to the moving oscillator by 
considering the limit case 𝑏 = 0. Figure 5.3 shows the deflection of the bridge and 
relative error over the length of the bridge. This results in the sum of all errors of 
2.3 ⋅ 10−4, which can be explained by a numerical error. This means that the extra 
degree of freedom is well implemented.  
 

 

 

Figure 5.3: Moving oscillator with rotational inertia compared to the moving oscillator 
considering the limit case 𝑏 = 0 
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5.4 Moving oscillator with six degrees of freedom 
The moving oscillator with six degrees of freedom is compared to the moving oscillator 
with rotational inertia by considering the limit case 𝑚2 = 𝑚3 = 0. The difference in 
mass and rotational inertia is accounted for in the model. Figure 5.4 shows the 
deflection of the bridge and relative error over the length of the bridge. This results in an 
average relative error of 1.4 ⋅ 10−5. This means that the extra degrees of freedom are 
well implemented. 
 
 
 

 

 

Figure 5.4: Moving oscillator with six degrees of freedom compared to moving oscillator 
with rotational inertia considering the limit case 𝑚2 = 𝑚3 = 0 

 

5.5 Required amount of vibration modes 
Since the solution consist of an infinite amount of vibration modes, there needs to be 
determined how many vibration modes are required for a reliable result. In order to do 
so, results of the deflection are obtained with multiple vibration modes, starting with 
one vibration mode and building up to fifty. The deflections of the bridge are compared 
to the deflections with fifty vibration modes. The results are shown in figure 5.5 on the 
next page.  
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𝑛 = 1:  𝑒 = 10.7% 𝑛 = 2:  𝑒 = 6.4% 𝑛 = 3:  𝑒 = 4.9% 

   
𝑛 = 4:  𝑒 = 2.9% 𝑛 = 5:  𝑒 = 1.8% 𝑛 = 6:  𝑒 = 0.11% 

   
𝑛 = 7:  𝑒 = 0.16% 𝑛 = 8:  𝑒 = 0.023% 𝑛 = 9:  𝑒 = 0.0083% 

   
𝑛 = 10:  𝑒 = 0.017% 𝑛 = 20:  𝑒 = 0.0057% 𝑛 = 50:  𝑒 = 0.0000% 

 
Figure 5.5: Influence of the amount of vibration modes on the error, compared to 𝑛 = 50 
 
It is fair to say that in all cases, descent results are obtained. However, an 𝑛-value of 6 or 
greater is advised for a reliable result. In this thesis, a value of 10 is chosen. It is worth 
noting that when the values for the bending moments and vertical accelerations are 
compared. More nodes are required to get accurate results. This in turn leads to an 
increase of the computation time. Therefore, a bigger error is accepted for the bending 
moments and vertical accelerations. 
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6 Results 

Introduction 
In this chapter, results, visual representations of the deflections and interpretations are 
presented. Firstly, a comparison is made between the different models regarding ULS 
and SLS, where ULS refers to the bending moments in the bridge and deflections of the 
wheels and SLS refers to the deflections of the bridge and vertical accelerations of the 
vehicle. Then, it is investigated whether the wheels lose contact with the rails, which is 
important since it may lead to fatigue or derailment. Finally, the influence of the velocity 
on the maximum deflection is assessed; this is done by studying 1, and later 8 wagons. In 
order to understand what is happening, a peak and a trough in the resonance diagram 
will be further elaborated. The results are compared to the prescription in the 
Eurocodes. All comparisons are made with the parameters determined in chapter 2 and 
3. The moving oscillator is referred to as 1 DOF oscillator and the moving oscillator with 
rotational inertia is referred to as 2 DOF oscillator. Note that the deflections are 
amplified in the graphs for plotting reasons. 

6.1 Importance of inertia 
Determining the importance of inertia is the main research objective. Therefore, figure 
6.1 compares the different vehicle models and shows the deflection of the middle of the 
bridges at two different velocities. Note that in some cases, the point load model, 1 DOF 
oscillator and 2 DOF oscillator show very similar results. This may lead to the three 
indistinguishable in the graphs.  
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Figure 6.1: Bridge deflection with a single wagon 

 
It becomes clear that the inertia and complexity of the vehicle model have a minimal 
impact on the magnitude of the deflections of the bridge. Only the most complex model 
shows a distinguishable difference. This can mainly be explained by the fact that that the 
bridge is stiff enough not to excite the inertia of the vehicle considerably. Incorporating 
the inertia into the model has small influence when compared to the model that 
accounts for a constant force due to gravity. Therefore, a change in the complexity of the 
vehicle has a minimal impact on the bridge.  
 
To further investigate the importance of inertia, figure 6.2 makes a comparison of the 
deflections of the vehicle. To make the graphs clear, only the deflections of the front 
wheels are presented. The rear wheels show similar results.  
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Figure 6.2: Vehicle deflection with a single wagon 

 
The different vehicle models show interesting results. Where the moving point load 
follows the deflection of the beam, the more advanced models have a delayed response. 
The 1&2 DOF oscillators show similar results and are more delayed than the 6 DOF 
oscillator. Also the magnitude of the response differs: in most cases, the vehicle 
deflections of the 6 DOF oscillator are bigger, but this is not necessarily the case. 
Interestingly enough, the most complex 6 DOF model tends to be in between the moving 
point load and the 1&2 DOF oscillators. For both the delay and magnitude of the 
response, this can be explained: compared to the wagon itself, the wheels and bogies are 
fairly rigidly connected to the rails and bridge, which means that a part of the load 
behaves like a point load and another part behaves like an oscillator. Due to the 
relatively smaller oscillating mass, deflections tend to be bigger and responses are 
faster. However, the difference in magnitude of the vehicle response for each vehicle 
model differs for each bridge and velocity. This means that the influence of the 
complexity of the vehicle model strongly depends on the properties of the bridge and 
the velocity of the vehicle.  
 
To further investigate the importance of inertia, tables 6.1 and 6.2 present the maximum 
values for the deflection and moments in the bridge, and deflections and vertical 
accelerations of the vehicle.  
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Table 6.1: Comparison of the models (𝑣 = 50 𝑚/𝑠) 

Model Quantity Bridge 1 Bridge 2 Bridge 3 Bridge 4 Unit 
Point load model 𝑤 0.26 0.57 1.05 1.52 𝑚𝑚 
1 DOF oscillator 𝑤 0.26 0.57 1.05 1.52 𝑚𝑚 
2 DOF oscillator 𝑤 0.26 0.57 1.05 1.51 𝑚𝑚 
6 DOF oscillator 𝑤 0.27 0.54 1.05 1.52 𝑚𝑚 

Point load model 𝑀 0.28 0.55 1.10 1.92 𝑘𝑁𝑚 
1 DOF oscillator 𝑀 0.28 0.55 1.10 1.92 𝑘𝑁𝑚 
2 DOF oscillator 𝑀 0.28 0.55 1.10 1.92 𝑘𝑁𝑚 
6 DOF oscillator 𝑀 0.28 0.53 1.11 1.92 𝑘𝑁𝑚 

Point load model 𝑢 0.23 0.55 1.04 1.36 𝑚𝑚 
1 DOF oscillator 𝑢 0.10 0.42 1.28 1.72 𝑚𝑚 
2 DOF oscillator 𝑢 0.11 0.45 1.34 1.80 𝑚𝑚 
6 DOF oscillator 𝑢 0.17 0.61 1.44 1.80 𝑚𝑚 
Point load model 𝑎 1.17 0.66 0.24 0.17 𝑚/𝑠2 
1 DOF oscillator 𝑎 0.02 0.03 0.08 0.08 𝑚/𝑠2 
2 DOF oscillator 𝑎 0.03 0.03 0.09 0.08 𝑚/𝑠2 
6 DOF oscillator 𝑎 0.05 0.12 0.14 0.11 𝑚/𝑠2 

 
Table 6.2: Comparison of the models (𝑣 = 100 𝑚/𝑠) 

Model Quantity Bridge 1 Bridge 2 Bridge 3 Bridge 4 Unit 

Point load model 𝑤 0.34 0.74 1.58 1.45 𝑚𝑚 
1 DOF oscillator 𝑤 0.34 0.73 1.56 1.44 𝑚𝑚 
2 DOF oscillator 𝑤 0.34 0.73 1.56 1.44 𝑚𝑚 
6 DOF oscillator 𝑤 0.33 0.74 1.55 1.44 𝑚𝑚 

Point load model 𝑀 0.35 0.71 1.46 2.11 𝑘𝑁𝑚 
1 DOF oscillator 𝑀 0.34 0.70 1.45 2.10 𝑘𝑁𝑚 
2 DOF oscillator 𝑀 0.34 0.70 1.45 2.10 𝑘𝑁𝑚 
6 DOF oscillator 𝑀 0.34 0.71 1.46 2.10 𝑘𝑁𝑚 
Point load model 𝑢 0.29 0.71 1.45 1.42 𝑚𝑚 
1 DOF oscillator 𝑢 0.06 0.27 1.08 1.59 𝑚𝑚 
2 DOF oscillator 𝑢 0.07 0.30 1.11 1.58 𝑚𝑚 
6 DOF oscillator 𝑢 0.12 0.50 1.50 2.19 𝑚𝑚 

Point load model 𝑎 3.33 1.91 1.07 0.52 𝑚/𝑠2 
1 DOF oscillator 𝑎 0.05 0.06 0.09 0.11 𝑚/𝑠2 
2 DOF oscillator 𝑎 0.05 0.07 0.10 0.12 𝑚/𝑠2 
6 DOF oscillator 𝑎 0.06 0.15 0.36 0.30 𝑚/𝑠2 

 
These tables show that for both the deflection and moments in the bridge, the 
complexity of the vehicle model does not have a significant impact. Again, this is due to 
the relatively stiff bridge. As opposed to the bridge, the vehicle itself shows large 
differences in deflections and vertical accelerations. The point load model follows the 
deflection of the bridge and shows unrealistically large values for the vertical 
accelerations of the vehicle. When a comparison is made between the moving oscillators, 
the 6 DOF model shows values up to three times larger for the vertical accelerations, 
compared to the 1&2 DOF oscillators. Thus, the 1&2 DOF oscillators strongly under 
evaluate the vertical accelerations of the vehicle.  
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6.2 Deflection of the wheels after passing the bridge 
The model with six degrees of freedom has a bilinear spring implemented for the contact 
force between the wheels and the rails (equation 4.8). This means that a force is only 
applied in compression and the wheels can lose contact with the rails. These jumps only 
occur after the wheels have left the bridge. The largest magnitude is found for the front 
wheels, these are therefore presented in figure 6.3. Note that a negative value for 
𝑢 means that the wheel loses contact with the rails.  
 

  

  

  

  
Figure 6.3: Deflection of the front wheels after passing the bridge 
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Figure 6.3 shows that the wheels do indeed lose contact with the rails. The magnitude of 
these jumps depends on the speed of the train and the bridge properties. The jumps are 
small: in the range from 1 to 25 𝜇𝑚, which would not be visible in reality. Also, the 
frequency of the contact loss is very high. This may lead to fatigue of the wheels and rails 
over time, but will not cause derailment.  
It is striking that this only occurs after the wheels have left the bridge. Therefore, it is 
worth noting that the contact force between the wheels and rails is modelled as a 
bilinear spring, where the stiffness of both are taken into account. However, the 
foundation is assumed to be rigid, which means there is no dissipation of energy, and 
there is an unrealistically large track stiffness change experience by the moving vehicle 
when leaving the bridge. Also, the bridge is modelled as a simply supported beam, which 
is generally not the case for train bridges. Thus, in reality, the deflections over time may 
be different. 

6.3 Influence of the velocity 
The velocity of the vehicle is the easiest parameter to change, for example, in case of 
cracks in the bridge, or when deflections need diminishing. Therefore, the influence of 
the velocity on maximum deflections and moments in the bridge, and maximum vertical 
accelerations of the vehicle is assessed. To make a comparison, this is done for all 
models with a single wagon. The moments show very similar results to the deflection of 
the bridge. Therefore, only the deflections of the bridge over time are presented in the 
graphs on the left side. On the right side, vertical accelerations of the vehicle are 
presented.  
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Figure 6.4: Influence of the velocity with a single wagon 

 
Figure 6.4 shows that the influence of the velocity on the behaviour of the bridge and 
vehicle differs significantly for the parameters: resonance occurs at different velocities 
for every bridge. The influence of the different vehicle models on the bridge is minimal. 
However, it does have a considerable influence on the vertical accelerations of the 
vehicle itself. In most cases, the model with six degrees of freedom shows significantly 
higher vertical accelerations than the other two mass-spring systems. The simple point 
load model, which is not presented in the graphs, follows the deflection of the bridge and 
shows absurd vertical accelerations. This proofs the necessity of springs and dampers.  
 
In reality, it is rarely the case that a single wagon crosses a bridge. Usually, a train 
consists of 8 wagons. Therefore, the behaviour of the bridge at different velocities is 
studied in this case as well. Since modelling multiple wagons leads to an increase in 
computation time and since the influence of the complexity of the model is negligible, 
only the bridge deflections in case of the moving point load model are computed.  Figure 
6.5 shows that for 8 wagons, peaks occur at different velocities, compared to a single 
wagon.  
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Figure 6.5: Influence of the velocity with 8 wagons (point load model only) 

 
It strikes that bridge 3 shows a peak at 112.5 m/s. To understand what happens at this 
velocity, it is further examined and compared to a trough at 71.5 m/s. Therefore, figure 
6.6 and table 6.3 show the difference of the bridge and vehicle deflection at these two 
velocities.   
 

  

  

  
Figure 6.6: Comparison of bridge 3 with 8 wagons at different velocities.   
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Table 6.3: Comparison of bridge 3 at different velocities 
Model Quantity 𝑣 = 71.5 𝑚/𝑠 𝑣 = 112.5 𝑚/𝑠 Unit 
Point load model 𝑤 1.83 8.79 𝑚𝑚 
1 DOF oscillator 𝑤 1.83 8.28 𝑚𝑚 
2 DOF oscillator 𝑤 1.83 8.28 𝑚𝑚 
6 DOF oscillator 𝑤 1.86 7.61 𝑚𝑚 

Point load model 𝑀 1.66 8.12 𝑘𝑁𝑚 
1 DOF oscillator 𝑀 1.66 7.64 𝑘𝑁𝑚 
2 DOF oscillator 𝑀 1.66 7.64 𝑘𝑁𝑚 
6 DOF oscillator 𝑀 1.69 7.03 𝑘𝑁𝑚 

Point load model 𝑢 1.75 8.72 𝑚𝑚 
1 DOF oscillator 𝑢 1.86 4.15 𝑚𝑚 
2 DOF oscillator 𝑢 2.03 4.38 𝑚𝑚 
6 DOF oscillator 𝑢 2.38 5.01 𝑚𝑚 

Point load model 𝑎 0.47 7.30 𝑚/𝑠2 
1 DOF oscillator 𝑎 0.13 0.61 𝑚/𝑠2 
2 DOF oscillator 𝑎 0.15 0.66 𝑚/𝑠2 
6 DOF oscillator 𝑎 0.37 1.81 𝑚/𝑠2 
 
It becomes clear that at 112.5 m/s resonance occurs and at 71.5 m/s some anti-
resonance takes place. In case of resonance, the influence of the complexity of the 
vehicle on the bridge is marginal: the 6 DOF oscillator shows slightly smaller deflections. 
However, the influence of the complexity of the vehicle on the deflections and vertical 
accelerations of the vehicle itself are large. Vertical accelerations are three times higher 
in resonance for the most complex model, compared to the more simplistic models. The 
deflection of the wheels after passing the bridge in resonance increases for each wagon. 
This may lead to fatigue or derailment.  
 
According to Graff, the first critical velocity at which resonance occurs should be 
217.7 𝑚/𝑠 for moving point loads (Graff, 1975). This differs significantly from the 
results when 8 wagons are modelled. This is mainly due to the unequal distances 
between the wheels.  
 
The Eurocodes prescribe, in case of train bridges, to perform the dynamic calculation 
with a static calculation and a dynamic loading factor for velocities below 200 𝑘𝑚/ℎ 
(NEN, 2015). However, as shown in the graphs, resonance may occur at any velocity. 
This cannot be predicted with static calculations. When resonance occurs, the loading 
cannot be regarded as static. Therefore, the dynamic calculations are essential for 
understanding the behaviour of the bridge and the vehicle. Thus, it might be 
recommended to prescribe the dynamic calculations in the Eurocodes.  
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7 Conclusion and recommendations 
 
The main goal of this thesis was to investigate and describe the interaction between a 
moving vehicle and a bridge. More specifically, the importance of the inertia of the 
vehicle for the serviceability limit state, and ultimate limit state was assessed. Therefore, 
a simply supported beam with different vehicle models was examined.  
 
There can be concluded that inertia and the complexity of the vehicle model have a 
minimal influence on the deflections and moments in the bridge. This could be explained 
by the fact that that the bridge is stiff enough not to excite the inertia of the vehicle 
considerably. However, the complexity of the vehicle model has a significant impact on 
the displacements and vertical accelerations of the vehicle itself. The vehicle model with 
six degrees of freedom shows generally higher values for the deflections and vertical 
accelerations than the moving oscillator with one or two degrees of freedom. However, 
this is not always the case, because the influence of the complexity of the vehicle model 
strongly depends on the properties of the bridge and the velocity of the vehicle.  
An advantage of the model with six degrees of freedom, is that the deflection of the 
wheels and wagons can be separately examined. This way, the deflections of the wheels 
show that, after the train leaves the bridge, the wheels make high frequency jumps on 
the rails of one hundredth of a millimetre. However, the bridge and track model lack in 
complexity. Therefore, more research needs to be performed to justify this finding. 
Furthermore, the influence of the velocity on the displacements is large. This is mainly 
due to resonance of the bridge at critical velocities. At multiple velocities, the different 
vehicle models show similar results for the deflection of the bridge. The most complex 
model with six degrees of freedom shows again generally higher values for the vertical 
accelerations of the vehicle. When the length of the train is increased to multiple 
wagons, the results are different compared to a single wagon and resonance peaks can 
be found at different velocities. The Eurocodes prescribe a static calculation with a 
dynamic loading factor and disregards the resonance, which is an unsafe approach. 
According to the findings in this thesis, it might be recommended to prescribe the 
dynamic calculations in the Eurocodes.  
 
In conclusion, neither inertia nor the complexity of the vehicle model have a significant 
impact on the ultimate limit state and serviceability limit state of the bridge. However, 
for the ultimate limit state and serviceability limit state of the vehicle the impact is large, 
and it could lead to the lack of comfort or derailment.  
 
There are a few recommendations for further research. In this thesis, a single vehicle 
was modelled in one direction. The interaction of multiple vehicles driving in two 
directions leads to torsion and may affect the vertical accelerations and stresses. For 
torsion to be possible, a torsional degree of freedom should be added or a plate should 
be considered. In that case, an Euler-Bernoulli beam is not sufficient. In the bridge 
model, a simply supported beam was chosen. For further research, it is advisable to 
investigate more advance bridge models, for example, a continuously supported beam. 
The scope of this thesis is limited to vehicle induced vibrations on a bridge, while often, 
subsidence of the substrate occurs close to bridges. This would lead to a non-zero initial 
stress state and non-zero initial conditions. Further research in this direction may lead 
to interesting results.  
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Appendix A: Analytical solution 
 
In this appendix, the Euler-Bernoulli beam equation is used to determine the behaviour 
of the bridge. First, we will solve the homogeneous equation to determine the behaviour 
of the bridge when there are no forces applied. Then we will solve the particular 
equation, to determine the behaviour when external forces are applied.  
 
The Euler-Bernoulli beam equation is shown in formula A.1, also the external loading is 
specified. First, we will solve the homogeneous equation, which is presented in equation 
A.2.  
 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) + 𝑐𝑑𝐼

𝜕5𝑤

𝜕𝑥4𝜕𝑡
(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) 

𝑞(𝑥, 𝑡) = ∑ 𝑄𝑖(𝑡) ⋅ 𝛿(𝑥 − (𝑣𝑡𝑖)) ⋅ 𝐻(𝑣𝑡 − 𝑠𝑖) ⋅ 𝐻(𝑙 − (𝑣𝑡𝑖))

𝑖

 
(A.1) 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) + 𝑐𝑑𝐼

𝜕5𝑤

𝜕𝑥4𝜕𝑡
(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) = 0 (A.2) 

To solve for the homogeneous solution, the separation of variables will be applied, as 
shown in equations A.3 and A.4. Note that in equation A.4 the left hand side is only 
dependent of 𝑥 and the right hand side is only dependent of time. Hence, both sides of 
the equation are constant. Also, in equation A.5 the boundary conditions can only be 
applied on 𝑤𝑥(𝑥), since applying them on 𝑤𝑡(t) will lead to the trivial solution. 
 

𝑤(𝑥, 𝑡) = 𝑤𝑥(𝑥) ⋅ 𝑤𝑡(𝑡) (A.3) 

𝜕4𝑤𝑥

𝜕𝑥4 (𝑥)

𝑤𝑥(𝑥)
= −

𝜌𝐴

𝐸
⋅

𝜕2𝑤𝑡

𝜕𝑡2 (𝑡)

𝑤𝑡(𝑡) +
𝑐𝑑

𝐸
𝜕𝑤
𝜕𝑡

(𝑡)
= 𝜂 (A.4) 

𝑤𝑥(0) = 0 
𝜕2𝑤𝑥

𝜕𝑥2
(0)  = 0 

𝑤𝑥(𝑙)  = 0 
𝜕2𝑤𝑥

𝜕𝑥2
(𝑙)  = 0 

 

(A.5) 

From equation A.4, two differential equations are derived, the first one is stated in 

equation A.6. For 𝜂 it is possible to substitute 𝜂 = −𝛽𝑛
4 < 0, 𝜂 = 0 or 𝜂 = 𝛽𝑛

4 > 0. Only 
the last one will lead to a non-trivial solution. The solution to equation A.6, taking into 
account boundary conditions, is shown in equation A.7. 
 

𝜕4𝑤𝑥

𝜕𝑥4
(𝑥) − 𝜂 ⋅ 𝑤𝑥(𝑥) = 0 

𝜕2𝑤𝑡

𝜕𝑡2
(𝑡) +

𝐸𝐼

𝜌𝐴
𝜂 ⋅ (𝑤𝑡(𝑡) −

𝑐𝑑

𝐸

𝜕𝑤

𝜕𝑡
(𝑡)) = 0 

(A.6) 
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𝑤𝑥𝑛(𝑥) = 𝐶𝑛 ⋅ sin(𝛽𝑛𝑥) 

𝑤𝑥(𝑥) = ∑ 𝐶𝑛 ⋅ sin(𝛽𝑛𝑥)

∞

𝑛=1

 

𝛽𝑛 =
𝑛𝜋

𝑙
 (with 𝑛 = 1, 2, 3, … ) 

(A.7) 

When applying the same value for 𝜂, we can solve for the differential equation of 𝑤𝑡𝑛, as 
shown in equation A.8. Note that the eigen frequency 𝜔𝑛, follows naturally from the 
equation. The solution is show in equation A.9. 
 

𝜕2𝑤𝑡𝑛

𝜕𝑡2
(𝑡) + 2 𝜔𝑛

𝜕𝑤𝑡𝑛

𝜕𝑡
(𝑡) + 𝜔𝑛

2𝑤𝑡𝑛(𝑡) = 0 

𝜔𝑛 = √
𝐸𝐼

𝜌𝐴
(

𝑛𝜋

𝑙
)

2

 

 =
𝑐𝑑𝐼

2√𝐸𝐼 𝜌𝐴
(

𝑛𝜋

𝑙
)

2

 

(A.8) 

𝑤𝑡𝑛(𝑡) = (𝐶𝑛  sin(𝜔𝑛𝑡) + 𝐷𝑛  cos(𝜔𝑛𝑡))𝑒− 𝜔𝑛𝑡 

𝑤𝑡(𝑡) = ∑(𝐶𝑛  sin(𝜔𝑛𝑡) + 𝐷𝑛  cos(𝜔𝑛𝑡))

∞

𝑛=1

𝑒− 𝜔𝑛𝑡 
(A.9) 

Now that both the 𝑥 and time dependent part are know, we can combine both in the 
homogeneous solution, as is shown in equation A.10. 
 

𝑤𝑛(𝑥, 𝑡) = sin(𝛽𝑥) ⋅ (𝐶𝑛 ⋅ sin(𝜔𝑛𝑡) + 𝐷𝑛 ⋅ cos(𝜔𝑛𝑡))𝑒− 𝜔𝑛𝑡 

𝑤(𝑥, 𝑡) = ∑ sin(𝛽𝑥) ⋅ (𝐶𝑛 ⋅ sin(𝜔𝑛𝑡) + 𝐷𝑛 ⋅ cos(𝜔𝑛𝑡))

∞

𝑛=1

𝑒− 𝜔𝑛𝑡 
(A.10) 

Now, we will solve for the particular solution. It is assumed that the 𝑥-dependant part of 
the bending in the particular solution is the same as in the homogeneous solution. This is 
reasonable since it meets the homogeneous boundary conditions. The time-dependent 
part is still unknown. The particular equation is shown in equation A.11, also the 
external loading is specified. 
 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) + 𝑐𝑑𝐼

𝜕5𝑤

𝜕𝑥4𝜕𝑡
(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) 

𝑞(𝑥, 𝑡) = ∑ 𝑄𝑖(𝑡) ⋅ 𝛿(𝑥 − 𝑣𝑡𝑖) ⋅ 𝐻(𝑣𝑡𝑖) ⋅ 𝐻(𝑙 − 𝑣𝑡𝑖)

𝑖

 
(A.11) 

After applying again the separation of variables, as show in equation A.3, the equation 
can be written as follows.  

𝐸𝐼
𝜕4𝑤𝑥

𝜕𝑥4
(𝑥) ⋅ 𝑤𝑡(𝑡) + 𝑐𝑑𝐼

𝜕4𝑤𝑥

𝜕𝑥4
(𝑥) ⋅

𝜕𝑤𝑡

𝜕𝑡
(𝑡) + 𝜌𝐴 𝑤𝑥(𝑥) ⋅

𝜕2𝑤𝑡

𝜕𝑡2
(𝑡) = 𝑞(𝑥, 𝑡) (A.12) 
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After substituting equation A.13 in A.12, equation A.14 is found.  
 

𝑤𝑥𝑛(𝑥) = sin(𝛽𝑛𝑥) 
𝜕4𝑤𝑥𝑛

𝜕𝑥4
(𝑥) = 𝛽𝑛

4 sin(𝛽𝑛𝑥) 

𝜕4𝑤𝑥𝑛

𝜕𝑥4
(𝑥) = 𝛽𝑛

4𝑤𝑥𝑛(𝑥) 

(A.13) 

(𝜌𝐴
𝜕2𝑤𝑡

𝜕𝑡2
(𝑡) + 𝐸𝐼 𝛽𝑛

4 ⋅ (𝑤𝑡(𝑡) −
𝑐𝑑

𝐸

𝜕𝑤

𝜕𝑡
(𝑡))) ⋅ sin(𝛽𝑛𝑥) = 𝑞(𝑥, 𝑡) 

 

(A.14) 

Due to orthogonality, the second order differential equation can be found (equation 
A.15-A.17).  
 

( 
𝜕2𝑤𝑡

𝜕𝑡2
(𝑡) + 2 𝜔𝑛

𝜕𝑤𝑡𝑛

𝜕𝑡
(𝑡) + 𝜔𝑛

2 𝑤𝑡(𝑡)) ⋅ sin2(𝛽𝑛𝑥) =
𝑞(𝑥, 𝑡)

𝜌𝐴
⋅ sin(𝛽𝑛𝑥) (A.15) 

( 
𝜕2𝑤𝑡

𝜕𝑡2
(𝑡) + 2 𝜔𝑛

𝜕𝑤𝑡𝑛

𝜕𝑡
(𝑡) + 𝜔𝑛

2 𝑤𝑡(𝑡)) ⋅ ∫ sin2(𝛽𝑛𝑥)  𝑑𝑥

𝑙

0

= ∫
𝑞(𝑥, 𝑡)

𝜌𝐴
⋅ sin(𝛽𝑛𝑥)  𝑑𝑥

𝑙

0

 (A.16) 

𝜕2𝑤𝑡

𝜕𝑡2
(𝑡) + 2 𝜔𝑛

𝜕𝑤𝑡𝑛

𝜕𝑡
(𝑡) + 𝜔𝑛

2 𝑤𝑡(𝑡) =
2 

𝜌𝐴𝑙
⋅ ∫ sin(𝛽𝑛𝑥) ⋅ 𝑞(𝑥, 𝑡) 𝑑𝑥

𝑙

0

 (A.17) 

After integrating the right hand side, the following differential equation A.18 is derived. 
This differential equation is solved numerically for complex loads, which is specified in 
Appendix B. The general total solution is presented in equation A.19.  
 

𝜕2𝑤𝑡𝑛

𝜕𝑡2
(𝑡) + 2 𝜔𝑛

𝜕𝑤𝑡𝑛

𝜕𝑡
(𝑡) + 𝜔𝑛

2 𝑤𝑡𝑛(𝑡) = ∑ 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖(𝑡)

𝑖

 

𝑓𝑛(𝑣𝑡) =
2 sin(𝛽𝑛 𝑣𝑡)

𝜌𝐴𝑙
⋅ 𝐻(𝑣𝑡) ⋅ 𝐻(𝑙 − 𝑣𝑡) 

(A.18) 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑥𝑛(𝑥) ⋅ 𝑤𝑡𝑛(𝑡)

∞

𝑛=1

 (A.19) 

For a simple point load without damping, this equation can be solve analytically. This is 
done by Graff, as shown in equation A.20 (Graff, 1975). 
 

𝑤(𝑥, 𝑡) =
2𝑄

𝜌𝐴𝑙
∑

sin(𝛽𝑛𝑥)

𝜔𝑛(𝛽𝑛
2𝑣2 − 𝜔𝑛

2)

∞

𝑛=1

(𝛽𝑛𝑣 sin(𝜔𝑛 𝑡) − 𝜔𝑛 sin(𝛽𝑛 𝑣𝑡)) (A.20) 
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Appendix B: Numerical models in state-space representation 

Introduction 
This appendix covers the translation of the numerical models to differential equations in 
state-space representation, which can be solved with for example Python. The input of 
all models consists of the initial conditions in vector 𝑦0, and the output is the derivative 
of the time dependant deflections, vector 𝑦̇. Note that all the models only consist of the 
time-dependant part of the deflection. The solution still has to be multiplied by the 𝑥-
dependant part, as specified in chapter 3. A side note should be added that for the 
relative vertical velocity of the vehicle and the bridge, there is not accounted for the 
influence of the horizontal velocity of the vehicle (equations B.3, B.6, B.B.13, B.14, B.27, 
B.28). 

Moving point load model 
The first model is not covered in the main report. It consists of moving point loads on 
the bridge, which are independent of de deflection. The time-dependant part of the 
deflection is stored in a vector 𝑦 with length 2𝑁, as shown in equation B.1. The time 
derivative of 𝑦 can then be computed, this is done in equations B.2 and B.3.  To complete 
the model, initial conditions are shown in equation B.4.  
 

𝑤𝑡1(𝑡) = 𝑦1 
𝑤̇𝑡1(𝑡) = 𝑦2 
𝑤̈𝑡1(𝑡) = 𝑦̇2 

⋮ 
𝑤𝑡𝑛(𝑡) = 𝑦2𝑛−1 

𝑤̇𝑡𝑛(𝑡) = 𝑦2𝑛 
𝑤̈𝑡𝑛(𝑡) = 𝑦̇2𝑛 

⋮ 
𝑤𝑡𝑁(𝑡) = 𝑦2𝑁−1 

𝑤̇𝑡𝑁(𝑡) = 𝑦2𝑁 
𝑤̈𝑡𝑁(𝑡) = 𝑦̇2𝑁 

(B.1) 

𝑦̇2𝑛−1 = 𝑤̇𝑡𝑛(𝑡) 
𝑦̇2𝑛−1 = 𝑦2𝑛 

(B.2) 

𝑤̈𝑡𝑛(𝑡) + 𝜔𝑛
2 𝑤𝑡𝑛(𝑡) = ∑ 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖

𝑖

 

𝑦̇2𝑛 = ∑ 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖

𝑖

− 𝜔𝑛
2 𝑦2𝑛−1 

(B.3) 

𝑤𝑡𝑛(0) = 0 𝑦2𝑛−1,0 = 0 

𝑤̇𝑡𝑛(0) = 0 𝑦2𝑛,0 = 0 
 

(B.4) 
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Moving oscillator 
The previous model can be expanded with more degrees of freedom. The next model 
consists of moving oscillators on the beam, which are dependent of de deflection of the 
beam and vehicle itself. Equations B.5 shows the definition of the vector 𝑦, which is 
expanded with the deflection of the vehicle(s). Equation B.6 specifies the value of the 
force between the bridge and vehicle. Note that a force in compression is positive. 
Equations B.7-B.10 specify every value for the time derivative of 𝑦, and B.11 show the 
initial conditions.  
 

𝑤𝑡1(𝑡) = 𝑦1 
𝑤̇𝑡1(𝑡) = 𝑦2 
𝑤̈𝑡1(𝑡) = 𝑦̇2 

𝑢1(𝑡) = 𝑦2𝑁+1 
𝑢̇1(𝑡) = 𝑦2𝑁+2 
𝑢̈1(𝑡) = 𝑦̇2𝑁+2 

⋮ ⋮ 
𝑤𝑡𝑛(𝑡) = 𝑦2𝑛−1 

𝑤̇𝑡𝑛(𝑡) = 𝑦2𝑛 
𝑤̈𝑡𝑛(𝑡) = 𝑦̇2𝑛 

𝑢𝑖(𝑡) = 𝑦2𝑁+2𝑖−1 
𝑢̇𝑖(𝑡) = 𝑦2𝑁+2𝑖 
𝑢̈𝑖(𝑡) = 𝑦̇2𝑁+2𝑖 

⋮ ⋮ 
𝑤𝑡𝑁(𝑡) = 𝑦2𝑁−1 

𝑤̇𝑡𝑁(𝑡) = 𝑦2𝑁 
𝑤̈𝑡𝑁(𝑡) = 𝑦̇2𝑁 

𝑢𝐼(𝑡) = 𝑦2𝑁+2𝐼−1 
𝑢̇𝐼(𝑡) = 𝑦2𝑁+2𝐼 
𝑢̈𝐼(𝑡) = 𝑦̇2𝑁+2𝐼 

 

(B.5) 

𝑄𝑖(𝑡) = 𝑘 (𝑢𝑖(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡)

𝑁

𝑛=1

) + 𝑐 (𝑢̇𝑖(𝑡) − ∑ 𝑤̇𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡)

𝑁

𝑛=1

) 

𝑄𝑖(𝑡) = 𝑘 (𝑦2𝑁+2𝑖−1 − ∑ 𝑦2𝑛−1  sin(𝛽𝑛 𝑣𝑡)

𝑁

𝑛=1

) + 𝑐 (𝑦2𝑁+2𝑖 − ∑ 𝑦2𝑛  sin(𝛽𝑛 𝑣𝑡)

𝑁

𝑛=1

) 

(B.6) 

𝑦̇2𝑛−1 = 𝑤̇𝑡𝑛(𝑡) 
𝑦̇2𝑛−1 = 𝑦2𝑛 

(B.7) 

𝑤̈𝑡𝑛(𝑡) + 𝜔𝑛
2 𝑤𝑡𝑛(𝑡) = ∑ 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖

𝑖

(𝑡) 

𝑦̇2𝑛 = ∑ 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖

𝑖

(𝑡) − 𝜔𝑛
2 𝑦2𝑛−1 

(B.8) 

𝑦̇2𝑁+2𝑖−1 = 𝑢̇𝑖(𝑡) 
𝑦̇2𝑁+2𝑖−1 = 𝑦2𝑁+2𝑖 

(B.9) 

𝑚𝑢̈(𝑡) = 𝑚𝑔 − 𝑄(𝑡) 

𝑦̇2𝑁+2𝑖 = −
1

𝑚
∑ 𝑄𝑖(𝑡)

𝑖

+ 𝑔 (B.10) 

𝑤𝑡𝑛(0) = 0 𝑦2𝑛−1,0 = 0 

𝑤̇𝑡𝑛(0) = 0 𝑦2𝑛,0 = 0 

𝑢(0) =
𝑚𝑔

2𝑘
 𝑦2𝑁+4𝑖−3,0 =

𝑚𝑔

2𝑘
 

𝑢̇(0) = 0 𝑦2𝑁+4𝑖−2,0 = 0 
 

(B.11) 
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Moving oscillator with rotational inertia 
Also this model can be expanded with more degrees of freedom. The next model consists 
of moving oscillators with rotational inertia. Equations B.12 shows the definition of the 
vector 𝑦, which is expanded with the rotation of the vehicle(s). Equations B.13 and B.14 
specify the value for the forces between the bridge and vehicle. Equations B.15-B.20 
specify every value for the time derivative of 𝑦, and B.21 shows the initial conditions.  
 

𝑤𝑡1(𝑡) = 𝑦1 
𝑤̇𝑡1(𝑡) = 𝑦2 
𝑤̈𝑡1(𝑡) = 𝑦̇2 

𝑢1(𝑡) = 𝑦2𝑁+1 
𝑢̇1(𝑡) = 𝑦2𝑁+2 
𝑢̈1(𝑡) = 𝑦̇2𝑁+2 

𝜃1(𝑡) = 𝑦2𝑁+3 
𝜃̇1(𝑡) = 𝑦2𝑁+4 
𝜃̈1(𝑡) = 𝑦̇2𝑁+4 

⋮ ⋮ ⋮ 
𝑤𝑡𝑛(𝑡) = 𝑦2𝑛−1 

𝑤̇𝑡𝑛(𝑡) = 𝑦2𝑛 
𝑤̈𝑡𝑛(𝑡) = 𝑦̇2𝑛 

𝑢𝑖(𝑡) = 𝑦2𝑁+4𝑖−3 
𝑢̇𝑖(𝑡) = 𝑦2𝑁+4𝑖−2 
𝑢̈𝑖(𝑡) = 𝑦̇2𝑁+4𝑖−2 

𝜃𝑖(𝑡) = 𝑦2𝑁+4𝑖−1 
𝜃̇𝑖(𝑡) = 𝑦2𝑁+4𝑖 
𝜃̈𝑖(𝑡) = 𝑦̇2𝑁+4𝑖 

⋮ ⋮ ⋮ 
𝑤𝑡𝑁(𝑡) = 𝑦2𝑁−1 

𝑤̇𝑡𝑁(𝑡) = 𝑦2𝑁 
𝑤̈𝑡𝑁(𝑡) = 𝑦̇2𝑁 

𝑢𝐼(𝑡) = 𝑦2𝑁+4𝐼−3 
𝑢̇𝐼(𝑡) = 𝑦2𝑁+4𝐼−2 
𝑢̈𝐼(𝑡) = 𝑦̇2𝑁+4𝐼−2 

𝜃𝐼(𝑡) = 𝑦2𝑁+4𝐼−1 
𝜃̇𝐼(𝑡) = 𝑦2𝑁+4𝐼 
𝜃̈𝐼(𝑡) = 𝑦̇2𝑁+4𝐼 

 

(B.12) 

𝑄𝑖𝐿(𝑡) = 𝑘 (𝑢𝑖(𝑡) +
1

2
𝑏 𝜃𝑖(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖 − 𝑏)

𝑁

𝑛=1

)

+ 𝑐 (𝑢̇𝑖(𝑡) +
1

2
𝑏 𝜃̇𝑖(𝑡) − ∑ 𝑤̇𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖 − 𝑏)

𝑁

𝑛=1

) 

𝑄𝑖𝐿(𝑡) = 𝑘 (𝑦2𝑁+4𝑖−3(𝑡) +
1

2
𝑏 𝑦2𝑁+4𝑖−1(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖 − 𝑏)

𝑁

𝑛=1

)

+ 𝑐 (𝑦2𝑁+4𝑖−2 +
1

2
𝑏 𝑦2𝑁+4𝑖 − ∑ 𝑤̇𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖 − 𝑏)

𝑁

𝑛=1

) 

(B.13) 

𝑄𝑖𝑅(𝑡) = 𝑘 (𝑢𝑖(𝑡) −
1

2
𝑏 𝜃𝑖(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖)

𝑁

𝑛=1

)

+ 𝑐 (𝑢̇𝑖(𝑡) −
1

2
𝑏 𝜃̇𝑖(𝑡) − ∑ 𝑤̇𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖)

𝑁

𝑛=1

) 

𝑄𝑖𝑅(𝑡) = 𝑘 (𝑦2𝑁+4𝑖−3(𝑡) −
1

2
𝑏 𝑦2𝑁+4𝑖−1(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖)

𝑁

𝑛=1

)

+ 𝑐 (𝑦2𝑁+4𝑖−2 −
1

2
𝑏 𝑦2𝑁+4𝑖 − ∑ 𝑤̇𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖)

𝑁

𝑛=1

) 

(B.14) 

𝑦̇2𝑛−1 = 𝑤̇𝑡𝑛(𝑡) 
𝑦̇2𝑛−1 = 𝑦2𝑛 

(B.15) 
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𝑤̈𝑡𝑛(𝑡) + 𝜔𝑛
2 𝑤𝑡𝑛(𝑡) = ∑(𝑓𝑛(𝑣𝑡 − 𝑠𝑖 − 𝑏) ⋅ 𝑄𝑖𝐿(𝑡) + 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖𝑅(𝑡))

𝑖

 

𝑦̇2𝑛 = ∑(𝑓𝑛(𝑣𝑡𝑖 − 𝑏) ⋅ 𝑄𝑖𝐿(𝑡) + 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖𝑅(𝑡))

𝑖

− 𝜔𝑛
2 𝑦2𝑛−1 

(B.16) 

𝑦̇2𝑁+4𝑖−3 = 𝑢̇𝑖(𝑡) 
𝑦̇2𝑁+4𝑖−3 = 𝑦2𝑁+4𝑖 

(B.17) 

𝑚𝑢̈(𝑡) = 𝑚𝑔 − 𝑄𝐿(𝑡) − 𝑄𝑅(𝑡) 

𝑦̇2𝑁+2𝑖 = −
1

𝑚
∑(𝑄𝑖𝐿(𝑡) + 𝑄𝑖𝑅(𝑡))

𝑖

+ 𝑔 (B.18) 

𝑦̇2𝑁+4𝑖−1 = θ̇(𝑡) 
𝑦̇2𝑁+4𝑖−1 = 𝑦2𝑁+4𝑖 

(B.19) 

𝐽θ̈(𝑡) =
𝑏

2
(−𝑄𝑖𝐿(𝑡) + 𝑄𝑖𝑅(𝑡)) 

𝑦̇2𝑁+4𝑖 =
𝑏

2𝐽
(−𝑄𝑖𝐿(𝑡) + 𝑄𝑖𝑅(𝑡)) 

(B.20) 

𝑤𝑡𝑛(0) = 0 𝑦2𝑛−1,0 = 0 

𝑤̇𝑡𝑛(0) = 0 𝑦2𝑛,0 = 0 

𝑢(0) =
𝑚𝑔

2𝑘
 𝑦2𝑁+4𝑖−3,0 =

𝑚𝑔

2𝑘
 

𝑢̇(0) = 0 𝑦2𝑁+4𝑖−2,0 = 0 

θ(0) = 0 𝑦2𝑁+4𝑖−1,0 = 0 

θ̇(0) = 0 𝑦2𝑁+4𝑖,0 = 0 
 

(B.21) 
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Moving oscillator with six degrees of freedom 
The final and most complex model consists of moving oscillators on the bridge, with six 
degrees of freedom and a bilinear spring stiffness between the wheels and the bridge. 
This way, a force can only be applied in compression and the wheel can come loose from 
the beam. Equations B.22 shows the definition of the vector 𝑦, which is expanded with 
the deflection of all parts of the vehicle. Equations B.23-B.28 specify the value for the 
forces between the beam and vehicle and the forces within the vehicle itself. Equations 
B.29-B.42 specify every value for the time derivative of 𝑦, and B.43 show the initial 
conditions.  
 

𝑤𝑡1(𝑡) = 𝑦1 
𝑤̇𝑡1(𝑡) = 𝑦2 

𝑢1,1(𝑡) = 𝑦2𝑁+1 
𝑢̇1,1(𝑡) = 𝑦2𝑁+2 

𝜃1(𝑡) = 𝑦2𝑁+3 
𝜃̇1(𝑡) = 𝑦2𝑁+4 

⋮ ⋮ ⋮ 
𝑤𝑡𝑛(𝑡) = 𝑦2𝑛−1 

𝑤̇𝑡𝑛(𝑡) = 𝑦2𝑛 
𝑢𝑖,1(𝑡) = 𝑦2𝑁+12𝑖−11 
𝑢̇𝑖,1(𝑡) = 𝑦2𝑁+12𝑖−10 

𝜃𝑖(𝑡) = 𝑦2𝑁+12𝑖−9 
𝜃̇𝑖(𝑡) = 𝑦2𝑁+12𝑖−8 

⋮ ⋮ ⋮ 
𝑤𝑡𝑁(𝑡) = 𝑦2𝑁−1 

𝑤̇𝑡𝑁(𝑡) = 𝑦2𝑁 
𝑢𝐼,1(𝑡) = 𝑦2𝑁+12𝐼−11 
𝑢̇𝐼,1(𝑡) = 𝑦2𝑁+12𝐼−10 

𝜃𝐼(𝑡) = 𝑦2𝑁+12𝐼−9 
𝜃̇𝐼(𝑡) = 𝑦2𝑁+12𝐼−8 

 
𝑢1,2𝐿(𝑡) = 𝑦2𝑁+5 
𝑢̇1,2𝐿(𝑡) = 𝑦2𝑁+6 

𝑢1,2𝑅(𝑡) = 𝑦2𝑁+7 
𝑢̇1,2𝑅(𝑡) = 𝑦2𝑁+8 

⋮ ⋮ 
𝑢𝑖,2𝐿(𝑡) = 𝑦2𝑁+12𝑖−7 

𝑢̇𝑖,2𝐿(𝑡) = 𝑦2𝑁+12𝑖−6 

𝑢𝑖,2𝑅(𝑡) = 𝑦2𝑁+12𝑖−5 

𝑢̇𝑖,2𝑅(𝑡) = 𝑦2𝑁+12𝑖−4 

⋮ ⋮ 
𝑢𝐼,2𝐿(𝑡) = 𝑦2𝑁+12𝐼−7 
𝑢̇𝐼,2𝐿(𝑡) = 𝑦2𝑁+12𝐼−6 

𝑢𝐼,2𝑅(𝑡) = 𝑦2𝑁+12𝐼−5 
𝑢̇𝐼,2𝑅(𝑡) = 𝑦2𝑁+12𝐼−4 

 
𝑢1,3𝐿(𝑡) = 𝑦2𝑁+9 
𝑢̇1,3𝐿(𝑡) = 𝑦2𝑁+10 

𝑢1,3𝑅(𝑡) = 𝑦2𝑁+11 
𝑢̇1,3𝑅(𝑡) = 𝑦2𝑁+12 

⋮ ⋮ 
𝑢𝑖,3𝐿(𝑡) = 𝑦2𝑁+12𝑖−3 
𝑢̇𝑖,3𝐿(𝑡) = 𝑦2𝑁+12𝑖−2 

𝑢𝑖,3𝑅(𝑡) = 𝑦2𝑁+12𝑖−1 
𝑢̇𝑖,3𝑅(𝑡) = 𝑦2𝑁+12𝑖 

⋮ ⋮ 
𝑢𝐼,3𝐿(𝑡) = 𝑦2𝑁+12𝐼−3 
𝑢̇𝐼,3𝐿(𝑡) = 𝑦2𝑁+12𝐼−2 

𝑢𝐼,3𝑅(𝑡) = 𝑦2𝑁+12𝐼−1 
𝑢̇𝐼,3𝑅(𝑡) = 𝑦2𝑁+12𝐼 

 

(B.22) 
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𝑄𝑖,1𝐿(𝑡) = 𝑘1 (𝑢𝑖,1(𝑡) +
1

2
𝑏 𝜃𝑖(𝑡) − 𝑢𝑖,2𝐿) + 𝑐1 (𝑢̇𝑖,1(𝑡) +

1

2
𝑏 𝜃̇𝑖(𝑡) − 𝑢̇𝑖,2𝐿) 

𝑄𝑖,1𝐿(𝑡) = 𝑘1 (𝑦2𝑁+12𝑖−11 +
1

2
𝑏 𝑦2𝑁+12𝑖−9 − 𝑦2𝑁+12𝑖−7)

+ 𝑐1 (𝑦2𝑁+12𝑖−10 +
1

2
𝑏 𝑦2𝑁+12𝑖−8 − 𝑦2𝑁+12𝑖−6) 

(B.23) 

𝑄𝑖,1𝑅(𝑡) = 𝑘1 (𝑢𝑖,1(𝑡) −
1

2
𝑏 𝜃𝑖(𝑡) − 𝑢𝑖,2𝑅) + 𝑐1 (𝑢̇𝑖,1(𝑡) −

1

2
𝑏 𝜃̇𝑖(𝑡) − 𝑢̇𝑖,2𝑅) 

𝑄𝑖,1𝑅(𝑡) = 𝑘1 (𝑦2𝑁+12𝑖−11 −
1

2
𝑏 𝑦2𝑁+12𝑖−9 − 𝑦2𝑁+12𝑖−5)

+ 𝑐1 (𝑦2𝑁+12𝑖−10 −
1

2
𝑏 𝑦2𝑁+12𝑖−8 − 𝑦2𝑁+12𝑖−4) 

(B.24) 

𝑄𝑖,2𝐿 = 𝑘2(𝑢𝑖,2𝐿 − 𝑢𝑖,3𝐿) + 𝑐2(𝑢̇𝑖,2𝐿 − 𝑢̇𝑖,3𝐿) 

𝑄𝑖,2𝐿 = 𝑘2(𝑦2𝑁+12𝑖−7 − 𝑦2𝑁+12𝑖−3) + 𝑐2(𝑦2𝑁+12𝑖−6 − 𝑦2𝑁+12𝑖−2) 
(B.25) 

𝑄𝑖,2𝑅 = 𝑘2(𝑢𝑖,2𝑅 − 𝑢𝑖,3𝑅) + 𝑐2(𝑢̇𝑖,2𝑅 − 𝑢̇𝑖,3𝑅) 

𝑄𝑖,2𝑅 = 𝑘2(𝑦2𝑁+12𝑖−5 − 𝑦2𝑁+12𝑖−1) + 𝑐2(𝑦2𝑁+12𝑖−4 − 𝑦2𝑁+12𝑖) 
(B.26) 

𝑄𝑖,3𝐿 = 𝑘3 (𝑢𝑖,3𝐿(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖 − 𝑏)

𝑁

𝑛=1

)  

⋅ 𝐻 (𝑢𝑖,3𝐿(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖 − 𝑏)

𝑁

𝑛=1

) 

𝑄𝑖,3𝐿 = 𝑘3 (𝑦2𝑁+12𝑖−3 − ∑ 𝑦2𝑛−1  sin(𝛽𝑛 (𝑣𝑡𝑖 − 𝑏))

𝑁

𝑛=1

)  

⋅ 𝐻 (𝑦2𝑁+12𝑖−3 − ∑ 𝑦2𝑛−1  sin(𝛽𝑛 (𝑣𝑡𝑖 − 𝑏))

𝑁

𝑛=1

) 

(B.27) 

𝑄𝑖,3𝑅 = 𝑘3 (𝑢𝑖,3𝑅(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖)

𝑁

𝑛=1

) ⋅ 𝐻 (𝑢𝑖,3𝑅(𝑡) − ∑ 𝑤𝑡𝑛(𝑡) 𝑤𝑥𝑛(𝑣𝑡𝑖)

𝑁

𝑛=1

) 

𝑄𝑖,3𝑅 = 𝑘3 (𝑦2𝑁+12𝑖−1 − ∑ 𝑦2𝑛−1  sin(𝛽𝑛 (𝑣𝑡𝑖 − 𝑏))

𝑁

𝑛=1

) 

⋅ 𝐻 (𝑦2𝑁+12𝑖−1 − ∑ 𝑦2𝑛−1  sin(𝛽𝑛 (𝑣𝑡𝑖))

𝑁

𝑛=1

) 

(B.28) 
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𝑦̇2𝑛−1 = 𝑤̇𝑡𝑛(𝑡) 
𝑦̇2𝑛−1 = 𝑦2𝑛 

(B.29) 

𝑤̈𝑡𝑛(𝑡) + 𝜔𝑛
2 𝑤𝑡𝑛(𝑡) = ∑ (𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖,3𝐿(𝑡) + 𝑓𝑛(𝑣𝑡𝑖) ⋅ 𝑄𝑖,3𝑅(𝑡))

𝑖

 

𝑦̇2𝑛 = ∑ (𝑓𝑛(𝑣𝑡 − 𝑠𝑖 − 𝑏) ⋅ 𝑄𝑖,3𝐿(𝑡) + 𝑓𝑛(𝑣𝑡 − 𝑠𝑖) ⋅ 𝑄𝑖,3𝑅(𝑡))

𝑖

− 𝜔𝑛
2 𝑦2𝑛−1 

(B.30) 

𝑦̇2𝑁+12𝑖−11 = 𝑢̇𝑖(𝑡) 
𝑦̇2𝑁+12𝑖−11 = 𝑦2𝑁+12𝑖 

(B.31) 

𝑚1𝑢̈𝑖,1(𝑡) = 𝑚1𝑔 − 𝑄𝑖,1𝐿(𝑡) − 𝑄𝑖,1𝑅(𝑡) 

𝑦̇2𝑁+12𝑖−10 = −
1

𝑚1
(𝑄𝑖,1𝐿(𝑡) + 𝑄𝑖,1𝑅(𝑡)) + 𝑔 

(B.32) 

𝑦̇2𝑁+12𝑖−9 = 𝜃̇𝑖(𝑡) 
𝑦̇2𝑁+12𝑖−9 = 𝑦2𝑁+12𝑖−8 

(B.33) 

𝐽θ̈𝑖(𝑡) =
𝑏

2
(−𝑄𝑖,1𝐿(𝑡) + 𝑄𝑖,1𝑅(𝑡)) 

𝑦̇2𝑁+12𝑖−8 =
𝑏

2𝐽
(−𝑄𝑖,1𝐿(𝑡) + 𝑄𝑖,1𝑅(𝑡)) 

(B.34) 

𝑦̇2𝑁+12𝑖−7 = 𝑢̇𝑖,2𝐿(𝑡) 

𝑦̇2𝑁+12𝑖−7 = 𝑦2𝑁+12𝑖−6 
(B.35) 

𝑚2𝑢̈𝑖,2𝐿 = 𝑚2𝑔 + 𝑄𝑖,1𝐿 − 𝑄𝑖,2𝐿 

𝑦̇2𝑁+12𝑖−6 =
1

𝑚2
(𝑄𝑖,1𝐿 − 𝑄𝑖,2𝐿) + 𝑔 

(B.36) 

𝑦̇2𝑁+12𝑖−5 = 𝑢̇𝐼,2𝑅(𝑡) 

𝑦̇2𝑁+12𝑖−5 = 𝑦2𝑁+12𝑖−4 
(B.37) 

𝑚2𝑢̈𝑖,2𝑅 = 𝑚2𝑔 + 𝑄𝑖,1𝑅 − 𝑄𝑖,2𝑅 

𝑦̇2𝑁+12𝑖−4 =
1

𝑚2
(𝑄𝑖,1𝑅 − 𝑄𝑖,2𝑅) + 𝑔 

(B.38) 

𝑦̇2𝑁+12𝑖−3 = 𝑢̇𝑖,3𝐿(𝑡) 

𝑦̇2𝑁+12𝑖−3 = 𝑦2𝑁+12𝑖−2 
(B.39) 

𝑚3𝑢̈𝑖,3𝐿 = 𝑚3𝑔 + 𝑄𝑖,2𝐿 − 𝑄𝑖,3𝐿 

𝑦̇2𝑁+12𝑖−2 =
1

𝑚3
(𝑄𝑖,2𝐿 − 𝑄𝑖,3𝐿) + 𝑔 

(B.40) 

𝑦̇2𝑁+12𝑖−1 = 𝑢̇𝑖,3𝑅(𝑡) 

𝑦̇2𝑁+12𝑖−1 = 𝑦2𝑁+12𝑖 
(B.41) 

𝑚3𝑢̈𝑖,3𝑅 = 𝑚3𝑔 + 𝑄𝑖,2𝑅 − 𝑄𝑖,3𝑅 

𝑦̇2𝑁+12𝑖 =
1

𝑚3
(𝑄𝑖,2𝑅 − 𝑄𝑖,3𝑅) + 𝑔 

(B.42) 
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𝑤𝑡𝑛(0) = 𝑦2𝑛−1,0 = 0 
𝑤̇𝑡𝑛(0) = 𝑦2𝑛,0 = 0 

𝑢𝑖,1(0) = 𝑦2𝑁+12𝑖−11,0 = (
𝑚1 + 2𝑚2 + 2𝑚3

2𝑘3
+

𝑚1 + 2𝑚2

2𝑘2
+

𝑚1

2𝑘1
) 𝑔 

𝑢̇𝑖,1(0) = 𝑦2𝑁+12𝑖−10,0 = 0 
θi(0) = 𝑦2𝑁+12𝑖−9,0 = 0 

θ̇𝑖(0) = 𝑦2𝑁+12𝑖−8,0 = 0 
 

𝑢𝑖,2𝐿(0) = 𝑦2𝑁+12𝑖−7,0 = (
𝑚1 + 2𝑚2 + 2𝑚3

2𝑘3
+

𝑚1 + 2𝑚2

2𝑘2
) 𝑔 

𝑢̇𝑖,2𝐿(0) = 𝑦2𝑁+12𝑖−6,0 = 0 

 

𝑢𝑖,2𝑅(0) = 𝑦2𝑁+12𝑖−5,0 = (
𝑚1 + 2𝑚2 + 2𝑚3

2𝑘3
+

𝑚1 + 2𝑚2

2𝑘2
) 𝑔 

𝑢̇𝑖,2𝑅(0) = 𝑦2𝑁+12𝑖−4,0 = 0 

 

𝑢𝑖,3𝐿(0) = 𝑦2𝑁+12𝑖−3,0 =
𝑚1 + 2𝑚2 + 2𝑚3

2𝑘3
𝑔 

𝑢̇𝑖,3𝐿(0) = 𝑦2𝑁+12𝑖−2,0 = 0 

 

𝑢𝑖,3𝑅(0) = 𝑦2𝑁+12𝑖−1,0 =
𝑚1 + 2𝑚2 + 2𝑚3

2𝑘3
𝑔 

𝑢̇𝑖,3𝑅(0) = 𝑦2𝑁+12𝑖,0 = 0 
 

(B.43) 
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Appendix C: Python code 

Import packages 
from numpy import * 

from scipy.integrate import * 

from scipy.interpolate import UnivariateSpline 

from matplotlib.pyplot import * 

%matplotlib inline 

from mpl_toolkits.mplot3d import Axes3D 

from datetime import * 

General values 
g  =   9.810    # m/s**2 

 

# Bridge 1 

l  =   6.000    # m 

EI =   3.332e9  # Nm**2 

ρA =   8.830e3  # kg/m 

C  =   2.480e-2 # - 

# Bridge 2 

l  =  12.000    # m 

EI =  12.546e9  # Nm**2 

ρA =  12.300e3  # kg/m 

C  =   2.060e-2 # - 

# Bridge 3 

l  =  24.000    # m 

EI =  53.380e9  # Nm**2 

ρA =  19.300e3  # kg/m 

C  =   1.500e-2 # - 

# Bridge 4 

l  =  36.000    # m 

EI = 172.200e9  # Nm**2 

ρA =  17.000e3  # kg/m 

C  =   0.500e-2 # - 

 

# Vehicle 

v  =  50.000    # m/s 

b  =  17.400    # m 

wagon=24.900    # m 

m1 =  15.600e3  # kg 

m2 =   3.200e3  # kg 

m3 =   6.000e3  # kg 

k1 =   1.200e6  # N/m 

k2 =   4.400e6  # N/m 

k3 =   1.270e9  # N/m 

c1 =  34.440e3  # Ns/m 

c2 =  52.210e3  # Ns/m 

 

π=pi 

ρAl=ρA*l 

s=array([0*wagon,0*wagon+b,1*wagon,1*wagon+b,2*wagon,2*wagon+b,3*wagon,

3*wagon+b,4*wagon,4*wagon+b,5*wagon,5*wagon+b,6*wagon,6*wagon+b,7*wagon

,7*wagon+b]) 

p=500 

n_max=10 

t=linspace(0,(l+s.max())/v,p) 

x=linspace(0,l,p) 
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General functions 
def ẞ(n): 

    return n*π/l 

def ẞ2(n): 

    return (n*π/l)**2 

def ω(n): 

    return(EI/ρA)**0.5*(n*π/l)**2 

def ω2(n): 

    return(EI/ρA)*(n*π/l)**4 

 

def H(x): 

    return heaviside(x,1) 

 

def solve(model,tol=1.49012e-8): 

    t1=datetime.now() 

    wt=odeint(model,y0,t,rtol=tol,atol=tol) 

    w=zeros((p,p)) 

    for n in arange(1,n_max+1): 

        for i in range(p): 

            for j in range(p): 

                w[i,j]=w[i,j]+sin(ẞ(n)*x[i])*wt[j,2*n-2] 

    t2=datetime.now() 

    print('∆t =',t2-t1) 

    print() 

    print('w max =',round(1000*w.max(),9),'mm') 

     

    M=0 

    for j in range(p): 

        y_spl=UnivariateSpline(x,w[:,j],s=0,k=4) 

        x_range=linspace(x[0],x[-1],p) 

        y_spl_2d=y_spl.derivative(n=2) 

        if y_spl_2d(x_range).min()<M: M=y_spl_2d(x_range).min() 

    M=M*-EI 

    print('M max =',round(M/10**6,9),'kNm') 

    u=np.zeros(p) 

 

    if len(y0)==2*n_max+2*len(s): 

        u=zeros((p,len(s))) 

        for i in range(len(s)): 

            u[:,i]=wt[:,2*n_max+2*i]-wt[0,2*n_max] 

        print('u max =',round(1000*u.max(),9),'mm') 

         

    elif len(y0)==2*n_max+4*len(s): 

        u=zeros((p,2*len(s))) 

        for i in range(len(s)): 

            u[:,2*i+1]=wt[:,2*n_max+4*i]-wt[0,2*n_max+4*i]+1/2*b*wt[:,2

*n_max+4*i+2] 

            u[:,2*i]=wt[:,2*n_max+4*i]-wt[0,2*n_max+4*i]-1/2*b*wt[:,2*n

_max+4*i+2] 

        print('u max =',round(1000*u.max(),9),'mm') 

         

    elif len(y0)==2*n_max+12*len(s): 

        u=zeros((p,2*len(s))) 

        for i in range(len(s)): 

            u[:,2*i+1]=wt[:,2*n_max+12*i]-wt[0,2*n_max+12*i]+1/2*b*wt[:

,2*n_max+12*i+2] 

            u[:,2*i]=wt[:,2*n_max+12*i]-wt[0,2*n_max+12*i]-1/2*b*wt[:,2

*n_max+12*i+2] 
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        print('u max =',round(1000*u.max(),9),'mm') 

     

    if u.max()>0: 

        a=0 

        for i in range(len(u[0])): 

            y_spl=UnivariateSpline(t,u[:,i],s=0,k=4) 

            t_range=linspace(t[0],t[-1],1000) 

            y_spl_2d=y_spl.derivative(n=2) 

            aabs=abs(y_spl_2d(t_range)) 

            if a<aabs.max():a=aabs.max() 

 

        print('a max =',round(1000*a,9),'mm/s2') 

     

    return w,u,wt 

 

def plotbeamovertime(t,w,X=l/2): 

    figure(figsize=(16,9)) 

    plot(t,w[int(p*X/l)-1]*1000,linewidth=2) 

    if X==l/2:title('Deflection at the middle of the beam',fontsize=22) 

    else:title('Deflection at x = '+str(round(X,1))+str(' m'),fontsize=

22) 

    xlabel('t (s)',fontsize=20) 

    ylabel('w (mm)',fontsize=20) 

    tick_params(labelsize=15) 

    gca().invert_yaxis() 

    grid(True); 

 

def plotbeam2D(x,w,T=l/v): 

    figure(figsize=(16,9)) 

    plot(x,w[:,int(p/2-1)]*1000,linewidth=2) 

    title('Deflection at t = '+str(round(T,2))+str(' s'),fontsize=22) 

    xlabel('t (s)',fontsize=20) 

    ylabel('w (mm)',fontsize=20) 

    tick_params(labelsize=15) 

    gca().invert_yaxis() 

    grid(True); 

     

def plotbeam3D(x,t,w,count=100): 

    T,X=meshgrid(t,x) 

    fig=figure(figsize=(25,20)) 

    ax=fig.add_subplot(111,projection='3d') 

    Axes3D.plot_surface(ax,T,X,1000*w,rcount=p,ccount=count,cmap=cm.hsv

,antialiased=False) 

    ax.set_xlabel('t (s)',fontsize=30,fontstyle='oblique',labelpad=20) 

    ax.set_ylabel('x (m)',fontsize=30,fontstyle='oblique',labelpad=20) 

    ax.set_zlabel('w (mm)',fontsize=30,fontstyle='oblique',labelpad=20) 

    for x in ax.xaxis.get_major_ticks():x.label.set_fontsize(30) 

    for y in ax.yaxis.get_major_ticks():y.label.set_fontsize(30) 

    for z in ax.zaxis.get_major_ticks():z.label.set_fontsize(30) 

    ax.xaxis.pane.fill=False 

    ax.yaxis.pane.fill=False 

    ax.zaxis.pane.fill=False 

    title('Deflection of the beam',fontsize=30) 

    ax.invert_zaxis(); 

 

def plotvehicle(t,u): 

    figure(figsize=(16,9)); 

    title('Deflection of the vehicle',fontsize=22); 
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    xlabel('t (s)',fontsize=20); 

    ylabel('u (mm)',fontsize=20); 

    tick_params(labelsize=20); 

    gca().invert_yaxis(); 

    grid(True) 

    plot(t,1000*u,linewidth=2) 

    leg=[]   

    if len(u[0])==len(s): 

        for i in range(len(u[0])): 

            leg.append('s = '+str(round(s[i],1))+str(' m')) 

    elif len(u[0])==2*len(s): 

        if len(s)==1: 

            leg.append('front wheel') 

            leg.append('rear wheel') 

        else: 

            for i in range(len(s)): 

                leg.append('wagon '+str(i+1)+str(', front wheel')) 

                leg.append('wagon '+str(i+1)+str(', rear wheel')) 

    legend(leg,fontsize=20,loc='lower right',shadow=True,facecolor='whi

te'); 

 

def flyingwheel(wt): 

    figure(figsize=(16,9)); 

    title('Deflection of the front wheel after passing the bridge',font

size=22); 

    xlabel('t (s)',fontsize=20); 

    ylabel('u (µm)',fontsize=20); 

    tick_params(labelsize=20); 

    gca().invert_yaxis(); 

    grid(True) 

    u=wt[:,2*n_max+10]-wt[0,2*n_max+10] 

    plot(t[t>l/v],10**6*(u[t>l/v])); 

 

def compare(x,w,wref,Title='Comparison',Ylabel='Sum of errors over time

'): 

    dwx=zeros(p) 

    wgx=zeros(p) 

    dw=abs(w-wref) 

    for j in range(p): 

        dwx[j]=sum(dw[j,:]) 

        wgx[j]=sum(abs(wG[j,:])) 

    fig,ax=subplots(figsize=(16,9)) 

    ax.yaxis.offsetText.set_fontsize(15) 

    plot(x[1:-1],dwx[1:-1]/wgx[1:-1],linewidth=2) 

    title(Title,fontsize=22) 

    xlabel('x (m)',fontsize=20) 

    ylabel(Ylabel,fontsize=20) 

    tick_params(labelsize=15) 

    ticklabel_format(style='sci', axis='y', scilimits=(0,0)) 

    xlim(0) 

    ylim(0) 

    grid(True); 

    print('Sum of all errors:', sum(dwx[1:-1]/wgx[1:-1])) 
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Solution of Graff 
m=m1/2+m2+m3 

Q=m*g 

 

def Graff(): 

    t1=datetime.now() 

    w=zeros((p,p)) 

 

    for n in range(1,n_max+1): 

        for i in range(p): 

            for j in range(p): 

                w[i,j]=w[i,j]+sin(ẞ(n)*x[i])/(ω(n)*(ẞ2(n)*v**2-ω2(n)))*

(ẞ(n)*v*sin(ω(n)*t[j])-ω(n)*sin(ẞ(n)*v*t[j])) 

     

    w=w*2*Q/ρAl 

    t2=datetime.now() 

    print('∆t =',t2-t1) 

    print() 

    print('w max =',round(1000*w.max(),9),'mm') 

     

    M=0 

    for j in range(p): 

        y_spl=UnivariateSpline(x,w[:,j],s=0,k=4) 

        x_range=linspace(x[0],x[-1],p) 

        y_spl_2d=y_spl.derivative(n=2) 

        if y_spl_2d(x_range).min()<M: M=y_spl_2d(x_range).min() 

    M=M*-EI 

    print('M max =',round(M/10**6,9),'kNm') 

     

    return w 

 

w=Graff() 

Moving point load model 
s=array([0,b]) 

y0=np.zeros(n_max*2) 

m=m1/2+m2+m3 

 

def model0(y,t): 

     

    def f(n,t,i,b=0): 

        return 2/ρAl*sin(ẞ(n)*(v*t-s[i]-b))*H(v*t-s[i]-b)*H(l-v*t+s[i]+

b) 

    def Q(t,i): 

        return m*g 

    def fQ(n,t): 

        result=zeros(len(s)) 

        for i in range(len(s)): 

            result[i]=f(n,t,i)*Q(t,i) 

        return result.sum()     

     

    ydot=np.zeros(len(y)) 

    for n in arange(1,n_max+1): 

        ydot[2*n-2]=y[2*n-1] 

        ydot[2*n-1]=fQ(n,t)-ω2(n)*y[2*n-2]-2*C*ω(n)*y[2*n-1]*0 

    return ydot 

 

w,u,wt=solve(model0) 
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Moving oscillator 
s=array([0,b]) 

 

m=m1/2+m2+m3 

k=(1/k1+1/4/k2+1/4/k3)**-1 

c=(1/c1+1/4/c2)**-1 

 

y0=np.zeros(2*n_max+2*len(s)) 

for i in range(len(s)): 

    y0[2*n_max+2*i]=m*g/k 

 

def model1(y,t): 

     

    def wtwx(t,s=0): 

        wtwx=zeros(n_max) 

        for n in arange(1,n_max+1): 

            wtwx[n-1]=y[2*n-2]*sin(ẞ(n)*(v*t-s))*H(v*t-s)*H(l-v*t+s) 

        return wtwx.sum() 

     

    def wtdotwx(t,s=0): 

        wtdotwx=zeros(n_max) 

        for n in arange(1,n_max+1): 

            wtdotwx[n-1]=y[2*n-1]*sin(ẞ(n)*(v*t-s))*H(v*t-s)*H(l-v*t+s) 

        return wtdotwx.sum() 

     

    def f(n,t,i,b=0): 

        return 2/ρAl*sin(ẞ(n)*(v*t-s[i]-b))*H(v*t-s[i]-b)*H(l-v*t+s[i]+

b) 

     

    def Q(t,i): 

        return k*(y[2*n_max+2*i]-wtwx(t,s[i]))+c*(y[2*n_max+2*i+1]-wtdo

twx(t,s[i])) 

     

    def fQ(n,t): 

        result=zeros(len(s)) 

        for i in range(len(s)): 

            result[i]=f(n,t,i)*Q(t,i) 

        return result.sum() 

     

    ydot=zeros(len(y)) 

    for n in arange(1,n_max+1):     

        ydot[2*n-2]=y[2*n-1] 

        ydot[2*n-1]=fQ(n,t)-ω2(n)*y[2*n-2]-2*C*ω(n)*y[2*n-1] 

    for i in range(len(s)): 

        ydot[2*n_max+2*i]=y[2*n_max+2*i+1] 

        ydot[2*n_max+2*i+1]=-1/m*Q(t,i)+g 

    return ydot 

 

w,u,wt=solve(model1) 
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Moving oscillator with rotational inertia 
s=array([0]) 

 

m=m1+2*m2+2*m3 

J=1/12*m1*wagon**2+(m2+m3)*b**2/2 

k=(1/k1+1/4/k2+1/4/k3)**-1 

c=(1/c1+1/4/c2)**-1 

 

y0=np.zeros(2*n_max+4*len(s)) 

for i in range(len(s)): 

    y0[2*n_max+4*i]=1/2*m*g/k 

 

def model2(y,t): 

     

    def wtwx(t,s=0): 

        wtwx=zeros(n_max) 

        for n in arange(1,n_max+1): 

            wtwx[n-1]=y[2*n-2]*sin(ẞ(n)*(v*t-s))*H(v*t-s)*H(l-v*t+s) 

        return wtwx.sum() 

     

    def wtdotwx(t,s=0): 

        wtdotwx=zeros(n_max) 

        for n in arange(1,n_max+1): 

            wtdotwx[n-1]=y[2*n-1]*sin(ẞ(n)*(v*t-s))*H(v*t-s)*H(l-v*t+s) 

        return wtdotwx.sum() 

     

    def QL(t,i): 

        return k*(y[2*n_max+4*i]+1/2*b*y[2*n_max+4*i+2]-wtwx(t,s[i]+b))

+c*(y[2*n_max+4*i+1]+1/2*b*y[2*n_max+4*i+3]-wtdotwx(t,s[i]+b)) 

     

    def QR(t,i): 

        return k*(y[2*n_max+4*i]-1/2*b*y[2*n_max+4*i+2]-wtwx(t,s[i]))+c

*(y[2*n_max+4*i+1]-1/2*b*y[2*n_max+4*i+3]-wtdotwx(t,s[i])) 

         

    def f(n,t,i,b=0): 

        return 2/ρAl*sin(ẞ(n)*(v*t-s[i]-b))*H(v*t-s[i]-b)*H(l-v*t+s[i]+

b) 

     

    def fQ(n,t): 

        result=zeros(len(s)) 

        for i in range(len(s)): 

            result[i]=f(n,t,i,b)*QL(t,i)+f(n,t,i)*QR(t,i) 

        return result.sum() 

     

    ydot=zeros(len(y)) 

    for n in arange(1,n_max+1):     

        ydot[2*n-2]=y[2*n-1] 

        ydot[2*n-1]=fQ(n,t)-ω2(n)*y[2*n-2]-2*C*ω(n)*y[2*n-1] 

    for i in range(len(s)): 

        ydot[2*n_max+4*i]=y[2*n_max+4*i+1] 

        ydot[2*n_max+4*i+1]=-1/m*(QL(t,i)+QR(t,i))+g 

        ydot[2*n_max+4*i+2]=y[2*n_max+4*i+3] 

        ydot[2*n_max+4*i+3]=b/2/J*(-QL(t,i)+QR(t,i)) 

    return ydot 

 

w,u,wt=solve(model2) 
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Moving oscillator with six degrees of freedom 
s=array([0]) 

J=1/12*m1*wagon**2 

y0=np.zeros(2*n_max+12*len(s)) 

for i in range(len(s)): 

    y0[2*n_max+12*i]=(m1/2+m2+m3)/k3*g+(m1/2+m2)/k2*g+m1/2/k1*g 

    y0[2*n_max+12*i+4]=(m1/2+m2+m3)/k3*g+(m1/2+m2)/k2*g 

    y0[2*n_max+12*i+6]=(m1/2+m2+m3)/k3*g+(m1/2+m2)/k2*g 

    y0[2*n_max+12*i+8]=(m1/2+m2+m3)/k3*g 

    y0[2*n_max+12*i+10]=(m1/2+m2+m3)/k3*g 

 

def model6(y,t): 

    def wtwx(t,s=0): 

        wtwx=zeros(n_max) 

        for n in arange(1,n_max+1): 

            wtwx[n-1]=y[2*n-2]*sin(ẞ(n)*(v*t-s))*H(v*t-s)*H(l-v*t+s) 

        return wtwx.sum() 

    def Q1L(t,i):return k1*(y[2*n_max+12*i]+1/2*b*y[2*n_max+12*i+2]-y[2

*n_max+12*i+4])+c1*(y[2*n_max+12*i+1]+1/2*b*y[2*n_max+12*i+3]-y[2*n_max

+12*i+5]) 

    def Q1R(t,i):return k1*(y[2*n_max+12*i]-1/2*b*y[2*n_max+12*i+2]-y[2

*n_max+12*i+6])+c1*(y[2*n_max+12*i+1]-1/2*b*y[2*n_max+12*i+3]-y[2*n_max

+12*i+7]) 

    def Q2L(t,i):return k2*(y[2*n_max+12*i+4]-y[2*n_max+12*i+8])+c2*(y[

2*n_max+12*i+5]-y[2*n_max+12*i+9]) 

    def Q2R(t,i):return k2*(y[2*n_max+12*i+6]-y[2*n_max+12*i+10])+c2*(y

[2*n_max+12*i+7]-y[2*n_max+12*i+11]) 

    def Q3L(t,i):return k3*(y[2*n_max+12*i+8]-wtwx(t,s[i]+b))*H(y[2*n_m

ax+12*i+8]-wtwx(t,s[i]+b)) 

    def Q3R(t,i):return k3*(y[2*n_max+12*i+10]-wtwx(t,s[i]))*H(y[2*n_ma

x+12*i+10]-wtwx(t,s[i])) 

    def f(n,t,i,b=0):return 2/ρAl*sin(ẞ(n)*(v*t-s[i]-b))*H(v*t-s[i]-b)*

H(l-v*t+s[i]+b) 

    def fQ3(n,t): 

        result=zeros(len(s)) 

        for i in range(len(s)): 

            result[i]=f(n,t,i,b)*Q3L(t,i)+f(n,t,i)*Q3R(t,i) 

        return result.sum() 

    ydot=zeros(len(y)) 

    for n in arange(1,n_max+1): 

        ydot[2*n-2]=y[2*n-1] 

        ydot[2*n-1]=fQ3(n,t)-ω2(n)*y[2*n-2]-2*C*ω(n)*y[2*n-1] 

    for i in range(len(s)): 

        ydot[2*n_max+12*i]=y[2*n_max+12*i+1] 

        ydot[2*n_max+12*i+1]=1/m1*(-Q1L(t,i)-Q1R(t,i))+g 

        ydot[2*n_max+12*i+2]=y[2*n_max+12*i+3] 

        ydot[2*n_max+12*i+3]=b/2/J*(-Q1L(t,i)+Q1R(t,i)) 

        ydot[2*n_max+12*i+4]=y[2*n_max+12*i+5] 

        ydot[2*n_max+12*i+5]=1/m2*(Q1L(t,i)-Q2L(t,i))+g 

        ydot[2*n_max+12*i+6]=y[2*n_max+12*i+7] 

        ydot[2*n_max+12*i+7]=1/m2*(Q1R(t,i)-Q2R(t,i))+g 

        ydot[2*n_max+12*i+8]=y[2*n_max+12*i+9] 

        ydot[2*n_max+12*i+9]=1/m3*(Q2L(t,i)-Q3L(t,i))+g 

        ydot[2*n_max+12*i+10]=y[2*n_max+12*i+11] 

        ydot[2*n_max+12*i+11]=1/m3*(Q2R(t,i)-Q3R(t,i))+g 

    return ydot 

 

w,u,wt=solve(model6) 


