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Impact of Dynamic Coupling between Relative Orbit
and Attitude on the Estimation of Relative Dynamics

of Spacecraft

A. Chaves-Jiméneza,∗, J. Guoa, E. Gilla

a Chair of Space Systems Engineering, Faculty of Aerospace Engineering, Delft University
of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract

In this work the extent to which orbit and attitude sensors may cross-support
each other in a joint processing to reduce estimation errors of the relative or-
bital and attitude dynamics is investigated. In order to do this, an engineering
dynamic model taking into account the coupling effects between orbit and at-
titude dynamics is exploited for estimation purposes. A simple yet common
configuration of two spacecraft in an along-track formation flying in low Earth
Orbit (LEO) is used as case study, where the atmospheric drag perturbation
constitutes the source of coupling. An extended Kalman Filter considering the
dynamic coupling between orbital and attitude dynamics is used to estimate
the absolute and relative dynamics of the system. It is shown that the coupling
leads to higher accuracy estimation results.

Nomenclature

• a: vector.

• a×: cross product matrix of a vector a.

• a|B : vector a expresed on B frame.

• 1a: a×a identity matrix.

• 0n×m: n × m zeros matrix.

1. Introduction

Typically, on the estimation of spacecraft dynamics, orbit and attitude dy-
namics are considered independent from each other [1] [2] [3] [4]. A notable
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exception is the consideration of orbit-attitude coupling for very large space-
craft, by Chodas ([5],[6]) in the early eighties. Here, a dynamic coupling given
by both the gravity gradient and the atmospheric perturbation for a single
spacecraft with very high effective area (7000 m2) in a very low orbit (at 250
km altitude) was considered.

Nevertheless, in recent years, the field of spacecraft design is witnessing
an emerging paradigm shift from traditional large single satellites to distributed
small satellites acting in a collaborative manner. Several types of space missions
would be hardly achievable if not for a distributed spacecraft approach. For
example, [7] shows 39 formation flying and constellation missions with satellites
of less than 10 kg. These applications are increasing the importance of improving
the performance of relative dynamics estimation.

On the relative dynamics estimation problem, where the distances to be
estimated are of the order of 100 to 2000 m and an expected accuracy of, for
example, 0.1 m (3D RSS) for the PRISMA mission([8]), taking into account
forces considered negligible for absolute dynamics estimation process may have
a real effect on the relative dynamics estimation performance.

For this reason, recent works are taking into account the joint representa-
tion of attitude and orbital dynamics for improved guidance, navigation and
control performance. For example, in the case of the joint representation of rel-
ative dynamics of spacecraft for control purposes, in [9, 10] the gravity-induced
mutual coupling between orbital and attitude dynamics is taken into account
when solving a spacecraft relative dynamics tracking problem using nonlinear
control techniques. In [11] the coupling effect generated by the gravity gradient
and the solar pressure is considered in the engineering model of the spacecraft
formation control system for a space interferometry mission. Similarly, in [12] it
is described how the gravity gradient, solar pressure and atmospheric drag are a
source of coupling between attitude and orbital dynamics. Later, this dynamics
model is applied for control purposes in [13]. Furthermore, the coupling effect
generated by actuation is considered in [14, 15, 16, 17, 18]. The modeling of
the coupling of orbit and attitude dynamics for deep space missions is reported
in [19, 20]. Also, in [21] and [22], kinematic coupling is described as the orbit-
attitude relation perceived when an arbitrary point outside the center of mass
is used as the center of the reference frame on the description of spacecraft dy-
namics. This is done in order to proper describe dynamics as perceived from
the real position of sensors on spacecraft structures, but are not related to any
perturbation effect dynamic coupling. In [14] and [15] the coupling generated
by the alignment of thrusters with respect to the center of mass is taken into
account in the model of the dynamics of spacecraft when controlling them for
docking purposes. In [16] a general mathematical model is used to represent the
coupling generated by both the position of the actuators and the perturbation
effect in the estimation of the joint attitude and orbital dynamics. Furthermore,
missions where the coupling clearly affect the orbital dynamics, like the ones
using solar sails, have attracted increasing attention [17] [18]. In [21] and [22]
the relative dynamics of two spacecraft are modeled, with the difference that
coupling effect is given due by the fact that the dynamics are represented from a
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reference in each spacecraft not located in their center of mass. Practical use of
the coupling between attitude and orbital dynamics is proposed by [23], where
the differential drag between spacecraft is employed to control their relative
distance.

Similarly, the joint relative orbital and attitude dynamics representation
has been used for estimation purposes in cases like [24, 25, 26]. In [24], the
improvement of the measurement methods, via the use of an optical sensor to
provide multiple line-of-sight vectors from one spacecraft to another is used in
combination with an Extended Kalman Filter (EKF) to improve the estimation
performance. In [25] a “ Square-Root sigma-point Kalman Filter” is used
in order to improve the estimation of spacecraft relative dynamics. These two
papers illustrate two methods for improving the estimation of spacecraft relative
dynamics: the use of better measurement approaches, and the use of estimation
methods that adapt better to the nonlinear nature of the spacecraft dynamics.

In none of these works has the coupling between orbital and attitude dy-
namics been taken into account, unlike the cited control application examples.
This simplification is typically justified by assuming that the magnitude of this
coupling effect is negligible. For this reason, the improvement of the physical
modeling of spacecraft dynamics may be seen as a complementary approach to
the improvement of the measuring methodology and the use of different estima-
tion methods. Only works such as [27] and [28] take into account the coupling
for estimation purposes. In this research, the location of the position sensors on
the spacecraft body makes its measurement attitude-dependent.

Nevertheless, to the best of our knowledge, no work has been published
yet where the coupling between the attitude and orbital dynamics caused by
external perturbations is adopted in spacecraft relative dynamics models to
improve their estimation accuracy, in a similar fashion as it has been used for
control purposes.

The present paper evaluates how such coupling affects the spacecraft rela-
tive position and attitude estimation. This paper presents a similar objective
as [5] but this time in the realm of relative pose dynamics. The contribution of
this research consists in investigating, using a spacecraft dynamics estimator,
to what extent the coupling effects between orbit and attitude dynamics can be
advantageously exploited for estimation purposes. The focus of this research is
the evaluation of this physical model, and for this reason, a very well known
Extended Kalman Filter method is the estimator of choice, due to the fact that
its extensive use in spacecraft dynamics estimation, enabling the possibility to
use the model here proposed with any other estimators. We use a simple yet
common configuration of two spacecraft in along track formation flying in low
Earth Orbit (LEO) as a case study. Here the atmospheric drag perturbation
constitutes the source of coupling between orbital and attitude absolute and rel-
ative dynamics. The proposed system can easily be extended to any amount of
spacecraft, and as such, constitutes a tool for the evaluation of how the coupling
between relative attitude and orbital dynamics can improve their dynamics es-
timation performance. It is investigated if the estimation convergence is better
when the coupling consideration is taken into account. The approach of this pa-
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(a) Definition of the Orbital Frame
(E)

(b) Definition of the Body Frame (B)

.

Figure 1: Definition of reference frames

per, where an improvement on the dynamics model is proposed, may be seen as
complementary to the approach where new mathematical methods are proposed
in order to improve the relative dynamics of spacecraft

2. Spacecraft Absolute and Relative Dynamics Representation

2.1. Definition of Reference Frames

Consider two spacecraft, S/C 1 (chief) and S/C 2 (deputy), orbiting the
Earth. Let I denote an inertial geocentric Cartesian, right-handed coordinate
frame [29, p. 28].

Let E denote an orbital, right-handed, coordinate frame associated with the
chief spacecraft (Fig. 1a). In E , the x-axis points towards S/C 1 center of mass,
the z-axis points in the direction of the S/C 1 orbital angular momentum,
and the y-axis completes the frame [30, p.160]. Finally, let B1 and B2 denote
spacecraft-centered Cartesian right-handed coordinates frames with origins at
the spacecraft centers of mass of S/C 1 and S/C 2 respectively, with the z -axis
in the direction of the highest moment of inertia, and the x and y-axes parallel
to the area vectors of the faces of the spacecraft (Fig. 1b).

2.2. Dynamics Model Definition

In this section, the dynamics model of the absolute and relative dynamics of
spacecraft used in this paper are given, but not derived, for the sake of simplicity.
If further information is required about the derivation of these equations, the
reader is refered to [29, Ch. 16],[31]. Let r and r2 be the position of the center
of mass of S/C 1 and S/C 2, respectively, measured from the center of the
Earth, and let r̃ and ṽ denote the relative position and velocity of S/C 2 with
respect to S/C 1 , i.e,

r̃ = r2 − r (1)

ṽ =
dr̃

dt
(2)
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Let (r̃x, r̃y, r̃z, ṽx, ṽy, ṽz) denote the components of r̃ and ṽ in the frame E1
respectively.

Furthermore, let ω denote the angular velocity vector of the frame B1 with
respect to I projected on B1. For any quaternion, q, with vector part e and
scalar part q, let Ξ(q) denote the following 4× 3 matrix

Ξ(q) =

[
e× + q13

− eT

]
(3)

where e× denotes the cross-product matrix

e× =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 (4)

and 13 is the identity matrix in R3. Let q, with vector part e and scalar part
q, denote the quaternion of the rotation from I to B1.

Finally, let q̃ = (ẽ, q̃) and ω̃ denote the relative quaternion and relative
angular velocity vector, respectively, of S/C 2 with respect to S/C 1, defined
as

q̃ = (qB1
)−1 ∗ qB2

(5)

ω̃ = ω2|B2 − ω|B2 (6)

with qB2
the quaternion of rotation from I to B2 and ω2|B2 the rotation rate

of B2 with respect to I projected in B2. Here, q−1 and ∗ denote the quaternion
inverse and composition operations, respectively [29, App. D]. Defining x as the
complete state, under the assumption of rigid body rotations around their cen-
ters of mass, the absolute and relative orbital and attitude dynamics is governed
by the following system of equations [29, Ch. 16],[31]

ẋ =



ṙ
v̇
q̇

I 1 ω̇
˙̃r
˙̃v
˙̃q
˙̃ω


=



v̇
− µ
r3 r + ap
1
2 Ξ(q)ω

−ω×I 1ω + τ 1

ṽ
p(x) + ∆ap

1
2 Ξ(q̃) ω̃

g(ω1, ω̃, q̃)


(7)

where

p(x) =



µ
r2 −

µ(r + r̃x)

α3
+ 2Ω1ṽy + Ω̇1r̃y + Ω2

1r̃x + ∆apx

−µr̃y
α3
− 2Ω1ṽx − Ω̇1r̃x + Ω2

1r̃y + ∆apy

−µr̃z
α3

+ ∆apz


, (8)
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α =
√

(r + r̃x)2 + r̃2y + r̃2z (9)

Ω1 =
|r×v|
|r|2

, (10)

Ω̇1 =
(r×v)T (r×v̇)

|r|2|r×v‖
− 2|r×v|r

Tv

|r|4
, (11)

and

g(x) = I−12 {I 2 [D(q̃)ω1 + ω̃]× [D(q̃)ω1 + ω̃]− I 2 [D(q̃)ω1 + ω̃]× ω̃
−I 2D(q̃)I−11 [(I 1 ω1)× ω1 + τ 1] + τ 2

}
, (12)

with I 1, I 2 the tensors of inertia of the chief and deputy spacecraft around
their centers of mass on the frames B1 and B2 respectively, and D(q̃) denotes
the matrix of the rotation from B1 to B2, i.e.:

D(q̃) = (q̃2 − ẽTẽ)13 + 2ẽẽT − 2 qẽ×. (13)

Here, Ω1 denotes the absolute value of the angular velocity of I with respect
to E , ap and τ 1 represent the external force and torque perturbing the dynam-
ics of S/C 1, ∆ap represents the differential acceleration affecting the relative
orbital dynamics and τ 2 the total perturbation torque acting on the deputy
spacecraft. The dynamic coupling described on the next section is produced by
some of these external forces and torques.

Equation 7 represents a state space model for the dynamics of spacecraft
relative orbital and attitude motions. If we assume in this two-body system
that ‖r̃‖ << ‖r‖ and that spacecraft 1 is in a circular orbit, the relative orbital
dynamics lead to the well-known Hill-Clohessy-Wiltshire equations [1]. Notice
that the number of spacecraft can be arbitrarily increased while using the same
modeling equations.

2.3. Description of the Atmospheric Drag as the Source of Coupling between
Attitude and Orbital Dynamics

When a satellite is in low-Earth-orbit, the interaction of the upper atmo-
sphere particles with its surface is the cause of atmospheric drag force and
torque. This atmospheric perturbation acts directly opposite to the velocity of
the satellite motion with respect to the atmospheric flux, producing a decelera-
tion of the satellite [30]. This effect constitutes the strongest non-gravitational
perturbation of orbital dynamics missions working at an altitude of around 300
km. This is true for for both absolute [32] and relative orbital dynamics [33].

Typically, the force model considering atmospheric drag use assumes a con-
stant spacecraft effective area. Nevertheless, in reality, unless the satellite is a
perfect sphere, or that spacecraft are controlled so that their effective area are
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constant, these effective areas change as a function of attitude, meaning that
the magnitude of this perturbation on the orbit dynamics is a function of the
spacecraft orientation, thus becoming a source of coupling between orbit and
attitude dynamics on spacecraft in flight. For the case of atmospheric torque
acting on the spacecraft, due to the fact that both the density of the atmosphere
and the velocity of the spacecraft depend on the altitude, it also constitutes a
source of coupling between orbit and attitude dynamics.

In this section, the effect of the atmospheric drag, considered as the main
non-gravitational force acting on spacecraft relative dynamics, is described in
the proper reference frames.

The acceleration due to atmospheric drag may be modeled as

aa = −1

2

CDρ(r)

m
Aefv

2
sv̂s, (14)

where CD the drag coefficient of the S/C, assumed in this case to be the
same for all spacecraft surfaces, ρ(r) is the atmospheric density, m is the mass
of the spacecraft, vs the velocity of the spacecraft surface with respect to the
atmosphere, vs = v − va, where va is the velocity of the atmosphere.

If a spacecraft is modeled as a number of plane surfaces, the effective area
is given by

Aef =

s∑
i=1

Ai(n̂
T
i · v̂s). (15)

where s is equal to the amount of plane surfaces composing the spacecraft,Ai
the magnitude of area i amd n̂i a unit vector perpendicular to area i. The
atmosphere is assumed to be spherical and co-rotating with the Earth [34]. In
this case, its velocity projection in I is given by

va = ωE × r, (16)

where ωE is the Earth rotation around its own axis.
The torque produced by the atmospheric drag is then given by

τ a = −1

2
CDρ(r)

k∑
i=1

Ai(n̂ivs)(di × vs), (17)

with di the distance between the center of pressure of area i and the center
of mass of the S/C.

2.3.1. Deputy Spacecraft Atmospheric Drag Perturbation

The atmospheric drag force on the deputy spacecraft is given by

aa,2|E = −1

2

CD,2ρ(r2)

m2

k∑
i=1

Ad,i(n̂
T
2 vs,2)vs,2 (18)
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Where r2 is the position of the deputy spacecraft with respect to the center
of Earth, vs,2 is the velocity of the spacecraft with respect to the atmosphere.
Those values need to be expressed on the E frame.

Here we have that

v2|E =


rT v
r

r
∣∣∣r×v

r2

∣∣∣
0

+ ṽ − D|IE

ωE
×

 r + r̃x
r̃y
r̃z

 . (19)

Take again the vectorial representation of the acceleration caused by the
atmospheric drag acceleration (eq. 14), in order to derive the expression for the
differential drag ∆ap affecting the relative dynamics as a function of the states
given by eq. 7. For the deputy spacecraft, we have that

r2|E = r|E + r̃ (20)

vs,2|E = v|E + ṽ − va|E , (21)

where r2 is the position of S/C 2 with respect to the center of Earth and vs,2
is its velocity with respect to the atmosphere. Here r̃ is given in the Eframe,
but the notation is dropped because the state is defined in this frame already.
To determine the relative position of the second spacecraft in E , the definition
of this frame leads to r|E = [r, 0, 0]T , so

r2|E =

 r + r̃x
r̃y
r̃z

 . (22)

Taking the orbital rate vector of the Chief spacecraft orbit as Ω1, we obtain

v|E =

 ṙ
rΩ1

0

 =


rT v
r

r
∣∣∣r×v

r2

∣∣∣
0

 . (23)

To determine the expression for the velocity of the atmosphere projected in
E , we use

va|E = D|IE va = D|IE (ωE
× r2|E) = D|IE

ωE
×

 r + r̃x
r̃y
r̃z

 , (24)

where D|IE is the rotation matrix from I to E . This rotation can easily be
obtained using the guidelines described in [35].

8



So, we obtain

v2|E =


rT v
r

r
∣∣∣r×v

r2

∣∣∣
0

+ ṽ − D|IE

ωE
×

 r + r̃x
r̃y
r̃z

 . (25)

Finally, an expression for the vector normal to any area i of spacecraft 2,
n2,i|E , is required. This vector is known in the body frame of the deputy
spacecraft B2. The projection of this vector in E is given by

n2,i|E = D|IE D
T (q)DT (q̃)n2,i, (26)

where n2,i is the normal vector to the area i of S/C 2 projected in B2.
Replacing 22, 25 and 26 in 14 we have all the elements necessary to express

the atmospheric drag acceleration of the second spacecraft using the system
states. The differential drag is then expressed as ∆ap = aa,2 − D|IE aa,1, with
aa,1 derived in the previous section.

2.3.2. Deputy Spacecraft Atmospheric Drag Torque Perturbation

Take the expression of the atmospheric drag torque (eq. 17). To determine
the absolute value of r2, the result from eq. 22 may be used. Also, both the
normal vectors to the areas n̂i and the distance between the center of pressure
and the center of mass per area d2,i projected in B2 are assumed to be known.
Given this condition, in order to compute the torque affecting S/C 2 , it is
only left to determine the velocity of the deputy spacecraft with respect to the
atmosphere projected on B2. Since

vs,2|B2 = D(q̃)D(q) (v + ṽ|I − va|I) , (27)

where

ṽ|I = D|IE ṽ + Ω|I→EI
×
r = D|IE ṽ +

(r×v)×

r2
r̃ (28)

va,2|I = ω×Er2 =

 0
0
ωEt

× (r + D|EI r̃
)
, (29)

we obtain

v2|B2 = D(q̃)D(q)

v + D|IE ṽ +
(r×v)×

r2
r̃ −

 0
0
ωEt

× (r + D|EI r̃
) .(30)

By using eq. 30 in eq. 17 we arrive at the expression of the atmospheric
drag torque affecting the deputy spacecraft as a function of the states projected
in B2.
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3. States Observation Modeling

Due to the fact that we want to study the impact of coupling on spacecraft
relative dynamics estimation, it is necessary to define which measurements will
be used on the estimation of the spacecraft states. The most simple assumption
that may be done for this purpose would be that ”pseudo measurements” of the
states are available, this means that it is possible to measure the states directly.
Actual sensors exist that provide comparable measurements, for example, GPS
or relative GPS for the case of position dynamics.

There are two reasons for this. First of all, a more complex measurement
model may interfere with the estimation results, thus not allowing to focus
only on the effects of the estimation performance given by the better dynamical
model. Second, to reduce to a minimum the sources of error in the results not
related to the experiment itself that may appear if a more realistic measurement
model is used. Implementation of more sophisticated measurement models to
use with the proposed engineering model may be easily done both for an EKF
as for any other filtering algorithm to be used with the coupled dynamics model
proposed in this paper.

In this paper, the measurement model assumes that the position and attitude
states are directly measured, so that

z(t) =


13 03×3 03×4 03×3 03×3 03×4 03×3

04×3 04×3 14 04×3 04×3 04×4 04×3
03×3 03×3 03×4 13 03×3 03×4 03×3
04×3 04×3 04×4 04×3 04×3 14 04×3





r
v
q
ω
r̃
ṽ
q̃
ω̃


+ νz(t),

(31)
leading to a direct measurement of the states r, q, r̃, q̃ with noise νz(t) ∼

N(0, R), with covariance R ∈ R14x14 matrix.

4. Extended Kalman Filter

In this work, an extended Kalman Filter (EKF) is used to test the effect of
coupling in spacecraft relative dynamics estimation due to its extended use in
the spacecraft onboard estimation applications. The EKF may be considered
a classic estimator for this applications, and was selected instead of newer pro-
posed estimators, due to the fact that this paper focus on the effect of the use
of a more precise dynamics model.

Take an engineering model of the dynamics based on the model of equation
7 and a measurement model based on equation 31

10



ẋ = f(x, t) + νx(t), (32)

z(t) = h(x(t), t) + νz(t), (33)

where x ∈ Rn is the state, z ∈ Rm is the output resulting from the mea-
surements, νx(t) ∼ N(0, Q(t)) the process noise, representing the deviation of
the engineering model to the truth model. The linearization of this equation is
done around a nominal state x∗ and input u∗ where x ∈ R with δx = x − x∗
lead us to a discretized perturbation state-variable model associated with the
linearized version of the nonlinear system 7 as described in [36].

δẋ = F x(x∗, t)δx+ νx(t), (34)

δz = Hx(x∗, t)δx+ νz(t), (35)

where F x is a n× n Jacobian matrix and Hx a m× n matrix ; i.e.

F x(x∗, t) =


∂f1(x

∗)
∂x1

· · · ∂f1(x
∗)

∂xn

...
. . .

...
∂fn(x

∗)
∂x1

· · · ∂fn(x
∗)

∂xn

 ,Hx(x∗, t) =


∂h1(x

∗)
∂x1

· · · ∂h1(x
∗)

∂xn

...
. . .

...
∂hn(x

∗)
∂x1

· · · ∂hn(x
∗)

∂xn


(36)

The implementation of a discrete Extended Kalman Filter (EFK) for the
nonlinear system of equations 32 and 33 based on the linearization of equations
34 and 35 is based on two processes: prediction and measurement update.

4.1. Prediction

Prediction uses the last estimated state x̂(k, k) to obtain a prediction of the
value of the state x in time k + 1 by using the analytical model of the state.
The predicted state is called x̂(k + 1, k)

x̂(k + 1, k) = x̂(k, k) +

∫ tk+1

tk

f(x̂(k + 1, k),u∗(t), t)dt. (37)

4.2. Measurement Update

Correction uses the measurements of the state in time k + 1 to update the
prediction and finally arrive at the estimated state x̂(k+1, k+1) and its covari-
ance matrix P (k+1, k+1) . The weight of the the prediction and the correction
is determined by the gain matrix K(k + 1).

x̂(k + 1, k + 1) = x̂(k + 1, k) +K(k + 1) {z(k + 1)− h(x̂(k + 1, k), k + 1)}(38)

P (k + 1, k + 1) = [1n −K(k + 1)Hx(k + 1, k)]P (k + 1, k) (39)

where
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Initial Conditions.

Spacecraft S/C 1 S/C 2

Position (km) [300km+RE , 0, 0] (300 +RE)[cos θ2, sin θ2, 0]

Velocity (km/s) [0, 7.7142, 0] 7.7142[− sin θ2, cos θ2, 0]

Attitude quaternion [0, 0, 0, 1] [0, 0, 0, 1]

Rotation rate for the rotating case (rad/s) [0, pi/18, 0] [0, 0, π/18]

Initial along-track separation (RA) 1000 km

Spacecraft mechanical characteristics.

Mass (m) 3.6 kg 3.6 kg

Inertia matrix (I )

 0.055 0 0
0 0.055 0
0 0 0.017

 kg m2

 0.055 0 0
0 0.055 0
0 0 0.017

 kg m2

Drag coefficient (CD) 2.3 2.3

Table 1: Configuration of the dynamics of the system under study.

K(k + 1) = P (k + 1, k)
[
Hx(k + 1, k)P (k + 1, k)Hx

T (k + 1, k) +R(k + 1)
]−1
(40)

P (k + 1, k) = Φ(t, t0)P (k, k)ΦT (t, t0) +Q(k + 1, k) (41)

Φ(t, t0) = eF x(t−t0) (42)

and R(k + 1),Q(k + 1, k) and Hx(k + 1, k) are the linearized versions of
R(t),Q(t) and Hx(t). Please be aware that the equations including here do
not include an input function. For the most general form of the equation and
details about the derivation of the linearized version of the R(k+1),Q(k+1, k)
and Hx(k + 1, k) we refer the reader to [36].

5. Scenario

Take the two spacecraft system orbiting Earth with dynamics described in
equation 7. These two spacecraft follow a circular equatorial orbit with an initial
altitude of 300 km in an along-track configuration with a relative distance of
1000 km. An equatorial orbit is selected in order to avoid taking into account
the J2 effects on the dynamics model. This altitude is selected because in this
orbit a strong signal of the coupling due to the atmospheric drag is obtained. Its
use is justified by its applicability in distributed space systems (DSS) missions
ranking from Earth-observation to gravity missions. This orbit is of use also for
future DSS missions that may avoid debris by best placed in very low orbits.
The drag coefficients (CD) of both spacecraft are equal and assumed to have
the same dimensions of the ones used in the simulation of the formation flying
mission proposed by TU Delft in the framework of the QB50 mission [32].

The parameters used in the scenario are given on Table 1.
It is assumed that the atmospheric density is known, and is given by its

values at solar radiation maximum (see [37]).
The accuracy of the pseudo-measurements is defined on table 2.
In order to demonstrate the effect of coupling, two EKF are used: one that

includes the coupling dynamics in the engineering model described by equation

12



Sensor Noise variance

Relative position ±100 m

Attitude quaternion ±0.1

Table 2: Sensors accuracy

Configuration size (cm3)

CubeSat (3U) 30 x 10 x 10

Large Spacecraft 240 x 80 x 80

Table 3: Test cases area configuration for the spacecraft

7. This estimator is called for now on the ”Coupled Estimator”. Another
estimator was implemented for its use in comparison purposes. In this one, the
engineering model assumes that the area of the spacecraft are constant, and
equal to the largest possible facing area of both satellites. This estimator is
called here the ”Uncoupled Estimator”.

Two different kind of satellite, by size, are used on this research. The first
kind of spacecraft is a 3-unit Cubesat, one of the smallest forms proposed for
cooperative missions, for example in the QB-50 mission [32]. These satellites
have a 30x10x10 cuboid form. For comparison purposes, another ”large space-
craft” is used. The size of the ”large spacecraft” is defined as a cuboid with
the same ratio between sides of the CubeSat configuration, while at the same
time having a size comparable to a large spacecraft used for formation flying
missions. With this purpose, the ”large spacecraft” is set up as a cuboid where
each side is 8 times larger than every side of the CubeSat configuration. With
this expansion, the ”large spacecraft” size is similar in size to the spacecraft
used for the Grace mission (length = 312.2 cm, height = 72 cm, bottom width
= 194.2 cm, top width = 69.3 cm) [38]. For reference, their sizes are described
on table 3.

The process noise to be used in the implementation of the EKF is funda-
mental for the proper performance of both estimators. The noise matrix to be
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Table 4: Process noise configuration for the coupled and uncoupled estimator.

nr 10−9 nr̃ 10−9

nv 10−9 (Calibrated) nṽ 10−9 (Calibrated)
nq 10−7 nq̃ 10−7

nω 10−5 nω̃ 10−5

used in the engineering model Q(k) is given as

Q(k + 1) =



Qr 03×3 03×4 03×3
... 03×3 03×3 03×4 03×3

03×3 Qv 03×4 03×3
... 03×3 03×3 03×4 03×3

04×3 04×3 Qq 04×16
... 03×3 03×3 03×4 03×3

03×3 03×3 03×3 Qω

... 03×3 03×3 03×4 03×3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×3 03×3 03×4 03×3
... Qr̃ 03×3 03×4 03×3

03×3 03×3 03×4 03×3
... 03×3 Qṽ 03×4 03×3

03×3 03×3 03×4 03×3
... 04×3 04×3 Qq̃ 04×3

03×3 03×3 03×4 03×3
... 03×3 03×3 03×4 Qω̃


(43)

where Qα = n2α13 with α = {r,v, q,ω, r̃, ṽ, q̃, ω̃} and Qβ = n2α14 with β =
{q, q̃}. The values for each one of these process noises used for this simulation
are given in table 4.

For spacecraft estimation purposes, incorporating the non-modeled pertur-
bation effects to the dynamics model as part of the process noise is a common
practice (this is done for example in [24]). For this reason, in order to prove that
the ”Coupled Estimator” leads to a better performing estimation, the magni-
tude of the velocity process noise of the uncoupled estimator is adjusted until
the estimation reaches its best performance. In this way, the process noise is
used to simulate the atmospheric drag for the ”Uncoupled Estimator”. This is
the reason why the velocity process noise is indicated on table 4 as ”Calibrated”.
The best possible uncoupled estimator is defined as the one that leads to the
lowest average estimation error after five orbits. The estimation error ∆r̃u is
defined as the error between the real dynamics and the dynamics predicted by
the uncoupled Estimator.

In order to configure the magnitude of the velocity noise, the following pro-
cedure is used:

1. The initial value for both nv, nṽ is set to be the largest magnitude of the
atmospheric drag force aa at the evaluating altitude. For example, on the
300 km orbit propagation, for the largest spacecraft, the largest absolute
value of the atmospheric drag force was calculated to be 9.9170 · 10−4 N.
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2. The estimator is propagated for five orbits.

3. The magnitude of ∆r̃u is calculated.

4. The magnitudes of nv, nṽ is incremented and decremented in steps of 10%
of their initial value until the minimum value of the average of ∆r̃u for
the fifth orbit is obtained. For example, in this case, for the incremented
process noise, we use nv = 10.9087, that constitutes 10 % more than the
initial process noise use.

5. This increment and decrement continues until the lowest value for ∆r̃u is
found. For this example, the value of the process noise that lead to the
lowest error was 6.9419 · 10−4 (a 30 % decrement from the initial value).

Hence, the calibration procedure is based on the minimization of ∆r̃u via
the calibration of the velocities process noise. This calibration is done every
time the area or the altitude is changed.

The objective of this is to compare the Coupled Estimator with the best
possible uncoupled estimator. With this, it is shown that even in the best
possible assumption of the perturbation as a white-Gaussian noise, the Coupled
estimator shows a better performance in terms of convergence and precision.

6. Results and Analysis

In this section, it will be shown how the model taking into account the
coupling between relative position and attitude impacts the performance of the
estimation of orbital relative dynamics. For this, two variables are evaluated:
the change in the spacecraft effective area and the change in the spacecraft
set altitude. Take into account the fact that the mass of the spacecraft is not
changed for any of the simulations, the change of area may be interpreted here
also as the change of the area-mass ratio.

Here, the improvement on the estimation results is shown via the difference
on the estimation error between the coupled and the uncoupled estimator, and
also by showing the accumulated variance of both estimators, via the accumu-
lative effect of the estimation convergence. This simulation is propagated five
orbits, showing clearly the best convergence of the coupled estimator.

6.0.1. Scenario 1: Variation of the spacecraft effective area

In order to evaluate the effect of the effective area of the spacecraft in for-
mation, this work uses four different area configurations, all with a rectangular
form, starting from a 3-unit Cubesat configuration (30x10x10 cm), one of the
smallest area configurations proposed for formation flying missions. This base
configuration was selected due to its popular use in spacecraft constellation
projects like Planet Labs constellation [39] and One Web [40]. From here, areas
are incremented to observe the relation between its variation and the estimation
performance. The areas used are summarized on table 5.

Results using the smallest satellite (a 3 unit Cubesat configuration) are
shown in figure 2, and with the largest in 3, both in a circular orbit with an
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Area Configuration Area [cm3]

1 30 x 10 x 10

2 60 x 20 x 20

3 120 x 30 x 30

4 240 x 40 x 40

Table 5: Variation of the area of the spacecraft for sensitivity analysis
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Figure 2: Relative position estimation results for a 2-spacecraft formation with 3-unit Cubesat
configuration.

altitude of 300 km. Here it is shown that even in the smallest spacecraft area
case, coupled estimator outperforms the ”Best Uncoupled Estimator”.

Now, in figure 4 it is shown how the variance after the fifth orbit differs
for the uncoupled and the coupled case, and its variability with the spacecraft
area, as a parameter of the performance of the estimator with respect to the
spacecraft area. For reference, the values shown in this figure are the values
after five orbits of the ”accumulated variance” value shown on figures 3 and 4.
Here, as expected, it is clear that with a larger area, the difference between the
coupled and the uncoupled estimator is higher. With an increment in the order
of 32 between the smallest and the largest area, the difference between variances
for the smallest spacecraft is of 10.849 m, but for the largest spacecraft it is of
28.651 m, a factor of three.

Here it is shown that even for the smallest spacecraft evaluated, the coupled
estimator shows an improvement on the estimation performance. These differ-
ences are significant for most Earth Observation missions proposed in present
times.
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Figure 3: Relative position estimation results for the large spacecraft case.
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Figure 5: Variance of the error after five orbit at 350 km altitude.

6.0.2. Scenario 2: Variation of the spacecraft altitude

In order to see the effect of the coupled consideration for different attitudes,
the orbits of two-satellite, both with the largest spacecraft area (Area 4 of table
5) are propagated in circular orbits with different altitudes. The estimation per-
formance of this configuration in a 300 km altitude orbit was already illustrated
in the first scenario in figure 3.

Take now the results of increasing the spacecraft altitude, shown in figure
5 for 350 km altitude and in figure 6 for 650 km altitude. Both figures shown
that even for a 650 km orbit, the coupled estimator lead to non-negligible im-
provements on the estimation performance of the dynamics.

Now, for comparison purposes, take figure 7 showing the result of the final
value of the accumulated variance after five orbits for the coupled and the un-
coupled estimator with respect to the altitude. It is clear that even at a 650
km altitude, the coupled estimator leads to better results. Nevertheless, the
difference between both estimator considerably diminishes at this altitude.

The main variable affecting here the estimation performance is the atmo-
spheric density, that changes from a value of 3.96 · 10−11 kg/m3 for the 300
km altitude to 2.64 · 10−13 kg/m3, a magnitude 250 times higher for the former
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Figure 6: Variance of the error after five orbit at 650 km altitude.
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compared to the latter. Nevertheless, this is not the only variable affecting the
estimation performance. For reference, the variation of the atmospheric density
is also illustrated on figure 7. At a lower altitude, the velocity to remain in a
circular orbit is higher, hence the effect of the atmospheric perturbation further
increased. For this, it is very difficult to compute the direct relation between
the physical variables and the increment in performance due to the altitude
changes. The accumulated variance after five orbits for the 300 km altitude is
of 34.247 m for the coupled case, and of 62.898 m for the uncoupled case, a dif-
ference of almost 30 meters in variation. Nevertheless, for the 650 km altitude
evaluation, the variance is of 20.7728 m for the coupled case and 24.230 m for
the uncoupled case. With this, it may be concluded that fundamentally for all
cases here evaluated, the difference between estimators is not significant beyond
700 km altitude.

7. Conclusions and Future Work

This works shows how the coupling between orbit and attitude dynamics
caused by the atmospheric drag force and torque improves the estimation of
relative dynamics of spacecraft. For this, the effectiveness of the ”Coupled
estimator” (an estimator considering such physical effect) is shown.

For comparison purposes, another estimator where the perturbation was
simulated using only white-Gaussian noise, is used. Using white Gaussian noise
to simulate the perturbation effect is a common practice in spacecraft dynamics
estimation. Due to the fact that it may be argued that the selection of the
magnitude of this noise may affect the validity of the comparison, the magnitude
of the white-Gaussian noise was adjusted until the lowest average error after five
orbits was obtained on the estimation process. Even under this condition, the
”Coupled Estimator” shows a better estimation performance.

For a case of a very low orbit, a 300 km altitude orbit, even with two CubeSat
flying in a along-track configuration, the improvement shown by the use of the
coupled estimator is significant, leading to an improvement of 6.951 m in the
average position estimation compared to the ”best uncoupled estimator”.

Changes in estimation performance are even observed for altitudes of as
much as 650 km, where for a 240x40x40 cm spacecraft, an improvement of
3.457 m in the average of the error in the estimation of relative position is
shown. Nevertheless, when altitudes over 700 km are used in our experiments,
the difference in negligible, as expected.

This work leads then to a first estimation of an approximate rank of cases
coupling may be considered to improve the estimation performance of relative
dynamics of spacecraft using a orbit-attitude model closer to reality, and a
method to be applied to different formation flying configurations. Take into
account that this work makes use of the nonlinear orbit and attitude dynamics
equations, and because of this, is not limited to circular or near-circular orbits,
as it may be, for example, if the Clohessy-Wiltshire equations were used. The
use of more complex models has been restricted in the past due to computation
constraints, but the latest improvements in electronics computing performance,
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both in speed and in power consumption, lead to the possibility of using more
complex spacecraft dynamics models in on-board spacecraft computers with no
additional risk.

Future work may take into account other spacecraft formation flying config-
uration with different densities, elliptic orbits, and other effects, like the gravity
gradient in different relative pose configurations, the diurnal effect of the at-
mosphere, as well as the use of other estimation techniques that provide better
operation performance when spacecraft nonlinear dynamics are used.
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