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Synopsis

In this paper, we describe a novel approach to determine the flow behavior index of a power-law fluid

by means of a microfluidic device. The concept of this method is based on a mathematical analysis

by Aronsson and Janfalk [Eur. J. Appl. Math. 3, 343–366 (1992)] of Hele-Shaw flow of power-law

liquids. We implement this approach by driving a non-Newtonian fluid through a glass microfluidic

chip with a 100:1 contraction. The flow in this chip satisfies the Hele-Shaw flow conditions in most

of the device. Two conjugate p-Laplace equations describe the pressure and stream function in such

flows. These equations depend on the flow behavior index, n. Therefore, by fitting the p-Laplace

equation to the velocity field obtained from a micro particle image velocimetry measurement of the

flow, the flow behavior index of the fluid in the chip can be determined. Because in practice, fluids

rarely show perfectly inelastic power-law behavior, conditions under which the assumption of

inelastic flow is valid were derived by analyzing Hele-Shaw flow of an Oldroyd-B fluid. The concept

was tested using three different classes of model fluids, a Newtonian fluid, an inelastic power-law

fluid, and a Boger fluid. In all three cases, satisfactory results were obtained, with values of n
deviating at most 4% from values measured using conventional rheometry. The method presented

here is expected to be potentially useful in online quality control in, for example, polymer or food

processing. VC 2013 The Society of Rheology. [http://dx.doi.org/10.1122/1.4824856]

I. INTRODUCTION

Contraction flows of non-Newtonian fluids have been a subject of study since the

1960s. This type of flow is relevant for many industrial polymer processing applications,

and at high flow rates, it displays a range of interesting dynamics not seen in Newtonian

contraction flows and still not completely understood. Comprehensive reviews of the

research in this field are, for example, the ones by Boger (1987), White et al. (1987), and

Owens and Phillips (2002).

In recent years, the focus of the study of non-Newtonian flow in contractions and other

complex geometries has shifted toward microscale geometries. The main advantage of
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such geometries is that they allow for flows with considerable elastic effects (high

Deborah, or Weissenberg, number) combined with negligible influence of inertia (low

Reynolds number).

Because of this combination of high deformation rate and low Reynolds number,

microfluidic devices also offer new possibilities for rheometry. An additional advantage

for rheometry purposes is the low sample volume required in a microfluidic device. An

overview of development in microfluidic rheometry up to 2009 was given by Pipe and

McKinley (2009). More recent work in this field was done, for example, by Zimmerman

and co-workers: Bandalusena et al. (2010) and Craven et al. (2010).

The dimensions of microfluidic devices often allow for fluid mechanical simplifi-

cations, for example, Hele-Shaw flow (see also Sec. II A). The Hele-Shaw flow

approximation is valid for creeping flows with in-plane dimensions much greater

than the depth of the flow. For Newtonian fluids, paradoxically, such—very low

Reynolds number—flows behave as inviscid, irrotational potential flow, that is, flow

at infinite Reynolds number. Therefore, Hele-Shaw flow is particularly suitable to

visualize streamlines of flow around an obstacle. In earlier times, this was used in

aerodynamics, for example, in the design of aerofoils. Furthermore, as the govern-

ing equations for Hele-Shaw flow are identical to those of flow in a porous me-

dium (Darcy’s law), Hele-Shaw flow is also a useful tool to visualize flow in (two-

dimensional) porous media.

In case of a non-Newtonian fluid, Hele-Shaw flow becomes more complex. In the con-

text of cementing oil wells, Frigaard and co-workers studied Hele-Shaw flow of a visco-

plastic, Herschel-Bulkley material, see, for example, Bittleston et al. (2002).

For inelastic power-law fluids, the implications of non-Newtonian behavior for the

classical Hele-Shaw flow approximation were mathematically analyzed by Aronsson and

Janfalk (1992).1 The authors give analytical solutions for a number of special cases and

show that the streamline pattern around an obstacle depends on the flow behavior index,

or power-law index, n.

This dependence of the streamline pattern on the power law index means that it should

be possible to determine the rate of shear-thinning or -thickening of a power-law fluid by

measuring the shape of its streamlines around an obstacle in a Hele-Shaw cell. As many

polymeric liquids show power-law viscosity behavior, at least for a certain range of shear

rates, the flow behavior index is a very relevant property.

However, inelastic power-law fluids are very rare in practice. Moreover, as already

mentioned, microfluidic devices tend to give a combination of low Reynolds number and

high Weissenberg number by design. Therefore, it is important to also investigate elastic

effects in Hele-Shaw flow.

In this paper, we investigate how the flow behavior index of a power-law fluid can be

determined from the streamline pattern in Hele-Shaw flow around an obstacle. After

briefly summarizing the results of Aronsson and Janfalk in Sec. II B, we derive conditions

under which their analysis for an inelastic power-law fluid is valid for a viscoelastic fluid

(Sec. II C). Subsequently, in Sec. III, we show how the concept was tested experimen-

tally, using a Newtonian liquid, an inelastic power-law fluid, and a Boger fluid. The

results are discussed in Sec. IV and the conclusions and recommendations for further

study are summarized in Sec. V.

1From several references, a. o. in Barenblatt’s book on theory of fluid flow through natural rocks, Barenblatt

et al. (1990), it appears that Entov and co-workers studied the same problem already in the 1970’s, in the

context of non-linear filtering.
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II. MATHEMATICAL ANALYSIS

A. Hele-Shaw flow approximation

The Hele-Shaw flow approximation is used for an incompressible, creeping flow

between two closely spaced parallel plates for which the in-plane dimensions are much

larger than the gap width (Fig. 1). This leads to the following assumptions [see, for exam-

ple, Batchelor (2000) or Milne-Thomson (1996)]:

1. Inertia and body forces are negligible.

2. The velocity normal to the plates is zero, i.e., w¼ 0.

3. Of the velocity components in x- and y-directions, u and v, respectively, the in-plane

derivatives are negligible in comparison with the derivatives in z-direction: ux, uy, vx,

vy � uz, vz.With these assumptions, the momentum equation reduces to rp ¼ r � s,

with p the pressure and s the deviatoric stress. The velocity gradient tensor, ru, and

the rate of deformation tensor, D, become

ru ¼
0 0 0

0 0 0

uz vz 0

2
4

3
5; D ¼ 1

2
ðruþ ðruÞTÞ ¼ 1

2

0 0 uz

0 0 vz

uz vz 0

2
4

3
5; (1)

respectively.

The classical Hele-Shaw analysis of a Newtonian fluid results in inviscid, irrotational

potential flow, with gap-averaged velocity

�u ¼ � h2

3g
r�p: (2)

Here, g is the fluid viscosity and h is the half gap width, as shown in Fig. 1. The equations

for the pressure and the stream function in this case are

@2p

@x2
þ @

2p

@y2
¼ 0 or r2

�p ¼ 0; (3a)

@2w
@x2
þ @

2w
@y2
¼ 0 or r2

�w ¼ 0; (3b)

where r� denotes the two-dimensional nabla operator.

FIG. 1. Geometry of Hele-Shaw flow, the in-plane dimensions are much larger than the depth of the flow, i.e., L� h.
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In an actual flow device, the Hele-Shaw approximation is valid at a distance larger

than h from any of the bounding walls parallel to the z-axis (Fig. 1). As h� L, this

makes a Hele-Shaw cell very suitable to visualize streamlines of flow around an obstacle.

B. Power-law fluid

Aronsson and Janfalk (1992) analyzed Hele-Shaw flow of a power-law fluid, which is

a specific case of a generalized Newtonian fluid. In a generalized Newtonian fluid, the

deviatoric stress is given by

s ¼ 2gð_cÞD;

that is, the viscosity, g, is assumed to depend on a scalar measure of the deformation rate,

_c ¼ ð2D : DÞ
1
2, which is the second invariant of the rate-of-deformation tensor, D. For a

power-law fluid, this dependency is given by

gð _cÞ ¼ K _cn�1;

where the consistency index, K, and the flow behavior index, or power-law index, n, are

positive constants.

Aronsson and Janfalk showed that in Hele-Shaw flow of a power-law fluid, the equa-

tions for the pressure and the stream function are so-called p-Laplace functions

@

@x
jr�pj

1
n�1 @p

@x

� �
þ @

@y
jr�pj

1
n�1 @p

@y

� �
¼ 0; (4a)

@

@x
jr�wjn�1 @w

@x

� �
þ @

@y
jr�wjn�1 @w

@y

� �
¼ 0; (4b)

or, more compactly,

r� � jr�pj
1
n�1r�p

� �
¼ 0; (5a)

r� � ðjr�wjn�1r�wÞ ¼ 0: (5b)

The depth averaged velocity satisfies

�u ¼ � 2n

2nþ 1

r�p
K

� �1
n

h
1
nþ1:

For n¼ 1, these equations simplify to the Laplace equations for Newtonian Hele-

Shaw flow [Eqs. (2) and (3)]. Equations of the p-Laplace type are also encountered, for

example, in notch and crack growth problems [Atkinson and Champion (1984)] and in

nonlinear filtration [Barenblatt et al. (1990)].

The only material property appearing in the equations for the pressure and stream

function (5) is the power-law index, n. As the stream function is directly related to the

flow velocity, this suggests that it should be possible to experimentally determine the

value of n of an unknown inelastic power-law fluid from velocity field measurements in

Hele-Shaw flow around an obstacle. An obstacle is required to attain a gradient in p and
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w [e.g., uniform, unidirectional flow is a trivial solution, which satisfies Eq. (5) for any

value of n]. This idea will be illustrated with the following example.

1. Illustrative example

For simple flow geometries, the Laplace equations for Newtonian potential flow

can be solved analytically. Analogously, several classes of exact solutions to the

p-Laplace equations can be derived. In their paper, Aronsson and Janfalk (1992)

use hodograph mapping (Legendre transformation) to derive some of these solution

classes. They show that classical Newtonian potential flow solutions, such as cor-

ner flow and a source doublet [see, for example, Milne-Thomson (1996)], have

power-law counterparts with similar streamline patterns, but deviating streamline

curvature.

As an illustration, the streamlines of flow in a 90� salient corner, following from one

of the exact solutions given by Aronsson and Janfalk, are plotted in Fig. 2 for different

values of n. It can be clearly seen that with increasing n, the streamlines tend to follow

the walls more closely.

This may seem counter-intuitive at first sight, as we are used to parabolic velocity pro-

files in pipe and channel flow becoming more blunt with decreasing value of n. However,

in the case of Hele-Shaw flow, the wall shear stress at the top and bottom plates is domi-

nant and the flow behavior in the x-y plane is effectively inviscid. This can also be seen

in the exact solutions [Aronsson and Janfalk (1992)], where the flow velocity at the walls

is nonzero (in practice, the Hele-Shaw approximation ceases to hold when the distance to

the wall becomes smaller than h). To get a better feeling for what happens here, we look

at the simple case of a unidirectional flow, where the shear stress on the top and bottom

walls of the Hele-Shaw cell is given by

sw ¼ K
2nþ 1

2n

�u

h

� �n

:

This expression shows that the increase of sw with �u is faster than linear for n> 1 and

slower than linear for n< 1. Because the flow velocity increases with distance from the

corner, it seems plausible that a shear-thickening fluid follows the corner contour more

closely.

FIG. 2. Streamlines, i.e., lines of constant w, of flow in a 90� salient corner, following from an exact solution to

the 2D p-Laplace equations, Eq. (5), units on the axes are arbitrary. The positive x- and y-axes represent (semi-

infinite) solid walls, the flow is from top left to bottom right. Left: n¼ 0.2 (shear-thinning), middle: n¼ 1

(Newtonian), right: n¼ 1.8 (shear-thickening).
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As the example with the exact solutions in Fig. 2 shows, the streamline curvature of

Hele-Shaw flow past an obstacle changes as a function of n. Therefore, it should be possi-

ble to experimentally determine the value of n of an unknown inelastic power-law fluid by

measuring the streamlines or—directly related—the velocity field near an obstacle.

Before testing this approach in practice, we first analyze the implications of visco-

elastic behavior in Hele-Shaw flow, as actual non-Newtonian fluids are rarely perfectly

inelastic when they show power-law behavior.

C. Viscoelastic effects

We expect that the inelastic power-law approximation will be valid for viscoelastic

fluids as well, as long as viscous effects are dominant in the flow, that is, at low

Weissenberg number. To determine under which conditions elastic effects will be negli-

gible, we study steady Hele-Shaw flow of an Oldroyd-B fluid. The dimensionless mo-

mentum equation in this case is

g0

gp

rp ¼ gs

gp

r2uþ 1

Wi
r � A; (6a)

A ¼ I�Wi A
�

¼ I�Wi½ðu � rÞA� A � ru� ðruÞT � A�: (6b)

Here, A is the polymer stretch tensor, with A
�

its upper convected derivative, gs and gp

are the solvent and polymer viscosity (i.e., added viscosity due to the presence of poly-

mer), respectively, and g0 ¼ gs þ gp. Velocity and pressure are scaled as u*¼ u/U and

p� ¼ hp=g0U, respectively, where the asterisks indicate the dimensionless quantities [fol-

lowing convention, these asterisks have been omitted in Eq. (6)]. Finally, Wi is the

Weissenberg number, Wi¼ k U/h, with k the relaxation time of the fluid.

A weak flow expansion is used to study the first effects of elasticity, at low Wi.
Expanding u, p, and A in terms of Wi,

u ¼ u0 þWiu1 þ…;

p ¼ p0 þWip1 þ…;

A ¼ A0 þWiA1 þ…;

and collecting terms with equal powers of Wi gives for A

A0 ¼ I;

Aiþ1 ¼ �Ai

�

:

The momentum equations of order Wi0, Wi1, and Wi2 then become

Wi0 : 0 ¼ r � I; (7a)

Wi1 :
g0

gp

rp0 ¼
gs

gp

r2u0 þr2u0 ¼
g0

gp

r2u0; (7b)

Wi2 :
g0

gp

rp1 ¼
gs

gp

r2u1 þ 2 D
�

: (7c)

The zeroth-order equation simply implies no flow, and the first-order equation gives

Newtonian flow with an added viscosity term due to the polymer. After applying the

Hele-Shaw assumptions, the components of the second-order equation become
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g0

gp

@p1

@x
¼ @

@z

gs

gp

@u1

@z
� @

2u0

@z@x
u1 �

@2u0

@z@y
v1

 !
; (8a)

g0

gp1

@p

@y
¼ @

@z

gs

gp1

@v1

@z
� @2v0

@z@x
u1 �

@2v0

@z@y
v1

 !
; (8b)

g0

gp1

@p1

@z
¼ 0: (8c)

From the solution of the Newtonian case, we know that u0; u0;x; u0;y ¼ Oðh2Þ; u0;z

¼ OðhÞ and similar for v0. If we assume this to hold for u1 too, the last two terms on the

right-hand side of Eqs. (8a) and (8b) can be neglected, and the flow field of an Oldroyd-B

fluid, up to second order in Wi, will be the same as for a Newtonian liquid.

This result is similar to the planar flow theorem of Tanner and Pipkin [Tanner (1966)],

which states that given a velocity field that satisfies the equations for creeping plane flow

of an incompressible Newtonian fluid, the same velocity field also satisfies the equations

for creeping plane flow of an incompressible second-order fluid. However, in our case,

the flow is not truly planar, and hence, it should satisfy the additional condition that the

depth-based Weissenberg number is sufficiently small, Wi� 1.

To determine a more definitive critical value for Wi, and to see how elastic effects

influence the streamline pattern, a more extensive study is required, for example, experi-

mentally or numerically. Unfortunately, this is beyond the scope of the current paper.

D. Combination of power-law and viscoelastic behavior

The situation becomes more complex in case of a fluid that shows both shear-

dependent viscosity and viscoelastic behavior. For Hele-Shaw flow of a Johnson-

Segalman-Oldroyd model, Fast et al. (2001) derived a generalized Darcy’s law

�u ¼ �r�p
�l

; (9)

where �u is again the gap-averaged in-plane velocity, r* indicates the two-dimensional

nabla-operator, and �l ¼ �lðWi2juzj2Þ is introduced as an effective viscosity.

This generalized Darcy’s law is the result of the leading order equations of an asymp-

totic expansion in the depth-to-width ratio, �¼ h/L. This means that, even to zeroth order

in �, the effective viscosity is a function of both the Weissenberg number and the shear

rate. However, as long as Wi� 1, its influence on the effective viscosity is negligible,

and it is expected that determination of the power-law index from a measured velocity

field should still be possible.

III. EXPERIMENTAL

From the analysis in Sec. II, it follows that it should be possible to determine the

power-law index of a power-law fluid from the shape of the streamlines in Hele-Shaw

flow around an obstacle. Effects of elasticity are negligible as long as the Weissenberg

number is kept sufficiently low, Wi� 1.

As a first test of the validity of this approach, we recorded flow fields in a 100:1 micro-

fluidic contraction. The dimensions of this flow cell meet the criteria for a Hele-Shaw

cell, except close to the contraction, and the salient corners are suitable to serve as

“obstacles.” As test fluids, three classes of fluids were used: a Newtonian fluid, an
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inelastic power-law fluid, and a Boger fluid. The velocity fields were measured using

micro particle image velocimetry [lPIV, Adrian and Westerweel (2011)].

A. Measurement setup

For the experiments, a custom-made glass flow cell with a 100:1 contraction and free

outflow (Micronit Microfluidics) was used. The dimensions of this flow cell are shown in

Fig. 3 (left). The flow cell was clamped vertically in a holder and fed by a rate-controlled

syringe pump (KD Scientific). Because it is a Hele-Shaw flow, the flow is fully developed

almost immediately after entering the cell. Test measurements were taken, which con-

firmed that the velocity profile in the flow cell is uniform, up to the part where the flow

starts to accelerate toward the contraction.

The flow was seeded with 2 lm tracer particles and illuminated from behind by a

pulsed light-emitting diode (LED). A double-frame PIV camera (LaVision Imager

Intense) with a 105 mm focal length lens (Nikon) was used to record image pairs of the

flow at a rate of 5 Hz, with a delay of Dt¼ 500 ls between the frames in an image pair

and an exposure time of 10 ls for each frame. The velocity field in the slower parts of the

flow was determined using only the first frame of each image pair, while for the faster

part of the flow, near the outlet (where the Hele-Shaw approximation ceases to hold),

both frames were needed. The complete setup is depicted schematically in Fig. 3 (right).

B. Method of determining n

To determine the value of the power-law index, we chose to use velocity field meas-

urements. Under the conditions for inelastic power-law Hele-Shaw flow, the stream func-

tion satisfies Eq. (4b). This equation can be rewritten in terms of velocity and velocity

gradients, which can be measured using lPIV

ðn� 1Þðu2 þ v2Þn�3=2 v2 @v

@x
� 2uv

@v

@y
� u2 @u

@y

� �
þ ðu2 þ v2Þn�1=2 @v

@x
� @u

@y

� �
¼ 0:

(10)

The power-law index of the tested fluid is that value of n for which the measured velocity

field best satisfies this equation, that is, for which the absolute value of the left-hand side

of the equation is minimal.

FIG. 3. Left: Dimensions of the flow cell with 100:1 contraction (not to scale, dimensions in mm). Right:

Schematic drawing of measurement setup.
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Because PIV is a whole-field method that yields both in-plane velocity components

and their spatial derivatives in a discrete number of grid points, Eq. (10) can be evaluated

in each grid point. An error norm can then be defined, which is to be minimized to find

the value of n.

The magnitude of the velocity is not important here, because the value of n is related

to the shape of the streamlines and these are independent of the z-position in the Hele-

Shaw cell. Therefore, it is not necessary to know whether the used lPIV setup results in

measuring the average velocity, or the maximum velocity, or some fraction of the maxi-

mum velocity [cf. Kloosterman et al. (2011)]. To still give an idea, according to a paper

by Olsen and Adrian (2000), the lens that was used in our setup results in measuring the

velocity averaged over a depth of around 50 lm, which is in our case the depth of the

entire cell.

Before applying this approach to actual measurement data, it was first tested on syn-

thetic data. The MATLAB function fminsearch was used for the minimization procedure;

this is a nonlinear unconstrained optimization function (for more information, the reader

is referred to the website of The Mathworks). We used the sum of the absolute errors

[i.e., the absolute value of the left-hand side of Eq. (10) in each grid point] as a norm for

minimization and n as the fitting parameter. Adding Gaussian white noise to an analytical

solution showed that, provided a reasonable initial guess was provided, the fitting proce-

dure converged to a result with less than 5% error, up to a signal-to-noise ratio of 15 dB,

which was considered satisfactory for the present purpose.

This minimum signal-to-noise ratio is also something to keep in mind when using

actual PIV data. A minimum signal-to-noise ratio of 15 dB means that the amplitude of

the PIV correlation peak should be at least
ffiffiffiffiffiffiffiffiffiffi
101:5
p

	 5:6 times larger than other, noise-

induced, peaks in an interrogation window [Adrian and Westerweel (2011)].

In our PIV measurements, we used the correlation average over 100 images, for opti-

mal accuracy [Adrian and Westerweel (2011)]. The images were first analyzed using

128
 128 pixel windows, with 50% overlap. The resulting velocity field was subse-

quently used as input for a finer analysis, with 64
 64 pixel windows, 50% overlap, and

window shifting. Only the part of the velocity field where the Hele-Shaw approximation

is valid was used for fitting, that is, the part where the in-plane velocity gradients are

much smaller than those in the depth-direction (i.e., sufficiently far from the contraction

and the walls). This resulted in velocity fields of approximately 15
 25 grid points, as

shown in Fig. 4.

C. Test fluids

As a Newtonian test fluid, glycerol (Boom, technical grade) was used. To approach

inelastic power-law behavior as closely as possible, a 0.02 wt. % xanthan gum solution in

glycerol-water (75–25 wt. %, xanthan gum from Sigma-Aldrich) was used. According to

Rodrigo V�elez-Cordero et al. (2011) and Rodrigo V�elez-Cordero and Zenit (2011), this

solution shows negligible elastic behavior and is shear-thinning with n¼ 0.85 in the

measured range of 10�1 s�1 � _c � 103 s�1. With higher xanthan gum concentrations,

lower values of n can be attained. We chose a relatively low concentration, however, in

order to minimize elastic effects. The Boger fluid of choice for the experiments was a so-

lution of 30 wt. % polyethyleneglycol (PEG), 8000 g/mol. and 0.06 wt. % polyethylene-

oxide (PEO), 4
 106 g=mol: (both from Sigma-Aldrich) in water, as was also used by,

among others, Dontula et al. (1998) and Sankaran et al. (2013).

The rheological properties of the PEG-PEO and xanthan gum solutions were measured

on a TA Ares-G2 rheometer with a Couette geometry and a gap width of 5 mm.
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FIG. 4. Streamlines resulting from PIV measurements, superimposed on an image of the Hele-Shaw cell (flow

is from right to left). Top: Glycerol, 20 ll/min, middle: Xanthan gum solution, 20 ll/min, bottom: PEG-PEO

Boger fluid, 5 ll/min. The part of the flow where the streamlines are shown is also the part that was used for the

fitting procedure. The axes represent the PIV interrogation window number.
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Oscillatory as well as steady measurements were performed. The results are shown in

Fig. 5. The glycerol was considered to be Newtonian, with n¼ 1.

Our xanthan gum solution shows shear-thinning with n¼ 0.86, which agrees suffi-

ciently with the value measured by Rodrigo V�elez-Cordero et al. However, the cross-

over of G0 and G00 in the oscillatory measurements occurs at a frequency that is about a

decade lower than reported by Rodrigo V�elez-Cordero et al. This makes the assumption

of negligible elasticity rather questionable. Identifying the cause of this difference in

measured rheological behavior is beyond the scope of this paper. Also more extensive

measurements, or curve-fits, to determine a relaxation time (spectrum) were not consid-

ered here.

IV. RESULTS AND DISCUSSION

The velocity fields in glycerol and in the xanthan gum solution were measured at a

flow rate of 20 ll/min. For the Boger fluid, the Zimm relaxation time [Zimm (1956)] of

4.2 ms was assumed, as calculated by Sankaran et al. (2013). A flow rate of 20 ll/min

would then result in a depth-based Weissenberg number, kU/h, of 0.11 (_c 	 25 s�1). This

FIG. 5. Rheological behavior of the xanthan gum and PEG-PEO solutions used as test fluid. Top: Loss and stor-

age modulus in an oscillatory frequency sweep; bottom: viscosity in steady shear.

1797HELE-SHAW RHEOMETRY

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

131.180.131.94 On: Wed, 23 Oct 2013 13:47:30



is expected to be low enough to not see any elastic effects, but to be on the safe side, a

flow rate of 5 ll/min was used, giving Wi¼ 0.03 ( _c 	 7 s�1).

A flow rate of 20 ll/min yields an average shear rate of @u=@z 	 25 s�1 in our flow

cell, which is well in the shear-thinning regime of our xanthan gum solution. At 5 ll/min,

the average shear rate is approximately 7 s�1 at which the PEG-PEO Boger fluid shows

constant viscosity behavior (see Fig. 5).

The recording of 100 image pairs took about half a minute, meaning that approxi-

mately 10 ll of fluid was needed for the xanthan gum and glycerol measurements, and

2.5 ll for the Boger fluid measurement.

The measured streamlines are shown in Fig. 4, superimposed on an image of the flow

cell. The data used for the generation of these streamlines are also the data that were used

in the fitting procedure. The values of n obtained by fitting equation (10) to the measured

velocity fields are given in Table I, together with the expected values, the relative error,

and an indication of the PIV data quality, S.

In all three cases, the resulting values of n differ less than 5% from the values meas-

ured with conventional rheometry, even in the case of the PEG-PEO Boger fluid, where

the PIV data quality was a bit lower than the critical value determined in Sec. III B. The

resulting value of n depends slightly on the part of the flow field that is used for the fit,

but in our measurements, this dependency was only visible in the third decimal of n.

Additional measurements are necessary to further asses the sensitivity of the fitting

procedure to the choice of the data set. Also the effect of elasticity should be studied

more extensively; experiments with a fluid with known relaxation time should be carried

out at different flow rates to see how the streamlines change with increasing Weissenberg

number and to determine a more definite critical value of Wi.
For our tests, we used flow cells with a contraction geometry, but in principle, any

Hele-Shaw flow with curved streamlines can be used. For example, Hele-Shaw flow

around a cylinder might be even better suitable for this purpose, because in that geometry

the Hele-Shaw approximation would be valid throughout the complete flow cell

Because in practice non-Newtonian fluids are virtually never perfectly inelastic, infor-

mation about the elastic behavior of a fluid is needed a priori, in order to choose the flow

settings such that the inelastic approximation may be used. Also the shear rate range in

which the fluid shows shear-thinning—or thickening—behavior should roughly be known.

Furthermore, the fit gives only the power-law index of a fluid, instead of the complete vis-

cosity curve, making the use of additional measurements (e.g., pressure drop at a number

of flow rates) necessary if also the consistency index of the test fluid is required. Therefore,

our method does not seem useful as a replacement of conventional rheometry methods.

However, because of its simplicity, our method could be a useful tool for (online)

quality control in processes involving non-Newtonian flow, like polymer or food process-

ing. Contrary to conventional rheometry, our method can be operated at a single flow

rate. Therefore, the time required for one measurement is relatively short (ca. 30 s in our

TABLE I. Results of streamline fitting, nfit is the power law index resulting from the fitting procedure, nrheom is

the value resulting from conventional rheometry on the samples, S is a measure of the signal-to-noise ratio of

the correlation peak, with “av” indicating the average value and “crit” the percentage of the measurement points

with a signal-to-noise ratio larger than the critical value of 5.6 (see Sec. III B).

nfit nrheom Error (%) Sav S� Scrit (%)

Glycerol 0.999 1.00 0 29 99

Xanthan gum 0.868 0.860 1 22 89

PEG-PEO 1.04 1.00 4 5.1 12

1798 S. DROSTAND J. WESTERWEEL

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:

131.180.131.94 On: Wed, 23 Oct 2013 13:47:30



experiments). Processing of the measured data may take some more time. However,

because the value of n is linked to the shape of the streamlines, after calibration, measure-

ments should be possible using image analysis instead of PIV.

In case of optically anisotropic fluids, like liquid crystalline fluids (Fig. 6), both PIV

and image analysis can be done without any additions to the flow, whereas for other flu-

ids, the injection of tracer particles would be necessary. Because the sample flow rate

required for a measurement is very small [Oð10Þll=min in our experiments] compared

with the scale of typical industrial processes, the amount of fluid that is polluted with

tracer particles is not expected to pose a problem. The costs for flow cells such as the one

used for our measurements can be quite low, especially when the cells are produced in

large quantities. Therefore, in an industrial application, disposable cells would probably

be the cheapest and easiest option.

V. CONCLUSIONS AND RECOMMENDATIONS

Tests with three different classes of model fluids showed that it is possible to deter-

mine the power-law index of a non-Newtonian fluid from streamline curvature in Hele-

Shaw flow. An equation derived by Aronsson and Janfalk (1992), for Hele-Shaw flow of

inelastic power-law fluids, was fitted to velocity fields obtained by PIV, with n as the

only fitting parameter. An analysis of viscoelastic effects showed that the inelastic

power-law approximation may also be used for a viscoelastic fluid, as long as the

depth-based Weissenberg number is much smaller than 1, Wi ¼ kU=h� 1. To our

best knowledge, this method of determining the power-law index has not been pub-

lished before.

FIG. 6. Contraction flow of a liquid crystalline solution of 10 wt. % of poly-2,20-disulfonylbenzidine-terephtala-

mide (PBDT) in water (sample obtained from J. Gao, TU Delft). The same flow geometry was used as in the

other experiments in this paper. It was placed between two oppositely oriented circular polarizers to improve

the visibility of the structure in the flow. No tracer particles are needed here to measure the velocity field and/or

the streamlines.
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Contrary to conventional rheometry, it is not necessary to use a range of different flow

rate settings to determine the power-law index of a fluid. This makes the time needed to

take a measurement relatively short and the required sample volume relatively low. The

time required to process the measurement data may be longer, however.

The setup needed for lPIV measurements in our Hele-Shaw cell is comparatively sim-

ple. Because of the low flow velocity, an LED backlight can be used, in combination

with a standard digital camera at a frame rate of a few Hertz. This is cheaper and easier

to implement than a conventional PIV setup, with a pulsed laser and a double-frame PIV

camera. Moreover, as only the shape of the streamlines is important for the measurement,

it is unnecessary to determine the depth of correlation of the setup (see Sec. III B).

A drawback of our method is that a priori knowledge of the elastic and shear-

dependent behavior of the sample is required. A reasonable estimate of the relaxation

time is needed, because in order for the inelastic power-law assumption to be valid, the

depth-based Weissenberg number of the flow should be sufficiently small. At the same

time, the characteristic shear rate in the Hele-Shaw cell should fall in the range where the

fluid viscosity shows shear rate-dependent behavior. Therefore, our method does not

seem suitable as a replacement for conventional rheometry methods. However, its sim-

plicity and low sample volume make our method a good candidate for online quality con-

trol, especially if cheap, disposable flow cells are used.

More extensive experimental work is required to determine more definite conditions

under which our method may be used. For example, the influence of elasticity on stream-

line curvature should be investigated, a more definite critical Weissenberg number should

be determined, and more specific conditions for choosing a data set for the fitting proce-

dure should be derived (i.e., minimum size, data quality, maximum velocity gradient).

Also more attention might be paid to the influence of the choice of a certain error norm

on the quality of the fit.
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