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Abstract 
The deterministic approach for interpreting CPT soil profiles poses the serious limitation of not 
taking data uncertainty into account. Therefore, a Bayesian model was developed by Wang et al. 
(2013) that, for a given CPT profile, determines the most probable number of soil layers and most 
probable soil layer thicknesses by simulating and comparing multiple ‘model classes’ with different 
complexities. In this study, this proposed model is implemented into the Python coding environment 
after which the functionality is verified by conducting a case study on a 23	𝑚 CPT profile from the 
Groningen area (NE Netherlands). For the given CPT profile, the model distinguishes 6 separate 
soil layers from which the position and thickness are in agreement with the deterministic analysis 
and the available borehole data. However, the case study suggests that the model fails to correctly 
identify the most probable soil types for CPT measurements within the vicinity of the edges of the 
Robertson chart. This is most-likely related to a “cut-off”-effect of the joint Gaussian distribution 
describing the uncertainty of a single datapoint. A subsequent study on the integration of the 
statistical parameters within the model is therefore required. Additionally, the code includes several 
optimizing strategies, but remains time consuming for very complex model classes. Further 
optimization is suggested to achieve greater model precision and efficiency. 
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List of Symbols 
Symbol Unit Description 

General 
𝑞!  [𝑀𝑃𝑎] Cone resistance 
𝑞"  [𝑀𝑃𝑎] Corrected cone resistance 
𝑓#  [𝑀𝑃𝑎] Sleeve friction 
𝜎$  [𝑀𝑃𝑎] Total effective stress 
𝜎$′  [𝑀𝑃𝑎] Effective stress 
𝑛𝑄"  [−] Normalized cone resistance 
𝑛𝐹%  [−] Normalized friction ratio 

Bayesian Framework 
𝑀& 	 [−]	 Model class	
𝑁'()  [−] Number of model classes considered 
𝜉*+  [−] Set of ln(𝑛𝑄") and 𝑙𝑛(𝑛𝐹%) data for the 𝑖𝑡ℎ	datapoint in 

the 𝑛𝑡ℎ	soil layer 
𝜉*  [−] Set of ln(𝑛𝑄") and 𝑙𝑛(𝑛𝐹%) data for 𝑛𝑡ℎ	soil layer 

𝜉 = :𝜉,, 𝜉-, … , 𝜉&=  [−] Set of ln(𝑛𝑄") and 𝑙𝑛(𝑛𝐹%) data for a given CPT profile 

𝑃(𝜉*|𝑁)  [−] Probability of 𝜉* given the model class 𝑁 = the probability 
that all data points in the 𝑛𝑡ℎ	layer belong to the same soil 
type. 

𝑃./!(𝜉*|𝑁)  [−] Probability that all data points in the 𝑛𝑡ℎ soil layer belong 
to the same soil type 𝐽 

𝑃./!(𝜉*,+|𝑁)  [−] Probability that datapoint 𝑖 in the 𝑛𝑡ℎ	soil layer belongs to 
soil type 𝐽 

𝜎*1"  [−] Standard deviation of ln	(𝑛𝐹%) 
𝜎*2#  [−] Standard deviation of ln	(𝑛𝐹%)  
Ω& = [𝜎,, 𝜎-, … , 𝜎&]  [−] Set of model parameters where 𝜎* = [𝜎*1" , 𝜎*2#] for the 

𝑛𝑡ℎ soil layer  
Posterior distribution 

𝑃(Ω&|𝜉, 𝑁)  [−] Posterior distribution 
𝐾&  [−] Normalizing constant 
𝑃(𝜉|Ω&, 𝑁)  [−] Likelihood function, probability of observing the site 

observation data givenΩ& and 𝑁 
𝑃(Ω&|𝑁)  [−] Prior distribution, which reflects knowledge about Ω& in 

the absence of data. 
ℎ&∗   [𝑚] Most probable soil layer thickness for the 𝑛𝑡ℎ	soil layer 

Conditional probability 
𝑃(𝑀&|𝜉)  [−] Conditional probability, probability of model class 𝑀& 

given a set of CPT data 
𝑃(𝜉|𝑀&)  [−] Conditional probability, probability of 𝜉 given the model 

class 𝑀& 
𝑃(𝜉|𝑀&, ℎ&∗ )  [−] Conditional probability, probability of 𝜉 given the model 

class 𝑀& and most probable soil layer thicknesses ℎ&∗  
𝐻"  [−] Total thickness of the soil profile 
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Chapter 1 – Introduction 
1.1 General Background 

A geotechnical study mostly involves simplifying the ground structure and generalizing soil 
properties to an extent that ground models can be applied to provide results with the least amount 
of data required. One of the fastest methods to do so is a deterministic approach which allows for 
such simplification adopting a single value for the input parameters (Lacasse & Nadim, 1998). 
Although praised for its efficiency, this method is often limited when dealing with problems that 
contain parameter heterogeneities. In geotechnical studies this is a major downside, as soil 
properties (e.g. layer thickness, grain size, unit weight, permeability, etc.) are characterized by large 
spatial variations. Studies in the Netherlands tried to generalize such variations between different 
projects but conclude that they are often site-specific, requiring information on the local subsurface 
(Berbee & Fennis, 2019). Therefore, a stochastic approach is introduced to include parameter 
heterogeneity based on a mean, standard deviation and spatial variability (Fenton, 1999; Hicks, 
2005). In a Random Finite Element Model (RFEM), this approach leads to a unique random field 
that is different between each realization. By adopting many realizations, one may obtain the most 
conservative outcome (e.g. the realization with the least favorable soil conditions; Luo & Bathurst, 
2019).  
 

1.1.1 Cone Penetration Testing 
The dominant source of data needed for a stochastic 
approach, or admittedly for all geotechnical site 
characterization, is data obtained from the widely used 
cone penetration tests (CPT’s). The application of CPT’s 
has various advantages, being a fast and economical 
method with a well-developed theoretical background 
(Robertson, 2010); empirical relations have been 
developed to correlate CPT data to soil properties (e.g. 
unit weight, grain size distributions, strength parameters 
and hydraulic conductivities; Robertson & Cabal, 2010; 
Tillman et al., 2007). Figure 1.1 illustrates how CPT data 
(normalized cone tip resistance 𝑛𝑄! and normalized 
friction ratio 𝑛𝐹") relates to different soil behavior types 
(SBT). Both axes are normalized following Eq. [1] and [2] 
as Robertson (2009) showed that this provides a more 
reliable identification of SBT compared to non-normalized 
charts: 

𝑛𝑄! =
𝑞! − 𝜎#
𝜎#$

 [1] 

𝑛𝐹" =
𝑓%

𝑞! − 𝜎#
∙ 100% [2] 

Where 𝑞! is the corrected cone resistance (in 𝑀𝑃𝑎) and 𝑓" 
is the sleeve friction (in 𝑀𝑃𝑎). 𝜎# and 𝜎#$  are the total and 
effective stresses.  

Using this graph, each datapoint on a continuous 
CPT profile (general distance between measurements is 2 
𝑐𝑚) is then classified as one of the nine possible soil types 
in the Robertson chart; i.e. the area in which a single 
measurement is located. For a given CPT profile, this 
allows for a deterministic soil strata classification where 
different datapoints with similar data values are grouped 
together, based on engineering judgement (Fig. 1.2). 
 

Figure 1.1: Robertson Chart 
(Robertson, 2010) 
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CPT profile example with deterministic soil strata classification 

 
Figure 1.2: CPT profile (DINOloket sample: CPT000000097976) with a deterministic soil classification indicating the 
presence of 20 different layers. Colors represent similar soil types as in Figure 1.1. 

 
1.1.2 Limitations of Deterministic Approach 

While including engineering judgement in the analysis might be considered an advantage, it also 
poses a serious limitation. Different engineers might have different engineering judgement, being 
the result of experience, which may lead to different identifications of soil strata for similar CPT 
profiles. Whereas the deterministic approach in Figure 1.2 suggests the presence of 20 different 
soil layers, a differently experienced engineer might suggest less, or even more, subdivisions. In 
addition to this, classifying this many soil layers is often not practical for a geotechnical study.  
 Several authors ascribed this problem to the inexplicit use of data uncertainty within the 
CPT measurements (Fenton 1999; Wang et al. 2010). Consider, for example, a single 
measurement point of a CPT profile. In many studies (e.g. Vessia et al., 2020; Kurup & Griffin, 
2006; Reale et al., 2018), such measurements are interpreted as deterministic, meaning that the 
SBT at the depth of that datapoint is fully based on its measured 𝑞! and 𝑓". However, instead of this 
measurement being considered deterministic, one can assume that it holds some uncertainty. To 
illustrate, adopting a uniform distribution (for simplicity), such uncertainty would lead to Figure 1.3, 
where the measured datapoint may describe different soil types each with its own probability 
(𝑃%&'(!)*+,- = 0.04, 𝑃%&'(!)*+,. = 0.48, 	𝑃%&'(!)*+,/ = 0.48). Including this knowledge would then possibly 
lead to different soil strata classifications.  
 

1.1.3 Bayesian Approach 
The problem posed in the previous section is discussed in detail by Wang et al. (2013). They 
suggest a Bayesian approach to interpret CPT profiles including these underlying uncertainties. By 
including prior knowledge, a method is developed to calculate the most probable number of soil 
layers and soil layer thicknesses. The prior knowledge included in the example by Wang et al. 
(2013) is limited to specifying a maximum possible number of soil layers and a prior distribution.  
 Wang et al. (2013) state that the proposed method is consistent with the available borehole 
data in their region of interest (NGES sit of Texas) but note that the approach requires more testing 
at other sites with different case studies. In several publications that followed (e.g. Cao & Wang, 
2013; Wang et al., 2014; Cao et al., 2019) they further tested the approach, adding friction angles 
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to the model and doing an optimization analysis. For the latter, they found that the measurement 
interval used for the model calculation is of great importance (Wang et al., 2014).  
 

 
Figure 1.3: illustrative example of how the uncertainty of a CPT measurement 
relates to the interpretation of that datapoint 

1.2 Scope of This Study 
In this report, the basic model proposed by Wang et al. (2013) is implemented into code software. 
This study functions as a detailed walkthrough of the code, discussing its theoretical background 
and the code implementation. The functionality of the code is illustrated via a case study, where it 
is used to classify soil layers for a 25 m deep soil profile situated to the northeast of the Groningen 
village (NE Netherlands; Fig. 1.2). This profile is of interest due to its large variations of soil types 
and number of soil layers, based on a deterministic analysis (Section 1.1.1 Cone Penetration 
Testing); in total, 20 layers can be distinguished, varying between clays, peats and sands, with 
large thickness variations from < 0.5	𝑚 to > 5	𝑚. Note, that by doing this case study, this report 
automatically functions as a revision of the model proposed by Wang et al. (2013).  
 This report may function as a starting point for researchers that wish to learn about the 
Bayesian approach as a mean to interpret CPT profiles and to those who want to further improve 
such a model without the inconvenience of implementing the basic code themselves.   
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Chapter 2 – Theoretical Framework 
2.1 Brief Overview 

With the Bayesian approach, a CPT profile is interpreted by calculating the most probable number 
of soil layers and the most probable layer thicknesses for that particular number of soil layers, 
based on the uncertainties of CPT measurements. To do so, the approach is subdivided into two 
parts.  

(1) Calculate most probable soil layer thicknesses: First, consider 𝑁%&'	different ‘model 
classes’ (𝑀3), where 𝑁%&' is the maximum possible number of soil layers considered. For each 
model class, a different total number of soil layers is taken as such that 𝑀3 = 5𝑀), 𝑀*, … ,𝑀+ , 𝑀+!"#8, 
where 𝑀+ is the Nth model class; coincidingly, N also equals the total number of soil layers 
considered within that model class. Then, for each model class (each considering a different total 
number of soil layers) the most probable soil layer thicknesses (ℎ+∗::::) are calculated, ℎ+∗:::: =
[ℎ)∗ , ℎ*∗ , … , ℎ-∗ , ℎ+∗ ], where ℎ-∗  is the most probable thickness of the nth layer of that model class. An 
example is given in Figure 2.1, where the most probable layer thicknesses are determined for 5 
different model classes; note, that Figure 2.1 functions only as an illustrative example for which no 
real calculations are made. The example indicates that the model becomes more advanced for 
higher model classes, as more layers are considered.  

(2) Select most probable model class: Secondly, all model classes are compared by 
calculating a conditional probability, 𝑃(𝑀-|𝜉), with 𝜉 being a set of ln	(𝑛𝐹.) and ln	(𝑛𝑄!) data of a 
given CPT profile. In descriptive terms, 𝑃(𝑀-|𝜉) is the probability of model class 𝑁 given this set of 
CPT data. The most probable model class (𝑀+

∗ ) is then selected as the one with the highest value 
of 𝑃(𝑀-|𝜉), thus obtaining the most probable soil stratigraphy. For the example in Figure 2.1, this 
would lead to (e.g.) 𝑀/ being the most probable model class, thus resulting in soil strata 
classification given by that model class. 

The next 2 chapters provide a more detailed description on the equations needed for both 
parts. In 2.4 Pseudocode and procedure description, a pseudocode and an overview of the 
implementation steps for the approach is given. 
 

 
Figure 2.1: schematic overview of the approach. Step 1: calculate the most probable soil layer thicknesses per model 

class. Step 2: select most probable model class based on their most probable layer thickness. 
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2.2 Calculating the most probable soil layer thicknesses for model 
class 𝑀! 

2.2.1 The Bayesian Approach: short overview 
In the Bayesian approach, prior knowledge (Θ0) and the observed data (𝑋) are used to describe a 
posterior distribution (𝑃HΘI𝑋J; Wang et al., 2016): 

𝑃HΘI𝑋J =
𝑃H𝑋IΘJ𝑃(Θ)

𝑃H𝑋J
 [3] 

Where: 
1. 𝑃H𝑋IΘJ is the likelihood function, that is, the probability of observing the measured data 𝑋 

given the model parameters Θ. 
2. 𝑃(Θ) is the prior distribution, that is, the prior knowledge on Θ in the absence of data. 
3. 𝑃H𝑋J is a normalizing constant to assure that the sum of all possibilities for Eq. [3] is equal 

to 1.  
Eq. [3] suggests that by multiplying the prior knowledge with newly observed information (the 
likelihood function), an updated distribution (posterior) is obtained taking this new information into 
account (Fig. 2.2). This is a large benefit of the Bayesian approach, as new observation data can 
be used to further improve the model. In the next chapter, Eq. [3] is rewritten for a set of ln	(𝑛𝐹.) 
and ln	(𝑛𝑄!) data given the underlying uncertainty (𝜎1. and 𝜎2!). 
 

 
Θ 

Figure 2.2: schematic illustration of the relation between the prior, likelihood and 
posterior distribution. 

 
2.2.2 Description of Equations 

Rather than writing down the equations for all model classes, let us consider one model class, 𝑀+, 
with 𝑁 number of soil layers. According to Wang et al. (2013), the most probable soil layer 
thicknesses for 𝑀+ are calculated by maximizing a joint posterior distribution. Similar to Eq. [3], this 
is written as: 

𝑃 LΩ+N𝜉, 𝑁O = 𝐾+𝑃 L𝜉NΩ+ , 𝑁O 𝑃(Ω+|𝑁) [4] 
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Where 𝐾+ Q= )

03𝜉4𝑁5
R is a normalizing constant, 𝑃 L𝜉NΩ+ , 𝑁O is the likelihood function and 𝑃(Ω+|𝑁) 

is the prior distribution of a set model parameters Ω6 = 5𝜎), 𝜎*, … , 𝜎-, 𝜎+8. The latter is calculated 
with Eq. [5]: 

𝑃(Ω+|𝑁) =S𝑃(𝜎-|𝑁)
+

-7)

 [5] 

Where 𝑃(𝜎-|𝑁) is the prior distribution of the model parameters 𝜎- = [𝜎1.,-	, 𝜎2!,-], which considers 
the uncertainty of 𝐹𝑟 and 𝑄𝑡 for the 𝑛𝑡ℎ layer. This term is further expressed by Wang et al. (2013) 
as, Eq. [6]: 

𝑃H𝜎-I𝑁J = V
1

𝜎1.,%&' − 𝜎1.,%9-
1

𝜎2!,%&' − 𝜎2!,%9-
X			 [6] 

𝜎1.,%&' , 𝜎1.,%9-, 𝜎2!,%&' and 𝜎2!,%9- are the upper and lower bounds of 𝜎1.,-	and 𝜎2!,-, leading to 
𝑃H𝜎-I𝑁J = YL )

:$%
O Z )

:&'
[\ ;	to the interested reader, a full derivation can be found in Wang et al. (2013, 

pp. 770-771).  
The posterior distribution (Eq. [4]) is a function of the soil layer thicknesses where each soil 

thickness configuration results in a different value for the posterior distribution. Therefore, the 
solution lies in finding the soil thickness configuration leading to the maximum value of the posterior 
distribution. Note, however, that both 𝐾+ and 𝑃(Ω+|𝑁) in Eq. [4] are constant for each model class. 
As the approach merely requires maximizing the posterior, it holds that maximizing for 𝑃 L𝜉NΩ,𝑁O, 
the likelihood function, yields to the same most probable layer thicknesses for a given model class.  

The likelihood function is calculated with Eq. [7] (Wang et al., 2013): 

𝑃 L𝜉NΩ+ , 𝑁O =S𝑃(𝜉-|𝜎-, 𝑁)
+

-7)

 [7] 

Where 𝑃 L𝜉-N𝜎-, 𝑁O is calculated for each layer in the model class. 𝑃 L𝜉-N𝜎-, 𝑁O equals to the sum 
of the probabilities that all datapoints in the nth layer belong to either of the 9 soil types specified 
on the Robertson Chart, Eq. [8]: 

𝑃 L𝜉-N𝜎-, 𝑁O =^𝑃;<( L𝜉-N𝑁O 						𝑛 = 1,2, … ,𝑁
=

>7)

 [8] 

The probability that all datapoints in the nth layer belong to soil type J is given by Eq. [9]: 

𝑃;<( L𝜉-N𝑁O =S𝑃;<( L𝜉-,9N𝑁O
?)

97)

									𝐽 = 1,2, … ,9 [9] 

Where 𝑘- is the total number of CPT datapoints in the 𝑛𝑡ℎ soil layer and 𝑃;<( L𝜉-,9N𝑁O is the 
probability that the 𝑖𝑡ℎ CPT datapoint in the 𝑛𝑡ℎ soil layer belongs to soil type J. From this, it 
becomes evident that the likelihood function, Eq. [7], describes the probability that each of 
the layers in the model class belongs to a single soil type, given a soil thickness 
configuration. By maximizing this probability, one obtains the most optimal thickness 
configuration for that model class.  
 

2.2.3 Input Parameters 
The likelihood function requires two sets of input data: (1) a random set of soil layer thicknesses 
for which the probabilities are calculated and (2) the probability that datapoint 𝑖 belongs to soil type 
J. As implied in the introduction, this probability is described by a probability density function (𝑃𝐷𝐹) 
around the mean, that is, the measured 𝐹. and 𝑄! values for the CPT datapoint 𝑖. The example 
given in the introduction adopts a uniform distribution, whereas the actual 𝑃𝐷𝐹 is more likely to 
resemble a joint Gaussian distribution based on standard deviations for both 𝐹. and 𝑄! (Fig. 2.3). 
The probability that datapoint 𝑖 belongs to soil type J is then calculated by integrating the Gaussian 
curves over the areas on the Robertson chart describing the different soil types.  
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              Normalized Robertson Chart 

 
Figure 2.3: Example of a joint Gaussian distribution for datapoint i, for 𝜎1" = 0.6, 𝜎2# = 0.5. 

 
 

2.2.4 Objective Function 
The most probable thickness boundaries are found by maximizing the posterior PDF in Eq. [3] or 
the likelihood function in Eq. [6]. This method describes the asymptotic technique that involves 
approximating the posterior PDF as a Gaussian PDF, with a mean equal to the most probable value 
of the posterior PDF (Bleistein and Handelsman, 1986). Rather than maximizing the likelihood 
function, 𝑃 L𝜉NΩ+ , 𝑁O, it is more convenient to define an objective function, Eq. [10], and to minimize 
for that: 

𝑓@AB = − ln Z𝑃 L𝜉N𝛺+ , 𝑁O[ [10] 
This is done as the approach deals with very small probabilities, sometimes too small to grasp by 
computer software. For this, imagine a 15	𝑚 thick soil layer with L )C

D.D*
=O750 datapoints, all having 

a probability of 0.2 that they belong to soil type J. Eq. [10], for that soil type, then leads to a 
probability of 0.2FCD which, by a computer, would be approximated as 0. 
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2.2.5 Output 
By finding the soil layer thickness configuration that leads to the lowest value of 𝑓@AB, the most 
probable soil layer thickness configuration for a model class is found. In 2.1 Brief Overview this is 
illustrated by Figure 2.1, where the most probable soil layer thicknesses are calculated for 5 
different model classes.  
 

2.3 Obtaining the Most Probable Model Class 
2.3.1 Description of equations 

Once the most probable soil layer thicknesses are acquired, a conditional probability is defined for 
each model class, Eq. [11] (Wang et al., 2013): 

𝑃 L𝑀+N𝜉O =
𝑃 L𝜉N𝑀+O𝑃(𝑀+)

𝑃 L𝜉O
							𝑁 = 1,2, … ,𝑁%&' [11] 

Where 𝑃 L𝜉N𝑀+O is the conditional probability of 𝜉 given the model class 𝑀+, 𝑃(𝑀+) reflects the 

prior knowledge on the number of soil layers and 𝑃 L𝜉O is the 𝑃𝐷𝐹 of 𝜉. The most probable model 
class (𝑴𝑵

∗ ) is selected as the one with the highest value of 𝑷(𝑴𝒏|𝝃).  
If there is no prior knowledge on the total number of soil layers, 𝑃(𝑀+) can be assumed to 

be equal for all model classes, approximated by )
+!"#	

. This, in combination with 𝑃 L𝜉O being 

independent of the model class, suggests that maximizing the conditional probability (𝑃 L𝑀+N𝜉O) 
only requires maximizing for 𝑃 L𝜉N𝑀+O. This term is further approximated by Eq. [12]: 

𝑃 L𝜉N𝑀+O ≈ 𝑃 L𝜉N𝑀+ , ℎ+∗ O 𝑃Hℎ+∗ J								𝑁 = 1,2, … ,𝑁%&' [12] 
Here, 𝑃 L𝜉N𝑀+ , ℎ+∗ O is the conditional probability of 𝜉 given the model class (𝑀+) and its most 
probable soil layer thicknesses ℎ+∗ . This term is calculated with:   

𝑃 L𝜉N𝑀+ , ℎ?∗O ≈ ∫ 𝑃 L𝜉NΩ+ , 𝑀+O 𝑃(Ω+|𝑀+)𝑑Ω+ [13] 
Where 𝑃 L𝜉NΩ+ , 𝑀+O and 𝑃(Ω+|𝑀+) are the likelihood function and prior distribution of model class 
N (in Eq. [4]), respectively. As Ω+ in constant and fixed throughout the analysis, this is further 
simplified by removing the integral from Eq. [13], leading to   

𝑃 L𝜉N𝑀+ , ℎ+∗ O ≈ 𝑃 L𝜉NΩ+ , 𝑀+O 𝑃(Ω+|𝑀+) [14] 
Note, that both terms on the right side are calculated as described in 2.2.2 Description of Equations 
(Eq. [5] and [7]) 
  𝑃Hℎ+∗ J in Eq. [12] is the occurrence probability of ℎ+∗ . Since the sum of all soil layer 
thicknesses must equal the total thickness (𝐻!) of the soil profile, there are N-1 independent layer 
thicknesses for a model class 𝑀+. Under the assumption of a uniform distribution for the layer 
thicknesses with a constant probability density of 1/𝐻!, 𝑃Hℎ+∗ J is approximated as (Wang et al., 
2013): 

𝑃Hℎ+∗ J ≈
1

𝐻!+I)
 [15] 

For higher model classes, this term becomes smaller, acting as a penalty against 
overparameterization. Finally, combining Eq. [14] and [15] leads to the maximizing function: 

𝑃 L𝜉N𝑀+O =
1

𝐻!+I)
𝑃 L𝜉NΩ+ , 𝑀+O𝑃(Ω+|𝑀+) [16] 
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2.3.2 Output 
Eq. [16] is computed for each model class, thus leading to 𝑁%&' model classes each having a 
unique value of 𝑃 L𝜉N𝑀+O. Eq. [16] describes the probability of observing the set of data from the 
CPT profile, given the model class 𝑀+. Thus, the model class resulting in a maximum value of 
𝑃 L𝜉N𝑀+O is selected as the most probable model class. In 2.1 Brief Overview this is illustrated by 
Figure 2.1 where from 5 model classes (e.g.) model class 4 (𝑀/) is selected as the most probable 
model class, having the largest value for 𝑃 L𝜉N𝑀+O. 

2.4 Pseudocode and procedure description 
Figure 2.4 provides a pseudocode, describing the general procedure of the approach discussed in 
the previous chapters. Below is a detailed description of each step including the associated 
equations. 

1. Obtain a set of CPT data and convert them to ln	(𝑛𝑄!) and ln	(𝑛𝐹.) using Eq. [1] and [2]. 
For this set of data, specify a maximum possible number of soil layers (𝑁%&'), thus resulting 
in 𝑁%&' model classes. 

2. Define an objective function, 𝑓@AB = − ln Z𝑃 L𝜉N𝛺+ , 𝑁O[, for model class 𝑀+ adopting a prior 
distribution for the model parameters Ω6 = 5𝜎), 𝜎*, … , 𝜎-, 𝜎+8. For this, use Eq. [7] and [10]. 

a. For each CPT datapoint in the 𝑛𝑡ℎ soil layer, calculate the probability of that 
datapoint belonging to each of the 9 soil types of the Robertson chart. 

b. Calculate the probability that all datapoints in the 𝑛𝑡ℎ soil layer belong to the same 
soil type, Eq. [9]. 

c. Calculate the likelihood function 𝑃 L𝜉NΩ+ , 𝑁O, Eq. [7], being the direct input of the 
objective function. 

3. Minimize the objective function for the 𝑀+ model class to obtain ℎ+∗::::. This is done by either 
(1) evaluating every possible soil layer thickness configuration for that model class and 
select the one resulting in the lowest value of 𝑓@AB or (2) using the python package 
‘scipy.optimize’ (see 3.4.3 Optimizing). 

4. Calculate the conditional probability, 𝑃 L𝜉N𝑀+O, using Eq. [16]. 
5. Repeat step 2-4 𝑁%&' times, evaluating the conditional probability for each model class. 
6. Select the model class with the highest value of 𝑃 L𝜉N𝑀+O, this is taken as the most probable 

model class 𝑀+
∗ . 

7. For this model class, select ℎ+∗:::: and determine the most probable soil types. 
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Figure 2.4: Pseudocode of the proposed approach 
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Chapter 3 – Code Implementation 
The method discussed in Chapter 2 – Theoretical Framework is implemented into Python code. 
The steps are elaborated on as such, that readers who are more comfortable with other 
programming software (e.g. MATLAB) could easily convert the method to a different coding 
environment. The full python script is provided in the Appendix. The code goes through the 7 steps 
described in 2.4 Pseudocode and procedure description subdivided into 4 parts: 

1. Read the CPT data (.gef file) 
2. Calculate the probability that datapoint 𝑖 belongs to soil type 1, 2, … , 9. 
3. Obtain the most probable soil layer thicknesses for model class 1, 2, … ,𝑀+ , 𝑀+!"#. 
4. Obtain the most probable model class 𝑀+

∗ . 
 
The code includes 4 different python script files (.py): 

1. main.py: the main file which follows the general workflow described above. The other 
files (2-4) are imported as packages and the individual functions in these files are called 
upon when necessary (Appendix A). 

2. read_cpt.py: file with functions to read and store CPT data in a matrix (Appendix B). 
3. robertson.py: file with functions to specify the soil areas on the Robertson chart and 

to calculate the probability that datapoint 𝑖 belongs to soil type 1, 2, … , 9 (Appendix C). 
4. posterior.py: file with functions to calculate the most probable soil layer thicknesses 

per model class and to obtain the most probable model class 𝑀+
∗  (Appendix D). 

3.1 Code requirements 
3.1.1 Input parameters 

In main.py, the input parameters are specified. These include: 
• cpt: a .gef file of the CPT that needs to be analyzed (see 3.2.1 The .gef file) 
• N max: the maximum number of soil layers to consider. This value equals the number of 

model classes for which the model will calculate. 
• min thickness:  minimum thickness of a soil layer to be considered a separate layer. 
• std Fr/std Qt: the standard deviation of the friction ratio and cone resistance, respectively 
• implement constraints: determines if the boundary constraint (see below) should be 

considered. Set to “yes” or “no”. 
• boundary constraint: if needed, specify a matrix with shape = (number of constraints, 3). 

For each constraint, specify the array [top of depth interval, bottom of depth interval, 
minimum model class to consider constraint].  
Applications: this constraint is used to force the model to include a soil layer boundary within 
the specified domain, depending on the model class. Example: If the user wants to make 
sure that a soil boundary between 4-6 m depth is included when 3 or more soil layers are 
considered (=model class 3 or higher) specify the input as np.array([4,6,3]). More 
constraints can be included following the same structure, e.g.: np.array([[4,6,3], 
[6,9,5]]).  

• Probability iterations: number of iterations to approximate the joint Gaussian distribution 
with a Monte Carlo analysis (3.3 Detailed code description: Calculate probability per 
datapoint). Note: a higher value results in a better approximation of the joint Gaussian 
curves. However, this will also lead to larger computation times. 

• Threshold model class: last model class that does not need further optimization, see 3.4.3 
Optimizing. 

• No. guesses: the number of best soil thickness configurations that are selected to further 
optimize the model class, see 3.4.3 Optimizing. 

• Guesses iterations: number of randomly generated soil layer thickness configurations from 
which X (=’no. guesses) best configurations are selected, see 3.4.2 Initial guesses and 
3.4.3 Optimizing. 
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3.1.2 package installments 
The Python code makes use of three useful packages: shapely, geopandas and descartes. As 
these packages are greatly dependent on each other, it is required that the user installs the correct 
versions. To avoid conflicts with interdependencies with pre-installed python packages, it is 
suggested to create a separate working environment for the code. This is best done within the 
anaconda environment which can be installed from: 
https://www.anaconda.com/products/individual.  
 
STEP 1: SETTING UP A NEW ENVIRONMENT 

1. Open the anaconda navigator 
2. Type: conda create -n geo_env (this creates a new environment called “geo_env”) 
3. Type: conda activate geo_env (this activates the new environment) 

 
STEP 2: DOWNLOAD GEOPANDAS 

1. Type: conda config --env --add channels conda-forge 
2. Type: conda config --env --set channel_priority strict 
3. Type: conda install python=3 geopandas 

 
STEP 3: DOWNLOAD DESCARTES 

1. Type: conda install -c conda-forge Descartes 
 
Note, that to be able to run the code successfully, the environment needs to be active. The 
environment can always be activated in the anaconda navigator using conda activate 
geo_env. 
 

3.2 Detailed code description: Read CPT Data 
The code described in this part can be found in Appendix B. 
 

3.2.1 The .gef file 
CPT data is typically stored in a .gef file. A small section of the data in such a file is given below, 
where the columns are separated with a ‘;’.  

92. 2.000;0.640;1.997;137.0;3;-1;3;0.021;0.000;3.7;! 
93. 2.020;0.590;2.017;138.0;3;-2;3;0.021;-0.001;4.0;! 
94. 2.040;0.530;2.037;139.0;3;-2;3;0.021;-0.004;4.4;! 
95. 2.060;0.470;2.057;140.0;3;-2;4;0.020;-0.003;4.6;! 
96. 2.080;0.440;2.077;141.0;3;-1;3;0.017;-0.002;4.1;! 
97. 2.100;0.410;2.097;142.0;3;-2;4;0.015;0.003;3.8;!  

The definition of each column value may vary between each .gef file but are always given at the 
top of the file. In this particular case, the following definitions are adopted for the different column 
values: 

3. #COLUMNINFO= 1, m (meter), sondeertrajectlengte, 1 
4. #COLUMNINFO= 2, MPa (megaPascal), conusweerstand, 2 
5. #COLUMNINFO= 3, m (meter), diepte, 11 
6. #COLUMNINFO= 4, s (seconde), verlopen tijd, 12 
7. #COLUMNINFO= 5, ° (graden), helling oost-west, 10 
8. #COLUMNINFO= 6, ° (graden), helling noord-zuid, 9 
9. #COLUMNINFO= 7, ° (graden), hellingresultante, 8 
10. #COLUMNINFO= 8, MPa (megaPascal), plaatselijke wrijving, 3 
11. #COLUMNINFO= 9, MPa (megaPascal), waterspanning u2, 6 
12. #COLUMNINFO= 10, % (procent; MPa/MPa), wrijvingsgetal, 4  
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Sometimes, the cone penetration test fails to capture data at a certain depth, leading to a ‘void’ in 
the data set. The .gef file therefore specifies the errors if a value is missing: 

14. #COLUMNVOID= 1, 999.999 
15. #COLUMNVOID= 2, 999.999 
16. #COLUMNVOID= 3, 999.999 
17. #COLUMNVOID= 4, 99999.9 
18. #COLUMNVOID= 5, 99 
19. #COLUMNVOID= 6, 99 
20. #COLUMNVOID= 7, 99 
21. #COLUMNVOID= 8, 9.999 
22. #COLUMNVOID= 9, 99.999 
23. #COLUMNVOID= 10, 999.9  

3.2.2 Obtain matrix from .gef file 
The .gef file is imported using the function ‘read_cpt’ in read.py. The different columns of the 
.gef file are stored in a matrix and, for each datapoint, used to obtain the following 12 different 
columns.  

40.     #0 = depth 
41.     #1 = cone resistance 
42.     #2 = sleeve friction 
43.     #3 = u2 
44.     #4 = friction ratio 
45.     #5 = I_sbt 
46.     #6 = volumetric weigth soil 
47.     #7 = total vertical stress 
48.     #8 = effective vertical stress assuming ps is at z=0 
49.     #9 = normalized cone stress 
50.     #10 = normalized friction ratio 
51.     #11 = corrected cone resistance 

The first 5 columns (0-4) follow directly from the .gef file. The pore water pressure (u2), however, 
was often found to contain false values that, from an engineering perspective, make limited sense. 
Therefore, the assumption is made that the pore water pressure increases linearly with depth. 
Secondly, if a datapoint contains an error, a new value is taken via interpolation from the 
surrounding datapoints.  
 The values for the remaining columns (5-11) are based on empirical relations. 𝐼;J< is related 
to the corrected cone resistance (𝑞!) and the atmospheric pressure (taken at 0.1 MPa): 

𝐼;J< = Z3.47 − log Z
𝑞!
𝑃&!%

[[
*
 [17] 

The volumetric soil weight is based on an empirical relation given by Robertson (1990), Eq. [18]: 
𝑊"@9K = 𝛾L Z0.27 log(𝑓.) + 0.36 log Z

𝑞!
𝑃&!%

[[ + 1.236 [18] 

Where 𝛾L is the unit weight of water (in ?+
%+) and 𝑓. is the friction ratio. From this follows the total 

vertical stress, being the cumulative sum of the soil weights of the overlying datapoints. 
Subsequently, the effective stress is calculated from the total stress (𝜎#) and the pore water 
pressure (𝑢): 

𝜎#$ = 𝜎# − 𝑢 [19] 
Adopting Eq. [1] and [2] then leads to the normalized cone resistance and friction ratio. 
 

3.2.3 Generalize matrix 
Although the approach makes use the natural logarithm to deal with very small probabilities, it is 
found that this solution is not always sufficient, especially dealing with very large datasets (e.g. very 
large CPT profiles). Therefore, it is necessary to include a data generalization (function 
‘generalize’ in read_cpt.py, Appendix B). Here, a very simple solution is implemented where 
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the dataset is reduced by a factor directly related to the minimum possible thickness (𝐻%9-) 
specified by the user where: 

𝐹.MNOP!9@- =
𝐻%9-
0.02  [20] 

Where 0.02	𝑚 is the distance between measurements used by CPT’s. For the case that a minimum 
possible thickness of 10	𝑐𝑚 is adopted, this results in a reduction factor of 5. This means that the 
generalized dataset is 5 times smaller than the original dataset. The column values for each 
generalized segment are taken as the average of the values for which it the segment is generalized.  

Note, that only the depth, normalized cone resistance and friction ratio are needed for the 
remaining part of the approach. The generalized matrix therefore contains 12 redefined columns: 

40.     #0 = depth generalized 
41.     #1 = log of nQt generalized 
42.     #2 = log of nFr generalized 
43.     #3-11 = for probabilities; for now empty 

Column 4-12 are empty for now and will be used for data storage in the next part. 
 

3.3 Detailed code description: Calculate probability per datapoint 
In 2.2.3 Input Parameters, the probability that datapoint 𝑖 belongs to each of the 9 soil types 
(𝑃;<( L𝜉-,9N𝑁O in Eq. [8]) is described as the integration of a joint Gaussian distribution (of 𝐹. and 𝑄!) 
over the different areas of the Robertson chart describing the different soil types. Rather than 
solving for many different integrations per datapoint, which is both complex and time demanding, 
a Monte Carlo (MC) analysis is conducted (function MC_probability in robertson.py 
Appendix C). The joint Gaussian 𝑃𝐷𝐹 for datapoint 𝑖 is approximated by generating many points 
on the Robertson chart, each point being randomly generated based on a mean (the measured 𝐹. 
and 𝑄! of datapoint 𝑖) and a set of standard deviations (e.g. Fig. 3.1). From this, 𝑃;<( L𝜉-,9N𝑁O for 
datapoint 𝑖 is approximated as: 

𝑃;<( L𝜉-,9N𝑁O =
𝑐𝑜𝑢𝑛𝑡	𝑜𝑓	𝑀𝐶	𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑎𝑟𝑒𝑎	𝐽

𝑡𝑜𝑡𝑎𝑙	𝑀𝐶	𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠  [21] 
 
To count the number of points that fall within a certain soil type area 𝐽, the boundaries of the areas 
of the Robertson chart are approximated by eight quadratic functions (Fig. 3.2; table 3.1) and their 
intersecting points (table 3.2), based on Wang et al. (2013). Using the python package ‘shapely‘, 
these coordinates are then used to create polygons. This is done because the shapely package 
has a nice built-in function ‘.within’ that evaluates if a point lies within a polygon. Evaluated this 
for each generated point of the MC analysis will result in the numerator of Eq. [21]. 
 For every datapoint of the CPT profile, this leads to 9 different probabilities (probability of 
belonging to soil type 1, 2, 3,..., 9), which are stored in column 4-12 of the generalized matrix from 
3.2.3 Generalize matrix. Note, that if the MC analysis is applied to many realizations (this number 
is specified by the user =Probability iterations), this may take a significant time to finish.  
 

Table 3.1: best-fitted quadratic functions for the boundaries on the 
Robertson chart (Wang et al., 2013). 
I ln(𝑄") = −0.3707 ln(𝐹%)- − 1.3625 ln(𝐹4) + 1.0549 
II ln(𝑄") = −0.5586 ln(𝐹%)- − 0.5399 ln(𝐹4) + 0.3049 
III ln(𝑄") = 0.5405 ln(𝐹%)- + 0.2739 ln(𝐹4) + 1.6959 
IV ln(𝑄") = 0.3833 ln(𝐹%)- + 0.7805 ln(𝐹4) + 2.5718 
V ln(𝑄") = 0.2827 ln(𝐹%)- + 0.967 ln(𝐹4) + 4.1612 
VI ln(𝑄") = 0.3477 ln(𝐹%)- + 1.4933 ln(𝐹4) + 6.6507 
VII ln(𝑄") = 0.8095 ln(𝐹%)- − 3.6795 ln(𝐹4) + 8.1444 
VIII ln(𝑄") = 64.909 ln(𝐹%)- − 187.07 ln(𝐹4) + 139.2901 
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Table 3.2: Coordinates of the intersection points of the Robertson chart (Wang et al., 2013). 
Intersection point 𝐥𝐧	(𝑭𝒓) 𝐥𝐧	(𝑸𝒕) Intersection point 𝐥𝐧	(𝑭𝒓) 𝐥𝐧	(𝑸𝒕) 
A -2.3026 0 L 0.9622 5.3534 
B 0.6569 0 M -2.3026 3.4335 
C -2.3026 2.2268 N 0.3655 6.9078 
D 2.3026 0 O 0.1658 6.9078 
E 2.3026 2.0234 P -2.3026 5.0557 
F 0.5589 0.1776 Q -2.3026 6.9078 
G 2.3026 3.9639 R 2.3026 6.9078 
H 1.8687 4.0953 S 1.6334 6.9078 
J 1.4505 4.5104 T -0.5773 1.7179 
K -1.3334 2.2126    

 
           Normalized Robertson Chart 

 

         Normalized Robertson Chart 

 
Figure 3.1: Monte Carlo analysis that approximates the joint 

Gaussian 𝑃𝐷𝐹 for datapoint 𝑖. 
 Figure 3.2: Overview of the quadratic functions to 

approximate the boundaries on the Robertson chart 
(Wang et al., 2013). 

 

3.4 Detailed code description: Obtain the most probable thicknesses 
per model class 

3.4.1 Brief overview  
Here, the code that implements the theory described in 2.2 Calculating the most probable soil layer 
thicknesses for model class 𝑀+ is discussed. The output following from 3.3 Detailed code 
description: Calculate probability per datapoint is used. That is, a matrix wherein for each datapoint 
the probabilities are listed that that datapoint belongs to one of the 9 soil types described by the 
Robertson chart. For each model class, an objective function (Eq. [9]) is constructed and minimized 
based on these probabilities. As the objective function yields a different solution for each different 
soil thickness configuration, a straight-forward approach would be to calculate the objective function 
for many thickness configurations. Then, the most probable thickness configuration is taken as the 
one configuration that leads to the lowest value for the objective function.  
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This approach is valid for model classes with a low number of soil layers, but lacks efficiency 
for model classes with a large number of soil layers. For model classes with a high number of soil 
layers, significantly more configurations must be evaluated to include all possibilities, thus requiring 
significantly longer computation times (Fig. 3.3). Therefore, for higher model classes, an 
optimization approach is suggested.  

 

 
Figure 3.3: Number of possible soil layer thickness configurations versus the number of soil layers considered. 4 different 

soil profile thicknesses are included. Note: y-scale is logarithmic. 
 
In posterior.py (Appendix D) this optimization is achieved with the two functions 

‘best_guesses’ and ‘optimizer’. ‘best_guesses’ simulates the likelihood function for a large 
set of randomly generated layer thickness configurations. The function returns a list “best_conf” 
where X (number specified by the user) configurations are stored having the lowest values for the 
objective function. For model classes with a low number of soil layers, the objective function is then 
minimized by selecting the configuration within that list that contains the lowest value for the 
objective function.  

For model classes with a high number of soil layers, each individual configuration in the list 
following from ‘best_guesses’ is taken as the input parameter for the function ‘optimizer’. For 
a given layer thickness configuration this function further minimizes the objective function, using 
the scipy.optimize package. Then, similarly to the model classes containing a low number of 
soil layers, the configuration leading to the lowest value of the objective function is then taken as 
the configuration with the most probable soil layer thicknesses.  
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3.4.2 Initial guesses  
In posterior.py, the function (best_guesses) is defined in which the objective function is 
evaluated for many different (randomized) soil layer thickness configuration. Below is a schematic 
pseudocode of the function.  
 
 

 
 
 
1. Generating a random configuration of soil layer thicknesses: 
First, an array of possible boundary positions is generated based on the boundaries of the CPT 
profile, based on a of 0.1	𝑚 spacing. From this array, the positions of the boundaries are randomly 
generated with the random.choice()command (see below, line 8). By doing this iteratively for 
each boundary, the randomized value is deleted from the array with total possibilities to assure that 
the other boundaries are not assigned to the same positions. In the python script this is results in: 
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1.     
2.    boundaries = np.zeros(model_class+1)  #empty list in which boundaries are stored  
3.     
4.    boundaries[0] = matrix_generalized[0,0] #first value = top of CPT profile 
5.  
6.    if model_class>1: 
7.        for nn in range(1+len(L_constraints),model_class+1): 
8.            boundaries[nn] = random.choice(boundary_possibilities) 
9.  
10.            #indices of value +- min_thickness in boundary_possibilities 
11.            idx = np.array(np.where((boundary_possibilities>boundaries[nn]-min_thickness)            
12.                     *(boundary_possibilities<boundaries[nn]+min_thickness))[0])   
13.                  
14.            #delete indices so that next iteration only a correct boundary 
15.            boundary_possibilities=np.delete(boundary_possibilities,idx)                           

Note, that the boundaries need only to be generated for model classes that have more than 1 layer. 
One might also note the variable len(L_constraints) in line 2. This term allows to include 
constraints in the random generation of layer boundaries. If no constraints are specified this value 
equals to 0. The constraint is a mean to force the position of a single (or more) soil boundary, 
having the following input layout: 

1. np.array([[start,stop,model class],   #constraint 1 
2.           [start,stop,model class],   #constraint 2 
3.           ...)  

Where ‘start’ and ‘stop’ specify the range in which (at least) one of the boundaries should be 
positioned. The ‘model class’ parameter specifies when this constraint should be included, for 
example: the constraint [6,9,3] makes sure that (at least) one soil boundary is located between 6 
and 9 m depth, only if 3 or more soil layers are considered. 
 If constraints are included in the analysis, the program will automatically provide a CPT 
profile showing the different constraints (e.g. Fig. 3.3). 
 

 
Figure 3.3: CPT profile including the constraints: [6, 9, 2], [15, 16, 4] and [19.5, 20.2, 3]. 

 
2. Returning list with X best configurations 
The likelihood function (or P_Eps in the python code) is calculated for many different soil layer 
thickness configurations. Each different soil layer thickness configuration will therefore lead to a 
unique P_Eps value. From all the different layer thickness configurations for which the objective 
function is calculated, a selection of configurations is returned giving the minimal value of the 
objective function; the size of this selection is defined by no_guesses. The function output is a 
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matrix, best_conf, for which the number of rows is equal to no_guesses. The number of 
columns is dependent on the model class where in the first column (=best_conf[:,0]) the 
objective function values are stored. In the remaining columns, the layer thicknesses are stored. 
For model class 4, best_conf will (e.g.) look like this: 

{

[200 4 5 3 6]
[198 2 6 5 5]
[201 6 5 1 6]
[… … … … …]

} 

Where 200, 198 and 201 are the values for the objective function. The other numbers represent 
soil layer thicknesses. 
 

3.4.3 Optimizing 
For low model classes, the matrix that follows from 3.4.2 Initial guesses is not further optimized. 
The most probable thickness configuration is taken as the one giving the lowest value for the 
likelihood function. For the example above, this would lead to the second configuration.  
 For higher model classes, each configuration that follows from 3.4.2 Initial guesses is 
further optimized, for reasons stated in 3.4.1 Brief overview. This is done within the function 
optimizer using the scipy.optimize package. 

For this study, the basin-hopping algorithm was found to be most efficient. The algorithm 
can deal with functions that have many minima, which is the case for this study. Figure 3.4 
schematically explains the workings of the basin-hopping algorithm. Starting from an initial function-
value, the algorithm tries to change the input parameters as such that a lower function-value is 
found. The algorithm does this step-wise. Each step, either (1) a less favorable condition is found 
and thus neglected or (2) a more favorable condition is found which then will function as the starting 
point for the next iteration. Iterating many times will then lead to a minimum value.  

 

 
Figure 3.4: Basin-hopping example. Source: https://ars.els-cdn.com/content/image/1-s2.0-S0009261404016082-gr1.jpg  

 
Note, however, that for a single optimization there is no way of ensuring that this is a local 

minimum rather than a global minimum value. This is illustrated in Figure 3.5 where obtaining a 
local or global minimum is fully dependent on the starting point (or ‘initial guess’) of the optimization. 
This relation between local and global minima is the reason for the part described in 3.4.2 Initial 
guesses. By optimizing for multiple different starting points (i.e. the most optimal different initial 
guesses), it is more likely to obtain the global minimum; thus, comparing all optimized 
configurations and selecting the one leading to the minimum value of the objective function.  
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The basin-hopping algorithm allows to include boundary conditions and constraints, which 
can be very helpful. For example, below is the list of the current applied constraints and boundary 
conditions: 

• Constraint 1: the sum of all soil layer thicknesses must equal the total thickness of the 
CPT profile. 

• Constraint 2: soil layer thicknesses cannot be less than the minimal thickness 
specified by the user 

• Boundary condition 1: the thickness of a soil layer cannot exceed the total thickness of 
a CPT profile (if not specified it was found that, even with constraint 2, constraint 1 was 
met by having negative thicknesses). 

  
 

 
 

Figure 3.5: difference between local and global minimum. Source: 
https://www.researchgate.net/publication/322270023/figure/fig3/AS:667627483562008@1536186204657/Example-of-

local-and-global-solutions-in-an-optimization-problem.png  
 

3.5 Detailed code description: Obtain the most probable model class 
When the most probable soil layer thicknesses are calculated for all model classes (3.4 Detailed 
code description: Obtain the most probable thicknesses per model class), the simulation is 
completed by calculating the most probable model class. Compared to the previous section, this is 
done in a few coding lines. For each model class, the minimum value of the objective function is 
multiplied with the prior distribution (Eq. [5]). This product is then divided by 𝐻!+I) according to Eq. 
[15], to obtain the conditional probability. The most probable model class is then taken as the one 
leading to the highest value of the conditional probability. Lastly, the most probable soil types are 
found. This is achieved by calculating 𝑃 L𝜉-N𝜎-, 𝑁O (Eq. [8], the probability that all datapoints in the 
nth layer belong the either of the 9 soil types specified on the Robertson chart) for each soil layer 
and selecting the soil type for that layer resulting in the highest value for 𝑃 L𝜉-N𝜎-, 𝑁O. 
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Chapter 4 – Case Study 
The model approach described in chapter 2 and 3 is applied to an existing CPT profile in the 
proximity of the Groningen Village (Fig. 1.2). As mentioned in 1.2 Scope of This Study, this CPT 
profile describes a stratigraphy in which 20 different layers are separated, following a deterministic 
classification. Based on these subdivisions, 5 regions can be distinguished: (1) clays between 2-7 
m, (2) sands between 7-14 m, (3) peat between 14-15 m, (4) sands between 15-20 m and (5) clays 
at depths >20 m.  

4.1 The most probable soil layer thicknesses 
The most probable soil layer thicknesses are calculated following the approach described in 
Chapter 2.2 (2.2 Calculating the most probable soil layer thicknesses for model class 𝑀+). The 
results are obtained adopting the input parameter values in Table 4.1.  

(1) Boundaries that are found by lower model classes (e.g. 𝑀* −𝑀C) are considered soil 
boundaries as well in the higher model classes (e.g. 𝑀Q −𝑀=); for example, the soil boundary at 
ca. 7.4 m depth is considered in all model classes 𝑀* −𝑀=. This leads to a pattern where for each 
higher model class, a new soil boundary is added while the other soil boundaries are similar to the 
ones found by the previous model classes. One exception to this is the boundary at ca. 19.9 m 
depth found by 𝑀R, which is absent in 𝑀=. This deviation can be ascribed to the relatively low 
number of iterations (‘guesses iterations’ in Table 4.1) considered. This value is significantly lower 
than the total number of possibilities of soil layer thicknesses for model 8; for a CPT profile thickness 
of 23.22	𝑚 and a minimum layer thickness of 0.1	𝑚, a total of 6 ∗ 10)R soil layer configurations are 
possible. Although the code involves an optimization of the best configurations, deviations are likely 
to occur at the higher model classes. An obvious solution would be to increase the number of 
iterations, but that leads to significantly more computation times.  

(2) The most probable layer boundaries that follow for each model class complement well 
with the CPT data. For example, in Fig. 4.1 the soil boundaries based on 𝑀Q are added to the CPT 
profile. They suggest that the model correctly identifies different soil layers depending on the model 
class.  

 
      Most probable layer boundaries per model class 

 

 
 
 
 
 

Table 4.1: Input values used in the 
case study 
Parameter Input 
𝑁!"#  1 
𝑁!$%  9 
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠!"# (𝑖𝑛	𝑚) 0.1 
𝜎&'  1 
𝜎()  1.2 
Implement constraints “no” 
Probability iterations 200.000  
Number of guesses 20  
Guesses iterations 400.000  
Threshold model class 4  

 

Figure 4.1: Results of the Bayesian approach calculating the most probable layer 
thickness configurations per model class.  
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4.2 The most probable model class 
Following the method described in chapter 2.3 (2.3 Obtaining the Most Probable Model Class), the 
results for obtaining the most probable model class are summarized in table 4.2. As defined, the 
model class with the maximum value of ln	[𝑃𝜉|𝑀+] is considered the most probable model class. 
For model classes 𝑀) −𝑀Q, the value of ln	[𝑃𝜉|𝑀+] increases from −470.9 to −208.8, after which 
the value decreases to −214.3 between model class 𝑀F −𝑀R. It becomes evident that the most 
probable number of soil layers is 6. Subsequently, the most probable soil classification types are 
calculated for this model class leading to the following stratigraphy: (1) clay from 2.3 − 7	𝑚, (2) sand 
from 7 − 14	𝑚, (3) clay from 14 − 15	𝑚, (4) sand from 15 − 20	𝑚, (5) clay from 20 − 24.5	𝑚 and (6) 
sand mixtures from 24.5 − 25	𝑚. 
 
Table 4.2: results of the Bayesian class selection 

 
 
 
 
 
 
 
 
 
 
 

4.3 Discussion 
Figure 4.3 summarizes the results of the Bayesian approach and compares it to nearby available 
borehole data and the deterministic analysis. The comparison between the original CPT data and 
Generalized CPT data is also included (see 3.2.3 Generalize matrix). This comparison indicates 
that although the total number of datapoints is reduced, no critical information is lost. Note, that the 
results are acquired by setting the minimal thickness to 0.1	𝑚. As the generalization is directly 
related to this value, adopting a higher minimal thickness might result in the loss of critical 
information.  
 

4.3.1 Comparison with deterministic approach 
The study results are generally in good agreement with those acquired from the deterministic 
analysis (Fig. 43). The general trend of the soil layers based on the deterministic analysis are well 
captured by the model, separating the sand layers from the clay and/or peat layers. At ca. 12	𝑚 
depth, however, the model indicates the presence of clay, whereas the deterministic analysis 
suggests a peat layer instead, also being slightly thinner (1.2	𝑚	compared to 0.95	𝑚). One 
explanation for this difference is that the deterministic analysis is based on engineering judgement. 
The judgement for this layer is heavily influenced by the ‘spike’ of the CPT profile. Based on this 
‘spike’ alone, this layer would be classified as peat. Considering the other measurements in that 
layer as well, however, which is done by the model, leads to a more considerate result, being a 
clay layer. In addition to this, it must be noted that there is also no consensus on the presence of a 
peat layer by the available borehole data around this depth. Around this depth, the soil type is 
marked as peat by 𝐵𝐻2 and as clay by 𝐵𝐻1.  

       Most probable Model class 
 

Figure 4.2: soil types for the most 
probable number of soil layers and soil 
layer thicknesses 
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Figure 4.3: Model results and comparisons to other methods. 

 
4.3.1 Limitations  

The model does not indicate the presence of a peat layer within the top 5	𝑚 of the soil profile, 
whereas this layer is clearly present based on the deterministic analysis. 𝐵𝐻)	and 𝐵𝐻* also 
distinguish a peat layer overlying the sand layer around 5	𝑚 depth (Fig. 4.3). The absence of this 
layer following the model approach might be related to the relatively low numbers of soil layers that 
resulted from the model. However, for the higher model classes (𝑀F −𝑀=) this layer is also absent. 
This might be related to the problem posed in Figure 4.4, illustrating the example of a joint Gaussian 
distribution around a single datapoint, similar too Figure 2.2. However, rather than adopting a 
datapoint in the center of the Robertson chart, a measurement close to the edges of the Robertson 
chart is taken. The same Gaussian distribution as in Figure 2.2 then shows a “cut-off” at the edges 
of the Robertson chart, leading to a biased distribution. As a result of this cut-off, the chance of that 
datapoint belonging to soil type 3 increases compared to the change of it belonging to soil type 2. 
The effect of this cut-off is not implemented in the current model, possibly explaining the absence 

Original CPT  
Data 

Deterministic 
Analysis 

Generalized CPT  
Data 

 

Availabe 
Borehole Data 

This 
Study 
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of peat layers in the model results. This problem is not mentioned by Wang et al. (2013), suggesting 
that they (1) implemented a simple solution that did not need explanation or (2) did not take this 
problem into account. It must be noted, however, that the deterministic analysis of CPT profile 
analyzed by Wang et al. (2013) does not distinguish peat layers. Therefore, it is also likely that 
Wang et al. (2013) did not face this problem at all, thus not requiring a solution to this problem. 
However, the results following from case study conducted here suggest that this “cut-off” might 
affect the results, mainly for CPT measurements that fall within the vicinity of the edges of the 
Robertson chart. A subsequent study on the impact of this cut-off and its solutions is therefore 
suggested. A simple solution would be to account the datapoints (for the Monte Carlo analysis in 
3.3 Detailed code description: Calculate probability per datapoint) that fall outside the Robertson 
chart to the nearest soil type. This introduces the assumption that large ln	(𝑛𝐹.) and ln	(𝑛𝑄!) values 
have an equal chance of occurrence compared to low values of ln	(𝑛𝐹.) and ln	(𝑛𝑄!). This, of 
course, does not hold as the Robertson chart is based empirical data, excluding measurement 
values that are unlikely to be found (e.g. ln	(𝑛𝐹.) values > 2.5). A different solution could be to alter 
the statistical parameters (𝜎1% and 𝜎2') of the joint Gaussian curve depending on the position of the 
datapoint within the Robertson chart. This, however, introduces several complications including the 
effect of boundary conditions and the prior distribution (𝑃(Ω+|𝑁), Eq. [5]) no longer being uniform 
for every layer. Lastly, a solution is proposed to base the statistical parameters (𝜎1% and 𝜎2') on the 
non-logarithmic values for 𝑛𝐹. 	and 𝑛𝑄!, resulting in an asymmetric shape on the joint Gaussian 
distribution on the logarithmic Robertson chart. This, however, requires an evaluation of the 
parameters values of 𝜎1. and 𝜎2! that will lead to the most-optimal results.  
 

 
Figure 4.4: Illustrative example of the proposed problem when calculating the probability per 

datapoint. The Gaussian distribution is cut off at the edges of the Robertson Chart. 
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4.3.2 Optimization 
Running the code can be quite time consuming, depending on the number of model classes used 
within the simulation and the number of soil layers considered. Chapter 3.4.3 Optimizing proposes 
an optimizing module to increase the model efficiency and accuracy specifically for high model 
classes. Without this optimizing module, to obtain similar results, the computation time was found 
to be in the order of 15 hours. Including this module significantly enhanced the processes, lowering 
this computation time to roughly 2 hours1.  

As described, the input for the optimizing function is a list of the most optimal ‘initial guesses’ 
based a Monte Carlo analysis in which soil layer thickness configurations are randomly generated. 
However, the current version of the code does not include a revised selection of these optimal initial 
guesses. The code only selects the 𝑋 most optimal initial guesses without taking similarities into 
account. This means that optimizing for multiple initial guesses with large (or even identical) 
similarities is possible. For example, table 4.2 shows the 20 most optimal configurations (=initial 
guesses) for model class 7 based on 400.000 randomly generated soil layer thickness 
configurations. At the top of the table, several soil layer thickness configurations are grouped 
together based on their similarities. By obtaining similar initial guesses, the total number of initial 
guesses is effectively reduced; in this case, the model optimizes for 16 different soil thickness 
configurations, rather than 20. This, of course, affects the model accuracy as the input variable 
‘no_guesses’ (3.1.1 Input parameters) is an ‘apparent’ quantity. Future studies should therefore 
consider if a 20% loss is acceptable or not. If not, one could either (1) increase the value for 
‘no_guesses’ to account for the loss in accuracy or (2) implement an additional module to ensure 
that no similarities between initial guesses are allowed.  

Although the implemented optimizing module leads to great improvements regarding 
efficiency, additional optimization is needed to further improve the model. For example: 

• Depend the number of optimal configurations (= initial guesses) on the number of soil 
layers for a model class; e.g. increase no_guesses for higher model classes to allow 
for a wider range of initial guesses. 

• If the user has previous knowledge on the area regarding the number of soil layers, the 
model could be improved by specifying a minimal number of soil layers to consider. By 
doing this, the model efficiency increases as irrelevant model classes are disregarded.  

• The scipy.optimize package has a wide range of possibilities to optimize the solver 
(e.g. specify tolerance levels, step sizes, etc.). A study on the sensitivity and computing 
performance related to these parameters could lead to significant improvements.  

 
Table 4.2: 20 most optimal initial guesses for model class 7. Several configurations are grouped together based on their 
similarities. 
‘initial guess’ 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 𝒉𝟔 𝒉𝟕 
1 5.063 4.9 1.8 1.3 5 4 1.017 
2 5.063 4.6 2.2 1.4 4.7 4.2 0.917 
3 4.963 0.9 5.9 1.2 5.1 4 1.017 
4 5.063 1.1 5.7 1.3 4.7 4.1 1.117 
5 5.063 3.4 3.4 1.2 4.8 4.1 1.117 
6 4.963 3.2 3.6 1.2 5 4.3 0.817 
7 5.163 5.8 1 1.1 0.5 4.3 5.217 
8 5.163 6.1 1 0.8 0.8 4.1 5.117 
9 4.963 7 1 0.6 4.4 3.7 1.417 
10 4.963 6.8 2 4.3 4 0.5 0.517 
11 5.063 6.6 1.3 1.8 3.2 4.1 1.017 
12 1.563 3.5 6.6 1.5 4.7 4.2 1.017 
13 5.063 5.9 1 1 4.8 0.2 5.117 
14 5.063 6.8 1.3 2.9 1.8 4.2 1.017 
15 5.063 6.1 0.7 1.1 4.9 4.3 0.917 
16 4.663 0.3 6.9 1.1 4.9 4.2 1.017 
17 4.463 0.6 6.7 1.3 5 4 1.017 
18 5.063 5.9 1.1 1 4.9 1.8 3.317 
19 5.063 6.7 0.6 0.7 4.8 4.3 0.917 
20 4.963 0.2 5.9 1.2 0.7 5 5.117 

 
1On a Mac Mini (M1) with 8 gb ram. 
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Chapter 5 – Conclusion 
The Bayesian approach proposed by Wang et al. (2013) to interpret CPT soil profiles taking the 
underlying uncertainty of the data measurements into account, is implemented into the Python 
coding environment. First, the code defines a set of model classes for a given CPT profile, each 
model class increasing in complexity; that is, the total number of soil layers considered. Secondly, 
for each model class, the most probable soil layer thicknesses are determined after which all model 
classes are compared to obtain the most probable number of soil layers. This results in a CPT 
profile interpretation in which the most-likely soil layers (soil type, thickness and position) are 
distinguished. The results following from a case study on a 23	𝑚 CPT profile are promising. For the 
given CPT profile, the model identifies 6 soil layers which agree with the results following the 
deterministic approach and observational data from nearby located boreholes. However, the soil 
types of CPT measurements within the vicinity of the edges of the Robertson chart are incorrectly 
identified as a result of a “cut-off”-effect of the joint Gaussian distribution describing the uncertainty 
of a single datapoint. This is most likely related to the integration of the statistical parameters within 
the model, which should be examined in a subsequent study.  
 Additionally, a simple optimization module is integrated within the model to improve the 
efficiency for higher model classes. However, this module still holds several simplifications (e.g. 
allowing multiple ‘initial guesses’ to be similar leading to an ‘apparent’ accuracy) as well as being 
insufficient for higher model classes. It is therefore suggested to implement additional optimization 
modules that allow for more accurate results for higher model classes while maintaining reasonable 
computation times.  
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Appendices: Python code 
Appendix A: Main.py 

1. import pandas as pd 
2. import numpy as np 
3. import robertson as Frob 
4. import read_cpt as Fread 
5. import posterior as Fpost 
6. import os  
7. import matplotlib.pyplot as plt 
8.   
9. """ 
10. #################################### 
11. #-------------1. Input-------------# 
12. #################################### 
13. """ 
14.   
15. params = { 
16.     "cpt":              "CPT000000097976_IMBRO_A.gef",   #cpt gef file 
17.     "N min":            1,                          #minimum soil layers to consider 
18.     "N max":            9,                         #maximum soil layers to consider 
19.     "min thickness":    0.1,           #minimum layer thickness  
20.     "std Fr":           1,                     #standard deviation of friction ratio 
21.     "std Qt":           1.2,                       #standard deviation of cone resistance 
22.     "Table number":     1,                 
23.     "implement constraints": "no",                  #if desired to use constraints: "yes".  
24.     "boundary constraint": np.array([[6,9,2],      #specify constraints 
25.                                      [19.5,20.2,3], 
26.                                      [15,16,4]]), 
27.     "probability iterations": 200000, #number of iterations for probability per datapoint 
28.     "treshold model class": 4,       #largest model class that does not need optimization 
29.     "no. guesses": 20,   #number of initial guesses used for optimization per model class 
30.     "guesses iterations": 400000    #number of iterations of which no. guesses are stored 
31.     } 
32.   
33. """ 
34. #################################### 
35. #------------2a. read cpt----------# 
36. #--------2b. generalize cpt--------# 
37. #################################### 
38. """ 
39. #2a. 
40. matrix = Fread.read_cpt(params)                     #read cpt file and store in matrix 
41. Fread.plot_boundary_constraints(matrix,params)     #plot figure with boundary constraints 
42.   
43. #2b. 
44. matrix_generalized = Fread.generalize(matrix,params)   #generalize matrix  
45.   
46. Frob.plot_Robertson(matrix_generalized)  #plot generalized data on Robertson chart 
47. print("Obtain matrix: SUCCES") 
48.   
49. """ 
50. #################################### 
51. #--------3 get probability per data point---------# 
52. #################################### 
53. """ 
54.   
55. Polygons = Frob.plot_Robertson(matrix_generalized)    #get polygons from robertson chart 
56.  
57. #check if the file with probability per datapoint exists, if not: make one 
58. if os.path.isfile('prob_generalized2.csv') == False:                      
59.     #get probability per measurement 
60.     matrix_generalized = Frob.MC_probability(matrix_generalized,Polygons,params)    
61.     np.savetxt('prob_generalized2.csv', matrix_generalized,delimiter=";", 
62.       header='depth;nQt;nFr;P_1;P_2;P_3;P_4;P_5;P_6;P_7;P_8;P_9')     
63.   
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64. if os.path.isfile('prob_generalized2.csv') == True: 
65.     matrix_generalized = np.array(pd.read_csv('prob_generalized2.csv', sep=';'))  
66.   
67. print("get probability per datapoint: SUCCES") 
68.   
69. """ 
70. #################################### 
71. #---------4. calculate most probable N and layer thicknesses-----------# 
72. #################################### 
73. """ 
74. #calculate likelihood function and conditional probability per model class 
75. final_result,summary= Fpost.calculator(matrix_generalized,params)  
76.   
77. """ 
78. #################################### 
79. #---------5. plot results-----------# 
80. #################################### 
81. """ 
82. Fread.plot_summary(matrix,summary,final_result,params) 
83.   
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Appendix B: Read_cpt.py  

1. import numpy as np 
2. import pandas as pd 
3. import matplotlib.pyplot as plt 
4. import math 
5.   
6. def find_columns(cpt): 
7.     """ 
8.     Function to read gef file and find which columns contain what values 
9.     """ 
10.     data = open(cpt,'r') 
11.      
12.     for row in data: 
13.         if row[0]=='#': 
14.             if row[-11:-1] == 'diepte, 11': 
15.                 lengthcol = int(row[13])-1 
16.             elif row[-18:-1] == 'conusweerstand, 2': 
17.                 conuscol = int(row[13])-1       
18.             elif row[-25:-1] == 'plaatselijke wrijving, 3': 
19.                 sleevecol = int(row[13])-1 
20.             elif row[-20:-1] == 'waterspanning u2, 6': 
21.                 u2col = int(row[13])-1 
22.         else: 
23.             break 
24.     columns = [lengthcol, conuscol, sleevecol, u2col] 
25.     columns = np.sort(columns) 
26.     return columns 
27.   
28.   
29. def read_cpt(params):  
30.     """ 
31.     Function to read cpt data and store them in a matrix 
32.     """ 
33.      
34.     cpt = params["cpt"] 
35.     no_of_columns = 12 #if more columns are included, add those here 
36.     #0 = length 
37.     #1 = conus 
38.     #2 = sleeve 
39.     #3 = u2 
40.     #4 = fr 
41.     #5 = I_sbt 
42.     #6 = volumetric weigth soil 
43.     #7 = total vertical stress 
44.     #8 = effective vertical stress assuming ps is at z=0 
45.     #9 = normalized cone stress 
46.     #10 = normalized friction ratio 
47.     #11 = corrected cone resistance 
48.      
49.     """ Error values """ 
50.     lengtherror = 999.999 
51.     conuserror = 999.999 
52.     sleeveerror = 9.999 
53.     u2error = 99.999 
54.      
55.     pa = 0.1        #atmospheric pressure 
56.     yw = 10         #unit weight of water 
57.     alpha = 0.8     #coefficient to correct for pore pressures 
58.   
59.     """ read columns from gef file """ 
60.     columns = find_columns(cpt) #read the columns from gef file 
61.     df = pd.read_csv(cpt, header=None, delimiter=';',comment='#', usecols=columns) 
62.     matrix = np.zeros((len(df),no_of_columns)) #create matrix in which data is stored 
63.  
64.     #0: depth 
65.     matrix[:,0] = np.array(df.iloc[:,1]) 
66.      
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67.     #1: conus resistance 
68.     matrix[:,1] = np.array(df.iloc[:,0]) 
69.      
70.     #2: sleeve friction 
71.     matrix[:,2] = np.array(df.iloc[:,2]) 
72.      
73.     #3: u2 
74.     matrix[:,3] = (matrix[:,0] * 0.01) -0.5*0.01 
75.     matrix[:,3] = matrix[:,3]*(matrix[:,3]>0) 
76.   
77.     #check if first value has error and if so, give it the closest 'real' value 
78.     if matrix[0,0] == lengtherror: 
79.         matrix[0,0]=matrix[np.where(matrix[:,0]!=lengtherror)[0][0],0] 
80.     if matrix[0,1] == conuserror: 
81.         matrix[0,1]=matrix[np.where(matrix[:,1]!=conuserror)[0][0],1] 
82.     if matrix[0,2] == sleeveerror: 
83.         matrix[0,2]=matrix[np.where(matrix[:,2]!=sleeveerror)[0][0],2] 
84.     if matrix[0,3] == u2error: 
85.         matrix[0,3]=matrix[np.where(matrix[:,3]!=u2error)[0][0],3] 
86.   
87.     #if errorvalue is found, change it to the value above 
88.     for point in range(len(matrix)): 
89.         if matrix[point,0] == lengtherror: 
90.             matrix[point,0] = matrix[point-1,0] 
91.         if matrix[point,1] == conuserror: 
92.             matrix[point,1] = matrix[point-1,1] 
93.         if matrix[point,2] == sleeveerror: 
94.             matrix[point,2] = matrix[point-1,2] 
95.         if matrix[point,3] == u2error: 
96.             matrix[point,3] = matrix[point-1,3] 
97.   
98.     """ calculate other columns """ 
99.      
100.     #11: corrected cone resistance 
101.     matrix[:,11] =  matrix[:,1] 
102.      
103.     #4: fr 
104.     matrix[:,4]= (matrix[:,2]/matrix[:,11])*100 
105.  
106.     #5: Isbt 
107.     matrix[:,5] = ((3.47-np.log10(matrix[:,11]/pa))**2) 
108.      
109.     #6: volumetric soil weight kN/m3 (Robertson, 1990) 
110.     matrix[:,6] = (yw*(0.27*np.log10(matrix[:,4])+ 
111.    0.36*np.log10(matrix[:,11]/pa)+1.236)) 
112.      
113.     for ii in range(len(matrix)): 
114.         if matrix[ii,6] == np.inf or matrix[ii,6] == -np.inf: 
115.             matrix[ii,6] = matrix[ii-1,6] 
116.      
117.     #7: total vertical stress 
118.     matrix[0,7] = matrix[0,6]*matrix[0,0]/1000  
119.  
120.     for ii in range(len(matrix)-1): 
121.         matrix[ii+1,7] = matrix[ii,7]+(((matrix[ii+1,0]- 
122.     matrix[ii,0])*matrix[ii+1,6])/1000) 
123.  
124.         if math.isnan(matrix[ii+1,7])==True: 
125.             matrix[ii+1,7] = matrix[ii,7] 
126.          
127.     #8: effective vertical stress 
128.     matrix[:,8] = matrix[:,7]-matrix[:,3] 
129.   
130.     #9: normalized cone resistance     
131.     matrix[:,9] = (matrix[:,11]-matrix[:,7])/matrix[:,8] 
132.      
133.     #10: normalized friction ratio 
134.     matrix[:,10] = matrix[:,2]/(matrix[:,11]-matrix[:,7])*100 
135.   
136.     return matrix 
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137.   
138.   
139. def generalize(matrix, params): 
140.     """ 
141.     Function to generalized the cpt matrix by a ratio based on the min_thickness.  
142.     e.g. if min_thickness = 0.02 (= the general spacing between 2 cpt measurements), no  
143.     generalization will be done 
144.     e.g. if min_thickness = 0.1, every 5 points (=0.1/0.02) an average value will be  
145.     taken for nQt and nFr. 
146.     in addition 9 new (empty) columns are added in which the probability of MC are be  
147.     stored. 
148.     """ 
149.  
150.     min_thickness = params["min thickness"] 
151.     no_of_columns = 12 
152.     #0 = depth generalized 
153.     #1 = log of nQt generalized 
154.     #2 = log of nFr generalized 
155.     #3-11 = for probabilities; for now empty 
156.      
157.     generalize_ratio = min_thickness/0.02 
158.     length_generalized = math.floor(round(len(matrix)/generalize_ratio,1)) #new length  
159.     matrix_generalized = np.zeros((length_generalized,no_of_columns)) #Create matrix 
160.      
161.     #0 = depth generalized 
162.     matrix_generalized[:,0]=  np.mean(matrix[0:int(length_generalized* 
163.       generalize_ratio),0].reshape(- 
164.      1,int(generalize_ratio)),axis=1) 
165.      
166.     #1 = log of nQt generalized 
167.     matrix_generalized[:,1]= np.log(np.mean(matrix[0:int(length_generalized* 
168.      generalize_ratio),9].reshape(- 
169.      1,int(generalize_ratio)),axis=1)) 
170.      
171.     #2 = log of nFr generalized 
172.     matrix_generalized[:,2] = np.log(np.mean(matrix[0:int(length_generalized* 
173.      generalize_ratio),10].reshape(- 
174.      1,int(generalize_ratio)),axis=1))     
175.   
176.     return matrix_generalized 
177.   
178. def plot_boundary_constraints(matrix,params): 
179.     """ 
180.     Function that plots normalized data and boundary constraints. Function also checks  
181.     if boundary conditions are valid 
182.     """ 
183.     Tfont ={'fontname':'Times New Roman'} 
184.   
185.     if params["implement constraints"] == "yes": 
186.          
187.         boundary_constraint = params["boundary constraint"] 
188.      
189.     if params ["implement constraints"] =="no": 
190.         boundary_constraint=[] 
191.  
192.     N_max = params["N max"] 
193.  
194.     #check if boundary constraints are valid 
195.     if len(boundary_constraint) >0: 
196.         if max(boundary_constraint[:,-1]) >=N_max: 
197.             raise ValueError("constraint given for boundary that exceeds N_max") 
198.      
199.         for ii in range(1,N_max): 
200.             if np.count_nonzero(boundary_constraint == ii) >ii: 
201.                 raise ValueError("too many boundary constraints given for N=",ii) 
202.                  
203.     fig, (ax1,ax2) = plt.subplots(1,2) 
204.     fig.suptitle('normalized CPT data - constraints',**Tfont, fontsize=15) 
205.     ax1.plot(np.log(matrix[:,9]),matrix[:,0], color='k') 
206.     ax1.set_xlabel(r'ln(n$Q_t$) [-]', **Tfont, fontsize=13) 
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207.     ax1.set_ylabel('depth [m]', **Tfont, fontsize=13) 
208.     ax1.set_xlim(0,1.5*max(np.log(matrix[:,9]))) 
209.     ax1.set_ylim(0,matrix[-1,0]+1) 
210.   
211.     ax1.invert_yaxis() 
212.     ax1.set_xlim(0,max(np.log(matrix[:,9])+2)) 
213.     ax2.plot(np.log(matrix[:,10]),matrix[:,0],color='k') 
214.     ax2.set_ylim(0,matrix[-1,0]+1) 
215.     ax2.set_xlabel(r'ln(n$F_r$) [-]', **Tfont, fontsize=13) 
216.     ax2.invert_yaxis() 
217.     ax2.set_xlim(min(np.log(matrix[:,10])-2),max(np.log(matrix[:,10])+2)) 
218.     for ii in range(len(boundary_constraint)): 
219.         ax1.fill_between(np.arange(0,12),boundary_constraint[ii,1], 
220.   boundary_constraint[ii,0], edgecolor='red', facecolor='red',alpha=1- 
221.   boundary_constraint[ii,2]/N_max) 
222.         ax2.fill_between(np.arange(-10,10),boundary_constraint[ii,1], 
223.   boundary_constraint[ii,0], edgecolor='red', facecolor='red',alpha=1- 
224.   boundary_constraint[ii,2]/N_max) 
225.  
226.     plt.savefig('constraints.pdf') 
227.     plt.show() 
228.          
229. def collor_fill(layer_type): 
230.     if layer_type == 1: 
231.         collor_matrix = [0,0,0,0.2] 
232.     if layer_type ==2: 
233.         collor_matrix = [0,0,0,0.8] 
234.     if layer_type ==3: 
235.         collor_matrix = [0,0,0,0.7] 
236.     if layer_type == 4: 
237.         collor_matrix = [0.3,0.4,0.2,1] 
238.     if layer_type == 5: 
239.         collor_matrix = [0.6,0.6,0.2,1] 
240.     if layer_type == 6: 
241.         collor_matrix = [0.7,0.4,0,1] 
242.     if layer_type == 7: 
243.         collor_matrix = [0.7,0.2,0,1] 
244.     if layer_type == 8: 
245.         collor_matrix = [0.1,0.4,0.5,1] 
246.     if layer_type == 9: 
247.         collor_matrix = [0.1,0.4,0.5,0.8]    
248.     return collor_matrix 
249.          
250.   
251. def plot_summary(matrix,summary,final_result,params): 
252.     “”” function plotting the results of the approach “”” 
253.     Tfont ={'fontname':'Times New Roman'} 
254.  
255.     #plot every model class! 
256.  
257.     fig, (ax1,ax2) = plt.subplots(1,2) 
258.     fig.suptitle('normalized CPT data', **Tfont, fontsize=20) 
259.      
260.     #initial settings 
261.  
262.     ax2.plot(np.log(matrix[:,9]),matrix[:,0], color='k') 
263.     ax2.set_xlabel(r'ln(n$Q_t$)', fontsize=15) 
264.     ax1.set_ylabel('depth [m]') 
265.     ax2.set_xlim(0,1.5*max(np.log(matrix[:,9]))) 
266.     ax2.set_ylim(0,matrix[-1,0]+1) 
267.     ax2.invert_yaxis() 
268.     ax2.set_xlim(0,max(np.log(matrix[:,9])+2)) 
269.     start = matrix[0,0] 
270.     
271.     ax1.set_xlim(0,1) 
272.     ax1.set_ylim(0,matrix[-1,0]+1) 
273.     ax1.invert_yaxis() 
274.     ax1.hlines(matrix[-1,0],0,1,color='k') 
275.     ax1.hlines(start,0,1,color='k') 
276.     ax1.set_xticks([]) 
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277.      
278.     for i in range(len(summary)): 
279.         bounds = summary[i,1:i+2] 
280.         ax1.vlines((1/len(summary))*i,start,matrix[-1,0],color='k') 
281.         ax1.text((1/len(summary))*i+(1/len(summary))/2 -0.02,1.5,f'$M_{i+1}$',  
282.    fontsize=7.5, **Tfont) 
283.         for j in range(len(bounds)): 
284.             ax1.hlines(sum(bounds[:j])+matrix[0,0],(1/len(summary))*i,  
285.    (1/len(summary))*i+(1/len(summary)),color='k',linewidth=0.5) 
286.      
287.     for i in range(len(final_result)): 
288.         collor_matrix = collor_fill(final_result[i,-1]) 
289.         if i == 0: 
290.             ax2.fill_between(np.arange(0,10),start, start+final_result[0,0],  
291.    facecolor=collor_matrix) 
292.         else: 
293.             print(start+final_result[i-1,0], start+sum(final_result[:i+1,0])) 
294.             ax2.fill_between(np.arange(0,10),start+sum(final_result[:i,0]), 
295.    start+sum(final_result[:i+1,0]), facecolor=collor_matrix) 
296.  
297.     plt.savefig('summary_depth.pdf') 
298.     plt.show() 
299.      
300.     #plot table with most probable thicknesses 
301.  
302.     fig, ax = plt.subplots(figsize = (10,5)) 
303.     #domain 
304.     ax.set_xlim(0,4+len(summary)*0.8+0.8) 
305.     ax.set_ylim(-0.2-0.12*len(summary),1) 
306.     #lines 
307.     ax.hlines(0,0,1011.5, color='k',linewidth=1.5) 
308.     ax.hlines(0.6,0,11.5, color='k',linewidth=1.5) 
309.     ax.hlines(0.3,4,11.5, color='k', linewidth=1.5) 
310.     #text 
311.     ax.text(0.1,0.17,f'Model', **Tfont, fontsize=15) 
312.     ax.text(0.1,0.07,f'Class $M_N$', **Tfont, fontsize=15) 
313.     ax.text(1.7,0.07,r'ln[P(${\xi}$|$M_N$)]', **Tfont, fontsize=15) 
314.     ax.text(4,0.5,'Most probable',**Tfont, fontsize=15) 
315.     ax.text(4,0.37,r'thickness, $h^*_N$ (m)', **Tfont, fontsize=15) 
316.  
317.     ax.axes.xaxis.set_visible(False) 
318.     ax.axes.yaxis.set_visible(False) 
319.  
320.     for i in range(len(summary)): 
321.         ax.text(4+0.8*i,0.07,f"$h^*_{i+1}$", **Tfont, fontsize=15) 
322.         ax.text(0.1,-0.1-i*0.12,f"$M_{i+1}$", **Tfont, fontsize=15) 
323.         ax.text(1.7,-0.1-i*0.12,f"{round(summary[i,-1],1)}", **Tfont, fontsize=15) 
324.         for j in range(len(summary[i])-2): 
325.             value = round(summary[i,j+1],2) 
326.             if value != 0: 
327.                 ax.text(4+j*0.8,-0.1-i*0.12,f'{value}', **Tfont, fontsize=15) 
328.             else: 
329.                 ax.text(4+j*0.8,-0.1-i*0.12,f'  -', **Tfont, fontsize=15)  
330.  
331.    plt.savefig('summary_table.pdf') 
332.      
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Appendix C: Robertson.py 

1. from shapely import geometry as geom 
2. import numpy as np 
3. import matplotlib.pyplot as plt 
4. import descartes as des 
5. import random 
6.   
7. def plot_Robertson(matrix_generalized): 
8.     """ 
9.     Get polygons 
10.     """     
11.     largest_nFr = max((matrix_generalized[:,2])) 
12.     #intersection points 
13.     A = [-2.3026,0] 
14.     B = [0.6569,0] 
15.     C = [-2.3026,2.2268]        
16.     D = [2.3026,0]     
17.     E = [2.3026,2.0234] 
18.     F = [0.5589,0.1776] 
19.     G = [2.3026,3.9639] 
20.     H = [1.8687, 4.0953] 
21.     J = [1.4505,4.5104] 
22.     K = [-1.3334,2.2126] 
23.     L = [0.9622,5.3534] 
24.     M = [-2.3026,3.4335] 
25.     N = [0.3655,6.9078] 
26.     O = [0.1658,6.9078] 
27.     P = [-2.3026,5.0557] 
28.     Q = [-2.3026,6.9078] 
29.     R = [2.3026, 6.9078] 
30.     S = [1.6334,6.9078] 
31.     T = [-0.5773,1.7179] 
32.     #if Fr values lie outside of given coordinates, extrapolate chart.  
33.     if largest_nFr>2.3026: 
34.         D = [largest_nFr,0] 
35.         E = [largest_nFr,0.5586*largest_nFr**2+-0.5399*largest_nFr+0.3049] 
36.         G = [largest_nFr,0.8095*largest_nFr**2+-3.6795*largest_nFr+8.1444] 
37.         R = [largest_nFr,6.9078] 
38.     intersect = np.array([A,B,C,D,E, 
39.                           F,G,H,J,K, 
40.                           L,M,N,O,P, 
41.                           Q,R,S,T]) 
42.      
43.     #x-range of functions 
44.     I_range =np.arange(C[0],B[0],0.1) 
45.     I_range1 = np.arange(C[0],K[0],0.1) 
46.     I_range2 = np.arange(K[0],T[0],0.1) 
47.     I_range3 = np.arange(T[0],F[0],0.1) 
48.     I_range4 = np.arange(F[0],B[0],0.1) 
49.     II_range =np.arange(F[0],E[0],0.1) 
50.     III_range =np.arange(T[0],H[0],0.1) 
51.     IV_range =np.arange(K[0],J[0],0.1) 
52.     V_range =np.arange(M[0],L[0],0.1) 
53.     VI_range =np.arange(P[0],O[0],0.1) 
54.     VII_range =np.arange(N[0],G[0],0.1) 
55.     VII_range1 = np.arange(N[0],L[0],0.1) 
56.     VII_range2 = np.arange(L[0],J[0],0.1) 
57.     VII_range3 = np.arange(J[0],H[0],0.1) 
58.     VII_range4 = np.arange(H[0],G[0],0.1) 
59.     VIII_range =np.arange(J[0],S[0],0.01) 
60.      
61.     #y-values based on x-range 
62.     I = -0.3707*I_range**2+-1.3625*I_range+1.0549 
63.     I1 = -0.3707*I_range1**2+-1.3625*I_range1+1.0549 
64.     I2 =-0.3707*I_range2**2+-1.3625*I_range2+1.0549 
65.     I3 = -0.3707*I_range3**2+-1.3625*I_range3+1.0549 
66.     I4 =-0.3707*I_range4**2+-1.3625*I_range4+1.0549 
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67.     II = 0.5586*II_range**2+-0.5399*II_range+0.3049 
68.     III = 0.5405*III_range**2+0.2739*III_range+1.6959 
69.     IV = 0.3833*IV_range**2+0.7805*IV_range+2.5718 
70.     V = 0.2827*V_range**2+0.967*V_range+4.1612 
71.     VI = 0.3477*VI_range**2+1.4933*VI_range+6.6507 
72.     VII = 0.8095*VII_range**2+-3.6795*VII_range+8.1444 
73.     VII1 = 0.8095*VII_range1**2+-3.6795*VII_range1+8.1444 
74.     VII2 = 0.8095*VII_range2**2+-3.6795*VII_range2+8.1444 
75.     VII3 = 0.8095*VII_range3**2+-3.6795*VII_range3+8.1444 
76.     VII4 = 0.8095*VII_range4**2+-3.6795*VII_range4+8.1444 
77.     VIII = 64.909*VIII_range**2+-187.07*VIII_range+139.2901 
78.      
79.   
80.     #make lists for polygons 
81.     #P1 
82.     P1_X=np.concatenate((I_range, [B[0],A[0]])) 
83.     P1_Y=np.concatenate((I,[B[1],A[1]])) 
84.     P1_mat = np.column_stack((P1_X,P1_Y)) 
85.  
86.     #P2 
87.     P2_X=np.concatenate((II_range,[E[0],D[0],B[0]],np.flip(I_range4))) 
88.     P2_Y=np.concatenate((II,[E[1],D[1],B[1]],np.flip(I4))) 
89.     P2_mat = np.column_stack((P2_X,P2_Y)) 
90.      
91.     #P3 
92.     P3_X = np.concatenate((III_range,VII_range4,[G[0],E[0]], 
93.     np.flip(II_range),np.flip(I_range3[1:]))) 
94.     P3_Y = np.concatenate((III,VII4,[G[1],E[1]], 
95.     np.flip(II),np.flip(I3[1:]))) 
96.     P3_mat = np.column_stack((P3_X,P3_Y)) 
97.      
98.     #P4 
99.     P4_X = np.concatenate((IV_range,VII_range3,[H[0]], 
100.    np.flip(III_range),[T[0]],np.flip(I_range2))) 
101.   P4_Y = np.concatenate((IV,VII3,[H[1]],np.flip(III),[T[1]],np.flip(I2))) 
102.   P4_mat = np.column_stack((P4_X,P4_Y)) 
103.      
104.   #P5 
105.   P5_X = np.concatenate((V_range,VII_range2,[J[0]], 
106.    np.flip(IV_range),[K[0]],np.flip(I_range1))) 
107.   P5_Y = np.concatenate((V,VII2,[J[1]],np.flip(IV),[K[1]],np.flip(I1))) 
108.   P5_mat = np.column_stack((P5_X,P5_Y)) 
109.      
110.   #P6 
111.   P6_X = np.concatenate((VI_range,[O[0]],VII_range1,[L[0]],np.flip(V_range))) 
112.   P6_Y = np.concatenate((VI,[O[1]],VII1,[L[1]],np.flip(V))) 
113.   P6_mat = np.column_stack((P6_X,P6_Y)) 
114.      
115.   #P7 
116.   P7_X = np.concatenate(([Q[0],O[0]],np.flip(VI_range))) 
117.   P7_Y = np.concatenate(([Q[1],O[1]],np.flip(VI))) 
118.   P7_mat = np.column_stack((P7_X,P7_Y)) 
119.      
120.   #P8 
121.   P8_X = np.concatenate(([S[0]],np.flip(VIII_range), 
122.    np.flip(VII_range2),np.flip(VII_range1))) 
123.   P8_Y = np.concatenate(([S[1]],np.flip(VIII),np.flip(VII2),np.flip(VII1))) 
124.   P8_mat = np.column_stack((P8_X,P8_Y)) 
125.      
126.   #P9 
127.   P9_X = np.concatenate(([S[0],R[0],G[0]],np.flip(VII_range4),  
128.    np.flip(VII_range3),VIII_range[1:])) 
129.   P9_Y = np.concatenate(([S[1],R[1],G[1]],np.flip(VII4),np.flip(VII3),VIII[1:])) 
130.   P9_mat = np.column_stack((P9_X,P9_Y)) 
131.      
132.   """ 
133.   Plot Polygons 
134.   """ 
135.   fig = plt.figure(figsize=(5,8)) 
136.   ax = fig.add_subplot(111) 
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137.      
138.   #add polygons to plot 
139.   ax.add_patch(des.PolygonPatch(geom.Polygon(P1_mat),  
140.   facecolor=[0,0,0,0.2], label='1. Sensitive fine-grained')) 
141.   ax.add_patch(des.PolygonPatch(geom.Polygon(P2_mat),  
142.   facecolor=[0,0,0,0.8], label = '2. Organic')) 
143.   ax.add_patch(des.PolygonPatch(geom.Polygon(P3_mat),  
144.   facecolor=[0,0,0,0.7], label= '3. Clay')) 
145.   ax.add_patch(des.PolygonPatch(geom.Polygon(P4_mat),  
146.   facecolor=[0.3,0.4,0.2,1], label='4. Silt-mixtures')) 
147.   ax.add_patch(des.PolygonPatch(geom.Polygon(P5_mat), 
148.   facecolor=[0.6,0.6,0.2,1], label='5. Sand-mixtures')) 
149.   ax.add_patch(des.PolygonPatch(geom.Polygon(P6_mat),  
150.   facecolor=[0.7,0.4,0,1], label='6. Sand')) 
151.   ax.add_patch(des.PolygonPatch(geom.Polygon(P7_mat),  
152.   facecolor=[0.7,0.2,0,1], label='7. Gravelly sand to sand')) 
153.   ax.add_patch(des.PolygonPatch(geom.Polygon(P8_mat),  
154.   facecolor=[0.1,0.4,0.5,1], label='8. Very stiff sand to clayey sand')) 
155.   ax.add_patch(des.PolygonPatch(geom.Polygon(P9_mat),  
156.   facecolor=[0.1,0.4,0.5,0.8], label='9. Very stiff fine-grained')) 
157.      
158.   #plot specifics 
159.   ax.set_xlim(A[0],D[0]) 
160.   ax.set_ylim(A[1],Q[1]) 
161.   #ax.set_xlim(-2.3026,2.3026) 
162.   leg = ax.legend(bbox_to_anchor=(1.01,1),title='Legend', title_fontsize=15) 
163.   leg._legend_box.align = "left" 
164.   ax.text(-1.5,1,'1',fontsize=15) 
165.   ax.text(1.8,0.5,'2',fontsize=15) 
166.   ax.text(1.2,1.7,'3',fontsize=15) 
167.   ax.text(0.6,2.6,'4',fontsize=15) 
168.   ax.text(0,3.3,'5',fontsize=15) 
169.   ax.text(-0.8,4.5,'6',fontsize=15) 
170.   ax.text(-1.5,6,'7',fontsize=15) 
171.   ax.text(1.05,6,'8',fontsize=15) 
172.   ax.text(1.9,5,'9',fontsize=15) 
173.   ax.set_title('normalized Robertson chart', fontsize=20) 
174.   ax.set_xlabel(r'ln$(nF_r)$', fontsize=15) 
175.   ax.set_ylabel(r'ln$(nQ_t)$', fontsize=15)     
176.   
177.   Polygons = np.array([geom.Polygon(P1_mat),geom.Polygon(P2_mat),geom.Polygon(P3_mat), 
178.                         geom.Polygon(P4_mat),geom.Polygon(P5_mat),geom.Polygon(P6_mat), 
179.                         geom.Polygon(P7_mat),geom.Polygon(P8_mat), 
180.        geom.Polygon(P9_mat)]) 
181.      
182.     ax.plot(matrix_generalized[:,2], matrix_generalized[:,1],  
183.     marker='o',ls='',color='k',markersize=2) 
184.     return Polygons 
185.   
186. def MC_probability(matrix_generalized, Polygons, params): 
187.     “””function that approximates joint gaussian distribution via a monte carlo  
188.     analysis and calculates the probabilities for each datapoint 
189.     “”” 
190.  
191.     std_Fr = params["std Fr"] 
192.     std_Qt = params["std Qt"] 
193.     iterations = params["probability iterations"] 
194.     for jj in range(len(matrix_generalized)): 
195.         data = (matrix_generalized[jj,2],matrix_generalized[jj,1]) 
196.      
197.         std_Fr = 1 
198.         std_Qt = 1.2 
199.         print(jj) 
200.         count = np.array([0,0,0,0,0,0,0,0,0]) 
201.         for ii in range(0,iterations): 
202.              
203.             Fr =random.gauss(data[0],std_Fr) 
204.             Qt =random.gauss(data[1],std_Qt) 
205.             point = geom.Point(Fr,Qt) 
206.             if point.within(Polygons[0]) == True: 
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207.                 count[0] += 1 
208.             if point.within(Polygons[1]) == True: 
209.                 count[1] += 1 
210.             if point.within(Polygons[2]) == True: 
211.                 count[2] += 1 
212.             if point.within(Polygons[3]) == True: 
213.                 count[3] += 1 
214.             if point.within(Polygons[4]) == True: 
215.                 count[4] += 1 
216.             if point.within(Polygons[5]) == True: 
217.                 count[5] += 1 
218.             if point.within(Polygons[6]) == True: 
219.                 count[6] += 1 
220.             if point.within(Polygons[7]) == True: 
221.                 count[7] += 1 
222.             if point.within(Polygons[8]) == True: 
223.                 count[8] += 1 
224.         matrix_generalized[jj,3:] = count/np.sum(count) 
225.   
226.     return matrix_generalized 
227.   
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Appendix D: Posterior.py 

1. import numpy as np 
2. import random 
3. import scipy.optimize as optimize 
4. import math 
5. import warnings 
6.  
7. #a warning is raised when -inf values are found. The code uses a workaround. For clarity,  
8. #this warning is excluded 
9. warnings.filterwarnings("ignore", category=RuntimeWarning) 
10.   
11. def find_nearest(array,value): 
12.     """ 
13.     function to calculate index in array closest to the value given 
14.     """ 
15.     idx=[] 
16.     for ii in value: 
17.         idx.append(np.abs(array-ii).argmin()) 
18.     return idx 
19.   
20.   
21. def thickness_to_boundaries(thickness,matrix_generalized): 
22.     """ 
23.     Function to get the indices of the boundaries (convert array with thicknesses  
24.     information to array with depth (boundary) information) 
25.     """ 
26.     boundaries = np.zeros(len(thickness)+1) 
27.      
28.     boundaries[0] = matrix_generalized[0,0]   #first boundary = top of soil profile 
29.     for ii in range(len(boundaries)-1): 
30.         boundaries[ii+1] = matrix_generalized[0,0] + sum(thickness[:ii+1]) 
31.      
32.     """ 2.1 get indices in data matrix""" 
33.     soil_boundaries = np.arange(0,len(thickness)+1)    
34.     indices = find_nearest(matrix_generalized[:,0],boundaries[soil_boundaries]) 
35.     indices=np.array(indices) #index positions of boundaries in data matrix.   
36.      
37.     return indices 
38.   
39. def Eqs_Wang(matrix_generalized,indices): 
40.     """ 
41.     function that follows Eq. 2 and 1 given by Wang et al. (2013). calculates, for each  
42.     layer, the chance that that layer belongs fully to 1 single soil type 
43.     """ 
44.     P_ST_J=np.zeros((len(indices)-1,9))    #matrix with results following eq. 2  
45.     P_eps_n=np.zeros(len(indices)-1).     #matrix with results following from eq. 1  
46.  
47.     """ 2.2 eq. 2 & 1 Wang et al. (2013) """ 
48.      
49.     #the subdivision between upper and lower bound has no coding benefit other than being  
50.     #more clear to the reader. 
51.     upper_bound = indices[0:-1] #upper bounds of soil layers 
52.     lower_bound = indices[1:] #lower bounds of soil layers 
53.      
54.     for nn in range(0,len(indices)-1): #iterates for each soil layer in the model class 
55.         #for soil type 1, Eq. 2 
56.         P_ST_J[nn,0]= np.sum( 
57.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],3]))  
58.  
59.         #for soil type 2, Eq. 2 
60.         P_ST_J[nn,1]= np.sum( 
61.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],4])) 
62.  
63.         #for soil type 3, Eq. 2 
64.         P_ST_J[nn,2]= np.sum( 
65.      np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],5]))  
66.  
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67.         #for soil type 4, Eq. 2 
68.         P_ST_J[nn,3]= np.sum( 
69.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],6])) 
70.  
71.         #for soil type 5, Eq. 2 
72.         P_ST_J[nn,4]= np.sum( 
73.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],7]))  
74.  
75.         #for soil type 6, Eq. 2 
76.         P_ST_J[nn,5]= np.sum( 
77.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],8]))  
78.  
79.         #for soil type 7, Eq. 2 
80.         P_ST_J[nn,6]= np.sum( 
81.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],9]))  
82.  
83.         #for soil type 8, Eq. 2 
84.         P_ST_J[nn,7]= np.sum( 
85.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],10])) 
86.  
87.         #for soil type 9, Eq. 2 
88.         P_ST_J[nn,8]= np.sum( 
89.     np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],11]))  
90.  
91.         #Eq. 1 
92.         P_eps_n[nn] = np.sum(np.exp(P_ST_J[nn]))        
93.          
94.     return P_eps_n 
95.   
96. def soil_type(matrix_generalized, indices): 
97.     """ 
98.     calculates most probable soiltype (1-9) per layer based on the given boundaries 
99.     """ 
100.     P_ST_J=np.zeros((len(indices)-1,9))   #matrix with results following from eq. 2  
101.  
102.     soiltype_final = np.zeros((len(indices)-1)) 
103.      
104.     """ 2.2 eq. 2 & 1 Wang et al. (2013) """ 
105.      
106.     #the subdivision between upper and lower bound has no coding benefit other than    
107.     #being more clear to the reader. 
108.     upper_bound = indices[0:-1] #upper bounds of soil layers 
109.     lower_bound = indices[1:] #lower bounds of soil layers 
110.      
111.     for nn in range(0,len(indices)-1): #iterates for each soil layer in the model class 
112.         #for soil type 1, Eq. 2 
113.         P_ST_J[nn,0]= np.sum( 
114.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],3]))  
115.  
116.         #for soil type 2, Eq. 2 
117.         P_ST_J[nn,1]= np.sum( 
118.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],4])) 
119.  
120.         #for soil type 3, Eq. 2 
121.         P_ST_J[nn,2]= np.sum( 
122.    np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],5]))  
123.  
124.         #for soil type 4, Eq. 2 
125.         P_ST_J[nn,3]= np.sum( 
126.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],6])) 
127.  
128.         #for soil type 5, Eq. 2 
129.         P_ST_J[nn,4]= np.sum( 
130.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],7]))  
131.  
132.         #for soil type 6, Eq. 2 
133.         P_ST_J[nn,5]= np.sum( 
134.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],8]))  
135.  
136.         #for soil type 7, Eq. 2 
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137.         P_ST_J[nn,6]= np.sum( 
138.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],9]))  
139.  
140.         #for soil type 8, Eq. 2 
141.         P_ST_J[nn,7]= np.sum( 
142.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],10])) 
143.  
144.         #for soil type 9, Eq. 2 
145.         P_ST_J[nn,8]= np.sum( 
146.   np.log(matrix_generalized[upper_bound[nn]:lower_bound[nn],11]))  
147.  
148.         soiltype_final[nn] = np.argmax(P_ST_J[nn,:]) +1 
149.     return soiltype_final     
150.   
151. def objective_function(thickness,matrix_generalized): 
152.     """ 
153.     calculates objective function = -ln(likelihood function) 
154.     """ 
155.     #get indices of the layer boundaries in the matrix 
156.     indices = thickness_to_boundaries(thickness,matrix_generalized)  
157.     """ 2.2 eq. 2 & 1 Wang et al. (2013) """ 
158.     P_eps_n = Eqs_Wang(matrix_generalized,indices) 
159.     """ 2.3 eq. 6 Wang et al. (2013) """ 
160.     P_eps = np.sum(np.log(P_eps_n)) 
161.     return -P_eps 
162.   
163. def best_guesses(matrix_generalized,model_class,params): 
164.     """ 
165.     Function that calculates a number (=no_guesses) of best guesses. that is, for layer  
166.     thickness configurations that give the lowest objective functions 
167.     """ 
168.     min_thickness= params["min thickness"] 
169.     boundary_constraint = params["boundary constraint"] 
170.     no_guesses = params["no. guesses"] 
171.     iterations = params["guesses iterations"] 
172.      
173.  
174.     #1st column = posterior value, others = thicknesses 
175.     best_conf = np.zeros((no_guesses,model_class+1))  
176.     for i in range(iterations): 
177.         #empty list in which boundaries will be stored -->  
178.         #[start_depth,boundary_1,boundary_2,...,end_depth] 
179.         boundaries = np.zeros(model_class+1) 
180.          
181.         """ 0. make array of possible boundaries, spacing of 0.1 """ 
182.         boundary_possibilities = np.arange(round(matrix_generalized[0,0],1)+0.1* 
183.      (round(matrix_generalized[0,0],1) 
184.      <matrix_generalized[0,0])+min_thickness, 
185.                                         round(matrix_generalized[-1,0],1)- 
186.      0.1*(round(matrix_generalized[-1,0],1) 
187.      >matrix_generalized[-1,0])+0.1,0.1) 
188.   
189.         """ 1. get thickness distribution """ 
190.         #1.1 first boundary is start of profile (depth at which cpt starts) 
191.         boundaries[0] = matrix_generalized[0,0] 
192.          
193.         #1.2 generate random values within constraint 
194.         L_constraints=np.array([]) 
195.         for constraint in boundary_constraint: 
196.             if model_class >= constraint[-1]: 
197.                 random_constraint = round(np.random.uniform(constraint[0], 
198.      constraint[1]),1) 
199.                 L_constraints=np.append(L_constraints,random_constraint) 
200.  
201.         #indices of value +- min_thickness in boundary_possibilities 
202.                 idx = np.array(np.where((boundary_possibilities 
203.     >random_constraint-min_thickness)                                          
204.     *(boundary_possibilities 
205.     <random_constraint+min_thickness))[0]) 
206.  
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207.         #delete indices so that next iteration only a correct boundary 
208.                 boundary_possibilities=np.delete(boundary_possibilities,idx)                             
209.      
210.         #1.3 add constraints to boundaries 
211.         boundaries[1:len(L_constraints)+1] = L_constraints 
212.  
213.         #1.4 give random values to other boundaries (but not for first modelclass, as  
214.         #then there is only 1 layer) 
215.         if model_class>1: 
216.             for nn in range(1+len(L_constraints),model_class+1): 
217.                 boundaries[nn] = random.choice(boundary_possibilities) 
218.  
219.         #indices of value +- min_thickness in boundary_possibilities 
220.                 idx = np.array(np.where((boundary_possibilities 
221.     >boundaries[nn]-min_thickness)                                                      
222.     *(boundary_possibilities 
223.     <boundaries[nn]+min_thickness))[0]) 
224.  
225.         #delete indices so that next iteration only a correct boundary 
226.                 boundary_possibilities=np.delete(boundary_possibilities,idx)                             
227.              
228.         #1.5 last boundary will be at final depth of CPT 
229.         boundaries[model_class] = matrix_generalized[-1,0]  
230.          
231.         boundaries=np.sort(boundaries)     #sort boundary list. 
232.         thickness =np.diff(boundaries) 
233.          
234.         """ 2. get likelyhood function """ 
235.         P_eps = objective_function(thickness,matrix_generalized) 
236.                  
237.         """ 3. store best ones in matrix """ 
238.         if i < no_guesses:             #first fill guess matrix (which is now all 0's)) 
239.             best_conf[i,0] = P_eps 
240.             best_conf[i,1:]=thickness 
241.   
242.         if i >= no_guesses: #update guess matrix if a more preferred value is found 
243.             pos = np.where(best_conf[:,0] == max(best_conf[:,0]))[0][0] 
244.             if best_conf[pos,0] > P_eps: 
245.                 best_conf[pos,0] = P_eps 
246.                 best_conf[pos,1:] = thickness 
247.   
248.     return best_conf 
249.   
250.   
251. def optimizer(matrix_generalized,model_class, params,best_conf): 
252.     """  
253.     Function that further optimizes a layer thickness configuration based on the basin- 
254.     hopping approach 
255.     """ 
256.     min_thickness = params["min thickness"]     #minimal thickness to consider 
257.     thickness_tot = round(matrix_generalized[-1,0]-matrix_generalized[0,0],2)   
258.     cons = [] #list summarizing the constraints that will be used by the optimizer 
259.  
260.     #constraint 1 = sum of thicknesses must be equal to total thickness 
261.     cons.append({'type':'eq','fun': lambda thickness: np.sum(thickness)-thickness_tot}) 
262.   
263.     #constraint 2 = thickness must be larger or equal to the minimal thickness 
264.     for con in range(model_class): 
265.         cons.append({'type':'ineq','fun': lambda thickness: thickness[con]- 
266.       min_thickness})  
267.      
268.     bounds = [] #list summarizing the bounds of the thickness 
269.  
270.     #bound 1= thickness per layer must be minimal of 0.2 and maximum of total thickness 
271.     for bound in range(model_class): 
272.         bounds.append([0.2,thickness_tot])  
273.          
274.     minimizer_kwargs = dict(method='SLSQP',args=(matrix_generalized), constraints=cons,  
275.     bounds=bounds, tol=0.01, options=dict(maxiter=200)) 
276.      
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277.     #an array where the minimal value of the objective function will be stored. start  
278.     #with infinity 
279.     min_objective = np.array([np.inf])     
280.     thicknessL = np.zeros((1,model_class))        
281.   
282.     for opt in range(len(best_conf)): #optimize for all best configurations 
283.         initial_guess = best_conf[opt,1:] #specify initial guess for optimizer 
284.  
285.         counter = 0 #start a counter 
286.         while counter == 0: #as long as counter = 0, keep trying to optimize  
287.             res_loop = optimize.basinhopping(objective_function,initial_guess, 
288.    minimizer_kwargs=minimizer_kwargs,niter=500, niter_success=100) 
289.  
290.     #if optimization is found, add counter so optimizing for that configuration  
291.      #will stop 
292.             if res_loop.lowest_optimization_result.success == True:  
293.                 counter += 1 
294.  
295.         #if the new optimized value is lower than the one stored in  
296.         #"objective", change old value to this value 
297.                 if res_loop.fun < min_objective[0]:  
298.     #store current optimal objective function 
299.                     min_objective[0] = res_loop.fun  
300.  
301.    #store thicknesses for that optimal value 
302.                     thicknessL[:] = np.array(res_loop.x)[:]  
303.  
304.             #if optimization failed, try again                 
305.             if res_loop.lowest_optimization_result.success == False:  
306.                 print('False') 
307.  
308.     #return minimized objective function and corresponding thicknesses 
309.     return min_objective, thicknessL  
310.      
311. def calculator(matrix_generalized,params): 
312.     """ 
313.     main function solving for the different subparts 
314.     """ 
315.      
316.     N_min = params["N min"] 
317.     N_max = params["N max"] 
318.     treshold = params["treshold model class"]    
319.     std_Fr = params["std Fr"]           #standard deviation of friction ratio 
320.     std_Qt = params["std Qt"]           #standard deviation of cone resistance 
321.     k = np.arange(N_min,N_max+1) 
322.   
323.     """1a. if a probability = 0, this will cause problems --> change all 0's to a small  
324.     Number 
325.     """ 
326.     thickness_tot = matrix_generalized[-1,0]-matrix_generalized[0,0] 
327.     zero_position = np.argwhere(matrix_generalized[:,3:]==0) 
328.     for index in zero_position: 
329.         matrix_generalized[index[0],index[1]+3]=0.00001 
330.      
331.     #list with best layer thickness configuration per model class 
332.     all_optimized = np.zeros((int(N_max),int(N_max)+1))      
333.     K_N_L = np.zeros((1,N_max)) 
334.   
335.     """2. minimize objective function (=-ln(likelihood function)) per model class""" 
336.     """2a. Model class 1: having 1 layer, so only 1 solution""" 
337.     N1 = objective_function([thickness_tot],matrix_generalized) 
338.     all_optimized[0,0:2]=[N1,thickness_tot] 
339.     print("Caclulation for Model Class 1: SUCCES") 
340.   
341.     """2b. calculate for other model classes""" 
342.     for N in range(N_min+1,N_max+1): 
343.          
344.         """first, get best number (=no_guesses) of best guesses"""      
345.         best_conf= best_guesses(matrix_generalized,N,params) 
346.          
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347.         """if N is lower than specified number of layers (=threshold), no optimization  
348.         is needed--> take lowest of best guesses""" 
349.         if N<=treshold: 
350.             min_index = np.argmin(best_conf[:,0]) 
351.   
352.             all_optimized[N-1,:N+1]=best_conf[min_index] 
353.              
354.         """if N is larger than specified number of layers (=threshold), optimization is  
355.         needed.""" 
356.          
357.         if N>treshold: 
358.             #optimizes for each guess and returns most optimal optimized value 
359.             objective, thicknessL = optimizer(matrix_generalized,N,params,best_conf)  
360.             all_optimized[N-1,0]=objective 
361.             all_optimized[N-1,1:N+1]=thicknessL 
362.         print(f"Calculation for Model Class: {N}: SUCCES") 
363.   
364.     """PART 3: calculate most probable model class"""        
365.     likelihood = -all_optimized[:,0] 
366.     prior_distribution = np.log((1/std_Fr * 1/std_Qt)**k) 
367.          
368.     #calculate conditional probability (Eq. 12, Wang et al. (2013)) 
369.     cond_prob = likelihood+prior_distribution 
370.     cond_prob = np.exp(cond_prob) 
371.     cond_prob = np.log(cond_prob/(thickness_tot**(k-1))) 
372.  
373.     #maximize posterior function and select layer and thicknesses 
374.     max_index = np.argmax(cond_prob) 
375.     final_class = all_optimized[max_index,:max_index+2] 
376.      
377.     """PART 4: get soil types for that model class""" 
378.     #get soil types for final class 
379.     thickness_final = final_class[1:] 
380.     indices = thickness_to_boundaries(thickness_final,matrix_generalized) 
381.     soiltype_final = soil_type(matrix_generalized,indices)  
382.   
383.  
384.     """PART 5: save results""" 
385.     #get summary 
386.     cond_prob = np.reshape(cond_prob,(len(cond_prob),1)) 
387.     summary = np.hstack((all_optimized,cond_prob)) 
388.      
389.     #get final configuration 
390.     final_result = np.column_stack([thickness_final, soiltype_final]) 
391.   
392.     return final_result, summary 
393.   

 
         
         
     
     
     
     
     
     
     
     
     
     


