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Abstract

The field of Computing has been a significant catalyst for innovation across various
segments of our lives. Computational neuroscience keeps demanding increased perfor-
mance to implement powerful simulators able to closely approximate brain behavior
using complex mathematical models. This resulted in various High-Performance Com-
puting systems able accelerate the above simulation workloads. One of the challenges is
how these applications are being ported to massively parallel accelerators that requires
significant time and effort for designing and debugging. This thesis primary task is to
optimize an existing hardware library for neural simulation. The above library uses one
of the most widely used biophysically-meaningful neuron models called Hodgkin-Huxley.
The library optimizations will be performed while following a design methodology to
accelerate applications on Maxeler’s Data-Flow Engines (DFEs). A DFE is an FPGA-
based accelerator incorporating a top-of-the-line reconfigurable device surrounded by
high bandwidth, large capacity on-card memory. This work focused in the fully ex-
tended model that had room for performance improvements. The result, an optimized
model that takes advantage of the FPGA capabilities and achieve up to 2.66x speed up
over the previous implementation. They key to this speedup is the use of fixed-point
arithmetic that provides 2x speed up compared to the optimized floating-point version.
Additionally, the model is implemented in multiple kernels in such a way that can be
scaled up using multiple DFEs to achieve even greater performance.
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Introduction

During the last four decades, central processor units (CPUs) have made huge leaps in
performance. The driving factor for this technological advancement is mainly due to
Moore’s Law that postulated that the number of transistors on a silicon chip doubles
about every two years. Moore’s prediction set the pace for our modern digital revolu-
tion [11I]. In every new generation of CPUs, substantial improvements are made that
unlocked the implementation of more complex and demanding applications. As a result,
this expanded the user expectations and demands for the next generation of processors.
During the last decade, the situation has changed, and this trend is gradually declin-
ing [12, 13, 14]. The ever increasing demands of High-Performance Computing (HPC)
applications and Big Data, are not met with CPUs alone and alternative solutions are
sought to meet this performance demands [15] [16].

The solution to this is the use of hardware acceleration that augments processor with
application specific co-processors [I7]. A good candidate that combines the right price,
performance and power consumption for a co-processor is the Field Programmable Gate
Array [15], [18]. can be used for virtually any task due to their recon-
figurable nature to speed up financial risk analytics, database acceleration, science, and
engineering complex applications [19, 20] 21, 22] 23].

Building, biologically inspired systems, require computations with massive parallelism,
and that is why FPGAs are an interesting option. One approach that balances power
consumption, implementation complexity, and flexibility are Maxeler’s Data-flow En-
gines (DFEs). A DFE is a special-purpose reconfigurable chip (FPGA) that can be
reprogrammed at runtime [24].

In this thesis, the performance of the flexHH library used for neural simulations is im-
proved by following the steps of the Maxeler’s Technologies design process for [HPC|
applications. This process prescribes how to implement complex applications using re-
configurable hardware and how to optimize these applications. The primary task is to
minimize the time of development and the time spent on debugging. We start with the
flexHH library analysis to estimate the performance and area requirements before imple-
mentation. The parts that will be accelerated on hardware are found, and the respective
application’s architecture is designed and then implemented. Different datatypes will be
investigated during the application analysis and compare them to find the most fitting
for our application. The encountered pitfalls and the decisions taken for each step are
detailed explained. By using this acceleration process methodology, will help to optimize
the performance of the flexHH library.
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1.1 Motivation

The use of reconfigurable hardware accelerators means that hardware architecture is no
longer fixed, and it can change during the application runtime. This benefits the use of
[FPGA§E across any application, but it introduces many additional challenges. Having a
variable hardware architecture requires a tremendous amount of time for its validation.
Regardless of the time spent on validation, bugs, and architecture inefficiencies may be
found during the late implementation stages, leading to a complete application redesign.
Additionally, it is well known that FPGA development is very specialized and hence
challenging, especially when full utilization of the FPGA capabilities are sought [25].
The time spent on going back and forth in a design leads to increased development
time and effort. Furthermore, creating such applications in reconfigurable hardware
without setting the requirements which come through application analysis may not lead
to the expected outcome (e.g., runtime speedup). All aspects of the development cycle,
application analysis, architecture analysis, implementation, and debugging are united
in Maxeler’s design methodology to program a DFE, an FPGA-based accelerator, and
help overcome these challenges. This methodology considers all the possibilities and
requirements before going to the implementation phase, providing a bug-free optimal
architecture that maximizes system resource utilization.

The flexHH library simulates a part of the brain, which is considered a complex problem,
and for this reason, hardware acceleration is employed. Brain simulations are important
and can help us to understand further how the brain functions. In most cases, sim-
ulated mechanisms are based on hypotheses. Brain platforms than can simulate brain
regions fast and in real-time could enable the neuro-scientific community to test these hy-
potheses. Furthermore, having a deeper understanding of brain functionality can lead to
several critical practical applications. Achieving accurate enough real-time simulations
can drive the development of robotic prosthetics and implants to restore lost brain
functionality (Brain rescue). Moreover, understanding biological systems and having
richer computational dynamics for their models can lead to more advanced artificial-
intelligence and robotics applications. Finally, a better understanding of the brain
workings can lead to new non-Von-Neumann architectural paradigms being used for
the advancement of the computing field [24].

1.2 Thesis goal

The main goal of this thesis can be formulated as follows:

e Optimization in performance of an existing hardware library for Hodgkin- Huxley-
based neural simulations

As it is already mentioned, this thesis focuses on optimizing the performance of a hard-
ware library used for neural simulations using Maxeler’s design process that is useful and
crucial to apply it while implementing HPC applications. All the steps needed to develop
an HPC application that exploits the hardware resources to improve performance will
be included. A fixed-point analysis will be conducted and the results will be compared
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with floating-point. The goal is to prove that it is essential to consider fixed-point arith-
metic and it will provide substantial improvements on performance over floating-point.
Additionally, the performance and area estimations will be compared with the actual
numbers resulting from the actual implementation. Ideally, the results will be as close
as possible to the real numbers that will further leverage the use of Maxeler’s design
process.

1.2.1 Research Questions
The research questions of this thesis are as follows:

e Can fixed-point arithmetic provide substantial improvement on performance for
flexHH library without losing substantial accuracy compared to floating-point;

e Can the models of the flexHH library be implemented in such a way to be scalable
using multiple DFEs.

1.3 Thesis Organization

The arrangement of the rest of this thesis report is as follows. Chapter 2 presents a brief
introduction regarding the brain, the data-flow paradigm, and [FPGAE. In Chapter 3,
the related work regarding the case study is briefly explained. Chapter 4 is emphasized
in the design methodology process and all the analyses conducted. Chapter 5 describes
the implementation and the modifications executed to reach the final application. The
evaluation of the error in performance and resource usage estimated in our methodology
and the comparison between floating-point and fixed-point applications are discussed in
Chapter 6. Finally, Chapter 7 concludes this thesis with a discussion of the contributions
and the proposed future work.



Background

In this chapter, the background information required to understand the remainder of
this thesis is presented. In section 2.1, a brief description of the biological neuron is
discussed. Parts of human brain are briefly explained in section 2.2, and more details
about the cerebellum and the inferior olive nucleus are provided. Following, sections
2.3 and 2.4 introduce the Hodgkin-Huxley and the Inferior Olive (IO) models,
respectively. In section 2.5, background knowledge regarding the technology used and
its characteristics are discussed. Finally, in section 2.6 introduces dataflow computing
and Maxeler’s Dataflow Engines (DFEs).

2.1 The Biological Neuron

The human brain consists of billions of neurons also called (neural) cells within the
nervous system that transmit, stores and process information throughout the human
body. There are different types of neurons with varying kinds of morphology, as shown
in Figure 2.1} However, a typical neuron can be described as three functionally distinct
parts, also called compartments, the dendrites, the cell body or soma, and the axon,
as illustrated in Figure Each compartment has a membrane with ion channels.
Depending on the state of the channels (open or closed), ions can flow in and out by
changing the membrane’s voltage potential. The change in the membrane potential can
generate voltage signals, also called action potentials. Dendrites can be described as the
input part of the neuron that collects signals from other neurons and transmits them
to the soma. Next, the soma is where the processing is done; if the total input exceeds
a certain threshold, it generates an output signal/action potential. Finally, the output
signal is taken over by the axon that delivers the signal to other neurons. The junction
between two neurons is called a synapse. Two kinds of synapses exist, the chemical
and the electrical synapses. When an action potential arrives in a chemical synapse, it
triggers a complex chain of biochemical processing steps. Specific channels open, and
ions can flow into the cells that lead to a change of the membrane potential. Electrical
synapses, or also called gap junctions, are specialized membrane proteins that directly
connect two neurons. Details about the functional aspects of gap junctions are not
known, but they are believed to be involved in the synchronization of neurons [2].
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Figure 2.1: Examples of different types of nerve cells found in the human nervous
system [1]
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Figure 2.2: A single neuron in a drawing by Ramén y Cajal. Dendrite, soma, and axon
compartments can be clearly distinguished. A spike (action potential) initiated by the
axon is also shown [2]
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2.2 The Human Brain

The brain is the overseer of the human body; it collects, processes, and coordinates all
the information from the censoring network throughout the body, and it makes all the
decisions. The brain is divided into three different regions, the brainstem, the fore-
brain and the cerebellum as depicted in Figure The cerebrum and diencephalon
together constitute the forebrain, the brainstem consists of the midbrain, the pons,
and the medulla oblongata [3]. The spinal cord is a long, tube-like structure that
starts at the end of the brainstem and continues down to the spine’s bottom. It consists
of nerves that convey incoming and outgoing messages between the brain and the nerves
in the rest of the body.

Brainstem

All the signals between the spinal cord, forebrain, and the cerebellum pass through the
brainstem. It receives and combines input from all the central nervous system (brain,
spinal cord) and processes a great deal of neural information. Additionally, the brainstem
is involved in motor functions, cardiovascular and respiratory control, and the mecha-
nisms that regulate sleep, wakefulness, focus, and attention [3],26, 27]. The forward-most
portion of the brainstem is the midbrain and it serves essential functions in motor move-
ment, particularly movements of the eye, and in auditory and visual processing [28]. The
pons is located between the midbrain and the medulla oblongata, and it includes neural
pathways that connect the medulla with the cerebellum. It is also the point of origin or
termination for four cranial nerves that transfer sensory information and motor impulses
to and from the facial region and the brain. Active functioning of the pons may also
be fundamental to rapid eye movement (REM) sleep [29]. Finally, it works together
with the medulla oblongata to serve an especially critical role in generating breathing’s
respiratory rhythm. Medulla oblongata is the lowest part of the brain and the lowest
portion of the brainstem. The medulla oblongata plays a critical role in transmitting
signals between the spinal cord and the higher parts of the brain. It controls autonomic
activities, such as heartbeat and respiration [30].

Forebrain

The larger component of the forebrain, the cerebrum, includes all the higher mental
functions such as thinking and human memory. It consists of two halves hemispheres;
the right cerebral hemisphere that controls the left side of the body, and the left cerebral
hemisphere that controls the right side of the body [26]. Both hemispheres are further
divided into four areas, as shown in Figure called lobes, and are explained below:

e Frontal Lobe:

The frontal lobe is the largest lobe of the cerebrum and is responsible for many
behavioral traits such as personality, problem-solving, decision-making, organiza-
tion, and many more. The frontal lobe uses the information from the environment,
memory, and emotions to make decisions, affecting the person’s personality. To
achieve these high cognitive functions, the frontal lobe needs to communicate with
the rest of the brain and filter out the vast amount of information to what is
important and relevant [26], 27].
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e Parietal Lobe:
The parietal lobe is vital for sensory perception, including the sense of touch,
pressure, hearing, sight, and smell. Additionally, it integrates the information from
our senses to provide functions such as spatial awareness, coordination of other
parts of the body (coordination of hands, arms, and eye motions), the judgment
of texture, weight, size, and shape [27, [31].

e QOccipital Lobe:
Occipital lobe processes visual signals that arrive from the eye’s retina. While the
retina is the part of the human body that detects colors, edges, and movement,
the occipital lobe is responsible for informing us what we see [27].

e Temporal Lobe
The temporal lobe is where the human memories are stored; this allows a human
to distinguish sounds, smells, shapes, and people from one another. Additionally,
emotions and language comprehension are also stored in the temporal lobe together
with new information that is stored in the short-term memory [27, 26]

Forebrain Qerebrum
Diencephalon

Midbrain \ \

. Cerebellum
Brainstem Pons

Medulla
oblongata

Spinal cord

Figure 2.3: The divisions of the brain and the spinal cord [3]
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Figure 2.4: A lateral view of the brain divided in cerebrum’s four lobes [3]

The second component of the forebrain is the diencephalon that contains two major
parts: the thalamus and the hypothalamus. The thalamus’s main function is to
relay motor and sensory signals to the cerebral cortex (outer layer of the cerebrum). It
also plays a key role in alertness and focused attention. Hypothalamus lies below the
thalamus, and it is a tiny region that accounts for less than 1 percent of the brain’s weight.
Even so, it contains different cell groups and pathways that form the master command
center for neural and endocrine coordination. The endocrine system is the collection
of glands that produce hormones that regulate metabolism, growth and development,
tissue function, sexual function, reproduction, sleep, and mood [3].

Cerebellum

The cerebellum is one of the smallest parts of the brain, but it contains over 50% of the
total number of neurons, and it can be considered one of the most complex and dense
regions of the brain. It does not initiate movement but influences the sensorimotor region
that coordinates the body’s activities and motor learning skills. Additionally, it plays a
vital role in functions related to balance, posture, and sensing of rhythm that enables
the handling of concepts such as music and harmony. Detecting errors in movement and
adjusting the next set of movements to make them more accurate is also a cerebellum
task. The cerebellum receives information from the muscles and joints, skin, eyes, ears,
viscera, and the parts of the brain involved in controlling movement to carry out these
functions. These activities are carried out automatically by this brain area and are
not under a person’s control. Until now, the cerebellum is not very well understood,
and many studies are conducted to learn more about the purpose and its functionality
[27, 26|, 32], B3] [3, 24].

The communication between the cerebellum and other parts of the nervous system is
conducted by three large pathways called cerebellar peduncles and are explained below:

1. Superior cerebellar peduncle
The neurons that give rise to this pathway are in the deep cerebellar nuclei. Their
axons project to the primary motor and premotor areas of the cortex through the



CHAPTER 2. BACKGROUND 9

thalamus as shown in Figure (b) [.

2. Middle cerebellar peduncle
The middle cerebellar peduncle is the largest; it connects the cerebellum to the
pons and transmits information about the body parts’ desired position. Most of
the cells that create this pathway are in the base of the pons. These cells form
the pontine nuclei that relay information from the cortex to the cerebellum, as
illustrated in blue and yellow lines in Figure (a) [34, 1J.

3. Inferior cerebellar peduncle

The inferior cerebellar peduncle brings sensory information about the actual po-
sition of the body parts. The vestibular nuclei and the spinal inputs (the dorsal
nucleus of Clarke) provide the cerebellum with information. This information
is coming from the labyrinth in the ear, from muscle spindles, and from other
mechanoreceptors that monitor the body’s position and motion. Finally, the en-
tire cerebellum receives modulatory inputs from the inferior olive. Inferior olive
nuclei evidently participate in the learning and memory functions served by cere-
bellar circuitry as depicted (green lines) in Figure (a) [34, 1.

Primary motor
and premotor cortex

Ventral lateral
complex (thalamus)

Vestibular

nuclei Inferior olive Sle
Dorsal nucleus Dorsal nucleus
of Clarke of Clarke
(@) (b)

Figure 2.5: Cerebellum connections to the brainstem and cerebrum. (a) Illustrates the
inputs to the cerebellum from the cortexes, spinal cord, and the brainstem. (b) Output
from the cerebellum to primary and premotor-cortex [I]
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Circuits within the Cerebellum

The final destination of the cerebellar cortex’s inputs is a distinctive cell type called the
Purkinje cell. The axons from the pontine nuclei and other sources are called mossy
fibers that carry information from many brain regions, as shown in Figure Mossy
fibers synapse on granule cells that give rise to specialized axons called parallel fibers that
ascend to the cerebellar cortex’s molecular layer. The parallel fibers relay information via
excitatory synapses onto the Purkinje cell’s dendritic spines. Additionally, the Purkinje
cells receive direct modulatory input on their dendritic shafts from the climbing fibers,
which originates from the inferior olive. Climbing fibers carry information about sensory
events such as a tactile sensation on a specific part of the skin.

Each Purkinje cell receives numerous synaptic contacts from a single climbing fiber.
In most models that describe the cerebellum’s functions, the climbing fibers regulate
movement by modulating the effectiveness of the mossy and parallel fiber connections
with the Purkinje cells. Finally, Purkinje cells project to the deep cerebellar nuclei
being the only output cells of the cerebellar cortex. This primary circuit is repeated
numerous times in the cerebellum and is considered a fundamental functional module of
the cerebellum. Modulation of signal flow through these modules provides the basis for
both real-time regulation of movement and long-term regulation changes that underlie

motor learning [4, [1} [35].
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Figure 2.6: Olivocerebellar circuit [1]
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A Purkinje cell receives a large number of parallel fiber inputs, which modulate its
intrinsic rapid spiking behavior, and only one climbing fiber input. Nonetheless, when a
climbing fiber action potential is fired, the ongoing Purkinje cell’s rapid spiking behavior
is interrupted as it generates a so-called complex spike, after which the Purkinje cell falls
silent for approximately 20 ms as illustrated in Figure Since the inferior olive nucleus
gives rise to the climbing fibers, it plays a vital role in the cerebellum’s functioning [4], 35].
The cells inside the inferior olive nucleus are also interconnected by purely electrical
connections between their dendrites, called gap junctions. Gap junctions are considered
important for synchronizing activity within the nucleus and, thus, greatly influencing
movement and motor learning[33].

Purkinje cell spikes

Complex
spike

20msec

Figure 2.7: Intracellular recordings of a complex spike elicited by climbing fiber
stimulation and a simple spike elicited by mossy fiber activation. [4]

2.3 The Hodgkin-Huxley model

Alan Hodgkin and Andrew Huxley performed experiments on the squid’s axon and pro-
duced the Hodgkin-Huxley (HH) model published in 1952 [36]. HH has significant value
on computational neuroscience, and as shown in [37], it is still the most biologically
accurate model for a single neural cell. The HH model is a mathematical model that
describes how action potentials in a neural cells are initiated and propagated. It includes
a set of nonlinear differential equations that approximate the electrical characteristics of
neural cells.

The Hodgkin-Huxley model is further explained using Figure 2.8 The cell membrane
separates the interior of the cell from the exterior and acts as a capacitor. If an input
current is injected into the cell, it may add a further charge on the capacitor or leak
through the cell membrane’s channels. Hodgkin and Huxley found three different ion
currents; sodium (K), potassium (V,), and a leak current. Specific voltage-dependent
ion channels, one for sodium and another for potassium, control ions flow through the cell
membrane. The leak current takes care of other channel types, which are not described
explicitly [5].
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Figure 2.8: Schematic diagram for the Hodgkin-Huxley model. [5]

The mathematical description of the model can be seen in Equations to Equation
calculates the membrane voltage derivative and is the sum of the currents that flow
through the membrane divided by the membrane conductance. I, is the membrane
external current, and any function can model it. The Ije.; is the leakage current and
is described by Equation where g; is the ionic conductance for the leakage current
and V, is the voltage potential at which the ”leakage current” due to chloride and other
ions is zero [36]. Ichannels is the sum of the currents generated by the ion channels,
as shown in Equation [2.3] where Ix and Iy4 are the currents for each ion channel.
These currents are calculated using Equations and Vi and Vy, are the voltage
potentials of each ion gate and gxn* and gy, m3h express the ionic conductances. The
gx and gy, represents the maximum conductances and n,m and h corresponds to the
gate activation variables. A gate-activation variable defines the probability that a single
gate will be open, represented by the n* and m3h in the ionic conductances. Each of the
gate activation variable is calculated using Equations - In Equations -
Gn, b, m, by, ap and by, are calculated that represents the rate of transfer of ions from
outside to inside the membrane (ay,, a,, and a;) and the opposite direction (by,, by, and
b,) which varies with voltage [36 [38].

g Iap - Ichannels - Ileak

at Cu (2.1)
lieak = (V= V1) (2:2)
Tchannets = Ik + INa (2.3)

Ix = gen*(V — W) (2.4)

INa = gNam3h<V - VNa) (25)
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2.4 The Inferior Olive model

Recall that Purkinje cells receive two inputs, the parallel fibers and the climbing fiber
that originates from the inferior olive nucleus. Parallel fibers generate many simple spikes
compared to climbing fibers inputs that generates a few so called “complex spikes” that
overrides the current activity of the cells and then silencing them for a short time. It is
well known that simple spikes are involved in motor control, where the role of complex
spikes is more controversial [39]. Many studies are conducted in order to learn how the
cerebellum is capable of motor learning and control despite the very low firing of the
inferior olive inputs [40]. The findings in [35] showed that neural cells synchronization
can have a big effect on the climbing fiber burst size through the gap junction coupling

between 10 neural cells.
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The model used to simulate the IO cells is an extended HH model developed by De
Gruijl [35]. This means that this model adds a few extensions to the original HH model
to support the simulation of the IO model. The first extension is the addition of extra
ion channels with different gates compared to the HH model. Therefore, some of the
derivatives of the gate-activation variables are described by more complex functions.
The second extension supports multiple cell compartments compared to the HH model
that only describes the axon. The [[O] model describes the dendrites, the soma, and the
axon compartments, and now each adjacent compartment exchange a current which is
used to calculate the voltage derivative of each compartment. Finally, the gap junctions
that connects the IO neural cells are included. A current flow through gap junctions, if
the dendritic membrane potentials of the connected neural cells differs. This model is
used by the neuroscientific community to learn how the inferior olive nucleus influence
the cerebellum in motor learning skills and sensorimotor control. Detailed information
about the model will be presented in the related work section.

2.5 Field-Programmable Gate Array (FPGA|

[FPGAE are semiconductor devices that are based in a matrix of configurable logic blocks
(CLBE) and on-chip memory connected via programmable interconnects [41]. Origi-
nally, FPGAE were used for validation and prototyping of application-specific integrated
circuits s design before manufacturing. The technology advanced, the logic den-
sity increased, and other features were also added, such as embedded processors, digital
signal processor blocks along with improvements in the operating frequencies.
Currently, [FPGAE are used in a wide variety of applications and, more recently, in [HPC]
What motivates the use of [FPGAE in [HPC)| applications is the high performance that
comes from FPGA’s flexibility. This flexibility makes possible the implementation of
highly customized application specific architectures.

Besides FPGAs, other technologies, such as multicore CPUs and GPUs, are used for
HPC applications. The number of cores limits the parallelism in multicore CPUs, but
the operating frequency is higher than FPGAs. The GPUs operational frequency ranges
between FPGAs and CPUs, but GPU supports a larger number of cores. For both mul-
ticore CPUs and GPUs, the latency and power consumption associated with memory
access and memory conflicts increase rapidly as data travels through the memory hierar-
chy [42]. On the other hand, FPGAs are well-known for their superior power efficiency
when compared to GPUs and multicore CPUs. ASICs can also be considered since they
outperform FPGAs in terms of performance and energy efficiency because they are fully
customized circuits for a given application. However, ASICs have a significantly longer
time to market since many of the back-end processes need to be taken care from the
designer (physical layout, routing nodes, constraints) and are only fabricated when a
design is thoroughly validated [43]. Moreover, the ASIC cost is exceptionally high ex-
cept when a massive quantity is being produced, and once developed, the design cannot
be changed. Based on the application’s properties and user communities, any of the
technologies may provide a suitable hardware platform. Still, the power consumption
benefits and the in-field programmability enabling support of multiple applications deem
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the FPGAs a suitable candidate for HPC applications.

2.5.1 Reconfigurable Fabric

The reconfigurable fabric of an [FPGA] consists of five main resource types; the Con-
figurable Logic Blocks ), the Programmable Interconnect, Memory re-
sources (Block RAM/Ultra RAM), the units and the Programmable I/0O
blocks (IOBs) as shown in Figure Each FPGA vendor has its own FPGA archi-
tecture but in general they are all a variation of the architecture shown in Figure [2.9]
Details for each of the above mention FPGA’s resource type will follow with focus on
Xilinx’s FPGAs.

= LIC(RaIEacmns s
2 L0 & & ] ] { E
OO EfE Oy O E
OO0 (R[5 (E [ N
mj(m O [ OO
5 mll @ [EIEE olo
110 £
Programmable . gic Blocks . 1/0 Blocks Block  DSP
Interconnect ]:D . RAM  Units
e i

Figure 2.9: Basic architecture of an FPGA [0]

2.5.2

The Configurable Logic Block is the backbone of the FPGA technology and the main
resource needed to implement logical functions. Each [CLB]is made up of logic elements
grouped in a slice, along with interconnections resources to connect these logic elements.
Each slice consists of:

e Look-up Tables (LUTE);

Storage elements that can be configured as Flip-Flops or latches;

Dedicated high-speed carry logic for arithmetic functions;

Multiplexers;

Distributed memory;

Shift register logic (SRL).
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LUT consists of 1-bit memory cells (SRAM) and a set of multiplexers. The values stored
in these memory cells will be available at the LUT’s output based on the input fed to the
multiplexer’s control lines. For example, a 4-input/1-output LUT can implement any
4-input boolean function.When the FPGA is configured, LUTSs content is also configured
based on the function that needs to be performed [44].

Dedicated carry logic improves the performance of arithmetic functions such as
adders, counters, and multipliers. Carry logic is often used for smaller arithmetic func-
tions [45].

Multiplexers inside slices can combine the LUTSs to create more extensive functions
without using another slice [45].

Distributed memory; In Xilinx’s UltraSCALE™ architecture, there are two types of
slices, the SLICEL (logic) that only implements combinatorial functions and SLICEM
(memory) that can also be configured as a distributed memory. Multiple SLICEM slices
can be combined to form deeper or wider memories [45].

Shift register logic: Each LUT in a SLICEM can also be used as a 32-bit shift register.
Combining all the LUTs in a slice allows construction up to a 256-bit [SLR]

2.5.3 Programmable Interconnect

The programmable interconnect is a set of wires which can be wired together to connect
any two blocks in an FPGA. As shown in Figure these matrix-like interconnects
enable arbitrarily logic networks to be constructed by the user [46].

2.5.4 Memory Resources

Besides the SLICEM memory logic, there are two more physical memory types, the

BlockRAM (BRAM)) and the UltraRAM (URAM]).

is a block of 36Kb memory, which contains two independently controlled 18Kb
memories. BRAM blocks can be used as one or two memory units and have flexible
configuration regarding their depth and width. They consist of two reads and write
ports; data can be written/read on either or both ports. These blocks of RAMs can be
combined to enable deeper and wider memory implementations.[47]

[URAM]is a high density memory building block. One [URAM]| module can store up to
288 Kbits of data and can be configured as a 4,096 x 72-bit memory block, about eight
times larger than the [BRAM| A [URAM] includes two ports, and it can independently
perform a read or write per clock per port. As is for BRAME, the 288Kb block can be
cascaded to construct deeper and wider memory implementations.[47), 46]

2.5.5 Digital Signal Processors (DSP5)

A [DSP] unit supports many independent functions such as multiply, multiply and accu-
mulate(MAC)), multiply-add, barrel shift, four input add, bit-wise logic functions, and
many others. Having a unit implemented to execute dedicated functions decreased area
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cost and improved frequency. These units are optimized in speed/area compared to when
implemented in programmable logic [46].

2.5.6 Input/Output Blocks

The programmable I/O blocks are designed to interface the fabric signals to the external
world at the periphery of an FPGA.

2.5.7 Stacked Silicon Interconnect Technology ((SSI)

Xilinx introduce the SSI technology in their newest FPGA platforms. As shown in
figure multiple Super Logic Regions ), which are active FPGA dies, are
connected to the silicon interposer. Interposer is a passive layer that serves the purpose of
power delivery, configuration connectivity, and the connectivity between SLRs and SLRs
to package substrate via through-silicon vias (TSVs) [46]. are vertical electrical
connections that pass-through silicon and provide high-performance interconnections to
create stacked circuits. Micro bumps and C4 Bumps that are shown in Figure there
various different solder joints that are used to interconnect semiconductor devices to
external circuitry chips. Using this approach, Xilinx can now deliver devices with higher
logic capacity and more on-chip resources. [48].

High-Bandwidth,
Low-Latency Connections

Microbumps
Through-Silicon Vias (TSV)

C4 Bumps

<— FPGA Die (SLR)

Silicon Interposer
b 0§ & &/8 & & & & & & & & ¢

Package Substrate

-«—— BGA Solder Balls

Figure 2.10: Representative SSI Device Construction [7]

2.6 Dataflow Computing

There are two computing paradigms found in today’s computers, the controlflow and the
dataflow paradigm. In the first case, the execution process is essentially slow because
instructions have to be fetched, decoded, and then executed. Additionally, data for each
instruction needs to be fetched from memory, used during the execution phase, and then



CHAPTER 2. BACKGROUND 18

the output is stored back to memory. All these operations are extremely time-consuming
[49]. Dataflow computing focuses on how data moves in a 2D-space, and control is
triggered by data movement. This results in the elimination of the instructions necessary
to control the computations. Because there are no instructions, there is no need for
instruction-decode logic, instruction caches, branch prediction, or dynamic out-of-order
scheduling. By eliminating the controlflow overhead, almost all resources of the chip
area are dedicated to performing computations. On the other hand, special mechanisms
are required for data-availability detection and orchestration of data streams. Figure
illustrates the difference between controlflow and dataflow computing paradigms.
In diagram (a), to add A and B, you first need to fetch data from memory, do the
computation and then store the result back to the memory. On the other hand, in
diagram (b), all commands can be executed at once (all values are streamed at once)
compared to the diagram (a) where everything will be executed serially.

—> $1
B Registers ‘ $2 ‘ ‘ i ‘ ‘ i ‘
Commands $4
add $1,$2,$3
add $5,$4,$2 $3

add $6,$4,$3
¢_' ALU input
registers “
N - -
ALU output
$1 register

(a) (b)
Figure 2.11: Computing Paradigms.(a) Controlflow (b) Dataflow

Dataflow computing paradigm focus on optimizing the movement of data in an applica-
tion and utilize the massive parallelism of FPGAs. This provides benefits in performance,
space, and power consumption compared to controlflow computing.

The concept of dataflow computing is not new [50, [5I], but dataflow computing could
not achieve commercial success because reconfigurable hardware technology and system
software technology were not yet ready. Additionally, the applications of those days
were not going to exploit the streaming capabilities of dataflow computing to result in
performance superiority [52]. The dataflow computing concept’s initial ideas can now
be applied and produce effective implementations with the advancement of the dataflow
hardware (FPGA) and the programming language to support it.

Maxeler Technologies embrace this paradigm to accelerate HPC applications on their
FPGA-based dataflow engines, using an in-house developed tool chain called MaxCom-
piler. Development using hardware description languages such as VHDL or Verilog
required a high level of expertise and suffered from a low level of abstraction. This may
diminish the ability to perform high-level optimizations at the system level. Another ap-
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proach is to use High-Level Synthesis (HLS) that automates the generation of hardware
circuits. The downside of using HLS is the inability to describe or understand the map-
ping from algorithm to hardware and the inability to perform low-level optimizations.
Additionally, HLS uses a high-level design process to automatically generate hardware
structures, limiting kernel acceleration, which suffers from input/output bandwidth re-
strictions [9]. MaxCompiler aims the best of both worlds, the high-level abstraction of
HLS and the low-level control of hardware description languages. Every code line has a
direct relation to the generated hardware and this gives the designer the ability of tight
control by using an automated process.

The architecture of a Maxeler dataflow processing system includes dataflow engines
(DFEs) bundled together with local memories working together with a CPU host, as
depicted in Figure The host CPU includes a software layer called MaxelerOS that
allows the DFE to communicate with the software program usually written in C. The
CPU uses the Simple Live CPU interface to activate the kernels and set the
data transfers between the CPU and DFE through PCle interconnect. Additionally, it is
easier to rearrange the data on CPU to improve the data streaming (e.g., to have more
linear access) on the DFE. Besides the data streaming between DFE and CPU, single
values can be sent at runtime called scalar inputs. Each DFE has two types of mem-
ory; the Fast Memory and the Large Memory . FMem is an on-chip
memory that uses BRAMs with a capacity of several megabytes and access bandwidth
of terabytes/second. LMem the on-board DFE memory implemented by large capacity
DRAM chips able to store many gigabytes of data off-chip with access bandwidth of
gigabytes/second. The bandwidth and flexibility of is a key reason why
can achieve such high performance on complex applications. Applications can effectively
exploit the full capacity because both memory access and computation are laid
out in space so data can always be held in memory, close to computation, compared to
the classical CPU architectures that only the lowest level of cache is close to computa-
tional units. Finally, the manager orchestrates the data movement between kernels (in
case of multiple kernels) and to or from LMem.

/ CPU Application

SLIiC
MaxelerOS

Kernels

Dataflow Engine

I
Interconnect I % I I

Fast Memory \

(FMem) Manager
Figure 2.12: Dataflow engine architecture [8]

The kernel uses the abstraction of a logical tick; in every tick, one item is fully processed,
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and it is possible to get data from previous or future ticks using stream offsets. While
not everything can be executed simultaneously, the compiler automatically schedules
the dataflow graph and inserts a First-In, First-Out buffers and registers to
balance data transport. Each node/operation has a latency (e.g., floating-point adder
has a latency of 12 ticks), and to achieve the required behavior, some streams need
to be delayed. In Figure the graph of the function out = (a +b+c¢) + (a + b) is
illustrated. Figure (a), illustrates the unscheduled version of the dataflow graph,
and in Figure (b), the scheduled graph. Depending on the addition operation’s
latency, the depth of the [FIFO| buffer will be adjusted, and the compiler makes sure
that the data will arrive at the correct tick.

(@ ®)
Figure 2.13: (a) Unscheduled dataflow graph (b) Scheduled dataflow graph

Data types

Compared to humans, a computer cannot distinguish the difference between ”123” and
”7abc”. A data type is a classification that indicates what type of value a variable
has and what type of mathematical, relational, or logical operation can be applied to
produce an error-free program. For example, the two most common data types are strings
that classifies text and integers that classifies numbers. Deep down to the hardware
level, those data types represent their content using zeros and ones in a specific way.
The benefit of using hardware to accelerate [HPC| applications is that we can represent
numbers in various ways and optimized it down to the bit level, which may prove crucial
in many applications. The data types that are supported by the tools are the following;:

e Raw bits: A datatype used to represent a binary word with a user-defined length;

e Boolean: A data type used for all Boolean operations with numeric values 1 and
0 that represent true or false, respectively;

e Unsigned and Signed integer: This data type represents only integer numbers
signed or unsigned, as shown in Figure (a) and (b). The Maxeler tools support
both 32-bit and 64-bit integers;

e Fixed-point: As shown in figure (c), fixed-point consists of two parts, the
integer and the fractional part. The size of each part is variable and can be changed
per need by changing its offset. For example, if we have 16-bits, we can represent
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a 16-bit integer (offset = 0), or it can take the form of a fully fractional number
(offset = -16), or it can have 8-bits for the integer and 8-bits for the fractional
parts. Negative numbers can be represented using 2’s complement representation;
otherwise, the numbers can be unsigned;

e Floating-point: The floating-point data type represents a wider range of values
compared to a fixed-point of the same size. As shown in figure (d), a
floating-point data type includes the fractional part, the exponent part, and the
sign part. The tools supports between 4 and 16 bits for the exponent part, and the
mantissa size depends on the exponent size. Mantissa bits can vary between 5 and
64-bits, and the sign part is 1-bit. This means that single and double-precision
floating-point data types are supported by Maxeler’s tools [53].

(a) Integer
(b) Integer
(c) Integer | Fraction |
(d) | Sign Exponent | Fraction-Mantissa |

Figure 2.14: Datatypes supported by the tools(a) Unsigned Integer (b) Signed Integer
(c) Fixed-point (d) Floating-Point

2.7 MaxJ

Maxeler Technologie’s tools, MaxCompiler and MaxIDE (Integrated development envi-
ronment) make use of an extended version of Java programming language called Max.J.
MaxJ adds operator overloading semantics to the Java language. Using MaxJ, a pro-
grammer describes the procedure of generating the dataflow graph instead of describing
the graph itself.

2.8 MAXS5 Dataflow Engine

Maxcompiler can target several FPGA based platforms, the target platform used in this
work is the MAX5C. MAX5C utilizes Xilinx’s UltraSCALE' VU9P [10]. This
architecture consists of three dies (SLRs) and three DIMMs of memory (LMem). The
resource, memory bandwidth, pci bandwidth and storage capacity are shown in Tables

21, 22 and 23
LUTs | FFs | BRAMs | URAMs | DSPs
1,182,240 | 2,364,480 | 4320 | 960 | 6,840
Table 2.1: MAX5C Resources [10]
PCle | DRAM BRAM | URAM | DRAM
3 GB/s | 47.65 GB/s 9.49 MB | 33.75 MB | 46 GB

Table 2.2: MAX5C Bandwidth Table 2.3: MAX5C Storage capacity
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2.9 Summary

In this chapter information regarding parts of the human brain, the HH model and how
is extended to support the inferior olivary nucleus model are given. Additionally the
FPGAs, and Maxeler’s dataflow computing paradigm are discussed. Finally, information
regarding Maxeler’s Technologies DFEs and the tools are briefly explained.



Related Work

This chapter introduce the related work that this thesis is based on. This work de-
pends upon the previous work done by Rene Miedema during his Master Thesis entitled
"flexHH: A flexible hardware library for Hodgkin-Huxley-based neural simulations” and
section 3.1 will introduce it [3§].

3.1 The flexHH library

The flexHH library origins from BrainFrame [54], a High-Performance Computing
framework in order to accelerate neuro-scientific experiments using multiple acceleration
technologies such as Intel Xeon-Phi, Nvidia and Maxeler DFEk. However, to make
the framework more practical and useful to the neuroscientific community, neuroscientists
must develop their custom models within BrainFrame using general libraries. FlexHH
library is offering high performance and flexible library to simulate HH-based neural
simulations on an FPGA-based platform.

To implement generalized kernels on the DFE, the HH and IO model’s equations are
generalized using a set of parameters. Otherwise, if no generalized equations are used
each time a new set of equations are utilized for the simulation, synthesis for the given
kernel will be needed, which is time-consuming. The following subsections describe the
generalized equations starting from the HH-model, and then each extension is described
that leads to the IO model. All the equations are based on the work done in [3§].

3.1.1 HH model

In the equations of the HH-model the derivative of the voltage (%) is the summation
of different currents divided by the capacitance of the membrane as shown in Equation
Equation does not change between simulations and it can be used directly.
The first current, called Iy, is the external applied current and only pulse functions
are supported as shown in Equation When the time is between start time (¢sqrt)
and end time (tenq) it returns the set amplitude (A). The next current, is the I pannels
and is the summation of the currents flowing through all the ion channels as shown in
Equation Mgatess) 1s the number of gates per channel, y; is the gate activation
variable, p; is an integer gate-dependent exponent , V is the cell’s voltage and V_ nannet
is each ion channel voltage. The equations that calculates the derivatives used for the
gate activation variables that are described in - have the same form as shown in
Equation The Equations[2.9]- are represented as three equations as show in
In this equation, x1, x2, and x3 are floating-point values that represents the variables
of the equations, fiype is an integer value to select a function and V is the membrane

23
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voltage. Finally, Ij..x is the leakage current and is represented using Equation Jleak
corresponds to the conductance of each channel and V.4 is the leakage voltage.

dv i Iapp(t) - Ichannels - Ileak

- = 3.1
dt Cut (3.1)
_ A, if tstart S t < tend
Lapp(t) = { 0, if otherwise (32)
Mgates[i]fl
Ichannels = Ychannel * H yfl : (V - V;:hannel) (33)
=0
d .
%:ai'(l_yi)_ﬁi'yi (3.4)
(zo—V .
e(:];;—(g‘c/z)‘z?,zl if ftype =0
f(V,a1, 9,23, frype) = § 2y -e@V)m if £ 0 =1 (3.5)
6(12—\/1).x3+1 if ftype =2
Ileak = Gleak * (V - Vleak) (36)

Table 3.1: Parameters of the HH-model filled into Equation (4.4).

channel YJchannel Mgates Y Y2 P11 P2 chhannel
K 9K 1 n 4 VK
Na 9YNa 2 m h 3 1  Vn,

3.1.2 Custom gates

Thus far we discussed the HH-model, the first extension required by the 10-model, is
the support of custom defined ion gates. This requires a number of additional equations
to the standard gates as shown in Equations - In these equations sg, ¢4,
ls and ng are gate variables, C’a?fr is the calcium ion concentration and I.qp 4 is the
high-threshold calcium current in the dendrite. In comparison to the standard gates
found in the HH-model these equations contain multiple exponent functions and it also
include a min function. These equations are generalized and are shown in Equation [3.12
Supporting these equations results in having more complex functions and nine instead
of three floating point values are used (xs).

dsy

- = min(0.00002 CaZt - 0.01) - (1 — sq) — 0.015 - 54 (3.7)
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1
Viena + 80
dqq 1 4
= +16 (3.8)
40-070-Vgep g —1.87
¢ —0.086 - Vygeng — 14.6
dCa?"
= =3 Lapa — 0.075 - CaZ* (3.9)
1 {
Vioma +85.5
dly, 14e  —85
dat Vioma + 160 (3.10)
20-e 30
‘/SOm(l + 84 +35
1+e 7.3
1
‘/soma —"_ 3 ns
dns _ 14e 10
= 11
dt _(50 - V:soma) (3 )
5+47-e 900
( : -V .
%+$8 if ftype:()
zoer2(®1—V)+e3 +x§im4e(zs'(16*v))+x7 if ftype =0
fCustom( frype, V,xs) = (3.12)

zg-e((E1=V)e2) 4 4q
zae((@6=V)25) 4

+ 23 if ftype =2

min(zoV,x1) if fiype =3 )

3.1.3 Multiple cell compartments

The next extension added is the support of multiple compartments in a neural cell.
When having two or more compartments, a current is exchanged between two adjacent
compartments and is calculated using Equation In this equation, g;,;+ corresponds
to the internal conductance of the cell, p;; is the surface ratio between the two com-
partments (between compartment i and j), and V; — V; is the voltage difference between
the adjacent compartments. When this model extension is supported, the current I, is
added to the sum of currents for calculating dV/dt for each compartment, as shown in
Equation

Ie = 2 (V; — V) (3.13)
Pij
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g _ Iap - Ichannels - Imc - Ileak (3 14)
dt Cu '

3.1.4 Gap junctions

Finally, the last extension is the support of gap junctions, which are intercellular con-
nections. The intercellular current for each cell is calculated using Equation which
is repeated for all the cells in the network. cg, ¢1, and ¢y are constants, wi, j is a con-
stant weight that denotes the connection strength between cells i and j and V;; is the
voltage between cells. When this model extension is supported, the gap junction current
is added to the sum of currents to calculate dV/dt, as shown in Equation

Neens—1

/2
Lgap = Z (wi,j(co - el Vis) 4 c2) - Vij) (3.15)
7=0
dv Iap - Ichcmnels - Igap - Ileak
TR 1
dt Cor (3.16)

3.1.5 IO model

Having mentioned all the extensions added to the HH-model required by the IO model,
the modeling hierarchy is shown in Figure Figure (a) illustrates the most abstract
view of the model, a network of seven neural cells. Each cell includes three compartments,
the dendrites, soma, and axon, as shown in Figure (b), and current flows internally
between each adjacent compartment as shown in yellow. The gap junction connections
between cells are shown in blue color, and here we considered a fully connected network.
Finally, Figure (c) illustrates the ion channels for each compartment.

(0) Gap Junction's
Connections

~“Soma  (Axon

“a
Inter compartment
communication

©
Figure 3.1: (a) Schematic overview of neural network of 7 cells. (b) A single neuron
cell. (c) Single compartment showing its ion channel gates(red arrows)



Design Process

This chapter describes all the steps performed during the design of the improved flexHH
hardware library. We will follow the steps of the Maxeler design methodology described
in [25, [55], this process was developed to support as much as possible the programmer
in developing HPC applications on Maxeler’s dataflow engines. Moreover, all the differ-
ent aspects of analysis, architecture, and implementation are integrated into this design
methodology. Additionally, using this methodology helps us perform a fast design space
exploration before the actual implementation. This will prevent spending time on ar-
chitecture that does not fit or will not provide adequate speed up of our application.
Maxeler’s Technologies design methodology consists of:

1. Accurate analysis of the targeted application;

2. Design of a representative software model;

3. Performance modeling of architecture candidates;
4

. Rigorous development of an application-specific architecture based on the results
of the above parts.

4.1 flexHH library Analysis

The first task is to analyze the flexHH library to determine the computation-intensive
parts and understand how to improve the application. In this work, we will optimize and
improve the performance of an already implemented work done in [38], and a C-based
model is already provided. The provided C model is implemented by Rene Miedema
on behalf of Neurasmus B.V. and ICCS Athens as part of the Brainframe theme of the
Erasmus Brain Project [56]. In this work, the C programming language is used since it
fits our requirements, and most of the tools being used in this analysis support them.
Using a software model provides many benefits; it provides an insight into the code. It
is easier to profile, and it can assist in the verification of the output. Moreover, it can
also be used as a debugging reference for the implementation.

The IO model of the flexHH library is chosen for this analysis since the other cases are a
subset of this. The model is profiled to focus on which parts of the model predominate
the execution time. It is important to remark that profiling is done to provide an
initial assessment of which parts of the model need greater attention or have room for
improvement. During the implementation, these parts will be possible candidates for
optimization to speed up our application. Various tools are used to extract pertinent
information, and for all the tools, the numbers that are illustrated were obtained on

27
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an Intel Core i7 4790 (Quad-Core 3.6GHz), 8GB RAM using Deepin 15.9 (Debian)
Operating System. A set of realistic data-sets should be used to extract the information
from these tools to grasp a real-world use case as accurately as possible.

4.1.1 Static and Dynamic Code Analysis

This section introduces the static and dynamic code analysis. Static code analysis is
emphasized in the source code. It will mainly help us understand our application and
the data sizes that need to be transferred between accelerator and CPU. On the other
hand, dynamic code analysis uses profiling programs that will help us understand our
application’s hotspots.

In all the simulation runs on the following tools, the gates, and the compartments pa-
rameters are set constant, and we simulated using two network sizes of 96 and 7,680 cells.
The number of compartments and gates is set to 3 and 13 per cell, respectively. Gap
junctions are enabled, and the custom gates functions are used. The simulated steps are
set to 10,000. These network sizes are chosen to provide us with adequate information
and compare a small and a larger network of neural cells.

Linux GNU GCC Profiling Tool (gprof) [57] is a performance analysis tool for Unix
applications. To gather profiling information at run-time, gprof uses a sampling process;
the sampling process is statistical, meaning that the profile data are not an exact but
rather statistical approximation. Aside from that, gprof is a fast and easy to use profiler
that provides us with fast results. Three simple steps are needed to use gprof; first,
re-compile having enabled profiling (add -pg as an argument), execute the program and
finally run gprof to analyze the profile data file (gmon.out).

Both Tables [.1] and [£.2] illustrates the profiling results of the C model simulation using
gprof. In the first table, we can see that iGapCell and fGap functions related to the gap
junction computations are ranked first and fourth and takes 34.68% of the CPU time.
fCustom, fExp, copyXs, and min functions are all related to the gate computations and
takes up to 37.1% of total CPU time. The rest of the functions are used in the compart-
ment’s computations are taking less than 5% of the total CPU time. It is interesting
that in Table the model behavior completely changes. Having a larger network leads
to an enormous increase in the functions related to gap junction computations and takes
up to 94.63%of the total CPU time ranked first and second in Table The rest of the
functions takes 5.37%, which is negligible compared to the gap junction computations.
This highlights the need for profiling since, as shown here, the programmer will focus on
optimizing a single part of the application. The calls to each function, the cumulative
time, and individual time per function are also mentioned for reference.
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Table 4.1: Profiling results for C model with network size of 96 cells
Running Cumulative Individual

Function time (%)  time (s) time (s) Calls
1GapCell 25.81 0.52 0.52 960,000
HHGAP_-CPU 25 0.63 0.51 1

fCustom 21.78 0.90 0.27 24,960,000
fGap 8.87 1.01 0.11 92,160,000
fExp 7.26 1.10 0.09 49,920,000
copyXs 6.45 1.18 0.08 12,480,000

caleTApp 2.42 1.21 0.03 288,000
min 1.61 1.23 0.02 24,960,000
getVnext 0.81 1.2 0.01 2,880,000
getPnext 0 1.2 0.00 2,880,000
getVprev 0 1.24 0.00 2,880,000

Table 4.2: Profiling results for C model with network size of 7,680 cells
Running Cumulative Individual

Function time (%)  time (s) time (s) Calls
1GapCell 62.58 8,185.03 8,185.03 76,800,000
fGap 32.05 12,980.97  4,195.94  589,824,000,000
sumArray32 2.79 12,746.23 365.26 2
HHGAP_CPU 1.04 12,882.38 136.15 1
fCustom 0.74 1,2979.25 96.87 1,996,800,000
copyXs 0.32 13,021.14 41.89 998,400,000
FExp 0.50 13,060.41 39.27 3,993,600,000
‘min 0.08 13,070.88 10.47 1,996,800,000
caleIApp 0.03 13,0748 .92 230,400,000
getVprev 0.03 13,077.41 2.61 230,400,000
getVnext 0.02 15,080.02 2.61 230,400,000
getPneat 0.02 13080.49 0.47 230,400,000

Valgrind [58] is another tool that allows us to profile our application in more detail
that records the call history among functions in a run as a call-graph. Callgrind tool
is part of the Valgrind framework, which profiles an application by transforming it into
an intermediate language executed in a virtual processor emulated by Valgrind. The
downside of using this tool is that it has a substantial run-time overhead; however, it
has excellent precision.

The output file that includes the profiling information of the analyzed application pro-
duced by Callgrind is displayed using KCachegrind, as shown in Figures and
Figure shows the function ranking based on the total time spent on each function.
Self-time refers to the time that each function takes, excluding the called functions. The
number of called times of a function is also mentioned. Figure shows the Callee Map
of the iGapCell function where the surface represents its weight to the program.
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Flat Profile @
Search: | Source File - |
Self Source File =
N 2478 4l e_exp.c
I 1561 M mcount.c
1 1157 B _mcounts
6.06 W w_exp_compat.c
3.63 W e_pow.c -
1 b
Incl. Self Called Function Location
N 100.00 0.00 1 B main HHio: HHgapMy
N 10000} 9.87 1 B HHGAP_CPU HHio: HHgapMy
I 45.15 , 10.15 960000 W iGapCell HHio: HHgapM
| 3488  3.68 92160000 m fGap HHio: HHgapMy
| | 3263  6.57 24960000 M fCustom HHio: HHgapMy
[} 18.99 2.66 49920000 m fExp HHio: HHgapMU
482  3.26 12480000 M copyXs HHio: HHgapMy
3.95 0.82 24960000 B min HHio: HHgapM
055 019 2880000 M getPnext HHio: HHgapMU
0.53 0.17 2880000 W getVnext HHio: HHgapMy
052 015 2830000 W calclApp HHio: HHgapMy
051 015 2880000 M getVprev HHio: HHgapMy
0.00 0.00 1 & initChannels HHio: HHgapMy
0.00 0.00 1248 ® newChannelConstStruct HHio: HHgapMy
0.00 0.00 1 M initws HHio: HHgapMU
0.00 0.00 1 H initCompartments HHio: HHgapMU
0.00 0.00 288 W newCompartmentConstStruct  HHio: HHgapMy
0.00 0.00 1 M initYs HHio: HHgapMU
0.00 0.00 2§ sumArray32 HHio: HHgapMy

F_igure 4.1: Valgrind Output: Function Ranking

iGapCell
Types | Callers | Allcallers | Callee Map | Source Code

iGapcel 14515 % [fGap W _13488%

2
n
g
=)
5
A
B =
k: E
[
Ir Irpercall CEst  CEstpercall Count Callee
w3488 141 W 3488 141 92 160 000 & Gap (HHio: HHgapMulti.c)
012 47 042 47 960000 ® mcount (libc-2.27.50: _mcount.S)

Figure 4.2: Valgrind Output: Callee Map

Valgrind’s Callgrind output is converted using gprof2dot tool [59] to a call graph as
illustrated in Figures and {4 The graph shows the function hierarchy, and each
block indicates the function name, execution time percentage including and excluding (in
parenthesis) the called functions, and the number of times each function is being called.
The application had a huge call graph, although functions that are below a certain
threshold (0.50%) are pruned to focus on the meaningful ones. Using these two call
graphs makes a comparison between the two cases easier. In the first Figure where
96 neurons are being simulated, 45.15% of the total execution time is spent on iGapCell
function. Simulating a network size of 7,680 cells shows that iGapCell dominates the
execution time with 98.55%, as shown in Figure 4.4l Additionally, we can observe a
heavy usage of floating-point exponential operations labeled as _ieee754_exp_fma, which
takes the 23.66% in the 96-cell network and 46.74% in the 7,680-cell network of total
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execution time. Finding a way to optimize or reduce this operation’s usage will reduce
the run-time of the application.

Intel® VTune™ Amplifier [60] software provides advanced sampling and profiling
techniques that quickly analyze a given application focusing on optimizing performance
on modern processors. Figure [4.5] shows the function ranking based on the CPU time,
and VTune can also denote in which line of the application the execution time is spent,
as shown in Figure 4.6 In Figure most of the time is spent in fGap function.
To conclude, Table illustrates the function ranking, and again the gap junction
computations take a substantial amount of the CPU time. It is also stated that the
function __GI__exp dominates the simulation of 7,680 cells with 66% of total CPU time.
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Hotspots Hotspots by CPU Utilization + @
Analysis Configuration  Collection Log Summary Bottom-up  Caller/Callee  Top-down Tree  Platform  HHgapMulti.c
3r0uping:| (custom) Function
Function CPUTime ¥ [#|| Module | Function (Full) | Source File Start Address
fGap 1.7765 HHio fGap HHgapMulti.c  Oxd60
fExp 0.836s | HHio fExp HHgapMult.c  Oxefb
+ [Loop at line 334 in HHGAP_CPU] 0.628s HHio |[Loop at line 334 in HHGAP CPU] | HHgapMult.c  0x1781
fCustom 0.484s | HHio fCustom HHgapMulti.c | Oxf48
[Loop at line 141 in iGapCell] 0.248s | HHio I LODE at line 141 in iGapCell] | HHgapMult.c  Oxdel
min 0.236s  HHio min HHgapMult.c  Oxcdc
copyXs 0.192s  HHio copyXs HHgapMult.c | 0x115d
getPnext 0.060s | HHio getPnext HHgapMult.c | 0x138e
calclApp 0.0365 | HHio calclApp HHgapMult.c  Oxeba
[Loop at line 291 in HHGAP_CPU] 0.0365 | HHio [Loop at line 291 in HHGAP_CPU]  HHgapMult.c  Ox14c7
getvnext 0.032s | HHio getVnext HHgapMult.c | 0x1339
getVprev 0.028s | HHio getVprev HHgapMulti.c  0x12ec
func@ox870 0.020s | HHio func@oxs870 0x870
[Outside any known module] 0.008s [Outside any known module] 0

Figure 4.5: Intel® VTune™ function ranking based on CPU time

| Source # CPU Time: Total
126 sum += array[il;

127 }

128 return sum;

129 }

130

131 float fGap(float v){

132 return exp(v * v * (-
133 }

134

135

136 float iGapCell(uint32_t nCells, uint32_t nCompartments, uint32_t offset, float v, float *vs, float *ws){
137 float vDiff;

138 float fAcc = 0;

139 float vAcc = 0;

140 uint32_t 1 = 0;

141 for(i = @; i < nCells; i++){ 0.9%
142 vDiff = v - vs[i * nCompartments + offset]; 1.6%
143 /7 printf("vDiff: %.12f\n", vDiff);

144 // printf("w:%.12f\n", ws[i]);

146 vAcc += ws[i] * vDiff; 0.6%
147 3}

148 return 8.8 * fAcc + 8.2 * vAcc;

149 3}

Figure 4.6: CPU time percentage denoted in source code

Table 4.3: Function Ranking based on CPU time
Function Ranking CPU time(s) Function Ranking

CPU time(s)

(96 cells) (7680 cells)
fGap 1.77 __GI__exp 10,572.01
fExp 0.83 1GapCell 2,582.53
HHGAP_CPU 0.62 fGap 2,485.58
fCustom 0.48 fCustom 83.84

1GapCell 0.24 HHGAP_CPU 48.95
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Using these profilers pinpointed, which is the most computationally intensive part of our
model, which is going to benefit most from hardware acceleration. Besides computation
complexity, it is crucial to consider the data movements between functions to find the
optimal partitioning between CPU and FPGA. The bandwidth between CPU and FPGA
is often limited, leading to a bottleneck in an application. Hence, it is useful to move
parts of the application in the FPGA that may have short execution time to reduce the
number of data transfers.

First of all, it is evident that the gap junction functions (iGapCell and fGap) needs to
be accelerated on hardware since are the most computationally intensive part of our
application. Furthermore, to determine where the rest of the functional blocks will be
placed, the data transfers and each block’s execution time needs to be calculated. The
application is separated into two functions, as shown in Figure [£.7, Function 1 includes
the gap junction computations, and Function 2 includes the rest of the computations.
The partitioning options of our application between [CPUland [FPGA] are shown in Figure
The execution time per function is taken from gprof. The first option is to place
everything on the CPU, which has a total execution time of 13,080.49 seconds. The
second option is to accelerate Function 1 on[DFE| with a total execution time of 3,654.76
seconds. The data transfers from the LMem are also considered by dividing the data
needed for 10,000 steps with the memory’s bandwidth. In the third option, both functions
are accelerated on [DFE]| with a total execution time of 3,003,75 seconds. Function 2 has
an execution time of 4.99 seconds when ported into DFE compared to 660.25 seconds
when is placed on CPU. We can notice a vast difference in execution time between the
three options, and it is clear that the third option is the most promising. The execution
times for the [DFE] are approximations and are calculated using the number of iterations
of each loop and then is divided by an estimated frequency (200 MHz in our case). In

2
Ncells ) Nsteps

. The data transferred between

Function 1, the execution time is calculated using and for Function 2 the

Ngates : Ncells . Nsteps

execution time is calculated using

each function is taken from the C model and is divided with the available interface’s data
transfer speed (e.g., Gen2 x8). The CPU execution time can vary if, for example, a
workstation is used, which has better performance; this will lead to a decreased execution
time. Moreover, the DFE execution time is considered without any optimization, such
as hardware loop unrolling, which will be discussed later, or, for example, functions that
may be computed in parallel. The partitioning may change once the performance is
modeled, as it will be described in section 4.3 and is highly recommended to revisit and
reconsider this partitioning.
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Execution time 13,080.49s Execution time: 3,654.76s Execution time : 3,003.75s
CPU DFE LMem Transfer: 46.11§ fDFE LMem Transfer: 48.1&

Function 1 - 12,380.97 i N

[ ' S] [F“”Ct'on ! 2’949'125] ﬁ=uncﬁon 1- 2,949.125]

1 )
\ 4 0.85GB
] \ [ Function 2 - 4.99s ]
[ Function 2 - 660.25s ] CPU Transfer 0.28s

[Function 2 -660.25s ] k j

Only Final result
v sendto CPU 1.52s

CPU

Figure 4.7: Partitioning options of the application and the impact on execution time

4.1.2 LoopFlow graphs

In this subsection, loop flow graphs are introduced, which help us get an insight into
the volume of operations executed, their type, and the amount of data needed per loop.
Loopflow graphs are chosen for this task since it is hard to observe, analyze, and under-
stand data movements in an application. Using a loopflow graph will help us visualize
and understand the previous analysis results and make the proper decisions before mov-
ing to implementation. Loopflow graphs focus on the loops in an application and how
they interact with each other and are deemed helpful since most of the execution time
is spent on loops.

Figure [4.8]illustrates the loop flow graph for the fully extended model of our application.
This report will be centered on the most complex model (I0) to make explanations and
analysis more manageable, but everything explained, holds for the rest of the models
since are subsets of this model. A rectangle represents a loop, and the number of nested
loops is annotated on top of each rectangle. The data transfers are illustrated as directed
arrows, and its width denotes the amount of data that needs to be transferred. An
element mentioned in each directed arrow is the amount of data transferred in bytes.
The orange arrow denotes the inputs to the loops. The network size is set to 7,680 cells,
the gate number is set 13, and the number of compartments is set to 3. Inside each loop’s
rectangle, the number and the type of operations per step are annotated. The number
of operations is calculated by taking the maximum number of operations in each loop
using the C model. Two of the inputs, the membrane voltage, and the gate activation
variables have a double-sided arrow. In each new step, the old values are read, updated,
and written back to memory. One can easily spot that the most computation-intensive
loop is the gap junction loop. It has two orders of magnitude more computations than
the gate loop and three orders of magnitude more computation than the compartment
loop and it also requires the most data transfers. With this, the gap junction loop will
undoubtedly be moved to [DFE] It also makes sense to place the rest of the loops on
[DFE] as it is also mentioned in the previous section. The membrane voltages are being
used by all the loops in our application and are continuously updated. If the rest of the
loops are placed on the CPU, synchronization will be needed from both sides, leading to a
drop-in performance. Additionally, the gap junction will have to wait from the CPU side
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to update the membrane voltage values and then continue with the next computations,
impacting performance. In our case CPU will be responsible to initialize the parameter
structures, rearrange input/output data and write data to output files. Finally, all loops
are executed for a finite number of steps, which means that the number of operations
and data needs to be multiplied by the number of steps.

Compartment Gate Network Membrane Gate activation
constants constants weights voltage variables
1 xNsteps
| A A

||
235,929,600 slemeants

9,584,640 elements
x1

Gap Junctions computations
— 825,753,600 operations per step 4—235 929 600 elements-
(5 Add, 7 Mul, 1 Div, 1 Exp) <

Gate computations -« 399,360 elements=
-* 3,394,560 operations per step < 23,040 element
|92 160 elemer » (16 Add, 10 Mul, 3 Div, 4 Exp, 1 Pow)
7680 slemants + 7680 elements

23,040|elements

Compartmental current and final integration

| computations
747,260 elements=—)h 414,720 operations per step 32,160 eloment

(11 Add, 5 Mul, 2 Div)

491 520

Figure 4.8: HHio Loopflow graph. Boxes represent loops and their internal operation
types and count. In the top of each box the number of iterations is denoted. Arrows
show data movements, and the number of elements (bytes) transferred for each step

4.1.3 Operation analysis

To understand the magnitude of each loop’s executed operations, an operation analysis
was conducted. The Figure [4.9] illustrates the number of operation per loop and Figure
the percentage of each operation per type. The impact of the gap junction loop
is clearly shown in Figure with the rest of the loops contribution being so minute
that is barely visible on the graph. Compartment and gate loop use more additions and
subtractions operations compared to gap junctions that multiplication is the most used
type of operation. The reason for showing the percentages of each type of operation is
clearly for comparison purposes. This will help later during the performance modeling
to make decisions about the area since each operation has a different resource utilization.
Additionally, knowing this is helpful to understand further which part is the most com-
putationally intensive regarding the number of operations and the type and which part
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worth to be optimized. Obviously, in our case, we already found out that gap junctions
are the most computationally intensive part.
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Figure 4.9: Number of operations per loop separated per operation type
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Figure 4.10: Percentage of each operation per loop
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4.2 Software model

The software model is a simplified software implementation of the parts of the appli-
cations that are going to be ported onto [DFE] In our case, the whole model will be
ported onto the [DFE] This means that a new C model is not needed. If this was not the
case, the parts that will be ported should be extracted from the application and should
be changed to represent the intended [DFE] implementation accurately. The parts that
are going to be ported on [DFE]|should be implemented as a standalone model. All the
data shared with the other parts should be extracted and thoroughly validated with the
original data to assist later during the implementation phase.

4.2.1 Numerical Analysis

One of the most essential and most challenging parts in implementing an application
for [DFEE is the numerical analysis. Instead of using floating-point arithmetic, a custom
fixed-point arithmetic is sought that meet the demands of our application. This step
is often neglected since it is time-consuming or believed that it would not improve the
application. This analysis will provide us with information regarding the conversion from
floating-point to fixed-point arithmetic. Three significant benefits that are achieved by
converting an application from floating-point to fixed-point are; (1) the reduction of
power consumption, (2) the reduction of hardware resources used, and (3) savings in
memory bandwidth [61]. In this work, we are focused on minimizing resources and saving
memory bandwidth. Minimizing resource utilization can lead to improved performance,
considering that more resources will be available for computing capabilities. Minimizing
memory bandwidth will help in improving the performance if the given application is
memory-bound, and this will be further analyzed in the following sections. Addition-
ally, the amount of memory needed to store the parameters will be reduced. This is yet
another trade-off, as shown in Figure between floating-point and fixed-point arith-
metic. On the left side, floating-point arithmetic offers more precision, dynamic range,
and less development time and on the other side, fixed-point offers less area utilization,
less power consumption, and data compression.

Floating-point Fixed-point
Dynamic range Area
Precision Power

Development time Data compression

Figure 4.11: Trade-off between fixed-point and floating-point arithmetic

To find if a fixed-point implementation benefits worth over precision and dynamic range,
further analysis of our software model is needed. This is achieved by using a set of tool-
s/libraries provided by Maxeler Technologies that collects data during an application’s
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execution. The challenge in this step is to find the ideal fixed-point size, if it exists,
that prevents overflow and underflow and accuracy close to the floating-point. Overflow
in computer arithmetic means the calculation values exceed the maximum representable
value, and underflow means that the results are smaller than what can be represented
by the data type and are rounded to zero. The rest of this section will describe this
process, which includes three stages mentioned below:

1. Value profiling;

2. Fixed-Point Simulation;

3. Error Calculation between floating-point and fixed-point.
Value Profiling

This analysis starts with the value profiling of our software model. For this step, a
library can be used that automatically records exponent ranges for an appointed number
of variables, and in this thesis, this library is provided by Maxeler Technologies. The
most crucial variables are chosen to be traceable such as outputs and variables that hold
intermediate results. Figures - illustrates the chosen variables exponent range.
On the x-axis, their binary exponent range is shown; on the y-axis, the data snapshots
per step, and each rectangle’s color represent the percentage of the elements in a bucket.
The statistical information regarding the value profiling for all the variables is taken per
simulation step; otherwise, (e.g. per value update), a huge amount of data is created
and is hard to analyze.

Intercellular current: Figure illustrates the values of the intercellular current.
During the first 4000 thousand steps, the values are zero since no external current is
added to the model; this results in no differentiation in each neural cell’s voltages; thus,
the intercellular current is zero. As we can see, the values for the exponent ranges
between 6 to -13 exponents values and most of the values are concentrated between -5

and -10 values.
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Figure 4.12: Intercellular current exponent range in a 10,000 step simulation
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Channel current: Figure shows the exponent range for each channel’s current.
Most of the binary exponent values are concentrated to the right side, ranging between 9
to -13 binary. On the other hand, we see a percentage of elements of about 10% ranging

from -19 to -49 exponent.
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Figure 4.13: Channel current exponent range in a 10,000 step simulation

Summation of all channels current: This variable holds the sum of the currents
flowing through all ion channels per compartment. In Figure [4.14] we can notice an
interesting outcome, the binary exponent varies between 10 and -6 exponents. This
means that the high binary exponent noticed from the separated channel currents is
rounded to a number represented with less number of bits. This also means that we
may lose accuracy during this summation depending on the allocated number of bits for
fixed-point.
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Figure 4.14: The sum of all channel currents exponent range in a 10,000 step simulation

Gate activation variables: Figure shows the data snapshots for gate-activation
variables. As in the channel’s current, we can notice the same trend in binary exponents,
a percentage of about 10% of elements reach a huge binary exponent of -53.
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Evolution of 'Ys' values through iterations
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Figure 4.15: Gate activation variables exponent range in a 10,000 step simulation
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Compartmental current: The compartmental current’s binary exponents values are
ranging between 5 to -7 but most of the values are concentrated between 5 to -3 binary

exponent values as depicted in Figure
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Figure 4.16: Compartment current exponent range in a 10,000 step simulation
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Compartment voltages: The compartmental voltages consists of the voltages of axon,
soma and dendrites compartments. Their binary exponent values are illustrated in Figure
[4.17 and ranges between 6 and -2 and we notice a concentration of the exponent between

2 and 6.
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Evolution of 'Vs' values through iterations
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Figure 4.17: Compartment voltage values in a 10,000 step simulation

The output of the value profiling is all concentrated in Figure for the variables
mentioned above. The black lines enclose a possible scenario to use as a starting point
in the fixed-point simulation. The values from the channel current and gate activation
variables are not enclosed since both required a huge amount of bits that will negate the
benefits of using fixed-point. Additionally, the percentage of the elements in those two
variables is less than 10% and we will find out their impact during the next step. As a
starting point in the fixed-point simulation, 10-bits will be used for the integer part and
13-bits for the fractional part.
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Figure 4.18: All profiled variables showing their decimal and fraction binary exponent

Observing the results above, three possible cases may be implemented regarding fixed-
point, and the choice will be affected by the results from the fixed-point simulation:

1. Change the entire application’s operators to fixed-point datatype:
The first case is to change the entire application to the fixed-point data type.
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Accuracy will be traded off for performance, and extra resources will be available
to optimize our application (e.g., a higher unrolling factor for loops).

2. Change only gap junctions and compartment computations
Through the analysis, we can see that the gap junctions and compartment calcula-
tions can fully utilize fixed-point arithmetic since their exponent values are within
an ideal range for fixed-point arithmetic. This will result in casting values from
floating-point to fixed-point, and this cost needs to be considered.

Fixed-Point Simulation

In this section, the fixed-point simulation is performed considering the results from the
value profiling done previously. The loss in accuracy is quantified, and the error is cal-
culated to examine if the results are satisfying. For this analysis, Erasmus MC provided
a Matlab file that describes our model with a set of realistic parameters to test fixed-
point simulation. All the data are extracted from Matlab in different files, including the
compartment constants, the gate constants, and the gap junction’s connectivity matrix.
The next step is to run the given C model in both floating-point and fixed-point with
the extracted data sets, analyze the results, and quantify the error. For the fixed-point
simulation, a library provided by Maxeler Technologies is used, and to use this library,
the C-model is updated to C++ programming language. This part can be done using
any other fixed-point library or tools; for example, Matlab has a tool that can help with
fixed-point analysis as mentioned in [62]

The given Matlab file had five different variations regarding the interconnection matrix.
The first one has the sparsest, and the last one the denser interconnection matrix, the
rest of the parameters were the same. Using multiple data sets will show how our
application reacts and see if using a fixed-point will produce results that are closed to
the floating-point application. The densest connectivity matrix’s simulation results will
only be shown and discussed not to clutter this report with many graphs. The same
analysis pattern is followed for the rest of the cases, and the results were the same.

For all the simulation conducted a network size of 100 neurons is simulated for 3,000
steps. This number of neurons was chosen because the simulation had high memory
capacity demands. At some point, the system was out of memory, depending on the
fixed-point data type size chosen.

The first choice was to use 10-bits as the decimal part and 13-bits for the fractional part
taken from the value profiling section, but this did not produce satisfying results. It is
important to mention that the gap junction weights data size is set to 16-bits, 1-bits
for the decimal part, and 15-bits for the fractional part in all the cases. Figures [4.19
- [£23] illustrates the error percentage for each fixed-point case and is calculated using
Equations and and the average error is calculated using Equation The
absolute error in Equation [£.1| measures the difference between the measured values and
the actual values, in our case the fixed-point values and the floating-point values are
used respectively. The relative error in Equation [4.2] express as a fraction how large is
the absolute error compared to the actual value and when multiplied by 100 you get the
percentage of the error. The relative error is computed for each neuron in each step to
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help us understand the magnitude of the error and its pattern. Many combinations of
fixed-point sizes are included here to compare the difference in error. Seeing the graphs
does not lead to an obvious choice since the average error is not large enough, but we
can see that there are error spikes for certain cells that appear in all the combinations,
which point us to investigate them. Figure and illustrates the 10/17 and 12/15
fixed-point cases with an average error of 0.2096% and 0.2672% respectively. Moreover,
an error spike reaching an error of 2.2 - 10° % can be seen in both figures. This error
leads to a completely different behavior for a certain neurons.

Errorasoiute = Measured Value — Actual Value (4.1)
Errorabsolute
E e = | ——————— 4.2
"1 OTrelative 'Actual Value (42)
Values
. E .
ETT’OTQvemge = ZZ:O IO relative (4.3)

Values

x10°

%10° 125

25

Error percentage (%)
o

3000

1000 40

Time Steps (ms) 0 o Neurons

Figure 4.19: Error in a network of 100 neurons simulated for 3,000 steps (dt=0.01)
using fixed-point datatype with 10 decimal and 17 fractional bits for axon compartment
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Figure 4.20: Error in a network of 100 neurons and 3,000 steps (dt=0.01) using
fixed-point datatype with 12 decimal and 15 fractional bits for axon compartment

In the following three figures we can notice that, by increasing the decimal part to 13-
bits, it results in two orders of magnitude less average error (from 0.2096% to 0.0089%).
Having more than 13-bits does not improve the average error, and the error spikes still
exist, as shown in Figure When the fractional part is increased to 15-bits, it results
in a smaller error spike, from 2210° to 1.3210°, as shown in Figure

x10°

125
%10°

2.5

Error percentage (%)
(5,

3000

1000 40

Time Steps (ms) 0 o Neurons

Figure 4.21: Error in a network of 100 neurons simulated for 3,000 steps (dt=0.01)
using fixed-point datatype with 14 decimal and 13 fractional bits for axon compartment
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Figure 4.22: Error for a network with 100 neurons and simulated for 3,000 steps
(dt=0.01) using fixed-point datatype with 13 decimal and 14 fractional bits for axon
compartment
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Figure 4.23: Error in a network of 100 neurons simulated for 3,000 steps (dt=0.01)
using fixed-point datatype with 13 decimal and 15 fractional bits for axon compartment

The huge error spikes that are found in all the previous graphs are further investigated
to determine the degree to which it affects the output. Two of the neurons that had a
huge error spike can be seen in Figure and Figure The blue line represents
the fixed-point and the red line represents the floating-point neuron’s axonic voltage
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output. As shown the options 10/17 (Decimal /Fractional), 13/14, and 14/13 have a flat
output compared to floating-point. For neuron 45 we noticed that the 12/15 case has a
phase difference where the 13/15 have a behavior close to reference. For both 12/15 and
13/15 options for neuron 78, we notice a phase difference, but the behavior is close to
the reference, and Erasmus MC deemed it an acceptable output. Increasing the decimal
part does not improve the output but increasing the fractional part does improve it as
shown in the last subplot with size 13/19. The choice of 28-bits considering the average
error, the spike errors, and its smaller number of bits seems the best choice. Important
to mention that by checking the results with Erasmus MC, they pointed out the behavior
is the most important thing to consider. Having an error that does not affect the output
behavior can be considered as a valid output.
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Figure 4.25: Output comparison between fixed-point and floating-point for Neuron 78
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Besides, the axonic compartment, the somatic and dendritic compartments are also
analyzed. The somatic and the dendritic compartments had better behavior and smaller
error compared to the axonic compartment with the chosen fixed-point datatype. Figures
and illustrates the error graph for somatic and dendritic compartments. The
same analysis is executed, and the spikes are also analyzed separately to see if these errors
have a huge impact on the output. These two compartments followed a different error
pattern with an average error of 0.0037% for the somatic compartment and 0.0568% for
the dendritic compartment. Finally, the output for both compartments is investigated
and dendritic compartment output was close to the reference. On the other hand, the
somatic compartment had a neuron where its output had a phase difference as shown in

Figure
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Figure 4.26: Error in a network of 100 neurons simulated for 3,000 steps (dt=0.01)
using fixed-point datatype with 13 decimal and 15 fractional bits for soma compartment
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Figure 4.27: Error in a simulation of 100 neurons simulated for 3,000 steps (dt=0.01)
using fixed-point datatype with 13 decimal and 15 fractional bits for dendrite
compartment
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Figure 4.28: Somatic voltage output for fixed-Point(13/15) and floating-point for
neuron 78

Finally, the error of the gate activation variables is analyzed. In this part, it was difficult
to concentrate all the gate activation variables for all neurons in one graph. Hence, the
error for just two neurons is illustrated. The output for each neuron gate activation
variables can be seen in Figures [£.29] and [£.30] The x-axis represents the timestep, the
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y-axis represents each neuron gate activation variable’s output, and the z-axis represents
the error percentage. The first figure illustrates a small error on the output using the
chosen fixed-point data type with an average error of 0.0011% and a peak error of 0.08%.
The second figure includes some high peaks that reach up to 22% of error while the
average error is 0.1645%. These peaks appeared only in the last gate activation variables.
This error may be produced in an intermediate calculation because the fractional bits
are not enough to represent the intermediate results. Losing accuracy is expected, so we
decided to continue with this fixed-point datatype as it seems that the results produced
are better than what was expected. The error is only concentrated in two sections in
the graph, and the average error is low. Using the results of this analysis, it is decided
that all the model will be changed to a fixed-point. Implementing the other hardware
options will cost in complexity and area since numerous castings will take place between
different fixed-point sizes, or extra logic will be needed. These results will be considered
again in the area usage prediction of the performance model section to take the final
decision when we also considered the area utilization of fixed-point.
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Figure 4.29: Error percentage for all the gate activation variables for neuron 0 using 13
decimal and 15 fractional bits
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Figure 4.30: Error percentage for all the gate activation variables for neuron 50 using
13 decimal and 15 fractional bits

4.3 System Architecture

Using all the information from the previous section a system architecture is created, as
shown in which is used to estimate bandwidths (LMem and PCI) and compute
time. Additionally, a detailed hardware system architecture for our application can also
be created, which is shown in the following chapter since each modification is highlighted
and explained. Firstly, which data needs to be streamed from LMem and PCle needs
to be determined. In our example, the neuron and the gate structures are all streamed
from LMem since their size increases when you increase the number of neurons and as is
also mentioned in [38], LMem provides a more stable kernel performance. Additionally,
they required a lot of space to be stored on-chip. The same holds for the gap junction
weights. It is left to decide which data needs to be stored on-chip and be kept close to
the computations. You can find this by analyzing the software implementation and find
which variables are often used. In this case, the cell/compartment voltage potentials, and
the gate activation variables are often used and are continuously updated throughout
the execution. This indeed is verified once the area estimation is done since the memory
space needed may be larger than what is supported. Next, you need to consider the
application’s output and see if you need to send it back to the host through PCle directly
or save it in LMem if needs to be reused. For this application, the outputs are the
cell/compartment voltage potentials and the gate activation variables which are stored
in FMem; this means we don’t need to save it in LMem, and it can be directly streamed
to the host. To summarize, to create system architecture, you need to think about the
data transfers to and from LMem, what is stored in on-chip memory. More details will
be given in the following two chapters.
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4.4 Performance Model

In this section, everything until now will be considered to create an accurate performance
model. The performance model is used for rapid design space exploration without run-
ning the design’s place and route. It is called rapid since it cancels out options that are
not feasible (e.g., optimization that requires more hardware resources that are already
available). It also guides the architectural design decisions taken and evaluates the fi-
nal implementation. This means that the performance model can assist in achieving
the best of our application by efficiently utilizing the resources and bandwidth of the
selected platform. Finally, the execution time of a problem based on a defined size is
estimated, providing a fast first estimation of the speed-up. Performance modeling is an
iterative process to produce a refined version of the architecture; however, only the final
results are presented here. On top of that, it promotes the concept of thinking before
implementing, which is often neglected and leads to spending much unnecessary effort
and time.

The reason behind the ability to estimate performance and area, is that [DFEs only
includes predictable building blocks; thus, it is possible to estimate the performance and
area for a given architecture accurately enough. In other possible[HPC| platforms such as
are[CPUk and [GP Uk, the level of predicting performance on a given application is limited
because they also include complicated mechanisms like caches and branch predictors.
The performance model is created using a spreadsheet (e.g., Microsoft Excel), and all
the information is recorded there.

The total time it takes to process a given workload on a DFE (T},t4;) can be calculated, as
shown in equation @ Tnit is the time needed to initialize the DFE, for example, to set
up memory, cast values from floating-point to fixed-point, or to fill the computational
pipelines. It can be neglected if the workload is sufficiently large, and the execution
time dominates the initialization time. The initialization time cannot be predicted since
it depends on the used platform, but Maxeler mentions that a SLiC action overhead
is between 1 and 100ms. In this work, Tj,;; is going to be ignored, since this time is
inevitably needed, and it cannot be calculated. T¢,.. is the time that the actual execution
takes and consists of the time it takes to perform the computations (o, section 4.3.2),
the time it takes to transfer data between host and FPGA (T,omm section 4.4.3), and
the time it takes to transfer the data between FPGA and the on-board memory (Tinem,
section 4.3.4). Execution time is calculated using [4.5

CZjtot = Tinit + Teacec (44)

Tegec = max(Tcompa Tmem) + Teomm (45)

4.4.1 Area Usage Prediction

Predicting area usage is crucial to determine the timing requirements. We first need to
discover the degree of parallelism that our application can achieve, based on our available
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resources. To do that, we need to understand how [FPGA] is using its hardware, which
is explained below:

1. Arithmetic Operations

The area used by the arithmetic operations can be calculated using the software
model. We first count the number of arithmetic operations separated by type.
Subtractions and additions can be counted as one since the same hardware is used
for both operations. Next, the number of resources used by each operation type of
the targeted FPGA device is found by conducting microbenchmarks or by using
s vendor documentation [63] 64, [65, [66]. To conduct a microbenchmark,
you place and route simple designs to extract each operation’s resource utilization.
Using MaxCompiler simplifies the whole process since it provides source-code re-
source annotation per line of code, which helps to get the exact number of resources
used by each operation type. A microbenchmark for both floating-point and fixed-
point is executed, and the results are shown in Table Finally, the overall area
usage can be estimated as the area cost of a single operation multiplied by the
number of operations per type.

Table 4.4: Resource utilization per operation taken from Microbenchmark

‘ Floating-Point(32-bits) Fized-Point(28-bits) Fized-point(27-bits)
Operation LUTs FFs BRAMs DSPs | LUTs FFs BRAMs DSPs | LUTs FFs BRAMs DSPs
Add/Sub ‘ 200 316 - 2 32 33 - - 27 28 - -
Mul 117 1% . 2 4 99 - i |5 45 - 2
Div ‘ 799 1387 - - 1143 2357 - - 826 1716 - -
Exp 438 941 1 9 526 1368 1 10 | 412 949 1 10
Cast | - - - - 330 437 - - 330 437 - -

2. TP modules
IP modules are considered any peripherals such as [PCIe, memory interfaces, con-
trollers, and others. To find the resource requirements, microbenchmarks can be
used. Maxeler Technologies recommend to assume a slightly higher memory and
logic used to lengthen the safety margins for scheduling and other needed control
logic that is hard to predict. The number used in this report for the PCI and the
memory controllers are found in [25].

3. On-Chip Memory
On-chip memory is used for three different purposes. Operations and IP modules,
but these are already included in the above two categories. Additionally, on-chip
memory is used to buffer data and for FIFOs that schedules the kernel dataflow
graph. The on-chip memory for data buffering can be calculated using microbench-
marks, but it may be easier and faster using the vendor’s documentation [47]. For
example, the device used in this work supports many arrangements for memory,
which can be determined based on our application’s requirements. The number
of write/read ports requirements and the port width need to be determined since
it dictates how the memory will be initialized. For example, when floating-point
values are used, we need to store 32-bits of data, and if one read and one write
port are required, this will lead to each BRAM be initialized as two independent
18Kb BRAM width size 512x36bits. When each BRAM’s depth is known, the
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estimated number of the total memory used can be calculated using Equation
The required depth is the number of parameters that we need to store, the re-
quired width is the size of each parameter, and the required ports are the number
of ports necessary, all divided by what is supported by the hardware. Predicting
the memory used for [FIFOk that schedules the kernel dataflow graph cannot be
done accurately. Although, since the application will be implemented using mul-
tiple kernels we included the FIFO buffers placed between kernels data streams.
the default depth is 512 but this can be further increased to accommodate the
application needs.

depth width ports
BRAM,eq = e e e 4.6
a {depthhw w [widthhw w {portshw (4.6)
FIFOdepth

BRAMpirpo = betweenKernelstreams -
depthp,

4. Loops
Dealing with loops is crucial in hardware. The loops implemented in software
can be fully unrolled or partially unrolled on hardware. Unrolling on hardware
means that the number of operations needs to be multiplied by the unroll factor,
as shown in Figure[4.31] This means that the hardware utilization is also multiplied
by the unroll factor, as are the input data streams. Fully unrolled loops may not
be feasible due to the area or bandwidth limitations; this means that loops can
be partially unrolled. Multiple cycles are needed to compute the final result of

a partially unrolled loop. For example, a loop with N? iterations and an unroll
2

factor of 24 it needs — iterations to compute the final result.

° BRAM ° BRAM BRAM
/ / Unroll N times /

Figure 4.31: A loop unrolled in hardware
5. Conditional Statements
In contrast to conditional statements on [CPUE, on hardware, it is necessary to
implement logic that can deal with all the possible branches of these statements.
The final result is selected between the alternatives branches using a multiplexer.

This means that the resource requirements for an application are all the possible
branches of the conditional statement and the cost of a multiplexer.
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Figures and [4:33)illustrates the estimated resource utilization for both floating-point
and fixed-point. The illustrated resource utilizations shown are for the HHio model, with
the gap junctions computations being unrolled in total 192 times for floating-point and
180 times for fixed-point. We notice that DSP utilization is higher for fixed-point com-
pared to floating-point. It was expected since our application requires higher accuracy
than what is ”optimal”. The usage of 27-bits fixed-point datatype was going to provide
reduction in hardware usage, as shown in Table [£.4] It requires 2 DSPs per multiplica-
tion, as floating-point compared to 28-bit fixed-point datatype, which requires 4 DSPs.
On the other hand, fixed-point arithmetic does not use DSPs for additions/subtractions
compared to the 2 DSPs used by floating-point operations. Since the gap junction loop
is the one being unrolled, based on the operation analysis in section we see that
gap junctions include more multiplications than additions/subtractions and thus the
increased DSP usage.

On the other hand, we can see that floating-point utilizes 17.79% more LUTs and 7.56%
more Flip-Flops but 1.39% less BRAMs. The resource utilization is kept close to 80%
since, in the following steps, estimated frequencies are based on designs with less than
80% resource utilization (as proposed by Maxeler). The benefit of decreasing resource
utilization is not evident here, but this is the reason this analysis is executed. Each
application varies, and many applications will benefit more from using fixed-point arith-
metic. In this work, fixed-point arithmetic will be investigated since there is also the
benefit of data compression, which will save memory bandwidth and capacity and it will
be discussed later. This is an iterative step in our process, and with more results and
insight for the application and the tools, the architecture is continuously updated until
the final result is reached.

100

o Available
mam Used
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60

40

Area Utilization (%)

20

LUTs Flip Flops DSP48s 18k BRAMS

Figure 4.32: Estimated Resource Utilization using floating-point operators
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Figure 4.33: Estimated Resource Utilization using fixed-point operators

We first need to define an initial architecture to determine what to model in the per-
formance model. As mentioned in Chapter 2, the Xilinx Ultrascale architecture utilizes
three individual dies called SLRs, and inter-connectivity between these dies is limited.
When the hardware is unrolled more times, it spreads the design in multiple SLRs. Con-
sequently, long routing paths between dies result in tools not finding a way to route the
design. As such, it is often a good idea to treat each SLR as it would be a separate
FPGA. Considering the estimated resource utilization, it is obvious that our application
needs to be split into multiple kernels since it will consume more than 30% of the total
FPGA fabric (roughly every die utilizes 33% of the total resources). As shown in Figure
the most promising solution is to separate the gap junction loop into two different
kernels. This makes sense since it is the most computation-intensive part of our appli-
cation; thus, it will require more resources when it is unrolled. By dividing the design
into more kernels gives space to the tools to find an efficient placement of the kernels
across the different [SLRk. The first gap junction kernel will calculate the first half cells
intercellular current and the second kernel, the last half cells intercellular current. The
main kernel will include the gate and the compartment loops. Finally, the integration
part will use the data received from each gap junction kernel, and it will calculate the
final result. FMem will be used to store intermediate results, as is the intercellular cur-
rent, which needs a number of iterations to be calculated. The membrane voltages and
the gate activation variables are updated in each step are stored in FMem to be close to
the computations.
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Figure 4.34: HHio system architecture

4.4.2 Compute Performance Prediction

After estimating the area usage, the compute performance can be predicted without
considering the bandwidth limitations. The performance is calculated by dividing the
total data processed by the product of frequency and the data processed per cycle. The
data processed per cycle is the unroll factor of each gap junction kernel, as shown in
Equation [£.8] It is safe here to neglect the main kernel computation time since all
kernels compute in parallel, and gap junction’s kernels will dominate the computation
time. The frequency cannot be predicted, although Maxeler Technologies mentions that
it can be safely estimated to be between 200-350 MHz. This is estimated based on
experiments using artificial designs to fill up the chip up to 80%. In our application,
the data needed to be computed per step is the total number of iterations for the gap
junction kernel. The frequency is set to 200MHz, and the unroll factor is taken from the
previous section for each data type version per kernel (96 for floating-point and 80 for
fixed-point). Ngeys and Ngeps represents the network size, which is set to 7,680 cells,
and the number of steps, which is set to 1,000. The total time needed is 1.53 seconds
for floating-point and 1.84 seconds for fixed-point.

Ncells
) Ncells

2
N, = N, 4.8
* Nsteps f *unroll factor * Nsteps (48)

Ntot
f * NperCycle

TcompG J =
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4.4.3 1/0 Bandwidth Usage

The bandwidth between the host and the accelerator depends on the physical
interconnect that exists in each platform. Usually, for acceleration platforms and in our
case, [PCI¢ interconnect is used. [PCIe uses bidirectional links; this means that the full
bandwidth can be used in both read and write directions simultaneously. Our platform
supports up to 4GB /s, which can be found using the vendor’s manual. This number only
describes the theoretical maximum performance; realistically, one can roughly achieve
80% [9]. To estimate the communication time between host and accelerator, the max-
imum data sizes need to be estimated streamed in either direction, choose the largest
stream, and divide it by the physical interconnect bandwidth as is also depicted
in Equation 4.9 The accelerator’s input data are the initialization parameters that are
required only during the first step and can be neglected. On the other hand, the output
data includes the voltages for each compartment and the gate activation variables per
cell for all steps; this is what dictates the communication time. The calculated param-
eters sizes used are calculated having a network of 7,680 cells, 3 compartments for each
cell, 13 gates, and 1,000 steps, and the communication time is calculated to be 0.14
seconds. The fixed-point results will be cast to floating-point since the host does not
support fixed-point arithmetic, which means that the output stream’s total size is not
changed. When the models support single compartments or fewer gates, this means that
the communication will decrease, but to not clutter the report with many numbers, the
worst case is shown.

mafE(Datainu Dataout) _ Ncells * Nsteps * (Ncompartments + Ngates) - stze
Bandwidth - ef ficiency Bandwidth - ef ficiency

Tcomm =

(4.9)

4.4.4 On-Board Memory Behaviour

The on-board memory used in our [FPGA] platform is [DDR] memory-based, the band-
width for this memory is unidirectional which results in both directions (read/write)
sharing the bandwidth. With this in mind, the time spend on memory transfers can be
calculated using Equation [£.10]

Tmem _ Sin + Sout (410)
BWDDR : DDRefficiency

No data is written back to since is decided to use the [PClI¢d interface to trans-
fer data to the CPU host at the end of the execution. This means that S,,; can be
neglected, and S;, is described by Equations and for each type of kernel.
SizecompartmentStruct and Sizeqatestruct TEPresents the size of each structure as shown in
Table and Sizeyeighst the size of each gap junction weight, all in bits. Neompartments
and Ngates represents the total number of compartments and gates. Table illustrates
the sizes of all the supported models in both floating-point and fixed-point. The cell
structure represents the single compartment cells and the gate structures supporting
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custom gates or not are also shown. This table is constructed using the software model
and custom fixed-point sizes for integer parameters are added based on the needs of the
application.

SMainKernel = (Sizecompartmentstruct ' Ncompartments + SizeGateStruct ' NGates) : Nsteps
(4.11)

Ncells
2

SGapJunctionKernel = ( : Ncells ) Sizeweight) : Nsteps (412)
The BWppr represents the DDR memory bandwidth, which is 15.8GB/s per DIMM.
Finally, the parameter DD R, ficiency represents the proportion of theoretical@ band-
width achievable for a given data-set. To achieve good memory performance, it is crucial
to make any memory access as linear as possible, which is the case in our application.
Additionally, DD R, ficiency is important to understand since it makes a huge difference
in[DDR] performance, and it is explained using an example. Our FPGA platform includes
three [DIMMk of [DDR] memory. If all DIMME are used together using a single memory
controller, a burst of data of 1,536-bits is possible. Each [DIMM] can have a burst of 512
bits if used alone (different memory controllers). This means that if we need to read a
3,072-bits size of data, two bursts are needed to access them. To achieve good memory
performance is recommended to have a burst of large enough data, as shown in Figure
[4:35] In many cases, it may worth using separate memory DIMMs to achieve a higher
number of bursts; for example, data of 4,096-bits can achieve an efficiency of 75% when
a single DIMM is used compared to 35% when all DIMMs are used.

Additionally, the split of the memory controller needs to be considered if the design
spreads in all the SLRs to avoid SLR crossings because it will affect timing. This
means each kernel will have its own memory controller utilizing one DIMM of mem-
ory. We can now revisit the unroll factor considering bandwidth limitations for two
cases, having different memory controllers per kernel and the case utilizing a single
controller for all the kernels. Using the Equations - we can calculate the
bandwidth needed when one memory controller is employed. The bandwidth of both
compartment and gate constants is found by using a ratio of the times the data
are needed from the kernel divided by the total amount of ticks. The bandwidth
of each gap junction kernel is the total number of gap junction weights multiplied
by the unroll factor and the frequency. Then using the Equations - we
can calculate the bandwidth when three memory controllers are employed. The
bandwidth for both gap junction kernels is as in the first case, on the other hand, the
bandwidth needed to stream compartment and gate constants is calculated using a
ratio of the total number of compartments/gates divided by the total number of gates.
In the second case, bandwidth will be underutilized once the main kernel finishes its
computation and it will wait for the gap junction kernel to finish to move to the new step.
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Single Controller:

Ncells ) Ncom P i uf
. psPerCell
BWcompConstants = SlzecompartmentStruct : N I : f (413)
cells
Ncells ’ 9
Ncells - N, : Uf
. gatesPerCell
BWgateConstants = SizeqateStruct * Nowt - f (414)
Ncells L
2
BWG’apJunctionWeights = Sizeweight ’ f ’ uf (415)

BWTotal = BWcompConstants + BWgateConstants + BWGapJunctionWeights (416)

Three memory controllers:

Ncells ’ NcompsPerC’ell

BWcompCOnstants = SizecompartmentStruct : (417)
cells * +VgatesPerCe
Neeits * Nyatespercell
BWgateC(mstants = SizegateStruct * | (418)
BWMainKernel = BWcompConstants + BWgateConstants (419)
BWGapJunctionWeights = Sizeweight ’ Uf ’ f (420)

All the information from estimated area utilization to estimated timings and bandwidth
is concentrated in Table [£.6] The application is bound by the LMem bandwidth; the
application reaches the memory-bound for an unroll factor of 16 and 32 per kernel, for
floating-point and fixed-point respectively. The same holds for both memory controller
options (Option 1 and Option 2 in the table). The unroll factors are also used to calculate
the number of bursts and memory efficiency based on Figure [4.35] The bandwidth for
option 2 is separated into three columns. The first column shows the bandwidth required
from the first kernel (main kernel) and the rest two columns show the bandwidth for
the two gap junction kernels. Both versions of the model (floating-point and fixed-
point) are going to be implemented since we need to compare them but additionally a
third implementation will be also implemented. The third option is to use floating-point
operations to keep the accuracy and the lowest DSP usage and stream the gap junction
weights using fixed-point datatype to achieve a higher unroll factor before it becomes
memory-bound.
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Figure 4.35: DDR4 memory efficiency as measured on an Alveo U250 [9)
Table 4.5: Floating-point and Fixed-point data-structures sizes
Floating - Point Fized-Point

Structrure / Datatype size | Integer Floating-Point  Size | 4-bits 16-bit  24-bits  28-bits  Size
Gate Structure 3 9 38/ 4 - - 8 240
Gate Structure (Custom,) 5 21 768 3 - - 21 600
Cell Structure 2 4 192 - - 2 4 160
Compartment Structure & 5 256 1 - 2 4 164
Gap Junctions weights - 1 32 - 1 - 16

4.5 Summary

In this chapter, the design process was applied. It started with the HHio model analysis
to understand it nature and the execution hotspots requiring more attention. Following
using the software model, we conducted a numerical analysis to search for possible fixed-
point arithmetic sizes with respect to accuracy that will benefit our application. Finally,
a performance model is created that helped us to estimate the performance based on
the resource utilization. The execution time and the time spent to transfer data from
memory are also estimated. Finally, it is found the HHio model becomes memory-bound,

and the maximum unroll factor reached is calculated.



Table 4.6: Resources utilization, memory bandwidths and time spent on computation, communication for varying unroll factor

Unroll factor LUTs(%) FFs(%) BRAMs(%) DSP(%) | Tcomp(s) Tcomm(s) 1017;;70,;(81) gglte;nn(z B(I;]VJ ;G(;f/ls ) Bg/p(ifz/;)

g 16 16.21 13.22 38.25 14.74 9.21 0.14 21.97 38.60 24.87 19.25 11.92 11.92
Qi 32 25.47 21.14 38.99 38.99 4.61 0.14 13.81 19.85 49.78 19.25  23.84 23.84
s 64 49.99  36.97 40.47 52.64 2.30 0.1/ 9.29 11.58 99.52  19.25 47.68 47.68
§ 96 62.51 52.8 41.95 77.9 1.54 0.14 8.33 10.68 151.37 19.25 71.52 71.52
EQ 128 81.03 68.64 43.43 103.16 1.15 0.14 743 9.26 207.39 19.25 95.36  95.36
B 16 14.01 12.68 38.25 16.01 9.21 0.14 12.91 23.15 12.71 14.84 5.96 5.96

E 32 20.65 19.71 38.99 30.05 4.61 0.14 10.55 19.27 25.44 14.84 11.92 11.92
< 6/ 33.91 33.78 40.47 58.12 2.30 0.1/ 7.7 9.91 50.88  14.84 23.84 23.8}
3 96 4717 47.84 41.95 86.19 1.54 0.14 5.66 7.71 77.94 14.84 3576 35.76
= 128 60.45  61.91 43.43 114.26 1.15 0.1/ 4.64 5.78 108.2  14.84 47.68 47.68
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Implementation

This chapter begins information regarding flexHH library implementation and its limita-
tions regarding performance. Following that, the new DFE implementation and how the
improvements are conducted are discussed in the next section. Next, details regarding
the fixed-point arithmetic implementation and how it is incorporated are given. Finally,
the final implementation for each model, the unroll factor, and the frequency achieved
are also shown.

In total, the flexHH library includes five different models, as shown in Table and each
model supports additional features. As is already mentioned in Chapter [2] the models
simulated can be as simple as a network of cells or complex as a network with
cells (HHio).

Table 5.1: Supported features per implemented kernel in the flexHH library

Custom ion Multiple cell Gap
gates compartments junctions
HH X X X
HH+custom v X X
HH+custom+multi v v X
HH+gap X X v
HH+custom+multi+gap (HHio) v v v

Figure illustrates the general architecture for the HH, HH+custom and
HH+multi+custom kernels. A general schematic is shown for these three mod-
els since the differences between them are not excessive. The difference between
[HHH-custom+multi kernel and [HHH-custom is that the first one supports multiple com-
partments where the second does not. This means that the compartmental current
calculation is not needed, and all gates belong to a single compartment/cell. The differ-
ence between [HHH-custom and [HH|kernels is that the first one supports custom ion gates
where the second does not. As shown in Figure the cell parameters that include
the gate and cell constants are stored in before the kernels start the execution.
During the simulation, the output is also stored in LMem. At the end of each simu-
lation, the DFE’s output is read by the CPU host and printed to a file. Each kernel
includes four distinct parts; the calculation of the compartmental current (calcIcom-
partment), which only exists for the HH+custom-+multi model, the calculation of the
gate variables (calcCateVariables), the calculation of the channel current (calcIchannels),
and finally, the externally applied current (iAppFunc). All the above parts provide a
current used to calculate the membrane voltage, as shown in Equations and

t
To finish the calculation for each cell, it needs Jares ticks. In the case of the

unroll factor

66
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HH+custom-+multi model, the compartmental current is calculated in parallel. To pro-
ceed to the next compartment/cell computation, the gates per compartment/cell must
be calculated first. The output of all models comprises the compartment/cell voltage
and the gate activation variables. Gate current calculations are unrolled in hardware,
and the maximum performance is achieved with an unrolling factor of 4 for [HH] kernel
and 2 for the other two kernels as mentioned in [38]. Having a higher unroll factor will
not lead to a performance benefit since the models becomes the memory bound.

m FPGA

LMem 3 —¢

w St calcGateVariables calcGateVariables
—

Cell ] yMem Unroll Hardware yMem

Parameters| | ; ® o 000
N CPU
>calclchannels v | |calclchannel Initialize Neurons

>kalclcompartment ‘ Set scalars and network

parameters. Write output
A

Simulation .
Output ¥ i*
(Vout, Yout) | L> Integraton <«—— iAppFunc

|
4

vMem
\/

Figure 5.1: System Architecture of the Previous work for custom+multi models

Figure is created to illustrate the [[O] and the [HHH-gap kernel that supports the gap
junction extension. HH+gap and [[O] kernels are identical to [HH| and [HHH-custom+multi
kernels respectively with added the extension of the gap junctions. As illustrated in
Figure the architecture has a lot in common with the previous versions, with the
addition of the gap junctions extension, there are some substantial changes. First of
all, extra parameters are stored in representing the weights of the connections
between cells/compartments. Moreover, the gap junction’s calculation block is added,
which calculates the current between one cell/compartment and the other cells/compart-
ment in the network.

In the flexHH library, the HHio model has connections with other cells through gap
junctions through the dendritic compartment. For the dendritic compartment, all the
currents besides the gap junction current are summed and stored in IRestMem on-chip
memory. Once the gap junction computations are finished, each dendritic compart-
ment’s respective value is read from IRestMem memory, updated with the gap junction
current, and finally, each dendritic compartment’s voltage is calculated and then stored
in FMem(vMem) and FMem is used for storage since the membrane voltages
are constantly used and fast access is needed. LMem is used for storage because, at
the end of the simulation, the CPU host will read all these values. The compartments
without the gap junctions are calculated and stored directly in FMem and while
the compartments with the gap junction connections are updated and stored at the end
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of each step. The [HHH-gap kernel supports only a single compartment cell; thus, all cells
connect to other cells through the gap junction connections. This simplifies things since
all values stored in IRestMem need to be updated once gap junction computations are
finished. In both cases, gate computations are not unrolled because now gap junctions
are unrolled, and bandwidth is needed for that computation block.

FPGA

DDR —
N calcGatelActivation
U Varizlbles —¢
Ga '
Junctigns M yMem Ga_p
weights | ¢ Junctions
> Calculations
calclchannels — CPU
|_ | IRest Initialize Neurons
NEUTE f > v <~ Set scalars and
parz;zt:rs - » calclcompartment <€— network parameters
I | CMem Write output
v I; I A
. ) < [
Simulation » Integration <€«— iAppFunc
Output
(Vout, Yout) l
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Figure 5.2: System Architecture of the flexHH library of the HHio model

Figure [5.3| illustrates an example how the gap junction computation block functions for
both [HHH-gap and the [[O] models. In this example, as a test case, a network of 36
cells and an unroll factor of 6 is used. Recall that due to bandwidth we cannot fully
unrolled this loop and partial unrolling is used. The number of computations executed
in parallel depends on the unroll factor, and the number of iterations needed to calculate
the intercellular current for a cell is Neejs/unroll factor. This means to fully calculate
the current for a cell, 6 iterations are needed. In the first 36 ticks the computations
between all cells (0<i<35) and the first 6 (0<j<5) cells of the network are executed and
then this is repeated till all the intercellular currents are calculated. In this example,

we can see that instead of having a computation time of Negjs - Neeyzs ticks, we have

N,
—cells ticks. The result produced by the gap junction block on each tick is updated
u

cells”
in called ICMem using a tree-adder to add the partial summation. During the
final iteration, the stored value is read, updated, and sent to the integration part. The
network weights between cells are provided from LMem in each tick and the data stream
is unrolled as many times as the gap junction computations.

All model’s source code is converted to the newest platform’s version, called MAX5. This
change mostly affected all the flexHH library models manager, and many deprecated
commands regarding LMem needed to be updated. Once a working version of the HHio
model was obtained, Place and Route for the new platforms were executed to detect its
limits. The HHio model of the flexHH library achieved an unroll factor of 24 with a
frequency of 180 MHz. Unrolling more results in tools not finding a successful placement
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for the design. Table[5.2]illustrates the resource utilization of the HHio model and as we
can clearly see, our [FPGA]is underutilized.

Considering the resource utilization of Table the assumptions in the previous chapter
holds. The most obvious limiting factor for not achieving a higher unroll factor is that
the design goes beyond a single die, and the tools have difficulty in the place and route
of the design. When three different dies are used in one platform, it leads to many
limitations when implementing a large complex design. Pipelining everything manually
and place everything efficiently cannot happen when a complex design is implemented.
This means that extensive signal propagation delays across multiple dies will be present,
which does not help meet timing. When most of the [SLRE connections are occupied,
and the longer routing paths between SLRs impact the maximum frequency or results in
tools not be able to route the design properly and meet our design goals. This scenario
is considered in the design process of the previous chapter, and we can move on to the
modifications of the previous implementation.

LMem Stream
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Figure 5.3: Gap junctions computation block

Table 5.2: Resource Usage for the HHio model of flexHH with an unroll factor of 24

Resource Type Used  Awvailable Percentage
LUTs 193,669 1,182,240 16.38
Primary FFs 318,469 2,364,480 18.46
DSP Blocks 1,588 6,840 20.29
Block memory (BRAM18) 1,875 4,320 43.40
Block memory (URAM) 234 960 24.37

5.1 DFE Implementation and Improvements

In this section, the modifications done to the flexHH library are discussed. In this work,
we are mainly focused on the models that include the gap junction extension since they
have much room for performance improvement. The architecture for the models that
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do not include the gap junction extension is not changed. Nevertheless, all models
are updated to the latest platform and extended with a fixed-point version, and any
modification done is mentioned.

5.1.1 From Custom Interface to Dynamic [SLiC| Interface

The first modification is the change of how the output is read from the host. Instead
of having the data saved in they are directly sent using to the CPU host.
This small change will free up space and bandwidth since no transfer of the
output to between steps will be needed. This could not be achieved using the
custom interfaces for memory reading and writing, and all the models are changed to
use the dynamic SLiC interface. Dynamic SLiC interface is easier to program; it results
in a neater manager and is more flexible. Previously, everything was calculated in the
manager, such as addresses for each set of parameters and the scalars inputs.
With this change, everything is calculated in the host, and only the vital information
is sent to the manager. Using this interface is substantially different from using custom
interfaces, where the user had to initialize read and write interfaces for The
dynamic SLiC interface allows more control over the engine allocation (DFE) and action
manipulation using a set of actions.

The listings and illustrates an example of the dynamic interface actions.
Actions are separated into two sets, initialization, and execution; this helps in debugging
when an error occurs and in more structured code. In both sets of actions, the maxfile
and engine ID needs to be set. The star placed in the parenthesis means the hostname
is taken from the configuration variable ”default_engine_resource”; more details can be
found in Maxeler’s SLiC API. The first set of actions shown in listing [5.1] sets the
streams content from the host using PCle. The streams and the kernels that are not
needed at the moment needs to be ignored. It is important to set the memory addresses
correctly to avoid spending huge time debugging. Finally, the command to run the
engine with the defined actions is used, and when it is finished, the set of actions needs
to be deallocated.

max_file_t xmaxfile = HHio2K_init () ;
max_engine_t kengine=max_load (maxfile ,”x”);
max._actions_t kact=max_actions_init(maxfile ,NULL) ;

max_queue_input (act ,”setChannelConst _CPU” ,channelConstants ,
sizeChannelConstants) ;
max_lmem_linear (act ,” setupChannelConst” ,0,sizeChannelConstants) ;

max_ignore_lmem (act ,”nChannels_Lmem” ) ;
max_ignore_kernel (act ,” HHioKernel”) ;

max._run (engine , act) ;
max_actions_free (act);

Listing 5.1: Dynamic interface for the initialization actions

The second set of actions shown in [5.2] sets the PCle inputs, outputs, the number of
ticks per kernel, the scalar inputs, and the LMem]streams to the kernel. There are many
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commands to connect the steams from to the kernel, depending on what needs
to be accomplished. In this case, the command max_lmem_linear_advanced is used
to read the data from since we access the data linearly. This command supports
wrapping to the beginning of the array when the end of the data array is reached. The
arguments are as follows; the name of the action, name of the stream, start address, the
size of the array, the array’s total size to be read, and the offset; all sizes are in bytes.
The total size of the array, is the array’s total size for all the steps of the simulation. So
in each new step, this command wraps the given stream at the beginning of the
array, hence the offset’s zero value.

max_actions_t xactl = max_actions_init (maxfile ,NULL);

max_set_ticks (actl, "HHioKernel” ,(nSteps % nTicksGapPerStep)+bufferSize
)

max_set_uint64t (actl ,” HHioKernel” ,” nSteps” ,nSteps) ;
max_queue_input (actl ,”setVin_CPUk1” ,vIn,sizeVIn);

max_lmem_linear_advanced (actl ,”nChannels_Lmem” ,addressNChannels ,
sizeNChannels ,nSteps * sizeNChannels ,0) ;

max_ignore_lmem (actl ,” setupNChannels”) ;
max_queue_output (actl ,”vOut” ,vOut, sizeVOut) ;

max._run (engine ,actl);
max_actions_free (actl);
max_unload (engine) ;

Listing 5.2: Dynamic interface the execution actions

5.1.2 Multiple kernels application

Recall that, in the previous implementation, the gap junctions could only be unrolled up
to 24 times when implemented in a single kernel. The idea is to separate the kernel into
another two kernels to achieve a higher unroll factor and utilize our platform’s other two
SLRs. Recall that the previous chapter pointed out that we should implement the gap
junction block into different kernels since when unrolled, the area utilization is increased.
Dividing the design into more kernels will decrease the high routing paths and give the
tools the chance to find an efficient placement and routing of our application. The current
platform has three dies and gap junction computations are split into two kernels.
This will result in three kernels, two kernels for the gap junction computations, and one
for the rest of the computations. Figure [5.4] illustrates a detailed system architecture of
the HHio model. Each Gap junction kernel will compute half of the cell’s intercellular
current while the main kernel will compute the gate current and the compartmental
current. All the changes will be elaborated in the following sections.
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Figure 5.4: New system architecture of the HHio model

This, at first, seemed to be an easy task, but it proved to be the toughest one since mul-
tiple kernels are globally asynchronous. This means that a control logic to ’synchronize’
all kernels are needed to achieve the expected behavior. At first, the integration part
was placed inside the main kernel to limit data transfer between kernels. When the main
kernel finish computing it waits for the gap junction kernels to transfer the intercellular
current values to finish the update of the dendritic compartments/cell voltages. This
means that the gap junction kernels need to be stalled till the main kernel produces the
updated voltages since are also needed by these two kernels. We want the gap junction
kernels to never stop computing and not have this stalling like execution.

To relax this strict dependency and optimize the application, the update of the voltage
(integration part) is moved inside each gap junction kernel, as shown in Figure This
means that the updated voltages are now streamed out to the CPU host from each gap
junction kernel and not the main kernel. This change triggered a change in the CPU
code; the data needs to be rearranged in the correct order before being written into the
output file since the output is coming from three kernels. Additionally, each gap junction
kernel needs to transfer the updated values of the voltages (vOut) to the other kernels.
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The gap junction kernels do not stall waiting for the main kernel to update the voltages.
Instead, the main kernel waits for an update from the gap junction kernels which doesn’t
affect the computation time. The update between the gap junction kernels will not affect
the computation (e.g. data not being available). Each gap junction kernel is set to start
computing with the already stored data in each kernel and this gives time to transfer
the values between them. To have a correct operation, the ticks for each gap junction
kernel needs to be larger than the main kernel, as shown in Equation [5.1

Ncell . Ncell

92 Uf > NtotalChannels (51)

This decision entailed many changes to the design that needed to be considered before
moving to the implementation. Table shows the usage from the previous
version and what is changed for the current version when the application is split into
three kernels. A brief explanation is given for each FMem instance and its usage.

e iRestMem memory stores the result of the summation of the currents I, Ijates,
Ileak and Iapp-

e gapAddressMem memory stores the addresses for each compartment that con-
nect to other cells through gap junctions.

e vMem memory stores the membrane voltages for each compartment.

e ICMem memory stores the intermediate results of each inter-cellular current for
each compartment or cell (single compartment).

The usage is increased by 28.93%, which is calculated using the current max
compartment size set for the kernel, which is 24576, as shown in Table[5.3] Additionally,
in Table each FMem’s memory subscript denotes the kernel in which the FMem
is instantiated (GJ = Gap Junction, MK = Main Kernel). Using the performance
model, this means the need for an extra 50 BRAMSs, which is not a prohibitive number
of BRAMs. To calculate the compartment/cell voltage derivative inside gap junction
kernels, the elastance and the summation of the rest of the currents are needed. These
values are sent to both gap junction kernels from the main kernel. ICMem memory
is halved in each gap junction kernel since each kernel computes half of the network’s
cells. Additionally, extra memory is needed to store the membrane voltages in each gap
junction kernel. As shown in Figure the vMem used to store the derivative voltages
for all the kernels needs to be split in half. This is a result of the restrictions on writing
into memories by the tools:

e If you write to a memory address in a kernel tick, you can not call read with the
same address in the same tick. Attempting to do so will return undefined data.

e You are limited to either a maximum of 2 calls to write and no calls to read on
memory or 1 call to write and any number of calls to read.

The second restriction applies in our case. Once the gap junction kernels send their
output to the main kernel, the data are written to the same memory, and the main
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kernel needs to read the data from that memory. This leads to instantiating two write
ports (1 per kernel) and one read port, which is not supported by the tools. The solution
to this was to split the memory into two equal parts, and each gap junction kernel will
write to the respective memory. This resulted in extra control logic added to the main
kernel to write and read to/from the correct memory depending on the compartment /cell
number (the first memory stores the first half cells data and the second the last). The
membrane voltage memory in each gap junction kernel is also split for the same reason.

Table 5.3: FMem sizes for the HHio model for flexHH library and the new

implementation
flexHH Implementation New Implementation
FMem Size (bytes) FMem Size (bytes)
N, ,
iRestMem Ncomps]\rfax . Size’uar UAIleGJl,GJQ,MK %M . Size’uar
Neormps
ICMem NeompsMaz * Sizeyar vMem2a 1,652, MK el Sizeyar

gapAddreSSMem NcompsMaz ° 10g2 Ncomps]ﬂaz gapAddreS'quemMK Ncomps]\ffaz : 10g2 (Ncompsl\laz)

N, compsMax

vMem NcompsMam : Sizevar ICMemGJl,GJQ . Sizeuar

2
Total: 389717 Total: 438021

The most difficult part during these modifications was to synchronize when each kernel
is accepting valid data from the other kernels. Control inputs are needed in each kernel
since not all the transmitted data are valid. Additionally, if the output is control (to
transmit only valid data) this means no data will be available to the other end, and the
kernels will stall. The first solution was to use non-blocking inputs shown in Listing
This command works the same as the normal input command; however, it generates
dummy values if no data are available to the kernels. Additionally, each input includes a
valid signal to distinguish the valid data from the dummy data. This approach seemed
logical at first but in the end it didn’t work when the application was tested on FPGAs.
Non-blocking inputs are often used for networking applications that kernels do not run
for a precise number of ticks which this do not applied in our case.

NonBlockingInput<DFEVar> Temp = io.nonBlockingInput (”templ” ,fpType);

Listing 5.3: Nonblocking Input

To solve this a better understanding of how kernels are implemented at the manager
level was needed. Between kernels, FIFO buffers are placed and each kernel pulls data
when the control signal is set to true. If data are not available a kernel will stall till
data becomes available again. Contrarily, if there is no space available in the FIFO
buffer, to push values, the kernel will stall again. In this stage, you need to be wary
of deadlocks that exist if insufficient data are being produced or consumed. With this
information, a communication diagram is created to illustrate how kernels interact with
each other, LMem, and the CPU host. As shown in Figure during the first Ny
ticks the gap junctions kernels initialize the FMem with values sent from CPU and the
main kernel start computing. During the fist Neeys - Nenannels ticks the main kernel
pushes the (I, S) values into the FIFO buffers which correspond to the elastance and the
summation of the currents (excluding intercellular current) and then the kernel stalls.
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Figure 5.5: Communication Diagram

The membrane voltages streamed from each gap junction kernel to the main kernel are
first streamed, stored, and then the main kernel is moved to the next step. Figure
illustrates the control logic implemented inside the main kernel to store the membrane
voltages produced either from the main kernel or a gap junction kernel. When the main
kernel resumes its execution and is not the first step the data are valid, the respective

N,
counter (GJ1 and GJ2) is increased by one till it reached the maximum number of eells

Multiplexers are used to decide the enable signal, the data, and the addresses to vMem.
The input to gapAddressMem is the counter output, which translates each dendrite
compartment to the respective address in vMem, as shown in figure [5.6
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Figure 5.6: Membrane voltage and gapAddressMem structure data
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Figure 5.7: Main Kernel: The control logic used to store the membrane voltage in the
Main Kernel

5.1.3 FMem Optimization

Moreover, in the flexHH library for both the HHio and HHgap models, the membrane
voltage for the other compartment/cell needs to be read to calculate their voltage differ-
ence during the intercellular current computations. An example is illustrated in Figure
vOwn is the voltage of the respective compartment/cell, and vOther is the voltage
of the other compartment/cell that needs to be read. In this small example, we have
a network of 6 cells and an unroll factor of three. This means that three FMem ports
are needed per gap junction kernel in (a). Unrolling this loop leads to an increase
of the read ports, and this means increasing the use of BRAMs and possibly other re-
sources (FFs and LUTs). To optimize this, instead of having multiple read ports, we

read a vector with the size of the unroll factor. The FMem structure is changed from

UM M
nCellMaz Size to nCeliMax unroll factor - Size as shown in [5.8| (b), the Size
2 unroll factor - 2
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parameter refers to the size of each gap junction weight in bits. The structure of the
FMem needs to be changed to read unroll factor elements from memory per tick. An
additional serial to parallel shift register was needed for this optimization. The update
values of the membrane voltages are serially produced in each tick, and to be stored
into the new FMem structure, they need to be stored as a vector. The shift register
waits for unroll factor membrane voltages to shift into the register and then are stored in
FMem. This optimization will decrease the BRAM usage by a lot considering Equation
4.3 considering that it scales with the number of ports.

unroll factor unroll factor
FMem [FMem |Fmem :FMem:

I [ | [
vOther yOther vOther VOiwr vOther VOther

£ of % £ 11

vOwn vOwn vOwn vOwn vOwn vOwn

Size unroll factor * Size
A r N\

nCellsMax/
(unroll factor * 2)

nCellsMax/2

A\ 4

(a)
Figure 5.8: FMem optimization: (a) FMem with multiple ports (b) Read FMem values
as a vector

5.1.4 Loop Length

Since all kernels are pipelined, the programmer needs to be wary of each kernel’s pipeline
loop length. The loop length in both HHio and HHgap models may be larger than the
number of cells. This has a result of the production of erroneous results if the number
of cells simulated is smaller than the loop length. This occurs because data exit the
pipeline later on time, and membrane voltages are not updated correctly. This means
that the next step’s computations will use older data since they are not updated in time
and produce wrong results. To avoid this error, a limitation should be set, the number

cells

of cells needs to be at least > LoopLength since the number of cells is divided
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into two kernels. The application has a loop length of 189 for floating-point and 105
for fixed-point for each gap junction kernel, which means that a minimum number of
378 or 210 cells are needed. Furthermore, this problem also exists during the storage of
membrane voltages in the main kernel streamed by the gap junction kernels. The main
kernel waits for loop length ticks after the first value is streamed into the main kernel.
This does not affect the computation time since the main kernel finishes its operation
earlier than the gap junction kernels.

5.1.5 Kernel’s operation
To recap, each kernel’s operation is explained below:

e Main Kernel: Calculates the gate activation variables, each channel’s current,
and the membrane voltage for the compartment that does not connect with gap
junctions to other cells. The summation of all currents besides the intercellular

cell is streamed to GJ1 and

current is sent to each gap junction kernel (the first

cell

the last —— is sent to GJ2).

cell

e Gap Junction Kernel 1: Calculates the intercellular current for the first

cells, added to the current sent from the main kernel, and the membrane voltages
of cells/compartments are updated. The updated membrane voltages are then
streamed to both Gap Junction Kernel 2 and the Main Kernel.

e Gap Junction Kernel 2: Calculates the intercellular current for the last ~eell

cells, added to the current sent from the main kernel, and the membrane voltages
of cells/compartments are updated. The membrane voltages are then streamed to
both Gap Junction Kernel 1 and the Main Kernel.

N, N,
The above modification change the computation time from N - cell cell
unroll factor 2
Ncell
————— per kernel.
unroll factor

5.1.6 Fixed-Point Arithmetic

To incorporate fixed-point arithmetic in an application can be done by providing the
preferred data type for the operation and MaxCompiler handles the rest. The tricky
part is how to provide these fixed-point numbers to the kernel since the host code, which
is written in C, does not support fixed-point arithmetic. One approach is to stream
all the floating-point values and cast it inside the kernel to fixed-point. This will not
improve bandwidth utilization, and it will result in area and performance overhead since
all computations are going to require a casting function. Another approach is to use a
third-party fixed-point arithmetic library, which is limited only to support the standard
sizes of 16 and 32 bits, which is not what is needed. A third option is to create an extra
kernel that accepts all the streams before are streamed to and cast them into the
required fixed-point size. The third option has the benefits of casting the values to any
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fixed-point size, incurs less area, and performance overhead since they are done once at
the beginning of each simulation. The number of castings depends on the number of
parameters. Additionally, it compresses the data, which helps in saving bandwidth and

storage in

The task of creating a new kernel to cast the parameters to fixed-point was made easier
to implement since our models were converted from a custom manager interface to a dy-
namic interface. This helped control each stream of data to each kernel without any
problem and without instantiating complicated custom interfaces. The following tables
illustrate the parameters included in each structure and the sizes of both floating-point
and fixed-point. Tables and illustrates the structures for both HH and HH+gap
models, the floating-point version requires a size of 384-bits for the gate structure and
192-bits for the cell structure. The fixed-point structures require 256-bits for the gate
structure and 160-bits for the cell structure. This conversion leads to a compression
of 33% for the gate structure and 16% compression for the cell structure, an impor-
tant reduction when a huge network is going to be employed for both bandwidth and
LMem memory. The values for each variable are chosen based on the previous analysis
to achieve the desired accuracy. Furthermore, many of the variables such as aFType,
bFtype, and p only require 4-bits given the application’s current functionality.

Table 5.4: Gate structure variables for the HH and HH+gap models

Floating-point Fized-point
Variable Type Type
aF Type 32-bit unsigned integer 4-bit unsigned fixed-point (4,/0)
aXs 3 82-bit single-precision-floating-point | 3 28-bit signed fized-point (13/15)
bF Type 32-bit unsigned integer 4-bit unsigned fixed-point (4,/0)
bXs 3 82-bit single-precision-floating-point | 3 28-bit signed fized-point (13/15)
P 32-bit single-precision-floating-point 4-bit unsigned fized-point (4,/0)
g 32-bit single-precision-floating-point 28-bit signed fixed-point (13/15)
vChannel  32-bit single-precision-floating-point 28-bit signed fized-point (13/15)
yInit 32-bit single-precision-floating-point 20-bit signed fized-point (5/15)

Table 5.5: Cell structures variables for the HH and HHgap models

Floating-point Fized-point

Variable Type Type

1AppStart 32-bit unsigned integer 24-bit unsigned fized-point (24/0)
iAppEnd 32-bit unsigned integer 24-bit unsigned fixed-point (24,/0)
iAppAmplitude  32-bit single-precision-floating-point | 28-bit signed fized-point (13/15)
S 32-bit single-precision-floating-point | 28-bit signed fized-point (13/15)
vLeak 32-bit single-precision-floating-point | 28-bit signed fixed-point (13/15)
gLeak 32-bit single-precision-floating-point | 28-bit signed fized-point (13/15)

Tables and illustrates the structures for HH+custom, HH-+custom+multi and
HHio models. The floating-point implementation needs 768-bits for the gate structure
and 256-bits for the compartment structure. The fixed-point structure requires 572-
bits for the gate structure and 192-bits for compartment/cell structure. Utilizing fixed-
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point achieves compression of 25.5% for the gate structure and 25% compression for
compartment /cell structure.
Table 5.6: Gate structure variables for the HH+custom, HH+custom+multi and HHio

Floating-point Fixed-point
Variable Type Type
aF Type 32-bit unsigned integer 4-bit unsigned fized-point (4/0)
aXs 9 32-bit single-precision-floating-point | 9 28-bit signed fized-point (13/15)
bF Type 32-bit unsigned integer 4-bit unsigned fized-point (4/0)
bXs 9 32-bit single-precision-floating-point | 9 28-bit signed fized-point (13/15)
D 32-bit single-precision-floating-point 4-bit unsigned fixed-point (4,/0)
g 32-bit single-precision-floating-point 28-bit signed fized-point (13/15)
vChannel  32-bit single-precision-floating-point 28-bit signed fized-point (13/15)
ylnit 32-bit single-precision-floating-point -

Table 5.7: Compartment structure variables for the HH+custom, HH+custom-+multi
and HHio models

Floating-point Fized-point

Variable Type Type

1AppStart 32-bit unsigned integer 24-bit unsigned fized-point (24,/0)

iAppEnd 32-bit unsigned integer 24-bit unsigned fized-point (24,/0)
iAppAmplitude  32-bit single-precision-floating-point | 28-bit signed fized-point (13/15)

S 32-bit single-precision-floating-point | 28-bit signed fized-point (13/15)

vLeak 32-bit single-precision-floating-point | 28-bit signed fized-point (13/15)

gLeak 32-bit single-precision-floating-point | 28-bit signed fixed-point (13/15)

nCa 32-bit unsigned integer 4-bit unsigned fixed-point (4,/0)
vInit or gp 32-bit single-precision-floating-point | 28-bit signed fixed-point (13/15)

5.1.7 Placement & Route

Placement & route took considerable time in this work, and a successful build could
not be achieved due to timing errors, and information regarding this will follow. To
solve these timing-related errors, the produced timing reports proved useful. Most of
the errors were setup errors, and they were related to the memory controller. This is
because when a single memory controller is used for all the kernels placed in different
SLRs, there will be SLR crossings that affect timing. A solution to this is to break
the memory controller into multiple controllers. Memory controllers are asynchronous
and thus did not provide any problem in the case that gap junctions are supported as
each kernel is programmed to be fully asynchronous. On the other hand, in the models
without the gap junctions, the unrolled streams related to the gates could not be broken
to multiple controllers since we need data to come synchronously. This left us with the
choice of splitting the streams between memory controllers, as mentioned below.
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A memory controller for each kernel is used for the models with the gap junction exten-
sion and are described below:

e Memory Controller 1: Includes all the input streams connected to the main
kernel and one DIMM of memory is used for this controller.

e Memory Controller 2: Includes intercellular connection weights for Gap Junc-
tion Kernel 1 and one DIMM of memory is used for this controller.

e Memory Controller 3: Includes the input stream that transfers the inter-cellular
connection weights for the gap junction kernels one DIMM of memory is used for
this controller.

Two memory controllers for the models without the gap junction extension are instan-
tiated and are described below:

e Memory Controller 1: Includes the gates parameter streams and two DIMMs
are used with this controller.

¢ Memory Controller 2: Includes the cell constants and any other required
streams and one DIMM is used for this controller.

The change from a single memory controller to multiple led to a smaller burst size (less
DIMMs per controller) and different total data width since the data structures are split
across different memory controllers. This means that now data are not multiple to
the burst size, and this produces an error. Additionally, in the case of the fixed-point
version of our application, padding now is not an option to solve the problem (e.g.,
padding the gate structure from 578-bits to 1024-bits to be multiple to burst will occur
loss of bandwidth and memory). By using set AllowNonMultipleTransitions(true)
the compiler will automatically insert an aspect change. This aspect change resolves this
issue by finding the least common multiple between the data width and the physical port
and build a FIFO of that size. For example, in a structure with 572-bits and a single
memory controller, which has a burst of 512-bits, the least common multiple is 146432-
bits. This has as a disadvantage, the high hardware usage of these wide FIFOs and if
not, enough data are written to that large FIFO, the application will stall. To mitigate
this problem, AspectChangelO (ACIO) from the MaxPower library that is provided by
Maxeler is used. ACIO can pack or unpack arbitrary kernel types into or from frames of
higher width, and data are automatically split across multiple frames and padded. More
information can be found in MaxPower’s library API. Again padding will be used here
but since it may break the data in multiple frames this may result in less padding.

Each kernel needs to exchange values between the other two kernels, and SLR crossings
will be present. It is recommended to add extra registers to those links to relax timing
constraints. At least two register levels are needed per SLR crossing; this means that
each signal is registered before and after each crossing. In our application, in each input
and output that connects to other kernels, two registers are added using the command
shown in Listing[5.4] Moreover, the memory controller commands and data are pipelined
to help meet timing closure. The set of commands are shown in Listing [5.5
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DFELink setupWs2ToLMem = LmemlInterfaceW2.addStreamToLMem (”setupWs2” |
LMemCommandGroup. MemoryAccessPattern . LINEAR_1D) ;
setupWs2ToLMem . set AdditionalRegisters (2);

Listing 5.4: Command to add registers in a link before and after SLR crossing

LMemConfig lmemconfig = makeLMemConfig () ;
Ilmemconfig.setMcpCommandPipeliningDepth (5) ;
Imemconfig.setMcpDataPipeliningDepth (5) ;

Listing 5.5: Addition of more pipelining stages in LMem

The Xilinx Vivado design suite implementation process includes logical and physical
transformations of the design called implementation strategies. An implementation
strategy is a defined approach for resolving the design’s synthesis or implementation
challenges targeting a specific design goal (power optimization, timing optimization,
area optimization). Using the previous unsuccessful placement & route runs the most
promising implementation strategy was PERFORMANCE_BALANCE_SLLS, that
tries different variations of placements for SSI devices with more aggressive crossings of
SLR boundaries. The chosen implementation strategies are based on which ones had
the smaller timing score (when it fails due to timing, it mentions a timing score) and
strategies with the same directives. Multiple implementation strategies can be used in a
single run and are executed in different threads, as shown in Listing

buildConfig.setImplementationStrategies (ImplementationStrategy .
PERFORMANCENET DELAY HIGH, ImplementationStrategy .
PERFORMANCE BALANCE SLLS, ImplementationStrategy .
PERFORMANCE_SPREAD_SLLS) ;

Listing 5.6: Implementation strategies commands

All these changes successfully helped in having a successful placement & route of the
models. To find the model’s maximum operating frequency, the frequency of 200MHz
used in the performance model is used as a starting frequency. Intervals of 15MHz are
used to find if the frequency can be pushed further.

5.1.8 Implementation Results

Before our methodology is evaluated in the next chapter, general comments about the
implementation are discussed. An unroll factor of 172 for the fixed-point version and 192
for the floating-point is achieved. A frequency passed the 200MHz could not be achieved.
Vectorizing the FMem memory in the gap junction kernels led to tremendous savings in
hardware resources. The floating-point version could not achieve an unroll factor larger
than 128 because LUTs and Flip-Flops hardware resources were depleted. This FMem
optimization achieved a reduction of 33.87% in LUTs, 17.67% in Flip-Flops, 39,47% in
BRAMs, and 43.75% in URAMs. This helped the floating-point version to reach a higher
unroll factor and decrease the place and route process time due to this high hardware
resource usage. Many important lessons are learned from the implementation section;
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firstly, analyzing before reaching this point is crucial since many decisions made during
in the design process help in overcoming these implementation challenges. Moreover,
the tools help in discovering what is going wrong and where. The timing report helped
pinpoint where the problems are and solve them.

5.2 Summary

In this chapter, the steps taken to optimize the previous implementation of the flexHH
library with focus on the the models that supports the gap junctions are explained.
Detailed information and the reason behind each change is discussed, and crucial infor-
mation regarding the needed commands are also stated. In the implementation phase,
the performance model is kept as the guide and each neglected modification is checked
with the performance model and then is implemented. Having a detailed performance
model with many estimated scenarios, as is the case with the memory controllers, helps
make decisions that are already analyzed. Finally, during each change, the output is
verified using the C model, and this helped to reduce the time used in debugging.



Evaluation

In this chapter, the new implementation of both HHio and HH+gap is validated using the
C model in section 6.1. In section 6.2, the performance model’s evaluation is presented
only for the HHio model since both share the same findings. This section includes
the hardware resource usage, and the execution time evaluation. The error evaluation
between floating-point and fixed-point implementations is presented in section 6.3.

6.1 DFE validation

Many changes are done in the previous implementation regarding the models that sup-
ports the gap junctions extension, which are split into multiple kernels. To make sure
that everything works as expected, the output of the DFE implementation is validated
using the C model. Having a C model helped in evaluating the output of the DFE for
larger networks and simulation steps since checking that on MaxCompiler simulation
is not feasible. Figure illustrates the error of the compartmental voltages between
CPU and the DFE for a network of 480 cells simulated for 30,000 steps (dt = 0.01) for
the HHio model. The x-axis represents the compartments of the network, the y-axis the
time step, and the color corresponds to the error. Using this colormap graph helps us to
observe the behavior of all the network and pinpoint outstanding error. The parameters
used to validate all the models in this chapter are shown in Appendix A and are taken
from [3§]. The average error is 0.16% and as shown in Figure|6.2] the output of the axon
voltage of a single neuron is not influenced by the error.

The error of the HH+gap model is illustrated in Figure having an average error of
0.94%. Between 0.5 — 1 - 10* steps, we notice a bit higher error for all the neurons but
as shown in Figure the output of a single neuron is not influenced. In both models,
this error must be related to rounding errors.

84



CHAPTER 6. EVALUATION

85

25

Time Steps (ms)
&

0.5

200

400 600 800 1000 1200
Compartments

1400

— 100

190

180

170

60

Figure 6.1: Error between floating-point and C model for all the compartments of the

120

100

80

60

40

20

Voltage (mV)

-20

-40

-60

-80

HHio model
I ‘ DFEFloat

| CcPU

r .Ww\'\“ -
7 \

L '// ‘. -
015 1‘ 14‘5 2‘ 2.‘5 3
Time steps (ms) «10*

Figure 6.2: Output of the voltage of a single compartment (axon) of both DFE and C

code of Neuron & of the HHio model



CHAPTER 6. EVALUATION

86

25

Time Steps (ms)
&

0.5

0 50 100

Figure 6.3: Error between floating-point and C model of the HH+gap model

120 T

190

180

60

0
150 200 250 300 350 400 450

Neurons

100 |

of

60 |-

Voltage (mV)

°l
y

CPU
DFEFloat

-20 :

1 1.5 2 25 3

Time steps (ms) «10*

Figure 6.4: Output of the voltage of a single neuron of both DFE and C code of neuron

0 of the HH+gap model



CHAPTER 6. EVALUATION 87

6.2 Performance model Evaluation

6.2.1 Hardware resource usage

In this section, the estimated hardware usage is compared to the actual hardware usage
using the final results from the place and route process for the HHio model.

Tables[6.1 and [6.2] illustrates the actual hardware resource usage and the estimated hard-
ware resource usage for both floating-point and fixed-point for the maximum achieved
unroll factors. As shown, the predicted resource usage is close to the actual one consider-
ing that we took the worst-case scenario during the area estimation. The error between
estimations and the actual hardware usage is less than 10% for the floating-point and
less than 20% for the fixed-point version of the application. The extra resources used
are for the memory controllers, the pipeline registers, manager address state machines,
and aspect ratio registers. We only included the memory controllers in our predictions,
but it seems the outcome is the one expected, a close approximation of the actual re-
source usage. Additionally, it is important to consider additional BRAMSs required by
the manager and this is taken from previous builds. The same outcome is also seen in
the fixed-point version of the application. The purpose is to avoid an infeasible solution
or an application that exceeds the FPGA’s platform available resources. Additionally, it
crucial to know the limiting resource type of your application usually being the on-chip
memory or the DSPs.

Table 6.1: Final and estimated hardware resource usage results of HHio model using
floating-point arithmetic
Resource Usage

Resource Used Estimated Awvailable Deviation(%)
LUTs 707,036 738,499 1,182,240 4-44
Primary FFs 1,142,763 1,247,726 2,364,480 9.18
DSP Blocks 5,004 5,320 6,840 6.31
Block memory (BRAM18) 1,690 1,812 4,320 7.21
Block memory (URAM) 198 - 960 -

Table 6.2: Final and estimated hardware resource usage results of HHio model using
fixed-point arithmetic
Resource Usage

Resource Used Estimated Awvailable Deviation(%)
LUTs 504,588 508,615 1,182,240 0.79
Primary FFs 872,602 1,027,215 2,364,480 17.71
DSP Blocks 5,408 5,295 6,840 -2.08
Block memory (BRAM18) 1,57} 1,792 4,320 13.85
Block memory (URAM) 161 - 960 -

6.2.2 Performance

The performance of the HHio model is depicted in Figure The y-axis represents the
execution time on DFE in seconds and the x-axis the different unroll factors. The total
execution time is better than what is estimated for both versions. This is most likely due
to the DD R,y included in the performance model, it seems that the memory efficiency
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is not accurately captured in smaller unroll factor. This is because the size of data
streamed are not multiple to the burst size and a more pessimistic efficiency factor is used.
Additionally, the execution time without the efficiency factor is also illustrated. As we
can see the floating-point version execution time after an unroll factor of 16 (per kernel)
does not see any improvement and this is due to the fact that our application becomes
memory bound. On the other hand, we notice that fixed-point become memory bound
after an unroll factor of 32 (per kernel). This outcome is as predicted in the performance
model. A mixed version is also implemented that utilizes fixed-point arithmetic to stream
the gap junction weights and it has the same performance as fixed-point. Finally, the
execution time when the memory bound is reached is 30% and 43% higher for fixed-point
and floating-point compare to the execution time excluding the DDR.¢r. This means
that the actual execution time lies between the estimated values and the execution time
without including the DDR.y; factor. This helps in creating margins of the actual
execution time. The performance for the HH+gap model is identical to the HHio model
except that the cells and gate structures streamed to it have a smaller size, but since the
performance is limited by the gap junction it does not affect the execution time.
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Figure 6.5: Execution time for both floating-point and fixed-point of the HHio model

6.2.3 Performance on models without gap junctions connections

All models becomes memory bound as is also discussed in [38], in this work due to time
restrictions all models are place and route setting the unroll factor to four. The fixed-
point version of all the models experienced a performance speed up of 1.2x compared to
floating-point. This is related to the bandwidth savings provided by fixed-point arith-
metic. Loss of performance exists in all models that the gate computations are unrolled
since in order to meet timing, two memory controllers are used. Using, a single controller
for the cell/compartment structures will mean a loss in bandwidth which could be used
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for the gate structures streams (unrolled streams). How can this be improved is further
explained in the future work section.

6.3 Floating-point and Fixed-point Error Evaluation

To quantify the percentage of the error and the average error between floating-point
and fixed-point on DFE the Equations and from Chapter 4 are used. The
simulation parameters used for each model are mentioned in Appendix A and are taken
from [38]. In this section, all the models are evaluated regarding the error between
floating-point and fixed-point.

6.3.1 HH

In Figure the error for the HH model is illustrated. As shown there are two distinct
areas where the percentage error is over 100% while there are areas where the error is
below 10%. The average error is 608%, and this huge average error is related to the
huge percentage error of these two yellow regions shown in Figure By observing the
output of a single neuron as shown in Figure [6.7] the error is related to values that are
close to zero. The behavior of both outputs is close but an error exists before and after
the external current is applied to the model (1 -10* — 2 -10% steps). By analyzing the
membrane voltage potential values it seems that in floating-point, in these yellow regions
the membrane voltages potential derivative values are really small numbers. This results,
in fixed-point not be able to represent the voltage derivative values and the membrane
voltage potentials do not change over the time steps and hence the error. On the other
hand, considering just the output behavior, fixed-point captures the behavior of the
model.
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Figure 6.6: Error between floating-point and fixed-point version of HH model
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Figure 6.7: Voltage output of the axon compartment of neuron 0

6.3.2 HH+-gap

The same behavior as the HH model is also seen in the HH+gap model as shown in
Figure with an average error of 914%. Again this error is related to the yellow
regions before and after the injected current as in the previous model. Extending the
HH model with gap junction extension does not lead in changing the output behavior as
shown in Figure Finally, considering just the output behavior, fixed-point captures
the behavior of the the floating-point.
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Figure 6.9: Voltage output of the axon compartment for neuron 0

6.3.3 HH-+custom

The percentage error of the model that supports the custom gates extension is depicted
in Figure with an average error of 38.06%. In Figure we can observe this error
is related to a phase difference between both data types and a peak from fixed-point
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once the external current is applied (at 1-10%h step). Besides the error in phase, we
see that fixed-point behavior is close to the floating-point.
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Figure 6.11: Axonic voltage for both floating-point and fixed-point of neuron 0

6.3.4 HH-+custom-+multi

The HH+custom+multi has a different output behavior compared to the previous three
models. As we can see in Figure the error is concentrated to when an injected
current is supplied to the model (at 2 - 10* step). The fixed-point output of a single
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neuron shown in Figure has different outcome compared to floating-point. This will
be further discussed in the following subsection since a huge error is also observed in the
HHio model which supports multiple compartments.
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Figure 6.12: Error between floating-point and fixed-point of HH+custom-+multi model
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Figure 6.13: Axonic voltage for both floating-point and fixed-point of neuron 0

6.3.5 HHio

Figure illustrates the error for all the compartmental voltages. We can noticed
that the error between 2 — 2.5 - 10* steps peaks is over 100%. This is when an external
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current is injected in our model and in Figure that illustrates the output of a
single compartment, the difference in the output is obvious. Most likely this huge error
may be due to the less precision offered by fixed-point arithmetic. To elaborate, Figure
shows the first dendritic activation variable for the dendritic compartment. As we
can see after the 20,000th step the fixed-point output has a flat result compared to the
floating-point. By analyzing the output file, floating-point had small increments between
steps for all the gate activation variables while in fixed-point the output stayed constant.
These small increments are represented as zero values in fixed-point but this needs to
be furthest investigated. Additionally, recall that in the fixed-point analysis we have
found that the gate activation variables had an increased demand for fractional bits but
the voltage output did not produce this much error. This is a result of not simulating
a large network of neurons for a longer time for the error to be observable. Finally,
considering the previous models, supporting multiple compartments also influence the
output behavior since this is not observed in the first three models.

The average error between floating-point and the option where fixed-point arithmetic
is used only for the gap junction weights is shown in Figure [6.16] The average error is
0.0189% and it was expected since besides the gap junction weights everything else is
streamed and computed using floating-point arithmetic. This option provides the best of
both worlds; not losing the accuracy from using fixed-point arithmetic and the advantage
of using fixed-point arithmetic in parts of the application to save bandwidth.
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The output for floating-point (DFEFloat), fixed-point (DFEFIX28) and the option that
gap junction weights are streamed in fixed-point (Mixed) are depicted on Figure
Floating-point and the mixed option have the same behavior while the huge error that
exists in fixed-point is clearly visible. As mentioned earlier, this needs to be further
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investigated to find if this is indeed related to the less precision provided by fixed-point.
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Conclusions

7.1 Discussion

In this thesis, we used Maxeler’s Technologies design process to improved the perfor-
mance of the flexHH library on Maxeler’s Data-Flow Engines (DFE).

Using Maxeler’s technologies desing process, an accurate analysis of the flexHH library
is conducted with focus on the most complex model. This analysis included the pro-
filing of the flexHH library, operation analysis, and loop-flow graphs to determine the
computation requirements and data transfers. Following that, a fixed-point analysis was
conducted to determine if there is a possible candidate that fits our application’s accu-
racy requirements. This information helped us create an accurate performance model
based on the hardware resources estimation and bandwidth limitations. Finally, using
all this information, the final implementation was created.

7.2 Research Questions

Can fixed-point arithmetic provide substantial improvement on performance
for flexHH library without losing substantial accuracy compared to floating-
point?

The models that do not support the gap junctions extension (HH, HHcu, HHcumu)
achieved a 1.2x speedup by employing fixed-point arithmetic. The downside is that the
model that support multiple compartments (HHcumu) experience a huge error compared
to floating-point. Both models that supports the gap junction extension (HH+gap, HHio)
achieved a 2x speedup, using the fixed-point arithmetic. HH+gap has a behavior close to
floating-point while the HHio model output did not match the expected output behavior
of floating-point. Finally, by employing fixed-point arithmetic just on the gap junction
weights for the HHio model introduced 2x speedup without losing accuracy compared to
floating-point. This mean that fixed-point analysis is helpful and needs to be considered
especially if performance is of an essence and the application is memory bound.

Can the models of the flexHH library be implemented in such a way to be
scalable using multiple DFEs

Indeed this work laid the foundations to speed up neuron modeling further by scaling
up the models using multiple DFEs. As things stand now in technology, this application
will not improve further by not losing much accuracy. The gap junction weights can be
pushed down to 8-bits to achieve an unroll factor of 128 in total but this depends clearly
on the accuracy needed. A solution to this is to scale up the application using more
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DFEs and this is now possible using this multiple kernel optimized implementation of
both HH+gap and HHio models. This is further explained in the following section.

7.3 Future Work

In this section, recommendations are given to improve the application further.

7.3.1 Multiple DFEs

In a Maxeler data-flow supercomputing system, multiple data-flow engines can be con-
nected via a high-bandwidth MaxRing interconnect. The MaxRing interconnect allows
applications to scale linearly with multiple DFEs. This is now possible because the gap
junction kernel is extracted from the main application and divided into two kernels.
Using multiple DFEs will boost performance since our application is memory bound,
and each DFE will have its own LMem. The concept idea is shown in Figure On
the first DFE, the main kernel will be instantiated alongside two gap junction kernels
as in the current application. For the rest of the DFEs, a gap junction kernel will be
instantiated per LMem. The blue arrows represent streams from CPU to LMem that
set the parameters and the red arrows represent the streams from LMem to each DFE.
Orange arrows are the initialization parameters, streamed only during the first step of
the simulation and the black arrows are the data transfers between kernels.

Figure 7.1: Multiple DFEs application
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The main kernel will finish its computations, and then it will stall till the membrane
voltages from the other DFEs are pushed into the manager FIFOs. For example, if an
unroll factor of 32 per kernel is achieved, this means that in total, using a four DFE
set up, we can achieve a total unroll factor of 352. A large network of neural cells can
be simulated that divides the unroll factor per kernel. For example, let us consider a
network of 61,440 neuron cells, and using the Equation [7.I} we can calculate the ticks
needed per kernel. In this formula, Nppg represents the number of DFEs, and Ngj
represents the number of instantiated gap junctions kernel per DFE. Each gap junction
kernel will need 4,915,200 ticks to compute the intercellular current. The main kernel
during the fist 798,720 ticks will compute and send the rest of the currents (I) with the
elastance (S) to the gap junction kernels. Each gap junction kernel will need these values
during the final iteration of the gap junction loop (after the 4,907,520th tick).

. Neelts + Neer
T k‘ — celts cells 7'1
ersGy unroll factor - Nprg - Ngj (7.1)

Tickspyx = Ncells : Ngates (7'2)

The data transfers between each gap junction kernel need to be considered; if the mem-
brane voltages are not received before moving to the new step of computations, we will
have an erroneous result. Figure [7.2] illustrates an example solution to mitigate this
problem. A network size of 8 cells, an unroll factor of 4, and 2 DFEs are used for sim-
plicity (we consider a kernel per DFE). Each rectangle denotes the computation between
cell i and cell j. The blue rectangles represent the computations that the membrane
voltages needed are produced inside the kernel and in orange, the membrane voltages
that need to be streamed from the second DFE. During the final iteration, the membrane
voltages from each gap junction kernel are produced and stream out to other kernels.
To make sure the correctness of the application, we can transpose the computations in
Y-direction; the second DFE can start computing using the membrane voltages produced
by it, as shown in to give plenty of time to receive the values from other kernels.
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7.3.2 Design for portability

MaxCompiler can target different FPGA platforms and the spectrum of the supported
platforms is constantly increasing. It is often required to targeted multiple platforms at
the same time either being Alveo, MAX5C, or Amazon F1 instances. Moreover, as new
FPGAs and DFEs become available, it will be of interest to support these newer and
probably faster and more capable devices. This is interesting to include in this work
since Erasmus MC has both MAX5C and Alveo cards and additionally launching the
application on Amazon is desired. When porting a DFE based application from one
platform to another you need to consider again the performance scalability. This means
that we need to consider the difference between platforms and achieve performance close
to what is possible on the new platform. For example, MAX5C includes 3 DIMMs of
memory while Alveo (U250) includes 4 DIMMs of memory, this means that an extra Gap
junction kernel can be instantiated to utilize the extra memory. Many changes need to
take place and be considered to adjust the implementation to be dynamically based on
the platform. What enables this, is the multiple kernel implementation done in this
work since the current FPGA platforms and possibly future ones will be developed using
multiple dies technology.

7.3.3 Models that do not include gap junctions

The models that do not support gap junctions are not optimized in this work besides
using fixed-point arithmetic. Recall that these models are also memory bound and in-
efficient utilization of bandwidth due to the split of memory controller exists. These
models do not require a vast amount of resources so instantiating multiple kernels in-
stances is possible. One optimization which is going to help to efficiently utilize memory
bandwidth is to instantiate one kernel per LMem DIMM and execute more neurons in
parallel. This can be done since neurons do not interact with each other through gap
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junctions. This will result in each kernel utilizing memory bandwidth efficiently and
not be wasted on the cell/compartment parameters streams and increase the number of
neurons computed in parallel.
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i,j are the indexes of the cells
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(A.1)

(A.2)

(A.3)

(A.10)

(A.11)
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A.3 HH-+tcustom

V =-60 (A.12)
h=0.9 (A.13)
x = 0.2369847 (A.14)
0= { it} e
where t is the number of steps
A.4 HH+custom-+multi
Viena = —60 (A.16)
rqg = 0.0112788 (A.17)
sq = 0.0049291 (A.18)
ga = 0.0337836 (A.19)
CA2Plus = 3.7152 (A.20)
Vsoma = —60 (A.21)
ks = 0.7423159 (A.22)
ls = 0.0321349 (A.23)
hs = 0.3596066 (A.24)
ns = 0.2369847 (A.25)
xs = 0.1 (A.26)

Vwon = —60 (A.27)
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ha = 0.9 (A.28)
xq = 0.2369847 (A.29)
o= { 1720000 <0 wan
where t is the number of steps

A.5 HH+custom+multi+gap (HHio)
Viend = —4 - (1%20) (A.31)
rq = 0.0112788 (A.32)
sq = 0.0049291 (A.33)
qq = 0.0337836 (A.34)
CA2Plus = 3.7152 (A.35)
Vsoma = —2 - (1%30) (A.36)
ks = 0.7423159 (A.37)
ls = 0.0321349 (A.38)
hs = 0.3596066 (A.39)
ns = 0.2369847 (A.40)
xs=0.1 (A.41)
Vazon = —6 - (1%10) (A.42)

he = 0.9

(A.43)



APPENDIX A. SIMULATION PARAMETERS 111

o = 0.2369847 (A.44)

(%20, if (t > 20000) < (t < 25000)
Lapp(t) = { 0, if otherwise (A.45)
w; ;= 0.01 (A.46)

where t is the number of steps
i,j are the indexes of the cells
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