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 Superconducting junctions, including supercon�
ducting–normal (SN) ones where dissipative conduc�
tion can take place and superconducting�supercon�
ducting (SS) ones where a discrete spectrum of bound
Andreev states is formed, have been in focus of con�
densed�matter research for almost fifty years [1, 2]. An
indispensable compact approach to superconducting
junctions employs a scattering matrix that relates
incoming and outgoing wave amplitudes that obey the
Bogoliubov–de Gennes (BdG) equation [3–5]. The
beauty and power of this approach stems from its abil�
ity to incorporate numerous microscopic details in a
compact form of the scattering amplitudes. Straight�
forward extensions permit to include magnetism,
spin–orbit interaction, non�trivial superconducting
pairing [6]. The s�matrix approach can be easily com�
bined with semiclassical treatment of electron trans�
port in the framework of a quantum circuit theory [2].

Recent developments in the field of superconduc�
tivity require revision of the common assumptions
concerning the structure and properties of the scatter�
ing matrix of a superconducting junction. Kitaev in
2000 suggested a model 1d p�wave superconductor [7]
that exhibits a topological order. It has been shown
recently that the same topological order can be real�
ized in more realistic systems that combine spin mag�
netic field [8] with strong spin–orbit interaction [9,
10]. Similar situation would occur in a superconductor
on the top of topological insulator or half�metal [11].
The relevance of these developments for generic
superconducting junctions is not immediately obvi�
ous. Indeed, the general properties of those are not
supposed to depend on dimension [12], while topo�
logical ordering considered is specific for one dimen�
sion [13] thus suggesting that the topological proper�
ties are not at all manifested in junctions. However, a
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number of spectacular predictions and device schemes
that relate the topology and junction properties have
appeared in the last years. Those include: prediction of
so�called 4π periodic Josephson effect [9, 10, 14, 15],
formulation of a criterion for topological transition in
terms of reflection matrix of a junction [16], proposals
of topological qubits based on Majorana bound states
[7, 15] as well as their readout with qubits of different
type [17].

This motivated us to focus on a general BdG scat�
tering matrix that bears no information on such details
as dimensionality, absence/presence of disorder and
concrete values of parameters responsible for the lift�
ing of spin and time�reversal degeneracies. We have
performed a topological analysis of such matrix con�
centrating on energy dependence of its eigenvalues.
This rather elementary analysis shows that (i) there are
topologically non�trivial s�matrices (TNTM) charac�
terized by real eigenvalues at zero energy and (ii) there
are topologically non�trivial trajectories (TNTT) in
the space of topologically trivial s�matrices (TTM),
that pass a matrix with real eigenvalues at E = 0 odd
number of times.

Topologically non�trivial s�matrices would corre�
spond to a “topological” SN junction [18], while
TNTT would explain 4π�periodicity of Josephson
effect in SS junctions [9, 10, 14]. However, if we pro�
ceed with the same topological arguments we are able
to prove the topological triviality of all physical (i.e.,
describing finite junctions) s�matrices. There are no
TNTM neither TNTT. This brings about a paradox that
requires an explanation. We resolve it by recognizing a
potentially sharp energy dependence of a s�matrix
near zero energy. Such energy dependence is due to
resonant poles [19] that manifest formation and cou�
pling of zero�energy quasilocalized states. With this,
we reconcile the predictions of [9, 10, 14], show the
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absence of a common topological transition and reveal
topological transitions related to the resonant poles.

We illustrate these results with two minimal setups,
SN and SS junctions (Fig. 1), where a single�channel
wire with strong spin–orbit coupling and subject to
magnetic field is brought in contact with a bulk super�
conductor. The Hamiltonian description of this situa�
tion is found in [9]. In distinction from [9], we assume
finite length of the contact. The solutions of BdG
equation for a single channel encompass spin and
electron�hole degree of freedom so that the minimal
single�channel scattering matrix is 4 × 4. The parame�
ter space of the model that includes the superconduct�
ing gap, chemical potential, strength of spin–orbit
interaction, and magnetic field, can be separated into
two ranges: “topological” and “non�topological.”

Let us consider a general s�matrix of a SN junction
assuming no symmetries. The only constraint on such
matrix stems from the structure of BdG equation: its

Hamiltonian satisfies  = –τ1 τ1, where the oper�
ator τ1 switches electrons and holes. The constraint is
convenient to represent in so�called Majorana basis

Ĥ* Ĥ

[20] where the Hamiltonian is antisymmetric and the
scattering matrix satisfies S(E) = S*(–E), E being
energy counted from the chemical potential of the
superconductor. We will consider only energies E
within the energy gap of the bulk superconductor. In
this case, there are no scattering waves in the bulk of

superconductor, the matrix  is in the basis of normal�
metal scattering waves satisfying unitary condition.

Let us concentrate on (continuous) energy depen�

dence of the matrix eigenvalues . That can be
represented as a manifold of curves in χ–E plane
(Fig. 2). The BdG�constraint implies that if a point
(χ, E) belongs to the manifold, the inverted point
(⎯χ, ⎯E) belongs to it as well. These two points can
belong to either the same curve or to two distinct
curves. In the first case, the curve is topologically dis�
tinct: it is forced to pass either χ = 0 or χ = ±π at zero
energy. If two such curves pass the same point, they
can be deformed by continuous change of Hamilto�
nian parameters into a pair of trivial curves. However,
a single curve is topologically stable: the fact it passes
the point cannot be changed by Hamiltonian varia�
tions. We note that the dimension of the physical s�
matrices can be always chosen even. With all this, all s�
matrices can be separated onto two classes. Topologi�
cally trivial matrices (TTM) have no topologically dis�
tinct curves while topologically non�trivial (TNTM)
have two topologically distinct curves passing respec�
tively χ = 0 and χ = ±π at E = 0. Indeed, at zero energy
s�matrices are real forming O(2N) group. Topologi�
cally trivial matrices belong to SO(2N) subgroup of
O(2N), while TNTM belong to the rest of O(2N). The
matrices from these distinct submanifolds cannot be
continuously deformed into one another: indeed, at
E = 0 det(TTM) = 1 while det(TNTM) = –1.

Ŝ

eiχ E( )

Fig. 1. Setups to illustrate general topological properties of
BdG s�matrices. (a) Finite�length wire with strong spin–
orbit coupling on the top of superconducting lead forming
a SN junction. (b) Finite�length wire between two super�
conductors forming SS junction. Grey ellipses indicate
“buried” zero�energy states.

Fig. 2. Energy dependence of s�matrix eigenvalues. (a) Topologically non�trivial (TNTM) case, corresponding to the “topologi�
cal” parameter range in [9]. (b) Generic topologically trivial (TTM) case. (Numerical results for the setup in Fig. 1a in the limit
L  ∞.)
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This classifies s�matrices of SN junction. An SS
junction is characterized by a combination of two s�
matrices (Fig. 3). The spectrum of Andreev states of
the junction as function of superconducting phase dif�
ference φ is obtained from the equation [4]

(1)

τ3 being Nambu matrix distinguishing electrons and
holes. It is instructive to note that the unitary matrix

(φ) satisfies the same BdG�constraint as an SN s�
matrix. Therefore, the above topological classification
applies to SS junctions as well.

In this respect it is crucial to note another topolog�
ical property that concerns continuous one�parameter
closed manifolds of TTM (trajectories). Intuitively,
eigenvalues of a generic matrix “repel” each other and
never come together. This applies to BdG�matrices
expect a special situation: E = 0 and real eigenvalues.
Owing to this peculiarity, a trajectory in matrix space
can in principle pass a matrix where two eigenvalues,
say, +1, are the same. It turns out that the trajectories
of the kind can be separated onto two topological
classes that differ by parity of the number of passes
(Fig. 4) to see the possibility for odd number of passes,
let us take a closed trajectory with a single pass and
concentrate on two eigenvectors corresponding to the
eigenvalue +1. In this situation, if the parameter cycles
over the trajectory, a given eigenvector is transformed
not to itself but rather to its orthogonal counterpart,
this guarantees the stability of this topologically non�
trivial trajectory (TNTT).

Let us understand the results of [9, 15, 14] in terms
of the above classification. Without going into details,
we enunciate that TNTM are realized in the “topolog�
ical” parameter range. The TNTT give the topological
explanation of the 4π Josephson effect described in

0 det 1̂ Ŝ–( ); Ŝ ŝ1e
iφτ3/2

ŝ2e
iφτ3/2–

,= =

Ŝ

these articles. The trajectory parameter in this case is
the superconducting phase difference φ.

However, similar topological considerations show
that no physical s�matrix belongs to TNTM class, nei�
ther any closed trajectory in parameter space is a
TNTT. “Physical” in this case means a finite junction
between infinite leads where the “topological” [9, 10,
14] transition is necessary smoothed. To prove, let us
start with a common junction manifesting no exotic
properties. For our examples, this may correspond to a
junction in zero magnetic field and zero spin–orbit
interaction. The s�matrix at this parameter choice as
well as all trajectories are topologically trivial. Since
there is no continuous way to tune scattering matrix
from TTM� to TNTM�class, and the transition is
smoothed, the s�matrix will stay trivial at any strength
of magnetic field/spin–orbit interaction, even after
the “topological” transition. This proof is in a seeming
contradiction with the predictions mentioned [9, 10,
14]. This “paradox” motivated us for the deeper
research.

Prior to presenting the solution of the paradox, let
us mention that the absence of TNTT resolves an
annoying problem that concerns the parity of particle
number of the ground state of the SS junction. The
level crossings at E = 0 are known in the context of fer�
romagnetic SS junctions. Upon passing the crossing, it
becomes energetically favorable to put a single polar�
ized quasi�particle to the junction [21]. Therefore, the
parity of the ground state must be different at two sides
of the crossing. In this work, we concentrate on the
properties of the ground state. However, the odd num�

Fig. 3. Topological classes of trajectories in the space of
TTM. A trajectory is topologically non�trivial (TNTT)
provided it passes the matrix with two degenerate real
eigenvalues odd number of times. Illustration: the depen�
dencies of eigenvalues of the scattering matrix characteriz�
ing the SS junction on superconducting phase difference φ
at zero energy for (a) “non�topological” and (b) “topolog�
ical” parameter ranges.

Fig. 4. (a) Energy dependence of eigenvalues for NS�junc�
tion in a narrow energy interval illustrates the topological
triviality of s�matrix for finite length of the contact (L = 7
in units of [9]). Dashed lines: “high”�energy TNTM
eigenvalues. We see the reconnection of neighboring
eigenvalues. (b) Andreev levels in SS junction versus super�
conducting phase difference at (solid lines) L1 = L2 = 7 as
compared to TNTT�case at (dashed lines) L1, 2 = ∞.
(c) Energy dependence of eigenvalues for case (b) and
φ = π. Dashed lines: TNTT�case.



696

JETP LETTERS  Vol. 94  No. 9  2011

PIKULIN, NAZAROV

ber of crossings at a closed curve suggests that the par�
ity of this ground state cannot be unambiguously
defined: a situation that is annoyingly difficult to com�
prehend.

To see how the paradox is resolved, let us consider
numerical results for a finite SN junction in “topolog�
ical” parameter range (Fig. 4a). If the results are plot�
ted at energy scale of the superconducting gap, the
pattern of energy dependent eigenvalues is apparently
of TNTM�type as in Fig. 2a. However, replotting the
results near E = 0 at smaller scale reveals topological
triviality (cf. Figs. 4a and 2b). The eigenvalues move
fast in the vicinity of E = 0 reconnecting the branches
visible at larger energy scale in a rather unexpected
way. The typical energy scale of such reconnection is
small depending exponentially on the contact length
L, and shrinks to zero at L  ∞. Therefore, the
ground state is always of even parity and its energy is
2π�periodic. The 4π�periodicity may only be observed
if the phase is swept fast enough to get the setup to an
excited state (of the same parity).

The adequate description of the situation combines
a smooth energy dependence of s�matrix at E � Δ with
a pole or poles that are anomalously close to E = 0. Let
us consider a single pole. The BdG�constraints restrict
it to purely imaginary energy, –iΓ � Δ. The s�matrix
reads

(2)

where Ψ is the eigenvector associated with the reso�

nant level and  is the matrix, with smooth energy
dependence to disregard at E � Γ. The eigenvalues in
this energy range are determined from equation �/Γ =

cot(χk – ), exp(i ) being “high�

energy” (  � Γ) eigenvalues of S0. They follow the
pattern in Fig. 4 connecting neighboring “high�

energy” eigenvalues, exp(i )  exp(i ). This

ŝ 1̂ � iΓ–
� iΓ+
������������ 1–⎝ ⎠
⎛ ⎞ Ψ| 〉 Ψ〈 |+ Ŝ0,=

Ŝ0

Ψk
2

k∑ χk
0( ) χk

0( )

E

χk
0( ) χk 1+

0( )

guarantees that the total shift of phases of all eigenval�
ues upon crossing a single pole equals 2π. Physically,
the pole is associated with a quasi�localized zero�
energy state being formed at the far end of the wire. If
the contact length exceeds the localization length, this
state is efficiently “buried” (Γ � Δ) in the supercon�
ductor and hardly accessible for incoming electron or
hole waves except E = 0 when the scattering of the
waves become resonant. Andreev conductance of the

junction is expressed as GA = GQTr(τ3 τ3 ). In the res�
onant energy interval, the energy dependence of the
conductance assumes a universal form GA(E) = GA +

[GA(0) – GA], GA(0), GA being its values at

E = 0,  � Γ that depend on details of the junction.

Let us turn to the SS junction in the “topological”
parameter range. Solving Eq. (1) gives the spectrum of
Andreev states (Fig. 5b). We observe the level crossing
at E = 0, φ = π being lifted in a narrow energy interval.
Strikingly, we observe another pair of levels with ener�
gies remaining small in the whole range of phase.
These levels are absent in TNTT picture and emerge as
a consequence of topological triviality of the s�matrix.
Since there is no level crossing at E = 0, the parity of
the ground state is always even.

The situation can be comprehended if we notice
that each matrix ,  forming the resulting  brings
a resonant pole corresponding to a “buried” zero�
energy state at far end of each wire. The  thus has two
resonant poles. The mixing of the two “buried” states
results in their (phase�dependent) energy splitting and
formation of the pair of low�energy Andreev levels.
The eigenvalues of s�matrix move in the narrow energy
interval reconnecting next�to�nearest (two poles)
neighbor “high�energy” eigenvalues (Fig. 3b). This
brings four rather than two states in the vicinity of the
crossing point E = 0, φ = π, χ = 0, all being involved in

ŝ ŝ†

Γ2

E2 Γ2+
��������������

E

ŝ1 ŝ2 ŝ

ŝ

Fig. 5. (a) Fork SN junction to illustrate topological transitions concerning the resonant poles. (b), (c) Configurations of the res�
onant poles in the complex energy plane (b) before and (c) after a transition. At the transition point, the poles are degenerate
(double gray circle).
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the lifting of the degeneracy. The detailed theory of the
crossing point will be presented elsewhere.

Since the s�matrix remains topologically trivial,
there seem to be no sharp transition in its characteris�
tics that would correspond to the “topological” transi�
tion in the (rather unphysical) limit of infinite wire.
However, a BdG�s�matrix with resonant poles is char�
acterized by a topological number that can change
sharply upon changing the parameters. This, not
directly connected to the limit of the infinite wire,
transition happens near the point of “topological”
transition in the finite wire.

Let us illustrate this with a two�pole scattering
matrix corresponding to the fork setup in Fig. 5a. Here
the scattering matrices s1, s2 of fork tines bring a reso�
nant pole each. The BdG symmetry leaves two distinct
possibilities for the poles of the total scattering matrix:
(i) both poles lie on the imaginary energy axis (E =
⎯iΓ1, –iΓ2), (ii) they form a pair symmetric with
respect to reflection ReE  –ReE (E = ±ε – iΓ).
One can now change the s�matrix So describing the
normal scattering in the fork. If the tines are open to
the lead states, the pole configuration should be like
one for two parallel SN junctions: possibility (ii) is
realized. If the tines are isolated, the “buried” states
mix resulting in an energy spitting: possibility (i) is
realized. We thus expect the transition at intermediate
coupling.

Generally, one can characterize a BdG�s�matrix of
arbitrary dimension with a topological number that is
just the number of poles lying precisely on the imagi�
nary axis. We expect this number to change by 2 upon
changing the parameters, this gives a series of “topo�
logical” transitions. (Figs. 5b, 5c) Two poles are
degenerate at the transition point. However, since in
general the degenerate poles are at finite imaginary
energy Γ, the manifestations of the transitions in
transport properties are limited. The energy�depen�
dent Andreev conductance does not seem to have a
singularity at the transition point.

We have performed the topological analysis of the
properties of SN and SS junctions characterized by
BdG�s�matrices. We have proven topological triviality
of physical matrices that describe finite�size junctions:
there is neither TNTM, nor TNTT. This implies the
absence of a sharp “topological” transition upon
crossing to “topological” parameter range as well as
the absence of 4π�periodic Josephson effect. We have
resolved the apparent contradiction with results of [9,
10, 14, 15] by considering the low�energy poles of s�
matrices. The resulting sharp energy dependence at
E ≈ 0 leads to Lorentzian energy dependence of
Andreev conductance. We have demonstrated a topo�

logical transition (or a series of transitions) of a differ�
ent kind associated with a change of the configuration
of the resonant poles in complex energy plane.

We are indebted to C.W.J. Beenakker, C.L. Kane,
R.M. Lutchyn, F. von Oppen, and L.P. Kouwenhoven
for useful discussions. This work was supported by the
Dutch Science Foundation NWO/FOM.
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