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Abstract
We propose a new strategy to design recursive
implementations of the Gaussian filter and Gaussian
regularized derivative filters. Each recursive filter consists
of a cascade of two stable Nth-order subsystems (causal
and anti-causal). The computational complexity is 2N
multiplications per pixel per dimension independent of the
size (σ) of the Gaussian kernel. The filter coefficients have
a closed-form solution as a function of scale (σ) and
recursion order N (N=3,4,5). The recursive filters yield a
high accuracy and excellent isotropy in n-D space.

1. Introduction

Gaussian (derivative) filters are used in a wide variety
of computer vision tasks. The Gaussian filter is frequently
used as a low-pass filter for noise suppression or scale-
space construction [1, 2]. Optimal edge detection uses
Gaussian regularized derivatives to detect and localize 1-D
noisy step edges [3]. Accurate localization of curved edges
uses a nonlinear combination of Gaussian derivatives [4].
Geometric object features such as perimeter length in 2-D,
curve length and surface area in 3-D, and shape descriptors
such as bending energy and Euler number can be measured
using Gaussian derivative filters [5]. Local anisotropy and
orientation can be measured in a Gaussian smoothed tensor
image constructed from the dyadic product of a gradient
vector with itself [6, 7].

These applications will benefit from a recursive
implementation of Gaussian derivative filters. Recursive
filters are fast and scale-independent. Deriche [11-13] has
proposed a stable recursive implementation by
decomposing the transfer function into a sum (parallel
interconnection) of a stable causal and a stable anti-causal
filter. Each sub-filter of order N requires 2N
multiplications, i.e. N recursive and N non-recursive. The
work presented here is an extension of our previous work
[9]. In [9] we derived a stable filter by decomposing the
transfer function in a product (series interconnection) of a
stable causal and a stable anti-causal filter. Each sub-filter

of order N required only N multiplications, i.e., N recursive
and zero non-recursive.

In this work we use the efficient series (cascade)
implementation from [9] which is faster than any other
alternative [9]. The major drawbacks of our earlier filter
have been addressed by a new design strategy. The
improvements are:
• improved accuracy (significantly smaller error for

small Gaussians),
• arbitrary order of recursive filter minimizing the L2 or

L∞  norm,
• closed-form solution of the filter coefficients as a

function of σ and N,
• improved isotropy and accuracy for Gaussian

derivative filters in n-D space.

2. Gaussian filter

The multi-dimensional Gaussian filter can be separated
into one-dimensional Gaussians along its main axes. For
simplicity we start our analysis with a 1-D Gaussian. The
Gaussian filter g(t;σ) has a Fourier transform G(ω;σ)
which is also a Gaussian
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and where σ is referred to as both the standard deviation
and the scale. The Gaussian filter is the filter which
minimizes the product of spatial support and frequency
bandwidth [8]. It allows simultaneous localization in the
time (space) and (spatial) frequency domain.

3. Discrete-time recursive filter

The goal is to design a discrete recursive Gaussian
filter that requires a minimum number of multiplications.
A discrete time (space) system is described by its z-
transform. The Gaussian transfer function is real and even.
A real and even transfer function requires that H*(z)=H(z)
and H(z)=H(z–1). This is guaranteed by our choice
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H z K z K z K z K z= ⋅ ⋅ ⋅− −* *1 1 (2)

As a consequence, all complex-valued poles (and zeroes)
appear in quadruples { di, di

–1,di
*,di

*–1} . For real-valued
poles H(z) = K(z) K (z–1) suffices which shows that all real-
valued poles (and zeroes) appear in pairs { di, di

–1}  (c.f.
Figure 1).
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Figure 1: Graphical representation of the z-transform of a
stable (|z|=1 in region-of-convergence) recursive filter with
a real and even transfer function.

3.1 Series interconnection

A real and even transfer function H(z) can be decomposed
into two stable subsystems: a causal one H+(z) and an anti-
causal one H–(z). The interconnection of the subsystems
can be either in series H z H z H zs s s= ⋅+ –  or in
parallel H z H z H zp p p= ++ − . Note that the poles of
H+ lie inside the unit circle and that the poles of H– lie
outside the unit circle. To minimize the computational
complexity to N multiplications per subsystem, we demand
that each subsystem should be a purely recursive system,
i.e. no polynomial in z in the numerator of the transfer
function is allowed. For the series interconnection we find
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For the parallel interconnection scheme we find
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The overall parallel transfer function Hp(z) has 2N poles
(i.e. the poles of the two subsystems) and N zeroes. These

zeroes in the z-transform are a function of the poles { di}
and hamper the quality of the Gaussian approximation, i.e.,
less suppression of the high frequencies. Deriche employs
a parallel interconnection scheme of two full Nth order
subsystems (2N multiplications per subsystem) consisting
of N poles and N zeroes. The zeroes supply the necessary
degrees of freedom to allow an accurate approximation to
the true Gaussian in exchange for twice the number of
multiplications. To minimize the computational
complexity we choose the series interconnection of a stable
causal and a stable anti-causal subsystem.

3.2 Discrete-time transfer function

In the remainder of this paper we focus on the series
interconnection and drop the subscript s. The discrete time
(space) systems are described by their z-transforms which
can be decomposed into a product of two stable
subsystems H+ (causal system) and H– (anti-causal
system). Using {di} for the poles in the z-plane we obtain

H z H z H z= ⋅+ − (5)
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The resulting discrete time transfer function H(Ω) for
arbitrary N

H H z z e Hj
N

d
i

N

i
Ω ΩΩ= = = −

=
∏ 1

1

(6)

with

H
d

d z z d

d

d d
d

i

i i

i

i i
i

z e j

Ω
ΩΩ

( ) =
−

− −
=

−

− −−

=

1 1

2 1

2

1

2

2cos
(7)

Each term Hdi
Ω  consists of a causal as well as the

corresponding anti-causal pole. Although the individual
terms Hdi

Ω  are complex-valued for a complex pole
{ di} , the overall discrete time (space) transfer function is
always real-valued because the complex-valued poles { di}
appear in conjugate pairs (eg. (2)). The contribution of a
conjugate pair of poles to the discrete time Fourier
transform is real-valued and shown below.
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3.3 Second moment of the discrete-time recursive
filter

The second moment of a true Gaussian filter is equal to
its variance σ2. Using the derivative property of the
discrete-time Fourier transform and the evenness of the
Gaussian, we can show that the second moment in the time
(space) domain corresponds to the second derivative of the
transfer function at Ω=0.
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The second derivative of our recursive discrete-time
transfer function at Ω=0 is a measure for the filter’s second
moment (scale). Using eqs (6) and (7) we can show that
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The equation above always yields a real-valued variance
because the complex-valued poles di always appear in
conjugate pairs (eg. (2)).

3.4 Implementation: difference equations

The cascade of both systems as illustrated in Figure 2
with the proper choice of { di}  can approximate the discrete
Gaussian filter.

forward filter

causal H+

backward filter

anti-causal H_

v [ n] y[ n ]x [n ]

Figure 2: Two systems in series: one causal (H+) and one
anti-causal (H–).

The subsystems H+ and H– correspond to a forward and a
backward difference equation with real-valued coefficients
{ bi }.
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To guarantee that H(Ω=0) = 1 which is equivalent to
H(z=1) = 1 we write

α = + = +−
= = =∑ ∑1 1
1 1 1
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Note that the filter coefficients of the forward and
backward filters are identical. The coefficients { bi}  can be
expressed as a function of the complex pole coordinates in
the z-plane { di} . Since the two sub-filters are identical, we
give the coefficients { bi}  as a function of the anti-causal
poles, i.e. the poles outside the unit circle. For arbitrary N
the coefficients {bi} are:
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Given the above closed-form relations between the filter
coefficients { bi}  and the z-poles { di}  we now have to find
the set of poles that minimizes the error between the
discrete recursive filter and the desired Gaussian.

4. Approximation of the discrete-time
transfer function

The discrete-time transfer function H(Ω) for arbitrary
order N can be constructed using eqs. (6) to (8). For N = 3,
4, and 5 we have calculated the poles { di}  that minimize
the error between H(Ω) and the true Gaussian transfer
function G(Ω; σ=2). We choose σ = 2 because it yields a
Gaussian that can be considered bandlimited. We
minimized two error criteria, the root square error (L2

norm) and the maximum error ( L∞  norm), using a
conjugate gradient iterative minimization procedure.
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The z-poles { di}  and residual errors for the Gaussian filters
are listed in Table 1. The residual errors for both error
criteria ( L∞  and L2 ) are roughly the same. We notice a
decrease of all errors as the filter order increases.

Table 1: The poles {di} and residual errors ( L2 , L∞ ) for
recursive Gaussian filters (σ = q = 2; var(h[n;q=2] = 4) of
order N=3, 4, and 5. The poles d2i are given by d2i = d2i–1*.

N=3

L2

N=3

L∞
N=4

L2

N=4

L∞
N=5

L2

N=5

L∞

Re d1 1.41650 1.40098 1.13228 1.12075 0.86430 0.85480

Im d1 1.00829 1.00236 1.28114 1.27788 1.45389 1.43749

Re d3 1.86543 1.85132 1.78534 1.76952 1.61433 1.61231

Im d3            -            - 0.46763 0.46611 0.83134 0.82053

Re d5             -             -             -             - 1.87504 1.87415

L∞
12.7 E-3 12.0 E-3 4.57 E-3 4.32 E-3 1.79 E-3 1.64 E-3

L2
7.17 E-3 7.21 E-3 2.42 E-3 2.48 E-3 0.91 E-6 0.95 E-6

The improvements in accuracy become clear when
comparing these residual errors for N=3 with the residual
errors of our previous third-order recursive filter [9] of
scale q=1 (which has the same variance as a true Gaussian
filter of scale σ=2.068): L∞  = 82.0 E-3, L2 = 59.6 E-3.

4.1 Gaussian derivative filters

Sample differences are used as approximations to the
true derivatives.
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These approximations are very accurate for the low
frequencies. As a consequence, the derivative filters gain
accuracy with increasing scale, σ. The implementation is
given in [9]. We designed dedicated Gaussian
approximations for the first and second Gaussian
derivative filters by minimizing a Ω-weighted error
between the new filters and G(Ω;σ=2). We use a Ω-
weighted error instead of the weights corresponding to the
sample differences from eq. (15) to allow subsequent
scaling of the underlying Gaussian approximation. The
dedicated filters are denoted by Hd,N(Ω) in which N
denotes the filter order and d the derivative order for which
the filter was designed. For a first derivative the error is
weighted by Ω over the range –π < Ω < π. For a second
derivative the weight is Ω2 over the same range. Table 2
lists the Ωd-weighted residual errors for the first and
second Gaussian derivative filters. Here we minimized the

Ωd-weighted maximum error Ld
∞  (but computed the

resulting Ωd-weighted root square error Ld
2  as well)
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The improvements in accuracy become clear when
comparing the residual errors with the residual errors of
our previous recursive filter [9] which are given in Table 3.

Table 2: The poles {di} and residual errors for recursive
first and second Gaussian-derivative filters (σ = 2; var(h[n]
= 4) of order N=3, 4, and 5. Note that d2i = d2i–1*.

first Gaussian derivative filters
 H1 3,  H1 4,  H1 5,

Re d1     1.31553     1.04185     0.77934
Im d1     0.97057     1.24034     1.41423
Re d3     1.77635     1.69747     1.50941
Im d3               -     0.44790     0.80828
Re d5               -               -     1.77181

Ld
∞

14.37 E-3 5.42 E-3 2.20 E-3
Ld

2
9.39 E-3 3.31 E-3 1.34 E-3

second Gaussian derivative filters
 H2 3, H2 4,  H2 5,

Re d1     1.22886     0.94570     0.69843
Im d1     0.93058     1.21064     1.37655
Re d3     1.70493     1.60161     1.42631
Im d3               -     0.42647     0.77399
Re d5               -               -     1.69668

Ld
∞

18.81 E-3 7.25 E-3 3.11 E-3
Ld

2
13.96 E-3 4.89 E-3 2.01 E-3

Table 3: For comparison: the Ωd-weighted residual errors
of the recursive Gauss, first and second derivative filters
presented by [9].

σ=2.068 d=0; N=3 d=1; N=3 d=2; N=3

q=1 H  H  H

Ld
∞ 82.10 E-3 90.80 E-3 118.62 E-3

Ld
2 42.23 E-3 52.44 E-3 83.88 E-3
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Comparing the residual errors for N=3 (Table 2) with the
residual errors of our previous third-order recursive filter
(Table 3) (which has the same variance as a true Gaussian
filter of scale σ = 2.068) we notice an improvement in
accuracy of a factor of 5 in maximum error. For N=5 the
maximum error becomes roughly 40 times smaller.

4.2 Scaling the discrete-time filter

In order to create a recursive Gaussian filter of
arbitrary scale, we need to find an analytical relation
between the z-poles { di}  and a specified scaling parameter
q. In our recursive filter q plays the role of σ in the true
Gaussian filter of eq. (1). Scaling of a continuous-time
filter corresponds to inverse scaling of its Laplace
transform

h
t

q
q H s q← →

	
(17)

Scaling of a continuous transfer function is achieved by
scaling the s-poles { si}  parallel as well as perpendicular to
the jω-axis (si → si q

–1). Such a scaling property does not
exist in the discrete domain, but can be borrowed from the
continuous domain. A discrete filter is equivalent to a
continuous-time filter that consists solely of weighted
impulses as given by Σ h(nT)•δ(t–nT). The Laplace
transform of this “sampled”  continuous filter is periodic in
ω with a period 2π/T. The geometric transform that relates
the discrete filter’s z-transform to the sampled continuous
filter’s Laplace transform ([14] chapter 10.8.1) is

z e s T= (18)

This geometric transform maps one period of the s-plane
into the z-plane. It can also be used to translate the scaling
property to the discrete domain. By analogy to scaling in
the continuous domain, scaling of the z-poles should occur
both in parallel (phase of z-poles) and perpendicular
(modulus of z-poles) to the unit circle in the z-plane (The
unit circle is the locus of frequency in the Fourier
transform).
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with θ d d di i i

� �
= arctan Im Re . Note that we scale

relative to the approximation to a Gaussian of σ0 = 2. The
exact variance of the scaled filter still deviates from the
specified scale of q σ0. The resulting variance of the scaled
filter can be obtained by combining eqs (10) and (19)
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A few iterations of a simple linear extrapolation scheme
finds the value for q that yields a filter h[n] with the
specified variance.

5. Results

In previous work [9] we used the continuous-time
Abramowitz approximation to the Gaussian. The
backward/forward difference method is used to transform
this continuous-time filter into a discrete-time filter. The
backward/forward difference method only works for very-
low frequencies, i.e., for large scales σ > 10. The method
yields poor Gaussian approximations for small scales. Now
we can compare the accuracy of our previous method [9]
with our new discrete-time design method. As depicted in
the top row of Figure 4 we notice that the resulting filter
becomes more accurate as q increases. There remains a
difference because the continuous-time Abramowitz
approximation HA

H
a a a a

A ω
ω ω ω

=
+ + +

1

0 2
2

4
4

6
6

with

var .
.
.

h t
H a

a
A

a
a

= − = =
=

=
=

∂ ω
∂ω ω

2

2
0

2

0 2 4909
1 4660

2
1177

0

2

(21)

has a 1.177 times larger variance than the corresponding
true Gaussian. The new recursive filter works well over a
wide range of scales, from σ=1 to σ =100.

a b 

c d 
Figure 3: Laplacian transfer functions with σ = 2: a)
previous recursive Laplacian-of-Gaussian [9]; b) new third-
order recursive filter H2,3; c) new fifth-order recursive filter
H2,5; d) true Laplacian-of-Gaussian transfer function.
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5.1 Isotropy

The need for a better approximation to the Gaussian
derivative transfer function comes from isotropy
requirements. First and second order Gaussian derivatives
yield some well-known rotation invariant operators:

∇ = + ∇ = +g g g g g gx y xx yy
2 2 2 (22)

Our previous recursive Gaussian derivative filters
produced a non-isotropic response. Figure 3 shows that the
new fifth-order recursive filter yields an excellent
approximation to an isotropic response.

6. Conclusions

Our recursive Gaussian derivative filters of order N
(N=3,4,5) require only 2N multiplications per pixel (per
dimension). They offer a constant execution time
independent of the Gaussian scale parameter σ. The
accuracy of our approximation is high and increases with
increasing filter order. To obtain an excellent isotropic
response in 2-D images we advise a third-order Gaussian
filter (H0,3), a fourth-order first derivative filter (H1,4), and
a fifth-order second derivative filter (H2,5). The exact
inverse filters are trivial to obtain. In linear scale space the
diffusion equation defines the image at the next scale.
However, the results at all scales can be computed directly
from the original image by Gaussian blurring in constant
time.
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Figure 4: Discrete-time transfer functions: true Gaussian transfer function G(Ω;σ) and H(Ω) of equal variance. The
true Gaussian is the lower of the two. top) the previous recursive filter [9]; bottom) the new recursive filter H0,3(Ω).


