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ABSTRACT
We study causal inference in randomized experiments (or quasi-experiments) following a 2 × 2 factorial design. There are two
treatments, denoted 𝐴 and 𝐵, and units are randomly assigned to one of four categories: treatment 𝐴 alone, treatment 𝐵 alone,
joint treatment, or none. Allowing for endogenous non-compliance with the two binary instruments representing the intended
assignment, as well as unrestricted interference across the two treatments, we derive the causal interpretation of various instru-
mental variable estimands under more general compliance conditions than in the literature. In general, if treatment takeup is
driven by both instruments for some units, it becomes difficult to separate treatment interaction from treatment effect hetero-
geneity. We provide auxiliary conditions and various bounding strategies that may help zero in on causally interesting parameters.
We apply our results to a program randomly offering two different treatments to first-year college students, namely, tutoring and
financial incentives, in order to assess the effect of the treatments on academic performance.
JEL Classification: C22, C26, C90

1 | Introduction

The experimental approach to establishing the causal effect of a
treatment is based on allocating units randomly to treatment and
control, thereby precluding any systematic difference between
the two groups other than the treatment itself. While unit-level
treatment effects may be heterogeneous, comparing the average
outcome in the treated and control groups gives a consistent
estimate of the average treatment effect. This deceptively sim-
ple description of the experimental ideal, which originates in the
work of Fisher (1925), embodies several further assumptions, for-
malized later by Rubin (1974, 1978) and others. A lot of subse-
quent work on causal inference has sought to extend the analysis
of experimental data to more complicated situations with some
of the following features.

First, in real-world experiments, perfect compliance with the
intended treatment assignment is not always possible or ethical
to enforce. If non-compliance is endogenous (i.e., it depends on
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unobserved confounders), then the average difference between
the treated and non-treated values does not represent the treat-
ment effect alone but selection effects as well. Second, random-
ization itself does not ensure that the treatment status of an
individual does not interfere with the potential outcomes of
another, violating what is called the stable unit treatment value
assumption (SUTVA) in the Rubin causal model. Third, there are
experimental setups in which units have access to multiple, but
not mutually exclusive, treatments that may interact with each
other.

In this paper, we derive the causal interpretation of various
instrumental variable (IV) estimands in an experimental or
quasi-experimental setup that extends the basic model in all three
directions mentioned above. More concretely:

i. Population units are targeted by two binary (0/1) treat-
ments, denoted as 𝐷

𝐴
and 𝐷

𝐵
.
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ii. The individual treatment effects and the extent to which
the two treatments interact may vary from unit to unit in
an arbitrary way.

iii. There are two binary (0/1) instruments, denoted as 𝑍
𝐴

and 𝑍
𝐵

, representing randomized assignment to the cor-
responding treatment or some exogenous incentive to
take that treatment. Nevertheless, compliance is imper-
fect (endogenous), including the possibility of “instrument
spillovers,” where 𝑍

𝐴
affects the takeup of 𝐷

𝐵
or 𝑍

𝐵
affects

the takeup of 𝐷
𝐴

. We also refer to this situation as “coordi-
nated compliance” (see Example 2).

We subsequently present two examples, which illustrate these
ideas.

Example 1. Angrist, Lang, and Oreopoulos (2009) assess a
randomized program providing two treatments to first-year col-
lege students: academic services in the form of tutoring (𝐷

𝐴
) and

financial incentives (𝐷
𝐵

), both aimed at improving academic per-
formance. Students who entered a Canadian college in Septem-
ber 2005 and had a high school grade point average lower than
the upper quartile were randomly offered either one, both, or
no treatment. Therefore, the instruments 𝑍

𝐴
and 𝑍

𝐵
are binary

indicators for being offered tutoring and/or financial incentives.
While the offers are randomly assigned, the actual treatment
takeup is likely to be endogenous as it might be driven by person-
ality traits also affecting academic performance. In addition, the
treatments may interact such that, for instance, the effectiveness
of financial incentives might increase when also receiving tutor-
ing. Section 5 provides an illustration of our results based on this
example.

Example 2. The population of interest comprises of married
couples where one member suffers from depression and the
other does not. There are two binary treatments: an antidepres-
sant medication for the depressed spouse (𝐷

𝐴
), and an educa-

tional program about depression for the healthy spouse (𝐷
𝐵

).
The dependent variable may measure the severity of the depres-
sion symptoms. Even if the intended treatment assignments (𝑍

𝐴

and 𝑍
𝐵

) are random, the actual compliance decision may well
be endogenous and coordinated across the spouses (for example,
they might agree that they will take the treatments if and only
if both of them are assigned). Moreover, the two treatments may
interact; the medication might be more effective if accompanied
by behavioral adjustments on the partner’s part.

Motivated by Example 2, it will be convenient in the rest of the
paper to represent population units as pairs (𝐴,𝐵), where mem-
ber 𝐴 is targeted by 𝐷

𝐴
∕𝑍

𝐴
and member 𝐵 is targeted by 𝐷

𝐵
∕𝑍

𝐵
.

The outcome of interest may be associated with member𝐴, mem-
ber 𝐵 or the pair itself. The representation of units in terms of
pairs comes without loss of generality, as a single individual tar-
geted by two treatments (such as in Example 1) can always be
thought of as a “pair” with identical members. Thus, we can
equate treatment interaction with interference across pair mem-
bers (a violation of SUTVA).

The estimands we consider in this framework derive from two
simple IV regressions and a saturated IV regression. Specifically,
we study the causal interpretation of the standard Wald estimand

associated with treatment/instrument 𝐴 conditional on 𝑍
𝐵
= 0

and 𝑍
𝐵
= 1, respectively, as well as the IV (2SLS) regression of

the outcome on 𝐷
𝐴
, 𝐷

𝐵
and 𝐷

𝐴
𝐷

𝐵
, instrumented by 𝑍

𝐴
, 𝑍

𝐵

and 𝑍
𝐴
𝑍

𝐵
. There is now a substantial econometrics literature on

causal inference in similar settings. Our results contribute to this
growing body of work in the following ways.1

First, we employ weaker restrictions on instrument spillovers
than other studies in the literature. Specifically, we allow for a
compliance type for whom the presence of, say, 𝑍

𝐵
represents

a strong incentive against taking treatment 𝐴; we call this type
the cross-defiers. At the same time, our framework also accom-
modates joint compliers—a type that reacts positively to the pres-
ence of the partner instrument and ultimately takes the given
treatment if (and only if) both instruments are present. While
identification results with joint compliers are available in other
studies (e.g., Vazquez-Bare 2022), cross-defiers are typically ruled
out, despite our application in Section 5 showing that this is also
an empirically relevant type.

Second, our general identification results make explicit the dif-
ficulties that instrument spillovers cause in identifying “stan-
dalone” average treatment effects and, even more starkly, in sepa-
rating treatment interaction from treatment effect heterogeneity.
In particular, we provide the causal interpretation of the interac-
tion term in the saturated IV regression, and show that a generally
interesting local average interaction effect is confounded by terms
that depend on how different the average effects of the two treat-
ments are across various subgroups. These confounding terms
however vanish if there are no interactive types or there is no
treatment effect heterogeneity.

Third, given the general lack of interpretability of the interaction
term in the IV regression, we also provide partial identification
results—that is, bounds—for a parameter measuring the aver-
age interaction effect of the two treatments in a specific subgroup.
We bound the interaction effect directly, based on its definition,
as well as indirectly by bounding the confounding heterogene-
ity terms that show up in the interpretation of the interaction
term. We further consider a formal Manski-type bounding strat-
egy, which only uses the data and weak auxiliary assumptions,
and a less formal strategy that relies on heuristic restrictions
on treatment effect heterogeneity. The application illustrates all
bounding approaches.

Fourth, while the results discussed in the main text impose
one-sided noncompliance on the individual instruments (sim-
ilarly to many results in the literature), we explore the conse-
quences of relaxing this powerful but restrictive assumption in
an appendix to the paper.2 Specifically, we extend the analysis of
the two Wald estimands to the case in which only one of the two
instruments satisfies one-sided noncompliance, and even provide
causal interpretations that do not require any monotonicity con-
ditions.

The rest of the paper is organized as follows. In Section 2 we
position our paper in the literature. Section 3 presents a for-
mal potential outcome framework for pairs with endogenous
(non-)compliance. We state and discuss our identification results
in Section 4. Section 5 applies our theory in the context of
Example 1. Section 6 concludes. There is a substantial amount
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of supplementary material relegated to appendices. Appendix S1
provides supporting identification results. Appendix S2 explores
the relaxation of one-sided non-compliance. Appendix S3 con-
tains the proofs of all results in the main text, and finally,
Appendix S4 supplements the empirical application.

2 | Related Literature

The seminal paper by Imbens and Angrist (1994) investigates
endogenous non-compliance with a binary instrument, repre-
senting intended assignment to a binary treatment, when indi-
vidual treatment effects are heterogeneous. The study establishes
the now well-known result that, given weak monotonicity of the
treatment in the instrument, a simple IV regression identifies the
local average treatment effect (LATE) among compliers.

Several studies extend this framework to multiple treatments or
instruments, which typically entails refinements of the mono-
tonicity assumption. For example, Mogstad, Torgovitsky, and
Walters (2020) impose partial monotonicity of the treatment in
one instrument conditional on the other instrument(s), while
Goff (2022) invokes vector monotonicity, which implies that each
instrument affects treatment uptake in a direction that is com-
mon across subjects. Closer to our framework, Behaghel, Crépon,
and Gurgand (2013) consider two mutually exclusive binary treat-
ments along with two binary instruments. Ruling out instrument
spillovers, they identify the LATEs among the two groups of com-
pliers. Kirkeboen, Leuven, and Mogstad (2016) exploit informa-
tion on next-best treatment alternatives to ease the assumption
of no instrument spillovers. Heckman and Pinto (2018) allow
for instrument spillovers but impose an unordered monotonicity
assumption. Lee and Salanié (2018) discuss LATE identification
without an unordered monotonicity assumption in the presence
of sufficiently many continuous (rather than binary) instruments
when treatment choice is governed by threshold-crossing models.

Another strand of related literature is concerned with relaxations
of SUTVA, allowing for specific forms of interference among
treatments, in various (quasi-)experimental settings; see, for
instance, Sobel (2006), Hong and Raudenbush (2006), Hudgens
and Halloran (2008), Ferracci, Jolivet, and van den Berg (2014),
or Huber and Steinmayr (2021). Particularly relevant in our con-
text are the studies by Kang and Imbens (2016), Imai, Jiang, and
Malani (2021), and Vazquez-Bare (2022), who combine relax-
ations of SUTVA with treatment non-compliance. In addition,
Blackwell (2017) studies the interaction between two randomized
treatments with non-compliance with an application in political
science. We now discuss the relationship between the last four
papers and ours in more detail.

Kang and Imbens (2016) and Imai, Jiang, and Malani (2021)
consider a partial interference framework, where interference
between a given unit’s outcome and a peer’s treatment occurs
within well-defined clusters, such as geographic regions. (In
our setting the clusters are the pairs, i.e., there is only one
peer.) In addition to conventional IV assumptions, Kang and
Imbens (2016) impose a treatment exclusion restriction, rul-
ing out coordinated compliance. This restriction permits iden-
tification of the direct LATE, that is, the average effect of the
own treatment among compliers. Under an additional one-sided

non-compliance assumption, one can also identify the average
interference (spillover) effect of the peers’ treatments, in the
absence of the own treatment, within the whole population. Imai,
Jiang, and Malani (2021) also study the identification of the
direct LATE and present a condition that holds under the treat-
ment exclusion restriction but is even satisfied under the weaker
condition that a unit’s treatment status does not depend on the
instrument values of those peers who are non-compliers with
respect to their own instruments. Our paper allows for more gen-
eral forms of instrument spillovers and makes explicit the result-
ing difficulties in identifying easily interpretable causal effects.

The framework of our paper is most closely related to Black-
well (2017; henceforth, BW) and Vazquez-Bare (2022; henceforth,
VB), but it extends each in certain directions.3 BW does not
explicitly consider (partial) interference, but a scenario where a
unit’s outcome may be affected by two interacting binary treat-
ments, 𝐷

𝐴
and 𝐷

𝐵
, each with a distinct binary instrument, 𝑍

𝐴

and𝑍
𝐵

, respectively. As discussed above, this setup can be viewed
as a special case of our framework where pair members 𝐴 and 𝐵

are the same unit. Just as Kang and Imbens (2016), BW imposes
a treatment exclusion restriction to identify the direct LATE
of a given treatment, conditional on the other treatment being
active or not, as well as the local average interaction effect of the
two treatments, among complier units who follow the respective
instruments in both their takeup decisions. Again, our frame-
work and VB’s are more general in that instrument spillovers are
allowed; on the other hand, BW’s results do not impose one-sided
noncompliance.

VB explicitly considers a paired design and imposes a weaker first
stage condition than the treatment exclusion restriction. Specifi-
cally, VB assumes that a pair member’s potential treatment sta-
tus indicators (say, 𝐷

𝐴
(𝑧

𝐴
, 𝑧

𝐵
)) obey a specific ordering across

the four possible instrument configurations; namely, 𝐷
𝐴
(1,1) ≥

𝐷
𝐴
(1,0) ≥ 𝐷

𝐴
(0,1) ≥ 𝐷

𝐴
(0,0). In deriving his main results, VB

also imposes one-sided non-compliance, which implies the last
two inequalities above, and facilitates the identification of LATE
among compliers with untreated peers as well as the spillover
effect on untreated units induced by complying peers.

Importantly, our general results are derived under even weaker
monotonicity restrictions on the instruments than in VB. While
we also maintain one-sided non-compliance with respect to a
treatment’s “own” instrument, we do not impose monotonic-
ity restrictions on how the partner instrument affects treat-
ment takeup. As noted in the introduction, we accommodate a
non-standard compliance type called cross-defiers, necessary for
the application in Example 1, but not present in any other com-
pliance framework we are aware of. In a supplement to this paper,
we also investigate relaxations of one-sided noncompliance.

Given our general assumptions, we show that the Wald estimand
for treatment 𝐴, conditional on 𝑍

𝐵
= 0, reflects the average treat-

ment effect in the union of two groups: compliers with 𝑍
𝐴

and
cross-defiers for 𝑍

𝐵
. The second Wald estimand, conditional on

𝑍
𝐵
= 1, has a complicated interpretation in general. However,

under auxiliary conditions this estimand also lends itself to an
insightful causal interpretation, given by the weighted average of
three local average treatment effects. Similarly to our paper, both
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BW and VB consider the saturated IV regression but under dif-
ferent sets of conditions. BW rules out instrument spillovers and
assumes statistical independence between the instruments while
VB does not allow for cross-defiers and also uses one-sided non-
compliance. In BW’s framework the coefficient on 𝐷

𝐴
𝐷

𝐵
does

identify a meaningful local average interaction effect between the
two treatments, while VB does not attempt to draw out any inter-
esting causal parameters buried in this estimand.4 It is true that
in our general framework, this coefficient also does not lend itself
to a “clean” interpretation. Instead, the interaction effect, often of
central interest in applications, is bound up with terms that result
from instrument spillovers and treatment effect heterogeneity
across various compliance types. We state partial identification
results that provide bounds for the interaction effect.

A final paper we must acknowledge here is a contribution by
Bhuller and Sigstad (2024), who also consider a multiple treat-
ment framework. However, the study differs from ours, as well
as from BW and VB, in that it does not focus on identifying a
specific LATE or interaction effect within a well-defined group of
compliers. Instead, it aims to provide conditions under which a
2SLS regression with multiple treatments consistently estimates
the weighted average effect of a given treatment across multiple
compliance types, ensuring proper (in particular, non-negative)
weights under arbitrary treatment effect heterogeneity. The
authors demonstrate that it is necessary and sufficient to have
an “average conditional monotonicity” and “no cross effects”
condition hold, encompassing the treatment exclusion restriction
(along with treatment monotonicity in the own instrument) as a
special case. In Section 4, we will use more specific insights from
this paper in explaining the structure of our own results.

3 | A Potential Outcome Framework for Pairs

3.1 | Variable Definitions

The population consists of ordered pairs of individuals (e.g., mar-
ried couples); we will refer to the first member of a pair as mem-
ber 𝐴 and the second as member 𝐵. There are two potentially
different binary treatments: 𝐷

𝐴
is targeted at member 𝐴 and 𝐷

𝐵

is targeted at member 𝐵. By representing individual units as pairs
with identical members, the setup also accommodates the analy-
sis of two (interacting) treatments received by a single unit.

We are interested in the effect of 𝐷
𝐴

and/or 𝐷
𝐵

on some depen-
dent variable 𝑌 . This outcome may be associated with member
𝐴 alone, member 𝐵 alone, or the pair itself. The observed value
of 𝑌 is given by one of four potential outcomes: 𝑌 (𝑑

𝐴
, 𝑑

𝐵
) for

𝑑
𝐴
, 𝑑

𝐵
∈ {0,1}. For example, 𝑌 (1,0) is the potential outcome if

one imposes 𝐷
𝐴
= 1 and 𝐷

𝐵
= 0; that is, member 𝐴 is exposed

to treatment 𝐴, but member 𝐵 is not exposed to treatment 𝐵. To
make the notation less cluttered, we will omit the comma and
simply write 𝑌 (10) whenever actual figures (“1” and/or “0”) are
used in the argument. Using the potential outcomes and the treat-
ment status indicators, we can formally express the observed out-
come as

𝑌 = 𝑌 (11)𝐷
𝐴
𝐷

𝐵
+ 𝑌 (10)𝐷

𝐴
(1 −𝐷

𝐵
) + 𝑌 (01)(1 −𝐷

𝐴
)𝐷

𝐵

+ 𝑌 (00)(1 −𝐷
𝐴
)(1 −𝐷

𝐵
).

(1)

Treatment effect identification is facilitated by a pair of binary
instruments, 𝑍

𝐴
and 𝑍

𝐵
, assigned to pair members 𝐴 and 𝐵,

respectively. We think of these instruments as indicators of (ran-
domly assigned) treatment eligibility or the presence of an exoge-
nous incentive to take the corresponding treatment. The leading
example is a randomized control trial, where 𝑍

𝐴
and 𝑍

𝐵
are the

experimenter’s intended treatment assignments for pair mem-
ber 𝐴 and 𝐵, respectively. Compliance with these assignments
is, however, endogenous and possibly coordinated across pair
members. We refer to 𝑍

𝐴
as member/treatment 𝐴’s own instru-

ment and 𝑍
𝐵

as the partner instrument. The labels are of coursed
reversed for treatment 𝐵.

Thus, there are four potential treatment status indicators asso-
ciated with each pair member; they are denoted as 𝐷

𝐴
(𝑧

𝐴
, 𝑧

𝐵
)

for member 𝐴 and 𝐷
𝐵
(𝑧

𝐴
, 𝑧

𝐵
) for member 𝐵, 𝑧

𝐴
, 𝑧

𝐵
∈ {0,1}. For

example, 𝐷
𝐴
(01) indicates whether member 𝐴 of a pair takes up

treatment 𝐴 when they are not assigned (𝑍
𝐴
= 0) but their part-

ner is assigned to treatment 𝐵 (𝑍
𝐵
= 1). The actual treatment

status of member 𝐴 can be written as

𝐷
𝐴
=𝐷

𝐴
(11)𝑍

𝐴
𝑍

𝐵
+𝐷

𝐴
(10)𝑍

𝐴
(1 −𝑍

𝐵
) +𝐷

𝐴
(01)(1 −𝑍

𝐴
)𝑍

𝐵

+𝐷
𝐴
(00)(1 −𝑍

𝐴
)(1 −𝑍

𝐵
).

(2)
There is of course a corresponding formula for 𝐷

𝐵
.

We now formally impose standard IV assumptions on𝑍
𝐴

and𝑍
𝐵

.

Assumption 1. [IV] (i) Given the values of the treatment sta-
tus indicators 𝐷

𝐴
and 𝐷

𝐵
, the potential outcomes do not depend

on the instruments 𝑍
𝐴

and 𝑍
𝐵

. (ii) The instruments (𝑍
𝐴
,𝑍

𝐵
) are

jointly independent of the potential outcomes and the potential
treatment status indicators. (iii) 𝑃 (𝑍

𝐴
= 1) ∈ (0,1), 𝑃 (𝑍

𝐵
= 1) ∈

(0,1) and 𝑃 (𝑍
𝐴
= 𝑍

𝐵
) ∈ (0,1).

The exclusion restriction stated in part (i) of Assumption 1 is
one of the defining properties of an instrument, and it justi-
fies (ex-post) the potential outcomes being indexed by (𝑑

𝐴
, 𝑑

𝐵
)

only. Part (ii), known as “random assignment,” states that the
instrument values (𝑍

𝐴
,𝑍

𝐵
) are exogenously determined. This

assumption holds, by design, in an experimental setting where
intended treatment assignments are explicitly randomized. Part
(iii) states that the intended treatment assignments follow a 2 ×
2 factorial design; that is, there is a positive fraction of pairs
assigned to each of the following four categories: treatment 𝐴

alone, treatment 𝐵 alone, both treatments, or neither treatment.

We will impose further assumptions on the potential treatment
status indicators in Section 3.3.

3.2 | Parameters of Interest

Let P be a subset of the population of pairs. We define the follow-
ing treatment effect parameters and notation:

• 𝐴𝑇𝐸
𝐴|𝐵
(P) ∶= 𝐸[𝑌 (10) − 𝑌 (00)|P] denotes the average

effect of applying treatment 𝐴 alone in the subpopulation
P. In other words, this is the average effect of treatment
𝐴 conditional on treatment 𝐵 being “turned off” in the
subpopulation P.

4 of 14 Journal of Applied Econometrics, 2025
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• 𝐴𝑇𝐸
𝐴|𝐵(P) ∶= 𝐸[𝑌 (11) − 𝑌 (01)|P] denotes the average

effect of applying both treatments to the subpopulation
P relative to applying treatment 𝐵 alone; in other words,
this is the average effect of treatment 𝐴 conditional on
maintaining treatment 𝐵.

• 𝐴𝑇𝐸
𝐴𝐵
(P) ∶= 𝐸[𝑌 (11) − 𝑌 (00)|P] denotes the aver-

age effect of applying treatment 𝐴 and 𝐵 jointly to the
subpopulation P relative to applying no treatment at all.

The parameters 𝐴𝑇𝐸
𝐴|𝐵
(P) and 𝐴𝑇𝐸

𝐴|𝐵(P) are called local aver-
age conditional effects, or LACEs, by BW, while 𝐴𝑇𝐸

𝐴𝐵
(P) is

called the local average joint effect (LAJE). For a given group
P, the difference between the two conditional effects measures
the interaction between the two treatments within P, and is
hence termed the local average interaction effect (LAIE) by ibid.
That is,

𝐿𝐴𝐼𝐸(P) = 𝐴𝑇𝐸
𝐴|𝐵(P) − 𝐴𝑇𝐸

𝐴|𝐵
(P).

If the LAIE is positive, the two treatments reinforce each other,
while if it is negative, then they work against each other. One
can define analogous LACE parameters for treatment 𝐵 by inter-
changing the roles of 𝐴 and 𝐵 in the definitions above. The asso-
ciated joint and interaction effects stay unchanged.

In case the pairs have distinct members, the interpretation of
these parameters also depends on the definition of the outcome
𝑌 . In particular, if 𝑌 is associated with pair member 𝐴 alone,
then 𝐴𝑇𝐸

𝐴|𝐵
(P) and 𝐴𝑇𝐸

𝐴|𝐵(P) measure what is called the
direct effect of treatment 𝐴 by Hudgens and Halloran (2008). On
the other hand, if 𝑌 is associated with member 𝐵 alone, then
𝐴𝑇𝐸

𝐴|𝐵
(P) and 𝐴𝑇𝐸

𝐴|𝐵(P) measure the indirect or spillover
effect of treatment 𝐴 on pair member 𝐵. For example, if the treat-
ment is vaccination, and the outcome is the incidence of a disease,
then the vaccination of member 𝐴 confers protection on member
𝐴, but also indirectly protects his or her partner.

3.3 | Compliance Types

The setup presented in Section 3.1 assigns four potential treat-
ment indicators to each pair member, corresponding to the four
possible incentive schemes represented by (𝑍

𝐴
,𝑍

𝐵
). Without any

further restrictions on treatment takeup, the possible configura-
tions of these 8 potential treatment variables partition the pop-
ulation of pairs into 28 = 256 different compliance profiles. At
this level of generality a couple of regression-based estimands can
hardly be a meaningful summary of the various average treat-
ment effects across types. Therefore, similarly to VB, we impose
one-sided noncompliance with respect to the treatment’s own
instrument, which dramatically reduces the number of possible
compliance profiles.

Assumption 2. [One-sided noncompliance] (i) 𝐷
𝐴
(0, 𝑧) = 0

and (ii) 𝐷
𝐵
(𝑧, 0) = 0 for 𝑧 ∈ {0,1}.

Assumption 2 states that neither member of the pair has access
to their own treatment unless they have been “randomized in”;
that is, the value of their own instrument is 1. In other words,
one-sided noncompliance presumes that the experimenter is able

to exclude individuals from all sources of the treatment. Whether
or not this assumption is reasonable depends on the institutional
setting and details of the underlying experiment, but it often fails
in practice. Therefore, we consider relaxations of Assumption 2
in Appendix S2.

Under Assumption 2, each pair member may belong to one
of only four compliance types, summarized by the following
definition.

Definition 1. Under Assumption 2, member 𝐴 of a pair
(𝐴,𝐵) is one of four compliance types:

𝑫
𝑨
(00) 𝑫

𝑨
(01) 𝑫

𝑨
(10) 𝑫

𝑨
(11)

Self-complier (s) 0 0 1 1
Joint complier (j) 0 0 0 1
Never taker (n) 0 0 0 0
Cross-defier (d) 0 0 1 0

Furthermore, a pair member is a complier (c) if they are either a
self-complier or joint-complier.

Remarks

1. The corresponding definitions for member 𝐵 can be
obtained by interchanging the two arguments of the poten-
tial treatment status indicators, while using the subscript 𝐵.

2. A self-complier’s treatment status is determined solely by
the value of their own instrument. By contrast, a joint com-
plier takes the treatment if and only if both instruments are
turned on; their own instrument is not sufficient to induce
participation. (VB’s terminology is group compliers.)

3. Cross-defiers are a non-standard type. If member 𝐴 is a
cross-defier, then they will comply with their own instru-
ment 𝑍

𝐴
as long as the other instrument is absent. How-

ever, for such individuals the presence of 𝑍
𝐵

represents a
strong incentive against takeup of 𝐷

𝐴
; so strong in fact that

it overpowers the presence of 𝑍
𝐴

and causes the individual
to abandon treatment. Thus, the individual 𝐴 acts in defi-
ance of 𝑍

𝐵
= 1.5

4. Finally, a never taker cannot be induced to take the treat-
ment by any instrument configuration.

Given the four individual compliance types, every pair belongs
to one of the 16 compliance profiles {𝑠, 𝑗, 𝑑, 𝑛} × {𝑠, 𝑗, 𝑑, 𝑛}. For
example, (𝑠, 𝑗) is the set of pairs where 𝐴 is a self-complier and
𝐵 is a joint complier, and so forth. Furthermore, we will use the
notation (𝑐, ⋅) to denote the set of pairs where member 𝐴 is a com-
plier, and so forth, and 𝑃 (𝑠, 𝑛) to denote the probability that for a
randomly drawn pair, 𝐴 is a self-complier and 𝐵 is a never-taker,
and so forth.

The following assumption ensures that some of the compliance
categories are not vacuous (e.g., there are at least some individu-
als who respond to their own instrument).
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Assumption 3. [First stage] (i) 𝑃 (𝐷
𝐴
(10) = 1) > 0 and

𝑃 (𝐷
𝐵
(01) = 1) > 0; (ii) 𝑃 (𝐷

𝐴
(11) = 1) > 0 and 𝑃 (𝐷

𝐵
(11) = 1) >

0.

Part (i) of Assumption 3 means that 𝑃 (𝑠 ∪ 𝑑, ⋅) > 0 and 𝑃 (⋅, 𝑠 ∪
𝑑) > 0 while part (ii) means 𝑃 (𝑐, 𝑐) > 0. These conditions ensure
that the IV estimands considered in Section 4 are well defined.

A testable implication of the existence of joint compliers (with
respect to treatment 𝐴) is that if one runs a simple OLS regres-
sion of 𝐷

𝐴
on 𝑍

𝐵
in the 𝑍

𝐴
= 1 subsample, then the coefficient

of 𝑍
𝐵

should be positive. Conversely, if the coefficient is negative,
then cross-defiers must be present in the population.6 Clearly,
joint compliers treat the presence of 𝑍

𝐵
as a positive incentive

to take treatment 𝐴, while cross-defiers treat it as a (strong) dis-
incentive. Given the situation, it may be possible to argue that the
two behaviors do not exist simultaneously; that is, one could rule
out joint compliers or cross-defiers for treatment 𝐴, depending
on which type is not needed to explain the sign of the regression
coefficient. Our empirical application in Section 5 illustrates how
to exploit such simplifications in practice to enhance the interpre-
tation of IV estimands.

Our framework can also accommodate simplifying assumptions
on pair formation. For example, one might postulate that there
are no (𝑛, 𝑗) or (𝑗, 𝑛) pairs. This assumption is plausible if member
𝐴’s utility of taking treatment 𝐴 is affected by 𝑍

𝐵
only through

member 𝐵’s actual treatment status 𝐷
𝐵

, which more formally
means that 𝐷

𝐴
(𝑧

𝐴
, 𝑧

𝐵
) is of the form 𝑓 (𝑧

𝐴
,𝐷

𝐵
(𝑧

𝐴
, 𝑧

𝐵
)). If 𝐵 is

a never taker then 𝐷
𝐵
= 0, and the value of 𝑍

𝐵
is not relevant for

𝐴’s decision. Hence 𝐴 cannot be a joint complier. For example,
𝑍

𝐵
could be a randomized monetary reward payable only on

actual takeup of treatment 𝐵. If 𝐵 is never treated, the reward
is not paid out and should be irrelevant to 𝐴. On the other hand,
(𝑛, 𝑗) or (𝑗, 𝑛) pairs may well exist if 𝐴 has direct access to the
incentive represented by 𝑍

𝐵
. This is the case, for example, if the

pair stands for a single unit targeted by two treatments.7

4 | Identification Results

4.1 | Population Proportion of Compliance
Profiles

The exact type of a given pair is generally unobserved as it
depends on the pair’s behavior in counterfactual scenarios. Nev-
ertheless, the observed conditional probabilities

𝑃 (𝐷
𝐴
= 𝑑

𝐴
,𝐷

𝐵
= 𝑑

𝐵
|𝑍

𝐴
= 𝑧

𝐴
,𝑍

𝐵
= 𝑧

𝐵
), 𝑑

𝐴
, 𝑑

𝐵
, 𝑧

𝐴
, 𝑧

𝐵
∈ {0,1}

(3)

can be used to identify the relative frequency of a number of com-
pliance profiles in the population. Nevertheless, not all probabili-
ties under (3) carry independent information. This is for two rea-
sons: first, for any given (𝑧

𝐴
, 𝑧

𝐵
), the corresponding probabilities

add up to 1, and, second, 𝑍
𝐴
= 0 automatically implies 𝐷

𝐴
= 0,

and𝑍
𝐵
= 0 automatically implies𝐷

𝐵
= 0 by Assumption 2. It fol-

lows that there are only five independently informative moments,
which of course makes it impossible to identify the relative
frequencies of all 16 compliance profiles separately. Lemma 1
presents the interpretation of five selected conditional probabili-
ties that are linearly independent.

Lemma 1. Suppose that Assumptions 1 and 2 are satis-
fied. Then:

𝑃 (𝐷
𝐴
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 0) =𝑃 (𝑠 ∪ 𝑑, ⋅) = 𝑃 (𝑠, ⋅) + 𝑃 (𝑑, ⋅)

𝑃 (𝐷
𝐵
= 1|𝑍

𝐴
= 0, 𝑍

𝐵
= 1) =𝑃 (⋅, 𝑠 ∪ 𝑑) = 𝑃 (⋅, 𝑠) + 𝑃 (⋅, 𝑑)

𝑃 (𝐷
𝐴
= 1, 𝐷

𝐵
= 0|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) =𝑃 (𝑐, 𝑛 ∪ 𝑑) = 𝑃 (𝑐, 𝑛) + 𝑃 (𝑐, 𝑑)

𝑃 (𝐷
𝐴
= 0, 𝐷

𝐵
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) =𝑃 (𝑛 ∪ 𝑑, 𝑐) = 𝑃 (𝑛, 𝑐) + 𝑃 (𝑑, 𝑐)

𝑃 (𝐷
𝐴
= 1, 𝐷

𝐵
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) =𝑃 (𝑐, 𝑐).

In consequence, the compliance profile shares 𝑃 (𝑛 ∪ 𝑑, 𝑛 ∪
𝑑), 𝑃 (𝑗 ∪ 𝑛, ⋅), 𝑃 (𝑐, ⋅) and 𝑃 (𝑛 ∪ 𝑑, ⋅) are also identified (along
with the symmetric expressions obtained by interchanging the
role of the pair members); see Corollary S1.1 in Appendix S1.

4.2 | The Causal Interpretation of Three IV
Estimands

Each pair in the target population is associated with an observed
5-vector (𝑌 ,𝐷

𝐴
,𝐷

𝐵
,𝑍

𝐴
,𝑍

𝐵
). Given a sample of observations on

this vector, one may run several different IV regressions using the
full sample or a suitable subsample.

i. Consider the IV regression of 𝑌 on 𝐷
𝐴

and a constant in the
𝑍

𝐵
= 0 subsample, using𝑍

𝐴
as an instrument for𝐷

𝐴
. Under

general conditions, the Wald estimand

𝛿
𝐴0 =

𝐸(𝑌 |𝑍
𝐴
= 1, 𝑍

𝐵
= 0) − 𝐸(𝑌 |𝑍

𝐴
= 0, 𝑍

𝐵
= 0)

𝐸(𝐷
𝐴
|𝑍

𝐴
= 1, 𝑍

𝐵
= 0) − 𝐸(𝐷

𝐴
|𝑍

𝐴
= 0, 𝑍

𝐵
= 0)

.

(4)
represents the probability limit of the slope coefficient asso-
ciated with 𝐷

𝐴
.

ii. The IV regression described in point (i) above can also be
implemented in the 𝑍

𝐵
= 1 subsample. Under general con-

ditions, the Wald estimand

𝛿
𝐴1 =

𝐸(𝑌 |𝑍
𝐴
= 1, 𝑍

𝐵
= 1) − 𝐸(𝑌 |𝑍

𝐴
= 0, 𝑍

𝐵
= 1)

𝐸(𝐷
𝐴
|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) − 𝐸(𝐷

𝐴
|𝑍

𝐴
= 0, 𝑍

𝐵
= 1)

.

(5)
represents the probability limit of the slope coefficient asso-
ciated with 𝐷

𝐴
.

iii. One can also run a full-sample IV regression of 𝑌 on
a constant, 𝐷

𝐴
, 𝐷

𝐵
, and 𝐷

𝐴
𝐷

𝐵
, instrumented by 𝑍

𝐴
, 𝑍

𝐵

and 𝑍
𝐴
𝑍

𝐵
. More formally, let 𝐷 = (𝐷

𝐴
,𝐷

𝐵
,𝐷

𝐴
𝐷

𝐵
)′, �̈� =

(1, 𝐷′)′, 𝑍 = (𝑍
𝐴
,𝑍

𝐵
,𝑍

𝐴
𝑍

𝐵
)′ and �̈� = (1, 𝑍′)′. Under gen-

eral conditions, the full-sample IV estimator is a 4 × 1 vector
that converges to the estimand

𝛽 = (𝛽0, 𝛽𝐴, 𝛽𝐵, 𝛽𝐴𝐵)′ = [𝐸(�̈��̈�
′)]−1

𝐸(�̈�𝑌 ).

The following three theorems state the causal interpretation of
these estimands. The proofs are provided in Appendix S3.

Theorem 1. Under Assumptions 1, 2, and 3, the Wald esti-
mand (4) satisfies

𝛿
𝐴0 = 𝐴𝑇𝐸

𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅) = 𝐴𝑇𝐸

𝐴|𝐵
(𝑠, ⋅) 𝑃 (𝑠, ⋅)

𝑃 (𝑠 ∪ 𝑑, ⋅)

+ 𝐴𝑇𝐸
𝐴|𝐵
(𝑑, ⋅) 𝑃 (𝑑, ⋅)

𝑃 (𝑠 ∪ 𝑑, ⋅)
.

6 of 14 Journal of Applied Econometrics, 2025

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3120 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [26/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Remarks

1. Theorem 1 states that the Wald estimand 𝛿
𝐴0 identifies the

average effect of treatment 𝐴 alone among pairs where
member 𝐴 is a self-complier or a cross-defier. If the latter
type is not present, the estimand reduces to the “classic”
LATE parameter.

2. In some applications 𝑌 could be an outcome associated
solely with member 𝐵. In this case 𝛿

𝐴0 identifies the aver-
age spillover effect on member 𝐵 of a treatment applied to
member 𝐴 — among pairs where 𝐴 is a self-complier or
cross-defier.

3. Given that 𝑍
𝐵
= 0, 𝑍

𝐴
has no effect on 𝐷

𝐵
because

one-sided noncompliance forces 𝐷
𝐵
= 0. Furthermore, 𝑍

𝐴

has a (weakly) positive effect on 𝐷
𝐴

since member 𝐴

cross-defiers also comply with 𝑍
𝐴

when 𝑍
𝐵
= 0. These

facts in our framework correspond to the “no cross effects”
and “average conditional monotonicity” requirements by
Bhuller and Sigstad (2024). As 𝑖𝑏𝑖𝑑. show, it is precisely
under these conditions that IV regression coefficients in
a multiple treatment setting recover a properly weighted
average treatment effect across compliance types, just as in
Theorem 1.

In Appendix S2, we consider an extension of Theorem 1 to the
case in which 𝑍

𝐵
continues to satisfy one-sided noncompliance

but𝑍
𝐴

only obeys a general monotonicity condition. The result is
similar to Theorem 1 except that an additional compliance profile
must be added to the set of pairs (𝑠 ∪ 𝑑, ⋅); namely, pairs where
member 𝐴 is a “cross-complier” in the sense that they take the
treatment in response to any one of the instruments being turned
on (possibly the partner instrument 𝑍

𝐵
alone). The extension is

in fact derived from a very general representation theorem that
gives causal interpretations to 𝛿

𝐴0 and 𝛿
𝐴1 without imposing any

monotonicity conditions on the instruments. This latter result is
rather too general to be useful in practice; its main value lies in the
fact that it can readily be “customized” via auxiliary restrictions
that fit the application at hand. For example, the general result
also shows that the extension of Theorem 1 to the case in which
𝑍

𝐵
does not satisfy one-sided noncompliance is much more com-

plicated, even when 𝑍
𝐴

does obey this restriction.

The next result states the causal interpretation of 𝛿
𝐴1.

Theorem 2. Under Assumption 1, 2, and 3, the Wald esti-
mand (5) satisfies

𝛿
𝐴1 = 𝐴𝑇𝐸

𝐴𝐵
(𝑐, 𝑗)𝑃 (𝑐, 𝑗)

𝑃 (𝑐, ⋅)
+ 𝐴𝑇𝐸

𝐴|𝐵(𝑐, 𝑠)
𝑃 (𝑐, 𝑠)
𝑃 (𝑐, ⋅)

+ 𝐴𝑇𝐸
𝐴|𝐵
(𝑐, 𝑛 ∪ 𝑑)𝑃 (𝑐, 𝑛 ∪ 𝑑)

𝑃 (𝑐, ⋅)

− 𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑑)

𝑃 (⋅, 𝑑)
𝑃 (𝑐, ⋅)

+ 𝐴𝑇𝐸
𝐵|�̄�(𝑛 ∪ 𝑑, 𝑗)𝑃 (𝑛 ∪ 𝑑, 𝑗)

𝑃 (𝑐, ⋅)
(6)

Corollary 1. Suppose, in addition, that there are no
cross-defiers with respect to either instrument and there
are no (𝑛, 𝑗) pairs. Then the Wald estimand (5) is equal to

𝛿
𝐴1 = 𝐴𝑇𝐸

𝐴𝐵
(𝑐, 𝑗)𝑃 (𝑐, 𝑗)

𝑃 (𝑐, ⋅)
+ 𝐴𝑇𝐸

𝐴|𝐵(𝑐, 𝑠)
𝑃 (𝑐, 𝑠)
𝑃 (𝑐, ⋅)

+ 𝐴𝑇𝐸
𝐴|𝐵
(𝑐, 𝑛)𝑃 (𝑐, 𝑛)

𝑃 (𝑐, ⋅)
.

(7)

Remarks

1. In Appendix S2, we present an extension of Theorem 2 to the
case in which 𝑍

𝐴
continues to satisfy one-sided noncompli-

ance but 𝑍
𝐵

only obeys a weaker monotonicity condition.

2. Again, the interpretation of Theorem 2 and Corollary 1 is
enriched by the fact that 𝑌 can be an outcome associated
with 𝐴 alone, 𝐵 alone, or the pair (𝐴,𝐵).

3. Given that 𝑍
𝐵
= 1, there is a much richer set of possible

responses to 𝑍
𝐴

, making the interpretation of 𝛿
𝐴1 com-

plicated. For example, 𝑍
𝐴

now affects the takeup of 𝐷
𝐵

,
positively for member 𝐵 joint compliers and negatively for
cross-defiers. Again, the high-level results by Bhuller and
Sigstad (2024) show that in this case IV estimands in a mul-
tiple treatment setting generally conflate the effects of the
various treatments with partly negative weights, just as in
Theorem 2.

4. The simplifying assumptions imposed in Corollary 1 are
motivated and discussed in Section 3.3.

To understand the causal effects appearing in the special case (7),
consider changing 𝑍

𝐴
from 0 to 1 conditional on 𝑍

𝐵
= 1. In this

case, (𝑐, 𝑗) pairs will switch from no treatment at all to both treat-
ments, contributing the first term in (7). For (𝑐, 𝑠) pairs, mem-
ber 𝐴 switches from no treatment to treatment 𝐴, while member
𝐵 continues to take treatment 𝐵 throughout. This contributes
the second term. Finally, among (𝑐, 𝑛) pairs, member 𝐴 switches
from no treatment to treatment 𝐴, while member 𝐵 continues to
abstain from treatment. This option contributes the last term. As
in the absence of cross-defiers𝑃 (𝑐, ⋅) = 𝑃 (𝑐, 𝑗) + 𝑃 (𝑐, 𝑠) + 𝑃 (𝑐, 𝑛),
the probability weights in (7) sum to one and are identified from
the observed data using Lemma 1 and Corollary S1.1. The general
expression (6) follows the same logic — it reflects the reaction of
various types of pairs to changing 𝑍

𝐴
from 0 to 1 while maintain-

ing 𝑍
𝐵
= 1. However, there are now more possibilities, including

member 𝐵 cross-defiers dropping 𝐷
𝐵

when 𝑍
𝐴

is turned on. The
end result is a linear combination of average treatment effects
where some of the weights are negative and do not sum to one.

Finally, Theorem 3 states the causal interpretation of the ele-
ments in the coefficient vector 𝛽 = (𝛽0, 𝛽𝐴, 𝛽𝐵, 𝛽𝐴𝐵)′.

Theorem 3. Given Assumptions 1, 2 and 3, 𝛽0 =
𝐸[𝑌 (00)], 𝛽

𝐴
= 𝐴𝑇𝐸

𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅) and 𝛽

𝐵
= 𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑠 ∪ 𝑑).
In addition,

𝛽
𝐴𝐵
=𝐴𝑇𝐸

𝐴|𝐵(𝑐, 𝑐) − 𝐴𝑇𝐸
𝐴|𝐵
(𝑐, 𝑐) (8)

+ 𝑃 (𝑗, ⋅)
𝑃 (𝑐, 𝑐)

[𝐴𝑇𝐸
𝐴|𝐵
(𝑗, ⋅) − 𝐴𝑇𝐸

𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅)] (9)

+ 𝑃 (⋅, 𝑗)
𝑃 (𝑐, 𝑐)

[𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑗) − 𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑠 ∪ 𝑑)] (10)
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+𝑃 (𝑑, ⋅)
𝑃 (𝑐, 𝑐)

[𝐴𝑇𝐸
𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅) − 𝐴𝑇𝐸

𝐴|𝐵
(𝑑, ⋅)] (11)

+𝑃 (⋅, 𝑑)
𝑃 (𝑐, 𝑐)

[𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑠 ∪ 𝑑) − 𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑑)]. (12)

Remarks

1. The coefficients on the stand-alone treatment dummies are
the same as the split-sample Wald estimands that condition
on the partner instrument being zero.

2. The coefficient on the interaction term has a complex inter-
pretation. Term (8) is the local average interaction effect
(LAIE) of the two treatments among (𝑐, 𝑐) pairs, which
would presumably be of interest in many applications. How-
ever, this quantity is confounded by additional terms that
depend on the heterogeneity of the average treatment effect
across types. For example, term (9) compares the aver-
age effect of treatment 𝐴, applied in isolation, across two
subpopulations: pairs where member 𝐴 is a joint com-
plier versus pairs where member 𝐴 is a self-complier or
a cross-defier. While the latter average treatment effect is
identified by 𝛽

𝐴
, the former is not. Terms (10), (11) and (12)

have analogous interpretations.

3. The presence of the confounding “heterogeneity terms” is
due to joint compliers and cross-defiers—interactive types
that react to their partner’s instrument as well. Under the
treatment exclusion restriction these types are not present,
and 𝛽

𝐴𝐵
identifies the LAIE of the two treatments among

(𝑠, 𝑠) pairs, as also shown by Theorem 2 of BW.8

4.3 | Partial Identification of LAIE

The coefficient 𝛽
𝐴𝐵

in Theorem 3 does not have a clean inter-
pretation because it conflates the interaction between the two
treatments with the heterogeneity of the treatment effects across
various compliance types. We now show that it is still possible to
learn about 𝐿𝐴𝐼𝐸(𝑐, 𝑐) through bounds constructed under some
auxiliary conditions. There are two different approaches. First, it
is possible to bound 𝐿𝐴𝐼𝐸(𝑐, 𝑐) directly, based on the moments
in its definition. Second, one can take the causal interpretation
of 𝛽

𝐴𝐵
in Theorem 3 as a starting point, and bound the influ-

ence of the heterogeneity terms (9) through (12). In doing so,
one obtains an indirect bound on 𝐿𝐴𝐼𝐸(𝑐, 𝑐) as well. We present
the direct bounds here in the main text; the indirect ones are
stated in Appendix S4. The application in Section 5 illustrates
both approaches.

There are four conditional means involved in the definition of
𝐿𝐴𝐼𝐸(𝑐, 𝑐):

𝐸[𝑌 (11)|(𝑐, 𝑐)], 𝐸[𝑌 (00)|(𝑐, 𝑐)],

𝐸[𝑌 (10)|(𝑐, 𝑐)]and 𝐸[𝑌 (01)|(𝑐, 𝑐)].
(13)

The first quantity under (13) is identified directly from the data
by the conditional expectation of 𝑌 given𝐷

𝐴
= 𝐷

𝐵
= 1 and𝑍

𝐴
=

𝑍
𝐵
= 1; see Lemma S1.2 in Appendix S1. We bound the remain-

ing moments in the spirit of Manski (1989, 1990), using the
following assumption.

Assumption 4. [bounds] (𝑖) 𝑌 (𝑑
𝐴
, 𝑑

𝐵
) ∈ [0, 𝐾] for some𝐾 >

0; (𝑖𝑖) 𝑌 (10) ≥ 𝑌 (00) and 𝑌 (01) ≥ 𝑌 (00).

Part (𝑖) states that the potential outcomes are bounded; the fact
that the lower bound is set to zero is a normalization. Part (𝑖𝑖) pos-
tulates that when treatment 𝐴 is applied in isolation, it has a pos-
itive effect on any individual unit, and the same is assumed about
treatment 𝐵. While researchers often hold prior expectations
about the sign of an average treatment effect, the requirement
that the sign applies uniformly in the population is a non-trivial
homogeneity restriction known as monotone treatment response
(Manski 1997). Importantly, however, part (𝑖𝑖) does not restrict
the sign of the interaction effect.

As a first step toward bounding the interaction effect, we provide
bounds for the joint effect of the two treatments.

Theorem 4. Suppose that Assumptions 1 through 4 are satis-
fied. Then the following inequalities hold true:

a. 𝐿00(𝑐, 𝑐) ≤ 𝐸[𝑌 (00)|(𝑐, 𝑐)] ≤ 𝑈00(𝑐, 𝑐), where

𝑈00(𝑐, 𝑐) =𝐸[𝑌 (00)] 1
𝑃 (𝑐, 𝑐)

− 𝐸[𝑌 (00)|(𝑛 ∪ 𝑑, 𝑛 ∪ 𝑑)]𝑃 (𝑛 ∪ 𝑑, 𝑛 ∪ 𝑑)
𝑃 (𝑐, 𝑐)

,

𝐿00(𝑐, 𝑐) =𝑈00(𝑐, 𝑐) − 𝐸[𝑌 (10)|(𝑐, 𝑛 ∪ 𝑑)]𝑃 (𝑐, 𝑛 ∪ 𝑑)
𝑃 (𝑐, 𝑐)

− 𝐸[𝑌 (01)|(𝑛 ∪ 𝑑, 𝑐)]𝑃 (𝑛 ∪ 𝑑, 𝑐)
𝑃 (𝑐, 𝑐)

,

and each probability and expectation in the definition of
𝐿00(𝑐, 𝑐) and 𝑈00(𝑐, 𝑐) is identified from the data as specified
by Lemma 1 and Lemma S1.2.

b. In consequence,

𝐸[𝑌 (11)|(𝑐, 𝑐)] − 𝑈00(𝑐, 𝑐) ≤ 𝐴𝑇𝐸
𝐴𝐵
(𝑐, 𝑐)

≤ 𝐸[𝑌 (11)|(𝑐, 𝑐)] − 𝐿00(𝑐, 𝑐),
(14)

where 𝐸[𝑌 (11)|(𝑐, 𝑐)] is identified as in Lemma S1.2.

Remarks

1. Lemma S1.2 in Appendix S1 provides the causal inter-
pretation of all conditional moments 𝐸[𝑌 |𝐷

𝐴
= 𝑑

𝐴
,𝐷

𝐵
=

𝑑
𝐵
,𝑍

𝐴
= 𝑧

𝐴
,𝑍

𝐵
= 𝑧

𝐵
], 𝑑

𝐴
, 𝑑

𝐵
, 𝑧

𝐴
, 𝑧

𝐵
∈ {0,1}.

2. The proof of Theorem 4 is given in Appendix S3; the con-
struction is similar to Manski’s classic work cited above. We
expand 𝐸[𝑌 (00)] as a weighted average of 𝐸[𝑌 (00)|(𝑐, 𝑐)]
and three other conditional expectations over different sub-
groups. One of the latter expectations is point-identified
from the data, and, under Assumption 4, the other two
expectations can be bounded by identified ones (from
above) and zero (from below). We rearrange the resulting
inequalities to obtain bounds for 𝐸[𝑌 (00)|(𝑐, 𝑐)].

8 of 14 Journal of Applied Econometrics, 2025

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3120 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [26/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3. If 𝐿00(𝑐, 𝑐) is negative, it may be replaced by zero; if
𝑈00(𝑐, 𝑐) is greater than 𝐾 , it may be replaced by 𝐾 .
If no such replacements are made, then one can in
principle apply the classic theory in Imbens and Man-
ski (2004) to construct confidence intervals for the par-
tially identified parameter 𝐸[𝑌 (00)|(𝑐, 𝑐)]. In this paper we
focus on identification and forego further discussion of
inference.

4. If one strengthens Assumption 4 to include the condition
𝑌 (11) ≥ 𝑌 (00), then an improved upper bound to
𝐸[𝑌 (00)|(𝑐, 𝑐)] is given by the minimum of 𝑈00(𝑐, 𝑐)
and 𝐸[𝑌 (11)|(𝑐, 𝑐)], and the joint treatment effect cannot
be less than zero. This extra assumption is not entirely
trivial but can still be plausible in applications (see
Section 5.2).

The relationship between the average joint and interaction effect
can be written as

𝐿𝐴𝐼𝐸(𝑐, 𝑐) = 𝐴𝑇𝐸
𝐴𝐵
(𝑐, 𝑐) − 𝐴𝑇𝐸

𝐴|𝐵
(𝑐, 𝑐)

− 𝐴𝑇𝐸
𝐵|�̄�(𝑐, 𝑐).

(15)

While the average effects of treatments 𝐴 and 𝐵, applied in isola-
tion, are not identified in the (𝑐, 𝑐) subgroup, they are identified
in subgroups (𝑠 ∪ 𝑑, ⋅) and (⋅, 𝑠 ∪ 𝑑), respectively (see Theorem 3).
It is natural to take the identified subgroup effects as a refer-
ence point and speculate about other groups on the basis of these.
In particular, we may write 𝐴𝑇𝐸

𝐴|𝐵
(𝑐, 𝑐) = 𝜆

𝐴
⋅ 𝐴𝑇𝐸

𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅)

for some (unknown) multiplier 𝜆
𝐴
≥ 0, and define 𝜆

𝐵
simi-

larly for treatment 𝐵. Combining these expressions with (14)
and (15) bounds the interaction effect in terms of 𝜆

𝐴
and 𝜆

𝐵
.

One can then consider various hypotheses about these param-
eters; for example, it may be reasonable to postulate in a given
application that 𝐴𝑇𝐸

𝐴|𝐵
(𝑐, 𝑐) is at most three times as large

as 𝐴𝑇𝐸
𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅), implying 𝜆

𝐴
∈ [0,3]. Or one may plot those

(𝜆
𝐴
, 𝜆

𝐵
) pairs for which the upper bound of LAIE is zero, etc.

Boundaries of this type are common in the econometrics lit-
erature on sensitivity analysis (e.g., Masten and Poirier 2020;
Martínez-Iriarte 2021). We demonstrate the construction and use
of such heuristic bounds in the context of our application in
Sections 5.2 and 5.3.

One can bound the interaction effect in a more formal way by
also bounding the last two conditional means under (13). For
these bounds to be potentially tighter than the interval [0, 𝐾],
we impose further compliance type restrictions. Motivated by the
discussion following Assumption 2 in Section 3.3, we assume that
treatment 𝐴 does not admit cross defiers while treatment 𝐵 does
not admit joint compliers. (We will argue that such a restrictions
are reasonable in our application, at least as a polar case.) This
leads to the following result.

Theorem 5. Suppose that Assumptions 1 through 4 are sat-
isfied. If, in addition, there are no (𝑑, ⋅) pairs and no (⋅, 𝑗) pairs,
then the following inequalities hold true:

a. 𝐿10(𝑐, 𝑐) ≤ 𝐸[𝑌 (10)|(𝑐, 𝑐)] ≤ 𝑈10(𝑐, 𝑐), where

𝐿10(𝑐, 𝑐) =𝐸[𝑌 (10)|(𝑠, ⋅)] 𝑃 (𝑠, ⋅)
𝑃 (𝑐, 𝑐)

− 𝐸[𝑌 (10)|(𝑐, 𝑛 ∪ 𝑑)]𝑃 (𝑐, 𝑛 ∪ 𝑑)
𝑃 (𝑐, 𝑐)

𝑈10(𝑐, 𝑐) =𝐿10(𝑐, 𝑐) +𝐾
𝑃 (𝑗, ⋅)
𝑃 (𝑐, 𝑐)

,

b. 𝐿01(𝑐, 𝑐) ≤ 𝐸[𝑌 (01)|(𝑐, 𝑐)] ≤ 𝑈01(𝑐, 𝑐), where

𝑈01(𝑐, 𝑐) =𝐸[𝑌 (01)|(⋅, 𝑠 ∪ 𝑑)]𝑃 (⋅, 𝑠 ∪ 𝑑)
𝑃 (𝑐, 𝑐)

− 𝐸[𝑌 (01)|(𝑛, 𝑐)]𝑃 (𝑛, 𝑐)
𝑃 (𝑐, 𝑐)

,

𝐿01(𝑐, 𝑐) =𝑈01(𝑐, 𝑐) −𝐾
𝑃 (⋅, 𝑑)
𝑃 (𝑐, 𝑐)

,

and each probability and expectation in the definition of
𝐿10(𝑐, 𝑐), 𝑈10(𝑐, 𝑐), 𝐿01(𝑐, 𝑐) and 𝑈01(𝑐, 𝑐) is identified from
the data as specified by Lemma 1 and Lemma S1.2.

c. In consequence,

𝐸[𝑌 (11)|(𝑐, 𝑐)] + 𝐿00(𝑐, 𝑐) − 𝑈10(𝑐, 𝑐) − 𝑈01(𝑐, 𝑐)

≤ 𝐿𝐴𝐼𝐸(𝑐, 𝑐) ≤ 𝐸[𝑌 (11)|(𝑐, 𝑐)]

+ 𝑈00(𝑐, 𝑐) − 𝐿10(𝑐, 𝑐) − 𝐿01(𝑐, 𝑐),

where 𝐸[𝑌 (11)|(𝑐, 𝑐)] is identified as in Lemma S1.2.

5 | Empirical Application

5.1 | Data, Compliance Patterns, and IV
Estimates

In this section, we present an empirical illustration of our the-
ory based on data from the Student Achievement and Retention
Project first analyzed by Angrist, Lang, and Oreopoulos (2009).
This program, implemented on a campus in Canada in Fall 2005,
randomly assigned two treatments, namely, academic services
(tutoring) and financial incentives among first year college stu-
dents whose high school grade point average was lower than the
upper quartile. Tutoring included both access to more experi-
enced students trained to provide academic support, as well as
sessions aiming at improving study habits. The financial incen-
tives consisted of conditional cash payments, ranging from 1000
to 5000 Canadian dollars, which were paid out if a student
reached a specific average grade target. In our application, 𝐷

𝐴

is a binary variable indicating the takeup of any form of tutoring,
while 𝐷

𝐵
is an indicator for signing up to receive financial incen-

tives. We are interested in the impact of these treatments on the
average grade at the end of the fall semester, which is our outcome
variable 𝑌 , measured on a 0–100 scale.

The random offer of the treatments in the project was partly over-
lapping in the sense that some students were invited to either one
of the treatments, to both, or neither. The instruments𝑍

𝐴
and𝑍

𝐵

correspond to binary indicators for being invited (and thus, being
eligible) for tutoring and financial incentives. Thus, we are in the
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special case of our framework where the very same individual is
targeted by up to two distinct treatments, rather than having a
pair of individuals that might be targeted by the same or separate
treatments.

Treatment takeup 𝐷
𝐴

and 𝐷
𝐵

may endogenously differ from
the random assignment 𝑍

𝐴
and 𝑍

𝐵
, respectively, because unob-

served background characteristics such as personality traits likely
drive both the treatment decision and academic performance. For
instance, among those students offered tutoring and/or financial
incentives, less motivated individuals satisfied with lower exam
grades might not be willing to take the treatment(s), regardless
of having received an offer or not. Due, in part, to such never
takers, not all subjects comply with the random assignment, and
the groups taking and not taking the treatment(s) generally dif-
fer in terms of outcome-relevant characteristics. On the other
hand, among those students not offered the respective treatment,
nobody managed to circumvent the assignment and take that
treatment anyway. For this reason, non-compliance in our data
is one-sided, as postulated in Assumption 2.

Applying traditional IV approaches (ruling out relaxations of the
treatment exclusion restriction), the findings of Angrist, Lang,
and Oreopoulos (2009) point to positive effects of the financial
incentive or the combined treatments among females, but not
among males. For this reason, our empirical illustration here only
focuses on female students, leaving all in all 948 observations.
However, for 150 females the outcome is missing, implying that
these students did not take any exams in the fall semester. As the
missing outcomes indicator is not statistically significantly asso-
ciated with 𝑍

𝐴
or 𝑍

𝐵
(with p-values exceeding 20%), we drop

these students from the sample, leaving us with 798 observations.

Table 1 provides descriptive statistics for our evaluation sam-
ple, namely the treatment and outcome means in the total sam-
ple and in the subsamples defined by the instrument values 𝑍

𝐴

and 𝑍
𝐵

. We see that the treatment frequencies observed in the
data are consistent with one-sided noncompliance. As a further
observation, the average grade (𝑌 ) is highest among female stu-
dents receiving both instruments and lowest among those receiv-
ing neither. The difference in average outcomes between the two
groups is statistically significant at the 1% level, pointing to a
non-zero reduced form effect of the joint instruments 𝑍

𝐴
and 𝑍

𝐵

on 𝑌 . Moreover, the average outcome is somewhat higher among
students exclusively eligible for financial incentives than among
those exclusively eligible for tutoring (but this difference is not
statistically significant at the 10% level).

To present the effect of the instruments on the treatments (the
“first stage”), Tables 2, 3, and S4.1 report conditional proba-
bilities of the first, second, and joint treatments, respectively,
and relate them to specific compliance types. In analyzing treat-
ment takeup patterns, we impose the restriction that there are
no cross-defier types in the tutor treatment arm. We consider
a similar restriction—no joint compliers—with respect to the
financial incentive treatment, but we are more agnostic about
this condition and impose it selectively in our bounding exercise
later on.

Table 2 shows the takeup statistics for 𝐷
𝐴

. The absence of
cross-defiers means that when being eligible for it, nobody is dis-
couraged from actually taking up tutoring services by addition-
ally being offered financial incentives. We see from Table 2 that
the nonexistence of cross-defiers is consistent with the data since
our estimates suggest that 𝑃 (𝐷

𝐴
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) − 𝑃 (𝐷

𝐴
=

1|𝑍
𝐴
= 1, 𝑍

𝐵
= 0) > 0 (statistically significant at the 1% level).

Ruling out cross-defiers is plausible if one agrees that, if any-
thing, financial incentives for good grades should encourage
(rather than discourage) the takeup of tutoring given that the
latter is expected to increase academic performance. Without
cross-defiers, the estimated shares of self-compliers (taking tutor-
ing if and only if eligible for it), joint compliers (taking tutoring if
and only if eligible for both treatments) and never takers amount
to 28%, 21%, and 51%, respectively.

Similarly, Table 3 shows the takeup statistics for 𝐷
𝐵

. Not sur-
prisingly, 93% sign up for the conditional payment when eligi-
ble for it (and nothing else). However, the estimates also sug-
gest that 𝑃 (𝐷

𝐵
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) < 𝑃 (𝐷

𝐵
= 1|𝑍

𝐴
= 0, 𝑍

𝐵
=

1), the 12pp difference being statistically significant at the 5%
level. For this inequality to hold, cross-defiers must be present
in the population, and the prevalence of joint compliers must be
limited. Cross-defiers behave oddly in that they accept the finan-
cial incentive if this is the only treatment they are eligible for, but
they refuse it if they are additionally eligible for tutoring. While it
is not clear why the availability of tutoring should be a disincen-
tive for taking the conditional payment, these types are clearly
present in the data.

Some of the subsequent analysis is simpler and more informa-
tive under the restriction that there are no joint compliers in the
financial incentive treatment arm. Table 3 shows that the com-
bined share of never-takers and joint compliers is estimated to
be only 7%. Still, ruling out joint compliers altogether is a rather
strong assumption, since this implies that access to tutoring can-
not positively affect sign-up decisions for the financial incentive

TABLE 1 | Treatment and outcome means in the sample and by instruments.

𝒁
𝑨
= 1 𝒁

𝑨
= 0 𝒁

𝑨
= 1 𝒁

𝑨
= 0

Variable Total sample 𝒁
𝑩
= 1 𝒁

𝑩
= 1 𝒁

𝑩
= 0 𝒁

𝑩
= 0

𝐷
𝐴

(tutor) 0.08 0.49 0.00 0.28 0.00
𝐷

𝐵
(fin. incentive) 0.22 0.81 0.93 0.00 0.00

𝑌 (GPA) 63.78 66.98 65.75 63.57 62.83
Number of obs. 798 67 134 116 481

Note: Data from the Student Achievement and Retention Project; see Angrist, Lang, and Oreopoulos (2009). Female students only; those with missing GPA are dropped.
GPA is measured on a 0–100 scale.
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TABLE 2 | Conditional probabilities of treatment 𝐷
𝐴

.

Conditional probability Estimate Interpretation if no (𝒅, ⋅)

𝑃 (𝐷
𝐴
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 0) 0.28 𝑃 (𝑠, ⋅)

𝑃 (𝐷
𝐴
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) 0.49 𝑃 (𝑐, ⋅) = 𝑃 (𝑗, ⋅) + 𝑃 (𝑠, ⋅)

𝑃 (𝐷
𝐴
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1)

−𝑃 (𝐷
𝐴
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 0) 0.21 𝑃 (𝑗, ⋅)

𝑃 (𝐷
𝐴
= 0|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) 0.51 𝑃 (𝑛, ⋅)

Note: 𝐷
𝐴

is the tutor treatment.

TABLE 3 | Conditional probabilities of treatment 𝐷
𝐵

.

Conditional probability Estimate Interpretation

𝑃 (𝐷
𝐵
= 1|𝑍

𝐴
= 0, 𝑍

𝐵
= 1) 0.93 𝑃 (⋅, 𝑠 ∪ 𝑑) = 𝑃 (⋅, 𝑠) + 𝑃 (⋅, 𝑑)

𝑃 (𝐷
𝐵
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) 0.81 𝑃 (⋅, 𝑐) = 𝑃 (⋅, 𝑠) + 𝑃 (⋅, 𝑗)

𝑃 (𝐷
𝐵
= 1|𝑍

𝐴
= 0, 𝑍

𝐵
= 1)

−𝑃 (𝐷
𝐵
= 1|𝑍

𝐴
= 1, 𝑍

𝐵
= 1) 0.12 𝑃 (⋅, 𝑑) − 𝑃 (⋅, 𝑗)

𝑃 (𝐷
𝐵
= 0|𝑍

𝐴
= 0, 𝑍

𝐵
= 1) 0.07 𝑃 (⋅, 𝑛) + 𝑃 (⋅, 𝑗)

Note: 𝐷
𝐵

is the financial incentive treatment.

TABLE 4 | IV regression of 𝑌 on 𝐷
𝐴
, 𝐷

𝐵
, and 𝐷

𝐴
𝐷

𝐵
.

Variable Coefficient estimate Standard error p-value

Constant 62.83 0.55 0.00
𝐷

𝐴
(tutor) 2.58 4.35 0.55

𝐷
𝐵

(fin. incentive) 3.15 1.24 0.01
𝐷

𝐴
𝐷

𝐵
0.69 5.31 0.90

Note: 𝑌 is GPA on a 0–100 grading scale. The instruments are the randomized treatment eligibility dummies and their interaction.

given eligibility for the latter. This would be violated if some
individuals judged their chances of obtaining good grades to be
highly dependent on tutoring, so much so that they would not
even sign up for the financial incentive without access to tutor-
ing. This behavior actually seems more reasonable than that of
the cross-defiers. On the other hand, 𝑃 (⋅, 𝑑) − 𝑃 (⋅, 𝑗) = 0.12, so
the higher the share of joint compliers, the higher the share of
cross-defiers must be to explain the data. Given the odd behavior
of the latter type, one could argue that their assumed prevalence
should be as low as possible, which happens when there are no
joint compliers.

There are additional moments of the data, which we present in
Appendix S4. Specifically, Table S4.1 shows the joint distribu-
tion of 𝐷

𝐴
and 𝐷

𝐵
, conditional on eligibility for both treatments.

These probabilities identify the shares of specific joint compli-
ance profiles in the population, in accordance with Lemma 1 and
Corollary S1.1. For example, 49% of the female students are esti-
mated to have a (𝑐, 𝑐) profile, meaning that they either comply
with the intended assignment in both treatment arms, or they
take both treatments when, and only when, they are eligible for
both. In addition, Table S4.2 shows the average GPA conditional
on all configurations of the treatment dummies and their instru-
ments. As shown by Lemma S1.2 in Appendix S1, these moments
identify the mean outcome for various compliance profiles.

Finally, in Table 4, we provide the results from the saturated
two stage least squares regression studied in Theorem 3. The
constant term provides an estimate for the mean potential out-
come 𝐸[𝑌 (00)], suggesting that the average grade amounts to
62.83 points when female students neither take up tutoring, nor
sign up for financial incentives. In the absence of cross-defiers,
the estimate of 𝛽

𝐴
corresponds to the average effect of tutor-

ing among self-compliers when the other treatment is switched
off. Thus, among those complying with eligibility for tutoring,
receiving tutoring alone increases the average grade by 2.58
points. However, this impact is far from being statistically sig-
nificant at any conventional level, as the 𝑝-value (based on
heteroscedasticity-robust standard errors) is equal to 55%.

The estimate of 𝛽
𝐵

suggests that among those who either (i) com-
ply with their eligibility for financial incentives (self-compliers)
or (ii) refuse the financial incentive when both treatments are
available (cross-defiers), signing up for the financial incentive
alone has a positive effect of 3.15 points. This effect is statisti-
cally significant at the 1% level. In contrast, the estimate of the
interaction term 𝛽

𝐴𝐵
is small and statistically insignificant. Nev-

ertheless, as Theorem 3 shows, this term is not straightforward to
interpret; the fact that it is close to zero does not, by itself, imply
that their is no interference across the two treatments.
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FIGURE 1 | Level sets of the upper bound in (16). 𝜆
𝐴
=

𝐴𝑇𝐸
𝐴|𝐵
(𝑐, 𝑐)∕𝐴𝑇𝐸

𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅); 𝜆2 = 𝐴𝑇𝐸

𝐵|�̄�(𝑐, 𝑐)∕𝐴𝑇𝐸𝐵|�̄�(⋅, 𝑠 ∪ 𝑑).

We next illustrate how to employ the results in Section 4.3 to
learn about the LAIE. We will ignore standard errors and treat
all point estimates as if they were probability limits. We maintain
Assumption 4 throughout, but impose type restrictions only as
indicated.

5.2 | Direct Bounds on the Joint Effect
and LAIE

We start by applying Theorem 4. Using the estimates from Tables
S4.1 and S4.2, we obtain

𝑈00(𝑐, 𝑐) =
62.83
0.49

− 70.55 × 0.19
0.49

= 100.87 and

𝐿00(𝑐, 𝑐) =𝑈00(𝑐, 𝑐) − 64.83 × 0.31
0.49

= 59.85.

Given that 𝐸[𝑌 (11)|(𝑐, 𝑐)] = 66.94, this yields 𝐴𝑇𝐸
𝐴𝐵
(𝑐, 𝑐) ∈

[−33.93,7.09]. Clearly, 𝑈00 could be replaced by 100, but it may
also be replaced by 66.94 under the additional assumption that
𝑌 (11) ≥ 𝑌 (00), that is, that taking the two treatments jointly can-
not hurt anybody’s GPA. This improves the bounds for the joint
effect to the reasonably tight interval [0,7.09] without requiring
any type restrictions.

Heuristic Analysis

As suggested in Section 4.3, we can parameterize the stan-
dalone effects of 𝐷

𝐴
and 𝐷

𝐵
in the (𝑐, 𝑐) subgroup as

𝐴𝑇𝐸
𝐴|𝐵
(𝑐, 𝑐) = 𝜆

𝐴
𝐴𝑇𝐸

𝐴|𝐵
(𝑠 ∪ 𝑑, ⋅) = 2.58𝜆

𝐴
and𝐴𝑇𝐸

𝐵|�̄�(𝑐, 𝑐) =
𝜆
𝐵
𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑠 ∪ 𝑑) = 3.15𝜆
𝐵

for some multipliers 𝜆
𝐴
, 𝜆

𝐵
≥ 0.

Equation (15) and the tightened bound on the joint effect then
gives

− 2.58𝜆
𝐴
− 3.15𝜆

𝐵
≤ 𝐿𝐴𝐼𝐸(𝑐, 𝑐) ≤ 7.09 − 2.58𝜆

𝐴
− 3.15𝜆

𝐵
.

(16)

Figure 1 depicts the level sets of the upper bound in (16) for
𝜆
𝐴
, 𝜆

𝐵
∈ [0,3]. Any combination (𝜆

𝐴
, 𝜆

𝐵
) that lies above (i.e.,

northeast of) the zero line implies a negative LAIE, while for
combinations below this line the sign of the interaction effect
is unidentified. For example, if the average effect of 𝐷

𝐴
and 𝐷

𝐵

is about 25% larger among (𝑐, 𝑐) types than among (𝑠 ∪ 𝑑, ⋅) and
(⋅, 𝑠 ∪ 𝑑) types, respectively, then LAIE(𝑐, 𝑐) is negative.

Formal Analysis

Adopting the restriction that there are no (𝑑, ⋅) and (⋅, 𝑗) pairs
and computing the bounds in Theorem 5 yields 𝐸[𝑌 (10)|(𝑐, 𝑐)] ∈
[37.28,80.14] and 𝐸[𝑌 (01)|(𝑐, 𝑐)] ∈ [59.38,83.87]. Even with the
improved upper bound for 𝐸[𝑌 (00)|(𝑐, 𝑐)], the implied LAIE lies
in the interval [−37.21,37.22], which is very wide. If we impose
the additional assumption that 𝑌 (11) ≥ max{𝑌 (10), 𝑌 (01)}, then
𝐸[𝑌 (11)|(𝑐, 𝑐)] = 66.94 may be used as a tightened upper bound
for 𝐸[𝑌 (10)|(𝑐, 𝑐)] and 𝐸[𝑌 (01)|(𝑐, 𝑐)] as well.9 This shrinks the
bound on the local interaction effect to [−7.09,37.22], but the sign
remains unidentified.

5.3 | Indirect Bounds on LAIE

We impose the auxiliary condition 𝑃 (𝑑, ⋅) = 0 (see Section 5.1),
but for the time being allow for joint compliers in the finan-
cial incentive treatment arm (𝑃 (⋅, 𝑗) > 0). The expression for the
interaction coefficient 𝛽

𝐴𝐵
stated in Theorem 3 simplifies, and the

local average interaction effect for (𝑐, 𝑐) pairs can be expressed as

𝐿𝐴𝐼𝐸(𝑐, 𝑐) = 𝛽
𝐴𝐵
+ 𝑃 (𝑗, ⋅)

𝑃 (𝑐, 𝑐)
𝐴𝑇𝐸

𝐴|𝐵
(𝑠, ⋅)

+ 𝑃 (⋅, 𝑗) − 𝑃 (⋅, 𝑑)
𝑃 (𝑐, 𝑐)

𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑠 ∪ 𝑑)

(17)

− 𝑃 (𝑗, ⋅)
𝑃 (𝑐, 𝑐)

𝐴𝑇𝐸
𝐴|𝐵
(𝑗, ⋅) + 𝑃 (⋅, 𝑑)

𝑃 (𝑐, 𝑐)
𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑑)

− 𝑃 (⋅, 𝑗)
𝑃 (𝑐, 𝑐)

𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑗),

(18)

where both average treatment effects under (17) are identified
along with their the probability weights. By contrast, the aver-
age treatment effects under (18) are not identified and 𝑃 (⋅, 𝑗)
and 𝑃 (⋅, 𝑑) are also not identified separately. For the identified
quantities, we can substitute the point estimates from Tables 2–4
into (17) and (18) to obtain

𝐿𝐴𝐼𝐸(𝑐, 𝑐) = 1.02 − 0.43𝐴𝑇𝐸
𝐴|𝐵
(𝑗, ⋅)

+ 0.12 + 𝑃 (⋅, 𝑗)
0.49

𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑑)

− 𝑃 (⋅, 𝑗)
0.49

𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑗)

(19)

Just as in case of the direct bounds, we can proceed in two ways.

Heuristic Analysis

As suggested in Section 4.3, we use the identified local average
treatment effects 𝐴𝑇𝐸

𝐴|𝐵
(𝑠, ⋅) and 𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑠 ∪ 𝑑) as reference

12 of 14 Journal of Applied Econometrics, 2025
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FIGURE 2 | Level sets of 𝐿𝐴𝐼𝐸(𝑐, 𝑐) as a function of
𝜆1 and 𝜆2 when 𝑃 (⋅, 𝑗) = 0. 𝜆1 = 𝐴𝑇𝐸

𝐴|𝐵
(𝑗, ⋅)∕𝐴𝑇𝐸

𝐴|𝐵
(𝑠, ⋅);

𝜆2 = 𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑑)∕𝐴𝑇𝐸𝐵|�̄�(⋅, 𝑠 ∪ 𝑑). No joint compliers with respect to

the financial incentive treatment.

points, and write

𝐴𝑇𝐸
𝐴|𝐵
(𝑗, ⋅) = 𝜆1𝐴𝑇𝐸𝐴|𝐵

(𝑠, ⋅),

𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑑) = 𝜆2𝐴𝑇𝐸𝐵|�̄�(⋅, 𝑠 ∪ 𝑑) and

𝐴𝑇𝐸
𝐵|�̄�(⋅, 𝑗) = 𝜆3𝐴𝑇𝐸𝐵|�̄�(⋅, 𝑠 ∪ 𝑑),

where the 𝜆
𝑖
, 𝑖 = 1,2, 3 are scalar multipliers. Using the identi-

fied values of 𝐴𝑇𝐸
𝐴|𝐵
(𝑠, ⋅) and 𝐴𝑇𝐸

𝐵|�̄�(⋅, 𝑠 ∪ 𝑑), and substituting
into (19) gives

𝐿𝐴𝐼𝐸(𝑐, 𝑐) = 1.02 − 1.11𝜆1 + 6.43[0.12 + 𝑃 (⋅, 𝑗)]𝜆2 − 6.43𝑃 (⋅, 𝑗)𝜆3. (20)

If it is hypothesized that all the 𝜆
𝑖

fall into, say, the interval [0,3],
then (20) gives the following bounds on the interaction effect:

− 2.30 − 19.29𝑃 (⋅, 𝑗) ≤ 𝐴𝑇𝐸
𝐴|𝐵(𝑐, 𝑐)

− 𝐴𝑇𝐸
𝐴|𝐵
(𝑐, 𝑐) ≤ 3.34 + 19.29𝑃 (⋅, 𝑗).

Clearly, the bounds are the tightest when 𝑃 (⋅, 𝑗) = 0; that is, there
are no joint compliers with respect to the financial incentive treat-
ment. The sign of the interaction effect is not identified even in
this case, which is not too surprising given that 𝛽

𝐴𝐵
is so close

to zero.

If one is willing to work with the assumption that 𝑃 (⋅, 𝑗) = 0,
expression (20) reduces to a function of 𝜆1 and 𝜆2 only, and it
becomes more straightforward to evaluate 𝐿𝐴𝐼𝐸(𝑐, 𝑐) in vari-
ous hypothetical scenarios. In particular, Figure 2 shows the iso-
quants (level sets) of 𝐿𝐴𝐼𝐸(𝑐, 𝑐) as a function of 𝜆1 and 𝜆2. From
this graph one can read off the (𝜆1, 𝜆2) pairs that are consistent
with, say, a negative interaction between the treatments.

Formal Analysis

Alternatively, one can bound the unknown treatment effects
in (19) by computing the Manski-type bounds stated in

Theorem S1.1, while also imposing 𝑃 (⋅, 𝑗) = 0. This yields,
after replacing any uninformative bounds with trivial
ones, 𝐴𝑇𝐸

𝐴|𝐵
(𝑗, ⋅) ∈ [0,43.88] and 𝐴𝑇𝐸

𝐴|𝐵
(⋅, 𝑑) ∈ [0,100].

Combining these bounds with Equation (19) gives
LAIE(𝑐, 𝑐) ∈ [−17.85,25.51], which is rather too loose to be
useful. One can intersect this interval with the formal direct
bounds for LAIE, but the sign remains unidentified. Neverthe-
less, these Manski-type bounds can still be informative in other
applications.

6 | Conclusion

We study randomized experiments (or quasi-experiments) in
which the experimental units are potentially exposed to one of
two different treatments, both, or none. Compliance with the
intended treatment assignments, described by two binary instru-
ments, is allowed to be endogenous. Our setup allows for the
presence of compliance types that, to our knowledge, have not
been considered in the literature, but are needed to accommo-
date some applications. In particular, there can be individuals in
the population for whom the presence of 𝑍

𝐵
(or, resp. 𝑍

𝐴
) repre-

sents a negative incentive to take treatment 𝐷
𝐴

(or, resp. 𝐷
𝐵

); we
call this type cross-defiers. At the same time, we allow for joint
compliers as well—a type that reacts positively to the partner
instrument and ultimately takes a given treatment whenever both
instruments are present.

We develop the causal interpretation of three IV estimands in
our framework. The price of generality is that some of the iden-
tification results are weak in the sense that interesting causal
parameters are inextricably tied up with terms arising from treat-
ment effect heterogeneity, and auxiliary conditions are needed
to obtain more useful interpretations. Alternatively, we provide
partial identification results with the goal of bounding the inter-
action effect between the two treatments, which is frequently of
interest in applications.

A clear advantage of the general approach is that one does not
need to pre-commit to a theoretical framework that does not quite
fit the data, and any further auxiliary conditions can be tailored
to the application at hand. (For example, Blackwell 2017, needs to
drop a small set of data points because they violate the treatment
exclusion restriction.) Our empirical application, which analyzes
a program randomly offering tutoring services (treatment 𝐴) and
financial incentives (treatment 𝐵) to female college students,
illustrates the advantages of starting from a general interpretative
framework as well as the use of our partial identification results.
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Endnotes
1 In Section 2, we provide a brief literature review and position our paper

more carefully relative to the most relevant subset of papers.
2 One-sided noncompliance means that the treatment cannot be

accessed without receiving the instrument.
3 The basic features of our framework were originally developed in the

MA thesis of Kormos (2018).
4 He states a formula in the Supplemental Appendix and only notes that

it does not have a direct causal interpretation.
5 Defiance is only partial in the sense that the individual does not nec-

essarily act against 𝑍
𝐵
= 0, but adding this idea to the moniker would

be tedious. An alternative label might be “deserters.”
6 A zero coefficient means that takeup is consistent with the treatment

exclusion restriction, that is, only the own instrument matters.
7 Suppose that individuals participate in a study on the health benefits of

physical exercise. Specifically, there are two treatments: running (𝐷
𝐴
)

and swimming (𝐷
𝐵
). The instrument 𝑍

𝐴
is a seminar on the health

benefits of running and 𝑍
𝐵

a seminar on the benefits of swimming.
A person who cannot swim will be a never taker with respect to 𝐷

𝐵
.

Nevertheless, it is conceivable that for the same person 𝐷
𝐴
(10) = 0 but

𝐷
𝐴
(11) = 1. This means that a single lecture is not sufficient to con-

vince this person to take up running but after hearing more about the
health benefits of exercise, he eventually decides to do so.

8 This result then holds even without one-sided non-compliance.
9 The condition 𝑌 (11) ≥ max{𝑌 (10), 𝑌 (01)} implies that, for any indi-

vidual, the joint effect is (weakly) larger than the standalone effect of
each treatment. This assumption is rather strong but it still allows for
the interaction effect to be potentially negative; see Equation (15).
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