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Abstract—In this paper, we propose a learning-aided signal
processing solution for channel estimation in 5G new radio (NR).
Channel estimation is an important algorithm for baseband mo-
dem design. In 5G NR, estimating the channel is challenging due
to two reasons. First, the pilot signals are transmitted over a small
fraction of the available time-frequency resources. Second, the
real time nature of physical layer processing introduces a strict
limitation on the computational complexity of channel estimation.
To this end, we propose a channel estimation technique that
integrates a small one hidden layer neural network between two
linear minimum mean squared error (LMMSE) interpolation
blocks. While the neural network leverages the advantages of
offline data-driven learning, the LMMSE blocks exploit the
second order online channel statistics along time and frequency
dimensions. The training procedure tunes the weights of the
neural network by back-propagating through the time domain
LMMSE interpolation block. We derive bounds on the training
loss with the proposed method and show that our approach can
improve the channel estimate.

Index Terms—5G NR, deep learning, channel estimation.

I. INTRODUCTION

Modem baseband algorithms need to be carefully designed
in 5G new radio (NR) to realize physical layer operations at a
reduced complexity [1]. Channel estimation is an important
operation, as the estimated channel is used for subsequent
operations like equalization and interference whitening. Due
to the use of a large bandwidth in 5G NR, the number of
subcarriers is large and accordingly the frequency domain
channel has a high dimension. Estimating the channel is
challenging because the pilot signals, called demodulation
reference signals (DMRS), are only transmitted over a fraction
of subcarriers within the bandwidth [2]. In this case, the
high dimensional channel must be estimated from its subsam-
pled version in an orthogonal frequency division multiplexing
(OFDM) symbol duration. The channel estimation problem is
also complicated along the time dimension because DMRS are
transmitted in only a few OFDM symbols within each slot.

Prior work has investigated channel estimation from a sub-
sampled version of the time-frequency channel representation.
This includes linear or spline-based interpolation using the
channel estimates at the DMRS to predict the channel at the
other time-frequency locations [3]. An alternative approach
exploits the second order channel statistics along the frequency
and the time dimensions, in order to perform 2D-linear min-
imum mean squared error (LMMSE) interpolation [4]. Such
second order statistics can be estimated from reference signals

like the tracking reference signal (TRS) or the synchronization
signal block (SSB) which are transmitted periodically [5].
The 2D-LMMSE interpolation method has a high complexity,
which can be circumvented under the wide sense stationary
uncorrelated scattering (WSSUS) assumption on the channel
[4]. Under the WSSUS assumption, 2D-LMMSE interpola-
tion is equivalent to successively performing 1D-LMMSE
interpolations along the frequency and the time dimensions,
respectively [6].

Data-driven techniques based on neural networks can learn
the underlying statistics of the input distribution. These meth-
ods have been applied in communications to perform joint
time-frequency channel estimation. For instance, 2D con-
volutional neural network (CNN)-based channel refinement
techniques were proposed in [7] and [8]. A learning-aided least
squares technique was developed in [9]. Algorithms based
on recurrent neural network and ResNet were developed in
[10] and [11]. Most of the learning-based algorithms in prior
work, however, do not exploit the online channel statistics
available from TRS or SSB. A naive approach to solve this
problem is to concatenate the noisy channel features at the
input of the neural network with TRS or SSB measurements.
Adding additional input features from TRS or SSB increases
the dimensions of the input feature vector, that results in a
higher computational complexity at inference.

In this paper, we develop a network architecture that inte-
grates a single hidden layer neural network between the two
1D-LMMSE blocks that perform frequency and time domain
interpolations. The interpolation matrices in the 1D-LMMSE
blocks dynamically vary with the slot, and these matrices are
determined from TRS measurements. Our training procedure
accounts for this variation by back-propagating through the
1D-LMMSE block. The main contributions of this paper are:

1) We develop a low complexity network architecture that
exploits both the offline channel statistics and the online
channel statistics derived from TRS.

2) We derive an upper bound on the training loss with our
network. The bound depends on the mean squared error
(MSE) at the DMRS locations and the error due to 1D-
LMMSE-based time interpolation.

3) We use simulations to show that our algorithm
can achieve a gain against the baseline LMMSE
interpolation-based method for a moderate increase in
the computational complexity.
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II. PRELIMINARIES

We consider an NR system in the downlink where infor-
mation is transmitted over time-frequency resources called
resource elements (REs). Each RE corresponds to a single
subcarrier and a single OFDM symbol. A collection of Nsym

OFDM symbols constitute a slot of which Nctrl symbols
are configured for the control. A group of Nsc successive
subcarriers in a slot with the same precoding is called a
resource block (RB). Strictly speaking, in NR, an RB is just
defined as group of Nsc = 12 consecutive subcarriers. In
this paper, we assume that each RB has Nsc × Nsym REs
similar to the Long-Term Evolution (LTE) standard, as shown
in Fig. 1. We consider three types of REs for physical downlink
control channel (PDCCH), physical downlink shared channel
(PDSCH) and DMRS. The positions of DMRS REs depend on
the DMRS configuration which can be tuned in NR. We use
Ndmrs to denote the number of DMRS symbols in a slot, and
Nre,dmrs as the number of DMRS REs at a DMRS symbol in
an RB. While pilot signals are sent over the DMRS, data is
sent over PDSCH REs. This data can be detected and decoded
only after estimating the channel at PDSCH REs. To this end,
the channel at DMRS REs is first estimated using the received
channel measurements at DMRS REs. Then, an interpolation
technique is used to find the channel at PDSCH REs using the
channel estimates at DMRS REs.
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Fig. 1. The figure illustrates the concept of an RE and a RB. A
bundle is a group of RBs with the same precoding. Here, Nsym = 14,
Nctrl = 2 ,Nsc = 12, Ndmrs = 2, Nre,dmrs = 6 and bundle size= 2.

We consider a narrowband precoding scenario where the
precoding can vary across different bundles as shown in
Fig. 1. In this paper, we focus on estimating the channel
independently at every RB, i.e., the channel at PDSCH REs
in an RB is estimated using DMRS REs within the same RB.
This approach of channel estimation at the RB level can also
be used for different bundle sizes, e.g., 1, 2 or 4. The 2D-
LMMSE-based interpolation technique is a common approach
to estimate the channel at PDSCH REs [4]. Under the WSSUS
assumption on the channel, 2D-LMMSE-based interpolation is
equivalent to first performing frequency domain interpolation
at all the DMRS locations, and then performing time domain
interpolation at all the subcarriers [6]. A summary of this
procedure is shown in Fig. 2.

We now discuss an overview of 1D-LMMSE interpolation
along the frequency dimension (FD). We use hk,dmrs ∈
CNre,dmrs to represent the channel at the kth DMRS symbol
in a slot. For the DMRS configuration in Fig. 1, k ∈ {1, 2}.

The channel measurements obtained after despreading at these
DMRS REs is given by

rk,dmrs = hk,dmrs + vk, (1)

where vk is additive white Gaussian noise. Using the measure-
ments in (1), FD interpolation is first performed to compute
the channel ĥk at the kth DMRS symbol. We denote the
Nsc ×Nre,dmrs FD interpolation matrix as PFD to write

ĥk = PFDrk,dmrs. (2)

The coefficients in PFD are derived using an LMMSE es-
timator that incorporates the correlation in the frequency
domain channel, which is computed from the power delay
profile (PDP) [12]. For the exact details on the interpolation
coefficients used in this paper, we refer the interested reader
to [6]. After FD interpolation is performed at every DMRS
symbol, the Nsc ×Ndmrs matrix

ĤFDI = [ĥ1, ĥ2, · · · , ĥNdmrs
] (3)

is constructed as the output of the FD interpolation block.
Now, ĤFDI is used to perform interpolation along the time

dimension (TD), i.e., the Ndmrs symbols in an RB are used
to estimate the channel at the Nsym −Nctrl symbols. We use
PTD to denote the (Nsym −Nctrl)×Ndmrs TD interpolation
matrix. The channel estimate over the RB of interest is then

Ĥintp = ĤFDIP
T
TD. (4)

Similar to FD interpolation, the coefficients in TD inter-
polation are computed using an LMMSE estimator which
accounts for the temporal correlation. These coefficients are
obtained using the Jakes Doppler spectrum with the Doppler
spread estimate from TRS [5]. In summary, LMMSE-based
time-frequency interpolation exploits the second order channel
statistics through the PDP and the Doppler spectrum, for
channel estimation. The LMMSE-based estimator, however,
is constrained to be linear by definition and it may not fully
exploit the structure for channel estimation. In this paper,
we develop a technique that leverages both the TD and FD
interpolation blocks together with one hidden layer neural
network for better channel estimation.

III. BASELINE ALGORITHMS FOR LEARNING-BASED
CHANNEL ESTIMATION

In this section, we first describe the one hidden layer
network which will be used within learning-based channel
estimation. Then, we discuss algorithms that will be used to
benchmark our technique proposed later in Section. IV.

A. One hidden layer network

The single hidden layer network models a function that
maps an Nin × 1 real input x to an Nout × 1 real output
y. We consider a hidden layer with Nhid nodes and assume a
ReLU activation at this layer. We use Wk and bk to denote
the weights and biases of the kth layer. We assume a linear
activation at the output to write

y = W2ReLU(W1x+ b1) + b2. (5)
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Fig. 2. In the LMMSE-based approach, frequency domain interpolation is first performed at the DMRS symbols using the PDP. Then, time
domain interpolation is performed at each subcarrier using the Doppler spectrum. Here, an RE is shaded after the appropriate interpolation.

In a compact form, we rewrite (5) as y = MLPξ(x), where ξ
is a vector containing all the weights and biases. The param-
eters in ξ are tuned using a training dataset {x(s),y(s)}Nsmp

s=1 .
The computational complexity of the network at inference is
O(Nhid(Nin +Nout)).

B. Learning-based channel estimation after interpolation

A trivial approach for learning-based channel estimation is
to refine the LMMSE interpolation-based estimate in (4) using
a neural network. The input feature of the network is then

x =

[
vec(Re{Ĥintp})
vec(Im{Ĥintp})

]
, (6)

where Re{·} and Im{·} extract the real and imaginary parts
of a matrix, and vec(·) reshapes the matrix into a vector. The
network is trained with the ideal channel corresponding to
Ĥintp, defined as Hideal. Similar to Ĥintp, Hideal is an Nsc×
(Nsym−Nctrl) matrix defined over an RB. The output feature
vector used for training is then

y =

[
vec(Re{Hideal})
vec(Im{Hideal})

]
. (7)

In this method, Nin = Nout = 2(Nsym−Nctrl)Nsc. The pairs
{(Ĥ(s)

intp,H
(s)
ideal)}

Nsamp

s=1 are extracted from a channel simulator,
and the network is trained by minimizing the MSE loss

Lintp,lrn =

∑Nsamp

s=1 ‖y(s) −MLPξ(x
(s))‖2

Nsamp
(8)

over ξ. The trained parameters are denoted by ξintp,lrn.
At inference, the input feature x is constructed from Ĥintp

using (6). Then, the output of the network ŷ = MLPξintp,lrn
(x)

is computed. Finally, the channel is estimated as

Ĥintp,lrn = unvec [ŷ(1 : Nout/2) + jŷ(Nout/2 + 1 : Nout)] ,
(9)

where unvec[·] is the reverse of the vec[·] operation and
j =
√
−1. Although this method can exploit channel structure

beyond the LMMSE estimator, the neural network operates
on the interpolated channel features over an entire RB as
shown in Fig. 3a. Such an approach has a higher computational
complexity at inference because the dimension of the input
feature vector is larger than the underlying feature ĤFDI.

C. Learning-based channel estimation at the DMRS locations

In this method, the neural network is applied immediately
after FD interpolation, but before TD interpolation. As a
result the network refines the channel only at the DMRS
locations. The input feature vector for the neural network
is x = [vec(Re{ĤFDI}); vec(Im{ĤFDI})]. We use Idmrs ⊂
{1, 2, · · ·Nsym −Nctrl} to denote the indices that correspond
to the DMRS locations. For instance, Idmrs = {1, 10} for
the DMRS configuration shown in Fig. 2. We define Hdmrs

as the subsampled version of the ideal channel at the DMRS
locations, i.e.,

Hdmrs = Hideal(:, Idmrs). (10)

The output feature vector to train the network is constructed
from the ideal channel subsampled at the DMRS locations,
i.e., y = [vec(Re{Hdmrs}); vec(Im{Hdmrs})]. The network
used in this method has Nin = Nout = 2NscNdmrs and a
single hidden layer.

The network is trained using pairs of FD interpolated chan-
nels and ideal channels subsampled at the DMRS locations.
We use ξFDI,lrn to denote the parameters obtained by training
the network with the MSE loss defined as Llrn,dmrs. The
expression for Llrn,dmrs is same as that in (8), where x and y
here correspond to the channel at the DMRS symbol locations.
At inference, the input feature vector x is constructed from
ĤFDI. The network output ŷ = MLPξFDI,lrn

(x) is then
reshaped to obtain a refined version of the FD interpolated
channel denoted by ĤFDI,lrn. The reshape operation is same
as the one in (9). Finally, TD interpolation is performed with
the refined FD interpolated channel to obtain

Ĥlrn,dmrs = ĤFDI,lrnP
T
TD (11)

as the channel estimate over the RB. We used lrn,dmrs in (11)
to indicate the estimate, as neural network-based refinement
is performed by only minimizing the MSE loss at the DMRS
symbol locations. This method has a lower complexity at
inference when compared to the method in Sec. III-B due
to the reduced feature dimensions. Unfortunately, this method
does not account for the MSE at the symbols other than the
Ndmrs DMRS symbols. Minimizing the MSE loss at other
symbol locations is important as they contain several PDSCH
REs on which data is transmitted.
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IV. PROPOSED LEARNING-AIDED CHANNEL ESTIMATION

In this section, we discuss the proposed channel estimation
technique that minimizes the MSE loss at all the Nsym−Nctrl

symbols within an RB, and has a low computational com-
plexity when compared to the method in Sec. III-B. Our
technique incorporates the network in Sec. III-C through a
super-network. The super-network is a cascade of a single
hidden layer network and an additional linear layer derived
from TD interpolation.

A. Overview of the super-network architecture

The proposed architecture includes a single hidden layer
neural network that operates on the features from the FD
interpolated channel, i.e., the input to the network is

x =

[
vec(Re{ĤFDI})
vec(Im{ĤFDI})

]
. (12)

The one hidden layer network outputs a refined version of
the FD interpolated channel at the DMRS symbol locations
defined as ŷfd = MLPξ(x). Here, ŷfd is a 2NscNdmrs × 1
vector that is considered as an intermediate output of a super-
network shown in Fig. 3c. Within this super-network, ŷfd is
sent into a linear layer that implements TD interpolation. The
final output of the super network, denoted by ŷ, contains the
2Nsc(Nsym−Nctrl) dimension channel estimate over the RB.

We would like to highlight that the network in Fig. 3b and
the proposed super-network in Fig. 3c only differ by a single
layer at the output. This layer realizes the LMMSE-based TD
interpolation operation using the Doppler spectrum, and the
weights of this layer are derived from (4) as

W3 =

[
Re{PTD} ⊗ INsc

−Im{PTD} ⊗ INsc

Im{PTD} ⊗ INsc
Re{PTD} ⊗ INsc

]
, (13)

where INsc
is an identity matrix of size Nsc × Nsc, and ⊗

denotes the kronecker product. The bias of the output layer in
the super network is set to zero to exactly mimic LMMSE-
based TD interpolation. As a result, the output of the super-
network is

ŷ = W3ŷfd. (14)

It is important to note that the weights of the output layer in
the super-network are derived from the LMMSE estimator and
these weights are not trained during back-propagation.

B. Training and inference with the super-network

We now explain the training procedure for the proposed
super-network. Unlike the approach in Sec. III-C that min-
imizes the MSE loss only at the DMRS symbol locations
for network training, the proposed approach minimizes the
MSE loss at all the Nsym − Nctrl symbols in an RB. Such
a minimization is possible due to the final layer in the super
network that performs TD interpolation. The network is trained
with the output feature y in (7) which contains the ideal
channel over the RB. The loss function used for training is

Llrn,RB =

∑Nsamp

s=1 ‖y(s) −W
(s)
3 MLPξ(x

(s))‖2

Nsamp
. (15)

We would like to mention two important aspects of the loss
function in (15). First, the TD interpolation weights depend
on the Doppler spread estimate which varies over time. As a
result, the matrix W

(s)
3 that contains these weights changes

with the training sample. Second, we note that although the
final layer in the super-network containing W3 is not trained,
the parameters of the preceeding layers in ξ are trained. In this
case, the gradients with ξ are computed by back-propagating
through the final layer in the super-network.

In the proposed method, the FD interpolated channel ĤFDI,
the ideal channel Hideal, and the TD interpolation matrix
PTD are dumped from our channel simulator. Then, this
information is used to construct the training feature set
{x(s),y(s),W

(s)
3 }

Nsamp

s=1 . Training the super-network is differ-
ent from conventional training due to the fact that the weights
of the final layer vary with the sample index. To this end,
we use a batch size of 1 and load the non-trainable weights
of the final layer for each sample. Such an approach is also
used for validation and inference as W3 changes according to
the Doppler spread estimate. At inference, the output of the
super-network ŷ is reshaped into the channel estimate

Ĥlrn,RB = unvec [ŷ(1 : N sup
out /2) + jŷ(Nout/2 + 1 : N sup

out )] ,
(16)

where N sup
out = 2Nsc(Nsym − Nctrl) is the size of the output

in the super-network.

C. Analysis on the training loss

A good initialization for the trainable weights in the super-
network is the trained weights of the network in Sec. III-C,
i.e., ξ(0) = ξFDI,lrn. This is because ξFDI,lrn achieves good
refinement of the FD interpolated channels. Under this ini-
tialization, we analyse the training loss of the super-network
Llrn,RB in terms of Llrn,dmrs.

To aid our analysis, we consider the super-network in Fig.
3c and simply use a matrix representation instead of the vector
versions. We define Ĥfd as the Nsc ×Ndmrs complex matrix
whose vector version is ŷfd. Note that Hideal is the matrix
representation of y. For a particular training sample, the error
at the output of the super-network can be expressed as

δ = ‖ĤfdP
T
TD −Hideal‖F. (17)

Now, we define E as the error due to TD interpolation, i.e.,

E = Hideal −HdmrsP
T
TD. (18)

The error E is inherent to TD interpolation and is independent
of learning algorithm. We define σ

TD
as the maximum singular

value of PTD. Substituting Hideal from (18) in (17), we get

δ = ‖(Ĥfd −Hdmrs)P
T
TD −E‖F (19)

(a)

≤ ‖(Ĥfd −Hdmrs)P
T
TD‖F + ‖E‖F (20)

(b)

≤ σTD‖Ĥfd −Hdmrs‖F + ‖E‖F, (21)

where (a) follows from the triangle inequality and (b) from
the fact that ‖AB‖F ≤ ‖A‖Fσmax(B) [13].
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(b) and (c). The proposed super network in (c) contains the TD interpolation block through which back-propagation is performed in training.
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We now consider the MSE loss over all the samples, i.e.,
Llrn,RB = E[δ2], where the expectation is over the input
distribution. We define ε = E[‖E‖2F]. Putting these definitions
together with (21), we have

Llrn,RB ≤ σ2
TD

E
[
‖Ĥfd −Hdmrs‖2F

]
+ 2E

[
‖Ĥfd −Hdmrs‖F‖E‖F

]
+ ε2. (22)

We note that the error E is independent of the estimation
error at the DMRS locations, i.e., Hfd −Hdmrs. As a result,
E[‖Ĥfd − Hdmrs‖F‖E‖F] = E[‖Ĥfd − Hdmrs‖F]E[‖E‖F].
Now, we use the fact that E[|x|] ≤

√
E[|x|2] in (22) to write

Llrn,RB ≤ σ2
TD

E
[
‖Ĥfd −Hdmrs‖2F

]
(23)

+ 2ε

√
E[‖Ĥfd −Hdmrs‖2F] + ε2. (24)

When the trainable weights of the super-network are initialized
to ξFDI,lrn, we have E[‖Ĥfd − Hdmrs‖2F] = Llrn,dmrs. The
training loss of the super-network under this initialization is
defined as L(0)

lrn,RB. From (23), we have

L(0)
lrn,RB ≤ σ

2
TD
Llrn,dmrs + 2ε

√
Llrn,dmrs + ε2. (25)

After training the super-network, the loss Llrn,RB ≤ L(0)
lrn,RB.

Therefore, Llrn,RB ≤ σ2
TD
Llrn,dmrs+2ε

√
Llrn,dmrs+ ε

2. This
bound depends on Llrn,dmrs, i.e., the loss when training only
at the DMRS locations, and the TD interpolation error ε.

V. SIMULATIONS

We consider an NR system operating at a carrier frequency
of 3 GHz. The number of subcarriers within an RB is
Nsc = 12. A subcarrier spacing of 15 KHz is used such that
every RB spans 180 KHz of bandwidth. Here, the RB occupies
one slot or subframe of duration 1 ms. Each slot contains
Nsym = 14 OFDM symbols of which Nctrl = 2 symbols
are used for the control. A total of 106 RBs are used over
a bandwidth of 20 MHz. We consider two radio frequency
chains at the transmitter and the receiver. The same neural
network is applied to each of the four multiple-input multiple-
output layers. The transmitter applies the same precoding over
a group of 2 contiguous RBs, i.e., the bundle size is 2. It is
important to note that our paper models and estimates the
effective channel that already includes precoding.

The training dataset used in this paper comprises three
types of channels: Extended Pedestrian A (EPA 5), Extended

Fig. 4. BLER with SNR for EPA 5 channels. The proposed method
outperforms the LMMSE technique, unlike the baseline algorithms.

Vehicular A (EVA 30) and Extended Typical Urban (ETU
70). Here, the 5 in EPA 5 corresponds to a Doppler spread
of 5 Hz in the channel. The modulation and coding scheme
(MCS) used for transmission over EPA 5, EVA 30 and ETU
70 are 25, 25 and 16. Now, we explain how the channel is
estimated with the algorithms discussed in this paper. First,
the PDP and the Doppler spread estimate are obtained using
TRS. The TRS is sent using the channel state information-
reference signal (CSI-RS), which is periodically transmitted
every 20 ms. With the PDP and Doppler spread estimates
from TRS, the LMMSE weights are computed for FD and TD
interpolation blocks. To train the neural networks in this paper,
we need Ĥintp, ĤFDI and Hideal. We periodically dump this
information over four consecutive slots at a periodicity of 10
ms, for an SNR range [32, 38] dB. For the proposed method,
the TD interpolation matrix PTD is also dumped for every pair
of ĤFDI and Hideal. In this work, the matrix PTD contains
the Bessel function coefficients which are purely real.

We use the front-loaded DMRS configuration in Fig. 1
where Ndmrs = 2. We randomly choose 300, 000 samples
from the dumped channel dataset where every sample corre-
sponds to the channel over a single RB. Then, this dataset
is split at random into 90% training samples and 10% test
samples. We set Nhid = 600 for all the methods and use the
Adam optimizer for training. For the parameters in this paper,
we observe that the inference complexity of the networks in
Fig. 3b and Fig. 3c is 6× lower than the network in Fig. 3a.

We evaluate the performance of the algorithms in terms of

Authorized licensed use limited to: TU Delft Library. Downloaded on February 25,2022 at 10:31:54 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. BLER with SNR for EVA 30 channels. Learning-aided
methods achieve similar BLER as the LMMSE at a much lower SNR.

the block error rate (BLER). The BLER is a better metric than
the MSE as it captures the ultimate performance of the channel
estimation algorithm. The legend for each curve indicates the
SNR at which BLER=1%. Algorithms that achieve 1% BLER
at a lower SNR are preferred for operation.

Fig. 6. BLER as a function of SNR for ETU 70 channels. The pro-
posed method outperforms LMMSE and other baseline algorithms.

We observe from Fig. 4, Fig. 5 and Fig. 6 that the
proposed algorithm achieves significant performance im-
provement than the LMMSE-based interpolation method
(“FD− TDIntp.”) for all the channel types. We notice that
the baseline learning algorithms marked “Intp.+ Learn” and
“LearnDMRS” perform better for EVA and ETU channels.
Note that “Intp.+ Learn” is discussed in Sec. III-B and
“LearnDMRS” is discussed in Sec. III-C. The baseline al-
gorithms, however, perform poor for the EPA channels. We
noticed that the performance improvement with the proposed
method is due to two reasons. First, the super-network archi-
tecture in Sec. IV trains the MLP network while accounting
for the online variation in the TD interpolation matrix. The
training here is done in a end-to-end fashion to estimate
channel over an RB. Such an end-to-end trained network is
expected to outperform the MLP network in Fig. 3 trained
using the surrogate function Llrn,dmrs [14]. Second, we found
initialization of the trainable super network weights with

ξFDI,lrn is better than using random weights. The performance
gap in the BLER relative to ideal channel is due to noise in
the channel measurements. In summary, our results indicate
the benefit of augmenting the LMMSE-based interpolation
technique, that uses online statistics, with data-driven learning
using one hidden-layer network.

VI. CONCLUSIONS

In this paper, we proposed a learning-aided channel es-
timation algorithm for 5G NR. Our algorithms exploit the
joint time-frequency structure in the channels using a neural
network, together with the online channel statistics such as
the power delay profile and the Doppler spectrum. These
statistics are computed using the tracking reference signal
that is transmitted periodically. We showed using simulations
that our approach performs better than LMMSE-based time-
frequency interpolation technique. We would like to highlight
that the proposed algorithm exploits channel structure at the
level of resource blocks. Extending our algorithm to estimate
channels over a bundle is an interesting research direction.
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