A Machine Learning Approach

MSc Thesis
Karthikeyan Delvamani

|
|

"

I
:i
Y
§

l
d
.

-
C
O
L.
—

Home ctnergy
Management System

A Machine Learning Approach

by

Karthikeyan Delvamani
Student Number : 5330645

Thesis committee: Dr. Pavol Bauer, Chair
Dr. Aditya Shekhar, Supervisor
Dr. Jochen Cremer

Advisor: Farshid Norouzi, Daily Supervisor

Project Duration: November 2022 - October 2023

Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science
Research group: DC Systems, Energy Conversion and Storage (DCES)

]
TUDelft

Acknowledgements

| started working on this graduation project in Fall 2022 and it took me almost a year
to successfully come to the end. Although the road to graduation was challenging,
| received constructive guidance from my supervisors Dr. Aditya and Farshid which
made it a smoother and a rewarding journey. As | am at the end of my academic
Journey, words can’t express how grateful | am to my parents for providing this point
opportunity and all the others leading up to this along with their unwavering support.
| am grateful to my friends for picking me up whenever my spirits was low. Ajay,
Sappa, Kiran, Ravi to name a few people and my sister Rajeswari who were always
available for a call. A special thanks to Lucy whose constant support has motivated
me throughout the journey.

Karthikeyan Deivamani
Delft, October 2023

Abstract

The increasing adoption of renewable energy sources, particularly photovoltaic (PV)
systems in residential sectors has raised important energy balancing challenges due
to the intermittent nature of energy generation. To address these challenges and prior-
itize cost savings for residential consumers, this research investigates the integration
of battery energy storage systems (BESS) and dynamic pricing strategies through an
intelligent energy management system (EMS). Given the stochastic nature of PV gen-
eration, market prices, and load profile it is still challenging to achieve optimal control.
Therefore Reinforcement Learning (RL)-based EMS is proposed in this research to
make real-time optimal control decisions. RL is a machine learning approach where
an agent learns to make decisions by interacting with an environment to maximize
cumulative rewards. In this study, a deep deterministic policy gradient (DDPG) RL
architecture is chosen due to its capability to handle continuous action spaces. In ad-
dition, deep learning-based models are employed to forecast uncontrollable load, PV
generation and market prices for the integration into the EMS for which Bi-directional
LSTM (Long Short Term Memory) was found to be the most accurate for all three un-
certain variables. The DDPG algorithm is trained with data from a single household
from the Lucerne region, Switzerland for 30 days and tested for a week. The results
showed that compared to a deterministic rule-based approach the RL-based EMS in-
creased cost savings for the end consumer by 14.2% but reduced the benefits for
the grid operator to alleviate grid congestion quantified in terms of load factor, peak
power consumption and ramping. Further work could be undertaken in testing the
model on more extensive data and finding the best trade-off between customer and
grid operator benefits.

11

Abbreviations

ARIMA
BESS
BiLSTM
CNN
DDPG
DP
DQN
EMS
GRU
HEMS
LSTM
MADDPG

MAE
MDP
MLP
MPC
ou
PV

RL
RBC
RNN
RMSE
RTP
SARIMA

SOC
STFL
D
TOU

Nomenclature

Autoregressive Integrated Moving Average
Battery Energy Storage System
Bi-directional Long Short Term Memory
Convolutional Neural Network

Deep Deterministic Policy Gradient
Dynamic Programming

Deep Q-Learning

Energy Management System

Gated Recurrent Units

Home Energy Management System
Long Short Term Memory

Multi-Agent Deep Deterministic Policy Gra-
dient

Mean Absolute Error

Markov Decision Processes
Multilayer Perceptron

Model Predictive Control
Ornstein—Uhlenbeck
Photovoltaics

Reinforcement Learning
Rule-Based Control
Recurrent Neural Network
Root Mean Squared Error
Real-Time Price

Seasonal Autoregressive Integrated Mov-
ing Average

State of charge

Short-Term Load Forecasting
Temporal Differencing

Time of Use

111

v

Symbols

Yt
Py (t)
Py(t)
By (t)
Py(t)
By (t)
Pb n (t)
Py out ()
By imp(t)
Py eap(t)
Pimp,po (t)
Zmp gmd(t)
exp gmd(t)
Pripioad(t)

St
Gy
R

fy
«

Ey

Dependent variable

Solar Generation

Uncontrollable load

Real-time electricity price

Total electricity sold

Total electricity Purchased

Battery charging capacity

Battery discharging capacity

Total power imported to battery
Total power exported from battery
Power imported from PV to battery
Power imported from grid to battery
Power exported from battery to grid
Power exported from battery to load
Policy

State at time t

Action at time t

Immediate reward

Discount factor

Learning rate

Battery capacity

contents

Preface i
Abstract i
Nomenclature iii
1 Introduction 1
1.1 Objective and research questions 2
1.2 Thesisoutline 3

2 Background 4
2.1 Overview of Energy Management Systems 4
2.2 ForecastingMethods o 4
2.3 EMS Methodologies 6
2.4 ReinforcementlLearning 8

3 Theory 12
3.1 ForecastingModels 12
3.1.1 PersistenceModel 0 0. 12

3.1.2 SARIMA e 12

3.1.3 DeeplearningMethods, 13

3.2 Energy Managementsystems 17
3.21 EMSBaseline 17

3.22 EMSBenchmark, 18

3.2.3 Reinforcement Learningbased EMS 19

3.3 Hyperparameter Tuning 25

4 Methodology 27
41 ResourcesandTools 27
4.2 DataCollection 27
4.3 Data Pre-processsing e 28
431 MissingData 28

4.3.2 Stationarity 29

43.3 Featureselection. 30

434 Featurescaling 31

4.3.5 DataPreparation, 32

4.4 Energy managementsystems 33
441 Pricingstructure L 33

44.2 Batterysystemsizing 34

4.5 Reinforcementlearning 34
451 Environment 34

452 Observationspace 35

453 Rewardsetting L. 36

Contents Vi
454 Action Exploration Strategy L0 37

455 Multi;agentDDPG 38

4.6 Hyperparametertuning 40
46.1 Forecasting 40

4.6.2 Reinforcementlearning 42

4.6.3 BenchmarkModel 43

4.7 PerformanceMetrics L 44
471 Forecasting 44

4.7.2 Energy Management Systems 44

5 Exploratory Data Analysis 47
6 Results and Discussion 50
6.1 Forecasting e 50
6.1.1 Load 50

6.1.2 Electricityprice 53

6.1.3 PV Generation, 55

6.2 Energy managementsystem 59
6.21 Baseline. 59

6.2.2 Benchmark 61

6.2.3 Reinforcementlearning 63

6.2.4 Comparative analysis 68

7 Conclusion 72
7.1 Answertotheresearchquestion 72
7.2 Recommendations and Future Work 74
References 75
A |IEEE Conference paper 80
B Battery Data sheet 86

List of Figures

2.1 A non-exhaustive taxonomy of time series forecasting models [27] . .. 7
2.2 A non-exhaustive taxonomy of EMS strategies [31] 8
2.3 A non-exhaustive taxonomy of algorithms in modern RL [42] 10
3.1 Artificial Neuron structure L. 14
3.2 Deep Neural Network (DNN) Architecture 14
3.3 Convolutional Neural Network (CNN) Architecture 15
3.4 Recurrent Neural Network (RNN) Architecture 16
3.5 Long short-term memory (LSTM) Architecture 16
3.6 Flow diagram of Baseline EMS model 17
3.7 Flow diagram of Benchmark EMS model 18
3.8 Schematic representation of agent environment interactioninRL 19
3.9 Visual representationofaQ-table. 22
3.10 Deep Q-Learning (DQN) Architecture 23
3.11 lllustration of target network structure inDQN 24
3.12 Actor-Critic Architecture [7] 25
4.1 Schematic overview of the sub-metered appliances in the household
data[11] 28
4.2 Load Correlogram 30
4.3 Electricity Price Correlogram 30
4.4 PV Generation Correlogram o 31
4.5 Heatmap displaying the correlation matrix for all the features 32
4.6 Schematic Representation of the RL problemsetup 35
4.7 Representation of Multi-agent interaction in DDPG algorithm 38
4.8 Parameter Tuning visualization for Benchmark EMS model 43
5.1 Household Electricity Consumption 47
5.2 Electricity marketprices L. 48
53 PV Generation 48
5.4 Visualizing hourly trends using boxplots 49
6.1 Forecasted vs. Actual of Load profile foraweek 51
6.2 Performance of BiLSTM for load forecasting 52
6.3 Bar Plot of Error metrics for Load forecasting 52
6.4 Forecasted vs. Actual of Electricity price foraweek 53
6.5 Performance of BiLSTM for electricity price forecasting. 54
6.6 Bar Plot of Error metrics for Electricity price forecasting 54
6.7 Forecasted vs. Actual of PV generationforaweek 55
6.8 Performance of BiLSTM for PV generation forecasting 56
6.9 Bar Plot of Error metrics for PV generation forecasting 56

Vil

List of Figures viil

6.10 Forecasting Horizon vs. RMSE for Bidirectional LSTM 57
6.11 Baseline: State ofchargeplot 59
6.12 Baseline: Battery actions vs PV generation 59
6.13 Baseline: System Powerflow 60
6.14 Baseline: Battery actions vs. Real-timeprice 60
6.15 Benchmark EMS : State of chargeplot 61
6.16 Benchmark : System Powerflow 61
6.17 Benchmark : Battery action vs. RTP vs. PV generation 62
6.18 Benchmark EMS: Battery exchange with gridvs. RTP 62
6.19 DDPG reward training processo 63
6.20 Exploration noise using the Ornstein-Uhlenbeck process 64
6.21 Loss curves for the target networks involved in the DDPG algorithm . . 65
6.22 The actions executed by the DDPGagents 65
6.23 RL-Based EMS: State ofcharge 66
6.24 RL-Based EMS: System PowerFlow 66
6.25 RL-Based EMS: PV generated vs Battery Action VsRTP 67
6.26 RL-based EMS : Battery discharge totheloadvs RTP 67
6.27 RL-based EMS : Battery exchange withgridvs RTP 68
6.28 Comparison of Daily Peak Power Consumption 69
6.29 Comparison of Daily Load Factor 69
6.30 Box Plot Analysisof Ramping 70
6.31 Count of Battery Charge and Discharge Cycles 70

6.32 Comparative Analysis of Cost-Effectiveness 71

List of Tables

2.1 Key papers in Deep Reinforcement Learning

4.1 description of the dataset utilized
4.2 Input features for machine learning forecastingmodels
4.3 Input shapes for Neural Networks
4.4 Battery sizing specificationso Lo
4.5 description of the observations used in the RL environment
4.6 Pseudo algorithm for the proposed DDPG agent training
4.7 SARIMA Parameters
4.8 Hyperparameter search ranges for Deep Learning Models
4.9 Neural Network configurations for the comparative assessment)
4.10 System parameters for DDPG model
4.11 Actor and Critic Network configuration

6.1 Summary of Prediction errors and R-Squared for Load prediction

6.2 Summary of Prediction errors and R-Squared for Electricity price pre-
diction e

6.3 Summary of Prediction errors and R-Squared for PV generation predic-
tion . . . e

6.4 Summary of comparative evaluatonof EMS

1X

Introduction

According to Eurostat [1], the energy consumption in the residential sector accounted
for 27% of the total energy consumption in the European Union in 2022. Currently,
this demand has an electricity production mix with a renewable share of 21.1% and to
reach the goal of reducing greenhouse emissions by 55% by 2023 the EU has set the
goal to increase the share of renewables to 42% [2] .60% of this renewable energy
growth is expected to come from locally generated rooftop photovoltaics (PV) and the
rest from utility-scale solar farms [3].

The increasing prevalence of PV systems presents significant energy balancing
challenges owing to the intermittent nature of energy generation. This intermittency
poses obstacles to the widespread adoption of PV technology. However, implement-
ing battery energy storage systems (BESS) has emerged as a promising solution to
address these challenges [4]. Notably, the declining costs associated with BESS in-
stallations make them a financially sound decision, further incentivizing their adoption
in the renewable energy landscape. Furthermore, in addition to BESS, dynamic pric-
ing for electricity is seen as a strategic scheme to accelerate the integration of PV sys-
tems [5]. Dynamic pricing enables better resource utilization, reducing peak demand
on the grid, cost savings, incentivizing BESS, and pushing the transition towards a de-
centralized energy system. This also opens the opportunity for prosumers to leverage
BESS to benefit from financial arbitrage by exchanging with the grid [5].

An energy management system is a tool to monitor, control and optimize the en-
ergy flow in a system while ensuring energy balance is maintained in real-time, includ-
ing optimal BESS operation [6]. EMS strategies range from elementary to more so-
phisticated ones. In recent times, an agent-based machine learning domain called RL
which learns optimal control policy through trial and error has shown more than human-
level performances in various sequential decision-making problems in the fields of au-
tonomous robotics, health care, finance, gameplay and more [7]. By leveraging RL
algorithms, EMS could gain the capacity to adapt and learn optimal energy control
policies in complex and dynamic environments [8]. RL allows the control policy to be
continuously updated which makes it robust to changes in variables over time and
it autonomously takes optimal control decisions in real-time. These characteristics
are aligned with the increasing complexity of the electric grid and the need to have
autonomous control as decentralized energy grids are a promising pathway to a sus-

1.1. Objective and research questions 2

tainable grid and have shown that the RL-based models hold the potential to improve
EMS performance.

To enhance the performance of the RL-based EMS in response to uncertainty in the
variables over the future horizon, the model is incorporated with forecasted values of
electricity load, PV generation, and dynamic electric price to inform its decision-making
process [9]. For this part, various deep learning-based prediction models have been
simulated to assess the best model for the EMS. Neural network-based forecasting
algorithms were primarily examined due to their ability to fit non-linear data which
results in higher accuracy [10]. The explored neural network architectures for this
task were MLP, CNN, simple RNN, LSTM, BiLSTM and CNN-LSTM hybrid as well as
evaluating its performance against naive and a statistical model (SARIMA).

This study focuses on forecasting the hourly load consumption, PV generation for
a single household [11] and the real-time market price using deep-learning methods
along with benchmarking the performances with a baseline model. The second part
of the project dives into utilizing the predictions by feeding into the RL-based EMS to
increase cost savings for the consumer. Here, the performance of RL-based EMS is
evaluated against a baseline and benchmark algorithm.

1.1. Objective and research questions

This research aims to develop a reinforcement learning-based energy management
system to minimize the net electricity cost for a home using the forecasted values of
uncontrollable load, PV generation, and electricity price under a real-time pricing tariff.
The system comprises a household consumer, an installed solar energy system, and
a battery energy storage system.

The main research question is formulated as “How can deep learning-based mod-
els and reinforcement learning algorithms be effectively employed to optimize energy
management in a household and how do these models compare to traditional rule-
based approaches in terms of cost savings for the consumer?”

This primary research question is split into sub-questions, which assist in answer-
ing the main question.

1. What deep learning-based models could be employed to forecast household
load, PV generation, and electricity prices?

2. What deep learning prediction algorithm achieves the highest accuracy when
forecasting load, market price and PV generation for integrating into the HEMS?

3. What type of reinforcement learning algorithm is most suitable for solving energy
management system problems

4. How to model an RL-based EMS with Load, BESS, and PV to increase cost
savings for the consumer?

5. What is the performance of the RL-based EMS when compared to a rule-based
baseline and benchmark model in terms of cost savings for the end consumer?

1.2. Thesis outline 3

1.2. Thesis outline

The thesis report is organized as follows, chapter 1 outlines the relevance, motivation,
objective and research questions of the project. Secondly, chapter 2 elaborates on the
works in the literature on forecasting uncertain variables and energy management sys-
tems. Thirdly, chapter 3 contains the theory behind the models and algorithms used
in this analysis. Next, chapter 4 details the implemented model, the hyper-parameters
used, and architectures. An exploratory data analysis is carried out in Chapter 5 to
gain insights into the data. Subsequently, chapter 6 presents the obtained results and
discusses the performance and convergence of models. Finally, the last chapter sum-

marizes the findings, gives the conclusion, and provides recommendations for future
research.

Background

This chapter examines the existing literature, starting with the need for accurate fore-
casting and the strength of machine learning in prediction models. Next, the available
forecasting methods for load, PV generation and electricity market prices are reviewed.
The second part of this chapter delves into the applications of EMS, followed by an
overview of available EMS strategies. Subsequently, RL and its characteristics are
discussed along with existing RL-based EMS research in the current literature. Fur-
thermore, this chapter aims to answer the first and third research sub-questions.

2.1. Overview of Energy Management Systems

Decentralized energy solutions have the potential to make the grid more reliable and
sustainable by improving energy reliability, energy sharing and demand-side manage-
ment aspects [12]. Home Energy management systems (HEMS) play a vital role in the
realization of the distributed energy system. An EMS provides the necessary tools and
functionalities to monitor, analyze and optimize energy usage within the distributed en-
ergy system. To make informed decisions regarding energy generation, distribution
and storage, an EMS uses control strategies to maintain energy balance and optimize
a specific objective function. Additionally, an EMS opens up opportunities for effec-
tive demand-side management by encouraging consumers to participate in energy
conservation and load reduction actively [5]. Growing mass adoption of household
solar installations has converted consumers into prosumers who consume, produce,
and sell it back to the grid [4].

In addition to growing PV adoption, energy storage systems have become more af-
fordable and are being installed along with PV systems. These additional components
make the decision-making process more complex and crucial.

2.2. Forecasting Methods

Forecasting plays a significant role in optimizing energy usage and the overall perfor-
mance of HEMS . By accurately predicting energy demand, electricity price and PV
generation. In forecasting literature, the techniques range from statistical methods of
the ARMA family to the utilization of neural networks for modeling non-linear relation-
ships. A non-exhaustive list of time series forecasting methods is shown in Fig.2.1.

4

2.2. Forecasting Methods 5

To leverage the full capabilities of EMS, accurate load forecasting becomes a criti-
cal task either from a consumer perspective to reduce consumption during peak price
periods to increase cost savings or from a grid operator perspective to alleviate grid
congestion or to use the BESS to its maximum potential. More granular and extensive
data is being collected with the rise in advanced monitoring infrastructure. Deep learn-
ing forecasting methods have demonstrated significant potential in effectively manag-
ing more extensive and more complex datasets [10].

Short-term load forecasting (STFL) is the process of predicting the power demand
of a power system over a short-term period, typically ranging from a few minutes to a
few hours. Deep learning has demonstrated improved performance in modeling com-
plex patterns for individual household load profiles, which tend to be more volatile due
to their dependence on individual occupant behavior, as opposed to aggregate level
modeling [13].

In literature, different types of models, both linear and non-linear, have been used
for STFL. Family of Auto-regressive moving average (ARMA) models were pioneers
in STFL [14], which was then evolved into SARIMA to account for seasonal vari-
ance [15].This set of statistical methods is limited because it assumes a linear system,
whereas most often real-world cases exhibit non-linear properties. To solve this short-
coming, machine learning models like feed-forward neural networks have become at-
tractive as they can model complex non-linear systems such as load forecasting [10].
Neural network techniques range from simple Multi layer-perceptron to convolutional
neural networks (CNN) methods to recurrent neural networks (RNN) [16] along with
their variants LSTM [17] and Gated recurrent units (GRU). Hybrid architectures have
also been proposed in the literature between neural networks as well as between sta-
tistical and machine learning methods, such as CNN-LSTM hybrid presented in [18]
and a hybrid LSTM-Exponential smoothening [19] respectively.

Globally, electricity is billed using either a fixed pricing structure or a time-of-use
pricing model. With more renewable energy integration, dynamic pricing is a poten-
tial pricing structure to match real-time supply and demand. This structure also in-
centivizes consumers to adjust their electricity consumption during periods of high
demand and encourages load shifting or demand response. Dynamic pricing gives
consumers more control over their electricity costs, and they can make decisions to
optimize their consumption patterns to minimize costs.

PV forecasting focuses explicitly on predicting the energy generated from solar
panels, and accurate solar energy forecasting is crucial for planning available re-
sources and reducing operational costs. It also assists in balancing supply-demand
dynamics by predicting the amount of solar energy available at any given time. Solar
predictions facilitate optimal energy storage management when working with energy
storage systems. As it is a volatile energy source that depends on external environ-
mental factors (Temperature, Pressure, Humidity) and has a diurnal pattern, there are
three classifications of models for predicting solar generation [20]. The three cate-
gories are physical, statistical and machine learning-based models. Physical models
try to capture the relationship between input features and output PV generation math-
ematically [21]. These equations incorporate meteorological data, design parameters
and PV system characteristics. The model accuracy varies widely between models
and system specifications and one such model is presented in [22]. F.M. Mulder

2.3. EMS Methodologies 6

uses the longitude and longitude to capture diurnal variations in irradiance by utilizing
each day’s zenith angle and length. One of the significant drawbacks of this and other
physical models is that its performance significantly reduces when accounting for lo-
cal cloud cover and atmospheric variations, along with the complexity of assembling
multiple models.

The statistical methods are similar to the concept under the umbrella of time series
forecasting [23] where historical values are used for prediction and notable methods
are ARMA models. The drawback is that it assumes an underlying linear relationship
in the historical data [14]. Statistical methods are widely used PV forecasting tech-
niques due to their simplicity and they do not require system specifications compared
to physical models. In [24], an ARIMA model for a grid-connected 2.1 kW PV sys-
tem is evaluated, and one of the limitations of ARIMA is not incorporating the other
dependent variables, which is addressed by adding temperature, precipitation, and
humidity as exogenous variables making it ARIMAX. Although external factors are
included, this model still accounts for only one seasonality, which seasonal ARIMA
models address called SARIMA [15].

The deregulation of electricity markets has shown the intrinsic complexity of the
market prices. Predicting electricity prices has become critical for market participants
to make purchasing and selling decisions. Predicting market prices is challenging due
to their non-linear and non-stationary nature, making machine learning techniques a
promising approach [25]. Vega et al conducted an extensive comparative analysis of
various univariate machine-learning prediction models for market prices and showed
that LSTM was well-suited for the task. Various factors, including the weather, gas
prices, and consumption influence market prices. Zhang et al formulated this as a
multivariate problem with features representing external factors, proposed a deep
recurrent neural network architecture and results showed they improved the perfor-
mance by 29.7% compared to support vector machines in terms of mean absolute
percentage error. Kuo et al [26] have shown that the hybrid of CNN-LSTM performs
better than the networks individually in forecasting day-ahead electricity market prices.

2.3. EMS Methodologies

Several methods have been presented in the literature, such as mathematical opti-
mization, model predictive control and heuristic control for optimal scheduling of con-
sumption and storage. Comparing existing methods in the literature can pose a chal-
lenge due to the wide range of model specifications, parameters, and objectives as
mentioned in the work of Beaudin et al [6].

Some of the well-established EMS strategies are rule-based control methods (RBC),
Dynamic programming (DP) and Model predictive control (MPC). The rule-based method
develops a policy based on an arbitrary set of rules which govern the modes of op-
eration. Although RBC requires simple implementation and less computational cost,
it does not necessarily give the optimized solution for the control problem as it fails
to model future uncertainty. On the other hand, DP is a model-based algorithm that
uses a penalty function to give a globally optimized result for a control problem [28].
The computational intensity to find the global optimum every time step remains a main
drawback of DP, but many HEMS have been implemented on the framework DP. MPC
addresses this problem by reducing the global optimization function into a local cost

2.3. EMS Methodologies 7

Time series forecasting
Approaches

J

Machine learning
Models

Statistical
Methods

, L ,
' ' ! . - .

Support
Vector
Machines

ARMA
Models

Random
Forest

Neural
Networks

Exponential

Smoothing models

Decomposition

- ! : i i l | l

Transformer
Networks

ARIMA SARIMA SARIMAX

Figure 2.1: A non-exhaustive taxonomy of time series forecasting models [27]

function, which enables the system to provide real-time solutions to EMS. MPC also
considers multi-step optimization to make decisions, which makes it robust in sequen-
tial decision-making. In most cases, the high computational cost of MPC and DP leads
to modeling in reduced order, compromising the accuracy [29].

RL overcomes the challenges faced by the previously mentioned conventional
methods. RL methods are formed as Markov decision processes (MDP) and simi-
lar to DP, Bellman’s equations are used to continuously update the policy [7]. The
core idea of RL is to train an agent that learns an optimal policy from experience by
interacting with the environment, similar to human beings. The characteristics of RL
that make it a promising control strategy for the development of home EMS as shown
in the case of electric vehicle power-train EMS [30] are,

» Consumes less computational time and cost relative to DP or MPC, which makes
sequential decision-making in real-time more efficient

* RL model-free approach allows the agent to learn non-linear relationships and
handle larger state spaces more effectively than conventional control methods.

» DRL using function approximators enables it to approximate global optimal re-
sults.

A non-exhaustive taxonomy of EMS strategies is shown in Fig.2.2. The broad clas-
sification, as seen here is the rule-based and model-based optimization techniques.
This analysis focuses on deterministic rule-based and reinforcement learning strate-
gies.

2.4. Reinforcement Learning 8

{ Home Energy Management Strategies }

J
: ,

{ Optimization Based } { Rule Based }
{ Real-time Optimization Global Optimization Fuzzy Rule Deterministic Rule }
l A\ i \d i
. Model . Particle .
Reptocement | predcve | | Senele || awam || reme
ing Control 9 optimization p

Figure 2.2: A non-exhaustive taxonomy of EMS strategies [31]

The rule-based EMS strategies in the literature are predominantly presented under
the case of flat rate pricing or time of use pricing (TOU), as most retailers offer such
tariffs to their customers. Kheri et al [4] presented an optimization strategy to find the
optimal PV capacity and battery energy storage to minimize the net present cost of
electricity for grid-connected households. This optimization utilizes a real-time rule-
based HEMS that incorporates PV generation and load consumption under flat-rate
pricing giving precedence to the locally available and produced energy. However, this
becomes limited when operated under real-time pricing tariff (RTP) or TOU pricing and
one of the ways to integrate this in the EMS is using threshold ranges as proposed
in [5]. The mentioned work proposes the optimal trading strategy for a battery energy
storage system. The strategy involves computing threshold values for each day that
determine the limits of market price to charge or discharge the battery with the grid.
This proposed EMS does not include PV which limits its application. In both of the
discussed works, it was concluded after a cost analysis that the financial benefit for
the end consumer could be increased by using an effective BESS dispatch strategy.

2.4. Reinforcement Learning

Reinforcement learning is a subcategory of machine learning with a mathematical
framework where an agent learns an optimal policy through interaction with the envi-
ronment [7].

The rise of deep learning has significantly improved many tasks such as natural
language processing, object detection, speech recognition and more. This is mainly
attributed to the ability of neural networks to extract low-dimensional feature repre-
sentations of high-dimensional data. This property has also been leveraged in RL to
address the curse of high dimensionality and integrating neural networks with RL is
called deep reinforcement learning (DRL) [32]. Deep learning enables RL to scale to
problems of high state and action spaces, which were previously not feasible. Among
recent works that revolutionized DRL is the algorithm that learned to play a range
of Atari video games at a superhuman level directly from image pixels [33]. Another

2.4. Reinforcement Learning 9

successful demonstration of a DRL agent that defeated a human world champion in
AlphaGO [34]. Some of the most influential work done in RL is illustrated in Table.2.1

RL algorithms are broadly categorized into model-based and model-free [7]. In
model-based RL, the agent creates and learns the model dynamics or representa-
tion and uses this learned model to make sequential decision-making. In comparison,
the model-free algorithms try to directly learn the policy or value function to maximize
the cumulative rewards. Although both have their advantages and fallacies, gener-
ally, model-based methods fail to model complex environments, whereas model-free
methods could perform reasonably well in such environments [7]. The dichotomy
in model-free methods is value-function based or policy-based. In a value-function
based approach, the agent learns how valuable a state or a state-action pair which
then partially dictates the policy on which action to take. The policy-based approach
tries to learn the policy directly from the states, which maps states to action. A non-
exhaustive classification of RL methods is shown in Fig.2.3, and other main categories
within value-based RL methods are on-policy and off-policy. In on-policy, the agent
learns and updates a single policy with experiences whereas the off-policy method
learns from multiple policies experienced during the learning process. The property
of off-policy, where the agent learns from different policies during exploration which
enables better policy improvements has led to a broad adaptation of Q-learning [35].

Table 2.1: Key papers in Deep Reinforcement Learning

Number Description Algorithm
1 Playing Atari with Deep DQN
Reinforcement Learning [33]
2 Deep Reinforcement Learning Double DQN
with Double Q-learning[36]
3 Prioritized Experience Replay [37] Prioritized Experience

Replay (PER)
Deterministic Policy Gradient Algorithms [38] DPG
Continuous Control With DDPG
Deep Reinforcement Learning [39]

(62 F N

In [40], Lu et al propose a DDPG based EMS to efficiently control HVAC systems
and Energy storage scheduling to reduce energy costs while maintaining the temper-
ature comfort of the consumers without the building dynamics. In the analysis, the
DDPG agent was compared with two baselines and resulted in a more robust and bet-
ter cost savings. Similarly, Lissa et al [9] proposes a smart home energy management
system controlling indoor and domestic water temperature control using the DRL algo-
rithm to reduce energy consumption by optimizing PV energy produced. The results
showed that, on average DRL agents achieved 8% better energy savings than rule-
based methods and efficiently predicted and delayed actions for PV self-consumption
optimization. Likewise, Daniel et al [41] proposes an online DQN-based residential
energy management algorithm to reduce energy costs and cut down peaks. Com-
pared to conventional methods, this algorithm makes optimal decisions by making
the agent price aware and anticipating the consumer’s future behavior. This novel

2.4. Reinforcement Learning 10

strategy showed that by incorporating the price signal, the average energy price was
reduced by 16% compared to one without the signal. The historic state transitions are
used as this method explores online learning compared to offline learning. In online
learning, the agent learns in a real-world setting that could get expensive and have
exploration challenges.

‘ Reinforcement Learning algorithms ‘

Model Free Model
RL Based RL
Pollcy Learn the Given the
-Learnin
Optimization @ g Model

Policy
q ————
e N T T
A2CIA3C I

[po o

Figure 2.3: A non-exhaustive taxonomy of algorithms in modern RL [42]

Most RL-based EMS in literature discusses the combination of optimal ESS schedul-
ing and temperature control or appliance scheduling, as model dynamics are complex
and challenging to model. In [43], Han et al propose a combined RL and deep learn-
ing based arbitrage maximizing algorithm for an energy storage system operator. In
this algorithm, to mitigate the uncertainties, the future load and market price are fore-
casted using a recurrent neural network fed into the DQN agent to learn the optimal
policy. This algorithm implements a stimulus to the agent whenever ESS does a peak
load shift. The results showed that the operating profit of ESS increased by 2.4 times
and reduced the on-peak demand by 30%, benefitting both ESS and the grid operator.

Another domain where RL shows promise is scheduling controllable loads such as
freezers, dishwashers, or even electric vehicles to achieve more cost savings. Lui [44]
proposes a DQN agent and double deep g-network (DDQN) for a home energy man-
agement system for scheduling of controllable loads (air-conditioning, dishwasher,
EV) to reduce the energy bill and validates the performance of the algorithm with par-
ticle swarm optimization (PSO). The study examines scenarios with and without PV
generation as the effect of EV. It concludes that DDQN performed better and shows
more advantage over DQN and PSO but still needs more examination as the algorithm
is under partially observable conditions. Likewise, Moncanu et al [8] proposed an on-
line building energy management system using DQN and compared the performance
with a deep policy gradient. The analysis was conducted on both residential build-
ings and aggregate of buildings for which the Pecan database was used. The results

2.4. Reinforcement Learning 11

showed that the deep policy gradient method performed better than DQN for the on-
line learning of building energy management, although both approaches succeeded
in minimizing energy costs.

With the rising adoption of decentralized energy systems due to their potential to
mitigate greenhouse emissions and build a sustainable electricity grid and RL strate-
gies as a potential intelligent control agent, various defined RL environments have
been developed, allowing more focus on algorithm implementation. One of them is
pymagrid [45], a python package that is capable of generating and simulating 600 mod-
ifications of microgrids which are built based on domain expertise and this is built
explicitly for RL algorithms as the environments are modeled as Markov decision pro-
cesses. Another one is CityLearn [46], an open-source OpenAl gym environment for
implementing agent-based RL models for building energy coordination on an individ-
ual or aggregate level and demand response. Citylearn enables easy comparison
of various algorithms, setting benchmark performance and options for load shedding
and energy storage scheduling.

Theory

This chapter provides the essential theoretical knowledge for this study. The chap-
ter begins with exploring forecasting models like SARIMA and then different deep-
learning architectures in detail. The second part of the chapter covers the fundamental
principles and strategies of EMS, followed by the theory of the baseline and bench-
mark algorithm used in this analysis. Afterward, A detailed investigation is conducted
into the foundational principles of reinforcement learning. Finally, the approaches uti-
lized for optimizing hyperparameters are discussed.

3.1. Forecasting Models

Time series analysis is a crucial problem in many domains, offering the ability to predict
future values based on its own or dependent historical values with some margin for
error [47]. It has shown numerous successful applications in finance, economics and
the energy sector. Firstly, a baseline model is presented which serves as a point
of comparison for the performance of different models. The technique utilized for a
baseline should be deterministic, easy to implement and not be problem-specific [48].
The chosen forecast baseline for this analysis is the persistence model as compared
to the average forecast strategy due to the diurnal periodicity present in the data.

3.1.1. Persistence Model

A persistence model, a naive model, is a simple and essential technique for imple-
menting reference baseline in time series forecasting. A naive forecast uses the pre-
vious observation directly as the predicted value without any change. This could be
extended for seasonal data by using the observation simultaneously in the previous
cycle. In this study, for seasonal data, a daily seasonal naive approach is employed
as the baseline, which involves using the value from the same time in the previous
cycle (yesterday’s value) as the forecast.

3.1.2. SARIMA

Box and Jenkins developed a mathematical forecasting model where the future value
of a variable is assumed to be a linear function of past observations and random er-
rors. The family of such models is called an autoregressive integrated moving average

12

3.1. Forecasting Models 13

(ARIMA) model [15]. The ARIMA process intrinsically consists of two parts, an autore-
gressive part (AR) and a moving average (MA), where the AR part uses the previous
values to model the prediction and the MA part models the error term or deviation
from the mean. The model is represented using the notation ARIMA (p,d,q) where p
specifies the autoregressive order on how many lags values are used in the model,
d indicates the number of differencing applied to the time series and g specifies the
moving average order on how many previous deviations are used in the prediction
model.

The generalized ARIMA model could be expanded by adding seasonal AR, MA and
differencing terms for a periodicity called seasonal ARIMA (SARIMA) to incorporate
seasonality into the ARIMA model. The SARIMA model is represented as SARIMA
(p,d,q)(P. D, Q)s, where P, D, Q are the respective order terms for the seasonal differ-
encing s. The mathematical expression for the prediction is illustrated in Equation 3.1
where the cis a constant term, ¢, is the error term and ¢,,,0,,,0,,,®,, are the coefficients
of lag terms. This removes the non-stationarity in the data, which might affect the
performance as ARIMA models operate with the underlying assumption of stationary
data. This also limits the inclusion of only one seasonality, whereas the data being
analyzed in this study has multiple seasonality.

p q P Q
Yyt =c+ Z ¢nyt—n + Z On€t—n + Z (I)nyt—sn + Z On€t—sn + € (31)
n=1 n=1 n=1 n=1

3.1.3. Deep learning Methods

Neural Networks are part of a family of machine-learning techniques inspired by the
functioning of the human brain which consists of interconnected nodes (neurons) com-
partmentalized into layers [49] . A typical neural network architecture consists of an
input, hidden, and output layer, as seen in Fig 3.2. Network architectures having more
than one hidden layer are called deep networks which increase the capabilities to ex-
tract information from the input data. Machine learning is broadly classified into su-
pervised learning and unsupervised learning [7]. In supervised learning, the widely
applied method learns a function to map the input to output by training on labeled
data. Whereas unsupervised learning learns patterns or relationships without explicit
labels or target data. In forecasting, given the historical data available the algorithms
are widely trained using the supervised learning method.

In supervised learning, they are trained using labeled data to update their param-
eters and optimize for a loss function with the weights between neurons calculated
and optimized using an optimization algorithm. Activation functions are applied to the
weighted sum of synoptic weights and bias term introducing non-linearity to the model,
this is depicted in Fig.3.1. There are different architectures of neural networks built on
the foundational structure.

3.1. Forecasting Models 14

Y
AN
o L

N SN {—

. \\Z/, (P ‘ Output

Weighed Activation

Sum Function
)
N

Figure 3.1: Artificial Neuron structure

In the context of machine learning models, they broadly fall under the batch learn-
ing category or online learning category [50]. Batch (offline) learning means training
the model using the historical data all at once, whereas in online learning the model
learns from the training instances incrementally. Online learning adapts to changes
and sudden variations in the data more effectively than batch learning. However, the
standard practice is to initially train the model offline and then continue with online
learning. This analysis examines only batch learning as infrastructure for online learn-
ing needs to be in a real-world setting.

Multi-layer perceptron

Multi-layer perceptron is a type of feed-forward artificial neural network (ANN) where
the information flows in only one direction from the input layer to the output layer
without any loops or data feedback. MLP is introduced in the hidden region as Dense
layers, and in the context of load forecasting, the model input takes each time step
as a feature. This brings the limitation of not capturing the temporal dependencies
regardless MLP has shown to have competitive performance in a few load forecasting
use cases [51].

Input Layer Hidden Layer = Output Layer

(T
(I) -
U T~ /2

A H;
(B
\3/" " /”'\

:ﬁiﬁl H, @»—»Output
/”"\ P \\,J
(Is 1~
\/,/ O

¥ Hy

™ ~
N

Figure 3.2: Deep Neural Network (DNN) Architecture

3.1. Forecasting Models 15

Convolutional Neural Network

Convolutional neural networks are a family of ANNs, that works with a grid-like struc-
ture and has been extensively used in image recognition and natural language pro-
cessing [52]. The key property of CNNs to extract features has been leveraged for
univariate time-series forecasting, where a filter/kernel is passed through the series to
extract relevant features as visualized in Fig.3.3. Although CNN is effective in NLP and
image recognition, they are not widely used in time series forecasting as CNN cannot
model sequential data, which has been addressed recently by combining them with
recurrent neural networks [13]. A vanilla CNN and CNN-LSTM hybrid architectures
have been analyzed in this work.

Feature
Maps

X1 \
Xz —)\
N\
X3 7//\\\\\\\
N ‘(7 Y, @ Output
[— ~
N
=
Xn-l
Xn

Input Convolutional Pooling Fully
Layer Layer Connected
Layer

Figure 3.3: Convolutional Neural Network (CNN) Architecture

Recurrent Neural Network

Recurrent neural networks are an NN architecture that modifies feed-forward neu-
ral networks to handle sequential data and capture temporal patterns better, which
makes it a powerful tool for time series forecasting [16]. Compared to feed-forward
neural networks, RNNs maintain an internal state that allows them to remember in-
formation from previous inputs. Essentially, an RNN layer could be seen as multiple
copies of the same network where the representation of each time step is learned in a
loop, allowing it to learn the temporal dependencies, whereas in Fig. 3.2, the informa-
tion makes only one pass through the layer. In Fig.3.4, an unfolded RNN is visually
represented where A represents each neural network copy of a time step with x as the
input and h as the hidden state which is stored and passed on to the next time step.
RNNs experience vanishing/exploding gradient problems, and their inherent structure
to update the hidden state using the current step and previous hidden step limits their
capability to remember information over longer intervals.

Long Short Term Memory

LSTM is a variant of Recurrent Neural Networks, which addresses the problem of
learning long-term patterns. Traditional RNN, as seen in Fig.3.4, can model tempo-
ral dependencies by having a hidden state which enables it to learn the relationship.

3.1. Forecasting Models 16

() ® ()
] A A
® ® S

Figure 3.4: Recurrent Neural Network (RNN) Architecture

However, this architecture continuously updates its weights, leading to only capturing
short-term dependencies. This is addressed in LSTM architecture by introducing an
internal state that stores the relevant information and forgets irrelevant information us-
ing gating mechanisms named forget gate, input gate and output gate. This ability of
LSTM to store short-term and long-term interpretations has made it a popular choice
for time series forecasting.

™ N ()
=) ® &)

Cy.
] 1 R +

o

Ctan>

SRNE YT T2
]

.
&y

N
&

(=)
a4

Figure 3.5: Long short-term memory (LSTM) Architecture

In RNN'’s architecture, each repeating module has a simple tanh layer (as seen
in Fig.3.4), but LSTM has a different and complex structure with four layers that are
interacting uniquely as shown in Fig.3.5. Here, the core component of LSTM is the
internal cell state that runs through all the modules as represented in Fig.3.5 as the
horizontal line running at the top. In brief, LSTM can add or remove information from
the internal state through gates and this is how it stores long-term representation.
Since it has more layers, more parameters make LSTM models take longer to train
and prone to overfitting.

Bidirectional LSTM

Bidirectional LSTM is a variant of LSTM where the network is trained using the input
data in forward and backward sequences. This is achieved by two connected layers
where each processes the input data in a reversed direction and is combined using
different merging methods. This architecture allows the network to learn from past
and future contexts and avoids loss of information in LSTM where, in some instances,

3.2. Energy Management systems 17

the initial context fades away. Similar to LSTM, with two connected LSTM layers, the
number of parameters is doubled which could lead to overfitting and taking longer to
train the network.

CNN-LSTM Hybrid

The hybrid model combines the effectiveness of CNN to automatically extract and
interpret features from a univariate time series along with utilizing the power of LSTMs
to model temporal dependencies [53]. In this architecture, the input sequences are
split into sub-sequences processed by the CNN model, and the interpretation of the
sub-sequences is then fed into the LSTM model as input. Here, the number of sub-
sequences is a hyperparameter and this expands into the number of time steps per
sub-sequence based on the look-back period chosen. It should be noted that the
output from CNN should be flattened to a single one-dimensional vector before it goes
into the LSTM network.

3.2. Energy Management systems
3.2.1. EMS Baseline

When assessing the performance of a dynamic algorithm like RL for energy manage-
ment, it is vital to establish a baseline for comparison. The baseline implemented in
this analysis is a simple and deterministic approach called the rule-based EMS. This
is a well-established control mechanism and this system relies on a set of predefined
rules and logic to make decisions. Using a baseline provides a reference point for
evaluating the RL-based model’s effectiveness and the two approaches’ comprehen-
sibility.

@_

Py(t) >%Yes Py(t)- Py (r‘p}y Yes—

No

No
Po,im (t) = Py (t) - Pa (1) }ﬁ
Y
Ve>—+ Po,ex(t) = Pa(t) - Py (1)
4

A 4

Pu,imp (t) = Po,in (1)
Ps (t) = Py (t) - Pa(t) - Po,imp ()

Ph,out (t) >= Pa () - Py (t)

No

|

Phox (0 = Po,out (t) \

v A, »(2
Po () =Py () + Poex(t) - Pa(t) |

Figure 3.6: Flow diagram of Baseline EMS model

The baseline approach used here is adopted from optimal capacity optimization for
households carried out by [4], where the control flow starts from checking if the load
for that period is lower or higher than the PV produced. This allows the consumption

3.2. Energy Management systems 18

of power produced locally and is followed by the charging/discharging of the battery
according to excess or deficit of energy depicted in Fig.3.6. The key purpose of this
model is to provide a point of reference for comparing against other models. If more
sophisticated models discussed in this study do not perform better than the baseline, it
could understood that the complexity added in the other models does not necessarily
translate into better performance. For simplicity, in this model, the BESS does not
trade with the grid, and the price single is not considered.

3.2.2. EMS Benchmark

To conduct a more robust comparison, a model that takes optimal BESS decisions
to trade with the grid along with dispatching to the load is developed. The approach
is adopted from Dufo’s work [5] of optimization of a grid-connected storage system
under real-time electricity pricing.

Y
Pimp,solar (t) = Ppy (t) - Pload (t)
Pimp,grid (t) = Pb,in (t) = Pimp,pv (t)
Ppv () >= Pioad (t) Ye Pimp,total (t) = Pimp,pv (t) +
Pimp,grid (t)
Py (t) = Pimp,gria (t)

Pimp,pv () = Ppy (t) - Pioad (t)
Pimp,total (t) = Pimp,pv (t) + Pimp,grid (t)

Ppy (t) - Pioad (t) <= Pu,in (t)

i

Pimp,pv () = P,in (t)
Ps (t) = Ppy (1) - Pioad (t) - Pimp,totai (t)

|

‘ Pexpioad () = Po,out t)
Pexp,total (t) = Pexp,ioad (t) + Pexp,grid (t)
‘ Py (8= Pioad () - Pou (t) - Pospyioad (¢)

Pb,0ut (t) > Pioad (t) - Ppy (t)

Yes

T T ‘ Pexpjioad () = Proad (t) - Py (t)
- Pexp,rid (t) = Po,ou (t) - Pexpoad (t)
Pyrice (t) > X3 limit Yo > exp,grid i Py
< Peree(>Xs Pexpytotal (1) = Poxpioad (8) + Pexpygria (8
\\I/ Ps (t)= Pexp,grid (t)
No
Pexp,ioad (t) = Pioad (t) - Ppv (t)

Pexp,total (t) = Pexp,load (t) + Pexp,grid (t) ‘ @

Py ()= Pexp,grid (1)

Figure 3.7: Flow diagram of Benchmark EMS model

This algorithm overcomes the limitation of the baseline model by incorporating
the price signal to make optimal BESS decisions. The approach involves utilizing
the price prediction of the subsequent day to make arbitrage decisions by computing
two dynamic price thresholds daily. These threshold price values dictate when to buy
electricity for battery charging and when to discharge it back into the grid. X; sets the

3.2. Energy Management systems 19

threshold for purchasing the electricity and X is the cutoff value to sell back to the grid.
The equation is shown in Equation 3.2 and 3.3. Here, X; and X, are hyperparameters
that need to be determined. Intuitively this can be thought of as the percentage of the
price difference.

X1 daily = Prmin + Prai - X4 (3.2)

X2 daily = Prmvax — Prait - Xo (3.3)

This algorithm incorporates the price signal within the framework of the imple-
mented baseline [4]. The power flow diagramis illustrated in Fig.3.7. Self-consumption
is prioritized by giving precedence to discharging the battery to satisfy the load over
importing from the grid and charging the battery if there is an excess of PV power. Al-
though this approach takes optimal real-time decisions, it cannot integrate the future
anticipated values of load, PV generation and electricity price.

3.2.3. Reinforcement Learning based EMS

Machine learning is broadly classified into supervised, unsupervised, and reinforce-
ment learning (RL) [7]. In supervised learning, the widely applied method learns a
function to map the input to output by training on labeled data. In comparison, unsu-
pervised learning learns patterns or relationships without explicit labels or target data.
Unlike other methods, RL involves an agent learning how to interact with its environ-
ment and make sequential decisions to maximize its cumulative reward. It is similar to
the human nature of learning by trial and error, using feedback to optimize decisions.

State Reward Action
St Ry At

Environmentl«———

Str1

Figure 3.8: Schematic representation of agent environment interaction in RL

Problem setup

An RL agent learns through interaction with the environment through trial and error.
At each time step upon the outcomes of its actions, it can learn to alter its behavior
in response to rewards received. The key influence of RL has its roots in human
behavioral psychology and the mathematical formalism of dynamic programming [7].
In the RL setup, an agent is an autonomous decision-making entity and at each time

3.2. Energy Management systems 20

step, the agent receives state s from the state space S and takes an action a from the
action space A based on a policy (7) i.e mapping of states to actions and receiving a
scalar reward r which also acts as a feedback. When interacting with the environment,
the state s transitions to the next state s + 1 based on the environment model or
dynamics, and the transition probability P(s;.1|s:, a;). A diagram depicting the agent-
environment interaction is shown in Fig.3.8.The assumption is that the provided state
comprises all the necessary information for the agent to make the best decision. The
agent’s goal is to learn a policy (7) that maximizes the expected return (cumulative
discounted reward) and this policy which gives the maximum reward is called optimal
policy. In essence, RL tries to solve the problem similar to optimal control but the
difference is that RL does not have the state transition dynamics it learns through trial
and error.

In an episodic problem i.e. if the agent is trained in an environment that has a ter-
minal state or an end state, then the agent reaches the end of the episode and restarts.
The cumulative reward is computed when the terminal state is reached and the return
is discounted to give varying importance to delayed rewards using a discount factor.
The agent aims to maximize the expected rewards from each state.

Markov Decision Processes

Markov decision process (MDP) is a mathematical framework used for modeling se-
quential decision-making problems where the outcome is partly random and partly
controllable. In essence, the MDP states that the future state is only dependent on
the current state and independent of the past. This means that a decision made at
s; is only dependent on s;,; and independent of sg, s1,....., s;_1 . A Markov decision
process is typically defined as a tuple (S, A, P,,,~, R) where,

+ Sis a set of all possible states

» Ais a set of all possible actions

» Py, are the state transition probabilities

* ~ is the discount factor

* R is the immediate/instantaneous reward

Value Function

In almost all RL algorithms, value functions are crucial in the learning process. Value
functions estimate how good it is for the agent to be in a specific state (state-value
function) or take a specific action from a specific state (state-action value function)
when following a policy = [7]. In an episodic learning problem "how good” refers to the
sum of immediate and discounted rewards over the time steps till the terminal state
is reached. This quantifies the value associated with the agent being a state s for a
state function or being in a state s taking an action « for a state-action function.

For an agent following policy 7 starting from state s the state-value function v, (s)
could be expressed as in Equation 3.4. Here, E, denotes the expected value of the re-
ward. It should be noted that the state-value function intuitively gives a value based on
the average of total reward taken from all possible actions from state s. Similarly, the
value when an agent takes an action « in state s under a policy 7 could be expressed
as Equation 3.5

3.2. Energy Management systems 21

Uﬂ—(S) = EW[Rt|St = S] = Eﬂ— [kaRt-l—k-i—”St = S:| (34)
k=0
4x(5,a) = Er[Ry|s; = 5,0, = a {Z’Y Rit11|Se = s,a¢e = a] (3.9)

For the value-function v™, the Bellman equation could be expressed as Equa-
tion 3.6. Here, the Bellman equation is a fundamental property that holds a recursive
relationship between a state and the values of the successive states under a policy .
This property is used widely throughout RL and dynamic programming. This property
also lays the foundation to compute, learn, and approximate the value function. For a
stochastic process, 7(a|s) defines the action probabilities and p(s’, r|s, a) defines the
transition probabilities and the sum over all the possibilities gives the expected value.
This could be extended to include the state-action pair q value function as expressed
in Equation 3.7.

Ua(s) = Z Z p(s',7|s, a)[r + yva(s")] (3.6)
Zps r|s,a) +’yz d'|s)qx (s, a")] (3.7)

The goal of RL is to find a policy that maximizes the cumulative reward that the
agent receives and this policy is defined as the optimal policy (7*). Finding optimal
policy partially is defined by the function functions and part by the stochastic system
dynamics. A policy is said to be optimal (7* >= =) only when the value function of that
policy is yielding the maximum cumulative reward that is v.(s) > v (s) for all states.
The optimal state-value function that follows policy 7* is expressed in Equation 3.8
and the Bellman equation for v* or the Bellman optimality equation is defined in Equa-
tion 3.9. The Bellman optimality equation instinctively expresses that the value of a
state under optimal policy must give the expected return for the best action taken from
that state s

V4(8) = maz,v.(s) (3.8)

v.(8) = mazx, Zp(s’, rls,a)[r + yv.(s")] (3.9)

The optimal action-value function with a similar definition as the optimal value func-

tion is denoted as ¢, and is expressed as Equation 3.10. This function gives the cumu-

lative reward starting from state s taking action « when the agent follows the optimal

policy 7*. The Bellman optimality equation for optimal action-value is shown in Equa-
tion 3.11.

q(8,a) = maz,q:(s,a) (3.10)

¢ (s,a) = Zp(s’, rls,a)[r + ymazr,q. (s, a')] (3.11)

s'r

3.2. Energy Management systems 22

Q-learning

The Q-learning method is an off-policy model-free reinforcement learning approach
built on the mathematical framework of temporal differencing learning (TD) [33] . In
TD learning, the agent learns from the experiences in time. This approach aims to
update the value of some estimate V for the value of policy = for all states. The most
fundamental method is TD(0), where the value V is updated for a policy using the
immediate reward the agent receives and the value of the state it transitions to, this is
shown in Equation 3.12. In this equation, r + vV (s’) — V(s) is called the TD error and
~ is the discounting rate for future rewards. Here, « is the learning rate or constant
step size parameter, influencing how quickly the TD algorithm learns or the value is
updated. The learning rate also influences how quickly the model converges [7].

A A A
S1 | Q(S1,A1)|Q(S1.A2) . Q(S1,Am)
Sz | Q(S2,A1)|Q(S2.A2) - Q(S2,Am)
SI'I Q(Sn-Al) Q(SHIAEJ " Q(SnnAm)

Figure 3.9: Visual representation of a Q-table

In Q-learning, when the agent interacts with the environment, the agent forms state-
action pairs and assigns a Q-value for each pair. This could be seen as an extension
of TD(0) learning where it is only for the state value but here it is for state-action pairs.
This Q value could be interpreted as how beneficial it is for the agent to take action a
and transition to state s’ from state s. This is stored in a table shown in Fig.3.9 and is
called a Q-table. The values in the Q-table are iteratively updated at every step based
on the Bellman equation, which is shown in Equation 3.13

V(s) + V(s)+afr+~+V(s) —V(s)] (3.12)

Q(s,a) + Q(s,a) + afr +vQ(s',a") — Q(s,a)] (3.13)

Deep Q-learning

Deep Q-Network is a combination of Q-learning and deep neural networks. In DQN,
the traditional Q-table shown in Fig.3.9 is replaced by a deep neural network architec-
ture as seenin Fig.3.10. Here, instead of computing the Q-value for each state-action
pair, the neural networks act as a function approximator to estimate the Q-value, and
similar to the foundation RL approach, the action with the highest Q-value could be
used to make optimal decisions.

Using the function approximators in Q-learning overcomes the curse of dimension-
ality and can handle large or continuous state spaces. Another advantage of using
Deep Q-networks is that they generalize the learning process and equip the agent to
approximate decisions even to states it has not trained during the learning process.

3.2. Energy Management systems 23

The learning process is also stabilized using techniques such as experience replay,
target network and greedy epsilon strategy exploration-exploitation. Here, the experi-
ence replay stores the experiences, and the network is trained on a randomly chosen
set of transitions, which helps break sequential correlation and leads to a more stable
learning process.

Although DQN solves problems with high-dimensional observation spaces, it can
only handle discrete action spaces. However, most real-world/physical problems have
high-dimensional or continuous action spaces. Here, DQN cannot be applied directly
as it depends on finding the action that maximizes the Q-value. A continuous action
space case requires optimization in every single step. One of the straightforward
approaches to deal with this issue is discretizing the action space. However, this has
a few limitations and the most prominent one is the curse of dimensionality where the
number of actions increases exponentially with degrees of freedom which leads to
an explosion of the action space. Such large action spaces are difficult to effectively
explore which could lead to sub-optimal performance or sometimes even infeasibility.
Additionally, the discretization of the action space might lead to loss of information
about the structure of the action domain which might be essential to solving many
problems.

State S

Figure 3.10: Deep Q-Learning (DQN) Architecture

Deep Deterministic Policy Gradient
DDPG is a model-free, off-policy actor-critic algorithm that uses neural networks as
function approximators to learn policies that are capable of handling high-dimensional,
continuous state and action spaces [39]. This architecture can be seen as an expan-
sion of DQN to continuous action spaces. DDPG has an actor-critic framework where
the critic network is analogous to the Q- function in DQN and the actor is a policy
function that functions simultaneously. The critic network computes Q-values using a
TD error update accordingly. On the other hand, the actor network directly generates
actions and is updated using a policy gradient that rely on the Q-values computed by
the critic network [54].

The policy gradient method used in the original implementation is built on top of the
deterministic policy gradient method proposed by [38]. The learning process of DDPG
is visually illustrated in Fig.3.12. The actor learns a deterministic policy function p(s)

3.2. Energy Management systems 24

Learning

/ Main
States (S) / DQNk Actions (A)
Networ!
Y
Target A
Next States / DQN Next(;\;tlon

Target Network Update

Figure 3.11: lllustration of target network structure in DQN

and the parameters are denoted by 6*. The action taken by the actor network can be
represented by a(t) = u(s:]0)). The problem of exploration vs. exploitation in DDPG
is addressed by adding noise to the action values generated by a random process
represented by a(t) = 7(s;]0)) + N; where N is the random process. In the original
implementation, the Ornstein—Uhlenbeck process was utilized to generate exploration
noise due to its time-correlated nature which works efficiently in conjunction with MDP
processes. This algorithm uses target networks as implemented in DQN to tackle the
problem of divergence so in total, this algorithm uses four networks in total.

The critic network’s state-action value function is learned using Bellman’s equation,
similar to DQN. In Equation.3.11, the state s,., r; are obtained as result of the actor
network’s output a(t) = u(s|6}') following policy x. The critic network learns a policy
7w to compute the g-value using the state and the action taken by the actor network.
In Equation 3.14, y; is the computed Q-value which is used to compute the mean
squared error loss function. The loss as expressed in Equation 3.14 is minimized
using gradient descent propagated through the critic network.

Yi =1 + Y (Seq1, 1(Se41)) (3.14)

L= 7 20— s a6y (3.15)

For the policy function, the objective is to maximize the cumulative reward which is
the Q-value output of the critic network Equation 3.16. The derivative of the objective
function (7 (s;11, 1(s4+1))) with respect to the policy parameter (*) is used to compute
the policy loss (J). Policy u is updated using the chain rule to the loss function and
since this is a batch-wise learning the mean over the sum of gradients is calculated

as shown in Equation 3.17

J<9) - E[Q(S7 a)|s:st,at:u(st)] (316)

1
Vo (0) % > VaQ(5,) sspar=u(sr) Vor ir(510") o=, (3.17)
t

3.3. Hyperparameter Tuning 25

Finally, the target networks are updated in a similar way to DQN but instead of
directly copying this implementation follows an exponential smoothing approach to
update the target networks gradually. The hyperparameter for the soft update is 7 «1,
the lower the value, the slower the target network gets updated.

- ~o

Action

1

_________]

_______ I

~ Seeell)

Action /
14 TD Error
x4
State L

Value Function | -~
Approximator : Critic

Reward

State

Environment

Figure 3.12: Actor-Critic Architecture [7]

Although DDPG has proven to be very effective in problems with continuous ac-
tion spaces, the algorithm is very sensitive to hyperparameters which can make the
learning process very unstable and depends on correct hyperparameters for a specific
problem. Another problem faced by DDPG is the overestimation bias where the target
critic network overestimates the value of the Q-value. This can lead to sub-optimal
performances [55].

3.3. Hyperparameter Tuning

Hyperparameter tuning is one of the crucial parts of deep-learning model implemen-
tation, where hyperparameters are the predefined parameters set before the model
starts the learning process and tuning is finding the optimal hyperparameters to achieve
the best performance or minimize the loss function. The standard methods widely
used in hyperparameter tuning are manual or heuristic approach, grid search, random
search and optimization-based searches. The heuristic approach is based on man-
ually implemented based on the domain expertise of experts. Grid search is a brute
force method where the entire search space is explored to find the best fit, whereas
random search uses sampling techniques to split the search space for exploration.
The optimization-based search involves different optimization methods to generate
and adaptively adjust the parameters to optimize the model’s performance over a loss
function[56].

For the statistical method SARIMA, the hyperparameter encompasses the order of
auto-regressive, moving average and differencing terms including the seasonal terms.

3.3. Hyperparameter Tuning 260

These are primarily determined by visually inspecting the correlogram and by doing
an exhaustive grid search. For the auto-regressive terms, partial auto-correlation plot
is inspected and for moving average terms auto-correlation plot is examined. In both
plots, statistically significant orders which show high correlation are arbitrarily chosen.
The other approach is to define a search space for the tuning process and do an
exhaustive search; this is more resource-intensive [15].

As deep learning networks involve several hyperparameters, grid and random
search become computationally resource-intensive and sometimes even infeasible
due to the large parameter search space. This is where adaptive optimization-based
tuning techniques have shown potential, making them widely used [57]. In contrast
to grid search or random search, Bayesian optimization is a probabilistic model that
takes previous validation scores in selecting the next set of hyperparameters for evalu-
ation. As it makes well-informed decisions on what hyperparameters to test, it actively
avoids regions that do not improve the performance of the objective function leading to
more quicker search as it needs fewer evaluations to find the optimal parameters [56].
Bayesian search uses Bayes theorem to set out to find the global optimum of the
objective function systematically.

The core of the optimization process consists of three components namely, the
objective function, surrogate function and acquisition function. The objective function
is the function that needs to be maximized or minimized and in this approach, the opti-
mization process does not depend on the underlying factors influencing the objective
function’s value. In the context of forecasting models, this can be defined as one of
the error metrics that needs to be minimized. The surrogate function is a critical part of
the Bayesian process as it provides a probabilistic approximation of the objective func-
tion, guiding efficient future sampling. This is often modeled as a Gaussian Process
(GP) due to their property of providing mean prediction and quantifying their variance.
The GP model constructs a joint probability function over the variables which is the
hyperparameter assuming a multivariate Gaussian distribution [58]. The acquisition
function uses the mean and variance from the GP process to determine the next set of
parameters to evaluate using the objection function. The commonly used acquisition
functions are expected improvement (El), probability of improvement (PI), and upper
confidence bound (UCB).

Bayesian optimization starts with randomly sampling the search space and eval-
uating the objective function. With this sampling, a GP distribution is constructed as
part of the surrogate function. The acquisition function uses the mean and variance
derived from this function to choose the next set of parameters for evaluation. Follow-
ing that, the output of the objective function is added to the GP process and this is
iteratively executed to find the optimal parameters.

Methodology

This chapter elaborates on implementing the algorithms discussed in the previous
chapter in the context of this particular study. The chapter discusses the data collec-
tion, pre-processing steps, evaluation metrics used, and results of the hyperparame-
ter tuning. It then provides a detailed examination of how the environment and agent
learning were configured for the reinforcement learning approach in this study.

4.1. Resources and Tools

In this research project, various data analyses and algorithm simulations were devel-
oped in Sypder IDE in Python 3.10.9. Several additional libraries were used on top
of the built-in libraries for computation and visualization tasks such as pandas,numpy,
and matplotlib. The machine-learning parts of the simulation were implemented us-
ing the TensorFlow framework, especially using the Keras backend. The RL models
were set using object-oriented programming, and the gym library was utilized for the
custom environment.

4.2. Data Collection

The dataset used in this project is data from a single household in the greater Lucerne
region in Switzerland, which was retrieved from the IHomeLab RAPT dataset [11].
The data spans from 1st December 2016 to 31st July 2019, which is around two and
a half years with a sampling frequency of 5 minutes. The dataset contains the local
total load, consumption of individual appliances and the weather data from the lo-
cal weather station. The electricity price data used in this analysis was taken from
the ENTSOE transparency platform, a pan-European repository of energy-related
data [59]. As the assumed pricing structure for the consumer in this study is dynamic
pricing, to make the wholesale electricity prices from ENTSOE take transmission and
distribution costs into account, the prices were multiplied by a proportional constant.
Here, the proportional constant was obtained by comparing the wholesale retail price
of the dynamic pricing structure in Switzerland. The schematic of the household con-
nections is shown in Fig 4.1. This corresponds to house E in the group of house data
available in the RAPT dataset [11]. The available weather data include indoor and
outdoor humidity, indoor and outdoor temperature, and outside pressure. This would

27

4.3. Data Pre-processsing 28

- B—
I
&) @ (oM

Figure 4.1: Schematic overview of the sub-metered appliances in the household
data [11]

be more helpful when optimizing for HVAC systems, as maintaining thermal comfort
is crucial. The description of the data is shown in Table 4.1, all the data is resampled
to one hour from 5-minute resolution for ease of calculation and the unit for all the
consumption and PV generation is in Kilowatts (kW).

Table 4.1: description of the dataset utilized

Number Description

Total Power consumption

pc of dishwasher

pc of dryer

ps of heating gas pump

pc of water pump

pc of washing machine

Environmental data logged by weather station

ONO T WN -

4.3. Data Pre-processsing

Preparing the data before feeding it into a machine-learning model is crucial to achiev-
ing optimal knowledge discovery [60]. If there is redundant or irrelevant information
present in the raw data, it could lead to sub-optimal performance so the output of
data pre-processing is the final training set. Pre-processing includes missing data,
cleaning, normalization, and transformation.

4.3.1. Missing Data

The raw data set is prone to missing data or invalid values, which could lead to spuri-
ous output. Therefore, it should be at the outset. As with time series, removing missing
values gives unreliable results as the data has a temporal relationship, hence imputa-
tion has to be done. The missing values could be imputed using linear interpolation,
back-fill, front-fill, seasonal fill, or regression [61]. In this analysis, the data used from

4.3. Data Pre-processsing 29

[11] has already dealt with the missing values using linear interpolation. However, the
electricity price dataset contained empty values which were imputed using.

Linear interpolation is a method to fill missing data in a time series assuming a
linear relationship between known data points and it also assumes the step size to be
uniform. One of the significant drawbacks of using linear interpolation is that it needs to
include underlying seasonalities and patterns and the assumption of linearity, which
could lead to distortion of the true nature of the time series. In this analysis, linear
interpolation was deployed to deal with missing data.

4.3.2. Stationarity

A time series comprises three components: trend, seasonality and noise. Trend rep-
resents the long-term movement or direction of the data. This indicates whether the
data is increasing or decreasing or stable over time. Next, seasonality is the regular re-
peating pattern at regular intervals and in the context of load, it could be daily, weekly
and yearly seasonality. Finally, noise is the random fluctuations or irregularities in the
data that cannot be captured by trend or seasonality. The data is said to be stationary
if the properties do not change over time. There is no trend or seasonality as they will
affect the value of the time series at different times. In practice, most of the data is
non-stationary and even after transforming it into stationary data it could be observed
that there is some degree of degree of trend or seasonality which is acceptable.

Most statistical forecasting models, especially in this context SARIMA, have an
underlying assumption that the data is stationary. Although neural network methods
can learn the abstraction in non-stationary data, it is generally recommended to make
it stationary for it as well. However, during the analysis it was observed that making the
data stationary before feeding the machine-learning model did not improve accuracy;
instead reduced it. Possible reasons for this observation could be that differencing
may lead to loss of information. Consequently, linearizing the data limits the potential
of neural networks to learn non-linear information in the data.

The most common practice to evaluate the stationarity of the data is by visually
inspecting auto-correlation plot (ACF), partial auto-correlation plot (PACF) or using unit
root tests such as Augmented Dicky-Fuller (ADF) test or Kwiatkowski-Philips-Schmidt-
Shin (KPSS) test. The unit tests (ADF/KPSS) are statistical significance tests which
are hypothesis tests that will give results in null and alternative hypotheses. With
the p-value obtained from the tests, we will need to infer whether the time series is
stationary. In this analysis, the ADF test was carried out using the Adfuller method
in the statsmodels package. The results were also visually checked by observing the
ACF and PACF plots.

The most common method to achieve stationarity is by differencing the data, the
trend could be stabilized by differencing with the previous value and seasonal differ-
encing to remove seasonalities in the data. This could also be achieved using de-
composition methods such as STL and MSTL where the time series is decomposed
into trends, seasonalities and noise. Log transformation could be used to stabilize
variance in the data which also distorts the stationarity of the data[61].

In this analysis, the data was made stationary only when modeling SARIMA as
they cannot handle non-linearity. The trend and daily seasonality were removed using
differencing and the stationarity was checked using the ADF test.

4.3. Data Pre-processsing 30

Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)

0.50
0.25

0.00

-0.25

-0.50 -0.50

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
lags lags

Figure 4.2: Load Correlogram

Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
lags lags

Figure 4.3: Electricity Price Correlogram

4.3.3. Feature selection

The selection of relevant features is one of the central concepts in machine learning
and hugely impacts the performance of the prediction models. Feature/Attribute selec-
tion is a problem of identifying the related features that contribute to the target variable
to achieve better accuracy for the model. Fewer features reduce the complexity of the
models and increase the interpretability.

This study uses the Pearson correlation to extract relevant features under Filter
methods. Filter methods offer a high-level understanding of feature relevance, mak-
ing them an initial step in feature engineering. Pearson correlation is a statistical term
that measures the linear relationship between variables. Itis denoted as r and ranges
from -1 to 1, with -1 indicating the most negative/inverse relationship between the
variables, whereas 1 indicates a positive relationship. Since the input data from the
iHome dataset has the consumption of individual appliances’ indoor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>