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Abstract
In this thesis, a proof of concept was established for the use of a novel coupled QM­MD approach
to modelling metallic (copper) electrode­electrolyte interfaces. SCC­DFTB calculations of the instan­
taneous electronic structure of a copper electrode were coupled to a classical MD simulation of an
electrode­electrolyte interface. The applied QM­MD method was described rigorously, and used to
investigate the compound distribution and dynamics at the interface, relative to a fully classical MD
simulation. Polarisation effects were observed to bring about a significant increase in the attraction
between cations and the cathode. Moreover, local polarisation of the cathode was found to immobilise
adsorbed cations, and induce an increased orientational preference of the nearby water dipoles. The
secondary goal of this thesis was to explore to what extent neural networks are able to replicate SCC­
DFTB calculations of the electronic charge density on a metallic electrode. Using a computer vision
approach, qualitative evidence was obtained indicating that neural networks can be used to replicate
SCC­DFTB predictions on periodic metallic surfaces.

i



List of abbreviations

ADF ­ Amsterdam density functional
AMS ­ Amsterdam modeling suite
BO ­ Born­Oppenheimer
CNN ­ Convolutional neural network
DFT ­ Density functional theory
DFTB ­ Density functional tight­binding
ECC ­ Electronic charge/continuum correction
EDL ­ Electric double layer
EWMA ­ Exponentially weighted moving average
FCC ­ Face­centered cubic
FCN ­ Fully connected network
GGA ­ Generalized gradient approximation
HK ­ Hohenberg­Kohn
KS ­ Kohn­Sham
LAMMPS ­ Large­scale atomic/molecular massively parallel simulator
LCAO ­ Linear combination of atomic orbitals
LDA ­ Local­density approximation
LJ ­ Lennard­Jones
MAE ­ Mean absolute error
MD ­ Molecular dynamics
MSD ­ Mean squared displacement
NN ­ Neural network
QM ­ Quantum mechanics
RMSE ­ Root­mean­square error
SCC ­ Self­consistent charge
SCF ­ Self­consistent field
SGD ­ Stochastic gradient descent
SK ­ Slater­Koster
SPC/E ­ Extended simple point charge model, force field[1]
VdW ­ Van der Waals
VMD ­ Visual molecular dynamics[2]
XC ­ Exchange­correlation
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1
Introduction

1.1. Motivation ­ Carbon dioxide reduction
As a result of the increasing global population and improving living standards, the demand for energy
is expected to continue to grow in the near future. Simultaneously, evidence shows that carbon dioxide
levels in the atmosphere are rising, primarily because of the use of fossil fuels for energy generation.[3]
This rise has numerous detrimental effects on the natural world, and with it, on life of many forms. Solu­
tions for curbing the effects of this development, are urgently needed. Electrochemical carbon dioxide
reduction is a process in which carbon dioxide is converted to more reduced chemical species using
electrical energy.[4] This way, useful and valuable products like ethanol could be synthesized, that can
help meet the need for long­term energy carriers.[5] Additionally, by converting carbon dioxide, this
process could play a role in controlling the concentration of the greenhouse gas in the atmosphere.

Currently, the applicability of the carbon dioxide reduction process is limited due to a lack of efficient
electrocatalysts, which are required to bind and convert the carbon dioxide. Copper is considered the
most suitable electrocatalyst material for the reduction of carbon dioxide to ethylene and ethanol.[6]
This is because its binding energy for carbon monoxide, an intermediate product of carbon dioxide
reduction, is between that of other metals.[7][8] Consequently, on copper, on the one hand, carbon
monoxide binds long enough for it to be converted into more useful products, while on the other hand,
it releases quickly enough for new carbonmonoxide to be bound. To find and design suitable electrocat­
alyst setups, mechanistic understanding of the carbon dioxide reduction process on copper is required.

This understanding is currently lacking. For example, it is unclear what the (primary) mechanism is
behind the observed dependence of the product selectivity of carbon dioxide reduction on the kind of
cations present in the electrolyte.[9]. In this context, the description of the electrode­electrolyte inter­
face, and more specifically that of the electrical double layer (EDL), schematically depicted in figure
1.1, is of great interest.[8][9][10] The EDL depends on many physical effects and characteristics of the
system, like the ions present, the strength of the present electric field, and the local shape and material
of the solid. Consequently, modelling the EDL accurately has proven to be difficult, and has been of
considerable interest for many years.[11][12]

A physical effect that can significantly alter the interaction at the electrode­electrolyte interface, is elec­
trostatic induction. By means of electrostatic induction, electric charges in an electrolyte solution, like
those carried by ions in the EDL, can cause a redistribution of charges in the nearby solid electrode.
This effect, commonly referred to as polarisation, is a function of the constantly evolving EDL configura­
tion. In turn, the locally induced charges can significantly influence the interaction of the electrode with
the electrolyte, and thus the EDL. In this thesis, the interest primarily goes out to efficiently modelling
copper electrode­electrolyte interfaces. Specifically, the focus is on efficiently modelling, and attempt­
ing to improve the understanding of, the effects of electrode surface polarisation at that interface.

1



1.2. Problem ­ Modelling polarisation effects 2

Figure 1.1: Schematic depiction of an electrical double layer (EDL), that represents the charge distribution in the vicinity of a
surface exposed to a fluid. It is most basically envisioned as depicted here, as being composed of two parallel arrays of opposite
charges. A negatively charged solid is shown, with an aqueous solution at the interface. Cations are coloured in red, anions in
blue. To neutralise the negative charge of the solid, the first layer consists mainly of cations adsorbed on the surface. In turn,
the cations at the surface attract anions from the bulk, forming the double layer. This description of the EDL is not necessarily
physically accurate, as its structuring depends on many characteristics of the system.

1.2. Problem ­ Modelling polarisation effects
Metallic solids, like the copper electrode of interest, can only be described on a fundamental level
using an ab initio approach, like density functional theory (DFT). In DFT, the electronic structure of
many­electron systems is directly computed. However, DFT simulations are computationally costly,
and are therefore usually limited to the simulation of only a few hundred atoms on relatively short time
scales, i.e., on the order of picoseconds.

For many applications, classical molecular dynamics (C­MD) simulations can be very useful for describ­
ing and understanding the interactions between atoms and molecules. In C­MD, Newton’s second law
of motion is used to predict the physical trajectories of atoms, for which the interatomic forces are mod­
elled using fitted interatomic potential functions. This method allows for simulating much larger systems
on much longer timescales than ab initio approaches, generally being able to simulate systems of thou­
sands of atoms on a timescale up to microseconds. When simulating electrode­electrolyte interfaces,
however, polarisation effects are usually not rigorously accounted for, and surface polarisation effects
are assumed to have a negligible effect on the electrolyte structuring at the interface.

It has been found that this assumption does not always hold in the case of metallic and semi­metallic
surfaces. For example, DFT simulations of graphene sheets have shown a sizable redistribution of
surface charge, induced by the proximity of ions in the nearby electrolyte.[13][14][15] Moreover, it has
been demonstrated that not taking into account surface polarisation in the context of carbonaceous
nanostructures, leads to incorrectly predicted adsorption tendencies of various cations (like Na+ and
K+) at the surface of carbon nanotubes[15][16], and an overestimation of the Van der Waals interaction
between liquid water and graphene, and thus an incorrectly predicted water contact angle.[17] The im­
portance of surface polarisation has also been highlighted in several studies on the molecular charging
mechanism of nanoporous electrodes.[18][19][20]. It is clear that polarisation effects can potentially be
important for accurately describing electrode­electrolyte interfaces.

In an attempt to appropriately model the electrostatics, without having to continuously fall back on
ab initio methods, various different modelling techniques have been developed, for both classical and
coupled quantum and classical simulations. Unfortunately, the modulation of the Coulombic interaction
due to the dynamic polarisation of the electrode is hard to predict, and all approaches, as described
below, have shortcomings of some kind.

In most C­MD simulations, if any, only polarisability of the electrolyte is included. Usually, in that case,
polarisation effects are accounted for in an averaged way through pre­set interaction potentials, with
fixed charges assigned to the atoms. This way, the dynamical aspect of polarisation is not considered.
Many polarisable force fields have been developed to explicitly model polarisability. In most standard
polarisable force fields, using the so­called ’core­shell’ approach, a positively charged core particle,
and a negatively charged particle representing the electron cloud, are connected to each other by a
spring­like harmonic oscillator potential.[21]
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While these kind of models can work very well for describing, for example, certain electrolyte solu­
tions, such atomic­centered approaches cannot account for charge transfer within a conductor, like the
metallic copper electrode used in carbon dioxide reduction systems. Moreover, to provide an accurate
description of polarisability, polarisable force fields, more than classical force fields, often need to be
adapted to the specific context for which they are intended, limiting their applicability.

In recent decades, the importance of taking into account the polarisation of metal electrodes by ions
in their immediate vicinity has been recognised, leading to a variety of approaches.[22][23][24][25][26]
Most of these approaches are derived from the proposed model by Siepmann and Sprik[27], and/or
its later adaptation by Reed et al.[28], in which electrode charges are allowed to fluctuate in order to
maintain a constant electric potential throughout the electrode. This constrained value for the electric
potential forms the main assumption of these methods, and is considered to hold for ideal conductors.
Recently, in the work of Elliott et al.[14], it was shown that the ideal conductor assumption, at the basis
of these constant potential methods, does not necessarily hold for conductors of any type, as it was
seen it does not for the semi­metallic graphene.

1.3. Approach ­ Coupling of QM and MD
Alternatively, Elliott et al.[14] demonstrated a novel coupled quantum mechanical­classical molecu­
lar dynamics (QM­MD) approach to simulating electrode/electrolyte interfaces. In the demonstrated
workflow, the electronic structure of the electrode was calculated using self­consistent charge density
functional tight binding (SCC­DFTB), a semi­empirical approximation of DFT. The results of this cal­
culation were subsequently communicated to a classical MD simulation, that computed the classical
dynamics of the system. By iterating this scheme, the simulated system was allowed to evolve over
time in response to the electronic polarisation of the electrode.

In this thesis, it is attempted to extend this approach to the study of a copper electrode­electrolyte in­
terface. The main interest goes out studying the importance of taking into account polarisation effects
in a copper electrode­electrolyte interface, as compared to the C­MD approach. Simultaneously, a
proof of concept for using the described QM­MD approach will be established in the context of metal­
lic electrode­electrolyte interfaces in general, to provide a different approach to the constant potential
methods that, instead of relying on direct computations of the electronic structure, relies on the ideal
conductor assumption.

1.4. The timescale issue
The timescale that is thought to be within reach using the described QM­MD loop, is on the order of
a couple of hundreds of nanoseconds. Many problems where polarisation effects are important for
an accurate description of the dynamics occur on much longer time scales. For example, atomistic
protein folding, in which polarisation effects can play an essential role[29], is not unlikely to happen on
a timescale of microseconds.[30] Moreover, studies on the development of electric double layers have
indicated that timescales of microseconds to seconds are not exceptional.

For example, EDL formation on graphene FETs was demonstrated to occur on a timescale of microsec­
onds to milliseconds[31], and EDL formation on gold electrodes was shown to be characterised by re­
laxation times spanning the range of less than microseconds to longer than seconds[32]. Similarly, in
a study on EDL formation on charged silica, it was estimated that relaxation of the system could occur
on a timescale on the order of seconds when involving lithium ions, and on the order of milliseconds
when involving cesium.[33]

Studying these, or similar, problems using the described QM­MD is not feasible. Recently, Di Pasquale
et al.[34] have shown that fully connected neural networks (NNs) are able to replace SCC­DFTB calcu­
lations to some extent in the context of a non­periodic graphene electrode. This is interesting because,
once the network is trained, the time required to perform the relevant computations is negligible com­
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pared to the SCC­DFTB computation time. Therefore, this thesis will explore the possibility of extending
the previous work by investigating the ability of NNs to replace QMmodelling in our system, which con­
tains a periodic copper electrode.

1.5. Scope
The primary aim of this thesis is to establish a proof of concept for using the described QM­MD ap­
proach in the context of metallic electrode­electrolyte interfaces in general, and for copper specifically,
and to improve the understanding of the local properties of the copper electrode­electrolyte interface,
and specifically to obtain more insight in what role polarisability of the electrode plays. To do so, our
approach will be rigorously described, and systematically tested. The main research question is as
follows:
”To what extent are the compound distribution and dynamics at the copper electrode­electrolyte inter­
face altered, when quantum mechanically modelled charge induction effects on the electrode surface
are taken into account, as compared to a classical modelling approach?”

The secondary goal of this project is to integrate a trained NN into the MD simulation, as to replace the
need for coupling the much more expensive QM models with the MD simulation. For this purpose, an
additional (sub) research question is formulated:
”To what extent are neural networks able to replace periodic SCC­DFTB calculations on copper in a
coupled SCC­DFTB/C­MD approach?”

1.6. Structure of the thesis
Multiple steps in the modelling of the copper electrode­electrolyte interface need to be taken. First,
separately working SCC­DFTB and C­MD models need to be created. Subsequently, these need to
be successfully coupled, and evaluated. Finally, appropriate neural networks that can be used to ac­
celerate the coupling between the QM and MD models must be created, trained and evaluated..

In the following chapter, classical molecular dynamics, density functional theory, self­consistent charge
density functional tight binding, and neural networks are described, that together constitute all meth­
ods used in this work. In chapter 3, the methods are described in detail. In chapter 4 all results are
presented and discussed. Lastly, chapter 5 contains the conclusions.



2
Methodological background

In this chapter background information is provided on all simulation methods used in this thesis. Specif­
ically, section 2.1 provides background on molecular dynamics, section 2.2 on density functional theory
and section 2.3 on (self­consistent charge) density functional tight­binding. Finally, section 2.4 provides
information on neural networks.

2.1. Molecular dynamics
Molecular dynamics (MD) is a computer simulation method for predicting the physical trajectories of
atoms. To this end classical MD as applied in this thesis, solves Newton’s second law of motion by
integrating over discrete time steps. To predict the trajectory, the initial positions and velocities of the
atoms in the system are required. Forces between atoms are modelled using interatomic potential
functions for which suitable expressions need to be found. In the following subsections, both discrete
time integration and interatomic potentials are shortly expanded upon. Lastly, an explanation is given
of the periodic boundary conditions used in this work.

2.1.1. Interatomic potential
The interatomic force a particle experiences is generally given as the sum of three forces in the context
of MD: the Coulombic interaction (charge attraction/repulsion), attractive Van der Waals (VdW) forces
and repulsive electronic forces as a result of the Pauli exclusion principle for two identical fermionic
particles. Generally, only pair­wise interaction is considered, because multi­body (more than two) po­
tentials are too computationally expensive. A potential model provides a mathematical form for the
interaction between neutral particles as a function of the distance between them. In the context of
classical molecular dynamics, different kinds of functional forms have been used to approximate these
forces. The electric potential fromwhich the Coulombic attraction/repulsion arises is generally modelled
using the standard Coulombic interaction potential

𝑈𝐶 (𝑟) =
1

4𝜋𝜖0
𝑞𝑖𝑞𝑗
𝑟 , (2.1)

given here for charged particles 𝑖 and 𝑗. 𝜖0 represents the vacuum permittivity, 𝑞 the charge of the
respective particles and 𝑟 the distance between them.

The Lennard­Jones (LJ) interaction potential

𝑈𝐿𝐽 (𝑟) = 4𝜖 ((
𝜎
𝑟 )

12
− (𝜎𝑟 )

6
) , (2.2)

is most commonly used to model the VdW and Pauli repulsion forces. The first term represents the
exchange interaction between two particles, which yields a repulsive force as a result of the Pauli ex­
clusion principle. The second term describes the attractive force as a result of VdW forces. The value

5
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of 𝜖 corresponds to the minimum value of the potential well, whereas the value of 𝜎 corresponds to the
distance at which the potential is equal to zero.

𝜖 and 𝜎 are generally referred to as pair coefficients (pairwise force field coefficients). These are
simulation parameters that have to be fitted and set for each pair of different atom types. Often, pair
coefficients are only provided for interaction with itself (𝜎𝑖𝑖 & 𝜖𝑖𝑖). In that case, combining rules are used
to determine the exchange interaction parameters between different types of non­bonded atoms. For
the LJ­potential, the most commonly used combining rules are the Lorentz­Berthelot rules[35]

𝜖𝑖𝑗 = √𝜖𝑖𝑖𝜖𝑗𝑗 , 𝜎𝑖𝑗 =
𝜎𝑖𝑖 + 𝜎𝑗𝑗

2 , (2.3)

and the geometric mixing rules

𝜖𝑖𝑗 = √𝜖𝑖𝑖𝜖𝑗𝑗 , 𝜎𝑖𝑗 = √𝜎𝑖𝑖𝜎𝑗𝑗 . (2.4)

Once suitable functional forms and fitting parameters for the interaction potential have been found, the
respective forces on each atom can be calculated by taking the derivative of this potential, taking into
account the direction of the force. This way, the force on a particle with label 𝑖 can be written as

F (r) = − r
|𝑟|
𝜕𝑈
𝜕𝑟 . (2.5)

Subsequently, by integration of the coupled equations of motion, the movement of the atoms in time
can be predicted.

Intermolecular interactions between atoms use the same potential functions as previously described.
For intramolecular interaction, however, the previously mentioned potential functions are generally set
to zero for atoms at most two bonds away, and either scaled down or also set to zero for atoms more
than two bonds away. Atoms that form a molecule (e.g. oxygen and hydrogen in water molecules),
are generally held together using a different set of potential functions that prevent atoms from moving
relative to each other in an unphysical manner. The bonds, angles and more complex atom relations
such as impropers and dihedrals within molecules, are modelled using a set of potential functions that
depend on their individual parametrisations.

2.1.2. Velocity­Verlet integration
For the systems of interest, Newton’s second law as given by equation (2.5) cannot be solved exactly.
Therefore, to determine the time evolution of the particle trajectories, a numerical integration scheme is
required. In order to preserve (a discrete version of) the total energy as much as possible, a symplectic
integrator is chosen, namely the velocity­Verlet algorithm.[36] The solutions of a symplectic integrator
reside on a symplectic manifold. For solving a Hamiltonian system this is important, as the solutions
to Hamiltonian equations naturally do so, and on which the total energy must be constant for the true
solution. Due to its property of symplecticity, the velocity­Verlet algorithm is relatively stable and its nu­
merical drift relatively low. Therefore, it is better suited for performing long MD simulations than other
well­known integrators like the Euler scheme or the Runge–Kutta scheme.[37]

The velocity­Verlet algorithm can be derived, by performing and combining Taylor expansions of x(𝑡 +
Δ𝑡), x(𝑡 − Δ𝑡), v(𝑡 + Δ𝑡) and v̇(𝑡 + Δ𝑡), as

r(𝑡 + Δ𝑡) = r(𝑡) + Δ𝑡v(𝑡) + Δ𝑡
2

2 F(r(𝑡)) (2.6)

v(𝑡 + Δ𝑡) = v(𝑡) + ℎ2(F(r(𝑡 + Δ𝑡))) + F(r(𝑡)) (2.7)

where force vector F is given by eq. 2.5. Eq. (2.6) gives the particle’s position at one time step Δ𝑡 later,
and eq. (2.7) gives a particle’s velocity at one time step ℎ later.



2.1. Molecular dynamics 7

2.1.3. Periodic boundary conditions
Most preferably the simulated MD system would contain a macroscopic number of atoms. Computa­
tionally, however, this can not be achieved. Instead, in order to emulate a larger system, the MD sys­
tem is contained by periodic boundary conditions. Essentially, the simulation box is thus surrounded
by copies of itself. This has consequences for the particles moving within the simulation box. When
a particle moves through one end of the simulation box, it enters the box from the opposite side. To
avoid self interacting particles, and particles experiencing a force from the same particle from multiple
directions, a cutoff distance is enforced on the evaluation of the interatomic potential functions.

Instead of calculating the force every particle experiences due to every other particle, a particle in
the periodic system only experiences forces from particles within a certain cutoff distance from itself.
This way, a larger system can be mimicked, while only calculating the trajectories of a limited number of
atoms. The choice for the cutoff distance is generally justified by looking at how quickly the LJ­potential
falls off as a function of the distance between particles. To prevent a particle from interacting with the
same particle more than once, the choice for the cut­off distance should always be smaller than half
the length of the smallest simulation box dimension.

The hard cut­off distance does not apply to the Coulombic force evaluation, as this falls off much slower
than the other relevant forces. However, after the cut­off distance, the Coulombic evaluation is usually
replaced using a long­range solver. This is an algorithm designed to efficiently approximate the force.

Figure 2.1: Depiction of periodic boundaries and the cutoff distance. Only particles within the cutoff distance from the red particle
in the middle box, represented by the blue circle, can interact with it. So, within the middle box, the red particle experiences a
force only from the blue particle in the same box and the green particle in the box above. The green particle in the middle box
does not contribute to the force on the red particle.

2.1.4. Force fields
As outlined in the previous sub­sections, an MD simulation depends on many parameters that need to
be set for all used atom types. Firstly, the masses and partial charges of the used atom types need
to be set. Secondly, some functional forms for the interaction potential need to be chosen, and the
pair coefficients between atoms, together with the cut­off distance, need to set. Lastly, for molecules,
the required bond, angle, improper and dihedral functional forms and corresponding fitting parameters
need to be specified.

All these parameters are provided by ’force fields’, parameter sets made for specific atoms/molecules,
which are generally supposed to be used under similar conditions as under which they were created.
In unpolarisable force fields, which are most commonly used, the partial charges are taken to be con­
stants that do not change during the simulation.
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2.2. Density functional theory
Density functional theory (DFT) is used to investigate the electronic structure of many­body systems.
In this section, a step­by­step introduction into the basics of DFT is provided. Throughout this section,
Hartree atomic units (𝑒 = ℏ = 𝑚𝑒 = 4𝜋𝜖0 = 1) are used. Basic knowledge of functionals and functional
derivatives is recommended. As a good introduction into functionals in the context of DFT, the short
exposition given in Appendix A of the book by (Parr and Yang, 1994)[38] is recommended.

2.2.1. The many­body problem
Without external perturbations, for a system of 𝑛 electrons and𝑁 nuclei, the time­independent Schrödinger
equation for the many­body wave function Ψ({r𝑖 ,R𝐼}), can be written as

�̂�Ψ ({r𝑖 ,R𝐼}) = 𝐸Ψ ({r𝑖 ,R𝐼}) , (2.8)

where Hamiltonian operator �̂� is given as

�̂� =
𝑛

∑
𝑖=1

𝑛

∑
𝑗>𝑖

1
||r𝑖 − r𝑗||2

+
𝑛

∑
𝑖=1

𝑁

∑
𝐼=1

−𝑍𝐼
||r𝑖 −R𝐼||2

+
𝑁

∑
𝐼=1

𝑁

∑
𝐽>𝐼

𝑍𝐼𝑍𝐽
||R𝐼 −R𝐽||2

+
𝑛

∑
𝑖=1
−12∇

2
r𝑖 +

𝑁

∑
𝐼=1
− 1
2𝑀𝐼

∇2R𝐼 .

(2.9)

Here, r𝑖 and R𝐼 denote the positions of the electrons and the nuclei, respectively. The nuclei masses
are denoted by 𝑀𝐼 (in atomic units), and 𝑍 denotes the atomic numbers. The first three terms in the
Hamiltonian expression represent the electron­electron, electron­nuclear and nuclear­nuclear interac­
tions, respectively. The final two terms describe the kinetic energies of the electrons and the nuclei.
Solutions to this equation are sought­after, as they determine the static properties of the system.

2.2.2. Born­Oppenheimer approximation
In order to simplify eq. (2.9), the Born­Oppenheimer (BO) approximation is employed, that allows for
the separation of the motion of the nuclei and that of the electrons.[39] In the BO approximation, a static
arrangement of the nuclei is assumed. The physical basis for this approximation is the fact that the
mass of a nucleus is multiple orders of magnitude larger than the mass of an electron. As a conse­
quence hereof, electrons move and respond to forces much more quickly than the nuclei. By neglecting
nuclei motion, the BO approximation essentially assumes that the electrons in the system are able to
adapt to changes in the nuclear positions instantaneously.[40]

As a consequence of the BO approximation, the time­independent Schrödinger equation can be given
as

[
𝑛

∑
𝑖=1

𝑛

∑
𝑗>𝑖

1
||r𝑖 − r𝑗||2

+
𝑛

∑
𝑖=1

𝑁

∑
𝐼=1

−𝑍𝐼
||r𝑖 −R𝐼||2

+
𝑛

∑
𝑖=1
−12∇

2
r𝑖]Ψ ({r𝑖 ,R𝐼}) = 𝐸Ψ ({r𝑖 ,R𝐼}) . (2.10)

Although the motion of nuclei is now neglected, the wave function still depends on the positions of
the nuclei. The potential energy due to nuclear­nuclear interaction is merely a constant, and plays no
relevant role in the DFT framework. Therefore, it is left out of the Hamiltonian, which reduces to the
so­called electronic Hamiltonian. A generalised notation of this expression can be given as

[�̂� + �̂� + �̂�]Ψ = 𝐸Ψ, (2.11)

where the three terms in the l.h.s. of equation (2.10) are represented by �̂� (electron­electron inter­
action energy), �̂� (potential energy from external field, like the electron­nuclear interaction previously
mentioned) and �̂� (kinetic energy) operators, respectively.
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2.2.3. Hohenberg­Kohn theorems
The expression given in eq. (2.11) is very commonly used in quantum chemistry for a multi­electron
system. Because of the electron­electron interaction (�̂�), it cannot be separated into single­particle
equations. In order to reduce the required computational effort, DFT attempts to solve a similar prob­
lem, by mapping the many­body problem with the problematic �̂� term, onto a single­body problem. In
DFT, the total energy of the system is treated as a functional of the electron density 𝜌(r).[40] By not ex­
plicitly solving the system for a 3N­dimensional wave function (4N if spin was to be taken into account),
but rather using a single 3 dimensional density variable, this approach reduces the computational cost
of finding solutions significantly.[41][42]

In what are conventionally known as the Hohenberg­Kohn (HK) theorems, it was demonstrated that
considering only the density suffices to characterise any physical property of a quantum mechanical
system.[43] These theorems, as given below, provide a framework to find the ground state of any elec­
tronic system under the influence of an external potential through the electron density.

• HK­1: The external potential is a unique functional, except for a constant, of the electron density
of a non­degenerate ground state.

• HK­2: The electron density obeys a variational principle.

To understand the consequences of these theorems, first the total energy functional is written in terms
of some external potential 𝑣𝑒𝑥𝑡 and some functional 𝐹𝐻𝐾 of the electron density, as

𝐸[𝜌] = ∫𝜌(r)𝑣𝑒𝑥𝑡(r)𝑑r+ 𝐹𝐻𝐾[𝜌]. (2.12)

The so­called Hohenberg­Kohn functional 𝐹𝐻𝐾, with corresponding operator ̂𝐹𝐻𝐾, is a generalised rep­
resentation of the energies corresponding to the �̂� and �̂� operators shown in eq. (2.11). This functional
is said to be universal, i.e., it does not depend on the system under study; it is the same for all 𝑛­electron
systems. Since the 𝐹 functional is universal, the Hamiltonian of the system is completely defined by the
number of electrons in the system and the external potential. HK­1 (by means of a relatively straight­
forward reductio ad absurdum) shows that the external potential itself is uniquely determined by the
electron density. From the first theorem it follows that the ground state energy 𝐸0 of the system can
be formulated, not only as a functional of some wave function, but also as a universal functional of the
electron density

𝐸0 = ⟨Ψ| �̂� |Ψ⟩ = 𝐸[𝜌]. (2.13)

After obtaining this functional of the electron density, HK­2 provides a way to actually obtain the ground
state energy by establishing a variational principle. Consequently, the ground state energy can be ob­
tained by means of an energy minimisation with respect to the density, as the density that minimises
the total energy must be the ground state density. This can be expressed as

𝐸0 = 𝐸[𝜌0] ≤ 𝐸[𝜌]. (2.14)

Naturally, this minimisation should happen under the constraint that ∫𝜌(r)𝑑r = 𝑛.
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2.2.4. The Kohn­Sham equations
There are different approaches in DFT for actually solving the ground state. Commonly used is the
formulation of DFT provided by Kohn and Sham.[44] In Kohn­Sham DFT the system of interacting
electrons in an external potential is reduced to a fictitious system of non­interacting electrons moving
in an effective potential. Importantly, this reduces the Hamiltonian to a sum of single­particle operators.

Correspondingly, the electrons in this fictitious reference system are described by single­electron Kohn­
Sham orbitals 𝜙𝑖, which together are taken to yield the same ground state electron density as the inter­
acting system. In principle, Kohn­Sham orbitals are mathematical objects used for solving the system,
lacking strict physical meaning (even though they can prove useful quantities for interpretation[45][46]).
Consequently, the wave function 𝜓𝐾𝑆 of the fictitious 𝑛­fermionic system can be described by a Slater
determinant constructed from the set of Kohn­Sham orbitals. The density for the 𝑛­electron system can
be expressed as a sum over the orbitals squared

𝜌(r) =
𝑛

∑
𝑖
|𝜙𝑖(r)|2. (2.15)

For the fictitious system, the Hohenberg­Kohn functional from eq. (2.12) is expressed as

𝐹𝐻𝐾[𝜌] = 𝑇𝑠[𝜌] + 𝐸𝐻[𝜌] + 𝐸𝑋𝐶[𝜌]. (2.16)

Here, the first two terms represent the non­interacting Kohn­Sham kinetic energy 𝑇𝑠 and the Hartree
electrostatic self­repulsion of the electron density 𝐸𝐻. Both terms do not represent the exact kinetic and
electron­electron interaction energies. The exchange­correlation functional 𝐸𝑋𝐶 is defined to account
exactly for all missing interactions in the non­interacting representation of the system due to exchange
and correlation effects, as

𝐸𝑋𝐶 = (𝑇 − 𝑇𝑠) + (𝐸𝑒𝑒 − 𝐸𝐻), (2.17)

where 𝑇 and 𝐸𝑒𝑒 give the exact kinetic energy and electron­electron interaction potential, respectively.
In other words, the 𝐸𝑋𝐶 functional contains the sum of corrections to all (quantum) effects not captured
by either 𝐸𝑇 or 𝐸𝐻. Now, the total energy can be written as

𝐸[𝜌] = 𝑇𝑠[𝜌] + ∫𝜌(r)𝑣𝑒𝑥𝑡(r)𝑑r+ 𝐸𝐻[𝜌] + 𝐸𝑋𝐶[𝜌]. (2.18)

In order to find a set of equations that can be used to solve the system, a minimisation of the total
energy is performed. For this purpose, the following Lagrangian is introduced[47]

ℒ({𝜙𝑖}) = 𝐸({𝜙𝑖}) −
𝑁

∑
𝑖=1
𝜖𝑖 (∫𝜙∗𝑖 (r)𝜙𝑖(r)𝑑r− 1) . (2.19)

Here 𝐸({𝜙𝑖}) represents the total energy, as given by eqs. (2.18), only now written in terms of the set of
orbitals {𝜙𝑖}, via eq. (2.15). 𝜖𝑖 is the Lagrange multiplier associated with the constraint on the orbitals
of being orthonormal, given as

∫𝜙∗𝑖 (r)𝜙𝑖(r)𝑑r = 1. (2.20)

To find the ground state, the given Lagrangian should be stationary with respect to variations of the
orbitals 𝜙𝑖, i.e.,

𝛿ℒ
𝛿𝜙∗𝑖

= 0, (2.21)

where the l.h.s. denotes the functional derivative of the Lagrangian. By computing this functional
derivative, it is found that the orbitals satisfy a (coupled) set of single­particle Schrödinger­like equa­
tions, known as the Kohn­Sham equations

(−12∇
2
r + 𝑣𝐻(r) + 𝑣𝑋𝐶(r) + 𝑣𝑒𝑥𝑡(r))𝜙𝑖(r) = 𝜖𝑖𝜙𝑖(r). (2.22)
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In this expression, 𝑣𝐻 corresponds to the Hartree potential, given as

𝑣𝐻([𝜌]; r) = ∫𝑑r′
𝜌(r′)
|r− r′| , (2.23)

and 𝑣𝑋𝐶 is simply defined as the functional derivative of the exchange­correlation energy with respect
to the density as

𝑣𝑋𝐶([𝜌]; r) =
𝛿𝐸𝑋𝐶[𝜌]
𝛿𝜌 (r). (2.24)

The problem is reduced to an eigenvalue problem, in which the goal is to find the orbitals 𝜙𝑖 with (eigen­
)energies 𝜖𝑖.

2.2.5. Application of the theory
In practical calculations, usually orbitals 𝜙𝑖 are constructed as a linear combination of a set of other
functions {𝜒𝜇}, called basis functions, as

𝜙𝑖 =∑
𝜇
𝑐𝑖𝜇𝜒𝜇 , (2.25)

where {𝜒𝜇}, for example, are taken to be Gaussian­type basis functions centered on the nuclei. Thus,
finding the orbitals 𝜙𝑖 amounts to calculating their respective orbital coefficients 𝑐𝑖𝜇. Since the 𝑣𝐻 and
𝑣𝑋𝐶 terms in eq. (2.22) depend on the density, which itself depends on the orbitals 𝜙𝑖, which in turn
depend on the potential, the Kohn­Sham equations have to be solved self­consistently. This usually
results in an iterative solving scheme, referred to as the self­consistent field (SCF) method. First the
Kohn­Sham equations (eq. (2.22)) are solved for a given input density 𝜌𝑖𝑛. Subsequently, a new output
density 𝜌𝑜𝑢𝑡 is calculated using eq. (2.15). Finally, the iteration scheme is halted if 𝜌𝑖𝑛 and 𝜌𝑜𝑢𝑡 are in
sufficiently good agreement according to some pre­set criterion. If not, a new iteration is started using
a new input density, usually formed by mixing 𝜌𝑖𝑛 and 𝜌𝑜𝑢𝑡.

If the exchange­correlation functional would be exact, the exact electron density of the system could
be obtained. However, exact analytic expressions of the exchange­correlation functional 𝐸𝑋𝐶 are un­
known, so approximate functionals must be introduced. The two most common approximations are the
local­density approximation (LDA) and the generalised gradient approximation (GGA).

In the LDA, the exchange­correlation functional depends only on the density at the position where it
is evaluated. Usually, exchange­correlation functional is split into an exchange part and a correlation
part, and each parametrisation is individually derived from the homogeneous electron gas model. In
the GGA, the exchange­correlation energy depends on the density at the point of evaluation (local) and
on the gradient of the electron density (non­local), such that non­local changes in the density around
the position of evaluation can be taken into account.[48][49]

The given formulation of DFT does not take into account relativistic effects, as spin does not appear
naturally in the (non­relativistic) Schrödinger equation. In the case that spin polarisation plays an im­
portant role in the system, spin would have to be introduced as an additional degree of freedom to
compensate for this, by letting the single­particle wave functions describe the spin state. In that case,
usually, the total density is split up in a up and down­state density. Next, the exchange­correlation
functionals must be extended accordingly, to take into account the spin projections. For brevity, all
corresponding equations and considerations are not going to be provided here. Jambrina et al.[50]
provide an introduction to the subject.
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2.3. Self­consistent charge density functional tight binding
Density functional tight­binding (DFTB) is an approximation of DFT, in which the Kohn­Sham equations
are reduced to a form of tight­binding. By means of a second­order expansion of the Kohn­Sham total
energy, a charge self­consistent treatment is enabled. The resulting method is self­consistent charge
DFTB (SCC­DFTB), which is the most widely applied version of the DFTB method. Below, the SCC­
DFTB method is introduced.

The notation used in this section is consistent with the previous discussion of DFT in section 2.2. 𝑖 and 𝑗
represent electron indices, whereas 𝐼 and 𝐽 are atom indices. 𝜇 and 𝜈 are indices of basis states. 𝑟 and
𝑅 denote electron and atom positions, respectively. Again, Hartree atomic units are used throughout
this section.

In DFTB, the Hamiltonian elements are taken to be the principal parameters of the method (following a
tight­binding formalism). To obtain a set of equations that can be parametrised in such a way, the total
energy of the non­interacting Kohn­Sham system is approximated. Firstly, these approximations will
be introduced. Subsequently, the tight­binding formalism is expanded upon.

2.3.1. Expansion of the total energy
In order to derive the relevant equations for SCC­DFTB, first the expression for the total energy of the
non­interacting Kohn­Sham system is given, as before, as

𝐸[𝜌] = 𝑇𝑆[𝜌] + ∫𝑣𝑒𝑥𝑡(r)𝜌(r)𝑑r+ 𝐸𝐻[𝜌] + 𝐸𝑋𝐶[𝜌] + 𝐸𝑐𝑜𝑟𝑒 , (2.26)

wherein now only the 𝐸𝑐𝑜𝑟𝑒 term contains the contributions to the energy of the nuclear­nuclear inter­
actions. Below it is shown that this terms plays an important role in the parametrisation of DFTB. This
expression can be rewritten as

𝐸[𝜌] =∑
𝑖
⟨𝜙𝑖| (−

1
2∇

2
r + 𝑣𝑒𝑥𝑡) |𝜙𝑖⟩ +

1
2 ∫∫𝑑r𝑑r

′ 𝜌(r)𝜌(r′)
|r− r′| + 𝐸𝑋𝐶[𝜌] + 𝐸𝑐𝑜𝑟𝑒 . (2.27)

DFTB is an approximation of DFT, and the SCC­DFTB method is derived from DFT by a second­order
expansion of the given DFT total energy with respect to charge density fluctuations 𝛿𝜌 around some
reference density 𝜌𝑟.[51] The result allows the energy functional to be written as a functional of the
charge fluctuation, that can be split into three parts

𝐸[𝛿𝜌] = 𝐸𝐵𝑆[𝛿𝜌] + 𝐸𝑟𝑒𝑝 + 𝐸𝑐𝑜𝑢𝑙[𝛿𝜌]. (2.28)

Firstly, 𝐸𝐵𝑆 denotes the so­called band­structure energy

𝐸𝐵𝑆[𝛿𝜌] =∑
𝑖
⟨𝜙𝑖| (−

1
2∇

2
r + 𝑣𝑒𝑥𝑡 +∫𝑑r′

𝜌𝑟(r′)
|r− r′| + 𝑣𝑋𝐶[𝜌𝑟]) |𝜙𝑖⟩ =∑

𝑖
⟨𝜙𝑖| 𝐻𝐾𝑆[𝜌𝑟] |𝜙𝑖⟩ , (2.29)

in which the Kohn­Sham Hamiltonian 𝐻𝐾𝑆[𝜌𝑟] itself is independent of the charge fluctuation.

2.3.2. Repulsive energy term
Secondly, the repulsive energy 𝐸𝑟𝑒𝑝, expressed as

𝐸𝑟𝑒𝑝 = −
1
2 ∫∫𝑑r𝑑r

′ 𝜌𝑟(r)𝜌𝑟(r′)
|r− r′| + 𝐸𝑋𝐶[𝜌𝑟] − ∫ r𝑣𝑋𝐶[𝜌𝑟]𝜌𝑟 + 𝐸𝑐𝑜𝑟𝑒 , (2.30)

gets its name from the present nuclear­nuclear interaction term 𝐸𝑐𝑜𝑟𝑒. The first three terms correspond
to the correction for the double counting terms from the Coulombic and exchange­correlation contribu­
tions contained in the 𝐻𝑟[𝜌𝑟] Hamiltonian (Coulombic interaction between two electrons, for example,
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is currently counted for both electrons experiencing it). 𝐸𝑟𝑒𝑝 is usually approximated in its entirety as
a sum of terms over atom pairs, where each term depends solely on the type of elements and the
distance between them. Generally, this can be written as

𝐸𝑟𝑒𝑝 =∑
𝐼<𝐽
𝑣𝐼𝐽𝑟𝑒𝑝(𝑅𝐼𝐽). (2.31)

To get, from the Hartree term, to this expression from, the total volume over which is integrated is di­
vided up into atomic volumes, through which the integral can be written as a sum over atom pairs.[42]
Similar reasoning is applied to the remaining terms. The pair­wise functions, 𝑣𝐼𝐽𝑟𝑒𝑝, are obtained by
means of a fitting procedure in a higher­level theoretical computation program, like DFT.

2.3.3. Charge fluctuations term
The third term, 𝐸𝑐𝑜𝑢𝑙, represents the Coulomb and exchange­correlation contributions to the total en­
ergy from the charge density fluctuations and is expressed as

𝐸𝑐𝑜𝑢𝑙[𝛿𝜌] =
1
2 ∫∫

′
(𝛿

2𝐸𝑋𝐶[𝜌𝑟]
𝛿𝜌𝛿𝜌′ + 1

|r− r′|) 𝛿𝜌𝛿𝜌
′. (2.32)

The two terms on the r.h.s. only appear in the second order expansion of the total energy. Their
incorporation forms the difference between the SCC­DFTB method and the traditional DFTB approach,
in which they are neglected. As in the SCF procedure in DFT, in SCC­DFTB the effective Hamiltonian
and the charge distribution are kept mutually consistent by means of an iterative scheme similar to the
one described for DFT. To approximate 𝐸𝑐𝑜𝑢𝑙, the continuous electronic density is first discretised into a
set of atom centered contributions, by means of dividing the real space 𝒱 into arbitrary atomic volumes
𝒱𝐼.[52] This way, the charge fluctuation 𝛿𝜌((𝑟) and the additional electron population on an atom 𝐼, Δ𝑞𝐼,
are associated through

Δ𝑞𝐼 = ∫
𝒱𝐼
𝛿𝜌(r)𝑑r, (2.33)

and
𝛿𝜌(r) =∑

𝐼
Δ𝑞𝐼𝛿𝜌𝐼(r). (2.34)

In the latter expression, the 𝛿𝜌𝐼 functions are normalised over the atomic volume, such that ∫𝒱𝐼 𝛿𝜌𝐼(r)𝑑r =
1. Furthermore, these functions are commonly taken to be spherically symmetric functions (i.e., any
angular deformation is neglected) with a Gaussian profile[42]

𝛿𝜌𝐼(r) =
1

(2𝜋𝜎2𝐼 )1.5
exp{− r2

2𝜎2𝐼
}, (2.35)

With these assumptions, the Coulomb energy is a function of two spherically symmetric Gaussian
charge distributions. By subsequently evaluating the self­interaction and cross­interaction individually,
and neglecting non­dominating terms, ultimately an expression is found for 𝐸𝑐𝑜𝑢𝑙, of the form

𝐸𝑐𝑜𝑢𝑙 =
1
2∑

𝐼𝐽
𝛾𝐼𝐽(𝑅𝐼𝐽)Δ𝑞𝐼Δ𝑞𝐽 , (2.36)

where

𝛾𝐼𝐽(𝑅𝐼𝐽) = {
𝑈𝐼 , 𝐼 = 𝐽.
𝑒𝑟𝑓(𝐶𝐼𝐽 ,𝑅𝐼𝐽)

𝑅𝐼𝐽
, 𝐼 ≠ 𝐽, (2.37)

in which
𝑈𝐼 =

1
√𝜋𝜎𝐼

, (2.38)
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and

𝐶𝐼𝐽 = √
1

2(𝜎2𝐼 + 𝜎2𝐽 )
. (2.39)

Eq. (2.38) couples 𝑈𝐼, that represents the atomic Hubbard potential, and the so­far unspecified param­
eter 𝜎𝐼. The Hubbard potential, also known as (twice) the chemical hardness, describes how much the
energy of a system changes upon adding or removing electrons. It can be estimated as the difference
between the ionisation potential and the electron affinity of a type of atom. Consequently, via the cou­
pling, the Hubbard potential determines all charge transfer energetics. Usually for DFTB, it is either
found from standard tables, or calculated using DFT.[51]

2.3.4. Tight binding formalism and application
So far tight binding aspect of DFTB has not been referenced. Density functional tight binding assumes
tightly bound electrons, hence the name. In essence, this assumes that electrons on an atom only
have limited interaction with states and potentials on surrounding atoms, such that the wave function of
the bound electrons are similar to the atomic orbitals of the quasi­free atom to which they belong.[53]
To this extent, a minimal linear combination of atomic orbital (LCAO)­type basis set is used to expand
the single­particle wave functions 𝜙𝑖, i.e., each valence orbital 𝜇 is defined by a single basis function
𝜂𝜇.[54] Consequently, single­particle wave functions 𝜙𝑖 are expanded as

𝜙𝑖(r) =∑
𝜇
𝑐𝑖𝜇𝜂𝜇(r). (2.40)

Furthermore, throughout the DFTB method, only valence orbitals are considered in order to reduce
computational effort, and since core electrons are generally chemically inactive. Using only 1𝑠 for hy­
drogen, and using only 2𝑠, 2𝑝𝑥 , 2𝑝𝑦 , 2𝑝𝑧 for first row elements of the periodic table, are examples of basis
sets resulting from these assumptions. These basis functions, representing localised atomic orbitals,
are determined using DFT, where an additional harmonic potential is taken into account to localise the
orbitals which punishes an electron for moving away from its confinement radius.[55]

Using the expansion given by eq. (2.40), the final energy expression becomes

𝐸 =∑
𝑖
∑
𝜇𝜈
𝑐𝑖∗𝜇 𝑐𝑖𝜈𝐻𝐾𝑆𝜇𝜈 +

1
2∑

𝐼𝐽
𝛾𝐼𝐽(𝑅𝐼𝐽)Δ𝑞𝐼Δ𝑞𝐽 +∑

𝐼<𝐽
𝑣𝐼𝐽𝑟𝑒𝑝(𝑅𝐼𝐽), (2.41)

where 𝐻𝐾𝑆𝜇𝜈 = ⟨𝜙𝜇| 𝐻𝐾𝑆[𝜌𝑟] |𝜙𝜈⟩ and the overlap matrix element is 𝑆𝜇𝜈 = ⟨𝜙𝜇|𝜙𝜈⟩. The diagonal 𝐻𝜇𝜇
terms represent the effective single­electron atomic energy levels that are associated with the valence
shell atomic orbitals. The so­called hopping integrals, the off­diagonal elements, describe the effects
due to electron delocalisation.

Bymeans of an energy minimisation by variation of 𝛿(𝐸−∑𝑖 𝜖𝑖 ⟨𝜙𝑖|𝜙𝑖⟩) (where terms 𝜖𝑖 function again as
the Lagrange multipliers constraining the wave function norms), the following set of secular equations
is found for all 𝑖 and 𝜇

∑
𝜈
𝑐𝑖𝜈(𝐻𝜇𝜈 − 𝜖𝑖𝑆𝜇𝜈) = 0, (2.42)

where
𝐻𝜇𝜈 = 𝐻𝐾𝑆𝜇𝜈 +

1
2𝑆𝜇𝜈∑

𝐾
(𝛾𝐼𝐾 + 𝛾𝐽𝐾)Δ𝑞𝐾 , for 𝜇 ∈ 𝐼, 𝜈 ∈ 𝐽. (2.43)

Eq. (2.42) is the SCC­DFTB equivalent of the Kohn­Sham equations in DFT. As shown, the SCC­DFTB
electronic structure is not influenced by the repulsive energy, other than through its effect on what the
stable geometry would be in a DFTB­MD simulation. Indeed, the repulsive energy is logically dropped
out of the equation as it does not depend on the orbitals; its importance lies in the force calculations
between atoms in DFTB.
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The matrix elements 𝐻𝜇𝜈 (and overlap elements 𝑆𝜇𝜈) are taken to be the principal parameters of the
method, following the tight­binding formalism. Because the minimum basis set is used, the Hamiltonian
and overlap matrices can be pre­calculated using DFT and stored. Along with the repulsive energy,
they are stored in so­called Slater­Koster files, wherein the data is formatted in an atom type pair­wise
fashion (C­C, C­H etc.). Using these parameters, DFTB does not have to perform any integral evalua­
tion during run time.

In SCC­DFTB, eq. (2.42) has to be solved self­consistently, like in DFT. However, instead of guess­
ing a density, an initial guess is made for the charge fluctuations Δ𝑞. From this a Hamiltonian 𝐻𝜇𝜈 is
obtained. Using this Hamiltonian, subsequently new orbital coefficients 𝑐𝑖𝜇 can be calculated. These
determine a new Δ𝑞, and the scheme can be iterated over.

2.4. Neural networks
Artificial neural networks (referred to as neural networks or NNs), or multilayer perceptrons as they
are alternatively known, are computing systems inspired by biological neural networks. They generally
consist of an ordered set of layers. The first layer of a neural network is called the ’input layer’, and
the final layer is called the ’output layer’. All layers in between are called ’hidden layers’. Every layer
consists of a set of nodes called ’neurons’. Like in a biological brain, these neurons are connected to
each other in some way and can transmit signals to other connected neurons The signals in the context
of neural networks are real numbers, that are processed by a neuron into an output. The output of a
neuron is generally some non­linear function (e.g., 𝜙) of the sum of its inputs.

By moving consecutively from the input layer through the hidden layers and finally the output layer, an
output is computed from the input. Using a set of observations to ’train’ on, in the form of input and
corresponding output data, the goal of a neural network is to make an accurate prediction given an
arbitrary input. Many different types of neural networks have been developed over the past decades.
In this thesis, fully connected networks and the convolutional neural networks are used. These, and
other general neural network terminology and techniques, are discussed in this section.

2.4.1. Fully connected layers
In a fully connected network (FCN) all layers are fully connected, i.e., all neurons from one layer are
connected to all neurons in the consecutive layer. A schematic representation of such a network can
be found in figure 2.2.

Figure 2.2: Schematic representation of a fully connected network. The neurons (green) on the left side represent the input layer,
whereas the neurons on the right side (red) represent the output layer. All neurons in between (blue) form the hidden layers. All
neurons in one layer, are connected to all neurons in the successive layer.
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To provide more insight into what exactly happens in such a network, a mathematical description of
a fully connected network with one single hidden layer will be given next. In the description, there
are 𝐷 input variables, 𝑀 neurons in the hidden layer, and 𝑁 outputs. Given two consecutive layers,
𝑙(𝑘−1) ∈ ℝ𝑣(𝑘−1)×1 and 𝑙(𝑘) ∈ ℝ𝑣(𝑘)×1 (where 𝑣 represents the number of neurons in the layer), the weight
matrix connecting the two is given as 𝑤(𝑘) ∈ ℝ𝑣(𝑘−1)×𝑣(𝑘) . Weight matrix 𝑤(1) connects the input layer
with the hidden layer, whereas weight matrix 𝑤(2) connects the hidden layers with the output layer.
Firstly, M linear combinations of input variables 𝑥𝑖 are constructed, which are then transformed using
some activation function ℎ(⋅) into the hidden layer. The consequential output of the hidden layer is
given as

𝑜(1)𝑗 = ℎ(
𝐷

∑
𝑖=1
𝑤(1)𝑗𝑖 𝑥𝑖 + 𝑏

(1)
𝑗 ) for 𝑗 = 1,...,M (2.44)

where 𝑜(1)𝑗 is the output of the hidden layer, ℎ(⋅) is some differentiable non­linear activation function
and 𝑤(1)(𝑗𝑖) and 𝑏1(𝑗) give the weight and bias parameters from the hidden layer. Subsequently, the output
of the hidden layer flows through the output layer, is

𝑜(2)𝑛 =
𝑀

∑
𝑗=1
𝑤(2)𝑛𝑗 𝑜

(1)
𝑗 + 𝑏(2)𝑛 for 𝑛 = 1,...,N (2.45)

where 𝑜(2)𝑛 represents the final output of the network. To summarise, the final output of the FCN with
one hidden layer can be written as one equation, given as

𝑜(2)𝑛 =
𝑀

∑
𝑗=1
𝑤(2)𝑛𝑗 ℎ(

𝐷

∑
𝑖=1
𝑤1𝑗𝑖𝑥𝑖 + 𝑏

(1)
𝑗 ) + 𝑏(2)𝑛 for 𝑛 = 1,...,N (2.46)

In this way, the fully connected neural network can be seen as an extension of a classic linear model
for regression and classification problems, which is based on a linear combination of fixed non­linear
basis functions 𝜙.[56] A generic form of such a model, can be given as

𝑦 (x,w) = ℎ(
𝑁

∑
𝑗=1
𝑤𝑗𝜙𝑗 (x)) (2.47)

The difference with a FCN is that the basis functions are not fixed, but depend on adaptive parameters.

2.4.2. Activation functions
As described in section 2.4.1, activation functions are functions that are applied at the output of a neu­
ron. Since the multiplication with weights and the subsequent addition of a bias in itself is a linear
operation, a layering of neurons would never be able to produce non­linear behaviour. Therefore, gen­
erally non­linear functions are chosen as activation function, to allow for non­linear regression problems
to be solved, or to allow classification problems to be solved that are not linearly separable.

Many activation functions have been developed for neural networks. The ReLU activation function is
probably the most widely used activation function.[57]

ReLU(𝑥) = 𝑥+ = max(0, 𝑥) (2.48)

A plot can be found in figure 2.3.
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Figure 2.3: The ReLU activation function, a commonly used activation function in neural networks.

Other commonly used activation functions are the sigmoid activation function and the tanh activation
function. Both functions, however, saturate across most of their domain, i.e., they saturate to their
maximum value when the input is very positive, and saturate to their minimum value when the input
is very negative. In other words, their derivatives decrease quickly as the input value moves towards
the extremes. Therefore, these activation functions are only strongly sensitive when their input is near
zero.[58] As will be shown in section 2.4.4 about loss minimisation, this can lead to difficulties in the loss
minimisation procedure (specifically in the back propagation step). To circumvent this problem, these
activation functions are usually paired with the so­called cross entropy loss function in classification
problems.

2.4.3. Loss functions
In the context of neural networks, a loss function is a mathematical function that represents a measure
of the dissimilarity between the actually produced output of a network, and the output values that the
network is seeking to reproduce, called the targets. The task of the neural network is to minimise the
value of the loss function to improve the quality of the neural network prediction. The most commonly
used loss function in the context of regression is the root­mean­square error (RMSE),

ℒRMSE =
√∑

𝑁
𝑖=1 (𝑦

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑖 − �̂�𝑡𝑎𝑟𝑔𝑒𝑡𝑖 )

2

𝑁 , (2.49)

where 𝑁 is the size of the set of predictions and targets.

2.4.4. Loss minimisation
Optimisation of the adaptable neural network parameters (like weights and bias terms) happens during
the training stage. During the training stage the network is shown training data, input data and corre­
sponding output (target) data, and a loss is calculated for each prediction on the input data. Firstly,
for the network to subsequently be able to minimise this loss, the loss must be communicated back
to all adaptable parameters in the network. Most commonly this is done using the backpropagation
algorithm. Secondly, the parameters need to be changed accordingly. This is commonly done using
stochastic gradient descent (SGD).

SGD is an iterative method for optimising a differentiable loss function. It is commonly expressed as

w ∶= w− 𝜂∇wℒ. (2.50)

Given some initial trainable parameter 𝑤, SGD moves the value of w in the direction opposite to the
derivative of the loss with respect to the parameter w. The step size, corresponds to some parameter
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𝜂 called the learning rate, multiplied by the absolute value of the derivative.

Each iteration, all adaptable parameters in a network are updated this way. In ’stochastic’ gradient
descent, the relevant derivatives are not calculated using the entire training data set, but rather using
a subset thereof. This is done to lighten the computational burden, and thereby to speed up the itera­
tions. In the context of neural networks, these subsets of the data set are called ’batches’. The number
of ’epochs’ refer to the number of times the weights in the neural network have been updated using all
training data, i.e., in one epoch, all batches, and thus all training data, is used once.

Various extensions of SGD have been developed to improve the performance of the optimisation. When
the effective gradients are calculated from a tracked exponentially weighted moving average (EWMA)
of the gradients during the optimisation, this is called ’momentum’ in the context of SGD. RMSprop is
an extension of SGD that smooths the zero­centered variance of noisy gradients using an EWMA of
squared gradients. The Adam algorithm combines the momentum and RMSprop techniques.[59]

As previously stated, all gradients in the network are computed and communicated using the backprop­
agation algorithm. Instead of computing every gradient directly for all adaptable parameters, which
would require redundant recalculations of individual derivatives multiple times, the backpropagation
algorithm computes all gradients in the network only once. This is made possible by use of the chain
rule. By computing the gradients one layer at a time and iterating backward from the output layer, the
chaining of gradients allows for the efficient re­use of previously computed gradients such that none of
the derivatives have to be calculated again.[58]

Some networks, especially deeper networks (networks with many hidden layers), can suffer from what
are called ’vanishing gradients’. Since backpropagation computes gradients by the chain rule, most
gradients in a deep network are products of many gradients. Consequentially, if those gradients are
small, the gradient decreases exponentially with the number of layers, ergo the term ’vanishing gra­
dients’. As a result, far away from the output layer, the adaptable parameters of the network can be
effectively prevented from changing their values. This would slow down or even halt training of the
network.[60]

As stated in section 2.4.2, some activation functions are more susceptible to this effect than others.
Ideally a function that has a significant gradient everywhere is used, and for this reason the ReLU
is so popular. Another solution to this problem and to allow for the use of deeper neural networks,
comes in the form of ’skip connections’ or ’residual connections’.[61] Skip connections are additional
connections added to the network between the output of some layer and the input of another, where in
between other layers are skipped. In this manner, the gradients from the deeper layers can be passed
unchanged to the shallower layers. A schematic representation of the skip connection can be found in
figure 2.4.

Figure 2.4: Schematic representation of a skip connection. Input vector x enters a block of two layers and is transformed into
𝐹(x). Upon leaving the second layer, the initial input vector x is added to 𝐹(x) unchanged. Input vector x has ’skipped’ the two
layers.



2.4. Neural networks 19

2.4.5. Convolutional layers
In the fully connected layer, every neuron from a layer is connected to every neuron in the consecu­
tive layer. In doing so, the fully connected architecture disregards potential structure inherent to the
training data. If the input was an image, represented by a 2D matrix, a fully connected network would
treat pixels that are close­by and pixels far apart on equal footing. As a way to embed spatial structure
into the layer itself, each output in a convolutional layer is only connected to a limited region in the
input, called the ’receptive field’. A convolutional operation, applied in a convolutional layer, uses a so
called ’kernel’, a matrix of weights, that is characterised by width 𝑊 and height 𝐻 in the case of a 2D
convolution. The kernel slides, as in a convolution, over the height and width dimensions of an input
image. The contents of the sliding window are called ’patches’, which correspond to the local receptive
field. By multiplying the weight in the kernel by the input values in the patches, the output is computed.
A schematic of the convolutional operation, is provided in figure 2.5.

Figure 2.5: Schematic of a convolutional layer. The kernel slides along the over the height and width dimension of the input
image. The contents of the sliding window, the image patch, is multiplied by the kernel weights to obtain the output. Because no
patching was applied in this example, the output dimensions are not the same as those of the input image.

As it is described above, the 2D convolutional operation can be written as

𝑦[𝑖, 𝑗] =
⌊ 𝑘2 ⌋

∑
𝑚=−⌊ 𝑘2 ⌋

⌊ 𝑘2 ⌋

∑
𝑛=−⌊ 𝑘2 ⌋

𝑤[𝑚, 𝑛] ⋅ 𝑥[𝑖 + 𝑚, 𝑗 + 𝑛] (2.51)

where 𝑘 represents both the width and the height of the kernel and ⌊⋅⌋ is the floor operator. The con­
volutional operation, as given in eq. (2.51), can be extended in multiple ways. For example, the step
size that the kernel makes between patches in either dimension can be increased. This step size is
called the ’stride’. By choosing a larger stride, the dimensionality of the input can be reduced and the
receptive field increased.

Moreover, to prevent border pixels from being lost (as was seen in figure 2.5), so as to keep the dimen­
sions of the input, pixels can be added to the borders of an image. This is called ’padding’. Typically,
a ’same padding’ is applied, where the padded pixels are zeroes, and the applied number of padded
pixels is two less than the corresponding kernel dimension. For example, the kernel size in figure 2.5
is three. In order to keep dimensions of the input, a padding could have been applied of one single
pixel, one on either side of the image in both dimensions. By taking both padding and the value of the
stride into account, output dimension 𝐷𝑜𝑢𝑡 of a convolutional layer, can be written as

𝐷𝑜𝑢𝑡 = ⌊
𝐷𝑖𝑛 + 2 × padding− kernel size

stride + 1⌋, (2.52)

where the padding, the kernel size and the stride can be set for each individual dimension.

Just like for fully connected layers, usually a bias and an activation are applied at the output of the
convolutional layer. Because not every input pixel gets assigned its own individual weight, like in a fully
connected layer, but the same kernel is applied to the entire image, the weights in the architecture are
shared by the pixels in the input image. One consequence of this is that the response of a convolutional
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layer is translational­equivariant. For images, this means that, for example, if the input is moves a sin­
gle pixel to the right, its representation in the output also moves a single pixel to the right. This property
can be very beneficial in image classification problems, as for classification of a particular feature, it
only matters that the network is able to recognise that the feature is somewhere on the image, and it
should not matter where exactly on the input image it is located.

Real life images are usually not represented by a single 2D matrix of values. For example, an RGB
image is represented by three separate such matrices. Each individual representation of the input is
called a ’channel’. Convolutional layers can be extended from 1D and 2D to any multi­dimensional
input. For example, in 3D convolutional layers, the kernel itself is also three dimensional, and moves
not only through the height and width dimensions, but also in the depth dimension. Then, the number
of channels refers to the number of 3D representations of the system that are used in the convolution.

While networks with one or two hidden layers might be able to provide the same performance as deeper
(i.e., having more layers) networks, they generally require significantly more parameters (i.e., ’wider’
layers with more neurons) to do so, increasing their complexity, and thus the amount of training data
required. Therefore, a general observation is that deeper networks outperform shallower but wider
networks, with the same parameter budget.[61][62] Because of the weight­sharing within convolutional
layers, networks containing convolutional layers can be made much deeper than their fully connected
counterparts, for the same parameter budget.

Convolutional layers form the core building blocks in convolutional neural networks (CNNs). Due to
the advantages mentioned in this section, CNNs have long represented the state of the art in many
computer vision problems.[62][63]

2.4.6. Pooling layers
Pooling layers can be used in convolutional networks to reduce the dimensionality of a layer and in­
crease the receptive field of individual neurons. A ’max’ pooling layer is a convolutional layer that
outputs the maximum value within each patch, whereas an ’average’ pooling layer outputs the average
of the values within each patch. Finally there are global or ’adaptive’ pooling layers that apply their ef­
fects on the entirety of each channel, and output only a single value. Global pooling layers are mainly
placed before the final fully connected layer.

2.4.7. Batch normalisation
The distribution of inputs for any layer in a network changes during training time, as the adaptable pa­
rameters from the preceding layers are optimised.[64] A batch normalisation layer aims to normalise
the output distributions of neurons, and make the (training of) the network more stable. By computing,
for every batch on a per channel basis, the mean and variance across the batch dimension, a batch
normalisation layer tries to learn how to normalise the learned features. The applied normalisation
usually is based on an EWMA of the computed mean and variance. Trainable parameters are usually
added as well, which allow for the batch norm layer to turn off the normalisation entirely, if deemed
beneficial.

2.4.8. Regularisation
Overfitting is the phenomenon where a neural network is adapted in such a way that the error on the
training set is decreased, but not for the benefit of the error on the test set. The network adapts to the
particular training data too much, such that its generalisation power on test data usually is decreased.
Consequently, a measure of the level of overfitting is the difference between the apparent training error
and the true/test error. The root cause of overfitting is that the network is too complex, e.g., the network
contains more parameters than can be justified based on the problem/data.

To illustrate overfitting, one could think about trying to fit a linear function using a quadratic model, when
the training data of the linear function only consists of a few data points. With such a limited amount
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of data, the quadratic model would probably be too ’complex’ and would predict a parabolic shape far
from being linear. To solve the overfitting problem, either the model complexity must be decreased,
the amount of training data should be increased (by either obtaining more data, or by augmenting the
already available data), or other techniques aimed at controlling overfitting should be applied in the
modelling procedure. Many of such ’regularisation’ techniques have been developed, all of which seek
to discourage overly complex models.

Very commonly applied is L2 regularisation. In L2 regularisation the L2­norm of all weights is added as
a penalty term to the loss function, expressed as

ℒ𝑅 = ℒ − 𝜆||w||22. (2.53)

Here ℒ𝑅 and ℒ give the regularised and unregularised loss, respectively.

This form of regularisation is also called weight decay, as it encourages weights to decay to zero, un­
less supported by the data. Thus, it discourages complex models. L1 regularisation is a variant of this
procedure, where the magnitude of all weights is added as penalty term.

By augmenting data, networks can also be made more robust to new inputs. By expanding the train­
ing with augmented data, invariance of a network to a set of transformations can be encouraged. For
example, slightly rotating or adding some white noise to an image of handwritten letters that a network
is trying to classify/’read’, can help combat overfitting.[58] The shared­weight architecture of a convo­
lutional layer can also be seen as a form of built­in regularisation, as this effectively decreases the
complexity of the model.[56]

Finally, early stopping is another well­known regularisation technique. For many optimisation algo­
rithms applied in training a neural network, the measured error on the training set is a non­increasing
function (apart from some oscillations). However, it is often seen that this does not hold for the error on
the test data. After some point, the test error often starts to increase as a result of an onset of overfitting
in the network. Therefore, better generalisation behaviour can be expected if the training procedure is
halted when the minimum test error seems to have been reached, and no further decrease is expected
anymore. This is called early stopping.[56]



3
Methods

All simulation methods used in this thesis are described this chapter. Molecular dynamics simula­
tions formed the basis of this thesis. A variety of MD systems was created and tested. The observed
behaviour of these systems determined whether they were going to be used in the QM­MD coupled
simulations. To investigate the effect of charge induction effects, the final results of these MD simula­
tions also provided a reference to compare the QM­MD coupled results with. The molecular dynamics
simulation is discussed in chapter 3.1.

DFTB simulations were used to simulate the induced charges on a single electrode present in the MD
simulations. By alternating between MD and DFTB simulations and exchanging the results, coupled
DFTB/MD (QM­MD) simulations were performed. In this way, the dynamics of the system could be
modeled with the speed of the classical MD framework, while at the same time including a quantum
mechanical description of the surface charges. Before the QM­MD simulations were performed, DFT
simulations were used to verify the usability of the DFTB simulations. The DFT simulation is discussed
in chapter 3.2 and the DFTB simulation is discussed in chapter 3.3.

The total simulation time in the coupled QM­MD simulations was dominated by the DFTB simulations,
which therefore represented a bottleneck for the simulation time. To enable long term and/or large scale
QM­MD simulations of this kind, it was attempted to train a variety of neural networks to reproduce the
DFTB results. The specific implementation of neural networks in this thesis is described in chapter 3.4.

3.1. MD simulation
In this thesis all molecular dynamics simulations were performed using the open source classical molec­
ular dynamics code LAMMPS (Large­scale Atomic/Molecular Massively Parallel Simulator).[65] In the
following subsections, it is explained how the used systems were generated, what force field parameter
sets were used and under what conditions the simulations were performed.

3.1.1. Topology
The topologies used in this thesis, as well as the information about what atoms formwhat bonds, angles,
and potential impropers and dihedrals with what other atoms, were mainly generated using predefined
functions in LAMMPS. Two systems were created that need to be differentiated from each other. These
were both similarly structured. They were made up by an electrolyte, consisting of water and a number
of solutes, and two copper electrodes enclosing it on either side in the z­direction. Only the solutes
differ per system. Both systems were periodic in x,y­direction and non­periodic in the z­direction (the
dimension bound by the electrodes). In every simulation, a net charge of +4.0 e was assigned to the
anode, and a net charge of ­4.0 e was assigned to the cathode.

22
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Table 3.1: Table specifying the total number of atoms of each type present, in each of the two MD systems used in this thesis.
In the case of molecules, specifies the number of molecules.

System 1 System 2
H2O 2009 2009
K+ 37 37
Cl− 0 37
HCO−3 37 0
CO2 13 0
Cu 768 768

System 1
System 1 was created to imitate a carbon dioxide reduction system. The electrodes in system 1 were
made up of three layers of (100) copper, which equals exactly one single layer of copper FCC unit
cells. In total there were 484 atoms in each of these electrodes. The experimental lattice constant
of 3.6149 Å[66] was used to generate these lattices, a number chosen as a compromise between the
lattice constants following from the set of copper SK­files (used in DFTB+) and the chosen copper force
field (used in LAMMPS).

Between the electrodes, the space was filled with water molecules and approximately 1M of dissolved
potassium bicarbonate. This was done to imitate a carbon dioxide reduction system in which potassium
bicarbonate was dissolved. Next to carbon dioxide, the other modelled molecules were bicarbonate
molecules and potassium ions, as these make up the largest percentage of solvation products.[67]
Table 3.1 describes precisely how many atoms of what type were present in each of the systems.

System 2
System 2 differs from system 1 only in the type of molecules that were added to the electrolyte: the
bicarbonate ions from system 1 were replaced by chloride ions, and the carbon dioxide molecules were
removed.

3.1.2. Force fields
To model water, the SPC/E force field[1] was used in all simulations in this thesis. Both systems identi­
fied in the previous subsection, used their own specific set of parameters. Below the used parameters
sets are defined for both systems. In all MD simulations performed, a cutoff distance of 10 Å was cho­
sen. Bonds and angles are always modelled using harmonic potential functions, where the stiffness
and equilibrium position/angle are parameters dependent on the specific bond/angle in the molecule.
For larger molecules, the specific impropers and dihedrals potentials depended on the used force fields.
These are described below.

Set 1
For system 1, multiple different force fields were tried. Each of these is given here.
The copper electrodes were modelled using the force field by Heinz et al.[68]. Carbon dioxide was
modelled using the EPM2[69]force field, which was made flexible using the bond and angle parame­
ters given by Cygan et al.[70], as was previously successfully used by Silvestri et al.[71].

For the bicarbonate molecules two force fields were attempted. The first attempt was with the force
field provided by Demichelis et al.[72]. Because this force field did not allow for mixing between bicar­
bonate and other atoms types than those in water (as it contained Buckingham potential parameters),
the mixing interaction was improvised by recycling the parameters of previously specified interactions
of other species. For example, the interaction of the carbon atom in a bicarbonate molecule with potas­
sium, was copied from the interaction between carbon in a carbon dioxide molecule, and potassium. In
this attempt the Lorentz­Berthelot combination rules were applied, and all intramolecular non­bonded
interaction was set to zero. Because of noticable clustering between the potassium and bicarbonate
ions in this attempt, the potassium force field was changed from that given by Yagasaki et al.[73] to that
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given by Joung and Cheatham[74].

Since this approach did not solve the clustering issues, the bicarbonate force field was changed. The
new force field parameters were generated using the LigParGen parameter generator.[75] Using the
SMILES code of bicarbonate as input, the LigParGen generator generated bond, angle, improper, di­
hedral and Lennard­Jones OPLS­AA force field parameters, and assigned partial charges based on the
CM1A chargemodel (N.B., the charge is not scaled by 1.14, since bicarbonate is a charged ion).[76][77]
In correspondence with the OPLS­AA force field, the used mixing rules were changed to geometric.
Furthermore, the intramolecular non­bonded interaction between atoms more than two bonds away
(1,4 interaction) was changed from zero to being scaled by a factor of 0.5.

Set 2
Potassium and chloride were modelled using the force field given by Joung and Cheatham[74], and
copper was modelled using using the force field given by Heinz et al.[68]. Geometric mixing was used
(as prescribed by the copper force field) for the interaction between copper and the ions, and all in­
tramolecular non­bonded interaction was set to zero.

3.1.3. Conditions
Before each simulation, the systems were first initialised in the same way. To avoid unphysically large
accelerations as a result of atoms being initialised too closely together, an energy minimisation was
performed in which the time step was slowly increased from 0.0001 fs to 1 fs. The force on the x,y­
directions on all electrode atoms was set to zero and the force in the z­direction was set to be averaged
over the whole of each individual electrode. This was done to prevent the atoms from moving rela­
tive to each other, which was thought to ease the learning process of the neural networks to be used
later in this thesis. A force, equivalent to a pressure of 1 atm, was applied on both electrodes in the
z­direction in the relative direction of the electrolyte. After running for two nanoseconds, the two elec­
trodes were fixed in space, and the initialisation was completed. The final system size of systems 1
and 2 is 28.92x28.92x80.85 Å.A visualisation of system 2 after the ’initialisation’ step, can be found in
figure 3.1.

Figure 3.1: Depiction of system 2 after the ’minimisation’ step. The copper electrodes are depicted with beige spheres, chloride
and potassium are depicted by the blue and green spheres, respectively, and the oxygen and hydrogen in water are depicted
using white and red tubes, respectively.

The time step that is acceptable was chosen based on the fastest relevant frequency in the simulated
system. Often these are present in the covalent bonds. All hydrogen bonds within the water molecules
were held rigid during every simulation using the SHAKE algorithm[78]. To ensure that a time step of
1 fs is allowed for the rest of the system, all present harmonic bond periods were calculated. By a rule
of thumb, it was decided that if the found periods of oscillation divided by 25 was shorter than 1 fs, the
bond should be held rigid with the SHAKE algorithm as well. The only bond that did not satisfy this
condition, was the hydrogen bond in the bicarbonate molecules.

All MD calculations were carried out in the NVT ensemble using the velocity­Verlet integrator, using a
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time step of 1 fs. Solely the electrolyte in each system was coupled to a Nosé­Hoover thermostat with
a damping factor of 100 fs. Because the electrode atoms are fixed in space, the system in its entirety
would be assigned an undesired temperature if the entire system was coupled to the thermostat. The
PPPM solver[79] was used as the long­range solver in all simulations, with a set accuracy of 10−4. To
allow for a long­range solver to be used, the slab option was invoked with a volume factor of 3.0.

To obtain MD­only results, each initialised system was subsequently simulated for 30 ns. The way the
initialised systems were used in the coupled QM­MD runs, will be described in section 3.3.

3.1.4. Data analysis
To further our understanding of the simulation and check its validity, multiple properties of the MD sim­
ulations are calculated from the MD output. This includes density profiles and molecule orientation, but
also MSD measurements and pair correlation function plots. Below, a short explanation of the latter
two is provided.

MSD
The mean squared displacement (MSD) is a measure of the displacement of the positions of a particle
with respect to some reference position over time. The MSD is defined as[80]

MSD = 1
𝑁

𝑁

∑
𝑖=1
|𝑟(𝑖)(𝑡) − 𝑟(𝑖)(0)|2 , (3.1)

where 𝑁 represents the total number of atoms in system. Using the MSD, a diffusion coefficient can
be calculated. In terms of the diffusion coefficient 𝐷, the MSD is given as

𝑀𝑆𝐷 = 2𝑛𝑑𝑖𝑚𝐷𝑡 (3.2)

where 𝑛𝑑𝑖𝑚 is the number of dimension taken into account in the MSD measurement. Since the diffu­
sion coefficient is a force field dependent property, it can be used to provide insight into whether the
system is behaving as it should. Furthermore, as will be explained in section 4.3, it can be used to get
an idea about the average expected displacement of ions in the system.

Pair correlation function
A pair correlation function describes how a time­averaged density of a set of particles 𝑎 varies as a
function of the distance from a reference set of particles 𝑏. In essence, a pair correlation function
counts the average number of particles in set 𝑎 in a shell at distance r from a particle in set 𝑏, and
represents this as a density. It can be given as

𝑔𝑎𝑏(𝑟) = (𝑁𝑎𝑁𝑏)−1
𝑁𝑎
∑
𝑖=1

𝑁𝑏
∑
𝑗=1
⟨𝛿(|r𝑖 − r𝑗| − 𝑟)⟩ (3.3)

where 𝑁𝑎 and 𝑁𝑏 represent the total number of atoms in sets 𝑎 and 𝑏. The pair correlation function
provides information about the configuration of the system, which can be useful for mapping the differ­
ences between a system in different states.

3.2. DFT simulation
3.2.1. SCC­DFTB benchmarking
All SCC­DFTB calculations in this work were performed using the free software package DFTB+[81].
As previously described, the DFTB method requires an appropriate set of parameters to perform cal­
culations. These parameters are stored in so­called Slater­Koster (SK) files. These contain diatomic
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parameters, describing the interaction between two types of elements (Cu­Cu, Cu­H etc.). For cop­
per, the matsci­0­3 set[82][83][84]) of SK­files is used. Various publications mentioned different sets of
SK­files for copper. Unfortunately, these either do not share the parameterisations they made them­
selves[85][86], or refer to sets that do not include copper[87]. Parametrising a new set of SK­files was
outside of the scope of this project.

The parametrisations contained in these files are often fitted under specific circumstances. For exam­
ple, the SK­files for copper were made in the context of copper in zeolite, a type of mineral. There is
no guarantee that these files will perform appropriately outside of their respective fitting contexts. The
interest in this work solely goes out to polarisation predictions, meaning that only static single point
calculations will be carried out. Therefore, the fitting context of the repulsive energy parameters is not
relevant. Still, there is no guarantee that the available copper SK­files can appropriately reproduce the
total polarisability of the system as it would be given by DFT calculations, the level of theory that SK­
files are fitted to. This is simply because the SK­files probably were not fitted for this specific purpose.

Therefore, the performance of SCC­DFTB calculations using the matsci­0­3 SK­files set was bench­
marked against to calculations on the DFT level. To do so, the method of Elliott et al.[14] is partially
followed. A neutral (approximately) rectangular electrode is simulated at both the DFT and the SCC­
DFTB levels of theory, with a point charge placed a few Ångström directly above the center of the
electrode. The induced charge distributions are subsequently compared and the relative performance
of the SCC­DFTB calculations is evaluated.

Because parametrising a new set of SK­files was outside of the scope of this project, a perfect overlap
between the DFT and SCC­DFTB calculations was not expected. This was not seen as a requirement
for obtaining insight into the effect of polarisation. The benchmarking served mainly as a way to show
that the used set of SK­files provided a reasonable approximation of the DFT level of theory, and as a
way to be able to disallow the set of parameters if their performance was deemed unsuitable to continue
with.

The SK­files for graphene were provided by the mio­1­1 set[88]. For this set, a comparison of SCC­
DFTB calculations and DFT calculations was already performed in the work of Elliott et al.[14]. Because
the performance was deemed acceptable, no further investigations will be performed in this work.

3.2.2. Simulation details
The electrode systems were generated and exported using LAMMPS. Using Amsterdam Modelling
Suite­Amsterdam Density Functional (AMS­ADF)[89][90], (static) single point calculations were pe­
formed. Since in AMS­ADF point charges could only be modelled in non­periodic systems, both DFTB+
and ADF calculations were performed using open boundary conditions. The added multipoles in ADF
were represented as real point charges, not by a spherical Gaussian distribution. All electronic wave
functions for copper were expanded in the STO­TZ2P basis set[91], and the GGA­PBE functional[92]
was used to describe the electron XC­interaction. Both were previously used in copper DFT calcula­
tions.[86][85][93][94]

Scalar relativistic corrections were included using the default ZORA formalism[95], and the core was
treated using frozen orbitals. All calculations were performed spin­unrestricted, meaning that the simu­
lation has to take into account the spin state of each individual electron in the energy minimisation. For
systems with an uneven number of copper atoms, an initial spin polarisation of 1.0 was set (one more
up­electron than the number of down­electrons), while for all systems with an even number of copper
atoms a spin polarisation of 0.0 was set.

As in SCC­DFTB simulations, AMS­ADF requires the system to be solved self­consistently, i.e., the
computed density must define the same potential as from which the density itself was computed. Un­
til convergence is reached, every cycle the electron density is recomputed. Convergence issues are
frequently encountered with d­elements like copper.[96] In order to speed up and/or stabilise the SCF
(self­consistent field, as it is called in AMS) procedure, and to avoid non­convergent oscillatory be­
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haviour, various acceleration options were implemented.

In all calculations, the default mixed ADIIS+SDIIS acceleration method by (Hu and Wang, 2010)[97]
was employed. Furthermore, the number of DIIS vectors used was increased from 10 to 20 or 25, de­
pending on whether convergence could be reached. The number of ’DIIS vectors’ denotes the number
of expansion vectors that was used in the SCF acceleration procedure. They are part of the damping
procedure, where using more vectors means taking into account more of the previous guesses for the
electronic density in combination with the current one, when constructing the next estimate.

Except for the boundary conditions, the simulation details of DFTB+ were the same as used in the rest
of the thesis, and can be found in section 3.3.2.

3.3. SCC­DFTB simulation
Density functional tight binding simulations were used in this project to enable computations on larger
systems and larger timescales than are feasible in DFT, and still get reasonably good results. Whereas
DFT in principle is an exact method (it only becomes non­exact when an approximation for the exchange­
correlation functional is used), DFTB contains parameters to approximate the solution to the Schrödinger
equation.[42] In terms of computational efficiency, DFTB lies between DFT and classical MD.[98] In
general, DFTB codes are roughly three orders of magnitude faster than DFT, and three orders of mag­
nitude slower than classical MD codes.[54] To portray the difference in computational efficiency: in
DFT it is common practice to use systems of up to 100 atoms on a picosecond timescale. While clas­
sical molecular dynamics codes are not able to simulate systems with a macroscopic number of atoms
(∼ 1023), in general they are able to simulate systems of thousands of atoms on a timescale up to
microseconds.[99]

3.3.1. QM­MD loop
In this thesis, SCC­DFTB calculations are coupled with an MD simulation. Using the SCC­DFTB
method, the partial charges on the respective electrodes in the MD systems are computed. In this
section the coupling is explained in detail. All SCC­DFTB calculation in this thesis were performed
using the free software package DFTB+[81].

The MD systems, after being initiated as described in section 3.1.3, constituted the starting point of the
QM­MD scheme. Only one of the two electrodes in each of the MD systems was quantum­mechanically
modelled, the partial charges on the other electrode remained constant. The scheme used next con­
sisted of four steps:

(Step I)
The Cartesian coordinates of the atoms in the electrode of interest were imported from the MD simu­
lation. These served as the main input of the DFTB+ simulation, and the corresponding atoms were
simulated properly. All atoms from the MD system not constituting the electrode of interest, served as
a background potential. To this purpose, their respective Cartesian coordinates and partial charges
were imported in DFTB+, where they were modelled as a set of point charges.
(QM step)
A static SCC­DFTB calculation was performed. The electronic structure of the electrode surface was
computed, using the set of point charges as background potential. A Mulliken population analysis was
performed to find the partial charges on each of the electrode atoms.
(Step II)
The computed partial charges were exported and used to update the partial charges in the MD simu­
lation.
(MD step)
A short MD simulation was performed.

After step (4) was finished, the entire scheme was iterated. Processing steps I and II are performed
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using the Python programming language[100]. The corresponding schematic representation of the
QM­MD scheme can be found in figure 3.2.

Figure 3.2: Schematic representation of theQM­MDworkflow followed in this thesis, taken from the work of (Elliott et al, 2020)[14].
Key computable quantities are represented by hexagonal boxes, and square boxes represent computational processes. The
two boxes colored gold link sequential iterations.

The partial charges of the electrode of interest were not computed at every time step of the MD simu­
lation, as DFTB+ calculations were three to four orders of magnitude slower than the MD simulations.
Therefore, they would have taken up the large majority of the total loop simulation time. Even though
physically it would have made the most sense if the partial charges were computed every time step,
the simulation of an increased number of time steps was permitted due to the time between QM calcu­
lations being increased.

When choosing the number of MD time steps that should be performed before every DFTB+ calcula­
tion, there is a trade­off between accuracy of the simulation and the practical viability of the loop. First
of all, the choice should make physical sense. The QM computations must be used often enough that
the representation of the polarisation is accurate and it is possible for interesting physically meaningful
results to be obtained. At the same time, the total simulation time must be kept down. The total num­
ber of time steps that can be simulated must be large enough to allow some form of equilibrium to be
reached, and then sufficient results must be obtainable from the remaining simulation time.

It can be expected that the electrolyte configuration does not change much in a few femtoseconds. This
would mean that the partial charges also would not change much, such that a new DFTB+ calculation
would not necessarily be required. However, on a nanosecond scale, the electrolyte configuration is
likely to evolve to the point where the electronic configuration has changed beyond recognition. To be
able to get a well suited estimate for the time between QM computations, first, multiple different test
loops are performed, each with a different loop time. It is then measured how much the partial charges
change, such that a suitable loop time can be selected. If this method does not yield conclusive re­
sults, the choice will be made based on MSD measurements of the ions in the electrolyte. These can
be used to get an estimate of how fast the ions on average move near the electrode, and thus how fast
the electrode charges are expected to undergo physically meaningful change.
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3.3.2. SCC­DFTB simulation protocol
In this section the computational details of the performed DFTB+ calculations are provided.

As previously described, the SK­files required by DFTB+ to simulate copper are provided by the matsci­
0­3 set[82][83][84].
Point charges in DFTB+ were modelled without any Gaussian delocalisation. d­orbitals were the or­
bitals with the highest angular momentum modelled for the copper simulations. All orbitals up to that
angular momentum were included in the calculations. In all calculations, the default SCC­tolerance of
1 ⋅10−5 e was used (maximum acceptable self­consistency difference in any charge between two SCC
cycles). In each DFTB step, the modelled charges were initialised from the optimised charges from the
previous DFTB step.

The system was modelled as a periodic supercell cluster. In the z­direction a large vacuum as added
of 20 nm, to minimise interaction between periodic images in the non­periodic direction in the MD sim­
ulations.

In a periodic system like the one used here, integrals over real space (which is infinitely extended)
can be replaced by integrals over the (finite) first Brillouin zone in reciprocal space. This is possible
because the system deals with electrons in a periodic lattice, of which Bloch showed that the wave func­
tion could be written as a walking wave modulated with a periodic function related to the lattice.[101]
By means of this periodicity, solutions can be characterised completely by their behaviour in the first
Brillouin zone, or reversibly, the first Brillouin zone alone can provide information about the entire struc­
ture. Real space integrals over large systems, this way, become integrals over limited reciprocal space.

The integrals in reciprocal space are calculated by summing the function values of the integrand, like the
charge density, at a finite number of points in the Brillouin zone, called k­points. There are many ways
to choose a set of k­points. To obtain well converged results, a sufficiently dense mesh of well­placed
k­points is required. To this purpose, convergence tests were performed for all systems simulated
using SCC­DFTB. In all simulations a Monkhorst­Pack scheme[102] was chosen to generate k­points
in the Brillouin zone. The Monkhorst­Pack scheme is a widely used scheme that distributes k­points
homogeneously over the Brillouin zone, in a manner parallel to the reciprocal lattice vectors that span
the Brillouin zone.

An even 2x2x2 Monkhorst­Pack scheme was ultimately chosen for all simulations. This resulted from
a calculation of the total energy of a test system as a function of multiple k­meshes, for which either
odd or even values were chosen. The k­mesh that was ultimately chosen was the one for which the
difference in computed total energy between subsequent k­values (even compared with even, odd with
odd) was below 1 meV per atom. Additionally, the polarisation results were compared between the final
choice and results obtained using a much more dense scheme, to verify the negligible effect on the
computed charges. The results of these tests can be found in appendix A.

3.4. NN implementation
In the QM­MD loop, the SCC­DFTB calculations take up the far majority of the total simulation time.
Therefore, the QM part forms the bottleneck for the total simulation time. Many problems, however, re­
quire a time scale that is much longer than currently achievable using this approach. A recent paper of
Di Pasquale et al.[34] have shown that, at least up to a certain level, an fully connected network is able
to replicate/predict the results of non­periodic SCC­DFTB calculations on a single graphene layer. The
computation time of such a network, once it is trained, is negligible compared to the computation time
of SCC­DFTB calculations. Consequently, replacing the SCC­DFTB calculations by a trained neural
network in the QM­MD loop, as given in figure 3.2, could possibly allow for a much longer simulation
time scale to be achieved, while using an accurate description of the electric polarisation. In this final
part of this thesis, it was explored whether the approach by Di Pasquale et al.[34] could be extended
to the prediction of partial charges on a periodic copper electrode using a NN, by training it on the set
of SCC­DFTB results obtained from the QM­MD loop.
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Different kinds of neural networks were used in this thesis. Firstly, an FCN was implemented and
trained. For this, the approach of Di Pasquale et al.[34] was mostly followed. The implementation of
this type of network in this thesis is described in subsection 3.4.1. In subsection 3.4.2, the implemen­
tation of a second and novel approach to using neural networks in the context of electrolyte­electrolyte
interfaces is described. In this approach, convolutional neural networks play a central role. All neural
networks in this thesis were created using the PyTorch python library[103] (v.1.9.1).

3.4.1. Fully connected network
The architecture of the FCN applied consisted of four fully connected layers, each containing 1024
neurons, and ReLU activation functions. For each prediction, the output of the network consisted of
a one­dimensional array containing the instantaneous partial charges on each atom on the electrode,
such that in this multi­output approach all charges were simultaneously predicted. A schematic of the
base architecture of the used FCN can be found in figure 3.3.

Figure 3.3: Schematic of the base architecture of the fully connected network used in this thesis, consisting of four fully connected
layers, each containing 1024 neurons and ReLU activation functions, and a fully connected output layer. A fully connected layer
with 1024 outputs is denoted as ”fc 1024”

The input of the network, also represented in the form of a one­dimensional array, consisted of the
Cartesian coordinates of all ions in the system, both the potassium and the chloride ions. For the par­
ticular case of graphene, Di Pasquale et al.[34] have shown that the ions’ configuration formed a good
descriptor of the system for training the NN. That the positions of the water molecules could seemingly
be neglected, was attributed to the supposed correlation between the positions of the ions and the
water molecules, such that the network seemed to be able to deduce the possible influence of water
molecules from the positions of the ions.

In order to find the most optimal version of the FCN, many variants of the network described above were
attempted. For example, the number of layers and the number of neurons were varied. Additionally,
a variant was created in which the 50 water molecules closest to the electrode, which were assumed
to be the most important ones in determining the polarisation, were included in the input, to find out
whether the water molecules indeed did not influence the results significantly.

Furthermore, to be more in line with the implementation of Di Pasquale[34], additional variants of the
network were created. In one variant, also the partial charges of the respective ions were used in the
input. In another variant, the distribution of charges was divided into bins of a finite size. In this variant,
the NN did predicted the label of the bin to which the partial charge on a particular atoms belongs, and
not the actual value of the charge. The network was trained by keeping the the order of the coordinates
in the input array sorted by atom type, and the order in the target output values sorted by position. This
was important, as the network needs to be able to differentiate between the two different atom types
and relate the input positions to the output.
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3.4.2. Convolutional neural network
The FCN described above has some disadvantages. Firstly, the FCN is not invariant to permutation
of identical particles. This is not a problem for the output, as the atoms in the electrode are fixed in
space and are therefore defined solely by the order in the target output, such that no permutation of the
copper atoms needs to be considered. However, this does present a problem for the input. Switching
two potassium ions in the input, yields input data that is seen as unique by the FCN. Secondly, the FCN
lacks transferability with respect to the molarity of the solution. The FCN, as described above, has a
fixed number of inputs, and therefore cannot be used in situations where a larger or smaller number
of ions are present in the electrolyte. Thirdly, the FCN treats atoms close together and atoms far apart
from each other, on the same footing. In the context of the presented polarisation problem, this is most
probably unnecessary, and the network could be simplified if it was able to take into account the context
of every ion.

To deal with these three disadvantages, here it is proposed to transform the given problem into a com­
puter vision one. To allow for this, the main idea is to divide the input space, the space occupied by
the entire MD system, up into bins. When an atom happens to be present in a given bin, that bin gets
assigned the value of the charge of that atom. This way, the input has become permutation invariant,
as switching two ions of the same kind still yields the same input configuration. This approach also is
a first step towards solving the issue with transferability with respect to the molarity of the solution, as
the input space no longer changes when the concentration changes.

Moreover, by representing the input space as a three­dimensional matrix of values, state of the art
computer vision techniques could be used in solving the polarisation of the electrode. Convolutional
neural networks could be applied, which have been applied many times before to 3D vision problems,
successfully. Finally, this could help solve the third issue mentioned, as convolutional neural networks
inherently treat locations close­by and far apart on a different footing. Regrettably, in the context of the
modelling the electrode polarisation, the proposed vision approach comes with its own disadvantages,
and these all have to do with the handling of spatial information.

By binning the input space, spatial information is lost, due to computational limits to processing large 3D
objects. Since the 3D matrix representing the system will be increasingly sparse for smaller bin sizes,
one solution to this problem would be representing the system using a sparse matrix. Subsequently, a
convolutional network made for processing sparse data could be used, for which multiple approaches
have been described[104][105][106]. Unfortunately, due to severe time limitations it was not possible
to implement these for this thesis.

In order to still be able to allow for an accurate representation of the input space, it was decided to
scale the bin size, depending on the respective location in the input space. Effectively what was done,
was choosing a finer z­coordinate binning, the closer the z­coordinate was to the electrode. This way,
differences in the z­position of atoms close to the electrode were represented more accurately than
those far away from the electrode. This was done, as it was seen that atoms close to the electrode
have a relatively larger influence on the polarisation than atoms far away, such that differences in spa­
tial coordinates have a relatively larger impact for atoms that are close by. Results that verify this, can
be found in section 4.2.

In some ways, the translational equivariance of the convolutional layer might be beneficial to learning
the features of the problem, especially in the earlier layers. For example, it allows the local regions
surrounding the electrode atoms to be treated in the same way for every electrode atom, which is con­
sidered to be natural. However, the translational equivariance of convolutional layers might pose a
problem if it denies the network from finding appropriate representations of individual regions in space,
when these are required. In order to help the network to use the available spatial information as much
as possible, padded and relatively deep CNNs were used. Recent papers have shown that CNNs are
able to learn to use spatial information.[107][108][109] To allow a CNN to do so, (same) padding must
be applied. This allows the network to place weights outside of the input space, that can allow informa­
tion at specific location to be either taken into account or ignored.[107] Moreover, the network needs
to be deep enough that the described padding effect can be used throughout the entire input space.
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For this reason, the standard architecture of the used CNN in this thesis, was chosen to resemble the
ResNet­18 network.[61] Kayhan et al.[107] showed that this network, while relatively shallow compared
to other CNNs, can classify locations 128 pixels away from the boundary, which is sufficient for the pur­
poses of this thesis. ResNet networks consist of multiple of the skip­connection blocks that were seen
in figure 2.4 in tandem, and the number 18 refers to the combined number of layers in the network.
Most of the dimensional reduction in a ResNet architecture is provided by strided­convolutions, which
are thought to better suit the presented problem by not relying on pooling layers, that are thought to
destroy spatial information. Furthermore, The standard ResNet­18 architecture was changed for the
purposes of this thesis, by replacing the pooling layer that is normally present in the first layer of the
network, by a strided­convolutional layer. The base architecture of the CNN used in this thesis can be
found in figure 3.4.

Figure 3.4: Schematic of the base architecture of the 3D ResNet­18­like convolutional neural network used in this thesis. Black
arrows indicate connections between layers, with dashed connections indicating a strided convolutions that are used to allow for
a skip connection between outputs of different sizes. Each depicted convolutional layer was followed by a batchnorm layer and a
ReLU activation function (the latter after addition of the output from the skip connection), except for the first layer. A convolutional
layer using a 3x3x3 kernel, a stride of 2 and an output containing 16 channels, is denoted as ”3x3x3 conv, 16, /2”, and a fully
connected layer with 128 outputs as ”fc 128”. For the 2D version of this network, the 3D convolutions were replaced by 2D ones.

Since the CNN could possibly be benefited by access to additional spatial information, so that it can
choose whether to keep the spatial equivariance, or discard it, the ’coordinate convolution’ approach
was applied in some variants of the described CNN. In a coordinate convolution layer, the spatial bin
numbers of the input space in each dimension are appended to the input in the form of extra channels,
i.e., for example, an x­channel is appended that contains a matrix where each element is assigned
a value based on its x­position relative to the other elements, instead of containing a sparse matrix
of charges.[110] This way, the network can directly choose to either incorporate the provided spatial
information, or discard it (so choose whether to keep spatial equivariance, or discard it).

Both 2D and 3D versions of this network were created. In the 2D network every z­bin represented a
channel in the input data, whereas in the 3D network the input space could be represented using one
single channel. Like for the FCN, multiple variants of the described network and the input data were
attempted, and will be discussed further in section 4.5. For example, training data was created in which
the water molecules were taken into account. As described, in this approach this did not lead to an
increase in the input dimensions.
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3.4.3. Training procedure
To obtain training data, the configuration of the system in the QM­MD system was saved after every
time an SCC­DFTB calculation was performed. To effectively increase the amount of available training
data, the training data for the FCN could be permutated, as discussed before. Because the training time
required scales with the number of training sets, this could not be done more than a few times, given
time and computational constraints. Moreover, for both networks, certain symmetries in the system
could be exploited. Depending on the symmetries present in the modelled electrode, the system could
be mirrored and rotated to obtain new training data that is seen an unique by the networks. The only
constraint to operations like these, is that the absolute positions of the copper atoms in the electrode
remained the same.

To ease the training process of the FCN the copper electrode was fixed in space, like the graphene
electrode was in the work of Pasquale et al.[34] was fixed in space. This allowed the networks to have
to account for one less degree of freedom in the input.

During the training stage, the Adam optimiser was used with an initial learning rate of 1⋅10−3. For
training the FCN, this learning rate was multiplied by 10−1 after every 25 epochs. For training the
CNN, the number of feasible epochs was lower, due to the inability to use sparse convolutions, and the
learning rate was multiplied by 10−1 after every 10 epochs. The loss itself was calculated as
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where 𝑁𝑎 is the total number of atoms in the electrode. As can be seen in eq. (3.4), the loss func­
tion was made up of two separate contributions. The first term is the mean absolute error (MAE) loss
between the predicted charges and the target charges, multiplied by 𝑁𝑎. The second term is the total
difference between the sum of the predicted charge by the NN, and the sum of charge that was applied
to the electrode. This forms a soft constraint on the prediction of the neural network. 𝜆 is an adjustable
parameter that sets the strength of the penalisation, that was set to 1.

Setting this type of constraint is a way of regularisation, as it prevents the NN from learning models
which do not predict a total charge charge equal to the one applied in the QM­MD loop. Additionally,
weight decay was applied in all trained models. Lastly, the given loss function was varied, by individu­
ally scaling the before mentioned terms. Additionally, the use of an RMSE loss was attempted.
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Results and discussion

In this chapter all results will be presented and discussed. In section 4.1, the process of selecting an
appropriate MD system is shortly outlined. Furthermore, a general discussion of the used MD system
is provided. Subsequently, in section 4.2, the benchmarking of the SCC­DFTB calculations against
DFT are presented and discussed. Section 4.3 describes how the time coupling interval between the
MD and SCC­DFTB simulations in the QM­MD loop was chosen. Section 4.4 contains the results of
the QM­MD run, and the discussion of those results. This section is followed by individual discussions
of the MD simulation and the SCC­DFTB simulations. Finally, in section 4.5 the results of the attempt
to replicate the results of the SCC­DFTB simulations using neural networks is described.

4.1. Choosing an MD system
To create the QM­MD loop, first the system to simulate had to be chosen. Subsequently, it had to be
confirmed that the chosen MD system behaved appropriately, i.e., the MD system did not display be­
haviour that would limit its usefulness in the evaluation of the QM­MD loop. Unfortunately, as already
described in the method, the first few systems that were attempted, displayed exactly this kind of be­
haviour. Here, some results from these first runs are presented.

As described in the method, system 1 was created to mimic a carbon dioxide reduction system. An
electrolyte was simulated that was bound by two copper electrode sheets and contained carbon diox­
ide molecules, and bicarbonate and potassium ions. Initially, the force field provided by Demichelis et
al.[72] was used to model the bicarbonate molecules. As described in the method, mixing of the bi­
carbonate with other atom types was modelled using copies of interaction parameters between similar
types of atoms in the system. This was considered to be an acceptable approach because bicarbonate
was not thought to be crucial in determining the behaviour of both the carbon dioxide molecules and
the positive potassium ions at the cathode. This approach, however, yielded clustering between the
bicarbonate and potassium ions, as shown in figure 4.1.

Clustering may have resulted from the following. The electronic structure of molecules depends on
their environment. Force fields of ions are often optimised in infinite dilution, so when a higher molarity
is used, or other ions are added to the solution, the presumed electronic forces might no longer be
correct. An attempt was made to reduce the amount of clustering by lowering the molarity and scaling
down the ionic charges by means of the Electronic Continuum Correction (ECC) (without subsequently
altering the LJ interacting parameters as is usually done).

In addition, the temperature of the system was increased from 298 K to 323 K. In some experiments
the implemented potassium force field was also changed from that given by Yagasaki et al.[73] to that
given by Joung and Cheatham[74]. Additionally, the potassium ions were replaced by sodium ions
(using again the force field by Joung and Cheatham[74]), as for sodium the bicarbonate force field pro­
vided interaction parameters with the oxygen in the bicarbonate molecule (not the carbon or hydrogen).

34
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Figure 4.1: Visualisation of system 1, simulated using the bicarbonate force field provided by Demichelis et al.[72] The potassium
ions are coloured green. Oxygen atoms are red, hydrogen white, and carbon is coloured black. Significant clustering is noticed
between the oppositely charged ions.

All attempts failed to eliminate clustering.

The observed clustering is most likely a result of the implemented force fields of bicarbonate and potas­
sium. These were mainly copied from the interaction of carbon dioxide with potassium, which were not
adapted to bicarbonate. Since none of the attempts ultimately solved the clustering issues, the bicar­
bonate force field was changed. New force field parameters were generated using the online LigParGen
parameter generator[75], as described in the method. A visualisation of a resulting run can be found in
figure 4.2, and plots of the corresponding cumulative distribution functions can be found in figure 4.3.

Figure 4.2: Visualisation of system 1, simulated using the bicarbonate force field generated using the online LigParGen parameter
generator[75]. The potassium ions are coloured green. Oxygen atoms are red, hydrogen white, and carbon is coloured black.
The majority of the ions can be observed to be in either one of the double layers on the respective electrode surfaces.

As shown, the bicarbonate in the system was primarily adsorbed to the copper electrode surfaces. This
is thought to be mainly the result of the relatively strong pair interaction of copper with other atom types,
which, for example, is significantly larger than that between water and other atoms types. In addition, a
bicarbonate molecule consists of five atoms, so that each atom experiences an attractive force towards
one of the electrodes.

Even though one the electrodes has a negative net charge (the cathode is on the left in the given
figures), bicarbonate is still adsorbed on the surface. In the example given, even more bicarbonate is
adsorbed on the negative electrode than on the positive electrode; this can be an effect of the attractive
interaction between the two types of ions. Electrostatic effects seemed to play a minor role compared
to the LJ interaction. Therefore, it was thought that if surface polarisation effects were to be included
in the simulation of this system, it would only be able to play a relatively minor role. This system was
considered to be non­ideal for a first study into the effect of surface polarisation. Additionally, the ob­
served long adsorption times and resulting reduced dynamics of the system would make this system
relatively unsuitable to train a neural network on, as this often requires a diverse training data set to
properly generalise.
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(a) Bicarbonate (b) Potassium

Figure 4.3: Plots of the cumulative distribution functions of the ions in system 1, bicarbonate in figure (a), and potassium in
figure (b). In total, there were 37 ions of both types in the system. The left electrode was negatively charged, the right electrode
positively. The majority of the bicarbonate atoms is observed to be adsorbed on either of the electrode surfaces. The majority
of the potassium ions is part of one of the electric double layers existing on the electrodes.

Increasing the temperature of the system, again, to 323 K did not seem to have a significant effect
on the bicarbonate adsorption. Moreover, it was attempted to artificially scale down the LJ interac­
tion of the bicarbonate molecules with copper. Ultimately, however, it was decided to exchange the
bicarbonate ions for chloride ions. This was done because a down scaling of the LJ interaction of the
bicarbonate molecules would create an nonphysical situation, such that there would no longer be a
point in choosing bicarbonate to be the anions in the system, over any other choice of anion. In ad­
dition, to further simplify the system, it was decided to remove the carbon dioxide molecules as well.
Now system 2 was obtained, which serves as the main system under study in the rest of this thesis.

Using system 2, a classical MD run of 30 ns was performed. The results served as reference to com­
pare the results of the QM­MD loop to, and will be presented together with the QM­MD results in section
4.4.

4.2. Benchmarking the SCC­DFTB calculations against DFT
The performance of the SCC­DFTB simulations, using the matsci­0­3 SK­files set, was benchmarked
(primarily qualitatively) against calculations on the DFT level of theory, using the AMS­ADF software.
Different non­periodic SCC­DFTB and DFT simulations were performed in which the charge distribu­
tion was computed on multiple sheets of (100) copper of different sizes, under the influence of one or
multiple point charges at different locations. Additionally, to compare the effect of polarisation in both
simulation techniques, the copper sheets were simulated in a vacuum. This allows for the polarisation
effect to be quantified and compared. This, in turn, was done by subtracting the values of the partial
charges 𝑞𝑖0, as they were in the vacuum, from the partial charges 𝑞𝑖, as they are affected by a point
charge. Consequently, a set of excess charges Δ𝑞𝑖 = 𝑞𝑖−𝑞𝑖0 was obtained, which represents the effect
of the polarisation.

The charge redistribution is visualised by plotting the sum of all excess charges as a function of the
radial distance 𝑟 from the center of the sheet (Δ𝑞(𝑟) = ∑𝑖 Δ𝑞𝑖 for all charges for which 𝑟𝑞𝑖 ≤ 𝑟). This
provides more information than the average error, as this would simply be a value that decreases with
the size of the sheet. Furthermore, in the plots that will be shown, the maximum error made by the
SCC­DFTB simulation is always made in the prediction of the excess charge on the atom in the center
of the sheet (and if there is no atom in the center of the sheet, on the the very first atoms from the
center), and can therefore be read from the given plots.
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4.2.1. Three layered sheet
The first idea was to use multi­layered (100) copper system, to mimic a real copper electrode. There­
fore, the first simulated system consisted of three layers of (100) copper, with a total 216 atoms and
a point charge (𝑞 = ­1.0 e) at 3 Å from the center of the sheet. This distance was chosen as it was
observed to be close to the adsorption distance of certain ions in the MD simulation. A depiction of the
system is shown in figure 4.4, and the plot with the SCC­DFTB and DFT results can be found in figure
4.5.

(a) Top view. (b) Side view.

Figure 4.4: Top­ and side view of the three­layered (100) copper sheet, consisting of 216 atoms in total. The atoms shown in
green form the top layer. The gray atoms make up the second layer and the magenta atoms constitute the final layer. A point
charge is simulated at the location of the black cross in the middle of the sheet, exactly three Å above the top layer. From the
black cross outward, the computed excess charge localised on the atoms (at both the DFT and SCC­DFTB levels) is summed
and plotted in figure 4.5.

Figure 4.5: Plot depicting the DFT (solid) and SCC­DFTB (dash­dotted) summed excess charge Δ𝑞 as a function of the radial
distance 𝑟 from the center of a three layered sheet of (100) copper, polarised by a point charge (𝑞 = ­1.0 e) at a height of 3 Å
above the sheet. The sheet is depicted in figure 4.4. Significant differences between the SCC­DFTB and DFT results can be
observed. For example, the value of summed excess charge can differ more than 50%, and the radial distance at which it occurs
is different.

In both the SCC­DFTB and the DFT simulation, the negative point charge can be seen to accumulate
positive charge near the center of the sheet. From 3­4 Å the presence of the point charge is felt less,
and the total amount of excess charge remains approximately the same. From 9.5 Å onwards the
amount of excess charge decreases in order to compensate for the charge accumulation at the center.

Except for the accumulation of positive charge near the center and the depletion of the charge at the
boundaries of the sheet, significant differences between the SCC­DFTB and DFT results can be ob­
served. The maximum value of summed excess charge differs more than 25%, and the radial distance
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at which it occurs is different. At a radial distance just over 2 Å, SCC­DFTB predicts a decrease in
the total amount of excess charge, rather than an increase as predicted by DFT. The summed excess
charge differs more than 50%.

The difference can be explained by looking at the predicted partial charges on the sheet in a vacuum. In
a vacuum, DFT predicts a net positive charge on the front and back sheets, and a net negative charge
on the middle sheet. SCC­DFTB, however, predicts the opposite: a net positive charge on the middle
sheet, and a net negative charge on the front and back sheets. As a result, when under the influence
of a negative point charge, SCC­DFTB predicts a larger negative polarisation of the middle sheet than
DFT, leading to a decrease in predicted excess charge just over 2 Å in figure 4.5. Although effect
of polarisation in both SCC­DFTB and DFT seems to behave similarly, the predicted partial charges
differ significantly. This is a result of the difference in the predicted charged in a vacuum. Because the
non­polarised charges do not correspond well between the different methods, the charge predictions
under polarisation also do not match.

Figure 4.6 depicts the predicted partial charges by DFT and SCC­DFTB, in the case of polarisation
by the negative point charge. These side views of the sheet, show that DFT and SCC­DFTB predict
opposite signs for many of the partial charges. It should be noted that the colour ranges used for these
figures, and all subsequent similar figures, do not necessarily correspond to the maximum and mini­
mum colour values displayed in the figures. The purpose of these figures is solely to provide insight
into how polarisation affects the charge distribution across the electrodes. What should be noted in
these plots is the sign of the charges assigned to specific atoms, and there relative colour compared
to the other atoms, with darker values corresponding to higher values.

In appendix B.1 more simulation results of three­layered sheets can be found. There it is shown that
optimising the used lattice constants for either one of the the simulation methods, does not significantly
change/improve the results. Furthermore, it is shown that taking into account colinear (up or down)
spin polarisation using the spin constants provided by Yin et al.[86], also does not yield a significant
improvement of the results. This was anticipated, as using these parameters was not recommended,
since they were fitted using a different XC­functional than the SK­files. Moreover, for sheets with an
even and odd total number of atoms, it was verified that in the DFT simulations the initial spin configu­
ration (­2, ­1, 0, 1 and 2), had no effect on the final outcome.

Based on these results, it was decided to attempt to use a copper sheet consisting of a single layer in
this thesis.

(a) DFT (b) SCC­
DFTB

Figure 4.6: Side view of the polarised three layered (100) copper sheet. The atoms are coloured depending on the predicted
partial charges, computed using DFT and SCC­DFTB. The same charge scale was used for both plots, from ­0.15 e (red) to 0.15
e (blue). Charges outside of this range were capped, and were assigned the maximum colour values. In can be observed that
DFT predicts charges opposite in sign compared to SCC­DFTB.
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4.2.2. Single­layered sheet
Next, multiple single­layered sheets were simulated using both DFT and SCC­DFTB, for a similar neg­
ative point charge at a location 3 Å above the center of the respective sheets. For a (100) copper sheet
consisting of 128 atoms, the plot of the summed excess charges, as a function of the radial distance
from the center atom (center in this case chosen to be located on an atom), are shown in figure 4.7.
Figures 4.8 and 4.9 show the sheet atoms, coloured using the values of the partial charges, and the
excess charges, respectively. These results show that for a single layer, SCC­DFTB is able, to some
extent, to capture the polarisation of the sheet, as predicted by DFT.

Furthermore, these results illustrate the (very) non­local nature of the charge redistribution as a result
of polarisation by nearby charges. Charges are observed to be redistributed across the entire surface,
with positive charge being accumulated near the point charge, and positive charge being depleted far
away from the center. These results indicate the importance of charge transfer effects in correctly de­
scribing the charge redistribution under the influence of a polarising charge. Moreover, these result
show that the charge induction effects can be sizable, confirming the importance of taking them into
account in the study of metallic/semi­metallic electrode­electrolyte interfaces.

Figure 4.7: Plot depicting the DFT (solid) and SCC­DFTB (dash­dotted) summed excess charge Δ𝑞 as a function of the radial
distance 𝑟 from the center of a single sheet of (100) copper, which is polarised by a point charge (𝑞 = ­1.0 e) at a height of 3 Å
above the center of the sheet. Up to a certain level, SCC­DFTB is shown to be able to capture the polarisation of the sheet, as
it is predicted by DFT. SCC­DFTB can be seen to underestimate the total polarisability.

(a) DFT (b) SCC­DFTB

Figure 4.8: Visualisation of a single layered (100) copper sheet, coloured using the computed partial charges 𝑞𝑖 by both DFT (left,
a.) and SCC­DFTB (right, b.) The same charge scale was used for both plots, from ­0.15 e (red) to 0.15 e (blue). Charges outside
of this range were capped, and were assigned the maximum colour values. A difference between the predictions by SCC­DFTB
and DFT can be observed at the right top and bottom left corners. DFT predicts a negative charge on the two outermost atoms
on both sides of the sheet, while SCC­DFTB predicts that the charge is mainly localised on the single outermost atoms.
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(a) DFT (b) SCC­DFTB

Figure 4.9: Visualisation of a single layered (100) copper sheet, coloured using the computed excess charges Δ𝑞𝑖 by both DFT
(left, a.) and SCC­DFTB (right, b.) The same charge scale was used for both plots, from ­0.05 e (red) to 0.1 e (blue). Charges
outside of this range were capped, and were assigned the maximum colour values. Being directly related for figure 4.7, SCC­
DFTB here demonstrates being able to capture polarisation of the copper sheet by a point charge. DFT can be seen to polarise
the sheet more than SCC­DFTB (darker blue colour around the center). Like figure 4.7, this figure illustrates the non­local nature
of the charge redistribution as a result of polarisation by the point charge. Charge is observed to be redistributed across the
entire surface, with positive charge being accumulated near the negative point charge, and positive charge being depleted far
away from the center.

Still, differences between the predictions of DFT and SCC­DFTB can be observed. Figure 4.7 shows
that SCC­DFTB underestimates the polarisability of the sheet by up to 20%. Furthermore, figure 4.8
shows that SCC­DFTB and DFT predict slightly different partial charges for the atoms in the top right
corner and the bottom left corner. DFT predicts a negative charge on the two outermost atoms on both
sides of the sheet, while SCC­DFTB predicts that the charge is mainly localised on only the outermost
atoms. As previously described, this result follows from the predicted partial charges in a vacuum.
Therefore, this difference is thought to be a result of the SCC­DFTB parameterisation, in the same way
the predicted charge on the boundaries for the three layered sheet in a vacuum was different between
SCC­DFTB and DFT. In this case, however, it does not lead to a large difference in the predicted partial
charges or predicted polarisation.

The effect of the boundaries on the observed difference is validated by looking at the results of the
simulations of smaller single layered sheets in appendix B.2. There it is shown that the larger the
sheets become, the smaller the relative error becomes. Other, not observed, size effects could play a
role here too. Therefore, it is recommended to perform these type of size dependent simulations when
benchmarking SCC­DFTB performance.

The supposed boundary related errors are thought to be a minor issue in the application of SCC­DFTB
in the rest of this thesis, as periodic boundaries are used throughout. Because periodic boundary sim­
ulations were not possible in DFT, additional non­periodic experiments were performed with multiple
point charges of opposite charge. In this way, it could be seen whether SCC­DFTB and DFT predicted
different behaviour in between opposite charges, a situation that might occur regularly in the QM­MD
simulation in which the boundaries are not expected to play a significant role.

These experiments generally showed the same behaviour as observed in the other experiments on one
layered sheets. Slight differences were observed in the predicted partial charges near the boundaries
resulting from the vacuum configuration. Differences in the predicted polarisation were considered a
consequence of the seemingly smaller polarisability of the SCC­DFTB simulations compared to DFT.
An example of an experiment with multiple charges can be found in appendix B.3.

Lastly, figure 4.10 shows the result of performing the same type of simulations on a single sheet of
(100) copper consisting of 113 atoms, for two different distances of the point charge. As anticipated, in
both DFT and SCC­DFTB, the polarisation of the sheet increases as the point charge is moved closer
to the sheet.
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Figure 4.10: Plot depicting the DFT and SCC­DFTB summed excess charge Δ𝑞 as a function of the radial distance 𝑟 from the
center of a single sheet of (100) copper, which is polarised by a point charge (𝑞 = ­1.0 e) at heights of 3 and 6 Å above the center
of the sheet. The results of both DFT and SCC­DFTB show that the polarisation of the sheet increases as the point charge is
moved closer to the sheet.

Overall, boundary effects and an underestimation of the total polarisability in SCC­DFTB were taken to
be the main contributors to the observed differences between the SCC­DFTB and DFT results. In the
tight­binding approximation the interaction between different atoms is limited. Therefore, a priori and
without looking at the parameterisation, it could be expected that SCC­DFTB would underestimate the
total polarisability.

SCC­DFTB, using the matsci­0­3 set of SK­files, in comparison to DFT results, seemed to be able
to capture the polarisation effects on a single sheet largely correctly. This is most important if the
interest is to gain more insight into the effect of charge redistribution under the influence of a set of
point charges. Moreover, other errors, for example, the errors attributed to boundary effects, were not
found to influence the predicted partial charges to the point that the resulting configurations of DFT and
SCC­DFTB contradicted each other. Therefore, the set of SK­files used with SCC­DFTB was deemed
suitable to proceed with simulating the charge redistribution on a single sheet of (100) copper.
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4.3. Choosing the QM­MD coupling time interval
Here it is described how the time interval between the MD and SCC­DFTB simulations was chosen.
As described in the method, there is a trade­off between accuracy of the simulation and the practical
viability of the loop. The QM computations must be used often enough that the representation of the
polarisation is accurate and physically meaningful results are obtained. At the same time, the total
simulation time must be kept down. Moreover, to to successfully train a neural network on the results,
a diverse training data set is required.

First, a QM­MD test simulation was performed, in which the average and maximum charge differences
were calculated between SCC­DFTB calculations, for varying time intervals between the calculations.
This did not yield a suitable estimate for the time interval. Therefore, MSD measurements were per­
formed on ions adsorbed on the wall, using which a suitable time interval was estimated. The QM­MD
test simulation is described in section 4.3.1. The MSD measurements and the choice for the time in­
terval are described in section 4.3.2.

4.3.1. QM­MD test simulation
To get a well suited estimate for the time interval between SCC­DFTB computations, a QM­MD test
simulation was performed. This simulation consisted of multiple different consecutive smaller loops,
each consecutive loop using a different time interval and initialised from the last. First, the system
was simulated for 10 ps, with an SCC­DFTB calculation every 50 fs. Subsequently, the system was
simulated for 1 ns, with a time interval between SCC­DFTB calculations of 5 ps. Then, the system was
simulated for 2.5 ps, with again time intervals of 50 fs. Lastly, the system was simulated for 200 fs, with
a time interval between SCC­DFTB calculations of 1 fs.

In the test simulation, there was a loop with a short time interval between SCC­DFTB calculations (1 fs),
and a loop with a relatively long time interval between SCC­DFTB calculations (5 ps). If the entire test
simulation was performed using the short time interval, the system would probably not have reached
an equilibrium in the total simulated time. As a consequence, no data would be obtained about how the
system would behave in equilibrium. It could be, for example, that initially the instantaneous change
in the ion configuration, and thus the surface polarisation, is larger than when the system would have
been allowed to reach an equilibrium. On the other hand, if the chosen test time interval had been cho­
sen to be 5 ps for the entire simulation, the system might have been able to reach an equilibrium, but
this equilibrium would have been influenced by the chosen (long) time interval. In additions, this way
the two different loops with a time interval of 50 fs could be compared, potentially yielding information
about changes in the system during.

The average and the maximum change in the partial charges relative to some other point in time was
measured. To obtain a statistically more robust result from the relatively short runs, a ’sliding origin’
was used to compute the change. This means that, instead of measuring the (average or maximum)
change with respect to the configuration at 𝑡 = 0 for every result in the entire run (from 𝑡 = 0 → 𝑡 = end),
an new measurement was performed after every SCC­DFTB calculation over a shorter period of time
(from 𝑡 = 𝑖 → 𝑡 = end𝑖∀𝑖 for which end𝑖 ≤ end). This shorter measurement time was chosen to be a
fourth of the total run time, such that for the final fourth of the run time, no new measurements were
started. To obtain the final results, the different sets of results were combined and averaged. The
average change in the partial charges on the electrode, and the maximum change in a partial charge
as a function of the simulation time, are plotted in figures 4.11 and 4.12 for the 5 ps and 1 fs interval
times, respectively. The results of the 50 fs loops can be found in appendix C.
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(a) Average change (b) Maximum change

Figure 4.11: Plots depicting the average change and the maximum change in the partial charges, as compared to some starting
configuration, as a function of time, using a time interval between SCC­DFTB calculations of 5 ps.

(a) Average change (b) Maximum change

Figure 4.12: Plots depicting the average change and the maximum change in the partial charges, as compared to some starting
configuration, as a function of time, using a time interval between SCC­DFTB calculations of 1 fs. After 49 fs, both the average
and the maximum change in the charge values, exceed 50% of the average and maximum change values observed after 245
ps, as seen in figure 4.11

As anticipated, both figures show that the average change increases as a function of time. By com­
paring the two figures, it is seen that within 49 fs, the average change in figure 4.12, exceeds a value
of 50% of the largest average change observed after 245 ps in figure 4.11. The same holds for the
maximum error observed in both plots. Consequently, if the decision of the time interval between SCC­
DFTB calculations were to be based on these measurements, a time interval well below 49 fs would
have to be chosen in order to construct a physically consistent loop. With a time interval below 49 fs,
the total QM­MD loop simulation time would be severely limited. Therefore, it was decided that the time
interval should be determined in a different way.
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4.3.2. Estimating the time interval using MSD measurements
In order to obtain another estimate for a suitable time interval between SCC­DFTB calculations in the
QM­MD loop, MSD measurements were performed using the potassium ions.

An MSD measurement was performed for 2.5 ns. The measurement was initialised from a state after
25 ns of simulation time of the previously performed MD run, of which it was observed that after 10 ns
the MD system had reached an equilibrium (by checking density plots and pair correlation functions,
using block averages of various lengths). Choosing the starting point after 25 ns, allowed for the eval­
uation of the final 5 ns of the simulation to choose a suitable set of atoms. The MSD was calculated for
eight potassium atoms, that during the simulated 2.5 ns, remained adsorbed on the cathode. Like was
done in the case of the previously presented results of the average and maximum charge change in
the partial charges, a ’sliding origin’ approach was followed in order to obtain a statistically more robust
result.

The MSD of the selected atoms was calculated every 100 fs. Every 50 fs, a new MSD measurement
was initialised, and each MSD measurement was performed for 50 ps. A plot of the result can be found
in figure 4.13. Subsequently, a weighted (𝑤 = 1/𝜎2) least squares fit was performed. Only data ob­
tained after 1 ps of measuring was used for the fit, not the full time range. Data points from times below
1 ps fall into the ballistic regime, and only represented particle movement due to Brownian motion.[111]

Figure 4.13: Plot of the averaged MSD trajectory of a selection of potassium ions, adsorbed on the cathode throughout the
simulation of 2.5 ns. The corresponding standard errors (𝜎/√𝑁measurements) are plotted in grey around the measurements. The
MSD is plotted for three directions: the x­, y­ and x,y­direction, where the x,y­direction is simply the sum of the individual x­ and
y­results.

By means of the fit to the slope of the MSD measurements, an estimate for the diffusion coefficient in
direction parallel to the wall was obtained using eq. (3.2), yielding a value of 7.39±0.03 ⋅10−11 m2/s.
The diffusion coefficient provides information on the movement of particles in a system. By taking the
square root of the obtained diffusion coefficient multiplied by a time of 1 ps (displacement = √𝐷 ⋅ 1ps),
an estimate was obtained for the expected average displacement of the potassium ions near the wall
of 8.60±0.02 ⋅ 10−2 Å/ps. The sought­after time interval was chosen based on the time the potassium
ions near the wall would take to traverse one­tenth of the lattice constant of copper (3.6149 Å), yielding
4 ps after rounding down.
It is clear that, ultimately, the chosen time interval was based on several assumptions, and not derived
rigorously. The effect of this choice is discussed further on, after the results of the QM­MD run have
been presented.
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4.4. QM­MD simulation
Here the results of the QM­MD simulation are presented and discussed. Using the previously chosen
time interval of 4 ps between SCC­DFTB calculations, the QM­MD loop was simulated for 30 ns. The
results presented here were all obtained using gathered data from the final 10 ns of the simulation.

As a result of the findings presented in section 4.2, the choice was made to only simulate the front layer
of the copper cathode using SCC­DFTB. Consequently, the full net charge of the cathode (­4.0 e) was
assigned to that layer only. For full consistency, the same net charge was assigned to the front layer of
the cathode in the MD­only run (from here on out referred to as the ’classical­MD’ (C­MD) simulation).
This yielded a charge of −4/128 = −0.03125 e on every atom in that layer in the C­MD simulation.
Figure 4.14 provides an impression of the charge distribution on the copper electrode during the final
10 ns of the QM­MD simulation, in the form of a histogram of the partial charges calculated in the cor­
responding SCC­DFTB simulations.

A significant redistribution of the charge on the cathode was observed, away from the average value of
−0.03125 e. Both negative and positive charges were induced in the QM­MD simulation. The depicted
charge distribution does not show a normal distribution with a peak around the average partial charge
value, as was seen in the study of graphene using the QM­MD loop by Elliot et al.[14][34]. Instead,
figure 4.14 shows a peak for partial charges more negative than the average value of −0.03125 e, and
a second peak for partial charges larger than the average value, from which the primarily mentioned
charges seem to have drawn their additional negative charge.

Figure 4.14: Histogram of the partial charges calculated in the SCC­DFTB simulations during the final 10 ns of the QM­MD
simulation. A significant redistribution of charge on the cathode is observed, when compared to the average charge of −0.03125
e that was used in the C­MD simulation.
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In the following, the effect of this charge redistribution is explored. To compare the results of the C­MD
simulation with those of the QM­MD simulation, multiple different results are presented. Firstly, density
plots, cumulative distribution function plots constructed from the measured densities, and radial distri­
bution functions are presented related to the electrolyte of the system. Secondly, MSD measurements
of the system are given, and lastly, histograms of the water molecule orientation angle are presented.

4.4.1. Electrolyte configuration
The pressure in the system was set by putting an inward force, equal to atmospheric pressure, on the
two electrodes, as was described in the method. During the initialisation stage, this yielded fluctuations
in the positions of the electrodes, and thus, fluctuations in the bulk density of the system. In both the
C­MD simulation and the QM­MD simulation, the bulk density was too high. The bulk density of the
aqueous potassium chloride solution, was measured to be 1049.0 ± 4.6 kg/m3 in both simulations, as
compared to the expected value of 1041.5 kg/m3.[112].

A plot of the electrolyte density, and a plot of the cumulative distribution function of water in the system,
constructed from the measured water density, are provided in figure 4.15. As for all density plots in this
section, a bin size of 0.1 Å was used to compute the profiles. Furthermore, the standard error in the
computed densities was plotted in grey around the data. It should be noted, that this error is usually so
small (relative to the data) that it cannot be observed in the plots.

(a) Density profile of the electrolyte (b) Cumulative distribution function of water

Figure 4.15: (a) Density plot of the electrolyte, plotted for both the C­MD simulation (solid line), and the QM­MD simulation
(dash­dotted line). In both simulations, the bulk density was found to be higher than the expected value of 1041.5 kg/m3. A
difference between the C­MD results and the QM­MD results, with relative more weight being located near the cathode, which
is located on the left, and relatively less in the bulk. (b) Plot of the cumulative distribution function of water. A total of 2009 water
molecules were simulated.

The density plot, the cumulative distribution function plot and the radial distribution function plot of
potassium can be found in figure 4.16. For chloride these are given in figure 4.17. The pair correlation
functions of the respective ions can be found in figure 4.18. The cathode is located on the left side of
the plots, with the front layer at a location of 3.6149 Å.

All figures clearly display a significant redistribution of the ions in the system as a result of the polar­
isation effects. On average, over 40% more potassium ions were adsorbed on the cathode surface.
Correspondingly, on average, more chloride atoms were observed in the double layer near the cathode
in the QM­MD run than in the C­MD run. Because more ions were drawn to the cathode, for both ion
types this led to a relative decrease in the number of ions in the bulk of the system (at locations over 4
nm), as is shown in the density and cumulative distribution function plots.
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(a) Density profile of potassium (b) Cumulative distribution function of potassium

Figure 4.16: (a) Density plot of potassium, plotted for both the C­MD simulation (solid line), and the QM­MD simulation (dash­
dotted line). (b) Plot of the cumulative distribution function of potassium. Both results show an increase in the number of adsorbed
potassium ions at the cathode.

(a) Density profile of chloride (b) Cumulative distribution function of chloride

Figure 4.17: (a) Density plot of chloride, plotted for both the C­MD simulation (solid line), and the QM­MD simulation (dash­dotted
line). (b) Plot of the cumulative distribution function of potassium. Corresponding with the observed increase in the number of
adsorbed potassium ions in figure 4.16, both results show an increase in the number of chloride ions in the double layer at the
cathode.

(a) Potassium (b) Chloride

Figure 4.18: Pair correlation functions of potassium (a, left) and chloride (b, right), calculated with respect to the front layer of the
cathode, and plotted for both the C­MD simulation (solid line), and the QM­MD simulation (dash­dotted line). The depicted pair
correlations functions overlap with the increase of the number of ions in the double layer in Q­MD results, relative to the C­MD
results, as seen in figures 4.16 and 4.17. In both plots, the ions can be seen to be drawn slightly more towards the cathode
surface.
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The plotted pair correlation functions show that polarisation effects only led to slight changes in the
adsorption distance of potassium ions, drawing the potassium ions maximally 0.1 Å closer. In the QM­
MD run, the potassium atoms were generally adsorbed in between four copper atoms of the front layer
(and a copper atom in the second layer), as the snapshots given in figure 4.19 portray. This was ob­
served in the C­MD run as well, but as the MSDmeasurements will show later on, the potassium atoms
were much more immobilised in this configuration in the QM­MD run. This shows that, indeed, nega­
tive charge got accumulated where potassium ions were close to the surface. By taking into account
polarisation effects, the cathode surface was able to adapt its potential energy surface by means of a
redistribution of the charge. In this case, this seemed to lead to an increase in the number of adsorbed
potassium ions in the QM­MD run over the C­MD run.

(a) C­MD (b) QM­MD

Figure 4.19: Snapshots of a potassium ion (green) adsorbed on the cathode surface, in both the C­MD run (a, left) and the
QM­MD run (b, right). The copper sheet atoms are coloured based on their respective charge, with red indicating a negative
charge and blue a positive charge. In the QM­MD simulation, a potassium ion adsorbed on the cathode surface could induce a
negative charge on nearby copper atoms, that exceeded the average negative charge of the copper atoms in the C­MD simulation
(as shown by the darker colour red). In turn, this would increase the attractive interaction between the copper sheet and the
potassium ion. In figure b, Positive charge was induced on two nearby copper atoms as a result of local charge depletion by the
surrounding negatively polarised atoms.

A potassium ion near the cathode surface in the C­MD run, experiences an attractive force due to LJ
interaction and Coulombic interaction from the negative copper atoms, and a repulsive Coulombic force
from the surrounding positive potassium ions. Ultimately, in the C­MD run on average 9 to 10 cations
were adsorbed. The number of potassium ions adsorbed on the cathode can exceed the total negative
charge on the cathode, due to the strength of the LJ interaction between the copper atoms and the
potassium ions. The potassium ions that were not adsorbed, were further prevented from adsorbing
on the cathode, because they were repulsed by the net positive charge they experience from surplus
of positive charge near the cathode, either before they reached the surface, or after.

By allowing for the induction of negative charge due to the nearby presence of a positive potassium ion,
the attractive interaction between the local cathode atoms and the ion was increased. This way, more
positive ions could be adsorbed on the surface, without having assigned additional negative charge
on the cathode. In the context of the configuration of copper atoms seen in figure 4.19, polarisation
allowed for a deepening of the local potential well, where the potential wells in the C­MD simulation
was not deep enough to hold an additional ion.

By drawing negative charge towards the adsorbed potassium ions, at times, positive charge is induced
in between the adsorbed ions, as was seen in figure 4.14. This indicates a depletion of the local neg­
ative charge. The repulsive force the induced positive charge yields on potassium ions nearing the
cathode from the bulk probably plays a role in why not more potassium ions are adsorbed. Because
of the relatively small LJ interaction chloride ions experience compared to the other atom types in the
system, they are generally not adsorbed on either electrode surface.
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Bicarbonate was attracted to the oppositely charged electrode in the MD simulations shown in section
4.1. If bicarbonate was used in the QM­MD simulation, it is expected that this would have led to a
local expulsion of negative charge. In turn, this could have led to increased attractive interaction of
the cathode with positive ions, either due to delocalised negative charge on the cathode, or due to the
extra negative charge of the bicarbonate molecule on the surface. Moreover, for anions with a LJ in­
teraction magnitude below that of the bicarbonate molecules, but above that of chloride, it is expected
that there is a point where the anion would not adsorb in a C­MD run, but would adsorb in the QM­MD
run. Whether or not it would adsorb, would then also depend on how much positive charge is induced
on the cathode. This would yield entirely different behaviour near the respective electrolyte. An extra
accumulation of chloride ions is observed in this study, as a response to the increase in the number
of adsorbed potassium ions on the cathode. For bicarbonate, a similar effect could be expected, in
addition to increased adsorption times.

The same holds for cations. While the observed redistribution of cations in the simulated system was
significant in itself, it is expected that for some types of ions the effect can be even more dramatic. For
cations with smaller LJ interaction with the respective electrode than potassium, taking into account
polarisation effects could lead to the adsorption of the cation where in a C­MD run it would, incorrectly,
not adsorb.

Finally, figure 4.20 shows the net cumulative charge difference between the C­MD simulation and the
QM­MD simulation. In this plot, the observed increase in the number of adsorbed potassium ions at
the cathode translates into a maximum net charge difference of 5 e. Subsequently, the net charge
difference goes to zero within the double layer, because of the corresponding increase in the number
of present chloride ions.

Concluding, in this section it was seen that electrostatic effects played a significant role in the ion ad­
sorption process in the system. Locally induced negative charges were seen to increase the attraction
between potassium and the cathode. As a result, a significant redistribution of the ions in the system
was found.

Figure 4.20: Plot of the net cumulative charge difference between the C­MD and QM­MD simulations. The increase in the
number of adsorbed potassium ions on the cathode surface in the QM­MD simulation, relative to the C­MD simulation, leads to
a maximum net charge difference of over 5 e near the cathode. The net charge difference goes to zero within the double layer,
because of the corresponding increase in the number of present chloride ions.

4.4.2. MSD measurements
MSD measurements were performed using both the C­MD and QM­MD simulations. Potassium atoms
adsorbed on the cathode, as well as potassium ions residing in the bulk, were used in separate MSD
measurements. Subsequently, the differences between the to simulations were evaluated. Moreover,
the measured MSD in the bulk was used to compute a local diffusion coefficient, that could be com­



4.4. QM­MD simulation 50

pared with values known from literature. This served as a way of verifying that the system is functioning
as it should.

The MSD results for the potassium ions adsorbed on the cathode in the C­MD simulation, that were
used to obtain an estimate for a suitable interval time between SCC­DFTB calculations (i.e., 4 ps), were
obtained in the previously described measurements. The other MSD measurements were performed
in a similar manner. The total measurement time was 2.5 ns. 14 potassium atoms were selected for
the bulk MSD measurements, in both the C­MD and QM­MD simulations. For the MSD measurements
on the atoms adsorbed on the cathode, 12 potassium atoms were selected in the QM­MD simulation
(more than in the C­MD experiment, as more were available/adsorbed), that during the simulated 2.5 ns
remained adsorbed on the cathode. Again, the ’sliding origin’ approach was applied, and all timescales
were chosen to be the same as in the previously performed MSD measurement. Plots of the results
can be found in figures 4.21 and 4.22, for the atoms in the bulk and the atoms adsorbed on the cathode,
respectively. In appendix D the MSD trajectories of the individual atoms are given.

(a) C­MD (b) QM­MD

Figure 4.21: Results of theMSDmeasurements performed on atoms in the bulk, for both the C­MD simulation (a, left) and theQM­
MD simulation (b, right). The corresponding standard errors (𝜎/√𝑁measurements) are plotted in grey around the measurements.
The MSD in the x­, y­ and z­directions are all found to be similar. The MSD in the x­ and y­directions is significantly larger than
the MSD in the z­direction, which is the direction bound by the two electrodes.

(a) C­MD (b) QM­MD

Figure 4.22: Results of the MSD measurements performed on atoms adsorbed on the surface of the cathode, for both the C­
MD simulation (a, left) and the QM­MD simulation (b, right). The corresponding standard errors are plotted in grey around the
measurements. TheMSD in both directions of the measurement performed using the C­MD simulation, is found to be significantly
larger than the MSD across the cathode surface in the QM­MD simulation. Previously, it was described how this could be a result
of the induced negative charge on the cathode, yielding a situation as depicted in figure 4.19.
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The MSD of the atoms in the bulk in the x­, y­ and z­directions in the C­MD simulation were similar to
those in the QM­MD simulation. This indicates that the polarisable cathode surface has no significant
influence on the dynamics of atoms not near that surface, as was anticipated. The MSD in the x­ and
y­directions was significantly larger than the MSD in the z­direction. This was also anticipated, as this
is the direction bound by the two electrodes. The differences between the x­ and y­measurements in
the C­MD and QM­MD simulations can probably be attributed to the limited simulation time of 2.5 ns
that was used to obtain these results. The large correspondence between the two sets of bulk results
is considered to provide sufficient confidence in the accuracy of the MSD measurements performed to
allow them to be used in this thesis.

Taking into account polarisability of the cathode surface significantly altered the dynamics of the ad­
sorbed cations. For the atoms adsorbed on the cathode surface the MSD in the C­MD simulation was
significantly larger than the MSD of the adsorbed atoms in the QM­MD simulation, in both the x­ and
the y­direction. In section 4.4.1 (figure 4.19) it was explained how induced negative charges on the
cathode surrounding the cation, yielded a potential well wherein a cation could be adsorbed. These
results showed that, this way, the cations are comparatively trapped inside this structure, resulting in
immobilisation of the cation and, correspondingly, a significant decrease in the measured MSD.

Diffusion coefficient
The MSD results obtained in the QM­MD simulation of the potassium ions residing in the bulk were
processed using MATLAB[113]. Using a weighted (𝑤 = 1/𝜎2) least squares fit, diffusion coefficients
were computed for each of the measured directions. The bulk diffusion coefficient 𝐷𝑥𝑦𝑧 was found to
be 1.710±0.002 ⋅ 10−9 m2/s. This is lower than the 1.89m2/s described by the Joung and Cheatham
force field[74][114], for 1M of dissolved potassium chloride in water modelled using the SPC/E force
field.

This dissimilarity can primarily be attributed to the relatively lowered diffusion in the z­direction, for
which a diffusion coefficient 𝐷𝑧 was estimated to be 1.376 ± 0.003 ⋅ 10−9 m2/s. The diffusion coeffi­
cient in the x­ and y­directions 𝐷𝑥𝑦 was estimated to be 1.8768 ± 0.005 ⋅ 10−9 m2/s, which is closer to
the value of 1.89⋅10−9 m2/s from literature. Based on this estimate, it was concluded that the system
behaved appropriately.

4.4.3. Angular orientation of the water molecules
Over the final 10 ns of the simulations, for water molecules near the cathode surface, histograms were
made of the angular orientation of water molecules. For multiple distances from the cathode, for all
water molecules present, the angle of the reversed dipole moment with respect to the normal of the
cathode surface was computed. The resulting histograms can be found in figure 4.23.

The relative distances from the cathode, used to obtain the histograms, were chosen based on ob­
served average distances of the water molecules from the cathode surface. The majority of the water
molecules in the first superficial layer of adsorbed water were contained within 3.5 Å from the cathode
surface, together with the adsorbed potassium ions. The distances of 2.9 Å and 3 Å were chosen to be
in the beginning of the first superficial layer of adsorbed water. Within 5 Å, also the first water molecules
within the next superficial layer of water were contained.

As depicted in figure 4.23, an angle of 90∘corresponds to the parallel alignment of the water dipole with
the surface of the cathode (90∘with respect to surface normal). Smaller angles correspond to a tilting
of the oxygen atom towards the cathode, whereas larger angles correspond to a tilting of the other end
of the dipole (the hydrogen atoms) towards the surface. Both the C­MD and the QM­MD simulation
results show a preferential angular orientation of smaller than 90∘. This preference was larger in the
case of the QM­MD results than in the case of the C­MD results. For the C­MD results, 61% of the
observed water molecules at distances smaller than 3.5 Å had a angular orientation smaller than 90∘,
compared with over 80% in the QM­MD simulation.
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(a) C­MD (b) QM­MD

Figure 4.23: Histograms of the angular orientation of water molecules near the cathode, in the C­MD simulation (a, left) and
the QM­MD simulation (b, right). Black arrows denote the orientation of the dipole for a given angle. The colours relate to the
maximum distance from the cathode that water molecules were taken into account for a calculation. So, for 5.0 Å, for all water
molecules were up to a distance of 5.0 Å from the cathode, the angle with respect of the normal of cathode was computed
and stored in the dark blue histogram. Both the results of the C­MD and the results of the QM­MD simulation show a skewed
profile, with a preferential angular orientation smaller than 90∘. In the QM­MD simulation, this preference is relatively increased
compared to the C­MD simulation.

This result was not fully anticipated. A priori, it was be expected that the water molecules would have
a preferential angular orientation larger than 90∘, due to the attraction between the two positive hydro­
gen atoms and the negative copper atoms. The results were verified by counting the number of cases
in which the z­position of the oxygen atom was smaller than the average z­position of the hydrogen
atoms, for all water molecules in used in the histogram computation. This number, indeed, overlapped
exactly with the number of cases in which the angular orientation of the water molecules was smaller
than 90∘. In the following it will be attempted to rationalise these results.

The large cation concentration at the cathode, especially in the QM­MD simulations, significantly con­
tributed to the observed preferred angular orientation. As a result of the electrostatic interaction be­
tween the two, it would be expected that the oxygen atom in a water molecule would be oriented towards
the potassium ion. Due to Pauli repulsion, there is little to no space between the potassium ion and the
copper atoms. Consequently, this effect would be expected to lead to a preferred angular orientation
with an angle smaller than 90∘in the first superficial layer of water adsorbed on the cathode.

The z­coordinates of both hydrogen atoms were compared to the z­coordinate of the corresponding
oxygen atom in all water molecules. In the C­MD simulation, it was found that in more than 92% of the
cases at least one of the hydrogen atoms was closer to the cathode than the corresponding oxygen
atom. In the QM­MD simulation, this number decreased to 89%. Because the angle between the hydro­
gen atoms in a water molecule is modelled to be 109.47∘, angular orientations of water molecules down
to 35.265∘can theoretically still have one hydrogen atomwith a z­coordinate smaller than that of the cor­
responding oxygen atom. This finding makes the found preference in angular orientation of the water
molecules somewhat less surprising. This way, the oxygen atom can be close to a nearby potassium
ion, while simultaneously having at least one of the hydrogen atoms closer to a nearby negative charge.

Another factor that might have played a role in determining the preferential angular orientation of the
water molecules is the fact that the Coulomb force is a product of charges. Since the average charge
of the copper atoms is ­0.03125 e, it is possible that a nearby potassium ion, with a charge of +1.0
e, could interact more strongly with a water molecule than with a copper atom that is closer by. This
could be, for example, one of the reasons why induced negative charges near potassium ions in the
QM­MD run do not seem to lead to a significant increase in the number of water molecules with an
angular orientation larger than 90∘.
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Induced positive charges in the QM­MD could have contributed to the skewing of the histograms of
the angular orientation of water molecules near the cathode, relative to the C­MD histograms. Positive
charges have been observed to be induced in considerable numbers as a result of local charge deple­
tion, in figure 4.14. Moreover, all induced partial charges larger than the average value of ­0.03125 e
could have contributed to turning water molecules away from high angles, relative to the C­MD simu­
lation.

A relative increase in the number of water molecules with an angular orientation larger than 40∘is ob­
served between the two sets of results obtained for distances up to 5 Å away from the cathode. This
increase is mainly attributed to the increase in strength of the local electric field, as a consequence of
the increase in the number of present potassium and chloride ions in the double layer. It is demon­
strated in appendix E that this relative increase in preference for one orientation persists further into
the system, by showing the same results for a maximum distance of 7 Å away from the cathode.

Histograms of the angular orientation of the water molecules at the anode were made as well, for water
molecule present within 3.5 Å away from the electrode surface. These results can be found in appendix
E as well. The C­MD and the QM­MD results showed a similar skewed profile, with a preferential an­
gular orientations of 90∘or 120∘. In contrast to the cathode results, this was expected. These results
show that the water molecules, with barely any ions nearby or adsorbed on the anode, and only positive
partial charges on the electrode surface, prefer to be oriented with the negatively charge oxygen atom
towards the positive copper electrode (anode is on the right side of the system).

The effect of water­water interaction through hydrogen bonding is hard to evaluate, especially since the
angles of the water molecules are spread over a wide range of values. Moreover, an experimentally
determined value for the contact angle of water with copper is unknown, and thus can not be compared
to the results obtained.

4.4.4. General discussion of the QM­MD simulation
Below, a general discussion of the simulations is provided pointing at several choices made, the weak
and strong points of doing so and suggesting future research directions. It is recognised that many of
the discussed topics do not come with a quantification of the discussed possible effects. Hopefully,
the given discussion provides some insight into what effects could be studied, or should be taken into
account, in a potential follow­up study.

(i) The QM­MD method as applied in this thesis, neglects possible charge transfer between the elec­
trolyte and the copper surface. Previously, Zhan et al.[115] have studied this effect for graphitic in­
terfaces. It was shown that the effect of charge transfer occurring between different ions (Cl−, Na+,
K+) and the graphitic interface was negligible compared to the overall Coulomb and Lennard­Jones
non­bonded interactions at the reported adsorption distances (charge transfer of less than 0.04 e, for a
potassium adsorption distance of approximately 3 Å). However, charge transfer was shown to be a very
short­ranged interaction, that decreased significantly with distance. Because the adsorption distance
of potassium in this thesis was observed to be smaller than 3 Å, potassium ions adsorbed at a distance
of 2.5 Å, charge transfer between the potassium ions and the copper electrode might not have been
negligible.

On the other hand, however, Li et al.[116], using DFT studies, showed that there was no charge trans­
fer occurring between various ions (Cl−, Na+) and a charged silver electrode. Consequently, future
studies should perform a separate (DFT) study to gain more insight into the occurrence/effect of charge
transfer in the case of a copper electrode. In the case that charge transfer becomes a relevant phe­
nomenon, Elliot et al.[14] noted that the effect could be incorporated in the simulation by means of
altering the non­bonded interaction. Possible charge transfer could also be taken into account, by
means of fitting the effective charge of the ions near the electrode, as was done in the work of Zhan
et al.[115]. This fitting could be used to change the charge of the ion in the MD simulation, where the
SCC­DFTB simulation could take this change explicitly into account.
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(ii) To obtain an idea of how the system configuration would have changed if a lower time interval had
been used, the original idea was to use trained neural networks. However, as will be seen in the fol­
lowing section, this turned out to not be possible. On average, a single static SCC­DFTB calculation of
the partial charges on the 128 modelled copper atoms, under the influence of the set of point charges,
took 40 seconds using two Xeon E5­2680 v4 processors (28 cores). In comparison, simulating the full
MD system for 5 ps on the same system, on average took about 17 seconds on average. This way,
it was not possible to decrease the time interval between SCC­DFTB calculations significantly, if the
desire was to at least simulate the system for 20 ns.

The estimate of a suitable time interval between SCC­DFTB calculations was considered to be related
to the dynamics of ions near the cathode. The choice to relate the time interval to the expected time
it would take the average potassium ion to traverse one­tenth of the lattice constant across the cath­
ode, was not based on any previously obtained results. Moreover, this estimation did not, for example,
take into account ions that moved with significantly larger velocities towards the cathode, and did not
account for the effect of polarisation by the water molecules. To perform the estimation in this way,
allowed a physical basis to be ascribed to the choice of the time interval, whether this had physical
significance or not. This way, this estimation serves as reference point, which similar future studies
could take into account when comparing their results to those presented here.

The MSD measurements performed in the C­MD simulation on which the chosen time interval was
based, proved to vastly overestimate the average MSD of the potassium ions adsorbed on the cathode
in the QM­MD simulation. This way, the chosen time interval might provide a more accurate description
of the surface polarisation than previously anticipated. Still, the choice for the time interval might have
significantly influenced the obtained results. For future studies it is recommended to perform more
in­depth experiments into the effect of the chosen time interval. These experiments could be based on
the test simulation that was performed in section 4.3.1.

(iii) Elliott et al.[14] used a non­periodic system with open boundary conditions in their SCC­DFTB cal­
culations, in combination with a periodic C­MD system. However, for this thesis in which also a periodic
C­MD system was used, choosing a periodic system in the SCC­DFTB calculations seemed the logical
choice: a non­periodic SCC­DFTB system would certainly result in significant boundary errors. As a
consequence, however, self­interaction of the point charges in the SCC­DFTB simulations would form
a source of error in this thesis. Therefore, to mitigate the self­interaction of the periodic images of the
system, the system was chosen to be multiple nanometers wide, in both the x­ and y­directions. In
addition, to quantify the effect of self­interaction, results of systems of different sizes would have to be
compared to each other. A first shortcoming of this thesis is that these type of comparisons were not
performed. Therefore, the effect of self­interaction in the SCC­DFTB calculations cannot be quantified.

(iv) Polarisation effects of the fluid were not taken into account. In this thesis, this could have affected
the measured angular orientations of the water molecules near the cathode. For depicting the sig­
nificant impact of the surface polarisation on the average angular orientation, and the corresponding
discussion on how this could affect the angular orientation, this lack of fluid polarisation was not thought
to be important. However, for a study in which water polarisation is thought to be important, standard
atom­centered polarisable models might be able to properly account for this effect, as significant charge
transfer between water molecules and their surrounding is not expected.

(v) The given pair correlation plots showed that polarisation effects only led to slight changes in the
adsorption distance of potassium ions, drawing the potassium ions on average 0.1 Å closer. Because
the choice of MD force field can influence both the adsorption distance and the local potential gradi­
ents, the choice of force field has to be carefully considered in future studies. The choice of force field
can make a difference when polarisation effects are taken into account, for example, for being able to
correctly model hydration effects on ions, and corresponding ion adsorption behaviour.

(vi) As mentioned in the QM­MD loop description, a Mulliken population analysis[117] is performed at
the end of the SCC­DFTB calculations to obtain a set of Mulliken charges, that are taken to represent
the partial charges in the system. Essentially, a Mulliken population analysis is a summation of all
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occupied atomic orbitals (squared) of each individual atom, to obtain the number of electrons localised
on each particular atom. This method is sensitive to the adopted basis set of atomic orbitals. In some
cases so much so, that some people in the field advise against putting too much reliance on population
analysis.[118]

Still, this was the method of choice in this project, because, firstly, a Mulliken population analysis was
inherent to the current implementation of SCC­DFTB in DFTB+. Secondly, a comparison with the DFT
level (using a different basis set) was performed beforehand that should have disallowed the usage of
the current implementation of SCC­DFTB, if it performed too badly. Thirdly, other methods would also
have retained a basis­set dependent effect. Lastly, Elliott et al.[14] previously have shown that there
is a full equivalence between on the one hand, the interaction of a point charge and a set of atoms in
a DFTB simulation, and on the other hand, the Coulombic interaction between that same point charge
and the Mulliken charges imposed on the same set of atoms in an MD simulation. This study was
assumed to hold for copper as well.

(vii) Since hydrogen experienced no Pauli repulsion, as it was being modelled using the SPC/E force
field[1], it could potentially have come unphysically close to the electrode. This, in turn, could have had
a disproportional effect on the observed polarisation due to water molecules adsorbed on the surface.
To quantify this effect, simulations should be performed in which water molecules were fully modelled,
preferably using a polarisable force field.

(viii) Using only three layers of copper in the MD simulation, made the system less representative of a
real system. Using more layers would have yielded a higher attractive force between the copper elec­
trodes and the electrolyte, with likely an increase in both the number of adsorbed atoms and an increase
in the adsorption time. Moreover, keeping the copper lattice rigid impacted the interaction between the
copper electrodes, and the electrolyte. By allowing the copper atoms to move, the observed adsorptive
behaviour would be altered. The choice for a rigid copper lattice, was made for the purpose of easing
the training process of a neural network. If the training the networks would prove successful, the net­
works could be easily extended to incorporate the current location of the copper atoms in the electrode.

(ix) Only modelling the front layer of copper using SCC­DFTB, as modelling three layers turned out not
to be possible using the available set of SK­files, has impacted the final results. Significant non­local
changes in polarisation were observed in the benchmarking of SCC­DFTB. If the entire lattice could
be polarised, charge that currently would be drawn solely from the front layer, could be drawn from
multiple layers. Opposite charges induced by charge depletion at the surface, would be transported
to the back of the lattice. This could lead to several changes. For example, induced positive charge
might no longer be observed on the surface. Furthermore, the potassium ions trapped in between four
copper atoms of the front layer, would probably also induce a negative charge at the nearby copper
atom in the second layer. This could lead to an increase in the adsorption time, and a further reduction
in the dynamics of potassium at the surface.

(x) The coupled QM­MD approach was shown to be a valid alternative to constant potential based
methods for simulating an electrode­electrolyte interface. While the ideal conductor assumption, which
underlies constant potential methods, might hold well inside a bulk copper electrode, it might not for
other materials or structures. For example, Elliott et al.[14] showed that the ideal conductor assumption
does not hold for graphene. It was shown recently that nanoscale copper electrocatalysts generally out­
perform their bulk counter parts, for a combination of reasons, including a relatively increased binding
area.[7] In future studies, it would be interesting to see to what extent the underlying atomic structure
of a copper electrode influences the validity of the ideal conductor assumption, and whether it would
hold, for example, for copper nanostructures.
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4.5. Neural networks
In this section the results of the attempt to use neural networks to accelerate the coupling between the
SCC­DFTB level and classical MD are presented and discussed.

4.5.1. Input data used
In section 4.4.2 it was found that in the QM­MD simulation the movement of potassium ions adsorbed
on the cathode was severely limited, as compared to their movement in the C­MD simulation. By vi­
sualising the system during the simulation it was seen that the potassium ions could be adsorbed for
times longer than nanoseconds. This may have a detrimental effect on the performance of the neural
networks since the training set generally needs to be very diverse to generalise properly to unseen data.

Anticipating this shortcoming of primary QM­MD data, six extra QM­MD simulations of 4 ns were per­
formed. Three of these simulations were performed by simulating the system with downscaled LJ
interaction between the ions and the electrodes and neutral charges on both the ions and the elec­
trodes. in this way, the adsorbed ions were pushed into the bulk so that when the LJ interaction and
the charges were set to normal again, the system would form a new configuration on the cathode.
The other three additional simulations were performed while the primary QM­MD simulation was still
in process, such that the corresponding data was not yet available. These three QM­MD simulations
were initialised from the previously performed C­MD simulation, from three different time marks within
the final 10 ns of that simulation.

The training set consisted of a total of 12750 individual training inputs and targets, of which 6750 were
obtained during the first 27 ns of the primary QM­MD simulation, and 6000 during one of the additional
QM­MD simulations performed. Following the approach of Di Pasquale et al.[34], the test set consisted
of the 750 inputs and targets that were obtained during the final 3 ns of the QM­MD simulation.

The test data was obtained in the same simulation that was used to obtain training data. Since it was
previously observed that the change in the position of adsorbed potassium ions could be very moder­
ate, the choice of test data may have positively influenced the obtained test error, so that the test error
may not be representative of the true error.

For generating the three­dimensional input matrix for the CNNs, a finer binning was used for z­coordinates
close to the cathode than further away, as described in section 3.4.2. To decide what range of z­values
should be taken into account, experiments were performed to study the influence of neglecting ions
with z­values larger than some cut­off in SCC­DFTB. It was decided to place the cut­off around 2 nm
from the cathode, as it was seen that ions after this cut­off did not have a significant effect on the po­
larisation anymore.

The binning in the z­dimension was chosen to start from the z­position of the ion (or the hydrogen atom
if water was taken into account) measured to be the closest to the cathode in all obtained data. The first
ten bins were chosen to have a spatial extend of 3.6149/40 Å, and included the majority of adsorbed
ions. The next forty bins were chosen to have a spatial extend of 3.6149/20 Å, and the last 46 bins
were chosen to have a spatial extend of 3.6149/10 Å. In the x­ and y­ dimensions, the binning was the
same over the entire domain, and was chosen to be 3.6149/20 Å. This way, the input space consisted
of 160 bins in the x­ and y­dimensions, and 96 bins in the z­dimension.

4.5.2. Results and discussion of selected networks
As described in the method, many variants of the proposed networks were attempted, to find the most
optimal architecture. For example, deeper, shallower, wider and narrower networks were attempted,
and the used loss function was varied by scaling one of the two terms. Below, only the results of three
different networks are presented and discussed. Each of these used the loss function given in eq. 3.4.
The results of all other variant are mostly briefly mentioned here, as they all performed less well than
the networks presented below. The constrained error, defined as the difference between the sum of
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the predicted charges and the charge assigned to the cathode, was below 1⋅10−2 for all results pre­
sented. It therefore did not significantly contribute to the total error. Not constraining the loss yielded a
straying from the desired net predicted charge, as was also seen in the work of Di Pasquale et al.[34],
and therefore is not recommended.

The best performing FCN, by a small margin, was the network described in section 3.4.1, only this
network took into account the charge values of the ions in the input, in addition to the Cartesian co­
ordinates of the ions. That this yielded improved performance was surprising, as the charges of the
ions are constant and the networks should in principle be able to deduce these themselves. It could be
that the network simply uses these values as bias terms, that are not related anymore to the original
charge values. Using this network, a minimum mean absolute test error was obtained of 0.0378 e. Fig­
ure 4.24 gives the histogram of the predicted charge distribution of this network on the test set. Both
the SCC­DFTB calculations and the FCN predict two peaks in the histogram, but the FCN histogram
is, incorrectly, much more concentrated around its peaks. The FCN was not able to capture the full
variance in the SCC­DFTB results, and consequently predicts fewer very negative and fewer positive
charges.

Figure 4.24: Histogram of the charge distribution as predicted by the fully connected network. Both the SCC­DFTB calculations
and the FCN predict two peaks in the histogram, but the FCN incorrectly concentrates its predictions around these peaks.

Using the described CNN approach, an improvement in the performance was obtained, as compared
to the FCN. The CNN presented here differed from the CNN described in the method only in the usage
of leaky­ReLU activation functions (positive slope for input < 0). These yielded marginally improved
performance over standard ReLU activation functions. The histograms of the predicted charge distri­
bution on the test set of this network can be found in figure 4.25. Using this network, a minimum mean
absolute test error was obtained of 0.0275 e, which represents the best performance of a network that
was obtained on the test set in this thesis.

Like the FCN, the presented CNN overestimates the number of charges with values around 0 e, pri­
marily at the expense of predicting more positive charges. A relative deviation of the NN results from
the SCC­DFTB results is observed for both the most negative values and the most positive values, as
was also observed in the work of Di Pasquale et al.[34]. Qualitatively, the charge distribution predicted
by the CNN matches the SCC­DFTB result notably more than the FCN distribution did. The observed
performance of the network indicates that it is possible to use a (convolutional) neural networks to
replicate SCC­DFTB charge induction predictions on a metallic copper electrode, even if a completely
satisfactory quantitative correspondence could not be obtained in this theses.

By investigating the average error per atom in the test set, it was found that the average error on the
boundary atoms was not significantly larger than that for atoms more central in the electrode. This
shows that the method of using neural networks to replicate SCC­DFTB charge induction predictions is
not limited to periodic surfaces for which the method was shown by Di Pasquale et al.[34], but can also
be used in the context of periodic surfaces. This result is exciting, as the periodic problem presented
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Figure 4.25: Histogram of the charge distribution as predicted by the convolutional neural network using leaky­ReLU activation
functions. The CNN can be seen to overestimate the number of charges with values around 0 e. The performance of the CNN,
however, is better than that of the FCN and indicates that neural networks can be used for learning problems like these.

here, with a significantly more non­local and significantly larger charge redistribution, and with copper
being a d­type element with 11 electrons in its valence shell, was a lot more complex than the problem
of a non­periodic graphene sheet.

The six additional QM­MD simulations performed to obtain more training data may not have provided
representative training data. The simulated systems were not in a proper equilibrium after either reset­
ting the LJ interaction and re­instantiating the charge values, or after restarting from the C­MD simula­
tion. In addition, in the first 10 ns of the primary QM­MD simulation system was also not in equilibrium,
even though the data from this period constitutes a third of the total data from the primary QM­MD
simulation. Therefore, the amount of representative data of an equilibrated system used to train the
networks was severely limited. This, in addition to the observed relatively moderate changes in the po­
sitions of adsorbed potassium ions on the cathode, suggests that the training set was one of the main
limiting factors in the performance of the networks. For future studies, it is recommended to cleverly
choose training data, suitable for the problem in question, rather than focus primarily on the quantity.

Unfortunately, no improvement on the presented results could be obtained by alterations of the CNN.
The failure to improve on the presented results is not necessarily a consequence of the limitations of
the application of neural networks in general in this context. Instead, it is primarily believed to be a
consequence of the limitations of the used architectures in this thesis and the delicacy of the training
procedure. A limited number of architectures could be attempted in this thesis, due to limited time and
computational resources. Below, the results of a second attempted CNN setup are presented. Using
this network as an example, the limitations of the used architectures in this thesis and the delicacy of
the training procedure of the current approach are discussed.

The second CNN differed from the CNN setup described in the method in two ways. Firstly, it used
pooling layers in two different locations. The second convolutional layer was replaced by a max pool­
ing layer and an adaptive average pooling layer was applied before the final fully connected layer, as
in a standard ResNet. These alterations were not thought to be able to yield improved performance
over the previously described network, as the first pooling layer destroys spatial information and the
inclusion of the adaptive pooling layer had already been observed to yield worse performance when
testing other CNNs. Secondly, all water molecules in the system were included in the input of this CNN,
instead of only the ions. In all similar networks, in which water was not included, the obtained minimum
mean absolute test error was always over 0.037 e. However, by including water, a minimum mean
absolute test error was obtained of 0.0308 e. This result seemingly indicated that the inclusion of the
water molecules in the input can help the network with solving the problem.

After finding this result, it was first verified that replacing the second convolutional layer in the standard
CNN by a pooling layer did not significantly affect the performance of the network. This result proves
that the CNNs used in this thesis could not fully utilise the spatial information provided. This problem
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Figure 4.26: Histogram of the charge distribution as predicted by the described convolutional neural network using the water
molecules in the system in the input in addition to using two pooling layers.

was anticipated and was precisely the reason why the inclusion of a coordinate convolutional layer was
proposed in the method. In contrast, CNNs including a coordinate convolutional layer at the beginning
of the networks performed worse than networks without a coordinate convolution. All CNNs in which
a coordinate convolution was applied failed to train. They displayed a mean absolute test error of ap­
proximately 0.047 e, which they obtained already after one single epoch of training.

This kind of counter­intuitive behaviour was observed for two more extensions used for training the
CNNs. Firstly, water molecules were included in the input space of the standard CNN network (and
that using leaky­ReLU activation functions). This was proven be beneficial in the case of the previ­
ously presented network. For these networks, however, the inclusion of the water molecules led to
the network failing to train and reverting back to a mean absolute test error of approximately 0.047
e. Secondly, in order to obtain more training data, certain symmetries of the modelled cathode were
exploited. The single layered cathode depicted in figure 4.8 is the same one used in the QM­MD simu­
lation. In this figure, three symmetries can be noticed: the electrode could be mirrored around the lines
x=y and x=­y, and the system could be rotated by 180∘, and the same electrode configuration would
be obtained. The newly obtained system configuration would be considered unique by the networks.
This way, three times as much training data was obtained. Counter­intuitively, the inclusion of the extra
data did not lead to an improvement of the test error. Rather, the inclusion of the extra training data
resulted in the networks displaying the same mean absolute test error of approximately 0.047 e after
the first epoch and subsequently failing to train.

The failure of the networks to improve after the inclusion of these extensions, is not thought to be
a consequence of mistakes that were made in the implementation of the extension. For the coordi­
nate convolutional layer, two different implementations were attempted, both in PyTorch[119] and in
Keras[120], but either one did not change the result. Furthermore, for the extra data sets that were
obtained by mirroring and rotating, the test error that could be obtained using the FCN did ultimately
revert back to the test error that was obtained using the original data set, making it unlikely that mis­
takes were made in the mirroring or rotating of the data set. However, it was observed that it took
the FCN significantly more epochs to get to this test error, and it happened suddenly by a drop in the
test error. This indicates that using the larger data set, containing more variance than before, led to
significant changes in the training procedure. Beforehand, it was already seen that the training of the
CNNs was very sensitive to the used optimiser and learning rate. For example, a too high learning rate
led to some networks not being able to learn, even if the learning rate later decreased. Therefore, a
delicate learning procedure is thought to be one of the two main reasons for the failure of the networks
to improve after inclusion of the before­mentioned extensions.

The second main reason is that the chosen architectures of the CNNs were not suitable for capturing
the complexity of the given problem. The networks stopped learning after increasing the complexity in
the input space (coordinate convolution, water molecules or extra data), which could correspond to the



4.5. Neural networks 60

networks predicting values around the mean, and failing to learn the variance in the problem due to
lacking complexity in their modelling. Although alterations to the CNNs were made, these always came
down to adding a single layer, or removing one, but never a complete restructuring of the network. In
potential follow­up studies, it is recommended to start with a small network and small data set, and
work upwards. This way the capabilities of the network can be much better understood.

A NN/MD simulation was performed using the trained leaky­ReLU network. The cumulative distribution
functions of potassium and chloride can be found in figure 4.27. The figure shows increased adsorp­
tion of potassium ions at the cathode, like the proper QM­MD simulation, and verifies that the neural
network has learned how to replicate the predictions of SCC­DFTB calculations, up to a certain level.
However, an increased concentration of ions was observed in the bulk region behind the double layer.
It is unclear where this increase originated from.

(a) Potassium (b) Chloride

Figure 4.27: Density plot of the potassium (a, left) and chloride (b, right), plotted for the C­MD simulation (solid line), the QM­MD
simulation (dash­dotted line) and the NN­MD simulation (dashed line).

In the work of Di Pasquale[34], the target charge values were quantised and binned. Consequently,
the used FCN did not predict the exact charge on an atom in the electrode, but the corresponding bin.
By following this approach, no significant improvement of the results of the FCN used in this thesis was
found. Like the FCN, all CNNs overestimate the number of charges with a value around 0 e, and con­
sequently underestimate of the number of the most negative and most positive values occuring in the
SCC­DFTB calculations. Therefore, it would be interesting to see if this approach could be beneficial
in training the CNNs for forcing the CNNs from predicting 0 e, which could currently function as a trivial
solution, as for these networks this was not yet attempted.

While the periodicity of the problem did not explicitly show itself to be a problem, it contributed to mak­
ing the problem harder. An idea to help the network with taking into acount, is using circular padding
in the x,y­dimensions. In circular padding, the values from the other side of the input are padded. In
PyTorch, different padding in different dimensions is not supported, and it was not implementation was
written for this thesis.

4.5.3. Different approaches
In this section, three different approaches in using neural networks in the context of the presented
problem are introduced.

Firstly, the described FCNs and CNNs could be replaced by a transformer. The transformer is a type of
neural network that has long represented the state­of­the­art in natural language processing[121] and,
since last year, in many vision tasks as well, by means of ’vision’ transformers[122]. A transformer is not
affected by many of the discussed disadvantages of both the FCN and the CNN. Since they apply the
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mechanism of self­attention, in which basically all input is compared with all other input, transformers
are permutation invariant. Furthermore, in the context of a vision transformer, positional embeddings
of spatial information in the system can be used to directly incorporated.

There are two ways in which transformers could be applied in the context of the electrode polarisation
problem. Firstly, a natural language processing approach could be followed, in which all ions (and
possibly water molecules and copper atoms) are represented by one­dimensional arrays containing
their positions and their charges. Secondly, a vision transformer approach could be followed, in which
the previously described three­dimensional input space, used for training the CNNs, is divided up into
patches in which extra positional data is encoded.

Secondly, the presented neural networks could be trained on smaller patches of an electrode, in order
to simplify the problem, and allow for a prediction of the partial charges on electrodes of arbitrary size.
By summing the partial charges, as computed in the QM­MD simulation, for regions of different sizes,
it was found that the charge density on arbitrary patches comprising 56.25% of the copper electrode,
could differ by up to 10%. This is attributed to the non­local nature of the charge redistribution on the
metallic copper. However, similar calculations in which the system was replaced by that used in the
work of Elliott et al.[14], showed that a patch comprising 25% of a graphene electrode consisting of 336
carbon atoms is already large enough to bring the local charge density within 1% of that of the charge
density assigned to the entire electrode.

The observed local constraint on the charge density allows for graphene­like electrodes to be used in
a radically different approach using the neural networks. The idea is to train a network to ­only­ predict
the charge on such individual patches. As input, only ions in some specific radius away from the patch
and the first few carbon atoms surrounding the patch could be used as these play the most important
role in determining the local polarisation. By training on such smaller patches, the training procedure
could be simplified, as predicting for such a smaller system is easier. Furthermore, much more data
could be obtained, as many such patches are found in the system. Subsequently, by performing a
convolution of such a trained network over the entirety of an electrode until an equilibrium in the charge
distribution has been reached, this network could be used for predicting the charge on a periodic elec­
trode of arbitrary size in an iterative way.

Thirdly and finally, neural networks could be used to speed­up the SCC­DFTB calculations, rather
than serve as a complete replacement of the SCC­DFTB calculations in the coupled QM­MD workflow.
The neural networks used in this thesis, as well as the fully connected network used in the work of Di
Pasquale et al.[34], were shown to be unable to provide perfect descriptions for the problems given to
them, after training on a set of SCC­DFTB calculations. Therefore, if the constraints on the accuracy
of the predictions are very strict, these networks might not be able to provide satisfactory performance.

The SCC convergence procedure is what takes the most time when performing SCC­DFTB. As dis­
cussed in section 2.3, this procedure is to ensure that the computed orbital occupation and the Hamil­
tonian used to compute those occupations are consistent. It relies on a first guess for the orbital occu­
pation, that usually is taken to be an even distribution of the charge of the system. In the QM­MD loop,
this first guess coincided with the result of the previous computation, of 4 ps earlier in the simulation. It
is hoped that this allows for fewer SCC iterations, thus reducing simulation time. In the same way, the
predictions made by the trained neural networks could be used as initial guess for the new SCC­DFTB
calculation. Ideally, this would allow for a significant decrease in the SCC­DFTB computation time,
while keeping the same accuracy as from a full SCC­DFTB calculation.

Unfortunately, no evidence could be obtained for the supposed benefit of this method in this thesis.
Here, it was found that using the trained leaky­ReLU network as suggested above did not lead to a de­
crease in the computation time, relative to initialising the SCC convergence procedure from the result
of the previous SCC­DFTB calculation (up to 20% vs. up to 30% speed­up relative to no initial guess,
respectively).



5
Conclusion

In this thesis, a proof of concept was established for using a novel coupled QM­MD approach to model
metallic electrode­electrolyte interfaces, using copper specifically. SCC­DFTB calculations of the in­
stantaneous electronic structure of a copper electrode were coupled to a classical MD simulation sim­
ulation of the electrode­electrolyte interface. This allowed the electrolyte configuration to evolve in
response to changes in the electronic structure of the copper electrode due to charge induction effects,
brought about by nearby ionic charges. The applied QM­MD method was described rigorously, and
was used to investigate the compound distribution and dynamics at the copper electrode­electrolyte
interface, relative to a classical MD simulation.

First, DFT calculations were used to benchmark the SCC­DFTB calculations. These results showed
that for a single layer, SCC­DFTB is able, to some extent, to capture the polarisation of the sheet
as predicted by DFT. Furthermore, these results demonstrated a sizable and very non­local charge
redistribution as a result of polarisation by nearby charges. In the comparison between DFT and SCC­
DFTB, it was found that experiments with multiple point charges and different sheet sizes, as well as a
comparison of the partial charges next to one of the excess charges, are recommended.

The electrode­electrolyte system consisted of two copper electrodes, 3 nm wide, at both sides of a 1 M
potassium chloride solution. During the QM­MD simulation, a significant charge redistribution from the
mean charge was perceived, brought about by the presence of nearby charges in the solution. Density
profiles showed a redistribution of ions in the system, with over 40% more potassium ions adsorbed in
the QM­MD simulation than in a classical MD simulation. The increased attraction between potassium
and the cathode after polarisation indicated that electrostatic effects played a significant role in the ion
adsorption process. Furthermore, taking into account surface polarisability of the cathode surface was
observed to significantly immobilise cations adsorbed on the cathode. Lastly, the preferential angular
orientation of the water dipoles was found to be away from the cathode, as a result of the influence of
adsorbed cations. This preference was increased in the case of the QM­MD simulation, due to local
polarisation of the electrode and increased adsorption of cations.

Altogether, polarisation effects brought about significant changes in the compound distribution and dy­
namics at the copper electrode­electrolyte interface, relative to a classical MD simulation. For future
similar QM­MD simulations, it is recommended to more closely investigate the effects of the time inter­
val between SCC­DFTB calculations and charge transfer between the electrolyte and the electrode.

62
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The secondary goal of this project was to explore to what extent are neural networks able to replace
periodic SCC­DFTB calculations of the electronic structure of a copper electrode in the coupled QM­
MD approach.

A vision approach to the problem was found capable of yielding improved results over a fully connected
network approach using Cartesian coordinates as input. Qualitatively, the observed performance of the
used networks indicated that it is possible to use (convolutional) neural networks to replicate SCC­DFTB
charge induction predictions on a metallic electrode, even if a completely satisfactory quantitative cor­
respondence could not be obtained in this thesis. In addition, it was found that the applicability of neural
networks was not limited to non­periodic surfaces, but can also be used in the context of periodic sur­
faces.

Evidence was provided that neural networks can be used to replicate SCC­DFTB predictions, even
for periodic and metallic surfaces. However, for future applications of neural networks in this context,
it is recommended to use a transformer approach to the problem. Furthermore, different network ar­
chitectures, more suitably chosen the training data increased attention for the training procedure may
improve the predictions.
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A
Choosing the k­mesh

Multiple periodic systems, as they would occur in the QM­MD simulation, were simulated in DFTB+. K­
space sampling was performed using various different k­meshes. Uneven Monkhorst­Pack grids were
used, ranging from 1x1x1 to 7x7x7, as well as even schemes, ranging from 2x2x2 to 8x8x8.

Ultimately, a Monkhorst­Pack grid of 2x2x2 was chosen. Compared with the most dense grid, the 8x8x8
grid, this yielded an average error in the measured total energy of the systems, of 0.3 meV per simu­
lated atom in the system. The maximum measured error in the predicted charges between the 2x2x2
and 8x8x8 grids, was 2.3⋅10−4 e. The average error between predicted charges, as computed using
the two different grids, was 9⋅10−5 e. Since the average magnitude of the charges in the simulated sys­
temwas ­0.3125 e, both the values for themaximum and the average error were found to be acceptable.
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B
Additional results DFT

B.1. Three layers
Figure B.1 gives results of DFT and SCC­DFTB calculations on the three layered sheet of 216 atoms.
Results are given in which the sheet was constructed using the original lattice parameter of 3.6149
Å are given, which have already been depicted earlier in figuer 4.5. Additionally, to two extra results,
obtained using SCC­DFTB, are given: the result of the original problem but taking into account colinear
spin polarisation using the spin constants by Yin et al.[86], and the result of a system constructed using
the SCC­DFTB optimised lattice parameter of 3.71 Å. Clearly, these alterations did not significantly
improve the SCC­DFTB result.

Figure B.1: Plot depicting the DFT and SCC­DFTB summed excess charge Δ𝑞 as a function of the radial distance 𝑟 from the
center of a three layered sheet of (100) copper consisting of 216 atoms, which is polarised by a point charge (𝑞 = ­1.0 e) at a
height of 3 Å above the center of the sheet. The number in the legend gives the lattice constant used to construct the sheet.
’Spin’ denotes the incorporation of a colinear treatment of spin. The latter can be seen to increase the polarisability of the sheet
somewhat, but neither of the alterations is able to significantly improve the SCC­DFTB result.
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B.2. Single layer 73

To be able to perform more experiments on three layered sheets given time constraints, the system
size was reduced to 122 atoms in order to decrease the simulation time. Figure B.2 gives the results
for multiple experiments performed on the resulting system. It was checked whether specifying an
electronic temperature of 300 K (which speeds up the computation) or the usage of the ’Integer aufbau’
option (sometimes a warnign was received about partially occupied orbitals in the final result, this op­
tion could help solve that) had a significant impact on the result. Additionally, the lattice constant used
to construct the system was changed to the AMS­ADF optimised value of 3.6 Å. Using SCC­DFTB
calculations, the same experiments were performed as previously done for the larger system, given in
figure B.1. As can be seen, none of the extra DFT options changed the final result significantly. The
extra DFTB options were also not able to significantly improve the result, just like before.

Figure B.2: Plot depicting the DFT and SCC­DFTB summed excess charge Δ𝑞 as a function of the radial distance 𝑟 from the
center of a three layered sheet of (100) copper consisting of 122 atoms, which is polarised by a point charge (𝑞 = ­1.0 e) at
heights of 3 Å above the center of the sheet. ’Spin’ denotes the incorporation of a colinear treatment of spin, and ’3.71’ denotes
the use of the SCC­DFTB optimised lattice constant to construct the sheet. As can be seen, none of the extra options significantly
changed the final result.

B.2. Single layer
Like was done for the three layered sheet, of some extra options in both DFT and SCC­DFTB it was
checked whether these changed the final results. The result of these calculation can be found in figure
B.3. Like in the case of the three layered sheet too, none of the extra options significantly changed the
final results.

Figure B.3: Plot depicting the DFT (solid) and SCC­DFTB (dash­dotted) summed excess charge Δ𝑞 as a function of the radial
distance 𝑟 from the center of a single sheet of (100) copper consisting of 128 atoms, which is polarised by a point charge (𝑞 =
­1.0 e) at heights of 3 and 6 Å above the center of the sheet. ’Spin’ denotes the incorporation of a colinear treatment of spin, and
’3.71’ denotes the use of the SCC­DFTB optimised lattice constant to construct the sheet. As can be seen, none of the extra
options significantly changed the final result.



B.2. Single layer 74

Figure B.4 shows the charge redistribution results for four different single layered sheet sizes. It is
observed that the relative error decreases with an increase of the system size.

(a) 13 atoms (b) 25 atoms

(c) 41 atoms (d) 61 atoms

Figure B.4: Plots depicting the DFT (solid) and SCC­DFTB (dash­dotted) summed excess charge Δ𝑞 as a function of the radial
distance 𝑟 from the center of single sheets of (100) copper of different sizes, which are polarised by a point charge (𝑞 = ­1.0 e)
at heights of 3 and 6 Å above the center of the sheets. The relative error between the DFT and SCC­DFTB calculations can be
seen to decrease with an increase of the system size.
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B.3. Multiple point charges
Lastly, figure B.5 gives a visualisation of the charge redistribution results on a single sheet of copper
(consisting of 128 atoms), polarised using four different point charges. At a location just above the
center of the sheet, two point charges of charge +1.0 e and ­1.0 e are placed at 3 Å and 6 Å from the
sheet, respectively. Similarly, opposite point charges of charge ­1.0 e and +1.0 e are placed at 3 Å
and 6 Å from the sheet, just below the center, the same distance from the center as the first location.
The atoms closest to the point charges can be seen to be polarised similarly using both DFT and SCC­
DFTB. However, on closer inspection, it turns out that, at these point charge distances, SCC­DFTB
predicts a different sign of the excess charge for the surrounding atoms than DFT. This can be seen
in figure B.6a By lowering the point charges in the SCC­DFTB simulation, it turns out that the signs of
the surrounding atoms change, as depicted in figure B.6b. Therefore, it is suspected that the observed
error in predicted sign, is a consequence of the reduced polarisability of SCC­DFTB.

(a) DFT (b) SCC­DFTB

Figure B.5: Visualisation of a single layered (100) copper sheet, coloured using the computed excess charges Δ𝑞𝑖 by both DFT
(left, a.) and SCC­DFTB (right, b.), for the case where the sheet was polarised using four different point charges. At a location
just above the center of the sheet, two point charges of charge +1.0 e and ­1.0 e were placed at 3 Å and 6 Å from the sheet,
respectively. Similarly, opposite point charges of charge ­1.0 e and +1.0 e are placed at 3 Å and 6 Å from the sheet, just below
the center at the same distance from the center as the first location. Looking at the figure, the charges were places exactly in the
centers of the two groups of four atoms that are polarised the most. The same charge scale was used for both plots. Charges
outside of the specified range were capped, and assigned the maximum colour values.

(a) 3 and 6 Å (b) 2.5 and 5.5 Å

Figure B.6: Visualisation of the center part of the copper sheet given in figure B.5b, simulated using SCC­DFTB, for different
distances of teh four point charges. The atoms are coloured using the computed excess charges Δ𝑞𝑖. The same charge scale
was used for both plots, from ­0.01 e (red) to 0.01 e (blue). Charges outside of this range were capped, and were assigned the
maximum colour values. It can be observed that when the point charges are moved closer to the sheet, the sign of the predicted
excess charges of the atoms surrounding the atoms nearest to the point charges, changes.



C
QM­MD time interval experiments

Here all results of the (chained together) testing loop, used for determining a suitable time interval be­
tween SCC­DFTB calculations in the QM­MD simulation and described in section 4.3, are given. The
results of the 5 ps and 1 fs time interval loops are given again here, to allow for easy comparison with
the 50 fs time interval loops. The figures are given in the order at which they occurred in the total loop.

(a) Average change (b) Maximum change

Figure C.1: Plots depicting the average change and the maximum change in the partial charges, as compared to some starting
configuration, as a function of time, of the first loop in which a time interval between SCC­DFTB calculations of 50 fs was used.

The difference in the results of the two individual runs using a time interval of 50 fs, underscores why
it was decided to use the presented simulation using loops with multiple values for the time interval.
Apparently, the system configuration changed during the 5 ps time interval loop, which would have led
to unrepresentative results if only the first 50 fs loop would had been considered. Only considering the
first loop might have led to a different choice for the time interval between SCC­DFTB calculations in
the QM­MD loop. The difference between the two 50 fs runs can be explained in multiple ways. Firstly,
after the 5 ps run, more potassium ions had adsorbed on the cathode surface, which could lead to a
relative increase in the polarisation effect. General changes in the double layer could also account for
this. The reduced sample size, of only 50 calculations, could play a role in the observed difference as
well. It can be seen that the average error, as compared to some initial configuration, only exceeded a
value of 0.03 e after 5 ps, in the case of a used time interval of 5 ps. In comparison, when using a time
interval of 50 fs, the average error already exceed a value of 0.03 e after 500 fs. In how far this can be
attributed to relative changes in the double layer, or to the effect of the smaller time interval, is unclear.
This could, at least partly, be a sign that using a longer time interval between SCC­DFTB calculations,
lead to less accurate results.
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(a) Average change (b) Maximum change

Figure C.2: Plots depicting the average change and the maximum change in the partial charges, as compared to some starting
configuration, as a function of time, using a time interval between SCC­DFTB calculations of 1 fs.

(a) Average change (b) Maximum change

Figure C.3: Plots depicting the average change and the maximum change in the partial charges, as compared to some starting
configuration, as a function of time, of the second loop in which a time interval between SCC­DFTB calculations of 50 fs was
used.

(a) Average change (b) Maximum change 2

Figure C.4: Plots depicting the average change and the maximum change in the partial charges, as compared to some starting
configuration, as a function of time, using a time interval between SCC­DFTB calculations of 1 fs. As discussed previously, after
49 fs, both the average and the maximum change in the charge values, exceed 50% of the average and maximum change values
observed after 245 ps, as seen in figure 4.11



D
MSD trajectories

Figures D.1 and D.1 show plots of the individual trajectories of the traced atoms used in the MSD mea­
surements, for atoms in the bulk and atoms adsorbed on the cathode surface, respectively.

(a) C­MD (b) QM­MD

Figure D.1: MSD results of individual trajectories of atoms in the bulk, for both the C­MD simulation (a, left) and the QM­MD
simulation (b, right).

(a) C­MD (b) QM­MD

Figure D.2: MSD results of the individual trajectories of atoms adsorbed on the cathode surface, for both the C­MD simulation
(a, left) and the QM­MD simulation (b, right).

78



E
Additional results of the angular

orientation of water
Here, an expanded version of figure 4.23 is provided, where also a histogram is plotted of the angular
orientation of water molecules up to a distance of 7 Å away from the cathode. The dipole orientation is
the same as given before in figure 4.23.

(a) C­MD (b) QM­MD

Figure E.1: Histograms of the angular orientation of water molecules near the cathode, in the C­MD simulation (a, left) and the
QM­MD simulation (b, right). The colours relate to the maximum distance from the cathode that water molecules were taken
into account for a calculation. So, for 5.0 Å, for all water molecules were up to a distance of 5.0 Å from the cathode, the angle
with respect of the normal of cathode was computed and stored in the dark blue histogram. Both the results of the C­MD and
the results of the QM­MD simulation show a skewed profile, with a preferential angular orientation smaller than 90∘. In the QM­
MD simulation, this preference is relatively increased compared to the C­MD simulation. In this figure, the relatively increased
preference for the angular orientation in the QM­MD simulation, is shown to persist at least up to distances of 7 Å away from the
copper surface (more counts are added for angular orientations below 90∘, than for angular orientations over 90∘).
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Figure E.2 shows the angular orientation of water molecules at a maximum distance of 3.5 Å from the
anode surface.

(a) C­MD (b) QM­MD

Figure E.2: Histograms of the angular orientation of water molecules near the anode, in the C­MD simulation (a, left) and the
QM­MD simulation (b, right), for molecules at a maximum distance of 3.5 Å from the anode surface. The results of the C­MD and
the results of the QM­MD simulation show a similarly skewed profile, with a preferential angular orientation larger than 90∘. With
barely any ions nearby or adsorbed on the anode, and the positive net charge on the surface nearby, this would be expected
(anode is on right side).
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