
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Home Energy
Management System
A Machine Learning Approach

MSc Thesis
Karthikeyan Deivamani

Home Energy
Management System

A Machine Learning Approach

by

Karthikeyan Deivamani
Student Number : 5330645

Thesis committee: Dr. Pavol Bauer, Chair
Dr. Aditya Shekhar, Supervisor
Dr. Jochen Cremer

Advisor: Farshid Norouzi, Daily Supervisor

Project Duration: November 2022 - October 2023
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science
Research group: DC Systems, Energy Conversion and Storage (DCES)

Acknowledgements

I started working on this graduation project in Fall 2022 and it took me almost a year
to successfully come to the end. Although the road to graduation was challenging,
I received constructive guidance from my supervisors Dr. Aditya and Farshid which
made it a smoother and a rewarding journey. As I am at the end of my academic
journey, words can’t express how grateful I am to my parents for providing this point
opportunity and all the others leading up to this along with their unwavering support.
I am grateful to my friends for picking me up whenever my spirits was low. Ajay,
Sappa, Kiran, Ravi to name a few people and my sister Rajeswari who were always
available for a call. A special thanks to Lucy whose constant support has motivated
me throughout the journey.

Karthikeyan Deivamani
Delft, October 2023

i

Abstract

The increasing adoption of renewable energy sources, particularly photovoltaic (PV)
systems in residential sectors has raised important energy balancing challenges due
to the intermittent nature of energy generation. To address these challenges and prior-
itize cost savings for residential consumers, this research investigates the integration
of battery energy storage systems (BESS) and dynamic pricing strategies through an
intelligent energy management system (EMS). Given the stochastic nature of PV gen-
eration, market prices, and load profile it is still challenging to achieve optimal control.
Therefore Reinforcement Learning (RL)-based EMS is proposed in this research to
make real-time optimal control decisions. RL is a machine learning approach where
an agent learns to make decisions by interacting with an environment to maximize
cumulative rewards. In this study, a deep deterministic policy gradient (DDPG) RL
architecture is chosen due to its capability to handle continuous action spaces. In ad-
dition, deep learning-based models are employed to forecast uncontrollable load, PV
generation and market prices for the integration into the EMS for which Bi-directional
LSTM (Long Short Term Memory) was found to be the most accurate for all three un-
certain variables. The DDPG algorithm is trained with data from a single household
from the Lucerne region, Switzerland for 30 days and tested for a week. The results
showed that compared to a deterministic rule-based approach the RL-based EMS in-
creased cost savings for the end consumer by 14.2% but reduced the benefits for
the grid operator to alleviate grid congestion quantified in terms of load factor, peak
power consumption and ramping. Further work could be undertaken in testing the
model on more extensive data and finding the best trade-off between customer and
grid operator benefits.

ii

Nomenclature

Abbreviations

ARIMA Autoregressive Integrated Moving Average
BESS Battery Energy Storage System
BiLSTM Bi-directional Long Short Term Memory
CNN Convolutional Neural Network
DDPG Deep Deterministic Policy Gradient
DP Dynamic Programming
DQN Deep Q-Learning
EMS Energy Management System
GRU Gated Recurrent Units
HEMS Home Energy Management System
LSTM Long Short Term Memory
MADDPG Multi-Agent Deep Deterministic Policy Gra-

dient
MAE Mean Absolute Error
MDP Markov Decision Processes
MLP Multilayer Perceptron
MPC Model Predictive Control
OU Ornstein–Uhlenbeck
PV Photovoltaics
RL Reinforcement Learning
RBC Rule-Based Control
RNN Recurrent Neural Network
RMSE Root Mean Squared Error
RTP Real-Time Price
SARIMA Seasonal Autoregressive Integrated Mov-

ing Average
SOC State of charge
STFL Short-Term Load Forecasting
TD Temporal Differencing
TOU Time of Use

iii

iv

Symbols

yt Dependent variable
Pv(t) Solar Generation
Pd(t) Uncontrollable load
Ppr(t) Real-time electricity price
Ps(t) Total electricity sold
Pp(t) Total electricity Purchased
Pb,in(t) Battery charging capacity
Pb,out(t) Battery discharging capacity
Pb,imp(t) Total power imported to battery
Pb,exp(t) Total power exported from battery
Pimp,pv(t) Power imported from PV to battery
Pimp,grid(t) Power imported from grid to battery
Pexp,grid(t) Power exported from battery to grid
Pexp,load(t) Power exported from battery to load
π Policy
st State at time t
at Action at time t
R Immediate reward
γ Discount factor
α Learning rate
Eb Battery capacity

Contents

Preface i

Abstract ii

Nomenclature iii

1 Introduction 1
1.1 Objective and research questions . 2
1.2 Thesis outline . 3

2 Background 4
2.1 Overview of Energy Management Systems 4
2.2 Forecasting Methods . 4
2.3 EMS Methodologies . 6
2.4 Reinforcement Learning . 8

3 Theory 12
3.1 Forecasting Models . 12

3.1.1 Persistence Model . 12
3.1.2 SARIMA . 12
3.1.3 Deep learning Methods . 13

3.2 Energy Management systems . 17
3.2.1 EMS Baseline . 17
3.2.2 EMS Benchmark . 18
3.2.3 Reinforcement Learning based EMS 19

3.3 Hyperparameter Tuning . 25

4 Methodology 27
4.1 Resources and Tools . 27
4.2 Data Collection . 27
4.3 Data Pre-processsing . 28

4.3.1 Missing Data . 28
4.3.2 Stationarity . 29
4.3.3 Feature selection . 30
4.3.4 Feature scaling . 31
4.3.5 Data Preparation . 32

4.4 Energy management systems . 33
4.4.1 Pricing structure . 33
4.4.2 Battery system sizing . 34

4.5 Reinforcement learning . 34
4.5.1 Environment . 34
4.5.2 Observation space . 35
4.5.3 Reward setting . 36

v

Contents vi

4.5.4 Action Exploration Strategy . 37
4.5.5 Multi-agent DDPG . 38

4.6 Hyperparameter tuning . 40
4.6.1 Forecasting . 40
4.6.2 Reinforcement learning . 42
4.6.3 Benchmark Model . 43

4.7 Performance Metrics . 44
4.7.1 Forecasting . 44
4.7.2 Energy Management Systems 44

5 Exploratory Data Analysis 47

6 Results and Discussion 50
6.1 Forecasting . 50

6.1.1 Load . 50
6.1.2 Electricity price . 53
6.1.3 PV Generation . 55

6.2 Energy management system . 59
6.2.1 Baseline . 59
6.2.2 Benchmark . 61
6.2.3 Reinforcement learning . 63
6.2.4 Comparative analysis . 68

7 Conclusion 72
7.1 Answer to the research question . 72
7.2 Recommendations and Future Work . 74

References 75

A IEEE Conference paper 80

B Battery Data sheet 86

List of Figures

2.1 A non-exhaustive taxonomy of time series forecasting models [27] . . . 7
2.2 A non-exhaustive taxonomy of EMS strategies [31] 8
2.3 A non-exhaustive taxonomy of algorithms in modern RL [42] 10

3.1 Artificial Neuron structure . 14
3.2 Deep Neural Network (DNN) Architecture 14
3.3 Convolutional Neural Network (CNN) Architecture 15
3.4 Recurrent Neural Network (RNN) Architecture 16
3.5 Long short-term memory (LSTM) Architecture 16
3.6 Flow diagram of Baseline EMS model 17
3.7 Flow diagram of Benchmark EMS model 18
3.8 Schematic representation of agent environment interaction in RL 19
3.9 Visual representation of a Q-table . 22
3.10 Deep Q-Learning (DQN) Architecture 23
3.11 Illustration of target network structure in DQN 24
3.12 Actor-Critic Architecture [7] . 25

4.1 Schematic overview of the sub-metered appliances in the household
data [11] . 28

4.2 Load Correlogram . 30
4.3 Electricity Price Correlogram . 30
4.4 PV Generation Correlogram . 31
4.5 Heatmap displaying the correlation matrix for all the features 32
4.6 Schematic Representation of the RL problem setup 35
4.7 Representation of Multi-agent interaction in DDPG algorithm 38
4.8 Parameter Tuning visualization for Benchmark EMS model 43

5.1 Household Electricity Consumption . 47
5.2 Electricity market prices . 48
5.3 PV Generation . 48
5.4 Visualizing hourly trends using box plots 49

6.1 Forecasted vs. Actual of Load profile for a week 51
6.2 Performance of BiLSTM for load forecasting 52
6.3 Bar Plot of Error metrics for Load forecasting 52
6.4 Forecasted vs. Actual of Electricity price for a week 53
6.5 Performance of BiLSTM for electricity price forecasting 54
6.6 Bar Plot of Error metrics for Electricity price forecasting 54
6.7 Forecasted vs. Actual of PV generation for a week 55
6.8 Performance of BiLSTM for PV generation forecasting 56
6.9 Bar Plot of Error metrics for PV generation forecasting 56

vii

List of Figures viii

6.10 Forecasting Horizon vs. RMSE for Bidirectional LSTM 57
6.11 Baseline: State of charge plot . 59
6.12 Baseline: Battery actions vs PV generation 59
6.13 Baseline: System Power flow . 60
6.14 Baseline: Battery actions vs. Real-time price 60
6.15 Benchmark EMS : State of charge plot 61
6.16 Benchmark : System Power flow . 61
6.17 Benchmark : Battery action vs. RTP vs. PV generation 62
6.18 Benchmark EMS: Battery exchange with grid vs. RTP 62
6.19 DDPG reward training process . 63
6.20 Exploration noise using the Ornstein-Uhlenbeck process 64
6.21 Loss curves for the target networks involved in the DDPG algorithm . . 65
6.22 The actions executed by the DDPG agents 65
6.23 RL-Based EMS: State of charge . 66
6.24 RL-Based EMS: System Power Flow 66
6.25 RL-Based EMS: PV generated vs Battery Action Vs RTP 67
6.26 RL-based EMS : Battery discharge to the load vs RTP 67
6.27 RL-based EMS : Battery exchange with grid vs RTP 68
6.28 Comparison of Daily Peak Power Consumption 69
6.29 Comparison of Daily Load Factor . 69
6.30 Box Plot Analysis of Ramping . 70
6.31 Count of Battery Charge and Discharge Cycles 70
6.32 Comparative Analysis of Cost-Effectiveness 71

List of Tables

2.1 Key papers in Deep Reinforcement Learning 9

4.1 description of the dataset utilized . 28
4.2 Input features for machine learning forecasting models 31
4.3 Input shapes for Neural Networks . 33
4.4 Battery sizing specifications . 34
4.5 description of the observations used in the RL environment 36
4.6 Pseudo algorithm for the proposed DDPG agent training 39
4.7 SARIMA Parameters . 40
4.8 Hyperparameter search ranges for Deep Learning Models 40
4.9 Neural Network configurations for the comparative assessment 41
4.10 System parameters for DDPG model 42
4.11 Actor and Critic Network configuration 43

6.1 Summary of Prediction errors and R-Squared for Load prediction . . . 51
6.2 Summary of Prediction errors and R-Squared for Electricity price pre-

diction . 53
6.3 Summary of Prediction errors and R-Squared for PV generation predic-

tion . 55
6.4 Summary of comparative evaluation of EMS 71

ix

1
Introduction

According to Eurostat [1], the energy consumption in the residential sector accounted
for 27% of the total energy consumption in the European Union in 2022. Currently,
this demand has an electricity production mix with a renewable share of 21.1% and to
reach the goal of reducing greenhouse emissions by 55% by 2023 the EU has set the
goal to increase the share of renewables to 42% [2] .60% of this renewable energy
growth is expected to come from locally generated rooftop photovoltaics (PV) and the
rest from utility-scale solar farms [3].

The increasing prevalence of PV systems presents significant energy balancing
challenges owing to the intermittent nature of energy generation. This intermittency
poses obstacles to the widespread adoption of PV technology. However, implement-
ing battery energy storage systems (BESS) has emerged as a promising solution to
address these challenges [4]. Notably, the declining costs associated with BESS in-
stallations make them a financially sound decision, further incentivizing their adoption
in the renewable energy landscape. Furthermore, in addition to BESS, dynamic pric-
ing for electricity is seen as a strategic scheme to accelerate the integration of PV sys-
tems [5]. Dynamic pricing enables better resource utilization, reducing peak demand
on the grid, cost savings, incentivizing BESS, and pushing the transition towards a de-
centralized energy system. This also opens the opportunity for prosumers to leverage
BESS to benefit from financial arbitrage by exchanging with the grid [5].

An energy management system is a tool to monitor, control and optimize the en-
ergy flow in a system while ensuring energy balance is maintained in real-time, includ-
ing optimal BESS operation [6]. EMS strategies range from elementary to more so-
phisticated ones. In recent times, an agent-based machine learning domain called RL
which learns optimal control policy through trial and error has shownmore than human-
level performances in various sequential decision-making problems in the fields of au-
tonomous robotics, health care, finance, gameplay and more [7]. By leveraging RL
algorithms, EMS could gain the capacity to adapt and learn optimal energy control
policies in complex and dynamic environments [8]. RL allows the control policy to be
continuously updated which makes it robust to changes in variables over time and
it autonomously takes optimal control decisions in real-time. These characteristics
are aligned with the increasing complexity of the electric grid and the need to have
autonomous control as decentralized energy grids are a promising pathway to a sus-

1

1.1. Objective and research questions 2

tainable grid and have shown that the RL-based models hold the potential to improve
EMS performance.

To enhance the performance of the RL-based EMS in response to uncertainty in the
variables over the future horizon, the model is incorporated with forecasted values of
electricity load, PV generation, and dynamic electric price to inform its decision-making
process [9]. For this part, various deep learning-based prediction models have been
simulated to assess the best model for the EMS. Neural network-based forecasting
algorithms were primarily examined due to their ability to fit non-linear data which
results in higher accuracy [10]. The explored neural network architectures for this
task were MLP, CNN, simple RNN, LSTM, BiLSTM and CNN-LSTM hybrid as well as
evaluating its performance against naive and a statistical model (SARIMA).

This study focuses on forecasting the hourly load consumption, PV generation for
a single household [11] and the real-time market price using deep-learning methods
along with benchmarking the performances with a baseline model. The second part
of the project dives into utilizing the predictions by feeding into the RL-based EMS to
increase cost savings for the consumer. Here, the performance of RL-based EMS is
evaluated against a baseline and benchmark algorithm.

1.1. Objective and research questions
This research aims to develop a reinforcement learning-based energy management
system to minimize the net electricity cost for a home using the forecasted values of
uncontrollable load, PV generation, and electricity price under a real-time pricing tariff.
The system comprises a household consumer, an installed solar energy system, and
a battery energy storage system.

The main research question is formulated as “How can deep learning-based mod-
els and reinforcement learning algorithms be effectively employed to optimize energy
management in a household and how do these models compare to traditional rule-
based approaches in terms of cost savings for the consumer?”

This primary research question is split into sub-questions, which assist in answer-
ing the main question.

1. What deep learning-based models could be employed to forecast household
load, PV generation, and electricity prices?

2. What deep learning prediction algorithm achieves the highest accuracy when
forecasting load, market price and PV generation for integrating into the HEMS?

3. What type of reinforcement learning algorithm is most suitable for solving energy
management system problems

4. How to model an RL-based EMS with Load, BESS, and PV to increase cost
savings for the consumer?

5. What is the performance of the RL-based EMS when compared to a rule-based
baseline and benchmark model in terms of cost savings for the end consumer?

1.2. Thesis outline 3

1.2. Thesis outline
The thesis report is organized as follows, chapter 1 outlines the relevance, motivation,
objective and research questions of the project. Secondly, chapter 2 elaborates on the
works in the literature on forecasting uncertain variables and energy management sys-
tems. Thirdly, chapter 3 contains the theory behind the models and algorithms used
in this analysis. Next, chapter 4 details the implemented model, the hyper-parameters
used, and architectures. An exploratory data analysis is carried out in Chapter 5 to
gain insights into the data. Subsequently, chapter 6 presents the obtained results and
discusses the performance and convergence of models. Finally, the last chapter sum-
marizes the findings, gives the conclusion, and provides recommendations for future
research.

2
Background

This chapter examines the existing literature, starting with the need for accurate fore-
casting and the strength of machine learning in prediction models. Next, the available
forecastingmethods for load, PV generation and electricity market prices are reviewed.
The second part of this chapter delves into the applications of EMS, followed by an
overview of available EMS strategies. Subsequently, RL and its characteristics are
discussed along with existing RL-based EMS research in the current literature. Fur-
thermore, this chapter aims to answer the first and third research sub-questions.

2.1. Overview of Energy Management Systems
Decentralized energy solutions have the potential to make the grid more reliable and
sustainable by improving energy reliability, energy sharing and demand-side manage-
ment aspects [12]. HomeEnergymanagement systems (HEMS) play a vital role in the
realization of the distributed energy system. An EMS provides the necessary tools and
functionalities to monitor, analyze and optimize energy usage within the distributed en-
ergy system. To make informed decisions regarding energy generation, distribution
and storage, an EMS uses control strategies to maintain energy balance and optimize
a specific objective function. Additionally, an EMS opens up opportunities for effec-
tive demand-side management by encouraging consumers to participate in energy
conservation and load reduction actively [5]. Growing mass adoption of household
solar installations has converted consumers into prosumers who consume, produce,
and sell it back to the grid [4].

In addition to growing PV adoption, energy storage systems have become more af-
fordable and are being installed along with PV systems. These additional components
make the decision-making process more complex and crucial.

2.2. Forecasting Methods
Forecasting plays a significant role in optimizing energy usage and the overall perfor-
mance of HEMS . By accurately predicting energy demand, electricity price and PV
generation. In forecasting literature, the techniques range from statistical methods of
the ARMA family to the utilization of neural networks for modeling non-linear relation-
ships. A non-exhaustive list of time series forecasting methods is shown in Fig.2.1.

4

2.2. Forecasting Methods 5

To leverage the full capabilities of EMS, accurate load forecasting becomes a criti-
cal task either from a consumer perspective to reduce consumption during peak price
periods to increase cost savings or from a grid operator perspective to alleviate grid
congestion or to use the BESS to its maximum potential. More granular and extensive
data is being collected with the rise in advanced monitoring infrastructure. Deep learn-
ing forecasting methods have demonstrated significant potential in effectively manag-
ing more extensive and more complex datasets [10].

Short-term load forecasting (STFL) is the process of predicting the power demand
of a power system over a short-term period, typically ranging from a few minutes to a
few hours. Deep learning has demonstrated improved performance in modeling com-
plex patterns for individual household load profiles, which tend to be more volatile due
to their dependence on individual occupant behavior, as opposed to aggregate level
modeling [13].

In literature, different types of models, both linear and non-linear, have been used
for STFL. Family of Auto-regressive moving average (ARMA) models were pioneers
in STFL [14], which was then evolved into SARIMA to account for seasonal vari-
ance [15].This set of statistical methods is limited because it assumes a linear system,
whereas most often real-world cases exhibit non-linear properties. To solve this short-
coming, machine learning models like feed-forward neural networks have become at-
tractive as they can model complex non-linear systems such as load forecasting [10].
Neural network techniques range from simple Multi layer-perceptron to convolutional
neural networks (CNN) methods to recurrent neural networks (RNN) [16] along with
their variants LSTM [17] and Gated recurrent units (GRU). Hybrid architectures have
also been proposed in the literature between neural networks as well as between sta-
tistical and machine learning methods, such as CNN-LSTM hybrid presented in [18]
and a hybrid LSTM-Exponential smoothening [19] respectively.

Globally, electricity is billed using either a fixed pricing structure or a time-of-use
pricing model. With more renewable energy integration, dynamic pricing is a poten-
tial pricing structure to match real-time supply and demand. This structure also in-
centivizes consumers to adjust their electricity consumption during periods of high
demand and encourages load shifting or demand response. Dynamic pricing gives
consumers more control over their electricity costs, and they can make decisions to
optimize their consumption patterns to minimize costs.

PV forecasting focuses explicitly on predicting the energy generated from solar
panels, and accurate solar energy forecasting is crucial for planning available re-
sources and reducing operational costs. It also assists in balancing supply-demand
dynamics by predicting the amount of solar energy available at any given time. Solar
predictions facilitate optimal energy storage management when working with energy
storage systems. As it is a volatile energy source that depends on external environ-
mental factors (Temperature, Pressure, Humidity) and has a diurnal pattern, there are
three classifications of models for predicting solar generation [20]. The three cate-
gories are physical, statistical and machine learning-based models. Physical models
try to capture the relationship between input features and output PV generation math-
ematically [21]. These equations incorporate meteorological data, design parameters
and PV system characteristics. The model accuracy varies widely between models
and system specifications and one such model is presented in [22]. F.M. Mulder

2.3. EMS Methodologies 6

uses the longitude and longitude to capture diurnal variations in irradiance by utilizing
each day’s zenith angle and length. One of the significant drawbacks of this and other
physical models is that its performance significantly reduces when accounting for lo-
cal cloud cover and atmospheric variations, along with the complexity of assembling
multiple models.

The statistical methods are similar to the concept under the umbrella of time series
forecasting [23] where historical values are used for prediction and notable methods
are ARMA models. The drawback is that it assumes an underlying linear relationship
in the historical data [14]. Statistical methods are widely used PV forecasting tech-
niques due to their simplicity and they do not require system specifications compared
to physical models. In [24], an ARIMA model for a grid-connected 2.1 kW PV sys-
tem is evaluated, and one of the limitations of ARIMA is not incorporating the other
dependent variables, which is addressed by adding temperature, precipitation, and
humidity as exogenous variables making it ARIMAX. Although external factors are
included, this model still accounts for only one seasonality, which seasonal ARIMA
models address called SARIMA [15].

The deregulation of electricity markets has shown the intrinsic complexity of the
market prices. Predicting electricity prices has become critical for market participants
to make purchasing and selling decisions. Predicting market prices is challenging due
to their non-linear and non-stationary nature, making machine learning techniques a
promising approach [25]. Vega et al conducted an extensive comparative analysis of
various univariate machine-learning prediction models for market prices and showed
that LSTM was well-suited for the task. Various factors, including the weather, gas
prices, and consumption influence market prices. Zhang et al formulated this as a
multivariate problem with features representing external factors, proposed a deep
recurrent neural network architecture and results showed they improved the perfor-
mance by 29.7% compared to support vector machines in terms of mean absolute
percentage error. Kuo et al [26] have shown that the hybrid of CNN-LSTM performs
better than the networks individually in forecasting day-ahead electricity market prices.

2.3. EMS Methodologies
Several methods have been presented in the literature, such as mathematical opti-
mization, model predictive control and heuristic control for optimal scheduling of con-
sumption and storage. Comparing existing methods in the literature can pose a chal-
lenge due to the wide range of model specifications, parameters, and objectives as
mentioned in the work of Beaudin et al [6].

Some of the well-established EMS strategies are rule-based control methods (RBC),
Dynamic programming (DP) andModel predictive control (MPC). The rule-basedmethod
develops a policy based on an arbitrary set of rules which govern the modes of op-
eration. Although RBC requires simple implementation and less computational cost,
it does not necessarily give the optimized solution for the control problem as it fails
to model future uncertainty. On the other hand, DP is a model-based algorithm that
uses a penalty function to give a globally optimized result for a control problem [28].
The computational intensity to find the global optimum every time step remains a main
drawback of DP, but many HEMS have been implemented on the framework DP. MPC
addresses this problem by reducing the global optimization function into a local cost

2.3. EMS Methodologies 7

Time series forecasting
Approaches

Statistical
Methods

Exponential
Smoothing

Decomposition
models

Machine learning
Models

Support
Vector

Machines

Fuzzy
logic

Transformer
Networks

Neural
Networks

Random
Forest

RNNCNNMLP

LSTMGRU

SARIMAXSARIMAARIMA

ARMA
Models

Figure 2.1: A non-exhaustive taxonomy of time series forecasting models [27]

function, which enables the system to provide real-time solutions to EMS. MPC also
considers multi-step optimization to make decisions, which makes it robust in sequen-
tial decision-making. In most cases, the high computational cost of MPC and DP leads
to modeling in reduced order, compromising the accuracy [29].

RL overcomes the challenges faced by the previously mentioned conventional
methods. RL methods are formed as Markov decision processes (MDP) and simi-
lar to DP, Bellman’s equations are used to continuously update the policy [7]. The
core idea of RL is to train an agent that learns an optimal policy from experience by
interacting with the environment, similar to human beings. The characteristics of RL
that make it a promising control strategy for the development of home EMS as shown
in the case of electric vehicle power-train EMS [30] are,

• Consumes less computational time and cost relative to DP or MPC, whichmakes
sequential decision-making in real-time more efficient

• RL model-free approach allows the agent to learn non-linear relationships and
handle larger state spaces more effectively than conventional control methods.

• DRL using function approximators enables it to approximate global optimal re-
sults.

A non-exhaustive taxonomy of EMS strategies is shown in Fig.2.2. The broad clas-
sification, as seen here is the rule-based and model-based optimization techniques.
This analysis focuses on deterministic rule-based and reinforcement learning strate-
gies.

2.4. Reinforcement Learning 8

Home Energy Management Strategies

Rule BasedOptimization Based

Deterministic RuleFuzzy RuleGlobal OptimizationReal-time Optimization

Dynamic
optimization

Particle
swarm

optimization

Genetic
Algorithm

Model
Predictive

Control

Reinforcement
Learning

Figure 2.2: A non-exhaustive taxonomy of EMS strategies [31]

The rule-based EMS strategies in the literature are predominantly presented under
the case of flat rate pricing or time of use pricing (TOU), as most retailers offer such
tariffs to their customers. Kheri et al [4] presented an optimization strategy to find the
optimal PV capacity and battery energy storage to minimize the net present cost of
electricity for grid-connected households. This optimization utilizes a real-time rule-
based HEMS that incorporates PV generation and load consumption under flat-rate
pricing giving precedence to the locally available and produced energy. However, this
becomes limited when operated under real-time pricing tariff (RTP) or TOU pricing and
one of the ways to integrate this in the EMS is using threshold ranges as proposed
in [5]. The mentioned work proposes the optimal trading strategy for a battery energy
storage system. The strategy involves computing threshold values for each day that
determine the limits of market price to charge or discharge the battery with the grid.
This proposed EMS does not include PV which limits its application. In both of the
discussed works, it was concluded after a cost analysis that the financial benefit for
the end consumer could be increased by using an effective BESS dispatch strategy.

2.4. Reinforcement Learning
Reinforcement learning is a subcategory of machine learning with a mathematical
framework where an agent learns an optimal policy through interaction with the envi-
ronment [7].

The rise of deep learning has significantly improved many tasks such as natural
language processing, object detection, speech recognition and more. This is mainly
attributed to the ability of neural networks to extract low-dimensional feature repre-
sentations of high-dimensional data. This property has also been leveraged in RL to
address the curse of high dimensionality and integrating neural networks with RL is
called deep reinforcement learning (DRL) [32]. Deep learning enables RL to scale to
problems of high state and action spaces, which were previously not feasible. Among
recent works that revolutionized DRL is the algorithm that learned to play a range
of Atari video games at a superhuman level directly from image pixels [33]. Another

2.4. Reinforcement Learning 9

successful demonstration of a DRL agent that defeated a human world champion in
AlphaGO [34]. Some of the most influential work done in RL is illustrated in Table.2.1

RL algorithms are broadly categorized into model-based and model-free [7]. In
model-based RL, the agent creates and learns the model dynamics or representa-
tion and uses this learned model to make sequential decision-making. In comparison,
the model-free algorithms try to directly learn the policy or value function to maximize
the cumulative rewards. Although both have their advantages and fallacies, gener-
ally, model-based methods fail to model complex environments, whereas model-free
methods could perform reasonably well in such environments [7]. The dichotomy
in model-free methods is value-function based or policy-based. In a value-function
based approach, the agent learns how valuable a state or a state-action pair which
then partially dictates the policy on which action to take. The policy-based approach
tries to learn the policy directly from the states, which maps states to action. A non-
exhaustive classification of RLmethods is shown in Fig.2.3, and other main categories
within value-based RL methods are on-policy and off-policy. In on-policy, the agent
learns and updates a single policy with experiences whereas the off-policy method
learns from multiple policies experienced during the learning process. The property
of off-policy, where the agent learns from different policies during exploration which
enables better policy improvements has led to a broad adaptation of Q-learning [35].

Table 2.1: Key papers in Deep Reinforcement Learning

Number Description Algorithm
1 Playing Atari with Deep DQN

Reinforcement Learning [33]
2 Deep Reinforcement Learning Double DQN

with Double Q-learning[36]
3 Prioritized Experience Replay [37] Prioritized Experience

Replay (PER)
4 Deterministic Policy Gradient Algorithms [38] DPG
5 Continuous Control With DDPG

Deep Reinforcement Learning [39]

In [40], Lu et al propose a DDPG based EMS to efficiently control HVAC systems
and Energy storage scheduling to reduce energy costs while maintaining the temper-
ature comfort of the consumers without the building dynamics. In the analysis, the
DDPG agent was compared with two baselines and resulted in a more robust and bet-
ter cost savings. Similarly, Lissa et al [9] proposes a smart home energy management
system controlling indoor and domestic water temperature control using the DRL algo-
rithm to reduce energy consumption by optimizing PV energy produced. The results
showed that, on average DRL agents achieved 8% better energy savings than rule-
based methods and efficiently predicted and delayed actions for PV self-consumption
optimization. Likewise, Daniel et al [41] proposes an online DQN-based residential
energy management algorithm to reduce energy costs and cut down peaks. Com-
pared to conventional methods, this algorithm makes optimal decisions by making
the agent price aware and anticipating the consumer’s future behavior. This novel

2.4. Reinforcement Learning 10

strategy showed that by incorporating the price signal, the average energy price was
reduced by 16% compared to one without the signal. The historic state transitions are
used as this method explores online learning compared to offline learning. In online
learning, the agent learns in a real-world setting that could get expensive and have
exploration challenges.

Reinforcement Learning algorithms

Model Free
RL

Model
Based RL

Policy
Optimization

Q-Learning Learn the
Model

Given the
Model

Policy
Gradient

A2C/A3C

PPO

DDPG

TD3

SAC

DQN

Figure 2.3: A non-exhaustive taxonomy of algorithms in modern RL [42]

Most RL-based EMS in literature discusses the combination of optimal ESS schedul-
ing and temperature control or appliance scheduling, as model dynamics are complex
and challenging to model. In [43], Han et al propose a combined RL and deep learn-
ing based arbitrage maximizing algorithm for an energy storage system operator. In
this algorithm, to mitigate the uncertainties, the future load and market price are fore-
casted using a recurrent neural network fed into the DQN agent to learn the optimal
policy. This algorithm implements a stimulus to the agent whenever ESS does a peak
load shift. The results showed that the operating profit of ESS increased by 2.4 times
and reduced the on-peak demand by 30%, benefitting both ESS and the grid operator.

Another domain where RL shows promise is scheduling controllable loads such as
freezers, dishwashers, or even electric vehicles to achievemore cost savings. Lui [44]
proposes a DQN agent and double deep q-network (DDQN) for a home energy man-
agement system for scheduling of controllable loads (air-conditioning, dishwasher,
EV) to reduce the energy bill and validates the performance of the algorithm with par-
ticle swarm optimization (PSO). The study examines scenarios with and without PV
generation as the effect of EV. It concludes that DDQN performed better and shows
more advantage over DQN and PSO but still needs more examination as the algorithm
is under partially observable conditions. Likewise, Moncanu et al [8] proposed an on-
line building energy management system using DQN and compared the performance
with a deep policy gradient. The analysis was conducted on both residential build-
ings and aggregate of buildings for which the Pecan database was used. The results

2.4. Reinforcement Learning 11

showed that the deep policy gradient method performed better than DQN for the on-
line learning of building energy management, although both approaches succeeded
in minimizing energy costs.

With the rising adoption of decentralized energy systems due to their potential to
mitigate greenhouse emissions and build a sustainable electricity grid and RL strate-
gies as a potential intelligent control agent, various defined RL environments have
been developed, allowing more focus on algorithm implementation. One of them is
pymgrid [45], a python package that is capable of generating and simulating 600 mod-
ifications of microgrids which are built based on domain expertise and this is built
explicitly for RL algorithms as the environments are modeled as Markov decision pro-
cesses. Another one is CityLearn [46], an open-source OpenAI gym environment for
implementing agent-based RL models for building energy coordination on an individ-
ual or aggregate level and demand response. Citylearn enables easy comparison
of various algorithms, setting benchmark performance and options for load shedding
and energy storage scheduling.

3
Theory

This chapter provides the essential theoretical knowledge for this study. The chap-
ter begins with exploring forecasting models like SARIMA and then different deep-
learning architectures in detail. The second part of the chapter covers the fundamental
principles and strategies of EMS, followed by the theory of the baseline and bench-
mark algorithm used in this analysis. Afterward, A detailed investigation is conducted
into the foundational principles of reinforcement learning. Finally, the approaches uti-
lized for optimizing hyperparameters are discussed.

3.1. Forecasting Models
Time series analysis is a crucial problem inmany domains, offering the ability to predict
future values based on its own or dependent historical values with some margin for
error [47]. It has shown numerous successful applications in finance, economics and
the energy sector. Firstly, a baseline model is presented which serves as a point
of comparison for the performance of different models. The technique utilized for a
baseline should be deterministic, easy to implement and not be problem-specific [48].
The chosen forecast baseline for this analysis is the persistence model as compared
to the average forecast strategy due to the diurnal periodicity present in the data.

3.1.1. Persistence Model
A persistence model, a naive model, is a simple and essential technique for imple-
menting reference baseline in time series forecasting. A naive forecast uses the pre-
vious observation directly as the predicted value without any change. This could be
extended for seasonal data by using the observation simultaneously in the previous
cycle. In this study, for seasonal data, a daily seasonal naive approach is employed
as the baseline, which involves using the value from the same time in the previous
cycle (yesterday’s value) as the forecast.

3.1.2. SARIMA
Box and Jenkins developed a mathematical forecasting model where the future value
of a variable is assumed to be a linear function of past observations and random er-
rors. The family of suchmodels is called an autoregressive integratedmoving average

12

3.1. Forecasting Models 13

(ARIMA) model [15]. The ARIMA process intrinsically consists of two parts, an autore-
gressive part (AR) and a moving average (MA), where the AR part uses the previous
values to model the prediction and the MA part models the error term or deviation
from the mean. The model is represented using the notation ARIMA (p,d,q) where p
specifies the autoregressive order on how many lags values are used in the model,
d indicates the number of differencing applied to the time series and q specifies the
moving average order on how many previous deviations are used in the prediction
model.

The generalized ARIMAmodel could be expanded by adding seasonal AR,MA and
differencing terms for a periodicity called seasonal ARIMA (SARIMA) to incorporate
seasonality into the ARIMA model. The SARIMA model is represented as SARIMA
(p,d,q)(P, D, Q)s, where P, D, Q are the respective order terms for the seasonal differ-
encing s. The mathematical expression for the prediction is illustrated in Equation 3.1
where the c is a constant term, ϵt is the error term and ϕn,θn,Θn,Φn are the coefficients
of lag terms. This removes the non-stationarity in the data, which might affect the
performance as ARIMA models operate with the underlying assumption of stationary
data. This also limits the inclusion of only one seasonality, whereas the data being
analyzed in this study has multiple seasonality.

yt = c+

p∑
n=1

ϕnyt−n +

q∑
n=1

θnϵt−n +
P∑

n=1

Φnyt−sn +

Q∑
n=1

Θnϵt−sn + ϵt (3.1)

3.1.3. Deep learning Methods
Neural Networks are part of a family of machine-learning techniques inspired by the
functioning of the human brain which consists of interconnected nodes (neurons) com-
partmentalized into layers [49] . A typical neural network architecture consists of an
input, hidden, and output layer, as seen in Fig 3.2. Network architectures having more
than one hidden layer are called deep networks which increase the capabilities to ex-
tract information from the input data. Machine learning is broadly classified into su-
pervised learning and unsupervised learning [7]. In supervised learning, the widely
applied method learns a function to map the input to output by training on labeled
data. Whereas unsupervised learning learns patterns or relationships without explicit
labels or target data. In forecasting, given the historical data available the algorithms
are widely trained using the supervised learning method.

In supervised learning, they are trained using labeled data to update their param-
eters and optimize for a loss function with the weights between neurons calculated
and optimized using an optimization algorithm. Activation functions are applied to the
weighted sum of synoptic weights and bias term introducing non-linearity to the model,
this is depicted in Fig.3.1. There are different architectures of neural networks built on
the foundational structure.

3.1. Forecasting Models 14

w1

w 2

wn

.

.

.

.

.. Weighed
Sum

Act ivat i on
Funct ion

Output

x 1

x 2

x n

Figure 3.1: Artificial Neuron structure

In the context of machine learning models, they broadly fall under the batch learn-
ing category or online learning category [50]. Batch (offline) learning means training
the model using the historical data all at once, whereas in online learning the model
learns from the training instances incrementally. Online learning adapts to changes
and sudden variations in the data more effectively than batch learning. However, the
standard practice is to initially train the model offline and then continue with online
learning. This analysis examines only batch learning as infrastructure for online learn-
ing needs to be in a real-world setting.

Multi-layer perceptron
Multi-layer perceptron is a type of feed-forward artificial neural network (ANN) where
the information flows in only one direction from the input layer to the output layer
without any loops or data feedback. MLP is introduced in the hidden region as Dense
layers, and in the context of load forecasting, the model input takes each time step
as a feature. This brings the limitation of not capturing the temporal dependencies
regardless MLP has shown to have competitive performance in a few load forecasting
use cases [51].

I 1

I 2

I 3

I 4

H3

H2

H1

O1

Input Layer Hidden Layer Output Layer

Output

Figure 3.2: Deep Neural Network (DNN) Architecture

3.1. Forecasting Models 15

Convolutional Neural Network
Convolutional neural networks are a family of ANNs, that works with a grid-like struc-
ture and has been extensively used in image recognition and natural language pro-
cessing [52]. The key property of CNNs to extract features has been leveraged for
univariate time-series forecasting, where a filter/kernel is passed through the series to
extract relevant features as visualized in Fig.3.3. Although CNN is effective in NLP and
image recognition, they are not widely used in time series forecasting as CNN cannot
model sequential data, which has been addressed recently by combining them with
recurrent neural networks [13]. A vanilla CNN and CNN-LSTM hybrid architectures
have been analyzed in this work.

Pool ing
Layer

Input Convolut i onal
Layer

O1

Ful ly
Connected

Layer

Output

Featur e
Maps

X1

X2

X3

Xn

Xn-1

Figure 3.3: Convolutional Neural Network (CNN) Architecture

Recurrent Neural Network
Recurrent neural networks are an NN architecture that modifies feed-forward neu-
ral networks to handle sequential data and capture temporal patterns better, which
makes it a powerful tool for time series forecasting [16]. Compared to feed-forward
neural networks, RNNs maintain an internal state that allows them to remember in-
formation from previous inputs. Essentially, an RNN layer could be seen as multiple
copies of the same network where the representation of each time step is learned in a
loop, allowing it to learn the temporal dependencies, whereas in Fig. 3.2, the informa-
tion makes only one pass through the layer. In Fig.3.4, an unfolded RNN is visually
represented where A represents each neural network copy of a time step with x as the
input and h as the hidden state which is stored and passed on to the next time step.
RNNs experience vanishing/exploding gradient problems, and their inherent structure
to update the hidden state using the current step and previous hidden step limits their
capability to remember information over longer intervals.

Long Short Term Memory
LSTM is a variant of Recurrent Neural Networks, which addresses the problem of
learning long-term patterns. Traditional RNN, as seen in Fig.3.4, can model tempo-
ral dependencies by having a hidden state which enables it to learn the relationship.

3.1. Forecasting Models 16

xt

tanh

h t

xt+1

tanh

h t+1

xt-1

tanh

h t -1

A A

Figure 3.4: Recurrent Neural Network (RNN) Architecture

However, this architecture continuously updates its weights, leading to only capturing
short-term dependencies. This is addressed in LSTM architecture by introducing an
internal state that stores the relevant information and forgets irrelevant information us-
ing gating mechanisms named forget gate, input gate and output gate. This ability of
LSTM to store short-term and long-term interpretations has made it a popular choice
for time series forecasting.

xt

tanh

h t

xt+1

tanh

h t+1

xt-1

tanh

h t -1

A A

X +

X X

tanh

Ct -1 Ct

Figure 3.5: Long short-term memory (LSTM) Architecture

In RNN’s architecture, each repeating module has a simple tanh layer (as seen
in Fig.3.4), but LSTM has a different and complex structure with four layers that are
interacting uniquely as shown in Fig.3.5. Here, the core component of LSTM is the
internal cell state that runs through all the modules as represented in Fig.3.5 as the
horizontal line running at the top. In brief, LSTM can add or remove information from
the internal state through gates and this is how it stores long-term representation.
Since it has more layers, more parameters make LSTM models take longer to train
and prone to overfitting.

Bidirectional LSTM
Bidirectional LSTM is a variant of LSTM where the network is trained using the input
data in forward and backward sequences. This is achieved by two connected layers
where each processes the input data in a reversed direction and is combined using
different merging methods. This architecture allows the network to learn from past
and future contexts and avoids loss of information in LSTM where, in some instances,

3.2. Energy Management systems 17

the initial context fades away. Similar to LSTM, with two connected LSTM layers, the
number of parameters is doubled which could lead to overfitting and taking longer to
train the network.

CNN-LSTM Hybrid
The hybrid model combines the effectiveness of CNN to automatically extract and
interpret features from a univariate time series along with utilizing the power of LSTMs
to model temporal dependencies [53]. In this architecture, the input sequences are
split into sub-sequences processed by the CNN model, and the interpretation of the
sub-sequences is then fed into the LSTM model as input. Here, the number of sub-
sequences is a hyperparameter and this expands into the number of time steps per
sub-sequence based on the look-back period chosen. It should be noted that the
output from CNN should be flattened to a single one-dimensional vector before it goes
into the LSTM network.

3.2. Energy Management systems
3.2.1. EMS Baseline
When assessing the performance of a dynamic algorithm like RL for energy manage-
ment, it is vital to establish a baseline for comparison. The baseline implemented in
this analysis is a simple and deterministic approach called the rule-based EMS. This
is a well-established control mechanism and this system relies on a set of predefined
rules and logic to make decisions. Using a baseline provides a reference point for
evaluating the RL-based model’s effectiveness and the two approaches’ comprehen-
sibility.

Pv (t) >= Pd (t) Pv (t) - Pd (t) >= Pb,in (t)

Pb,out (t) >= Pd (t) - Pv (t)

Pb,ex (t) = Pb,out (t)
Pp (t) = Pv (t) + Pb,ex (t) - Pd (t)

Pb,im (t) = Pv (t) - Pd (t)

Pb,ex (t) = Pd (t) - Pv (t) Pb,imp (t) = Pb,in (t)
Ps (t) = Pv (t) - Pd (t) - Pb,imp (t)

Yes Yes

No

No

No

Yes

1

2

Figure 3.6: Flow diagram of Baseline EMS model

The baseline approach used here is adopted from optimal capacity optimization for
households carried out by [4], where the control flow starts from checking if the load
for that period is lower or higher than the PV produced. This allows the consumption

3.2. Energy Management systems 18

of power produced locally and is followed by the charging/discharging of the battery
according to excess or deficit of energy depicted in Fig.3.6. The key purpose of this
model is to provide a point of reference for comparing against other models. If more
sophisticated models discussed in this study do not perform better than the baseline, it
could understood that the complexity added in the other models does not necessarily
translate into better performance. For simplicity, in this model, the BESS does not
trade with the grid, and the price single is not considered.

3.2.2. EMS Benchmark
To conduct a more robust comparison, a model that takes optimal BESS decisions
to trade with the grid along with dispatching to the load is developed. The approach
is adopted from Dufo’s work [5] of optimization of a grid-connected storage system
under real-time electricity pricing.

Ppv (t) >= Pload (t) Yes

No

X2 Limit > Pprice (t)Ppv (t) - Pload (t) <= Pb,in (t) Yes

Pimp,solar (t) = Ppv (t) - Pload (t)
Pimp,grid (t) = Pb,in (t) - Pimp,pv (t)

Pimp,total (t) = Pimp,pv (t) +
Pimp,grid (t)

Pp (t) = Pimp,grid (t)

Yes

Pimp,pv (t) = Ppv (t) - Pload (t)
Pimp,total (t) = Pimp,pv (t) + Pimp,grid (t)

No

Pimp,pv (t) = Pb,in (t)
Ps (t) = Ppv (t) - Pload (t) - Pimp,total (t)

No

Pb,out (t) > Pload (t) - Ppv (t)

Yes

Pprice (t) > X3 limit

Pexp,load (t) = Pload (t) - Ppv (t)
Pexp,grid (t) = Pb,out (t) - Pexp,load (t)

Pexp,total (t) = Pexp,load (t) + Pexp,grid (t)
Ps (t)= Pexp,grid (t)

Yes

No

Pexp,load (t) = Pload (t) - Ppv (t)
Pexp,total (t) = Pexp,load (t) + Pexp,grid (t)

Ps (t)= Pexp,grid (t)

Pexp,load (t) = Pb,out (t)
Pexp,total (t) = Pexp,load (t) + Pexp,grid (t)
Pp (t)= Pload (t) - Ppv (t) - Pexp,load (t)

No

1

2

Figure 3.7: Flow diagram of Benchmark EMS model

This algorithm overcomes the limitation of the baseline model by incorporating
the price signal to make optimal BESS decisions. The approach involves utilizing
the price prediction of the subsequent day to make arbitrage decisions by computing
two dynamic price thresholds daily. These threshold price values dictate when to buy
electricity for battery charging and when to discharge it back into the grid. X1 sets the

3.2. Energy Management systems 19

threshold for purchasing the electricity andX2 is the cutoff value to sell back to the grid.
The equation is shown in Equation 3.2 and 3.3. Here,X1 andX2 are hyperparameters
that need to be determined. Intuitively this can be thought of as the percentage of the
price difference.

X1,daily = PrMin + Prdiff ·X1 (3.2)

X2,daily = PrMax − Prdiff ·X2 (3.3)

This algorithm incorporates the price signal within the framework of the imple-
mented baseline [4]. The power flow diagram is illustrated in Fig.3.7. Self-consumption
is prioritized by giving precedence to discharging the battery to satisfy the load over
importing from the grid and charging the battery if there is an excess of PV power. Al-
though this approach takes optimal real-time decisions, it cannot integrate the future
anticipated values of load, PV generation and electricity price.

3.2.3. Reinforcement Learning based EMS
Machine learning is broadly classified into supervised, unsupervised, and reinforce-
ment learning (RL) [7]. In supervised learning, the widely applied method learns a
function to map the input to output by training on labeled data. In comparison, unsu-
pervised learning learns patterns or relationships without explicit labels or target data.
Unlike other methods, RL involves an agent learning how to interact with its environ-
ment and make sequential decisions to maximize its cumulative reward. It is similar to
the human nature of learning by trial and error, using feedback to optimize decisions.

Agent

Environment

Action
At

State
St

Reward
Rt

 St+1

Figure 3.8: Schematic representation of agent environment interaction in RL

Problem setup
An RL agent learns through interaction with the environment through trial and error.
At each time step upon the outcomes of its actions, it can learn to alter its behavior
in response to rewards received. The key influence of RL has its roots in human
behavioral psychology and the mathematical formalism of dynamic programming [7].
In the RL setup, an agent is an autonomous decision-making entity and at each time

3.2. Energy Management systems 20

step, the agent receives state s from the state space S and takes an action a from the
action space A based on a policy (π) i.e mapping of states to actions and receiving a
scalar reward r which also acts as a feedback. When interacting with the environment,
the state s transitions to the next state s + 1 based on the environment model or
dynamics, and the transition probability P (st+1|st, at). A diagram depicting the agent-
environment interaction is shown in Fig.3.8.The assumption is that the provided state
comprises all the necessary information for the agent to make the best decision. The
agent’s goal is to learn a policy (π) that maximizes the expected return (cumulative
discounted reward) and this policy which gives the maximum reward is called optimal
policy. In essence, RL tries to solve the problem similar to optimal control but the
difference is that RL does not have the state transition dynamics it learns through trial
and error.

In an episodic problem i.e. if the agent is trained in an environment that has a ter-
minal state or an end state, then the agent reaches the end of the episode and restarts.
The cumulative reward is computed when the terminal state is reached and the return
is discounted to give varying importance to delayed rewards using a discount factor.
The agent aims to maximize the expected rewards from each state.

Markov Decision Processes
Markov decision process (MDP) is a mathematical framework used for modeling se-
quential decision-making problems where the outcome is partly random and partly
controllable. In essence, the MDP states that the future state is only dependent on
the current state and independent of the past. This means that a decision made at
st is only dependent on st+1 and independent of s0, s1,, st−1 . A Markov decision
process is typically defined as a tuple (S,A, Psa, γ, R) where,

• S is a set of all possible states
• A is a set of all possible actions
• Psa are the state transition probabilities
• γ is the discount factor
• R is the immediate/instantaneous reward

Value Function
In almost all RL algorithms, value functions are crucial in the learning process. Value
functions estimate how good it is for the agent to be in a specific state (state-value
function) or take a specific action from a specific state (state-action value function)
when following a policy π [7]. In an episodic learning problem ”how good” refers to the
sum of immediate and discounted rewards over the time steps till the terminal state
is reached. This quantifies the value associated with the agent being a state s for a
state function or being in a state s taking an action a for a state-action function.

For an agent following policy π starting from state s the state-value function vπ(s)
could be expressed as in Equation 3.4. Here, Eπ denotes the expected value of the re-
ward. It should be noted that the state-value function intuitively gives a value based on
the average of total reward taken from all possible actions from state s. Similarly, the
value when an agent takes an action a in state s under a policy π could be expressed
as Equation 3.5

3.2. Energy Management systems 21

vπ(s) = Eπ[Rt|st = s] = Eπ

[∑
k=0

γkRt+k+1|St = s

]
(3.4)

qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ

[∑
k=0

γkRt+k+1|St = s, at = a

]
(3.5)

For the value-function vπ, the Bellman equation could be expressed as Equa-
tion 3.6. Here, the Bellman equation is a fundamental property that holds a recursive
relationship between a state and the values of the successive states under a policy π.
This property is used widely throughout RL and dynamic programming. This property
also lays the foundation to compute, learn, and approximate the value function. For a
stochastic process, π(a|s) defines the action probabilities and p(s′, r|s, a) defines the
transition probabilities and the sum over all the possibilities gives the expected value.
This could be extended to include the state-action pair q value function as expressed
in Equation 3.7.

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (3.6)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)] (3.7)

The goal of RL is to find a policy that maximizes the cumulative reward that the
agent receives and this policy is defined as the optimal policy (π∗). Finding optimal
policy partially is defined by the function functions and part by the stochastic system
dynamics. A policy is said to be optimal (π∗ >= π) only when the value function of that
policy is yielding the maximum cumulative reward that is vπ(s) > vπ′(s) for all states.
The optimal state-value function that follows policy π∗ is expressed in Equation 3.8
and the Bellman equation for v∗ or the Bellman optimality equation is defined in Equa-
tion 3.9. The Bellman optimality equation instinctively expresses that the value of a
state under optimal policy must give the expected return for the best action taken from
that state s

v∗(s) = maxπvπ(s) (3.8)

v∗(s) = maxa

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (3.9)

The optimal action-value function with a similar definition as the optimal value func-
tion is denoted as q∗ and is expressed as Equation 3.10. This function gives the cumu-
lative reward starting from state s taking action a when the agent follows the optimal
policy π∗. The Bellman optimality equation for optimal action-value is shown in Equa-
tion 3.11.

q∗(s, a) = maxπqπ(s, a) (3.10)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmaxa′qπ(s
′, a′)] (3.11)

3.2. Energy Management systems 22

Q-learning
The Q-learning method is an off-policy model-free reinforcement learning approach
built on the mathematical framework of temporal differencing learning (TD) [33] . In
TD learning, the agent learns from the experiences in time. This approach aims to
update the value of some estimate V for the value of policy π for all states. The most
fundamental method is TD(0), where the value V is updated for a policy using the
immediate reward the agent receives and the value of the state it transitions to, this is
shown in Equation 3.12. In this equation, r+ γV (s′)− V (s) is called the TD error and
γ is the discounting rate for future rewards. Here, α is the learning rate or constant
step size parameter, influencing how quickly the TD algorithm learns or the value is
updated. The learning rate also influences how quickly the model converges [7].

Figure 3.9: Visual representation of a Q-table

In Q-learning, when the agent interacts with the environment, the agent forms state-
action pairs and assigns a Q-value for each pair. This could be seen as an extension
of TD(0) learning where it is only for the state value but here it is for state-action pairs.
This Q value could be interpreted as how beneficial it is for the agent to take action a
and transition to state s′ from state s. This is stored in a table shown in Fig.3.9 and is
called a Q-table. The values in the Q-table are iteratively updated at every step based
on the Bellman equation, which is shown in Equation 3.13

V (s)← V (s) + α[r + γV (s′)− V (s)] (3.12)

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (3.13)

Deep Q-learning
Deep Q-Network is a combination of Q-learning and deep neural networks. In DQN,
the traditional Q-table shown in Fig.3.9 is replaced by a deep neural network architec-
ture as seen in Fig.3.10. Here, instead of computing the Q-value for each state-action
pair, the neural networks act as a function approximator to estimate the Q-value, and
similar to the foundation RL approach, the action with the highest Q-value could be
used to make optimal decisions.

Using the function approximators in Q-learning overcomes the curse of dimension-
ality and can handle large or continuous state spaces. Another advantage of using
Deep Q-networks is that they generalize the learning process and equip the agent to
approximate decisions even to states it has not trained during the learning process.

3.2. Energy Management systems 23

The learning process is also stabilized using techniques such as experience replay,
target network and greedy epsilon strategy exploration-exploitation. Here, the experi-
ence replay stores the experiences, and the network is trained on a randomly chosen
set of transitions, which helps break sequential correlation and leads to a more stable
learning process.

Although DQN solves problems with high-dimensional observation spaces, it can
only handle discrete action spaces. However, most real-world/physical problems have
high-dimensional or continuous action spaces. Here, DQN cannot be applied directly
as it depends on finding the action that maximizes the Q-value. A continuous action
space case requires optimization in every single step. One of the straightforward
approaches to deal with this issue is discretizing the action space. However, this has
a few limitations and the most prominent one is the curse of dimensionality where the
number of actions increases exponentially with degrees of freedom which leads to
an explosion of the action space. Such large action spaces are difficult to effectively
explore which could lead to sub-optimal performance or sometimes even infeasibility.
Additionally, the discretization of the action space might lead to loss of information
about the structure of the action domain which might be essential to solving many
problems.

State S

Q(s,a1)

Q(s,a2)

Figure 3.10: Deep Q-Learning (DQN) Architecture

Deep Deterministic Policy Gradient
DDPG is a model-free, off-policy actor-critic algorithm that uses neural networks as
function approximators to learn policies that are capable of handling high-dimensional,
continuous state and action spaces [39]. This architecture can be seen as an expan-
sion of DQN to continuous action spaces. DDPG has an actor-critic framework where
the critic network is analogous to the Q- function in DQN and the actor is a policy
function that functions simultaneously. The critic network computes Q-values using a
TD error update accordingly. On the other hand, the actor network directly generates
actions and is updated using a policy gradient that rely on the Q-values computed by
the critic network [54].

The policy gradient method used in the original implementation is built on top of the
deterministic policy gradient method proposed by [38]. The learning process of DDPG
is visually illustrated in Fig.3.12. The actor learns a deterministic policy function µ(s)

3.2. Energy Management systems 24

States (S)
Main
DQN

Networ k
Act ions (A)

Nex t States
(S')

Tar get
DQN

Networ k

Nex t Act i on
(A')

Q(S' ,A')

Lear n ing

Tar get Networ k Update

Figure 3.11: Illustration of target network structure in DQN

and the parameters are denoted by θµ. The action taken by the actor network can be
represented by a(t) = µ(st|θµt). The problem of exploration vs. exploitation in DDPG
is addressed by adding noise to the action values generated by a random process
represented by a(t) = π(st|θµt) + Nt where N is the random process. In the original
implementation, the Ornstein–Uhlenbeck process was utilized to generate exploration
noise due to its time-correlated nature which works efficiently in conjunction with MDP
processes. This algorithm uses target networks as implemented in DQN to tackle the
problem of divergence so in total, this algorithm uses four networks in total.

The critic network’s state-action value function is learned using Bellman’s equation,
similar to DQN. In Equation.3.11, the state st+1, ri are obtained as result of the actor
network’s output a(t) = µ(st|θµt) following policy µ. The critic network learns a policy
π to compute the q-value using the state and the action taken by the actor network.
In Equation 3.14, yi is the computed Q-value which is used to compute the mean
squared error loss function. The loss as expressed in Equation 3.14 is minimized
using gradient descent propagated through the critic network.

yi = ri + γπ(st+1, µ(st+1)) (3.14)

L =
1

N

∑
i

(yi − π(si, ai|θQ))2 (3.15)

For the policy function, the objective is to maximize the cumulative reward which is
the Q-value output of the critic network Equation 3.16. The derivative of the objective
function (π(st+1, µ(st+1))) with respect to the policy parameter (θµ) is used to compute
the policy loss (J). Policy µ is updated using the chain rule to the loss function and
since this is a batch-wise learning the mean over the sum of gradients is calculated
as shown in Equation 3.17

J(θ) = E[Q(s, a)|s=st,at=µ(st)] (3.16)

∇θµJ(θ) ≈
1

N

∑
t

∇aQ(s, a)|s=st,at=µ(st)∇θµµ(s|θµ)|s=st (3.17)

3.3. Hyperparameter Tuning 25

Finally, the target networks are updated in a similar way to DQN but instead of
directly copying this implementation follows an exponential smoothing approach to
update the target networks gradually. The hyperparameter for the soft update is τ «1,
the lower the value, the slower the target network gets updated.

Pol i cy : Actor

Value Funct i on
Appr ox im ator : Cr i t i c

Envi r onm ent

TD Er r or

State

Act ion

Act ion

State

Rewar d

Figure 3.12: Actor-Critic Architecture [7]

Although DDPG has proven to be very effective in problems with continuous ac-
tion spaces, the algorithm is very sensitive to hyperparameters which can make the
learning process very unstable and depends on correct hyperparameters for a specific
problem. Another problem faced by DDPG is the overestimation bias where the target
critic network overestimates the value of the Q-value. This can lead to sub-optimal
performances [55].

3.3. Hyperparameter Tuning
Hyperparameter tuning is one of the crucial parts of deep-learning model implemen-
tation, where hyperparameters are the predefined parameters set before the model
starts the learning process and tuning is finding the optimal hyperparameters to achieve
the best performance or minimize the loss function. The standard methods widely
used in hyperparameter tuning are manual or heuristic approach, grid search, random
search and optimization-based searches. The heuristic approach is based on man-
ually implemented based on the domain expertise of experts. Grid search is a brute
force method where the entire search space is explored to find the best fit, whereas
random search uses sampling techniques to split the search space for exploration.
The optimization-based search involves different optimization methods to generate
and adaptively adjust the parameters to optimize the model’s performance over a loss
function[56].

For the statistical method SARIMA, the hyperparameter encompasses the order of
auto-regressive, moving average and differencing terms including the seasonal terms.

3.3. Hyperparameter Tuning 26

These are primarily determined by visually inspecting the correlogram and by doing
an exhaustive grid search. For the auto-regressive terms, partial auto-correlation plot
is inspected and for moving average terms auto-correlation plot is examined. In both
plots, statistically significant orders which show high correlation are arbitrarily chosen.
The other approach is to define a search space for the tuning process and do an
exhaustive search; this is more resource-intensive [15].

As deep learning networks involve several hyperparameters, grid and random
search become computationally resource-intensive and sometimes even infeasible
due to the large parameter search space. This is where adaptive optimization-based
tuning techniques have shown potential, making them widely used [57]. In contrast
to grid search or random search, Bayesian optimization is a probabilistic model that
takes previous validation scores in selecting the next set of hyperparameters for evalu-
ation. As it makes well-informed decisions on what hyperparameters to test, it actively
avoids regions that do not improve the performance of the objective function leading to
more quicker search as it needs fewer evaluations to find the optimal parameters [56].
Bayesian search uses Bayes theorem to set out to find the global optimum of the
objective function systematically.

The core of the optimization process consists of three components namely, the
objective function, surrogate function and acquisition function. The objective function
is the function that needs to be maximized or minimized and in this approach, the opti-
mization process does not depend on the underlying factors influencing the objective
function’s value. In the context of forecasting models, this can be defined as one of
the error metrics that needs to be minimized. The surrogate function is a critical part of
the Bayesian process as it provides a probabilistic approximation of the objective func-
tion, guiding efficient future sampling. This is often modeled as a Gaussian Process
(GP) due to their property of providing mean prediction and quantifying their variance.
The GP model constructs a joint probability function over the variables which is the
hyperparameter assuming a multivariate Gaussian distribution [58]. The acquisition
function uses the mean and variance from the GP process to determine the next set of
parameters to evaluate using the objection function. The commonly used acquisition
functions are expected improvement (EI), probability of improvement (PI), and upper
confidence bound (UCB).

Bayesian optimization starts with randomly sampling the search space and eval-
uating the objective function. With this sampling, a GP distribution is constructed as
part of the surrogate function. The acquisition function uses the mean and variance
derived from this function to choose the next set of parameters for evaluation. Follow-
ing that, the output of the objective function is added to the GP process and this is
iteratively executed to find the optimal parameters.

4
Methodology

This chapter elaborates on implementing the algorithms discussed in the previous
chapter in the context of this particular study. The chapter discusses the data collec-
tion, pre-processing steps, evaluation metrics used, and results of the hyperparame-
ter tuning. It then provides a detailed examination of how the environment and agent
learning were configured for the reinforcement learning approach in this study.

4.1. Resources and Tools
In this research project, various data analyses and algorithm simulations were devel-
oped in Sypder IDE in Python 3.10.9. Several additional libraries were used on top
of the built-in libraries for computation and visualization tasks such as pandas,numpy,
and matplotlib. The machine-learning parts of the simulation were implemented us-
ing the TensorFlow framework, especially using the Keras backend. The RL models
were set using object-oriented programming, and the gym library was utilized for the
custom environment.

4.2. Data Collection
The dataset used in this project is data from a single household in the greater Lucerne
region in Switzerland, which was retrieved from the IHomeLab RAPT dataset [11].
The data spans from 1st December 2016 to 31st July 2019, which is around two and
a half years with a sampling frequency of 5 minutes. The dataset contains the local
total load, consumption of individual appliances and the weather data from the lo-
cal weather station. The electricity price data used in this analysis was taken from
the ENTSOE transparency platform, a pan-European repository of energy-related
data [59]. As the assumed pricing structure for the consumer in this study is dynamic
pricing, to make the wholesale electricity prices from ENTSOE take transmission and
distribution costs into account, the prices were multiplied by a proportional constant.
Here, the proportional constant was obtained by comparing the wholesale retail price
of the dynamic pricing structure in Switzerland. The schematic of the household con-
nections is shown in Fig 4.1. This corresponds to house E in the group of house data
available in the RAPT dataset [11]. The available weather data include indoor and
outdoor humidity, indoor and outdoor temperature, and outside pressure. This would

27

4.3. Data Pre-processsing 28

Figure 4.1: Schematic overview of the sub-metered appliances in the household
data [11]

be more helpful when optimizing for HVAC systems, as maintaining thermal comfort
is crucial. The description of the data is shown in Table 4.1, all the data is resampled
to one hour from 5-minute resolution for ease of calculation and the unit for all the
consumption and PV generation is in Kilowatts (kW).

Table 4.1: description of the dataset utilized

Number Description
1 Total Power consumption
2 pc of dishwasher
3 pc of dryer
5 ps of heating gas pump
6 pc of water pump
7 pc of washing machine
8 Environmental data logged by weather station

4.3. Data Pre-processsing
Preparing the data before feeding it into a machine-learning model is crucial to achiev-
ing optimal knowledge discovery [60]. If there is redundant or irrelevant information
present in the raw data, it could lead to sub-optimal performance so the output of
data pre-processing is the final training set. Pre-processing includes missing data,
cleaning, normalization, and transformation.

4.3.1. Missing Data
The raw data set is prone to missing data or invalid values, which could lead to spuri-
ous output. Therefore, it should be at the outset. As with time series, removingmissing
values gives unreliable results as the data has a temporal relationship, hence imputa-
tion has to be done. The missing values could be imputed using linear interpolation,
back-fill, front-fill, seasonal fill, or regression [61]. In this analysis, the data used from

4.3. Data Pre-processsing 29

[11] has already dealt with the missing values using linear interpolation. However, the
electricity price dataset contained empty values which were imputed using.

Linear interpolation is a method to fill missing data in a time series assuming a
linear relationship between known data points and it also assumes the step size to be
uniform. One of the significant drawbacks of using linear interpolation is that it needs to
include underlying seasonalities and patterns and the assumption of linearity, which
could lead to distortion of the true nature of the time series. In this analysis, linear
interpolation was deployed to deal with missing data.

4.3.2. Stationarity
A time series comprises three components: trend, seasonality and noise. Trend rep-
resents the long-term movement or direction of the data. This indicates whether the
data is increasing or decreasing or stable over time. Next, seasonality is the regular re-
peating pattern at regular intervals and in the context of load, it could be daily, weekly
and yearly seasonality. Finally, noise is the random fluctuations or irregularities in the
data that cannot be captured by trend or seasonality. The data is said to be stationary
if the properties do not change over time. There is no trend or seasonality as they will
affect the value of the time series at different times. In practice, most of the data is
non-stationary and even after transforming it into stationary data it could be observed
that there is some degree of degree of trend or seasonality which is acceptable.

Most statistical forecasting models, especially in this context SARIMA, have an
underlying assumption that the data is stationary. Although neural network methods
can learn the abstraction in non-stationary data, it is generally recommended to make
it stationary for it as well. However, during the analysis it was observed that making the
data stationary before feeding the machine-learning model did not improve accuracy;
instead reduced it. Possible reasons for this observation could be that differencing
may lead to loss of information. Consequently, linearizing the data limits the potential
of neural networks to learn non-linear information in the data.

The most common practice to evaluate the stationarity of the data is by visually
inspecting auto-correlation plot (ACF), partial auto-correlation plot (PACF) or using unit
root tests such as Augmented Dicky-Fuller (ADF) test or Kwiatkowski-Philips-Schmidt-
Shin (KPSS) test. The unit tests (ADF/KPSS) are statistical significance tests which
are hypothesis tests that will give results in null and alternative hypotheses. With
the p-value obtained from the tests, we will need to infer whether the time series is
stationary. In this analysis, the ADF test was carried out using the Adfuller method
in the statsmodels package. The results were also visually checked by observing the
ACF and PACF plots.

The most common method to achieve stationarity is by differencing the data, the
trend could be stabilized by differencing with the previous value and seasonal differ-
encing to remove seasonalities in the data. This could also be achieved using de-
composition methods such as STL and MSTL where the time series is decomposed
into trends, seasonalities and noise. Log transformation could be used to stabilize
variance in the data which also distorts the stationarity of the data[61].

In this analysis, the data was made stationary only when modeling SARIMA as
they cannot handle non-linearity. The trend and daily seasonality were removed using
differencing and the stationarity was checked using the ADF test.

4.3. Data Pre-processsing 30

Figure 4.2: Load Correlogram

Figure 4.3: Electricity Price Correlogram

4.3.3. Feature selection
The selection of relevant features is one of the central concepts in machine learning
and hugely impacts the performance of the prediction models. Feature/Attribute selec-
tion is a problem of identifying the related features that contribute to the target variable
to achieve better accuracy for the model. Fewer features reduce the complexity of the
models and increase the interpretability.

This study uses the Pearson correlation to extract relevant features under Filter
methods. Filter methods offer a high-level understanding of feature relevance, mak-
ing them an initial step in feature engineering. Pearson correlation is a statistical term
that measures the linear relationship between variables. It is denoted as r and ranges
from -1 to 1, with -1 indicating the most negative/inverse relationship between the
variables, whereas 1 indicates a positive relationship. Since the input data from the
iHome dataset has the consumption of individual appliances’ indoor and outdoor mete-
orological data. Therefore, it becomes crucial to choose the relevant features to avoid
overfitting. The heat map shown in Figure.4.5 illustrates the correlation between the
target and predictor variables, where the correlation intensity could be inferred from
the color bar.

Calendar attributes are also used in all three target variables as they have daily,
weekly and monthly periodicity and the lag values which are previous values. Here,
the number of lag values or look back is a hyperparameter and due to the strong

4.3. Data Pre-processsing 31

Figure 4.4: PV Generation Correlogram

Table 4.2: Input features for machine learning forecasting models

Load PV Generation Electricity Price

Lags (previous values) Lags (previous values) Lags (previous values)
Hour of the day Hour of the day hour of the day
Day of week Day of week Day of week
Month Month Month
Dryer Load Outside Humidity
Outside Temperature Outside Temperature
Outside Humidity Outside Pressure

diurnal pattern in the target variables, this was assumed to be 24 so it uses the past
24 hours value to predict the next one. Therefore, the highly correlated values from
the heat map Figure.4.5, calendar attributes and the lag values make the forecasting
task features described in Table.4.2. The correlation measured here is based on linear
assumptions, whereas the data has non-linear relationships, but this is only used as
an indicator.

4.3.4. Feature scaling
Feature scaling is a critical pre-processing step in machine learning models that aims
to normalize or standardize the input features before feeding them into deep learning
models. Most supervised and unsupervised learning models make decisions accord-
ing to the distance between data points, particularly Euclidean distance. When dif-
ferent features are in different scales, it might take the algorithm longer to converge
as the model has to learn the abstraction or affect model performance. The most
common and effective ways are normalization or standardization to bring all the input
features to a uniform scale to make the learning efficient [61].

In statistics, normalization is a method of re-scaling the data between 0 and 1.
Here, the minimum value of any feature gets converted into 0 and the largest value
into 1. Some drawbacks are not being robust to outliers, which may distort the pre-

4.3. Data Pre-processsing 32

Figure 4.5: Heatmap displaying the correlation matrix for all the features

dictions and loss of information when scaling and inverse scaling. Another approach
is standardization, where the data is transformed to have a mean of zero and a stan-
dard deviation of one. This centers the data around zero which makes the model
learn efficiently. Similar to normalization, this does not preserve the initial distribution
of data but is more robust to outliers. The mathematical equations for normalization
and standardization are Equation 4.1 and 4.2, respectively.

Xnorm =
X −Xmin

Xmax −Xmin
(4.1)

Xstand =
X −Mean

Standard deviation
(4.2)

In this analysis, forecasting was simulated without any scaling as neural networks
can learn complex patterns after normalization and standardizing. It was observed
that the model performed better after normalizing the data.

4.3.5. Data Preparation
The choice of neural network architecture heavily influences the required input shape.
Keras, the deep learning framework, offers diverse architectures for time series fore-
casting and requires distinct input shapes. After the raw data has been pre-processed
as discussed in the earlier steps and relevant features have been selected, the data
is ready for reshaping to accommodate various neural network architectures.

4.4. Energy management systems 33

In supervised learning, a sample consists of input features (Independent variable)
and a target variable (Dependent variable). The input shape of features is discussed
here and the target is a scalar value or a single-dimensional vector, depending on
the forecasting horizon. Since this analysis focuses on batch learning, the network
is updated depending on the batch size which is the concatenation of samples. An
overview of the input shapes for different NN architectures is described in Table 4.3.

For MLP, the input shape is (number of samples, number of features). The number
of features includes the lag values as each feature and other independent variables as
mentioned in Table 4.2. In the context of the other architectures, there is an inherent
structure to model temporal dependencies which translates into time steps referred
to in Table 4.3 which is a hyperparameter that considers the chosen period of lag
values. For CNN-LSTM hybrid, the capability of CNN to extract features from data is
leveraged which is then fed into the LSTM layer so the input sample is broken down
into sub-sequences to extract feature information. For instance, if the look back is 24
time steps this could be broken into three sub-sequences of 8 time steps.

Table 4.3: Input shapes for Neural Networks

Neural Network architecture Input shape

Multilayer perceptron (MLP) (samples,features)
Convolutional Neural Network (CNN) (samples, time steps, features)
Recurrent Neural Network (RNN) (samples, time steps, features)
Long short-term memory (LSTM) (samples, time steps, features)
Bi-directional LSTM (samples, time steps, features)
CNN-LSTM Hybrid (samples, sub-sequences,

time steps,features)

4.4. Energy management systems
In this analysis, the agent was trained on data for one month (May 2019) and tested
the following week from 1st June to 7th June 2019. The limited training and test-
ing horizons are because of the computational resource-intensive learning process of
the RL agent. Training the agent for a year would require at least 150,000 training
episodes to attain reasonable performance. This also limits fine-tuning opportunities
as it takes longer for iterations.

4.4.1. Pricing structure
The cost of electricity used in this analysis is based on dynamic pricing, the Switzer-
land day-ahead market price is adjusted for the retail market by using a scaling factor
of 4. As the market currently does not provide dynamic pricing for the retail market,
the scaling factor was assumed based on the observation that the wholesale market
price is on average 4-5 times lower than what end consumers pay. Renewable en-
ergy exchanges with the grid occur under a net-metering system where the consumer

4.5. Reinforcement learning 34

receives credit for any excess electricity they generate and feeds back into the grid.
Under dynamic pricing, the electricity sent back into the grid is paid the same amount
as the corresponding price at that hour. Net metering incentivizes consumers to adopt
energy storage technology to store surplus energy, sell it back to the grid during peak
times, and promote consumption at source.

4.4.2. Battery system sizing
The optimal sizing of a battery system widely varies depending on the system speci-
fications and the chosen cost function. However, This study does not primarily focus
on determining the optimal battery energy storage system (BESS) size. Instead, the
main objective is to develop a control algorithm that maximizes financial benefits for
end consumers. Therefore, for this study, it is reasonably assumed that the BESS siz-
ing has been predetermined. The assumed battery capacity is based on optimizing a
similar load profile with comparable average daily consumption. The specification of
the chosen battery is illustrated in Table.4.4

Table 4.4: Battery sizing specifications

Parameter Value

Battery Capacity 6.6 kWh
Maximum charging power 2.8 kW
Maximum discharging power 2.8 kW
Charging efficiency 90%
Discharging efficiency 90%
Initial SOC 0.6

4.5. Reinforcement learning
The main goal of RL problem setup is to enable stable and efficient learning of HEMS
agents. This is achieved by creating an easily interpretable environment and reward
setting for the agent. The schematic representation Fig.4.6 shows an overview of the
learning process and the state spaces employed. Here, the problem is formulated as
a partially observable markov decision process (POMDP) as the agent does not have
the complete knowledge of the environment. POMDP is an extension of MDP where
the agent is fed with a set of observations and conditional observation probabilities.

4.5.1. Environment
The custom environment for the agent to learn uses an Open AI gym environment, pro-
viding a standardized interface, easy reproducibility and sharing. The action and state
spaces are defined to be continuous with their respective lower and higher bounds.
For each episode, a day is randomly chosen in May 2019, where the agent iterates
through each time step to maximize the cumulative reward for the day. At each state
transition from state St to the next state St+1, the state of charge is updated using the
battery model as shown in Equation 4.5. The run-time observations also include the

4.5. Reinforcement learning 35

HEMS
Agent

Action (Battery
Charge/Discharge)

At

State
St

Reward
Rt

 St+1 SOC Predicted
Load

Predicted
PV

Predicted
Electricity

Price

Environment

Figure 4.6: Schematic Representation of the RL problem setup

maximum battery capacity that could be charged/discharged at time t, which is shown
in represented in Equation 4.3 and Equation 4.4

pbin,t = min (pbmin, Eb ∗ (socmax − soct)) (4.3)

pbout,t = min (pbmax, Eb ∗ (soct − socmin)) (4.4)

soct+1 = soct + (Bataction,t/Eb) (4.5)
During the offline learning phase, the state transition step returns individual reward

components and other power flow elements for further analysis. The custom environ-
ment is designed to terminate each episode after 24 steps and reassign the next ran-
dom day. While the environment is resetting after each episode, the state of charge
is randomly initialized within its limits, and other historical observations are set to their
respective values from the previous day. The HEMS agent is tested chronologically
on the data from 1st June to 7th June 2019.

4.5.2. Observation space
A fundamental element in agent-environment interaction is the observation space,
which determines how the agent perceives the environment and takes action accord-
ingly. Understanding and choosing the state space is crucial to the RL problem. These
were chosen heuristically for this analysis based on their influence on the actions and
the summary of all the observations illustrated in Table.4.5. It should be noted that the
forecasted values from the forecasting part of the study are used here.

In Table 4.5, it could be seen that observations for this problem could be classified
as index attributes that reset after every episode, forecasted values that are retrieved
from a CVS file and run time calculation which follows an internal model to compute
the next observation.

4.5. Reinforcement learning 36

Table 4.5: description of the observations used in the RL environment

Category Name Source Unit

Calendar Hour Index attribute 0 to
23 hours

Total Consumption Load predicted 1h Forecasted values csv KW
Total Consumption Load predicted 6h Forecasted values csv KW
Total Consumption Load predicted 12h Forecasted values csv KW
Total Consumption Load predicted 24h Forecasted values csv KW
Electricity price Price predicted 1h Forecasted values csv Euro/Kwh
Electricity price Price predicted 6h Forecasted values csv Euro/Kwh
Electricity price Price predicted 12h Forecasted values csv Euro/Kwh
Electricity price Price predicted 24h Forecasted values csv Euro/Kwh
PV Generation Price PV Generation 1h Forecasted values csv KW
PV Generation Price PV Generation 3h Forecasted values csv KW
PV Generation Price PV Generation 6h Forecasted values csv KW
State of Charge SOC Runtime calculation Between

0 to 1

4.5.3. Reward setting
Reward setting is a critical part of RL and guides the agent in learning the best policy,
so it is essential to set the rewards so the agent can learn effectively. The main ob-
jective of this strategy is that the more rewards the agents earn, the more the overall
benefit for the agent. This could also be seen as a multi-objective optimization with the
primary reward broken down into components that reflect each goal. In this analysis,
the cost function is to minimize the operating cost of energy while operating the battery
under its physical limits and to avoid simultaneous charge and discharge when two
intelligent agents interact. The reward function is split into five components and each
is multiplied with a coefficient to set the importance of each reward on the policy.

Having the reward wholly positive or negative is good practice as it would facilitate
more stable learning. Here, all the rewards are negative as the agent tries to maximize
its reward, which translates to minimizing the energy cost. The weight for each reward
component is ξ. To prolong battery life and reduce degradation, the state of charge of
the batteries is operated under certain limits. Since a model-free RL algorithm is im-
plemented here, the agent has to learn the battery dynamics which is signaled through
rewards (r1, r2) as seen in Equation 4.6 and 4.7. Suppose the state of charge limits
are breached. In that case, the agents receive a penalty corresponding to the devia-
tion according to weight, which makes the agent make decisions under the constraint
over the learning process.

r1 =

{
−ξ1 ∗ abs(socmin − soc) ifsoc < socmin

0 ifsoc < socmin

(4.6)

4.5. Reinforcement learning 37

r1 =

{
−ξ2 ∗ abs(soc− socmax) ifsoc > socmax

0 ifsoc > socmax

(4.7)

The primary reward component to minimize the energy cost is r3, where the net
electricity cost for that period (hourly) is calculated by multiplying the energy arbitrage
and real-time electricity price as seen in Equation 4.8.

r3 = −ξ3 ∗ (Pp − Ps) ∗ Prt (4.8)

As the problem is formulated as a multi-agent RL problem, when agents 1 and 2
are making charging/discharging battery decisions as shown in Fig.4.7, it is prone to
violate battery constraints and operate in a charging and discharging state simultane-
ously. To avoid the battery charging and discharging simultaneously, r4 is introduced
where agent 2 is penalized if it charges as in the problem definition. It is allowed to only
discharge to the load. Here, r5 keeps the battery’s maximum charge and discharge
limits at check and penalizes proportionally if it breaches the constraints. It should
noted that all the rewards here are modeled to be instantaneous and proportional in-
stead of sparse rewards which is effective in some cases but needs more training
episodes to learn.

r4 =

{
ξ4 ∗ a2 ifa2 < 0

0 ifa2 > 0
(4.9)

r5 =

{
−ξ5 ∗ (abs(a1 + a2)− pbmax) ifabs(a1 + a2) < 0

0 ifa2 > 0
(4.10)

At every state transition and step the agent takes, all the five reward components
are computed separately and the cumulative value is sent back as a feedback signal
to the agent.

rt = r1 + r2 + r3 + r4 + r5 (4.11)

4.5.4. Action Exploration Strategy
The agent must explore the continuous action space effectively to learn the optimal
policy. One of the advantages of using off-policy methods such as Q-learning and
DDPG is that the exploration process is independent of the RL algorithm. For DQN,
most commonly, epsilon greedy exploration strategy is used where it sets the balance
between exploration and exploitation but for continuous action this could not be im-
plemented; hence, a noise is added to the action. The exploration policy could be
defined as,

at = µ(st|θµ) +N (4.12)

Here, the noise process N chosen was the Ornstein-Uhlenbenck process [62] as
used in the original implementation [39], OU process generates temporally correlated
noise which enables smoother learning and follows a realistic exploration strategy.
Gaussian noise was implemented and the performance observed was relatively lower

4.5. Reinforcement learning 38

than OU noise. For both noise processes, the standard deviation was progressively
reduced as the learning process advanced to facilitate narrowing down on exploration
and fixing an optimal policy.

4.5.5. Multi-agent DDPG
The RL problem in this study is formulated with two independent, intelligent agents
making coordinated decisions to maximize the cumulative reward. The main reason
behind choosing a multi-agent framework for this problem is to avoid simultaneous
discharging and discharging from the battery. In a single-agent scenario, when the
battery is discharged, it becomes ambiguous if it has been sent to satisfy the load or
exchanged back to the grid. A centralized approach is taken here as sharing global
state space information allows for optimal coordination. Another benefit is that it guar-
antees coordination and has a more straightforward implementation.

The outline of agent interaction in this analysis is shown in Fig 4.7 where a1 and
a2 are the agents. Here, a1 has an action space of [−2.8,+2.8] where it deals with
grid exchange (charging and discharging) whereas a2 only discharges to the load.
The rest of the power flow elements are calculated based on these actions and it is
also important to note that the flow from PV is set by deterministic rules which give
precedence to the load then to charging the battery and if there is still some excess
after the battery is complete, then it is sent back to the grid.

Grid

Load

Battery

PV

a1

a2

Figure 4.7: Representation of Multi-agent interaction in DDPG algorithm

The DDPG agent in this analysis is implemented closely similar to the original
architecture, the pseudo-code [39]. The agent learning starts with initializing the main
actor and critic network of each agent a1 and a2, this is done by the default initializer
provided in Keras which is Xavier Uniform initialization. Subsequently, the weights of
the respective target networks are initialized by duplicating the weights from the main
network. The replay buffer is then initialized separately for the two agents, the buffer
stores the state transitions (state, action, cumulative reward, next state). Here, both
agent’s policy is shaped using the same cumulative reward which coordinates the
actions of both agents to maximize the cumulative reward. The Ornstein-Uhlenbeck
exploration noise is initialized for each agent with different initial standard deviations.

The main training loop runs for M episodes, and the initial state is reset at the start
of each episode. The initial state is reset from the predetermined forecasted values
and with a random Soc value in the operational range. The episode length is 24 so at

4.5. Reinforcement learning 39

each episode the inner loops for the length of one episode before reaching a terminal
and resetting the initial state. In the inner loop, both agents take action based on
their current policy, which is added to the OU noise for exploration. To ensure that the
BESS does not charge and discharge simultaneously if action at1 is positive, BESS
charges from the grid so the discharge to the load is restricted by assigning at2 = 0.
The state transitions are stored in the replay buffer individually for each action with the
same cumulative reward.

Table 4.6: Pseudo algorithm for the proposed DDPG agent training

DDPG algorithm

Randomly initialize critic networks Q1(s, a|θµ), Q2(s, a|θµ) and actors µ1(s|θµ),
µ2(s|θµ) with weights θQ1 , θQ2 and θτ1 , θτ2
Initialize target network Q′

1, Q′
2 and µ′

1 , µ′
2with weights θQ′

1
← θQ1 , θτ ′1 ←

θ1τ1 and θQ′
2
← θQ2 , θτ ′2 ← θ2τ2

Initialize replay buffer R1 and R2

Initialize a random process N1, N2 for action exploration
for episode = 1, M do
Receive initial observation state s1
for t = 1, T do
Select action at1 = µ(st|θµ) +Nt1, at2 = µ(st|θµ) + Nt2 according to the current
policy and exploration noise
if at1 > 0, at2=0
Store transition (st, at1, rt, st+1) in R1

Store transition (st, at2, rt, st+1) in R2

Sample a random mini-batch of N1 transitions (si, ai,1, ri, si+1) from R1

Sample a random mini-batch of N2 transitions (si, ai,2, ri, si+1) from R2

Set yi,1 = ri + γQ′
1((si+1), µ

′
1(si+1|θµ′

1
)|θQ′

1
)

Set yi,2 = ri + γQ′
2((si+1), µ

′
2(si+1|θµ′

2
)|θQ′

2
)

Update critic networks by minimizing the loss L1 =
1
n1

∑
i(yi,1−Q1(si, ai,1|θQ1))

2

L2 =
1
n2

∑
i(yi,2 −Q2(si, ai,2|θQ2))

2

Update the actor policy using the sampled policy gradient:
∇θµ1

J1 ≈ 1
n1

∑
i∇aQ1(s, a|θQ1)|s=si,a=µ1(si)∇θµµ1(s, θµ1)|si

∇θµ2
J2 ≈ 1

n2

∑
i∇aQ2(s, a|θQ2)|s=si,a=µ2(si)∇θµµ2(s, θµ2)|si

Update the target networks:
θQ′

1
← τθQ1 + (1− τ)θQ′

1
, θQ′

2
← τθQ2 + (1− τ)θQ′

2

θµ′
1
← τθµ1 + (1− τ)θµ′

1
, θµ′

2
← τθµ2 + (1− τ)θµ′

2

end for
end for

Since a batch learning approach is taken, all four neural networks involved in this
implementation are updated on mini-batches randomly sampled from the replay buffer.
Firstly, the main critic networks estimate the cumulative reward based on their current

4.6. Hyperparameter tuning 40

policy, which includes the immediate reward of r. The temporal differencing error is
calculated and the neural networks are optimized by minimizing the mean squared
error (MSE). TD error is propagated to the actor network, where it is updated by mul-
tiplying with the gradient of the actor. Finally, the actor and critic target networks are
soft-updated for stable learning proportionally to τ .

4.6. Hyperparameter tuning
4.6.1. Forecasting
For SARIMA, the auto-regressive, differencing and moving average terms and their
seasonal equivalents were first analyzed using a correlogram individually for each
forecasting task as seen in Fig 4.2,4.3 and 4.4. The auto-regressive terms were in-
ferred from a partial auto-correlation plot, whereas the moving average terms were
inferred from an auto-correlation plot and the differencing terms were estimated by
observing the seasonality in the data. After the initial search parameter trial, search
space was extended and a grid search was performed using different combinations
of parameters while minimizing the RMSE. The resulting terms for each forecasting
task are shown in Table 4.7.

Table 4.7: SARIMA Parameters

Forecast p d q P D Q

Load 2 1 1 3 0 2
PV Generation 3 2 2 3 0 1
Price 2 2 1 3 1 1

Choosing the optimal hyperparameters becomesmore critical and problem-specific
for neural networks, given the higher number of hyperparameters to tune. As men-
tioned in the section, a simple Bayesian optimization was performed and due to the
computational constraints the search space was limited to as shown in Table.4.8.

Table 4.8: Hyperparameter search ranges for Deep Learning Models

Hyperparameter Range

Number of hidden layers [1,2,3]
Number of neurons in hidden layers (8,120)
Learning rate (0.00001,0.001)
Dropout ration (0,0.5)
Number of epochs (40,200)
Batch size 32
Look-back period 24

4.6. Hyperparameter tuning 41

Table 4.9: Neural Network configurations for the comparative assessment

Model Load PV
Generation

Electricity
Price

Multilayer
Perceptron
(MLP)

Dense Layer (60)
Dropout Layer (0.18)
Dense Layer (40)

Dropout Layer(0.18)
Epochs = 80

Dense Layer (120)
Dense Layer (80)
Epochs = 40

Dense Layer (90)
Dropout (0.1779)
Dense Layer (20)
Dropout (0.1779)
Epochs = 80

Convolutional
Neural Network

(CNN)

Filters = 7
Kernel Size =3

Dense Layer (10)
Epochs = 100

Filters = 16
Kernel size = 4

Dense Layer = 10
Epochs = 100

Filters = 16
Kernel Size= 4

Dense Layer (10)
Epochs = 100

Recurrent
Neural Network

(RNN)

SimpleRNN (64)
Dropout Layer (0.4)

Epochs = 80

SimpleRNN (64)
Dense Layer = 8
Epochs = 70

SimpleRNN (64)
Dense Layer (8)
Epochs = 70

Long Short
Term Network

(LSTM)

LSTM Layer (64)
Dropout (0.1)
Epochs = 100

LSTM Layer (64)
Dense (8)

Epochs = 50

LSTM Layer (64)
Dropout (0.3)
Epochs = 50

CNN-LSTM
Hybrid

Filters = 7
Kernel Size = 4

Dropout Layer (0.2)
LSTM Layer (24)
Dense Layer (6)
Epochs = 150

Filters = 12
Kernel Size = 3
LSTM Layer (24)
Dense Layer (6)
Epochs = 150

Lr = 0.00001
Filters = 12

Kernel Size = 3
LSTM Layer (24)
Dense Layer (6)
Epochs = 150

Bidirectional
LSTM

BiLSTM Layer (64)
Dense Layer (24)
Dropout (0.1)
Epochs = 50

BiLSTM Layer (64)
Dense Layer (32)
Dropout (0.1)
Epochs = 50

BiLSTM Layer (32)
Dropout (0.1)
Epochs = 50

The search space and some hyperparameters were not tuned, such as the look-
back period chosen as 24 because of the previous day’s influence on the future value.
After the Bayesian search, further tuning was done by analyzing the training vs. valida-
tion loss curve to achieve better convergence, yielding better results. It should also be
noted that different problems were approached with different initial numbers of layers
and then tuned individually.

The ReLU activation function was chosen for the hidden layers as it mitigates the
vanishing gradient problem experienced when using sigmoid or tanh activation func-
tions. They are also computationally efficient with implementing non-linearity, which is
essential in modeling complex relationships in data. They also come with limitations
such as dying ReLU problems when they constantly output zero due to gradient di-

4.6. Hyperparameter tuning 42

rection and unbounded activation. For the output layer, the required output is a real
number given the regression problem; hence, a linear activation function is used. The
loss function chosen to minimize the gradient is root mean squared error (RMSE), as it
penalizes significant errors and is also the primary metric for evaluating among other
neural network architectures. The activation functions are pre-defined in the keras
package, whereas the RMSE loss function was custom-implemented.

Adam optimizer is used in this analysis to minimize the loss function, a popular
optimization technique used in neural network training. Adam optimizer is an exten-
sion of the stochastic gradient descent (SGD) optimization method with an adaptive
learning rate, which means that the learning rate is adjusted according to the gradi-
ent information throughout the learning process. Since this is adaptive, it increases
efficiency, reduces the need for manually tuning learning rates, and is robust to ini-
tialization. However, this optimizer is prone to overfitting which was addressed using
dropout layers.

The final tuning process for individual tasks yielded the configurations presented in
Table.4.9. It was determined that all the architectures had better performances when
the learning rate was 0.0001,

4.6.2. Reinforcement learning
The core of RL lies in using neural networks as function approximators and how they
interact with each other. As with neural networks used in forecasting tasks, each
network in this analysis, namely actor and critic, has its main and target network, re-
sulting in four networks. Using hyperparameter tuning methods for RL is limited by
computational and time constraints as several moving parts exist. In this analysis, ini-
tial hyperparameters are set heuristically based on the complexity of the state space
and then fine-tuned heuristically after inferring from the networks’ loss curves and the
episode rewards over the learning duration. It should also be noted that the learning
rate of the critic network is lower than the learning rate of the actor-network to help
stabilize learning.

Table 4.10: System parameters for DDPG model

Parameter Value

Length of each episode 24
Number of episodes 10000
Discount rate 0.99
Update rate of target network (τ) 0.05
Buffer size 50000

Apart from the function approximators, the discount rate influences the agent’s per-
formance sequentially. Hence, it was taken as 0.99 as all the time steps contribute to
the episodic reward. Here, the target networks are soft-updated, incorporating τ (up-
date rate of target network) for both actor and critic networks. Here, it was set as 0.05,
which would update the target network gradually improving convergence in learning

4.6. Hyperparameter tuning 43

and maintaining stability in training. The number of episodes is also a determining
factor in how good the learned policy is.The algorithm uses checkpoints to save the
best-performing models throughout the learning episodes, preventing overfitting of the
policy and ensuring better generalization. The overview of the RL system parameters
is shown in Table.4.10

The length of each episode was chosen to be 24 as it allows the agent to learn
optimal policies to minimize the cost per day, which could be extrapolated to several
days when implemented. Similar network architectures were utilized for both actor
and critic networks which is illustrated in Fig.4.11

Table 4.11: Actor and Critic Network configuration

Parameter Value

Number of hidden layers 3
Neurons in each layer (64,124,32)
Batch size 32
Actor-network learning rate 0.00005
Critic-network learning rate 0.00001

4.6.3. Benchmark Model
As discussed in the sub-section 3.2.2, it is essential to fine-tune hyperparameters X1

and X2 in order to achieve optimal performance. The hyperparameters were deter-
mined by minimizing the base electricity cost which is the chosen loss function for
one month (May 2019). Given the small hyperparameter search and to execute an
exhaustive search over all possible combinations, a grid search was conducted. The
optimization is visually shown in Fig.4.8

Figure 4.8: Parameter Tuning visualization for Benchmark EMS model

4.7. Performance Metrics 44

From the results, the base electricity cost reaches a minimal value with increas-
ing X1 and a decreasing X2. In Fig.4.8, the base electricity cost is negative due to
more PV generation than electricity consumption. Here it could also be instinctively
observed that charging the battery from the grid is desirable even at relatively higher
price ranges. However, the low X2 value indicates that selling it back to the grid is
profitable only at higher price levels.

4.7. Performance Metrics
4.7.1. Forecasting
The accuracy of forecasting models is typically assessed using scale-dependent error
metrics like root mean squared error (RMSE) and mean average error (MAE) [63].
RMSE is particularly effective as it places greater weight on large errors and can han-
dle values close to zero. Since they are scale-dependent, they cannot be used to
compare different datasets. R-squared (R2) is a statistical measure representing the
proportion of the variance in predicted values explained by the true values. Equation
4.13,4.14 and 4.15 shows the mathematical representation

Mean Absolute Error (MAE)

MAE =
1

n

∑
|ŷt − yt| (4.13)

Root Mean Squared Error (RMSE)

RMSE =

√
1

n

∑
|ŷt − yt|2 (4.14)

R-Squared

R2 = 1−
∑

(yi − ŷ)2∑
(yi − ȳ)2 (4.15)

In the above equations, ŷt is the predicted value and y is the actual value. A com-
bination of metrics is needed to assess model accuracy and inspect different forecast
aspects. In this study, RMSE is chosen as the metric over which models are optimized
and for evaluation.

A holdout validation was undertaken for evaluation where the dataset was split into
70% for training, 20% for validation and 10% for testing without shuffling of data points
to preserve the sequential aspect of the dataset.

4.7.2. Energy Management Systems
Several statistics have been considered to analyze the performance of the RL-based
EMS against the baseline and benchmark. Themetrics calculated are used to analyze
the benefits gained by the grid operator and the customer where it examines grid
congestion, battery life, and cost analysis. The chosen metrics are discussed below.

4.7. Performance Metrics 45

Base electricity cost
The primary financial aspect defined here is the base electricity cost which is the en-
ergy bill that the customer faces. This cost does not consider the additional costs of
the BESS and PV. With the net metering option, this becomes the sum of the net cost
of electricity per hour.

Base Electricity Cost =
T∑
t=0

(Pp,t − Ps,t) ∗ Prt (4.16)

Total electricity cost
In this study, total electricity cost is defined as the sum of the base electricity cost and
the cost of BESS operation. This cost does not take the cost of the PV system which
is assumed to be constant across all three models discussed in this research. BESS
operational cost is estimated by multiplying the count of cycles in the test period and
the cost of a single charge/discharge cycle. From the information from the manufac-
turers about the rated number of cycles and total cost of BESS, it was determined that
the cost per cycle is 0.42 Euro/cycle.

Total Electricity Cost = Base Electricity Cost+ No of cycles× Cost per cycle (4.17)

Count of battery cycles
The battery life deterioration is assessed by counting the number of complete charge/dis-
charge cycles within the depth of discharge limits during the testing period. This is cal-
culated by summing all the charging SoC changes over the testing period and dividing
it by the operating depth of discharge. The BESS in this study operates between SoC
limits of 0.2 and 0.8, making the depth of discharge 0.6.

Cycle count =
∑T

t=0 Positive∆SoCt

Depth of discharge
(4.18)

Load factor
Load factor could be defined as the ratio between the average load to the peak load
in a given period. This period could be a day, week or month. This is a widely used
metric to measure the efficiency of energy consumption. A high load factor indicates
the consumption pattern is consistent and stable whereas a low load factor indicates
more fluctuations in consumption. This study chose the daily period as it offers gran-
ularity and a real-time view of the consumption pattern to make better decisions. The
equation for it is presented in Equation 4.19

LF =
Average load in a day
Peak load of the day

(4.19)

Daily peak power consumption
The daily peak power consumption is defined as the highest power purchased by the
system within a single day. This metric gives insights into understanding the maximum
power demand pattern over a time period and helps assess the capacity requirements

4.7. Performance Metrics 46

of electrical infrastructure. Equation 4.20 shows the mathematical representation of
the metric where D is the number of days.

Ppeak = max(Pday) (4.20)

Average ramp rate
This metric is used to quantify the rate of change in power consumption. It is calculated
by differencing the consecutive power purchased as shown in Equation 4.21 over a
specific time interval and in this analysis, the hourly period is considered. The average
ramp rate gives insights into how fast the power consumed changes in that given time
window. This metric is vital for the grid operator to ensure the reliability and stability
of the electrical grid.

Average ramp rate =

∑T
t=0 Pp(t)− Pp(t− 1)

T
(4.21)

5
Exploratory Data Analysis

In this chapter, the initial step before implementing the forecasting models involves
analyzing and comprehending the data. The preliminary step before diving into cre-
ating forecasting models is to analyze and understand the data, this could be done
visually or by analyzing the statistics of the data. A visual examination could use line
plots, density plots, box plots, violin, scatter, rolling statistics, histograms, and other
various tools to draw a preliminary understanding of the patterns and information in
the data.

(a) Hourly load consumption for a
week

(b) Daily average load across the
dataset

Figure 5.1: Household Electricity Consumption

In Fig 5.1, the load consumption of a single household [11] for a week is shown.
The first inference is that the load pattern for a single household has more variance
and less smooth pattern than the aggregate pattern because of the influence of indi-
vidual human behavior. Secondly, It could be observed that during the weekends the
consumption is relatively higher than on the weekdays, indicating the presence of a
weekly pattern.

47

48

(a) Hourly market prices for a week (b) Daily average across the dataset

Figure 5.2: Electricity market prices

Thirdly, with a much closer look it could be seen that the consumption has a diurnal
pattern with two peaks one in the morning and the other in the late evening, this could
be seen much clearly in Fig 5.1a. There is also a yearly pattern which is difficult to
visually inspect in Fig 5.1b but it can be subtly seen that the consumption is higher
during the winter months around January and February.

The hourly market electricity price for a week is shown in Fig.5.2. Similar to the
load, the price has a diurnal and a weekly seasonality as observed in the figure. A
diurnal pattern with peaks in the morning and evening when the consumption is higher.
On the weekends the cost is less relative to the weekdays which could be due to
the lower aggregate consumption on weekends. As higher consumption is a general
indicator of higher prices, the yearly seasonality as seen in Fig.5.2b shows that prices
are higher during winter when the consumption is also higher.

(a) Hourly PV generation for a week (b) Daily average across the dataset

Figure 5.3: PV Generation

The amount of solar energy generated by the 4000W rooftop panels is shown in
Fig.5.3a for a week. It is evident that energy is produced only when there is irradiance
in the daytime. There is a diurnal pattern for the power production with the peak power
produced around noon. This can observed visually and more detailed in the box plot
Fig.5.4b where it peaks at 13.00. The yearly seasonal changes significantly impact the
production with higher production in summer and lower in winter, as seen in Fig.5.3b.

49

(a) Load consumption (b) PV generation

(c) Electricity market prices

Figure 5.4: Visualizing hourly trends using box plots

As discussed earlier, Fig 5.4a ,5.4b,5.4c has strong diurnal seasonality which could
be observed by the hourly mean values of load, PV, and price in each of these plots,
respectively. In these plots, the black dots at the end of whiskers represent outliers
which signifies extreme values. In Fig 5.4a, it can be seen that outliers are spread
relatively more during the day than at night, which shows consumption patterns. In
contrast, In Fig 5.4c it could be seen that the outliers are more spread on the lower
side of whiskers which emphasizes that wholesale prices fall lower.

6
Results and Discussion

The first part of this chapter discusses the results of the various forecasting models for
load, PV generation and dynamic electricity price. The analysis includes the perfor-
mance, advantages and limitations of different neural network architectures and finally
presents the model with the most accurate predictions. The second part of the chap-
ter investigates the performance of RL-based energy management systems against
a baseline and a benchmark model. Specifically, it explores the effect of different al-
gorithms on cost savings to the end consumer, effects on grid congestion and battery
life degradation.

6.1. Forecasting
This section individually presents the results of forecasting load, PV generated and
electricity price using the deep learning methods discussed in the section. The simu-
lations were tested out of the box on data from 01/06/2019 to 01/10/2019, but for the
ease of interpretation and understanding of the performance, a week’s data (03/06/2019
to 10/06/2019) is plotted and analyzed in detail. Although the performance was eval-
uated for baseline, statistical and six deep-learning models, only the results of crucial
models are plotted. The learning curve of the best-performing model is also added to
further assess the performance of the neural network architecture. It should also be
noted that the results shown in tables and figures comparing different architectures
are for the whole data.

Each forecasting task is evaluated based on MAE, RMSE and R-squared of the
out of the testing data set. The prediction performance is shown visually using box
plots and the values are presented in the tables.

6.1.1. Load
In Table 6.1 results of forecasted electrical consumption load errors for one hour in a
household are presented. It should be established that the prediction is for a single
household, which increases the model complexity compared to an aggregate level
as the profile heavily depends on human behavior. The baseline model, which uses
the previous day’s value as the forecast shows the most prediction error compared
to other employed methods which shows the relative performance increase of other

50

6.1. Forecasting 51

models. It could be noted in Fig.6.3 that the predictions from the persistence model
have a negative correlation with actual value, this could be due to the naive nature
of the model and also shows it fails to capture the seasonalities and variations in the
data.

Table 6.1: Summary of Prediction errors and R-Squared for Load prediction

Models MAE RMSE R2

(kW) (kW)
Persistence Model (Baseline) 0.251 0.410 -0.356
SARIMA 0.231 0.322 0.149
Deep Learning Models
Multilayer Perceptron (MLP) 0.195 0.281 0.359
Convolutional Neural Network(CNN) 0.179 0.275 0.363
Recurrent Neural Network (RNN) 0.183 0.277 0.361
Long Short Term Memory (LSTM) 0.175 0.270 0.374
CNN-LSTM Hybrid 0.181 0.271 0.404
Bidirectional LSTM 0.173 0.269 0.409

The results from the SARIMA model are shown in Fig.6.1a, it could be observed
that the forecast exhibits a consistent pattern with slight differences in the longer hori-
zon. This shows the model’s limitation to capturing only one seasonality and it could
be observed that daily periodicity fails to interpret the weekly seasonality. Another in-
herent shortcoming of the model to learn the non-linear relationships in the data could
also seen in Fig.6.1a as it fails to capture the peaks and variations. The key advantage
of this statistical method is its simplicity which requires less historical data for training
and fewer computational resources compared to machine learning models discussed
later. The performance in Table.6.1 is better than the baseline but still lower than the
deep learning models.

(a) SARIMA (b) CNN

Figure 6.1: Forecasted vs. Actual of Load profile for a week

In the deep-learning models, MLP, a simple neural network architecture consist-
ing of only fully connected dense layers, significantly reduced the errors (MAE and
RMSE) compared to SARIMA and baseline and captured more variance. However,

6.1. Forecasting 52

this architecture cannot model temporal dependencies as the load has temporal infor-
mation that could be utilized to make better predictions. This limitation was addressed
by using CNN and RNNs architecture.

As seen in Table.6.1, CNN reduces the forecast error and captures better variance
than MLP. The better performance of CNN could be attributed to its ability to extract
features from sequential data and capture local patterns using filters. The forecast
using CNN is shown in Fig.6.1b, it could be observed with the fluctuations that the
model is trying to capture the local patterns. However, although this architecture does
the feature extraction to learn the underlying pattern it does not have an inherent
structure to model sequential data. This characteristic is built in RNNs where they can
model data with temporal information and this could be seen with better performance
by RNN-based architectures (LSTM and BiLSTM) as seen in Fig.6.3.

(a) Forecasted vs. Actual of Load profile for a week (b) Learning curve

Figure 6.2: Performance of BiLSTM for load forecasting

Figure 6.3: Bar Plot of Error metrics for Load forecasting

In this analysis, Bi-directional LSTM has been observed to have the least MAE
and RMSE compared to other deep-learning models and captures the most variance

6.1. Forecasting 53

for load forecasting. The differences between the performances of the deep-learning
models are relatively low. The learning curve of the implemented BiLSTM network can
be seen in Fig.6.2b. The first inference from the loss plot is a steep loss in training
and validation loss, indicating that most of the learning takes place at the start and the
learning takes place until the training and validation loss is converged.

6.1.2. Electricity price
The electricity price forecast results summary is shown in Table.6.2. Similar to load
forecasting, the results for a one-hour forecast horizon and equivalent architectures
are evaluated. In the initial observation, it could be seen that the baseline performs
better than SARIMA in terms of MAE and R-squared as seen in Fig.6.6. This could be
due to the non-stationary nature of the data and the significant amount of random vari-
ations or noise in the data which severely limits SARIMA’s capability.Fig.6.4a shows
the plotted results from SARIMA, as anticipated the model captures only one season-
ality and is very limited in capturing variance due to the linear nature.

Table 6.2: Summary of Prediction errors and R-Squared for Electricity price
prediction

Models MAE RMSE R2

Price (€/Mwh) Price (€/Mwh)
Persistence Model (Baseline) 43.3 65.9 0.433
SARIMA 49 59.9 0.142
Deep Learning Models
Multilayer Perceptron (MLP) 19 24.6 0.920
Convolutional Neural Network(CNN) 13.8 19.3 0.950
Recurrent Neural Network (RNN) 13.4 18.1 0.956
Long Short Term Memory (LSTM) 13.6 19.3 0.951
CNN-LSTM Hybrid 17.3 25.2 0.916
Bidirectional LSTM 12.5 17.4 0.960

(a) SARIMA (b) CNN

Figure 6.4: Forecasted vs. Actual of Electricity price for a week

Deep learning models have much improved performance compared to baseline

6.1. Forecasting 54

and SARIMA as seen in Table.6.2 and visually in Fig.6.6. As expected, the MLP archi-
tecture has higher forecast errors than other models, mainly due to its limitation of rep-
resenting temporal relationships.The results of CNN architecture as seen in Fig.6.4b,
display its ability to extract feature information using filters as the network attempts to
model the small perturbations.

The ability of RNNs and their variants (LSTM, BiLSTM) to inherently incorporate
sequential information has improved the prediction performance compared to MLP.
However, the CNN-LSTM hybrid has relatively higher MAE and RMSE which could
be attributed to problem overfitting or architecture could be more sophisticated for the
electricity price data it tries to model.

(a) Forecasted (Red) and Actual (Blue) Electricity price
for a week (b) Learning curve

Figure 6.5: Performance of BiLSTM for electricity price forecasting

Figure 6.6: Bar Plot of Error metrics for Electricity price forecasting

Bi-directional LSTM has shown the best performance with RMSE of 17.4 kW, MAE
of 12.5 kW and Pearson coefficient of 0.960 for the electricity price prediction for a
one-hour horizon. The prediction results and the network’s learning curve are shown

6.1. Forecasting 55

in Fig.6.5a and Fig.6.5b. The fluctuations in the validation loss curve are due to the
hyperparameters chosen, explicitly choosing a higher learning rate than the batch size
of 32 as the network gets updated in a smaller batch size with a faster learning rate.

6.1.3. PV Generation
Similar to the previous forecasting tasks, the results for PV generated are summarized
in Table.6.3. In the testing set, initial analysis shows that the baseline model performs
better than SARIMA in terms of MAE and lower in terms of RMSE. This shows that
SARIMA models the diurnal seasonality which captures the peaks better. In this spe-
cific week plotted in Fig.6.7a, it could seen that average predictions in a day are lower
than the actual average which showcases the limitation of modelling only one sea-
sonality as yearly periodicity was not incorporated. This also significantly decreases
the explained variance in the SARIMA model as compared to the baseline as seen in
Fig.6.9

Table 6.3: Summary of Prediction errors and R-Squared for PV generation prediction

Models MAE RMSE R2

(kW) (kW)
Persistence Model (Baseline) 0.268 0.538 0.593
SARIMA 0.274 0.434 0.188
Deep Learning Models
Multilayer Perceptron (MLP) 0.124 0.237 0.921
Convolutional Neural Network(CNN) 0.114 0.229 0.926
Recurrent Neural Network (RNN) 0.126 0.237 0.921
Long Short Term Memory (LSTM) 0.117 0.227 0.927
CNN-LSTM Hybrid 0.128 0.233 0.923
Bidirectional LSTM 0.118 0.226 0.928

(a) SARIMA (b) CNN

Figure 6.7: Forecasted vs. Actual of PV generation for a week

Concerning MAE, CNN marginally performs better than other deep learning ar-
chitectures, which could be attributed to its capability to extract features. Regarding
RMSE, Bidirectional LSTM shows lower forecast errors compared to other models

6.1. Forecasting 56

and is analogous to the previous prediction tasks which could be ascribed to its abil-
ity to model sequential information and interpret the input sequence in both forward
and backward direction. The results of CNN and BiLSTM are shown in Fig.6.8a and
Fig.6.8a.

(a) Forecasted (Red) and Actual (Blue) PV generation for
a week (b) Learning curve

Figure 6.8: Performance of BiLSTM for PV generation forecasting

In the learning curve Fig.6.8b, it could be seen that the training and validation loss
are not converging although the model is optimized for the best performance. This
could be associated with the diurnal pattern of PV generation, which has no production
during the night or this could also be due to the nature of the data. Regularization
using dropout layers was also simulated but with more convergence, other evaluation
statistics performed worse. It is inferred here that in some cases better convergence
does not necessarily mean improved performance, this could be because after certain
learning the network might not be able to generalize well to changing unseen data.

Figure 6.9: Bar Plot of Error metrics for PV generation forecasting

The models explored thus far are evaluating for a one-hour horizon that could be
extended to time steps in the future. In contrast to the one-hour horizon here, the

6.1. Forecasting 57

networks are trained on the target variable 3rd,6th,12th, and 24th hour into the future.
Leveraging the already done comparison and since the neural networks exhibit similar
performances, the Bi directional LSTM is chosen for predicting the future horizons of
Load, PV generation and market prices. The RMSE for each forecasted variable for
different horizons is shown in Fig.6.10. A comparable trend is observed as the error
increases with an extending horizon, this is anticipated as the level of randomness or
uncertainty increases over time. The transition from the first to the third-hour horizon
is observed with a substantial increase in RMSE.

(a) Load (b) PV Generation

(c) Electricity Price

Figure 6.10: Forecasting Horizon vs. RMSE for Bidirectional LSTM

The key inferences observed in the forecasting of load, PV generation and elec-
tricity price are discussed below

• In all three of the forecasting tasks, BiLSTM was the best-performing predic-
tion model in minimizing the error statistics (MAE and RMSE). However, it was
observed that the differences in performance between deep-learning models
especially the recurrent neural network variants were relatively low. However,
the performance increase from baseline/SARIMA to deep-learning models was
significant.

• In the SARIMA model, its inherent limitation to incorporate only seasonality and
the inability to learn non-linear relationships has bounded its performance.

• Simple RNN prediction models were consistently observed to be performing less
than other recurrent neural network models and this could be due to the vanish-
ing gradient problem.

6.1. Forecasting 58

• Although CNN-LSTM combines the feature extraction and sequential modeling
aspects, the performance was lower than other models. This could be due to
the overfitting as a result of complex architecture and even with regularization,
performances were not improved so it is also possible that the sophisticated
architecture is too much for the nature of the data.

• As the forecasting horizon increases, a notable trend is observed where the error
(RMSE) consistently increases reflecting the rise in uncertainty over time.

6.2. Energy management system 59

6.2. Energy management system
In this sub-section, Each of the three algorithms (Baseline, Benchmark, RL) is eval-
uated independently to ensure they adhere to operational constraints related to the
state of charge, maximum charge and discharge limits. BESS Dispatch strategies
are also analyzed. Additionally, the RL aspect is discussed in detail, focusing on the
DDPG agent’s learning process. Finally, we compare the performance of all three
algorithms using the metrics defined in the section.4.7

6.2.1. Baseline
To set a reference point for the EMS performance, the baseline algorithm discussed
in sub-section3.2.1 is analyzed first. During the experiment, the state of charge is
within the limits of 0.2 and 0.8 as seen in Fig.6.11. It should also be noted that the
battery is not effectively used up to its potential as it is idle for most of the duration
after complete discharge. In this model, the battery does not engage in power grid
exchanges for arbitrage advantages instead, it imports power when neither the PV
nor the battery can meet the load requirements.

Figure 6.11: Baseline: State of charge plot

Figure 6.12: Baseline: Battery actions vs PV generation

6.2. Energy management system 60

The battery operates within the prescribed boundaries [−2.8, 2.8] for its charging
and discharging power, shown in Fig.6.12. It can also be seen that the battery charges
only when the PV generated is more than the required load and discharges at the
following time step when there is a deficit. So, it is not modeled to discharge to the
load when the price is at its peak which could have benefited the end user. Here, this
strictly follows the algorithm to prioritize consumption at the source which can be seen
in the battery actions and does not consider the price signal in the decision-making
process.

The power balance is maintained as observed in Fig.6.13, It is evident that the
majority of the time the load is satisfied by direct grid import. However, there are
instances where all three sources (PV, Battery and direct grid import) are used to fulfill
the demand.

Figure 6.13: Baseline: System Power flow

In addition to the periods when the battery charges and discharges centered around
PV generation, there is an observable arbitrage opportunity in Figure 6.14. This op-
portunity arises from the diurnal pattern of the market price during which the battery
is also dormant. This presents an opportunity to charge when the price is low and
discharge to the load or back to the grid to maximize cost savings.

Figure 6.14: Baseline: Battery actions vs. Real-time price

6.2. Energy management system 61

6.2.2. Benchmark
The results of defined benchmark algorithm 3.7 are discussed here. The analysis
begins by ensuring that the battery system parameters, specifically the state of charge
and themaximum charge and discharge limits fall within acceptable limits. The state of
charge is observed to fall within the range of [0.2, 0.8], as depicted in Fig.6.15 and the
battery’s charging and discharging behavior is also within the boundaries [−2.8, 2.8]
as illustrated in the Fig6.17. It is important to emphasize that this model is built on top
of the baseline algorithm, It’s behavior is expected to be comparable to the former but
with an extension to include grid interactions to gain arbitrage opportunities. Threshold
hyperparameters used for this simulation was found to be X1 = 0.7 and X2 = 0.2
through an exhaustive search as described in sub-section.4.6.3.

Figure 6.15: Benchmark EMS : State of charge plot

The energy balance for this model was preserved as depicted in Fig.6.16 following
the established rule that the load is not satisfied through PV generated and battery, it
would be met by importing directly from the grid.

Figure 6.16: Benchmark : System Power flow

As anticipated, it is noticeable from the Fig.6.17 that the battery gets charged when
the generated PV exceeds the needed power to meet the load. This is immediately

6.2. Energy management system 62

followed by discharging the total capacity when the system faces a power deficit and
reaches the lower SoC limit which could be inferred from Fig.6.15. It may have been
financially beneficial for the consumer to utilize the battery to supply power to the load
during peak pricing periods.

Figure 6.17: Benchmark : Battery action vs. RTP vs. PV generation

Fig.6.18 illustrates the isolated battery exchange with the grid. It is observable
that when the threshold to purchase electricity is reached, the algorithm immediately
charges to its fullest capacity instead of waiting till the price drops even further before
charging. In contrast, during the discharging most of the capacity is discharged to
meet the load which restricts it to sell it back to the grid at peak price duration.

Figure 6.18: Benchmark EMS: Battery exchange with grid vs. RTP

The limitation of this algorithm in predicting price peaks and the practice of fully
charging or discharging the battery rather than doing so in proportion to the price
fluctuations and load pattern reduces the financial advantages for the end consumer.
The RL in the following section addresses these limitations by modeling the complex

6.2. Energy management system 63

relationship between load, market price and PV generated to maximize cost savings
for the consumer.

6.2.3. Reinforcement learning
The agents were trained in the custom EMS environment for 20000 episodes with an
episode length of 24 hours. An agent tries to maximize the cost savings for a day, this
also coincides with the diurnal pattern of the load, market price and PV generation. If
the agent makes optimal decisions for a single day, this is expected to be extrapolated
for a year. Due to the computational constraints, the agents are trained on 30 days of
data and tested on the following seven days. In the training process, all the individual
rewards are negative in order to have stable learning whereas having a mix of positive
and negative rewards has been observed to have resulted in sub-optimal performance.
The whole reward setting is centered around minimizing the base cost of electricity for
a day hence the rewards closer to zero the better the performance.

The training process for the DDPG agents can be seen in Fig.6.19, the agents
begin with a high degree of exploration leading to very high negative cumulative re-
wards. Soon, the agents start fine-tuning the policy, leading to better performance.
The steep reward increase is a positive sign which indicates that the agent is learning
and adapting to the environment. The reward dip around episode 7500 could be due
to exploration space or the agents being exposed to unfamiliar observations. In the
later episodes, the cumulative rewards are seen to be stabilized but improve slowly.
The zoomed-in version shows the cumulative stabilized around -20. It is important
to emphasize that the cumulative reward here does not exclusively reflect the cost of
electricity but the sum of all individual rewards as discussed in the sub-section 4.5.3.

Figure 6.19: DDPG reward training process

6.2. Energy management system 64

As the episodes progress, the agents improve their coordination and learn to re-
fine their policies gradually. This results from the reduction of exploration and agents
exploiting the already learned policy. The exploration noise added to the actions from
the Ornstein-Uhlenbeck process is illustrated in Fig.6.20

Figure 6.20: Exploration noise using the Ornstein-Uhlenbeck process

Under the hood, the cumulative episodic rewards are increased because their tar-
get actor and critic networks are improving at estimating an action and quantifying how
good that action is. This interaction as described in sub-section 4.5.5 improves the
agent’s decision-making, which is evident in the loss curves of the networks as shown
in Fig.6.21.

The critic networks of both agents are observed to have lower losses than their
respective actor networks for several reasons. Firstly, the critic network is a value
function comparable to a regression task. The actor-network is a policy function that
could be interpreted as an optimization problem to estimate the action actions that
could be more complex and challenging than the critic network. Secondly, the actor
network involves exploration noise to find increased cumulative reward compared to
the critic network which does not explicitly involve exploration.

The actions performed by the agents a1& a2 are shown in Fig.6.22. In the initial
test runs, the agents constantly breached the battery charging and discharging limits
in fine-tuning the reward function. However, these drawbacks were mitigated by using
a scaled tanh activation function for agent a1 and a scaled sigmoid activation function
in the output layer of the target actor network respectively.

6.2. Energy management system 65

(a) Actor Network of Agent 1 (b) Critic Network of Agent 1

(c) Actor Network of Agent 2 (d) Critic Network of Agent 2

Figure 6.21: Loss curves for the target networks involved in the DDPG algorithm

(a) Agent 1 (b) Agent 2

Figure 6.22: The actions executed by the DDPG agents

As Q-Learning is a model-free approach that learns through trial and error on in-
teraction with the environment, the agents have to cooperatively learn to be within the
SoC boundaries which are implemented by an explicit reward function as shown in
Equation.4.11. As SoC limits influence other parameters in the system, it becomes
crucial for it to be within limits to reduce deterioration of the battery as well as obey
the physical laws hence a huge penalty was given for this. Another inference from the
state of charge as visualized in Fig.6.23 is that the agent takes action at every time

6.2. Energy management system 66

step and does not stay idle due to the continuous action space.

Figure 6.23: RL-Based EMS: State of charge

The system energy balance is preserved as depicted in Fig.6.24. The load is ful-
filled with varying amounts from PV, battery and directly from the grid. Compared
to the baseline and benchmark algorithm discussed earlier, RL-based EMS involves
more battery discharge to meet the load.

Figure 6.24: RL-Based EMS: System Power Flow

The BESS dispatch decisions made by DDPG agents a1& a2 are shown in are
shown in Fig.6.25 along with real-time price, load and PV generation. The battery ac-
tions are the cumulative sum of both RL agent’s actions as defined in sub-section4.5.5.
The initial inference shows that the battery is charged when the PV generated exceeds
the required load due to the partly rule-based structure of the implemented algorithm.
The actions taken by DDPG agents result from the cumulative reward function and the
weight of individual reward components. As this research is centered around maximiz-
ing financial benefit for the end consumer, reducing the base electricity cost, isolating
how the battery interacts with the grid and when it discharges to the load is imperative
to analyze the DDPG agent’s actions.

6.2. Energy management system 67

Figure 6.25: RL-Based EMS: PV generated vs Battery Action Vs RTP

Focusing only on the battery interaction with the load Fig.6.26, agent 2 is solely
responsible for making this decision. Here, it should be noted that although the battery
action is depicted in a positive sign in the figure for clarity, the red line represents
the amount of power discharged to the load. Upon closer examination of Fig.6.26, it
becomes evident that agent a2 supplies to the load when the market prices are higher
and actively seeks to avoid discharging when the prices are relatively lower. This is an
anticipated strategy to reduce the base cost of electricity by leveraging the low market
price duration to charge the battery.

Figure 6.26: RL-based EMS : Battery discharge to the load vs RTP

Another important aspect of a financially optimal EMS is leveraging the fluctua-
tions in market prices to benefit from arbitrage opportunities. Fig.6.27 shows the grid
interaction with the battery. This part represents the actions taken solely by agent a2.

6.2. Energy management system 68

A broad idea of arbitrage is to buy electricity when the prices are lower and sell it back
to the grid at a higher price. Here, it is observable that almost every time there is a
dip in the market price, usually the lowest during the night the agent charges the bat-
tery. A critical interpretation is that right before the market price anticipates the day’s
lowest price, the agent sells a considerable amount back to the grid to make space
for purchasing at the lowest price.

In a few cases, the agent sells it back to the grid when the market price is higher,
which is counter-beneficial. This could be interpreted as the agent anticipating a higher
price signal. The other small-scale charge discharge cycles could be interpreted as
the agent trying to take advantage of small fluctuations in the market price for arbitrage
benefits.

Figure 6.27: RL-based EMS : Battery exchange with grid vs RTP

6.2.4. Comparative analysis
The proposed RL-based energy management system is evaluated against the base-
line and benchmark models across three key aspects : cost savings for the end con-
sumer, benefits to the grid operator and the effect on the life of BESS.

The effects on the grid operator are analyzed through daily peak power consump-
tion, daily load factor and ramping power. Peak shaving is a critical part of grid conges-
tion management to improve grid reliability by reducing strain on the grid and for bet-
ter resource management. However, the load studied here is for a single household
which is expected to have minimal peak shaving impact if the operator incentivizes de-
mand side products for homeowners which would significantly influence overall bene-
fits to the consumer. For this study, it assumed that the grid operator does not provide
any financial incentives for peak shaving and only benefit is through trading with the
grid.

The peak power of the daily purchased electricity over the testing period is shown
in Fig.6.28. It is evident that the daily peak power is significantly lower for the baseline
compared to the other two approaches, this is because the BESS does not trade
with the grid to leverage arbitrage and consumption at source is given precedence.
When observing the benchmark and RL algorithms, they exhibit higher peaks as the
purchased electricity includes fulfilling the load stored in BESS for selling at the higher
price point.

6.2. Energy management system 69

Figure 6.28: Comparison of Daily Peak Power Consumption

The Fig.6.29 illustrates the daily load factor of the power purchased and it is evident
that RL-based EMS has a higher load factor than the other twomodels. The load factor
indicates the electrical system’s efficiency, consistency and predictability of the load
profile. Here, this could be inferred as the RL-based EMS is more consistent with
its power purchasing pattern than the other two which is suggested to have a more
fluctuating pattern. Having a higher load factor helps the grid operator improve the
grid’s reliability as it exhibits a predictable load profile and better capacity planning.

Figure 6.29: Comparison of Daily Load Factor

At an aggregate level, high ramping fluctuations cause system frequency imbal-
ances, pushing the grid operator to activate reserve and ancillary capacities. A lower
demand fluctuation would enhance the grid’s stability and reduce ancillary costs for
grid operator. It can be noticed in Fig.6.30 that the RL-based EMS has a higher median
ramping relative to the other two algorithms but a lower extreme variability compared
to the benchmark model. As RL takes sequential decisions with future uncertainty
signals, it can spread the charging of the battery over multiple time steps as opposed
to the benchmark which charges the battery to the fullest at the first instance when it
reaches the threshold.

6.2. Energy management system 70

Figure 6.30: Box Plot Analysis of Ramping

The focus of the EMS is centered around optimizing the dispatch of the BESS.
Various strategies involve using the battery for different durations, potentially leading
to its degradation. The count of cycles was determined using Equation.4.19 and the
results are compared in Fig.6.31, there is a significant increase in cycle count for RL
and this could be ascribed to the increased exchange with the grid to leverage arbi-
trage opportunities. The increased cycle count is also evident in the agent’s actions
compared to the baseline seen in the utilization of the battery capacity in Fig.6.11 and
Fig.6.23. The increase in cycle count would lead to faster deterioration of the battery,
for which the system would incur replacement costs over its lifetime.

Figure 6.31: Count of Battery Charge and Discharge Cycles

The project’s primary goal was to assess the cost-effectiveness of the DDPG-
based EMS, which was reflected in the reward function of the RL problem. It was
found that the DDPG-based EMS minimized the base electricity cost by 26.65% com-
pared to the baseline and by 14.5% compared to the set benchmark model as illus-
trated in Fig.6.32. Additionally, the cost of using the battery was incorporated using
the cost per cycle which was found to be 0.41 Euros/cycle. It also should be noted
that the total electricity cost here does not include the LCOE of PV generated as it is
assumed to be constant across all algorithms and the focus is on evaluating the effi-
cacy of the DDPG agents. When factoring in the cost associated with battery usage,

6.2. Energy management system 71

the results reflected a similar trend to the base electricity cost with RL minimizing the
total electricity cost by 14.2% compared to the baseline and by 11% compared to the
benchmark. The increase in financial benefit to the consumer by agent-based EMS
could be attributed to the sequential decision making which led to beneficial arbitrage
decisions. The summary of the results are shown in Table 6.4

Figure 6.32: Comparative Analysis of Cost-Effectiveness

Table 6.4: Summary of comparative evaluation of EMS

Model Base Electricity Total Electricity Cycle Average
cost cost count Ramping

(Euro/kWh) (Euro/kWh) (kW)

Baseline 0.43 0.44 1.58 0.15
Benchmark 0.40 0.43 6.70 0.37
DDPG 0.32 0.37 9.94 0.29

7
Conclusion

Given the need for adaptable and efficient energy management solutions due to the
increasing intermittency and complexity of the grid, this research aimed to model an
RL agent-based EMS to minimize the electricity cost for a single residential household
consisting of uncontrollable load, PV generation and BESS under a dynamic electricity
pricing structure. The research consists of two parts. The first part explores the var-
ious deep-learning methods to forecast the uncertain variables, and the second part
involves feeding these values into the RL-based EMS to make optimal BESS dispatch
decisions.

7.1. Answer to the research question
As laid out in the introductory chapter, the main research question is divided into five
parts. Here, the sub-questions are addressed first, followed by an in-depth answer to
the main research question.

1. What deep learning-based models could be employed to forecast house-
hold load, PV generation, and electricity prices?
In the literature survey conducted in Chapter 2, various neural network based
forecasting architectures are published and most of the foundational algorithms
can solve a prediction problem, but recurrent neural networks were found to be
most effective when dealing with time series as they have an inherent capability
to model temporal data. In particular, RNN variants of Long short-term memory
architectures were most suitable for the task as they contain an internal and a
hidden state to learn short-term and long-term patterns in the data.

2. What deep learning prediction algorithm achieves the highest accuracy
when forecasting load, market price and PV generation for integrating into
the HEMS?
The neural network architecture of MLP, CNN, Simple RNN, LSTM, Bi-directional
LSTM, and CNN-LSTM hybrid were optimized and tested individually for fore-
casting Load, Electricity market prices and PV generation. It was found that
Bi-Directional LSTM was the most accurate algorithm for all three tasks with
the least root mean squared error (RMSE), which was chosen to be integrated
into the EMS. It was also observed that the performance differences between

72

7.1. Answer to the research question 73

different networks were negligible, especially between recurrent neural network
variants. Another observation was that the accuracy was reduced progressively
with the increase in the forecast horizon.

3. What type of reinforcement learning algorithm is most suitable for solving
energy management system problems
In investigating the existing literature in Chapter 2, several studies in the field
were primarily done using a value-based model-free RL architecture, Deep Q-
learning (DQN). However, recent works have introduced actor-critic architec-
tures that work in continuous action space which becomes essential, especially
when the BESS action space is continuous as opposed to DQN which outputs
discrete actions. Moreover, Deep deterministic policy gradient (DDPG), which
belongs to the actor-critic framework which generates deterministic and contin-
uous actions making it a suitable choice for energy management solutions.

4. How to model an RL-based EMS with load, BESS, and PV to increase cost
savings for the consumer?
The problem was framed as a partially observable Markov decision process
(POMDP) and modeled as a multi-agent DDPG (MADDPG) problem. Two co-
ordinated agents were defined, with one agent solely managing the exchanges
between the BESS and the grid whereas the other agent only decides on dis-
charging the BESS to the load. The MADDPG framework employed has a de-
terministic rule-based approach for dispatching PV and was not incorporated
as part of its RL internal processes. The observation space in the EMS environ-
ment includes Load, PV generated, Market price and their respective forecasted
values at future horizons. The reward function is comprised of elements to min-
imize the base electricity cost while ensuring that the BESS operates within its
operational constraints. The episode length of 24 hours was chosen for the
agent to learn to minimize cost per day. The agents were trained on 30 days of
real-world data and tested on out of the box sample of a 7-day period on various
evaluation metrics.

5. What is the performance of the RL-based EMS when compared to a rule-
based deterministic model in terms of cost savings for the end consumer?
The RL-based EMS was compared against two models one is deterministic rule-
based and the following is an extension of the latter which incorporates the price
signal in the decision-making process which is referred to as the benchmark.
The results simulated for 7 days showed that the RL-based EMS increased the
cost savings of the consumer by 14.2% compared to the baseline and by 11%
compared to the benchmark. This reduction in total electricity cost was achieved
because of the BESS leveraging arbitrage opportunities with the grid. RL ap-
proach led to a sixfold increase in battery cycle count compared to the baseline
and 1.5 fold compared to the benchmark which accelerates the deterioration of
the battery and hence increases the replacement costs over the lifetime. On
the effects observed on the grid operator, the RL-based EMS exhibited a higher
load factor than the other algorithms, indicating a higher but stable demand pat-
tern. On examining the peak power consumption, the RL-based EMS showed
significantly higher peaks and required higher ramping than the baseline.

7.2. Recommendations and Future Work 74

The main research question was constructed as
How can deep learning-basedmodels and reinforcement learning algorithms

be effectively employed to optimize energy management in a household and
how do these models compare to traditional rule-based approaches in terms of
cost savings for the consumer?
The first part of the study revealed that the Bidirectional LSTM produced the most
accurate predictions of hourly load, electricity market prices and PV generation to be
integrated into the HEMS assessed in terms of RMSE. The performance differences
between the compared deep learningmodels were observed to theminimal, especially
among the recurrent neural networks. Additionally, It was also noticed that forecast
errors significantly increase with the prediction horizon.

In the second part, to enhance real-time BESS decision-making for HEMS, a multi-
agent DDPG reinforcement model was proposed and modeled to increase the cost
savings for the end consumer. This algorithm was compared against two models, one
without the price signal and one with the price signal. It was found that the RL-based
EMS increased the cost savings for the consumer by 14.2% compared to the baseline
but increased the stress on the grid which is evident from higher peak consumption,
higher ramping and load factor.DDPG displayed high sensitivity to hyperparameters
which led to breaking the physical boundaries of the BESS in the test runs. Finding
a balance between enabling the agents to learn the physical constraints of the BESS
while also maintaining stable and efficient learning is a challenge. It should be noted
that these experiments were conducted in offline training mode and extending such a
system online could offer greater robustness in adapting to recent changes highlight-
ing the strength of RL.

7.2. Recommendations and Future Work
This study demonstrated the financial effectiveness of the proposedmulti-agent DDPG
EMS approach. However, further research is required to explore and deploy the dis-
cussed algorithm effectively in a real-world setting. The following recommendations
are given for future work.

• The current problem definition could be expanded to include the reward functions
to find an optimal policy taking grid congestion alleviation into account.

• Training the agents on an extensive dataset and assessing their performance in
different seasons to make it a robust model.

• Two agent DDPG architecture could be extended to add two more agents to
coordinate the optimal dispatch of PV between load, grid and the BESS.

• Compare the RL EMS against MILP-based model predictive control to have a
comprehensive assessment of its performance.

• Hierarchical RL with hybrid action spaces could be implemented to avoid periods
of battery action which is not beneficial by making the BESS inactive.

• Perform sensitivity analysis of DDPG agents with respect to different coefficients
of reward components and hyperparameters to study how it impacts cost sav-
ings.

References

[1] “Entsoe transparency platform.” (), [Online]. Available: https://ec.europa.
eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=
Energy % 20use % 20in % 20households % 20up % 206 % 25 % 20in % 202021 % 20 % 2D %
20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%
2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%
25). (visited on 06/15/2021).

[2] “Renewable energy targets.” (), [Online]. Available: https://energy.ec.europa.
eu/topics/renewable-energy/renewable-energy-directive-targets-and-
rules/renewable-energy-targets_en (visited on 06/15/2022).

[3] “Annual rooftop and utility scale installations in the eu.” (), [Online]. Available:
https://www.solarpowereurope.org/advocacy/solar-saves/fact-figures/
annual-rooftop-and-utility-scale-installations-in-the-eu (visited on
06/15/2021).

[4] R. Khezri, A. Mahmoudi, and M. H. Haque, “Optimal capacity of solar pv and
battery storage for australian grid-connected households,” IEEE Transactions
on Industry Applications, vol. 56, no. 5, pp. 5319–5329, 2020.

[5] R. Dufo-López, “Optimisation of size and control of grid-connected storage un-
der real time electricity pricing conditions,” Applied Energy, vol. 140, pp. 395–
408, 2015.

[6] M. Beaudin and H. Zareipour, “Home energy management systems: A review of
modelling and complexity,” Renewable and sustainable energy reviews, vol. 45,
pp. 318–335, 2015.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[8] E. Mocanu, D. C. Mocanu, P. H. Nguyen, et al., “On-line building energy opti-
mization using deep reinforcement learning,” IEEE transactions on smart grid,
vol. 10, no. 4, pp. 3698–3708, 2018.

[9] P. Lissa, C. Deane, M. Schukat, F. Seri, M. Keane, and E. Barrett, “Deep rein-
forcement learning for home energy management system control,” Energy and
AI, vol. 3, p. 100 043, 2021.

[10] A. Gasparin, S. Lukovic, and C. Alippi, “Deep learning for time series forecasting:
The electric load case,” CAAI Transactions on Intelligence Technology, vol. 7,
no. 1, pp. 1–25, 2022.

[11] P. Huber, M. Ott, M. Friedli, A. Rumsch, and A. Paice, “Residential power traces
for five houses: The ihomelab rapt dataset,” Data, vol. 5, no. 1, p. 17, 2020.

75

https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=Energy%20use%20in%20households%20up%206%25%20in%202021%20%2D%20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%25).
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=Energy%20use%20in%20households%20up%206%25%20in%202021%20%2D%20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%25).
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=Energy%20use%20in%20households%20up%206%25%20in%202021%20%2D%20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%25).
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=Energy%20use%20in%20households%20up%206%25%20in%202021%20%2D%20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%25).
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=Energy%20use%20in%20households%20up%206%25%20in%202021%20%2D%20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%25).
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20230613-1#:~:text=Energy%20use%20in%20households%20up%206%25%20in%202021%20%2D%20Products%20Eurostat%20News,-Back%20Energy%20use&text=In%202021%2C%20households%20accounted%20for,%25)%20and%20electricity%20(24.6%25).
https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
https://www.solarpowereurope.org/advocacy/solar-saves/fact-figures/annual-rooftop-and-utility-scale-installations-in-the-eu
https://www.solarpowereurope.org/advocacy/solar-saves/fact-figures/annual-rooftop-and-utility-scale-installations-in-the-eu

References 76

[12] H. Golmohamadi, R. Keypour, B. Bak-Jensen, and J. R. Pillai, “Optimization
of household energy consumption towards day-ahead retail electricity price in
home energy management systems,” Sustainable Cities and Society, vol. 47,
p. 101 468, 2019.

[13] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-term residential load
forecasting based on resident behaviour learning,” IEEE Transactions on power
systems, vol. 33, no. 1, pp. 1087–1088, 2017.

[14] Y. Chakhchoukh, P. Panciatici, and L. Mili, “Electric load forecasting based on
statistical robust methods,” IEEE Transactions on Power Systems, vol. 26, no. 3,
pp. 982–991, 2010.

[15] A. K. Dubey, A. Kumar, V. Garcı́a-Dı́az, A. K. Sharma, and K. Kanhaiya, “Study
and analysis of sarima and lstm in forecasting time series data,” Sustainable
Energy Technologies and Assessments, vol. 47, p. 101 474, 2021.

[16] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural networks for
time series forecasting: Current status and future directions,” International Jour-
nal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[17] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term residential
load forecasting based on lstm recurrent neural network,” IEEE transactions on
smart grid, vol. 10, no. 1, pp. 841–851, 2017.

[18] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid cnn-lstm model for short-
term individual household load forecasting,” Ieee Access, vol. 8, pp. 180 544–
180557, 2020.

[19] G. Dudek, P. Pełka, and S. Smyl, “A hybrid residual dilated lstm and exponential
smoothing model for midterm electric load forecasting,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 33, no. 7, pp. 2879–2891, 2021.

[20] D. Rangelov, M. Boerger, N. Tcholtchev, P. Lämmel, and M. Hauswirth, “Design
and development of a short-term photovoltaic power output forecasting method
based on random forest, deep neural network and lstm using readily available
weather features,” IEEE Access, 2023.

[21] M. J. Mayer and G. Gróf, “Extensive comparison of physical models for photo-
voltaic power forecasting,” Applied Energy, vol. 283, p. 116 239, 2021.

[22] F. Mulder, “Implications of diurnal and seasonal variations in renewable energy
generation for large scale energy storage,” Journal of Renewable and Sustain-
able Energy, vol. 6, no. 3, p. 033 105, 2014.

[23] S. Sobri, S. Koohi-Kamali, and N. A. Rahim, “Solar photovoltaic generation
forecasting methods: A review,” Energy conversion and management, vol. 156,
pp. 459–497, 2018.

[24] Y. Li, Y. Su, and L. Shu, “An armax model for forecasting the power output of
a grid connected photovoltaic system,” Renewable Energy, vol. 66, pp. 78–89,
2014.

[25] A. Jędrzejewski, J. Lago, G. Marcjasz, and R. Weron, “Electricity price forecast-
ing: The dawn of machine learning,” IEEE Power and Energy Magazine, vol. 20,
no. 3, pp. 24–31, 2022.

References 77

[26] P.-H. Kuo and C.-J. Huang, “An electricity price forecasting model by hybrid
structured deep neural networks,” Sustainability, vol. 10, no. 4, p. 1280, 2018.

[27] A. Vagale, L. Šteina, and V. Vēciņš, “Time series forecasting of mobile robot
motion sensors using lstm networks,” Applied Computer Systems, vol. 26, no. 2,
pp. 150–157, 2021.

[28] R. Balakrishnan and V. Geetha, “Review on home energymanagement system,”
Materials Today: Proceedings, vol. 47, pp. 144–150, 2021.

[29] K. Mason and S. Grijalva, “A review of reinforcement learning for autonomous
building energymanagement,”Computers & Electrical Engineering, vol. 78, pp. 300–
312, 2019.

[30] Y. Zou, T. Liu, D. Liu, and F. Sun, “Reinforcement learning-based real-time
energy management for a hybrid tracked vehicle,” Applied energy, vol. 171,
pp. 372–382, 2016.

[31] W. Zhang, J. Wang, S. Du, H. Ma, W. Zhao, and H. Li, “Energy management
strategies for hybrid construction machinery: Evolution, classification, compari-
son and future trends,” Energies, vol. 12, no. 10, p. 2024, 2019.

[32] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[34] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[35] C. J. Watkins and P. Dayan, “Q-learning,”Machine learning, vol. 8, pp. 279–292,
1992.

[36] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-
ble q-learning,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 30, 2016.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
arXiv preprint arXiv:1511.05952, 2015.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-
terministic policy gradient algorithms,” in International conference on machine
learning, Pmlr, 2014, pp. 387–395.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[40] L. Yu, W. Xie, D. Xie, et al., “Deep reinforcement learning for smart home energy
management,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2751–2762,
2019.

[41] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra, “Residential demand re-
sponse using reinforcement learning,” in 2010 First IEEE international confer-
ence on smart grid communications, IEEE, 2010, pp. 409–414.

References 78

[42] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.
[43] G. Han, S. Lee, J. Lee, K. Lee, and J. Bae, “Deep-learning-and reinforcement-

learning-based profitable strategy of a grid-level energy storage system for the
smart grid,” Journal of Energy Storage, vol. 41, p. 102 868, 2021.

[44] Y. Liu, D. Zhang, and H. B. Gooi, “Optimization strategy based on deep rein-
forcement learning for home energy management,” CSEE Journal of Power and
Energy Systems, vol. 6, no. 3, pp. 572–582, 2020.

[45] G. Henri, T. Levent, A. Halev, R. Alami, and P. Cordier, “Pymgrid: An open-
source python microgrid simulator for applied artificial intelligence research,”
arXiv preprint arXiv:2011.08004, 2020.

[46] J. R. Vázquez-Canteli, S. Dey, G. Henze, and Z. Nagy, “The citylearn challenge
2020,” in Proceedings of the 7th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation, 2020, pp. 320–321.

[47] A. Tealab, “Time series forecasting using artificial neural networks methodolo-
gies: A systematic review,” Future Computing and Informatics Journal, vol. 3,
no. 2, pp. 334–340, 2018.

[48] J. Brownlee, Deep learning for time series forecasting: predict the future with
MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.

[49] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv preprint arXiv:1701.01887,
2017.

[50] S. E. Razavi, A. Arefi, G. Ledwich, G. Nourbakhsh, D. B. Smith, and M. Mi-
nakshi, “From load to net energy forecasting: Short-term residential forecasting
for the blend of load and pv behind the meter,” IEEE Access, vol. 8, pp. 224 343–
224353, 2020.

[51] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and H. Abu-Rub,
“A novel stacked generalization ensemble-based hybrid lgbm-xgb-mlp model for
short-term load forecasting,” Energy, vol. 214, p. 118 874, 2021.

[52] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional
neural network,” in 2017 international conference on engineering and technol-
ogy (ICET), Ieee, 2017, pp. 1–6.

[53] C.-J. Huang and P.-H. Kuo, “A deep cnn-lstm model for particulate matter (pm2.
5) forecasting in smart cities,” Sensors, vol. 18, no. 7, p. 2220, 2018.

[54] H. Dong, H. Dong, Z. Ding, S. Zhang, and Chang,DeepReinforcement Learning.
Springer, 2020.

[55] T. Tiong, I. Saad, K. T. K. Teo, and H. bin Lago, “Deep reinforcement learning
with robust deep deterministic policy gradient,” in 2020 2nd International Con-
ference on Electrical, Control and Instrumentation Engineering (ICECIE), IEEE,
2020, pp. 1–5.

[56] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” Advances in neural information processing sys-
tems, vol. 25, 2012.

References 79

[57] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,”
Journal of machine learning research, vol. 13, no. 2, 2012.

[58] J. Brownlee, Probability for machine learning: Discover how to harness uncer-
tainty with Python. Machine Learning Mastery, 2019.

[59] “Entsoe transparency platform.” (), [Online]. Available: https://transparency.
entsoe.eu/ (visited on 06/15/2023).

[60] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing for
supervised leaning,” International journal of computer science, vol. 1, no. 2,
pp. 111–117, 2006.

[61] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice,
2nd. Otexts, 2018.

[62] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,”
Physical review, vol. 36, no. 5, p. 823, 1930.

[63] C. Bergmeir and J. M. Benı́tez, “On the use of cross-validation for time series
predictor evaluation,” Information Sciences, vol. 191, pp. 192–213, 2012.

https://transparency.entsoe.eu/
https://transparency.entsoe.eu/

A
IEEE Conference paper

80

A Comparison of Various Deep Learning Methods
for Household Load Forecasting

Karthikeyan Deivamani
Faculty of Electrical Engineering,
Mathematics and Computer Science

Delft University of Technology
Delft, The Netherlands

K.Deivamani@student.tudelft.nl

Farshid Norouzi
Department of DC Systems

Energy Conversion and Storage
Delft University of Technology

Delft, The Netherlands
f.norouzi@tudelft.nl

Aditya Shekhar
Department of DC Systems,

Energy Conversion and Storage
Delft University of Technology

Delft, The Netherlands
a.shekhar@tudelft.nl

Pavol Bauer
Faculty of Electrical Engineering,

Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands
P.Bauer@tudelft.nl

Abstract—Forecasting energy consumption is vital for smart
grid operations to manage demand, plan loads, and optimize
grid operations. This work aims at reviewing and experimen-
tally evaluating six univariate deep learning architectures to
forecast load for a single household using a real-world dataset.
Multi-layer perceptron (MLP), Convolutional neural network
(CNN) and recurrent neural networks (Simple RNN, Long Short
Term Memory (LSTM)) were the neural network methods that
were analysed along with robust LSTM architectures like Bi-
directional LSTM and CNN-LSTM Hybrid. All the models were
tuned using Bayesian optimization and evaluated using root
mean squared error (RMSE) as the metric. In addition to
neural network models, Seasonal ARIMA (SARIMA) a statistical
model is also presented to observe the performance. As a result,
Bi-directional LSTM was observed to have achieved the best
performance with the smallest value of RMSE; however, it
was also observed that differences in performances between
other neural network models were quite low, especially between
the RNN architectures. Additionally, although machine learning
methods performed better than SARIMA the former model was
more complex and computationally intensive.

Index Terms—electric load forecasting, smart grid, time-series
forecasting, univariate, deep learning

I. INTRODUCTION

Microgrids are a promising solution in making the electric
grid more reliable and green by improving energy reliability,
energy sharing and demand-side management aspects. To
leverage the full capabilities of a microgrid, accurate load
forecasting becomes a critical task either from a consumer
perspective to reduce consumption or from a grid operator
perspective for a better decision-making process or for efficient
energy storage system management. With the rise in advanced
monitoring infrastructure more granular and extensive data
is being collected. Deep learning forecasting methods have
demonstrated significant potential in effectively managing
larger and more intricate datasets [1].

Short-term load forecasting (STFL) is the process of pre-
dicting the power demand of a power system over a short-
term period, typically ranging from a few minutes to a few
hours. Deep learning has demonstrated improved performance
in modeling complex patterns for individual household load
profiles, which tend to be more volatile due to their depen-
dence on individual behavior, as opposed to aggregate level
modeling [2].

In literature, different types of models both linear and non-
linear have been used for STFL. Family of Auto-regressive
moving average (ARMA) models were pioneers in STFL [3]
which was then evolved into SARIMA to account for seasonal
variance [4]. The limitation of this set of statistical methods
is that it assumes a linear system whereas most often real-
world cases exhibit non-linear properties. In order to solve this
shortcoming, models like feed-forward neural networks have
become attractive as they show capabilities in modelling com-
plex non-linear systems such as load forecasting [1]. Neural
network techniques range from simple MLP to convolutional
methods to recurrent neural networks [5] along with their
variants LSTM [6] and Gated recurrent units (GRU). Hybrid
architectures have also been proposed in the literature between
neural networks as well as between statistical and machine
learning methods such as CNN-LSTM hybrid presented in [7]
and a hybrid LSTM-Exponential smoothening [8] respectively.

The scope of this paper is to provide a comparative analysis
of basic deep-learning architectures for STFL of a single
household and compare using standard error metrics such as
RMSE and MAE to input into an energy management system.

This paper is organized as follows: Section II reviews the
load dataset, preprocessing steps, error metrics and the details
of the models being evaluated. Next, section III presents the
results and discussion of parameter search and load forecasting
models. Finally, the conclusions are provided in section IV.

979-8-3503-9678-2/23/$31.00 ©2023 IEEE

II. METHODOLOGY

A. Data Collection and preparation

The dataset used in this analysis is the hourly load from
a single household which was retrieved from the IHomeLab
RAPT dataset [9]. The data is from a household in the greater
Lucerne region in Switzerland and the data spans from 1
December 2016 to 31 July 2019 which is around two and
a half years.

Fig. 1. Weekly statistics for the load in the whole IHomeLab dataset. The
bold line is the mean and the blue area covers one standard deviation from
the mean

In Fig. 1 the bold line represents the mean of that hour
over every week in the dataset, here it could be observed
that there are high fluctuations and a higher mean during
Sunday,Saturday and Wednesday. However, higher consump-
tion during the weekend is expected but Wednesday is an
interesting observation.

The missing values in the dataset were located and filled
using the previous value and to deal with non-stationarity the
data was differenced from the previous value [10]. Stationarity
of the data was checked using Augmented Dickey-Fuller
(ADF) test [11].

B. Forecasting models

1) Baseline:
A seasonal naive model was used which is using the same
value of the previous season as the predicted value this is
also called a persistent model. In this analysis, since the daily
seasonality is strong as inferred from auto-correlation values
the previous day were used as the forecasting value for the
coming day.

2) Statistical Model (SARIMA):
SARIMA is a class of time series forecasting techniques

that predicts the future values based only on the past behavior
of the variable being modelled along with accounting for sea-
sonalities [4]. The mathematical representation of the model
is given below.

yt = c+

p∑
n=1

ϕnyt−n+

q∑
n=1

θnϵt−n+
P∑

n=1

Φnyt−sn+

Q∑
n=1

Θnϵt−sn+ϵt

(1)

SARIMA (p,d,q)(P, D, Q)s is a parametric model, and
(p,d,q) is the auto-regressive lag order, order of differencing,
moving average lag order respectively and (P, D, Q) is for the
seasonal terms. In (1) the c is a constant term, ϵt is the error
term and ϕn,θn,Θn,Φn are the coefficients of lag terms .

3) Artificial Neural Network (ANN) Methods:
Neural Networks are part of a family of machine-learning

techniques inspired by the functioning of the human brain
which consists of interconnected nodes (neurons) compart-
mentalized into layers [12]. A typical neural network archi-
tecture consists of an input, output layer along with hidden
layers where the abstractsa are learned . For this forecasting
problem, 24 lags were utilized as the feature due to its strong
diural pattern [13]. Different architectures of neural networks
built on the foundational structure are discussed below.

a) Multi layer perceptron (MLP):
Multi-layer perceptron is a type of feed-forward ANN where

the information flows in only one direction from the input layer
to the output layer. This brings the limitation of not capturing
the temporal dependencies regardless MLP has shown to have
competitive performance in a few load forecasting use cases
[14].

b) Convolutional Neural Network(CNN):
Convolutional neural networks are a family of ANN which

works with a grid-like structure and have been extensively
used in image recognition and natural language processing
[15]. The key property of CNNs to extract features has
been leveraged for univariate time-series forecasting, where
a filter/kernel is passed through the series to extract relevant
features. Although CNN has shown to be effective in NLP
and image recognition, they are not widely used in time series
forecasting as CNN cannot model sequential data, which has
been addressed recently by combining them with recurrent
neural networks [2]. A vanilla CNN and a CNN-LSTM hybrid
architectures have been analyzed in this work.

c) Recurrent Neural Network (RNN):
Recurrent neural networks is a NN architecture that modifies

feed-forward neural networks to handle sequential data and
capture patterns better, which makes it a powerful tool for
time series forecasting [5]. Compared to feed-forward neural
networks, RNNs maintain an internal state that allows them
to remember information from previous inputs.RNN’s internal
feedback loop allows it to use its previous outputs as inputs
to the current step, making it capable of modeling sequences
and capturing temporal dependencies in the data.

d) Long Short Term Memory (LSTM):
LSTM is a variant of RNN that was developed to address

the issue of vanishing or exploding gradients during backprop-
agation. This problem occurs when the gradient values become
too small or too large, making it difficult for the network
to update the weights effectively [16].LSTMs have a hidden
state and a cell state which store short-term dependencies and
long-term information. This ability of LSTM to store long-
term dependencies has it a popular choice in load forecasting
[6]. One extension of LSTM is the Bi-directional LSTM, as
unidirectional LSTM processes the input sequence only in the

2

TABLE I
HYPERPARAMETERS AND PARAMETER RANGES FOR DEEP LEARNING

MODELS

Hyperparameter Range

Number of hidden layers [1,2,3]

Number of neurons (1,120)

Dropout ratio (0,0.5)

Learning rate (0.00001,0.01)

forward direction, and Bi-LSTM processes both ways forward
and backward [17]. This allows the model to capture a better
sequential relationship in the input sequence. Unidirectional
and Bi-directional LSTMs both have been explored in this
analysis.

C. Hyperparameter Tuning

Hyperparameter tuning is important in time series forecast-
ing to find the best model hyperparameters that minimize
forecast error. RMSE is a commonly used target metric for
this optimization process.

For SARIMA, the autoregressive, differencing, moving av-
erage terms (p, d, q)x(P,D,Q) were analyzed using a correl-
ogram, after which a grid search was done to obtain best-fit
hyperparameters [4].

Two common methods for hyperparameter tuning are grid
search and random search. However, as the number of hy-
perparameters to tune increases, the number of possible com-
binations can grow exponentially, making the search compu-
tationally intensive and sometimes infeasible. Bayesian opti-
mization is a probabilistic model which finds an optimal set
of hyperparameters in fewer evaluations. After every iteration,
it updates the search algorithm and avoids the low-performing
region [18]. For this comparative study, a simple Bayesian
algorithm was performed for the hyperparameter in the range
as mentioned in table II.

D. Performance Metrics

The accuracy of models and neural network architectures
is typically assessed using scale-dependent error metrics like
root mean squared error (RMSE) and mean average error
(MAE) [19]. RMSE is particularly effective as it places
greater weight on large errors and can handle values close
to zero. Since they are scale-dependent, they cannot be used
to compare different datasets. R-squared (R2) is a statistical
measure that represents the proportion of the variance in
predicted values is explained by the true values, (4) shows
the mathematical representation.

1) Mean Absolute Error (MAE):

MAE =
1

n

∑
|ŷt − yt| (2)

2) Root Mean Squared Error (RMSE):

RMSE =

√
1

n

∑
|ŷt − yt|2 (3)

3) R-Squared:

R2 = 1−
∑

(yi − ŷ)2∑
(yi − ȳ)2

(4)

In (2) and (3), ŷt is the predicted value and y is the actual
value. To assess model accuracy, a combination of metrics
is needed to inspect different aspects of the forecast. In this
paper, RMSE is chosen as the metric over which models are
optimized as well as for evaluation.

A holdout validation was undertaken for evaluation where
the dataset was split into 70% for training 20% for validation
and 10% for testing without shuffling of data points.

III. RESULTS AND DISCUSSION

In this section, the results of the above mentioned models
using the IHomeLab dataset and accuracy on the test data
using RMSE and MAE are analyzed.

TABLE II
SUMMARY OF PREDICTION ERRORS (RMSE AND MAE) FOR ABOVE

MODELS

Models MAE RMSE R2

(kW) (kW)

Persistence Model (Baseline) 0.251 0.410 -0.356

SARIMA 0.231 0.322 0.149

Deep Learning Models

Multilayer Perceptron (MLP) 0.195 0.281 0.359

Convolutional Neural Network(CNN) 0.179 0.275 0.363

Recurrent Neural Network (RNN) 0.183 0.277 0.361

Long Short Term Memory (LSTM) 0.175 0.270 0.374

CNN-LSTM Hybrid 0.181 0.271 0.404

Bidirectional LSTM 0.173 0.269 0.409

A. SARIMA

For the SARIMA model, after analyzing autocorrelation
and partial autocorrelation plot followed by a grid search the
optimum parameters were found to be p = 2, d = 1, q =
1, P = 3, D = 0, Q = 2 with the seasonality of 24 hours.
As seen in the table II RMSE and MAE were 0.231 kW and
0.322 kW, on comparing this with the baseline performance
SARIMA had lower RMSE and MAE. In Fig. 2, the predicted
values capture the daily variation but fail to capture the
increase during the weekend as the model is limited to one
seasonality. As it assumes a linear relationship and stationarity

3

in data which states constant variance so the model fails to
capture the non-linearity. A key advantage of SARIMA and
statistical models, in general, is that they need less data to train
compared to machine learning methods which makes them
robust when fewer data is available. This model is introduced
to compare a well-popular statistical model with deep learning
methods.

Fig. 2. Forecasted (Red) and Actual (Blue) Load profile for a week using
SARIMA Model

B. Multilayer Perceptron (MLP)

In Fig. 3, it can be seen that the MLP model is able to
capture the trend of the actual data and fit better than the
SARIMA model with a RMSE of 0.281 kW. It can also be
noticed that the model does capture variance significantly
better visually and by inferring R-squared value in Table II .
The parameter chosen were 2 dense layers with the first layer
of 90 neurons and the second layer of 20 neurons, a learning
rate of 0.0001, dropout ratio of 0.2 for 100 epochs.

Fig. 3. Forecasted (Red) and Actual (Blue) Load profile for a week using
Multilayer Perceptron (MLP)

One of the main drawbacks of using MLP for load forecast-
ing is that it does not model the long-term dependencies and
the temporal relationships between the data. Compared to other
architectures mentioned, MLPs are heavily parameterized due
to the fully connected nature of dense layers which lead to
overfitting of the training data. Regularization by a dropout

layer was introduced to tackle this problem and generalize the
model.

C. Convolutional Neural Network (CNN)

Optimization of CNN hyperparameters yielded 16 filters,
kernel size of 4 and 30 neurons in the dense layer as the
optimal hyperparameters from bayesian optimization. It per-
formed better than MLP with a RMSE of 0.275 kW with a
slight reduction in RMSE and better capturing of vairance as
seen in Fig.4 and Table II . The architecuture of CNN is to
capture local patterns through filters explains the variance in
the predicted data and it also emphasizes the limitation of not
capturing the trend and long-term dependencies in the data.

Fig. 4. Forecasted (Red) and Actual (Blue) Load profile for a week using
Multilayer Perceptron (CNN)

Fig. 5. Forecasted (Red) and Actual (Blue) Load profile for a week using
Multilayer Perceptron (Bi-Directional LSTM)

D. Bi-Directional LSTM

In this analysis, Bidirectional LSTM has shown to be the
model with the least RMSE of 0.269kW, but the difference
between this and other recurrent neural networks (LSTM,
CNN-LSTM) is very low as seen in Table II. In Fig. 5, it
can be observed that some predictions clearly reflect the
influence of the actual value of the previous time step. This
is mainly due to the sequential nature of the data and high
correlation with the previous time step even after differencing
and removing non-stationarity. Adding external features that

4

influence the load could improve the performance further
by providing additional information to the model like for
instance weather conditions, holidays, and special events can
all impact the electricity consumption of the household. A
shallow architecture with a Bi-directional LSTM with 64
neurons and a learning rate of 0.001 was chosen and trained
for 80 epochs.

Although, LSTMs have shown good results they suffered
from overfitting during experimentation due to smaller train
data and a high number of parameters. This was addressed
by introducing a regularization dropout layer with a dropout
ratio of 0.2.

In this analysis, it was observed that RNNs outperformed
the baseline and other neural network methods as seen by
their lower RMSE. It was also noted that LSTM based models
performed better than simple RNNs with Bi-directional LSTM
having a slight edge over others in terms of RMSE, as shown
in 6. The problem of overfitting was constantly experienced
during the empirical testing for all the models as the data set
used to train was limited to only 2 years, and neural networks
are complex models that require large amounts of data to
achieve better performance.

Fig. 6. Comparison of RMSE and MAE for all the discussed models

IV. CONCLUSION

In this paper, we have compared the univariate single-step
load forecasting performance of a statistical model (SARIMA)
and primary neural network architectures such as MLP, CNN,
RNN and LSTM using rRMSE as the evaluation metric and Bi-
Directional LSTM performance was superior to other models.

Although there were only slight variations in the perfor-
mance of different neural network models, Bi-LSTM exhibited
the best results in terms of RMSE, as depicted in Fig. 6
and Table II. Nonetheless, the differences in the performance
among these models were not significant. It should also be

noted that neural network methods on average performed 12%
better than SARIMA but the implementation for the former
was complex and computationally intensive than the later.
Overall, the findings suggest that deep learning approaches
are effective for energy consumption forecasting and can be
useful in smart grid operations for managing demand, planning
loads, and optimizing grid operations.

REFERENCES

[1] A. Gasparin, S. Lukovic, and C. Alippi, “Deep learning for time series
forecasting: The electric load case,” CAAI Transactions on Intelligence
Technology, vol. 7, no. 1, pp. 1–25, 2022.

[2] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-term
residential load forecasting based on resident behaviour learning,” IEEE
Transactions on Power Systems, vol. 33, no. 1, pp. 1087–1088, 2017.

[3] Y. Chakhchoukh, P. Panciatici, and L. Mili, “Electric load forecasting
based on statistical robust methods,” IEEE Transactions on Power
Systems, vol. 26, no. 3, pp. 982–991, 2010.

[4] A. K. Dubey, A. Kumar, V. Garcı́a-Dı́az, A. K. Sharma, and K. Kan-
haiya, “Study and analysis of sarima and lstm in forecasting time series
data,” Sustainable Energy Technologies and Assessments, vol. 47, p.
101474, 2021.

[5] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural net-
works for time series forecasting: Current status and future directions,”
International Journal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[6] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,”
IEEE transactions on smart grid, vol. 10, no. 1, pp. 841–851, 2017.

[7] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid cnn-lstm model
for short-term individual household load forecasting,” Ieee Access,
vol. 8, pp. 180 544–180 557, 2020.

[8] G. Dudek, P. Pełka, and S. Smyl, “A hybrid residual dilated lstm and
exponential smoothing model for midterm electric load forecasting,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 7, pp. 2879–2891, 2021.

[9] P. Huber, M. Ott, M. Friedli, A. Rumsch, and A. Paice, “Residential
power traces for five houses: the ihomelab rapt dataset,” Data, vol. 5,
no. 1, p. 17, 2020.

[10] J. C. López, M. J. Rider, and Q. Wu, “Parsimonious short-term load
forecasting for optimal operation planning of electrical distribution
systems,” IEEE transactions on power systems, vol. 34, no. 2, pp. 1427–
1437, 2018.

[11] B. Nepal, M. Yamaha, A. Yokoe, and T. Yamaji, “Electricity load
forecasting using clustering and arima model for energy management in
buildings,” Japan Architectural Review, vol. 3, no. 1, pp. 62–76, 2020.

[12] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv preprint
arXiv:1701.01887, 2017.

[13] M. Elsaraiti and A. Merabet, “Solar power forecasting using deep
learning techniques,” IEEE Access, vol. 10, pp. 31 692–31 698, 2022.

[14] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and
H. Abu-Rub, “A novel stacked generalization ensemble-based hybrid
lgbm-xgb-mlp model for short-term load forecasting,” Energy, vol. 214,
p. 118874, 2021.

[15] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 international conference on
engineering and technology (ICET). Ieee, 2017, pp. 1–6.

[16] Z. Hu, J. Zhang, and Y. Ge, “Handling vanishing gradient problem using
artificial derivative,” IEEE Access, vol. 9, pp. 22 371–22 377, 2021.

[17] H. Jahangir, H. Tayarani, S. S. Gougheri, M. A. Golkar, A. Ahmadian,
and A. Elkamel, “Deep learning-based forecasting approach in smart
grids with microclustering and bidirectional lstm network,” IEEE Trans-
actions on Industrial Electronics, vol. 68, no. 9, pp. 8298–8309, 2020.

[18] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
Eds., vol. 25. Curran Associates, Inc., 2012.

[19] C. Bergmeir and J. M. Benı́tez, “On the use of cross-validation for time
series predictor evaluation,” Information Sciences, vol. 191, pp. 192–
213, 2012.

5

B
Battery Data sheet

86

CHANGE YOUR ENERGY, CHARGE YOUR LIFE

Compatible Inverter Brands : SMA, SolaX, Ingeteam, GoodWe, Sungrow, Victron Energy, Selectronic - More brands to be added
1) Total Energy is measured at the initial stage of battery life under the condition as follows : Temperature 25℃
2) Usable Energy is based on battery cell only

Compatible Inverter Brands : SMA, SolarEdge, Fronius, Huawei - More brands to be added
1) Total Energy is measured at the initial stage of battery life under the condition as follows : Temperature 25℃
2) Usable Energy is based on battery cell only

48V
Models RESU3.3 RESU6.5 RESU10 RESU13

Total Energy [kWh] 1) 3.3 6.5 9.8 13.1

Usable Energy [kWh] 2) 2.9 5.9 8.8 12.4

Capacity [Ah] 63 126 189 252

Nominal Voltage [V] 51.8

Voltage Range [V] 42.0~58.8

Max Power [kW] 3.0 4.2 5.0 5.0

Peak Power [kW] (for 3 sec.) 3.3 4.6 7.0 7.0
11.0 (Backup Mode)

Dimension [W x H x D, mm] 452 x 403 x 120 452 x 656 x 120 452 x 484 x 227 452 x 626 x 227

Weight [kg] 31 52 75 99

Enclosure Protection Rating IP55

Communication CAN2.0B

Certificates
Cell UL1642

Product UL1973 / TUV (IEC 62619) / CE / FCC / RCM TUV (IEC 62619) / CE / FCC / RCM

400V

Models
RESU7H RESU10H

Type-R Type-C Type-R Type-C

Total Energy [kWh] 1) 7.0 9.8

Usable Energy [kWh] 2) 6.6 9.3

Capacity [Ah] 63 63

Voltage Range [V] 350~450 430~550 350~450 430~550

Max Power [kW] 3.5 5.0

Peak Power [kW] 5.0 (for 5 sec.) 5.0 (for 10 sec.) 7.0 (for 10 sec.)

Dimension [W x H x D , mm] 744 x 692 x 206 744 x 907 x 206 744 x 907 x 206 744 x 907 x 206

Weight [kg] 75 87 97 99.8

Enclosure Protection Rating IP55

Communication RS485 CAN2.0B RS485 CAN2.0B

Certificates
Cell UL1642

Product TUV (IEC 62619) /
CE / FCC / RCM

TUV (IEC 62619) /
CE / RCM UL1973 / TUV (IEC 62619) / CE / FCC / RCM

RESU Plus is an expansion kit specially designed for 48V models of the RESU series.
With RESU Plus, all 48V models can be cross-connected with each other.

• �Dimension : 216 x 156 x 121 (W x H x D, mm)
• �Number of Expandable Battery Units : Up to 2EA
• �IP55

	Preface
	Abstract
	Nomenclature
	Introduction
	Objective and research questions
	Thesis outline

	Background
	Overview of Energy Management Systems
	Forecasting Methods
	EMS Methodologies
	Reinforcement Learning

	Theory
	Forecasting Models
	Persistence Model
	SARIMA
	Deep learning Methods

	Energy Management systems
	EMS Baseline
	EMS Benchmark
	Reinforcement Learning based EMS

	Hyperparameter Tuning

	Methodology
	Resources and Tools
	Data Collection
	Data Pre-processsing
	Missing Data
	Stationarity
	Feature selection
	Feature scaling
	Data Preparation

	Energy management systems
	Pricing structure
	Battery system sizing

	Reinforcement learning
	Environment
	Observation space
	Reward setting
	Action Exploration Strategy
	Multi-agent DDPG

	Hyperparameter tuning
	Forecasting
	Reinforcement learning
	Benchmark Model

	Performance Metrics
	Forecasting
	Energy Management Systems

	Exploratory Data Analysis
	Results and Discussion
	Forecasting
	Load
	Electricity price
	PV Generation

	Energy management system
	Baseline
	Benchmark
	Reinforcement learning
	Comparative analysis

	Conclusion
	Answer to the research question
	Recommendations and Future Work

	References
	IEEE Conference paper
	Battery Data sheet

