
Delft University of Technology
Master’s Thesis in Embedded Systems

Adapting TCP/IP protocol to a Time-Slotted
NFC Channel present in a Wireless Power

Environment

Shruthi Kashyap

Adapting TCP/IP protocol to a Time-Slotted NFC

Channel present in a Wireless Power Environment

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Shruthi Kashyap
ShruthiKashyap@student.tudelft.nl

4th October 2017

mailto:ShruthiKashyap@student.tudelft.nl

Author
Shruthi Kashyap (ShruthiKashyap@student.tudelft.nl)

Title
Adapting TCP/IP protocol to a Time-Slotted NFC Channel present in a
Wireless Power Environment

MSc presentation
4th October 2017

Graduation Committee
Prof. dr. Koen Langendoen (chair) Delft University of Technology
Dr. RangaRao Venkatesha Prasad Delft University of Technology
Mr. Toine Staring Philips Research
Dr. Claudia Hauff Delft University of Technology
Ir. Vijay Rao Delft University of Technology

mailto:ShruthiKashyap@student.tudelft.nl

Abstract

Kitchen is becoming a hotbed for innovation in the Internet of Things (IoT)
revolution. Many kitchen appliances are being connected to the Internet to fa-
cilitate ‘smart-cooking’. The appliances are becoming cordless too, i.e., they are
being powered by inductive power sources which are integrated into the kitchen
counter-tops. The Wireless Power Consortium (WPC) has proposed standards
for smart-cooking in cordless kitchens by enabling communication using near-
field communication (NFC) protocol between the appliance and the power trans-
mitter. In order to keep the appliances safe as well as reduce the cost of the
appliances, it is required that the NFC channel should be exploited to enable
Internet connectivity in the appliances. However, due to practical constraints,
the NFC channel is time-slotted. Furthermore, this NFC channel has low data
rates and high latencies. These constraints make it highly challenging to enable
Internet connectivity for these resource-constrained cooking appliances for IoT
applications.

This thesis explores different ways of providing Internet connectivity to the
cordless kitchen appliances using the time-slotted NFC channel. Two architec-
tures are proposed based on this method, namely the Proxy and the Bridge
architectures. In the proxy architecture, the cordless appliances implement only
the application layer and tunnel the application data through the NFC channel
which will then be used by the power source to create TCP/IP packets for the ap-
pliance. In the bridge architecture, the appliances implement all the layers of the
TCP/IP network stack. All the TCP/IP traffic is sent through the NFC channel
and the power source acts as an intermediate hop. These architectures are eval-
uated in detail to determine the best-suited architecture. The thesis concludes
that the bridge architecture, although heavy on the appliances, truly creates an
IoT-enabled appliance, and therefore adopts it.

While it is proposed to send the complete TCP/IP packets to go over the NFC
channel, the impact on the performance of the protocols needs to be investig-
ated, specifically TCP as it is the most used protocol for IoT applications. The
performance of TCP will be affected due to several reasons: (a) the time-slotted
NFC channel; (b) low data rates on the NFC; (c) delays in accessing the NFC
channel, and (d) no control over the network stack of the other TCP end-point.
Furthermore, the behavior of TCP in such resource-constrained channels aggrav-

iii

ate the problems as spurious retransmissions get triggered. This work presents
important challenges that need to be solved in order to enable TCP to work
smoothly in the time-slotted NFC channels. Two major performance problems
that occur in such an environment are identified, viz., spurious retransmissions
and packet drops at the NFC interface. The existence of the problems are verified
with an experimental setup of the cordless kitchen and solutions are presented
to these challenges: (a) determine the optimal retransmission timeout and the
heuristic, and (b) avoid packet drops due to small inter-packet delay on the NFC
channel. Next, a detailed parametric analysis of the other TCP parameters such
as contention window size and maximum segment size of the TCP packets is
performed.

From the evaluation, it is found that the proposed solutions can almost com-
pletely eliminate spurious retransmissions. With these solutions up to 38% re-
duction in the system latency is achieved at an NFC bit rate of 11.2 kbps and
up to 53% at 24 kbps in the time-slotted mode. By implementing these solutions
and choosing the right parameter values for TCP, it is possible to seamlessly
adapt and use TCP for the time-slotted and resource-constrained NFC channel,
and enable a truly IoT-based cooking experience for the smart cordless kitchens.

iv

Preface

I have had a long-standing interest in networking and IoT and have been following
the latest developments in the field. I also took related courses during my master’s
studies. This interest was further strengthened after I worked in the field of
wireless connectivity in automobiles and consumer electronics. While looking
for a topic for my master thesis, I came across an opportunity from Philips
Research related to cordless kitchen connectivity. I was intrigued by the topic
as it was about enabling IoT for a new wave of kitchen appliances that work on
wireless power. It also excited me because I enjoy cooking and love to explore
unconventional cooking methods. I hope this work will contribute to developing
state-of-the-art kitchens and to the connected world of the future.

I wish to take this opportunity to thank the people who made this thesis possible.
First of all, I would like to express my gratitude to Vijay and VP for their

continuous guidance and mentorship. The stimulating discussions I had with
Vijay at every step were extremely beneficial for my work. His knowledge of the
field and knack of expressing ideas very succinctly have inspired me. I thank VP
for displaying immense patience in my early stages of learning about the topic,
and pointing me in the right direction.

I am sincerely grateful to Toine for giving me an opportunity to work on this
fascinating topic, and for the useful comments, remarks and engagement through
the learning process of this thesis. I would also like to thank Koen for being a
source of inspiration and motiving me to do good work.

Lastly, I thank my family and friends for being a constant source of support
and encouragement.

Shruthi Kashyap

Delft, The Netherlands
4th October 2017

v

vi

Contents

Preface v

1 Introduction 1
1.1 Overview of the Cordless Kitchen Concept 1

1.1.1 NFC communication interface 2
1.1.2 Internet connectivity in cordless kitchen 4

1.2 Challenges and Contributions . 5
1.3 Organization . 7

2 Architectures for Internet Connectivity 9
2.1 Proxy architecture . 10
2.2 Bridge architecture . 12
2.3 Comparison of transmission latency 13

3 Related Work 15
3.1 Tunneling standard TCP/IP protocol over NFC 15
3.2 6LoWPAN adaptation for TCP/IP protocol over NFC 16
3.3 TCP/IP adaptation mechanisms for high delay networks 17

4 Adapting TCP for the Bridge Architecture 19
4.1 Experimental setup . 19
4.2 Challenges in adapting TCP . 22

4.2.1 TCP spurious retransmissions 24
4.2.2 Packet drops due to small inter-packet delay 29

4.3 Addressing the challenges . 31
4.3.1 Packet drops due to small inter-packet delay 31
4.3.2 TCP spurious retransmissions 32

5 Results 41
5.1 Packet retransmissions . 41
5.2 Latency . 42
5.3 Throughput and goodput . 43
5.4 Bandwidth utilization . 45

vii

6 Parametric Analysis of the Bridge Architecture 49
6.1 Effect of TCP CWND size and slow start process on the system

latency . 49
6.2 Effect of TCP MSS size on the system latency 52
6.3 Effect of NFC BER on the system latency 54

6.3.1 Random errors . 54
6.3.2 Burst errors . 54

6.4 Effect of varying the NFC communication time-slot duration on
the system latency . 56

6.5 Considering non-TCP/IP messages over the NFC channel 58

7 Conclusion and Future Work 61
7.1 Future Work . 62

Appendices 63

A Implementation Recommendations 63

B Cordless Kitchen: Detailed Description 65
B.1 Phases of operation . 66

B.1.1 Idle phase . 66
B.1.2 Configuration phase . 67
B.1.3 Connected phase . 67
B.1.4 Power transfer phase . 67

B.2 NFC protocol extensions for cordless kitchen 68
B.2.1 Dedicated application states 68
B.2.2 Dedicated NFC commands 68

Bibliography 71

viii

Chapter 1

Introduction

Every person needs to eat regardless of whether he/she follows a “live to eat” or a
“eat to live” philosophy. As food intake is inevitable aspect of survival, food and
everything around food have continuously evolved from time immemorial. One
of the major aspects that has been experiencing much technological innovation
is cooking, and in a broader sense, the kitchen. With lives of people becoming
busier by the day, the kitchen will certainly be the focal point of innovation in
the near future.

With the emergence of the Internet of Things (IoT) technologies, the concept of
‘Smart Kitchen’ or ‘Connected Kitchen’ [1] is being developed. This concept has
brought a wave of smart, and connected devices that has transformed the way we
cook and interact with our kitchen appliances. It facilitates many interesting and
important applications that cater to the busy lifestyles of today, such as enabling
the appliances to be controlled from smartphones, and cooking by uploading
recipes from a remote location which saves time as compared to the conventional
cooking methods.

An imminent technological development in the smart kitchen domain is the
concept of ‘Cordless Kitchen’ [2]. In this concept, introduced by the Wireless
Power Consortium (WPC) [3], the appliances do not need power cords or batteries
to operate. Instead they are powered by inductive power sources (or power
transmitters) that may be built into a kitchen counter, cooktop (hob), or a table.
The appliance needs to be simply placed on top of the power transmitters and
the user should be able to cook, interact and control the appliance remotely.

This thesis focuses on getting these cordless kitchen appliances connected to
the Internet. Before delving into the challenges, the cordless kitchen concept and
operational methods are described in the next section.

1.1 Overview of the Cordless Kitchen Concept

There are two main goals of the cordless kitchen concept: (a) eliminate power
cords in the kitchen appliance, and (b) connect the appliance to the Internet.

1

These goals together will provide the user with a truly wireless experience.
In order to eliminate power cords, the appliance will be powered by inductive

power transfer in which a permanently-mounted Power Transmitter (PTx) or a
Magnetic Power Source (MPS)1 as shown in Figure 1.1. PTx contains a coil that
draws power from the mains and transfers it via electromagnetic induction to a
another coil placed in the appliance [4]. The power is then converted back into
electrical energy and/or heat for cooking within the appliance.

Figure 1.1: The cordless kitchen concept

The cordless kitchen supports interoperability, where one standard power trans-
mitter can be used for all types of appliances. It is safe and robust as there will be
no electrical shock hazard with inductive power transfer. Furthermore, the For-
eign Object Detection (FOD) functionality avoids accidental heating of foreign
objects like spoons, knives, etc.

Unlike the traditional kitchen appliances, the cordless kitchen appliances are
made intelligent. They communicate with the PTx to ensure that the amount
of power received remains within the limits of the appliance and according to
the input from the user. The communication between the cordless appliance and
the PTx takes place using a Near-Field Communication (NFC) [5] channel, as
shown in Figure 1.1. This makes cooking much more precise, responsive and
repeatable with cordless appliances. The next section gives an overview of the
NFC communication interface.

1.1.1 NFC communication interface

When an appliance is placed on the PTx, the PTx ‘talks’ to the appliance over
the NFC channel in order to negotiate the amount of power to transfer. Here,
the PTx operates in the NFC Reader/Writer (RW) mode and the appliance
operates in the NFC Card Emulator (CE) mode, as depicted in Figure 1.1. The

1The PTx and MPS both represent the inductive power source and the terms are used
interchangeably in the report.

2

communication is initiated and controlled by the PTx, i.e., it behaves as the
master and appliance as the slave. However, when it comes to power transfer,
the appliance controls the amount of power it receives from the PTx by sending
frequent power control messages.

The NFC technology, like the inductive power transfer, is also based on the
concept of electromagnetic induction which enables short range communication
between two compatible devices. NFC operates with low magnetic field strength,
and the presence of high magnetic field corrupts the communication carrier of
NFC. In case of the cordless kitchen, both wireless power transfer and NFC com-
munication need to work together in the same system. As the inductive power
source generates very high magnetic field that can disrupt the NFC communica-
tion, the WPC has proposed a solution where the wireless power transfer and the
NFC communication operate in a time-multiplexed fashion as shown in Figure
1.2. Here uop represents the operating voltage and fop represents the operat-
ing frequency. The NFC communication takes place at the zero crossings of the
power signal, for a duration of Tzero = 1.5 ms. For example, when a power signal
with an operating frequency (fop) of 50 Hz is used, the power transfer would take
place for 8.5 ms and the communication for 1.5 ms. This would repeat every 10
ms or in every half cycle of the power signal. It takes less than 1 µs to stop the
power signal near the zero-crossings and start the NFC communication. This
avoids the interference from the magnetic fields of the power signal during the
1.5 ms of NFC communication slot.

Figure 1.2: Time-multiplexing of the power and the communication signals

The communication complies with the ISO/IEC 14443 standard defined for
near-field communications. The NFC antennas in the cordless kitchen specific-
ation are significantly larger than the ones specified in the standard. They are
circular in shape and the coils used for inductive power transfer are concentric
with each other, as shown in Figures 1.3 and 1.4. The cordless kitchen specific-
ation supports NFC bit rates of 106 kbps, 212 kbps, 424 kbps and 848 kbps.
However, with the time-slotted mode, these bit rates reduce to lower values.

New NFC read and write commands are defined in the cordless kitchen spe-
cification to reduce the communication overhead and meet the 1.5 ms time slot
requirement. The commands follow the ISO/IEC 14443 half-duplex transmission

3

Figure 1.3: NFC antenna and
primary coil in the PTx

Figure 1.4: NFC antenna and second-
ary coil in the appliance

protocol. Table 1.1 shows the number of bytes that can be read using differ-
ent NFC bit rates in the time-slotted mode. The new write command supports
similar payload sizes. These commands carry messages containing measurements
data, operating limits, control data and auxiliary data for Internet connectivity.
Further details about the NFC protocol extensions are provided in Appendix B.

Table 1.1: Number of bytes that can be sent using the new NFC read command
at different data rates

Bit rate (kbps) No of bytes in payload

106 5

212 19

424 48

848 104

1.1.2 Internet connectivity in cordless kitchen

One of the requirements of the cordless kitchen is to enable Internet connectivity
for users to control the appliances remotely, upload recipes and software updates,
etc. Typically, the appliances need not support connectivity when they are away
from the PTx. A straightforward way of providing Internet connectivity to kit-
chen appliances would be to install WiFi modules in them. However, in a cordless
kitchen system, the appliance will not always be powered. Furthermore, when
the PTx goes into the standby mode, the appliance will not receive any power
i.e., it will be switched off. Therefore the WiFi module in the appliance will not
be awake at all times to provide Internet connectivity, and would be available
only when the appliance is placed on top of the PTx. This would lead to loss
of messages. Therefore, having WiFi module in every single kitchen appliance
would be inefficient and unnecessary.

4

This thesis focuses on providing efficient Internet connectivity and enabling
reliable communication with the appliances. The challenges and the problem
statement are described in the next section.

1.2 Challenges and Contributions

As described before, providing efficient Internet connectivity to the appliance is
important. This is stated as the first challenge.

Challenge 1: To provide efficient Internet connectivity with the cordless kit-
chen appliances.

On contrary to the using a WiFi module on each appliance, a WiFi module or
an Ethernet connection could be installed in the PTx, and the already existing
NFC communication channel could be used to indirectly connect the cordless
appliance to the Internet via the PTx. This would also make the appliances
cost-effective as there can be only one WiFi/Ethernet connection in the kitchen
which could be used by all the appliances. Furthermore, when a message arrives
onto the PTx, it can power up the appliance, if placed on the top of PTx, and
establish the communication.

Contribution 1: Two architectures are proposed in this thesis to provide In-
ternet connectivity in the cordless kitchen through the NFC channel. Both these
architectures are suited for the TCP/IP protocol stack. In the first architecture
called as the Proxy architecture, the appliance only sends the application data
to the PTx via the NFC channel, and the PTx takes the responsibility of cre-
ating/processing TCP/IP packets and sending them to the end-user device. In
the second architecture called as the Bridge architecture, the appliance sends the
complete TCP/IP packets to the PTx, and the PTx only forwards these packets
to the end-user device via the WiFi channel. The thesis mainly focuses on the
implementation and performance analysis of the bridge architecture where the
TCP/IP is tunneled over the time-slotted NFC channel.

Most applications use TCP as the transport layer protocol in order to provide
reliable end-to-end communications, and therefore it will be used in the appli-
ances as well. However, the NFC is designed for exchanging small payloads with
data rates up to 848 kbps in normal mode and around 83.2 kbps in the time-
slotted mode. On the other hand, the TCP/IP is designed for exchanging large
amount of data and at much higher data rates to get a considerable performance.
Tunneling a heavy-weight protocol like the TCP/IP over a constrained channel
like the time-slotted NFC would increase the system latency due to the large over-
head introduced by the TCP/IP protocol with the TCP handshake/termination
sequences, acknowledgement mechanism, header overheads, etc.

The Internet applications of the cordless kitchen such as remote user control,
on-line cooking, etc., are firm and soft real time as they require fast response
time. Missing deadlines in these applications may not be hazardous, but it would
definitely affect the cooking procedure and the quality of the food. Motivated by

5

this demand, the thesis aims at solving the following research question.
Challenge 2: How to adapt the TCP/IP protocol to a low bandwidth time-

multiplexed NFC channel such that low end-to-end latency is maintained in the
TCP applications?

In this work, the feasibility of using the bridge architecture for firm and soft
real time applications is analyzed by studying the performance bottlenecks and
highlighting various factors affecting the latency, throughput and bandwidth util-
ization of the NFC channel. Since the channel has unique properties, the chal-
lenges posed need to be solved. In this process, several solutions and adaptation
of TCP are proposed for the bridge architecture.

Challenge 2a: Due to the delay on the NFC channel, TCP will experience
spurious retransmissions.

Contribution 2: To eliminate these, a generalized solution is provided using
which appropriate TCP Retransmission Timeout (RTO) values can be calculated
depending on the packet size and the data rate of the NFC channel being used.

Challenge 2b: Although TCP is designed to adapt the RTO over time by
estimating the delay on the channel, it does not consider the payload sizes in
this estimation. This leads to choosing an incorrect RTO value for this NFC
channel. Therefore, if the payload size varies, TCP still experiences spurious
retransmissions.

Contribution 3: The thesis also proposes a new algorithm for dynamic RTO
estimation for the TCP/IP packets considering the channel delays. This al-
gorithm ensures that optimum RTO values are set for each packet such that
spurious retransmissions are eliminated, and delayed retransmissions are preven-
ted in case of packet loss.

Challenge 2c: The bridge architecture suffers from packet drops at the NFC
interface due to the processing speed mismatch between the TCP/IP stack and
the NFC module.

Contribution 4: An NFC channel sensing mechanism is defined so that the
TCP stack is slowed down to match the transmission speed of the NFC channel,
thereby achieving an optimum inter-packet delay.

Challenge 2d: The other parameters of TCP, such as contention window size
and maximum segment size have an influence, which need to be studied. Also,
the influence of bit errors in the NFC channel needs to be studied.

Contribution 5: The report also throws some light on the parametric analysis
of other factors that affect the system performance such as NFC bit error rates,
communication time-slot sizes, presence of non-TCP/IP messages on the NFC
channel, etc.

Using the new RTO estimation algorithm and the NFC channel sensing mech-
anism, an reduction of about 38% in the system latency is achieved at an NFC
data rate of 11.2 kbps, and up to 53% at 24 kbps in the time-slotted mode.

6

1.3 Organization

The rest of the report is organized as follows. Chapter 2 explains the proxy and
bridge architectures in detail. Some of the related works are discussed in Chapter
3. Chapter 4 talks about the challenges for providing Internet connectivity and
describes how the TCP/IP protocol can be adapted to the cordless kitchen sys-
tem. Chapter 5 provides the results after solving these challenges and adapting
the TCP/IP to the time-slotted NFC channel. Various other factors affecting the
performance of the bridge architecture are explained in Chapter 6. Chapter 7
concludes the report. Some implementation recommendations and more details
about the cordless kitchen system are provided in the Appendix B.

7

8

Chapter 2

Architectures for Internet
Connectivity

In the cordless kitchen, the appliances should be able to connect to the Internet
when they are powered, i.e., when they are placed on top of the PTx. It has to
be ensured that the appliances maintain the Internet connectivity as long as they
are powered on, irrespective of what communication interface is used between the
PTx and the appliance. Internet connectivity is not required when they are away
from the PTx. One solution to provide connectivity is to install WiFi modules in
the appliances. However, there would be drawbacks as mentioned in Chapter 1,
which are summarized here: (a) The WiFi module gets powered only when the
appliance is placed on top of the PTx. Powering the appliances by batteries is not
desirable as batteries need to be regularly charged and/or replaced. (b) When the
PTx goes into standby, the appliance will be switched off and the WiFi module
in the appliance will not be awake to support Internet connectivity. The PTx
could supply standby power to the appliance, however this will not be efficient in
terms of power consumption. (c) The cost of the appliances would increase due
to the additional WiFi module and battery.

Hence, having a dedicated WiFi module for every appliance will be unneces-
sary. To overcome these drawbacks, the WiFi module could be installed in the
PTx (or kitchen counter-top) instead, and this connection could be shared by
all the appliances that use the PTx. To enable this, the existing NFC chan-
nel between the appliance and PTx could be used for transmitting the Internet
related information so that the cordless appliances are indirectly connected to
the network. Using this solution, the PTx can keep its WiFi module on dur-
ing standby and wake up the appliance whenever it receives a message for the
appliance from a remote user. This would also reduce the cost of the appliance.

Based on this solution, two main architectures can be considered for Internet
connectivity: Proxy architecture and Bridge architecture. Both these architec-
tures are to support the TCP/IP protocol. TCP is chosen as the transport layer
protocol because the Internet applications of the cordless kitchen like remote user

9

control, recipe and software uploads require reliable connections. TCP is best
suited for such scenarios as it provides a reliable, ordered and error-checked de-
livery of packets between communicating applications. This chapter explains and
evaluates these architectures by discussing their advantages and disadvantages in
detail.

2.1 Proxy architecture

In this architecture, the PTx is installed with a WiFi module or Ethernet con-
nection, so it holds the full TCP/IP stack required for Internet connectivity. The
cordless appliance only implements the application layer and sends its application
data to the PTx through the NFC channel. The PTx acts like a proxy to the
appliance by processing the TCP/IP packets for it, as shown in Figure 2.1.

Figure 2.1: Proxy architecture for Internet connectivity

In the proxy architecture, the PTx represents the appliance on the Internet.
So the TCP session initiation/termination, data packet processing and acknow-
ledgment handling are done by the PTx, as shown in Figure 2.2. The appliance
only sends/receives the application payload. When the PTx receives a TCP/IP
packet from the end-user device, it immediately sends out an ACK to the end-user
device and then sends the application data to the appliance. It does not wait to
check if the application data is delivered correctly to the appliance. Advantages
of using this architecture are listed below:

• The implementation of the appliance is simple as it only needs the applic-
ation layer.

• There is less load on the NFC channel as the appliance sends/receives only
the application data. This results in lower system latency.

• Lower cost of the appliance as there is no WiFi module or battery.

However, this architecture has the following disadvantages:

10

Figure 2.2: TCP sequence diagram of proxy architecture

• Reliability is dependent on the PTx implementation because the PTx is re-
sponsible for creating and processing the TCP/IP packets of the appliance.

• The PTx sends an ACK irrespective of whether the data is delivered to
the appliance or not. A special handshake mechanism could be implemen-
ted where the PTx waits until the appliance sends an ACK for the data
it received. This would increase the latency and also the complexity of
implementation.

• The data is not end-to-end protected by the appliance. When the PTx
and the appliance are from different manufacturers, the appliance needs to
trust the PTx with its application data. There would be possibilities of PTx
using the appliance’s data for its business purpose without the consent from
the user for example, analyzing user behavior, extracting the appliance’s
implementation details, sending the packets to a malicious server/user, etc.
It is possible to use data encryption techniques to increase the security,
however, the PTx would still have the control of processing the TCP/IP
packets of the appliance.

• Another disadvantage could be that the PTx manufacturers might not be
willing to implement this architecture. There are no advantages for the PTx
in this architecture because it only acts like a proxy and has the burden of
processing Internet packets for the appliance.

• Appliance is not visible on the network as it does not have its own IP
address.

11

2.2 Bridge architecture

In this architecture, the PTx contains the WiFi module or Ethernet connection
but it acts like a bridge by processing only the data link and the physical layers
for the appliance. The higher layers of the TCP/IP stack are implemented by the
appliance, as shown in Figure 2.3. Thus the appliance does not have to depend
on the PTx for TCP/IP packet processing.

Figure 2.3: Bridge architecture for Internet connectivity

Figure 2.4 shows an example TCP sequence diagram using the bridge archi-
tecture. In this, the appliance is visible in the network and has a TCP/IP stack
of its own. It is completely responsible for TCP session initiation/termination,
data packet processing and acknowledgment handling. The PTx merely acts
like a bridge by forwarding the appliance’s packets to the end-user device. The
advantages of using this architecture are:

• The appliance has more control in the process of Internet connectivity. It
is only dependent on the PTx for forwarding its TCP/IP packets.

• The data communication can be made more secure by using cryptographic
protocols like the Transport Layer Security (TLS) in the appliance stack to
ensure data privacy.

• The burden on the PTx is less as it does not have to process the TCP/IP
packets for the appliance.

• The appliance will be visible on the network as it will have its own IP
address.

Some of the disadvantages of this architecture are listed below.

• The load on the NFC channel increases due to the overhead introduced by
the TCP/IP protocol. This will have a large impact on the latency of the
system. As the Internet applications of the cordless kitchen are soft and
firm real time, it is very important to have minimal latency and a good

12

Figure 2.4: TCP sequence diagram of bridge architecture

response time in the applications. Packet compression techniques could be
employed to reduce latency.

• The implementation of the appliance would be complex due to packet pro-
cessing and tunneling of TCP/IP protocol over the NFC channel.

2.3 Comparison of transmission latency

The size of the application data in the cordless kitchen depends on the kitchen UI
protocol being used. A proprietary protocol called the Digital Innovation Com-
munications (DICOMM) Protocol is used for the experiments. The approximate
message sizes in the JavaScript Object Notation (JSON) based variant and the
Binary variant of the protocol are shown in Table 2.1.

Table 2.1: Internet application message sizes using the DICOMM UI protocol

Message type
Message size (Bytes)

JSON protocol variant Binary protocol variant

Switch on/off,
Set time/temperature,
Keepwarm on/off, etc.

30 to 100 10 to 35

Status information /
Notification

250 to 300 75 to 100

Recipe upload 350 to 1000 125 to 350

13

Figure 2.5 shows the latencies of data exchange using the proxy and bridge
architectures at an NFC bit rate of 83.2 kbps in the time-slotted mode. A TCP
session exchanging a single data packet is considered for the bridge architecture
and the 6LoWPAN header compression results given in [7] are used. It can be
seen that without compression the latency in the bridge architecture is around 170
ms higher than that of the proxy architecture. This is because of the overhead
introduced by the TCP/IP protocol. This overhead remains constant for all
the data sizes, so it will be less significant at higher sizes. For a data size of
1024 bytes, the latency with the bridge architecture is about 44.6% more than
that of the proxy architecture, and with header compression this difference is
reduced to about 36.6%. It is possible to have long TCP sessions equal to the
duration of cooking session in order to avoid executing the TCP handshake and
termination procedures frequently. In such scenarios the latency obtained with
header compression will be very close to that of the proxy architecture as seen in
Figure 2.5.

Figure 2.5: Transmission latency for different application data sizes using proxy
and bridge architectures

14

Chapter 3

Related Work

With the advent of the Internet of Things (IoT) concept a lot of research is
being made to find ways of establishing connectivity between diverse and distinct
objects that are based on dissimilar technologies. NFC is a widely used technology
which has gained a lot of popularity because of its features like increased security,
instant connection procedure, low power, low cost, etc. Over the last few years
there has been some research on providing Internet connectivity to NFC enabled
IoT devices. For the ease of comparison and analysis, the methods of enabling
connectivity in the related works are broadly classified into the following types:

1. Tunneling standard TCP/IP protocol over NFC

2. 6LoWPAN adaptation for TCP/IP protocol over NFC

3. TCP/IP adaptation mechanisms for high delay networks

3.1 Tunneling standard TCP/IP protocol over NFC

One of the most straightforward ways of providing Internet connectivity to a
device through the NFC channel is by tunneling the TCP/IP protocol over the
channel. [8] introduces a concept called WebTag, which enables direct IP based
access to a sensor tag using NFC technology. It supports secure applications by
tunneling the TCP/IP traffic over the NFC carrier. In this method the sensor
tags are equipped with a full TCP/IP suite, web server and an NFC communic-
ation channel that connects them to the NFC reader device which behaves as a
network gateway. The paper briefly discusses the performance issues caused by
bandwidth constraints, increased transmission latency due to differing processing
speeds in components, memory limitations, etc. To overcome these challenges it
employs data fragmentation mechanism, where large packets are fragmented/de-
fragmented at the ends of the NFC channel. It also uses the Van Jacobson packet
compression technique [9] to further reduce the latency. Although the paper gives
an overview on the effects of tunneling the TCP/IP over NFC, it lacks a detailed

15

analysis of the TCP characteristics that affect the system performance. It uses
the uIP stack [10] with standard configuration and does not give enough insight
on how the stack can be adapted to the NFC technology to achieve best res-
ults. Furthermore, the paper deals with a scenario where full bandwidth of the
NFC channel is available for transmission, unlike the cordless kitchen project
where only slotted bandwidth of the NFC is used. So the effects of establishing
a TCP/IP connection over a discontinuous channel cannot be realized with the
results provided by this paper.

[11] proposes a concept for a test system that can establish a TCP/IP con-
nection over the NFC channel and tunnel all the TCP/IP data through it. The
communication protocol stack used in the system is split into two separate blocks
that are connected via Bluetooth. The NFC block hosts the physical (NFCIP-1)
and Logical Link Control Protocol (LLCP) layers of the NFC stack, and a PC
block is used for the higher TCP/IP layers. The system has the full available
bandwidth of the NFC channel, however, as it uses the standard NFC protocol
the Protocol Data Unit (PDU) of NFC is limited to 255 bytes. To overcome
this limitation a chaining mechanism is used to transfer large TCP/IP packets,
similar to [8]. To reduce the latency, the system ensures that data is transmitted
over the NFC as soon as the channel is free. It does not employ any compres-
sion technique as it mainly focuses on analyzing the performance of the system.
The paper provides some test results in terms of TCP retransmission rate and
measured data rate using three different configurations of the IP Maximum Trans-
mission Unit (MTU) sizes. However, it does not give detailed analysis or results
taking other aspects of the TCP/IP protocol into account. Although the paper
highlights some factors affecting the system latency such as slow data processing
in the NFC device, long reaction times due to varying processing speeds in com-
ponents, it fails to discuss the mitigation techniques or ways of modifying the
TCP/IP stack to overcome these challenges. It just gives a preliminary analysis
to show advantages and disadvantages of tunneling TCP/IP over NFC devices.

3.2 6LoWPAN adaptation for TCP/IP protocol over
NFC

A design space and use case analysis of transferring IPV6 packets over NFC chan-
nel for resource-constrained IoT devices is provided in [12]. The paper recom-
mends using the 6LoWPAN technology [13] for applications involving constrained
node networks such as the NFC. 6LoWPAN stands for Internet Protocol (IPv6)
over Low-Power Wireless Personal Area Networks (LoWPAN). It is a low-power
wireless mesh network which allows devices with limited processing capability to
connect directly to the Internet using open standards.

The 6Lo group from the Internet Engineering Task Force (IETF) has been
working on standardizing the mechanism for transmitting IPv6 over resource-
constrained networks such as NFC [14], Bluetooth Low Energy (BLE) [15], IEEE

16

802.15.4 [16], etc. [14] is an Internet draft from the 6Lo working group that
describes a method of remodeling the IPV6 stack to include the data link and
the physical layers of the NFC stack by adding 6LowPAN functionalities such
as neighbor discovery, address auto-configuration, header compression and frag-
mentation. In this method the IP packet is transmitted as the PDU of the NFC
LLCP layer.

[17] proposes a 6LoWPAN adaptation protocol for transmitting IPV6 packets
over NFC devices. It involves modifying the standard TCP/IP stack to en-
able IPV6 communication over the NFC channel using 6LoWPAN techniques
described in [14]. The paper provides some simulation results in terms of latency
and total packet count. It claims that by using the adaptation layer the NFC
device takes negligible additional time for initialization. It compares the number
of IPV6 packet transmissions with and without IP header compression and con-
cludes that the reduction in the number of packet transmissions will be higher
for large packet sizes. Other aspects of the performance have not been discussed
in detail.

As the cordless appliances are resource constrained IoT devices, using the
6LoWPAN adaptation protocol could be beneficial for the performance. But
before directly adopting this technique it is very important to study the cordless
kitchen environment involving the time-slotted NFC channel and analyze how
the TCP/IP communication behaves when subjected to such a discontinuous
and constrained channel. None of the above works gives insight in this aspect.
Furthermore, the works do not provide detailed analysis in terms of the behavior
of standard handshake, acknowledgement, retransmission and congestion control
mechanisms of TCP over a time-multiplexed NFC channel. They do not study
the NFC channel characteristics and quantify the performance based on latency,
throughput, retransmissions and bandwidth utilization for different NFC bit rates
and bit error rates (BER).

Once an analysis on this level is done, the main bottlenecks of tunneling a
heavy-weight protocol like the TCP/IP over a constrained channel like the time-
slotted NFC can be realized. And once these limitations are addressed, techniques
like the 6LoWPAN and the Constrained Application Protocol (CoAP) [18] can
be used to further improve the system performance.

3.3 TCP/IP adaptation mechanisms for high delay
networks

There has been some research on the performance of TCP over slow links. [19]
provides a detailed end-to-end TCP performance analysis in GPRS networks in
terms of round trip delays, throughput, packet loss ratios, etc. It also quanti-
fies the performance improvements with various TCP parameters like maximum
segment size, receiver window size, selective acknowledgements and timestamp
usage. Some of the theoretical research aspects in this paper could be mapped to

17

the cordless kitchen system, however the practical results cannot be used or com-
pared with the cordless kitchen as they deal with completely different wireless
technologies.

[20] proposes a new protocol called as the Explicit Control Protocol (XCP)
which gives an improved congestion control mechanism in very high bandwidth-
delay product networks. The work mainly concentrates on improving the band-
width utilization and fairness in bandwidth allocation in addition to reducing the
standing queue sizes and packet drops. It describes a congestion feedback mech-
anism that requires additional fields in the protocol header to carry congestion
related information. As the NFC protocol only supports one-to-one communic-
ation, techniques related to fairness control are not applicable to the cordless
kitchen system. The congestion feedback mechanism could be used, but the
additional overhead in the protocol header could increase the latency on the
constrained NFC channel.

[21] is an Internet draft from the IETF that gives a generalized overview on
the performance implications of slow links on the TCP/IP protocol. It recom-
mends header and payload compression techniques to reduce the latency, TCP
buffer auto-tuning to avoid packet drops due to buffer overflow conditions and
limited transmit algorithm to trigger fast retransmit and fast recovery in case
of packet loss. [22], [23] and [24] provide a couple of techniques to improve the
throughput of TCP in wireless networks with high delay variability. They mainly
discuss about spurious retransmissions that occur in such networks and provide
mitigation techniques.

All these works provide some aspects of the TCP/IP behavior in high delay, low
bandwidth links but none of them studies the performance of a system containing
different types of wireless channels with dissimilar characteristics. There has
been no research on slotted TCP mechanism, where the TCP/IP is subjected
to a discontinuous communication medium. Some of the techniques proposed in
the related work could be used in the cordless kitchen once the TCP protocol
is appropriately tuned to the system. This thesis mainly focuses on adapting
the standard TCP/IP protocol stack to the time-multiplexed NFC channel by
addressing some major performance bottlenecks. It also provides detailed analysis
of the behavior of important TCP mechanisms in such an environment.

18

Chapter 4

Adapting TCP for the Bridge
Architecture

Some experiments have been designed to understand what parameters of the
TCP/IP protocol affect the performance of the cordless kitchen system. These
parameters are recognized and adapted to the system appropriately in order to
boost the performance of the Internet applications.

4.1 Experimental setup

The experimental setup consists of three Linux based systems that behave as the
cordless appliance, PTx and the end-user device. The Lightweight IP (LwIP)
stack [25] is installed on these, where only the required layers of the stack are
utilized, as shown in Figure 2.3. An Ethernet connection is used between the
PTx and the end-user device. An NFC communication channel is setup between
the PTx and the cordless appliance. The block diagram of the NFC module used
in this experiment is illustrated in Figure 4.1 and the actual hardware setup is
shown in Figure 4.2. It consists of an NFC Reader/Writer (RW) device, an NFC
Card Emulator (CE) device and micro-controllers (MCU) connected to each of
them as shown in the figures. The NFC devices have the following characteristics.

Figure 4.1: Block diagram of the NFC module

• They operate at 13.56 MHz and use the ISO/IEC 14443-4 half-duplex trans-
mission protocol.

19

Figure 4.2: NFC module used for the experiments

• They support bit rates of 212 kbps and 424 kbps.

• They are capable of transferring a chunk of 14 bytes (at 212 kbps) and 30
bytes (at 424 kbps) in one time slot of 1.5 ms. So the bandwidth in the
NFC time-slotted mode would be 11.2 kbps (at 212 kbps) and 24 kbps (at
424 kbps).

• They require the data chunk to be available at least 2 ms before the occur-
rence of a communication time-slot.

• The distance of about 3 cm is used between the NFC RW and CE devices
(see Figure 4.3).

• No bit errors occur up to a distance of 8 cm. The NFC RW device termin-
ates the connection with the NFC CE device when bit errors are detected
in the connection. No error correction techniques are used.

The MCUs used in the module are responsible for the fragmentation of the
incoming packets from the TCP/IP stack. The defragmentation is done in the
PTx and appliance stacks. The MCUs are also responsible for synchronizing the
data transfer with the NFC communication time-slots. A serial communication
(UART) is used between the MCUs and the NFC devices. According to the cord-
less kitchen specification, the PTx needs to behave as the NFC RW device and
the appliance as the CE device, so the connections are made by interfacing the
PTx and the appliance to the appropriate MCUs using UART communication.

20

Figure 4.3: NFC RW and CE modules used in the experiments

Th MCUs have an incoming packet buffer of 2 kilobytes. The Maximum Trans-
mission Unit (MTU) over the Ethernet channel is 1500 bytes. So a packet buffer
size of 2 kB is chosen considering the overheads from the UI protocol and packet
processing. They have an interrupt driven UART reception, and they store and
process only one packet at a time.

The proprietary DICOMM UI protocol is used between the end-user device
and the appliance. The TCP server and client applications are run on these two
devices to exchange data using the UI protocol. The TCP/IP stack configura-
tion used for the experiments is listed in Table 4.1. Table 4.2 summarizes the
communication overhead in the cordless kitchen. In the experiments, the cord-
less appliance is assigned with an IP address of 192.168.1.102, and the end-user
device with 192.168.1.202, as shown in Figure 4.4. Note that for the ease of
implementation, the PTx is also given the same IP address of 192.168.1.102, as
that of the appliance. Wireshark packet analyzer tool is used over the Ethernet
link. The packets over the NFC channel cannot be captured by this tool, so logs
from the NFC and the TCP/IP stacks are also used for analysis.

Table 4.1: LwIP stack configuration used in the experiments

Configuration type Value

Protocol Version IPV4

TCP Maximum Segment Size (MSS) 1024 bytes

Initial Contention Window (CWND) size 4096 bytes

Send buffer size 4096 bytes

Maximum CWND size 8096 bytes

For every ACK received CWND increases by 1024 bytes

TCP Retransmission Timeout (RTO) 1 s

TCP timer period 500 ms

TCP fast timer period 250 ms

21

Table 4.2: Communication overhead in the cordless kitchen system

Overhead type Size (Bytes)

IPV4 20

TCP 20

UI protocol 8

Packet handling 8

NFC protocol 4 per time-slot

Total 56 + (4 * No. of time-slots per packet)

Figure 4.4: TCP client as the cordless appliance and TCP server as the mobile
app

4.2 Challenges in adapting TCP

The TCP is a transport layer protocol which is responsible for ensuring reli-
able transmission of data across Internet-connected networks. It is called as a
connection-oriented protocol as it establishes a virtual connection between two
hosts using a series of request and reply messages. It divides the messages or files
to be transmitted into segments that are encapsulated into the body of the IP
packets. Upon reaching the destination, these segments are reassembled to form
the complete message or file. The TCP defines a parameter known as the Max-
imum Segment Size (MSS) which represents the maximum payload size a TCP
segment can hold excluding the TCP header. It is basically the application data
size that can be sent in a single TCP/IP packet. The TCP executes a three-way
handshake sequence for connection establishment between two hosts, as shown
in Figure 4.5. During the handshake, the hosts agree upon the MSS value that
will be used during the data transfer. Once the hosts finish exchanging data, the
TCP session will be terminated using the connection termination procedure.

While the connection is established and the data transfer is in progress, the
TCP uses several mechanisms such as congestion control and flow control to
provide a reliable connection. The congestion control includes the slow start,
congestion avoidance, fast retransmit and fast recovery mechanisms [26]. The
TCP maintains a retransmission timer to detect and retransmit lost segments.

22

Figure 4.5: TCP connection establishment, data transfer and connection termin-
ation procedures

Each time a segment is sent, the TCP starts the retransmission timer which timer
begins at a predetermined value called as the Retransmission Timeout (RTO)
and counts down over time. If this timer expires before an acknowledgement is
received for the segment, the TCP retransmits the segment assuming that the
packet is lost. The RTO value for segments is set dynamically by measuring
the Round Trip Time (RTT) of the previous segments. This helps in setting
appropriate RTO values by understanding the current delay on the channel.

The flow control determines the rate at which data is transmitted between the
sender and receiver in a TCP session. The TCP uses sliding window mechanism
for flow control. Due to the limited buffer space, the sender and receiver maintain
congestion window (CWND) and receive window which represent the amount of
unacknowledged data that can be in transit at any given time. (Note: Please
refer to [26] for a detailed explanation on the working of the TCP/IP protocol).

In this thesis, the TCP MSS, RTO, RTT and CWND parameters are con-
sidered while adapting the TCP/IP for the slotted NFC channel as they are the
fundamental factors that affect the performance of the cordless kitchen. This
chapter mainly concentrates on adapting the TCP RTO and RTT parameters to
the given system. The effects of TCP MSS and CWND sizes on performance are
discussed in Chapter 6.

To analyze the performance of tunneling the TCP/IP over the time-slotted
NFC channel, a TCP session is established over NFC at a bit rate of 11.2 kbps
and an initial TCP RTO value of 1 s. The PTx and appliance are configured
to run the TCP server (192.168.1.202) and client (192.168.1.102) applications

23

respectively. A payload size equal to the TCP MSS of 1024 bytes is exchanged
in the session, which generates an NFC payload size of 1080 bytes, including all
the overheads mentioned in Table 4.2. The result obtained is depicted in Figure
4.6. It shows the output from the Wireshark tool taken over the Ethernet link.
The packets over the NFC channel are not visible in the capture.

Figure 4.6: TCP session with a data exchange of 1080 bytes at 11.2 kbps

In Figure 4.6, it can be noticed that there are some retransmitted and duplic-
ate ACK (Dup ACK) packets in the TCP session (highlighted in black). The
Dup ACKs are transmitted when the receiver sees a gap in the sequence number
of received packets. The logs from the TCP/IP stacks show that there are two
retransmissions from the appliance, and one retransmission from the PTx fol-
lowed by a Dup ACK sent in response to the retransmission from the appliance.
The presence of such retransmissions have a large impact on the latency of the
TCP session. This is because the latency of the system is already in the order
of seconds due to constrained bandwidth of the NFC channel, and transmit-
ting these extra packets would increase the latency even further, impacting the
end-user experience. It is therefore important to eliminate these retransmissions
by identifying the cause of their occurrence. The subsequent sections discuss
in detail about the classification of these retransmissions and their elimination
techniques.

4.2.1 TCP spurious retransmissions

The packets 8 and 9 in Figure 4.6 are spurious retransmissions from the client
and server stacks, respectively. The spurious retransmissions are caused when the
sender thinks that its packet is lost and sends it again, even though the receiver
sent an acknowledgement for it. This happens when the sender experiences a
timeout before the ACK is received due to the TCP RTO value being very small
compared to that of the packet RTT. Figure 4.7 depicts a case where spurious
retransmission problem occurs. Here, the appliance stack does not wait long
enough to receive the ACK from the end-user device, which leads to a series of
unnecessary transmissions.

To confirm if all or some of these are spurious retransmissions, the experiment

24

Figure 4.7: Spurious retransmissions in a TCP session

is repeated with smaller NFC payload sizes. Table 4.3 gives an overview on the
number of retransmissions and Dup ACKs observed for different payload sizes
at a bit rate of 11.2 kbps. It can be noticed that as the data size decreases, the
number of retransmissions also decreases. If these are spurious retransmissions,
this behavior makes sense because smaller data sizes will have smaller RTT. So
the chances of the RTO timer of 1 s getting triggered will be less which would
result in fewer or no spurious retransmissions. At 11.2 kbps, the RTT of a 500
byte packet is about 1.1 s, resulting in a total of two retransmissions and the RTT
of a 250 byte packet is about 0.6 s, which results in only a single retransmission.

Table 4.3: Number of retransmissions and Dup ACKs in TCP sessions for varying
payload sizes at 11.2 kbps

Payload on NFC
(Bytes)

Appliance PTx
Retxs. Dup ACKs Retxs. Dup ACKs

250 1 0 0 0

500 1 0 1 0

1000 2 0 1 1

1080 2 0 1 1

The experiment is repeated at an NFC bit rate of 24 kbps for a payload size
of 1080 bytes. The result is depicted in Figure 4.8. It can be seen that there is
one retransmission from both PTx and appliance, and two Dup ACKs only from
the appliance stack. At higher bit rates the RTT of the packets over NFC will
be even less. This would further reduce the number of spurious retransmissions.

25

Table 4.4 summarizes the results for different NFC payload sizes exchanged in
the TCP session at 24 kbps. It can be observed that fewer retransmissions are
observed compared to that in 11.2 kbps.

Figure 4.8: TCP session with a data exchange of 1080 bytes at 24 kbps

Table 4.4: Number of retransmissions and Dup ACKs in TCP sessions for varying
payload sizes at 24 kbps

Payload on NFC
(Bytes)

Appliance PTx
Retxs. DUP ACKs Retxs. DUP ACKs

250 1 0 0 0

500 1 0 0 0

1000 1 0 0 0

1080 1 2 1 0

These experiments confirm that the TCP RTO is very small for the given
system which makes the stacks timeout sooner than the expected arrival time of
the acknowledgement, leading to spurious retransmissions. To overcome this, the
TCP packet size could be reduced such that its RTT will be less than the RTO
value that is set by default. For this however, the TCP MSS value will have to
be reduced, which would lower the goodput of the system. Therefore, it makes
more sense to adjust the RTO value appropriately to suit the system.

The TCP/IP stack updates the RTO for its packets dynamically by constantly
measuring the RTT of its data packets. The authors of [23] and [24] propose
methods of avoiding spurious retransmissions in wireless networks that have high
delay variability by injecting delays into the network. These delays increase the
RTT of the packets and hence the calculated TCP RTO values. [22] presents an-
other technique to increase the TCP RTO value by increasing the mean deviation
of the measured packet RTT. Although these solutions promise to reduce spuri-
ous retransmissions, they will not be very useful in the cordless kitchen system
because the TCP timeout occurs for the first data packet of the TCP session, for
which the RTT measurement has not been made yet. The stack therefore ends up
using the initial TCP RTO that is set at compile time, for this packet. Moreover,
the TCP sessions in this system can be short, so there will not be enough time
to adapt to the dynamically calculated RTO values. Furthermore, this system

26

uses a low bandwidth and large delay channel, it is therefore necessary to remove
the retransmissions as much as possible, right from the beginning of the TCP
session, to ensure good end-user experience.

To avoid spurious retransmissions, the initial TCP RTO needs to be greater
than the RTT of the maximum packet size traveling through the NFC channel.
This value gets automatically updated after the TCP starts making RTT meas-
urements. It is recommended to set the RTO slightly higher than the RTT of the
data packet. This guarantees that there are no spurious retransmissions and also
ensures quick retransmission in case of packet loss. Figure 4.9 shows a scenario
where the appliance stack waits sufficiently to receive an ACK for the transmit-
ted data packet. It can be seen that eliminating the retransmissions and Dup
ACKs saves a lot of time by reducing the number of packets transmitted over the
constrained NFC channel, which in turn improves the overall responsiveness of
the system.

Figure 4.9: Spurious retransmissions solved by increasing the initial RTO value

In the presence of so many retransmissions, it is difficult to estimate and gener-
alize the exact RTT of the packets. Therefore, initially a high RTO value greater
than the total TCP session duration is chosen so that all the spurious retransmis-
sions are eliminated, which would make the analysis of the packet RTT easier.
At an NFC bit rate of 11.2 kbps, the average TCP session duration with 1080
bytes of data exchange is about 4.56 s, so an initial RTO of 5 s is chosen for both
the client and server stacks to make sure that the TCP does not timeout before
the first data acknowledgement is received.

Figure 4.10 shows the result after updating the initial TCP RTO to 5 s. No
spurious retransmissions are observed in the TCP session, and both server and
client stacks wait sufficiently to receive an acknowledgment. However, there is
one retransmission at the appliance as indicated by the stack logs. It can be
seen that the time difference between the packets 5 and 6 is about 5 s, which is
equal to the RTO set. This implies that packet 6 is a retransmitted packet. The
fact that this was not removed by setting a high RTO suggests that this is not

27

a spurious retransmission. Further analysis on this will be discussed in Section
4.2.2.

Figure 4.10: TCP session with a data exchange of 1080 bytes at 11.2 kbps with
initial RTO of 5 s

Similar results are obtained at other data sizes (refer Table 4.5), where one
retransmission exists from the appliance stack. The experiment is repeated at
24 kbps by setting an initial RTO of 3 s, as the average TCP session duration
is around 2.45 s. It is again observed that although all spurious retransmissions
are removed, one retransmission from the appliance stack still exists.

Table 4.5: Number of retransmissions and Dup ACKs in TCP sessions for varying
payload sizes at 11.2 kbps with an initial TCP RTO of 5 s

Payload on NFC
(Bytes)

Appliance PTx
Retxs. DUP ACKs Retxs. DUP ACKs

250 1 0 0 0

500 1 0 0 0

1000 1 0 0 0

1080 1 0 0 0

It is very important to set an optimum TCP RTO value for every packet to
avoid spurious retransmissions. For this, it is necessary to understand the channel
the TCP is dealing with. Using RTT of the previous packets cannot be the only
factor that should be considered for estimating the RTO for the data packets.
The estimation needs to be done by analyzing the following parameters as well.

• NFC bit rate being used

• Speed/bandwidth of the channel between PTx and the end-user device

• Total packet size, as the RTT depends on the size of the packet

Note: For the initial TCP RTO, the RTT of the maximum possible packet size
that can be transferred over the NFC channel should be used.

28

Generalizing the RTT estimation procedure would be more precise when the
TCP session is free from all kinds of retransmissions and Dup ACKs. Therefore,
it is necessary to first eliminate the remaining retransmissions before proceeding
to a generalized approach for setting an optimum TCP RTO, which is explained
in Section 4.3.2.1.

4.2.2 Packet drops due to small inter-packet delay

In Figure 4.10, although the spurious retransmissions and duplicate ACKs are
removed, the total time of the TCP connection has considerably increased to
about 7.4 s compared to the one with an initial RTO of 1 s, which was 4.56 s on
an average. This sudden increase takes place between packets 5 and 6 (highlighted
in Figure 4.10). The time difference of about 5 s between these packets, which
is equal to the initial RTO set, suggests that packet 6 is a retransmitted packet
from the appliance.

The result of the experiment at a bit rate of 24 kbps with an exchange of 1080
bytes of NFC payload and an initial RTO of 3 s is represented in Figure 4.11.
Again, the time difference of about 3 s between the packets 5 and 6, equal to
the initial RTO, suggests that packet 6 has been retransmitted by the appliance
stack, just like the previous case. The NFC interface and appliance stack logs
reveal that first data packet (packet 6) which was sent right after packet 5, was
dropped at the interface by the NFC module. This is the reason that it cannot
be seen on the Wireshark capture.

Figure 4.11: TCP session with a data exchange of 1080 bytes at 24 kbps with
initial RTO of 3 s

To understand why the packet was dropped, it is important to study the time
delay between TCP/IP packets exchanged between two devices in normal situ-
ations, i.e. without the NFC channel. This would give an idea on what the ideal
delay between packets 5 and 6 should have been. Figure 4.12 shows the packet
capture taken between two devices connected via Ethernet. The TCP client is
at 192.168.1.102 and the TCP server is at 192.168.1.202.

The average delay between packets 5 and 6, representing the ACK of the TCP
handshake and the first data packet respectively, is around 50.6 µs. This means
that when the NFC channel is being used, the TCP stack generates packet 6

29

Figure 4.12: TCP session with a data exchange of 1080 bytes without the NFC
channel

50.6 µs after packet 5 and pushes it to the NFC channel. This inter-packet delay
between consecutive packets would be too small for the NFC channel as it is
half-duplex and can only transmit packets one at a time. Moreover, the NFC
module used in this setup can store and process only a single packet at a time.
It discards all the packets that it receives while it is transmitting. In this case,
packet 5 takes around 69.04 ms to travel through the NFC channel at 11.2 kbps
and around 39.76 ms at 24 kbps. So when the appliance stack sends packet 6
only 50.6 µs after sending packet 5, the NFC module discards it as it will be
busy transmitting packet 5. Figure 4.13 summarizes this problem. It shows how
a small inter-packet delay between two consecutive packets causes packet loss,
which impacts the overall latency of the TCP session.

Figure 4.13: Packet drop at the NFC interface due to small inter-packet delay

30

4.3 Addressing the challenges

4.3.1 Packet drops due to small inter-packet delay

To avoid packet drops at the NFC interface caused due to small inter-packet delay
between consecutive packets, there must be a way for the stack to sense the NFC
channel before sending packets to it. An NFC channel sensing mechanism is
implemented where the NFC channel notifies the stack when it is busy or free.
The stack keeps track of this and sends the packets only when the channel is free.
By implementing this mechanism on both the ends of the NFC channel, i.e. in
the NFC-appliance and the NFC-PTx interfaces, it can be ensured that packet
drops are not caused due to sending the packets too quickly into the channel.
This way the processing speed of TCP/IP stack can be brought down to match
the speed of the NFC channel so that they function in sync. Figure 4.14 shows
how the packet drop problem is solved by implementing the NFC channel sensing
mechanism.

Figure 4.14: NFC channel sensing mechanism

Figures 4.15 and 4.16 show the result after implementing the mechanism at 11.2
kbps and 24 kbps, respectively. The TCP sessions are free from retransmissions
and Dup ACKs which results in the reduction of latency. With a payload size of
1080 bytes, the TCP session latency is about 2.87 s at 11.2 kbps, which was 4.56
s before solving the retransmission problems. At 24 kbps the latency is around
1.33 s which was initially 2.45 s.

31

Figure 4.15: TCP session with a data exchange of 1080 bytes with NFC channel
sensing mechanism at 11.2 kbps and initial RTO of 5 s

Figure 4.16: TCP session with a data exchange of 1080 bytes with NFC channel
sensing mechanism at 24 kbps and initial RTO of 3 s

4.3.2 TCP spurious retransmissions

4.3.2.1 Generalized approach for TCP RTO estimation

Setting a high initial TCP RTO will avoid spurious retransmissions for sure,
however, it may also delay the retransmission when a packet is really lost. Figure
4.17 shows how the latency of the TCP session increases when a large initial
TCP RTO is set and when packet loss occurs. It is therefore recommended to
set the RTO slightly higher (at least one timer period) than the RTT of the data
packet. This is because when the TCP stacks have coarse timers, there will be a
tendency of timing out around one timer period sooner than what is estimated.

Now that all the retransmissions are removed, the RTT of the TCP packets can
be estimated by analyzing the transmission conditions of the system in detail.
The TCP/IP packet from the appliance travels through the NFC and Ether-
net/WiFi channels before reaching the end-user device. So the packet RTT can
be broadly defined as:

RTT = RTTNFC +RTTWiFi (ms) (4.1)

where, RTT is the total packet round trip time, RTTNFC is the round trip time
over the NFC channel and RTTWiFi is the round trip time over the WiFi channel.

32

Figure 4.17: TCP session with a very large TCP RTO

The initial RTO set at compile time for standard wireless (or Ethernet) chan-
nels should be used as the RTTWiFi. [27] recommends a minimum value of 1 s as
the TCP RTO for wireless channels. The measured RTT of the previous packet
can later be used to vary this value dynamically, as explained in the next section.

The RTTNFC is the critical component which consumes the most time. When
the appliance stack transmits a packet, it first travels over the UART channel to
reach the NFC module, as shown in Figure 4.1. The NFC module then fragments
the packet into chunks and transmits it over the NFC channel to the PTx stack.
Figure 4.18 shows an oscilloscope output of a TCP session with 1080 bytes of
data exchange at 11.2 kbps, captured between the ends of the NFC module.
It depicts the packet transmissions in the direction from the appliance through
the NFC-CE and NFC-RW modules. Different signals seen in the capture are
explained below.

1. Yellow signal: represents the transmission of data packets from the appli-
ance stack to the MCU over UART.

2. Green signal: represents the transmission of data chunks from the MCU to
the NFC-CE module over UART.

3. Purple signal: represents the transmission of data chunks from the NFC-
RW module to the MCU over UART.

The time to transmit a fragmented 1080 bytes data packet over the NFC chan-
nel is depicted as NFC Data Tx in Figure 4.18. This value is equal to the

33

Figure 4.18: TCP session capture in the direction from the appliance through
the NFC-CE and NFC-RW modules at 11.2 kbps

theoretical time to transmit the data over the NFC channel, unless some time-
slots are missed in between. The UART Data Tx in the figure depicts the time
needed to transfer the data packet from the appliance to the NFC module. This
value adds to the packet processing time.

Apart from these, it is also important to take the waiting time for a time-
slot into account. From Section 4.1 it is clear that the packet chunks need to be
present in the NFC module at least 2 ms before the arrival of the time-slot. When
the TCP/IP stack sends a packet, the packet can arrive at the NFC module at
any point between two time-slots. So the maximum amount of time a packet
would need to wait for a time-slot would be 12 ms.

When the chunks are received at the other end of the NFC channel, they are
transmitted over the UART to the PTx stack. This transmission will be done in
parallel to the transmission on the NFC channel, so they do not add to the RTT
of the packet. However, the transmission of the last chunk needs to be taken into
account. Considering all these, the RTTNFC will be:

RTTNFC = 2 ∗ (tUART + tmaxslotwait + tNFC + tUARTchunk) (ms) (4.2)

where, tUART is the packet transmission time over UART. It depends on the baud
of the UART being used. tmaxslotwait is taken as 12 ms, as explained above. tNFC

is the theoretical transmission time over the slotted NFC channel and tUARTchunk

is the transmission time of the last chunk over UART.

The tUART is given by the following equation.

tUART =
sizepckt
baudUART

(ms) (4.3)

34

where, sizepckt is the total packet size sent to the NFC module in bytes and
baudUART is the baud of the UART in bytes per millisecond.

The tNFC is given by the following equation.

tNFC = slotspckt ∗ 10 (ms) (4.4)

slotspckt =
sizepckt
sizechunk

(4.5)

where, slotspckt is the number of time-slots needed to transmit the packet. sizechunk
is the size of the payload section of the NFC protocol (in bytes). This depends
or varies with the bit rate of the NFC being used.

The tUARTchunk is given by the following equation.

tUARTchunk =
sizechunk
baudUART

(ms) (4.6)

The initial RTO to be set must be greater than the maximum packet size that
is transmitted through the NFC channel. In this experiment, the TCP MSS is
set as 1024 bytes, which gives a maximum packet size of 1080 bytes. The total
RTT for this packet size is estimated using Equation 4.1, and it is found to be
3373.24 ms. As the timer period of the LwIP stack is 500 ms, this RTT value
needs to be rounded up to the nearest 500 ms. This results in an optimum initial
RTO of 3500 ms (3.5 s) for an NFC bit rate of 11.2 kbps. For the bit rate of 24
kbps, the optimum initial RTO is found to be 2.5 s.

4.3.2.2 New algorithm for dynamic TCP RTO estimation

The TCP in LwIP calculates the RTO after measuring the RTT of the data
packets using the Van Jacobson’s (VJ) RTT estimation algorithm [28]. The VJ’s
algorithm uses the Smoothed RTT (SRTT) calculation for RTO prediction. It
measures the RTT value of the data packets to estimate the RTO of the next
packet to be sent. Therefore, the RTO which is assigned to a packet is based on
the RTT of the previous packet, which is done irrespective of the packet size.

Consider situations where the TCP sessions are long and the initial TCP RTO
is set to 3.5 s at compile time (NFC bit rate of 11.2 kbps). For example, if a user
chooses to cook step by step by creating an own recipe instead of uploading a
recipe in one go, the TCP session would last very long and it could comprise of
several TCP messages with randomly varying sizes. If the application sends very
small data packets of less than 10 bytes for a long time, the TCP would adjust
the RTO to a smaller value of about 1 s. Now, if the application suddenly sends
very large packets, like recipes greater than 1 kB, an RTO of 1 s would be too
small. This would result in spurious retransmissions until the TCP adjusts the

35

RTO according to the new packet sizes. On the contrary, if the application sends
very small data packets right after sending large packets, the RTO of the small
packets would be large initially until it is gradually adjusted to an appropriate
value. In the meanwhile, if one of these packets gets lost, the system would take
longer to timeout resulting in delayed retransmission (see Figure 4.17). This
would increase the overall latency of the system.

Figure 4.19 shows the TCP stream diagram of the client stack in a long session
with 68 data packets of varying sizes. Points with the same sequence number
denote retransmissions. It can be noticed that every time a large packet (denoted
by large jump in sequence number and/or time) is sent after a series of small
packets, spurious retransmissions occur. This is because the TCP would have
adjusted the RTO suitable for small packets, and when large packets are suddenly
sent this RTO would become too small considering the RTT of large packets. In
the diagram, this is represented by packets having the same sequence number
being sent more than once at different times. There eight spurious retransmissions
and eight Dup ACKs resulting in a total session duration of 22.58 s. It is very
important to eliminate these retransmissions because it increases the latency of
the TCP session in the order of seconds, due to the constrained nature of the
NFC channel.

Figure 4.19: Long TCP session with VJ’s algorithm for setting the TCP RTO

To mitigate this, a new algorithm is introduced that sets the TCP RTO depend-
ing on the estimated RTT of the current packet to be sent, instead of completely
relying on the RTT estimation of the previous data packet. This approach has
been designed by taking the following problems into account.

1. When the RTT estimation is made before sending the packet, the delay
variability of the channels should also be considered. In the VJ’s RTT
estimation algorithm, the RTO is adapted to the changing delay of the
channel. If this mechanism is removed, then the stack will always assume
a constant delay which may affect the latency by either causing spurious
retransmissions or delaying retransmissions. Therefore, the new algorithm

36

must take the delay variability into account.

2. The WiFi and the NFC channels could have variable delays. The NFC
channel in the cordless kitchen would be used to send non-TCP/IP messages
such as power control messages every now and then. This would affect the
RTT of the TCP/IP messages and could delay their delivery. If the delay
of the channel increases over time, it is difficult to identify if this increase
is on the NFC channel or on the WiFi channel. If the delay decreases from
the theoretical value it will be due to the reduced delay only on the WiFi
channel because the RTT on NFC will not go below the theoretical value
(maximum reduction can be 10 ms i.e. packet gets a time slot as soon as it
arrives). So the RTO must be updated by closely observing the changing
channel delay.

3. The RTT will be estimated considering the packet transmission time in
both the directions. The receiver may not always send back a packet of the
same size. If only an ACK is received, the estimation will be larger than
anticipated. But if the receiver replies with a bigger packet, for example
the delayed ACK algorithm does not send an ACK immediately, it waits
for <= 500 ms [29] to check if the application has any further data to send
so that it can piggy back the ACK with the next data packet. Another
example is the Nagle’s algorithm which combines smaller packets to form
a full sized packet. In these cases, the estimated RTO will be smaller
than the estimated value, which will lead to spurious retransmissions. 4.6
summarizes this problem. To solve this, the delayed ACK algorithm can
be modified such that the stack sends an ACK for the received packet
immediately, if the response packet is bigger than the received packet. This
would avoid unnecessary spurious retransmissions.

Table 4.6: Problems due to delayed ACK and/or Nagle’s algorithm

Packet size
Sent / Received

Large Small

Large (Good) No spurious retx.
(Not bad) No spurious retx.
but packet loss leads to
delayed retx.

Small (Bad) Spurious retx. (Good) No spurious retx.

4. If there is a packet loss, then that packet needs to be retransmitted using
exponential backoff, where the RTO is doubled every time the same packet
is retransmitted. For this, the estimated RTT of the packet needs to be
used with the back-off multiplier.

Based on this analysis, the new algorithm is designed to dynamically estimate
the optimum packet RTO value. The working of this algorithm is discussed in
detail below.

37

Algorithm 1 New RTO estimation algorithm

1: RTTp: Theoretical RTT of the previous packet
2: RTTmeas p: Measured RTT of the previous packet
3: RTOc: RTO of the current packet
4: RTTN c: RTTNFC of the current packet
5: RTTW c: RTTWiFi of the current packet
6: r: Factor r
7: expBackoff(): computes binary exponenital backoff based on retransmit count
8:

9: procedure
10: r ← 1 // Initialize r to 1
11: while Packet queue is not empty do
12: RTTN c ← Calculate theoretical RTTNFC using Eq. 4.2
13: RTTW c ← Use recommended initial RTO
14: RTTp ← RTTN c +RTTW c // Store theoretical RTT to calculate r
15: if r >= 1 then
16: RTTN c ← r ∗RTTN c

17: RTTW c ← r ∗RTTW c

18: else
19: RTTW c ← max(1000, r ∗RTTW c)
20: end if
21: RTOc ← d(RTTN c + RTTW c)/500e ∗ 500 //Round-up to the next

500ms
22: if Retransmission = true then
23: RTOc ← RTOc ∗ expBackoff() // Backoff procedure
24: end if
25: RTTmeas p ← Measure and update RTT of the packet transmitted
26: r ← RTTmeas p/RTTp // Compute r
27: end while
28: end procedure

38

• The theoretical RTO is calculated for each packet before its transmission,
using Equation 4.1. The RTTWiFi is set according to the initial RTO re-
commended for WiFi (or Ethernet) channels. Furthermore, a minimum
RTO value of 1 s is maintained for RTTWiFi as recommended by [28]. The
RTTNFC is calculated as explained previously, using Equation 4.2.
(Note: The LwIP stack uses an initial RTO of 3 s. However, as the experi-
ments are carried out on an Ethernet channel with < 1 ms delay, an initial
RTO of 1 s is used in the experiments.)

• The RTT of each data packet transmitted is dynamically measured to es-
timate the current delay in the NFC and WiFi (or Ethernet) channels. The
delay is estimated by comparing the theoretical RTT of the previous packet
with the measured RTT of the previous packet. The factor (r) by which
the measured value varies from the theoretical value is calculated.

r =
RTTmeasuredPrev

RTTPrev
(4.7)

where, r is the ratio of measured RTT to theoretical RTT of a packet,
RTTmeasuredPrev is measured RTT of the previous packet and RTTPrev is
the RTT of the previous packet calculated using Equation 4.1.

• When the factor r is ≥ 1, the theoretical values of both RTTNFC and
RTTWiFi are scaled up by this value. If r < 1, then only the RTTWiFi is
scaled down. As explained earlier, this is due to the fact that the RTT of a
packet over the NFC channel cannot go lower than its theoretical value. A
minimum value of 1 s is maintained for RTTWiFi as recommended by [28].
The new RTT is calculated with these scaled values using Equation 4.1.
For better estimation of the delay, a window of recent values of r can be
maintained and the highest value in the window can be used for the current
RTT estimation. The window size should be chosen depending on the type
of the applications being supported and the rate of packet transmission.

RTTNFC := r ∗RTTNFC (ms) if r ≥ 1 (4.8)

RTTWiFi := max(1000, r ∗RTTWiFi) (ms) for all r (4.9)

• The LwIP stack has a timer period of 500 ms to check for retransmission
time out. The RTO is therefore calculated as a multiple of 500 ms. So
in the new RTO estimation algorithm, the estimated RTO of the current
packet is rounded up to the nearest 500 ms.

• In case of packet loss, the exponential backoff algorithm is used with the
estimated RTO of the lost packet. Using the estimated RTO for backoff

39

procedure would be more accurate than using the RTO of the most recently
sent packet.

• To solve the spurious retransmission problem described in Table 4.6, the
delayed ACK algorithm is modified such that an empty ACK will be sent
if the size of the received packet is less than the size of the packet to be
transmitted. A drawback of this solution is that the stack would send ACK
packets even if the received packet size is slightly smaller than the packet
to be sent. The RTO values are rounded up to the nearest 500 ms, so
the packets of similar sizes may (but not necessarily) have the same RTO
value. In this case it would be unnecessary to send an extra ACK packet
which could increase the latency of the system. It would be safe to use the
modified algorithm even though it may not give the best result in the case
discussed above.

The Algorithm 1 summarizes the procedure for RTO estimation. It is tested
on the TCP session shown in Figure 4.19. The same experimental setup with
Ethernet channel is used for testing. Without the modification in the delayed
ACK algorithm, a latency of 15.96 s is achieved as shown in Figure 4.20, which is
6.62 s less than that with the original algorithm. This gives a 29.32% reduction
in the latency in this example. However, there is still one spurious retransmission
and one Dup ACK caused due to the delayed ACK algorithm. When the modified
delayed ACK algorithm is used, all of the retransmissions are removed but the
overall latency will be 16.1 s, which is slightly higher than the previous case.
This is due to the fact that the stack sends out an ACK even when the received
packet is sightly smaller than the packet to be sent. Note that the percentage
improvement in case of the new RTO estimation algorithm solely depends on the
data set that is in consideration. It varies with different data sets.

Figure 4.20: Long TCP session with new algorithm for RTO estimation

40

Chapter 5

Results

The Chapter 4 gave an overview of some of the factors influencing the perform-
ance of the bridge architecture for Internet connectivity and discussed how the
standard TCP/IP stack can be adapted to the time-slotted NFC channel. Two
major problems related to packet drops and spurious retransmissions were iden-
tified as the the major contributors to the system latency. They were solved by
introducing an NFC channel sensing mechanism and a new way of estimating and
updating the TCP RTO values. This chapter contains the verification results of
these solutions which are obtained by performing various experiments with dif-
ferent NFC bit rates and data sizes. The system performance is analyzed by
measuring latency, throughput, number of retransmissions in the TCP sessions,
NFC channel bandwidth utilization, etc.

5.1 Packet retransmissions

Tables 5.1 and 5.2 show the number of retransmissions, DUP ACKs and keep-
alive messages in the TCP session after using the mitigation techniques 4.3.1
and 4.3.2 described in Chapter 4, at 11.2 kbps and 24 kbps respectively. The
retransmitted packets are depicted by the symbol ’R’, DUP ACKs by ’DA’ and
keep-alive packets by ’KA’. The experiments are carried out with TCP sessions
exchanging single packets with NFC payload sizes of 250 bytes, 500 bytes, 1000
bytes and 1080 bytes at 11.2 kbps and 24 kbps.

Table 5.1: Number of retransmissions at 11.2 kbps

NFC payload
size (Bytes)

Retransmissions in TCP session
Original TCP/IP

configuration
NFC channel sense

Optimum
TCP RTO

NFC channel sense +
Optimum TCP RTO

250 1R 1R + 1DA 1R 0R

500 2R 2R + 1DA + 2KA 1R 0R

1000 3R + 1DA 3R + 2DA + 2KA 1R 0R

1080 3R + 1DA 3R + 2DA + 2KA 1R 0R

41

Table 5.2: Number of retransmissions at 24 kbps

NFC payload
size (Bytes)

Retransmissions in TCP session
Original TCP/IP

configuration
NFC Channel sense

Optimum
TCP RTO

NFC Channel sense +
Optimum TCP RTO

250 1R 0R 1R 0R

500 1R + 1DA 0R 1R 0R

1000 1R 2R + 1DA + 2KA 1R 0R

1080 3R + 1DA 2R + 1DA + 2KA 1R 0R

The technique 4.3.2 is introduced to remove the spurious retransmissions by
setting optimum initial RTO values for all the outgoing TCP/IP packets. Tables
5.1 and 5.2 show that by using only this solution the total number of retransmis-
sions can be brought down to one. The technique 4.3.1 is an NFC channel sense
mechanism introduced to avoid packet drops at the NFC interface. As shown
in the tables, using only technique 4.3.1 the total number of packets increases
compared to the respective original TCP sessions in most of the cases. However,
when both these techniques are used together, all types of retransmissions, DUP
ACKs and keep-alive packets are removed. Before concluding on the performance
based on the number of packets in the TCP session, it is important to study the
latency of the session, which is done in Section 5.2.

Figure 5.1 depicts the RTO values estimated by the new algorithm (Section
4.3.2.2) in a long TCP session with randomly varying packet sizes. These values
are compared with the ones estimated by the VJ’s algorithm used in the LwIP
stack and the packet RTT values obtained over an Ethernet channel with < 1
ms delay. The estimations are however, still carried out considering the WiFi
channel characteristics with a minimum RTO of 1 s, which results in an offset
of about 1 s between the measured RTT and estimated RTO values as seen in
Figure 5.1. The new algorithm clearly gives a more accurate estimation of the
RTO values compared to the VJ’s algorithm as it takes the packet sizes and bit
rates of the channels into account, therefore avoiding all the spurious and delayed
retransmission scenarios.

5.2 Latency

Reduction in the number of packets in the TCP session need not necessarily
improve the latency of the session. This is because the time-delay between packet
generation, especially in case of retransmitted packets, is also an important factor
that affects the overall latency. Figures 5.2 and 5.3 show the graphs of latencies
of TCP sessions with and without the mitigation techniques 4.3.1 and 4.3.2 at
11.2 kbps and 24 kbps respectively.

The percentage by which the latencies increase or decrease using the mitiga-
tion techniques compared to the original latency is indicated in the graphs. At
lower NFC bit rates, for example 11.2 kbps, the TCP session latency with only

42

Figure 5.1: Comparison of packet RTO values with new and VJ’s RTO estimation
algorithms

technique 4.3.1 becomes higher than that with only technique 4.3.2 when there
are more number of retransmissions/DUP ACKs/keep-alive messages. This is
because even though the packet drops are prevented, there will be too many ex-
tra packets to be transmitted over a low bandwidth channel. On the contrary,
at higher bit rates like 24 kbps, the latency with only technique 4.3.1 will be
lower than that with only technique 4.3.2 because when only technique 4.3.2 is
used, the time-delay created by retransmission caused due to packet drop will be
more significant compared to the packet transmission time on a relatively higher
bandwidth channel. The TCP/IP stack has to wait for the timeout to realize that
the packet is dropped and resend it. This waiting time will be long compared to
the time taken to transmit the extra packets.

To achieve the best results it is recommended to use both the mitigation tech-
niques together. Using both, up to 38% reduction in latency can be achieved
at 11.2 kbps and up to 53% at 24 kbps. Higher reduction is achieved at higher
bit rates because of the same reason explained above. At higher bit rates, the
time-delay created because of packet drops will be more significant when com-
pared to the total transmission time. So by removing this delay which is a bigger
overhead, higher gain in latency reduction can be achieved.

5.3 Throughput and goodput

The throughput of the system remains the same with or without the retrans-
mission mitigation techniques 4.3.1 and 4.3.2. It is known that the techniques
are used to reduce the latency, however, the reduction in latency is achieved by
reducing the number of packets or bytes traveling through the channel. There-
fore the throughput, which is the number of bytes transferred per unit time, will

43

Figure 5.2: Latencies of TCP sessions at 11.2 kbps

be unchanged because with the mitigation techniques less packets/bytes travel
through the channel which takes less time. So the overall throughput of the
system technically remains constant.

Figure 5.4 depicts the throughput vs. goodput of the system for different NFC
payload sizes exchanged in the TCP session using both 4.3.1 and 4.3.2 techniques
at 11.2 kbps and 24 kbps. On an average the throughput is 9.9 kbps at an NFC
bit rate of 11.2 kbps and 17.01 kbps at 24 kbps. It can be seen that the goodput
of the system improves with increase in the payload size. This is because the
overheads from the TCP/IP header and UI protocol become less significant with
increase in payload size. Choosing a bigger TCP MSS size will help in increasing
the goodput of the system.

The throughput is lower for TCP sessions with small payload sizes and it gradu-
ally increases with the increase in payload size. This is because with small payload
sizes, the time spent in waiting for a time-slot will be significant compared to
the packet transmission time. At higher bit rates this becomes more noticeable
because the transmission time will be even smaller. This affects the total trans-
mission time and thus the throughput of the TCP session. The throughput could
be improved by:

1. using TCP/IP header compression techniques such as [9] and [30].

2. employing the 6LoWPAN technology for the compression of TCP/IP pack-
ets over NFC as described in [14] and [17].

3. letting the PTx detect and filter out the spuriously retransmitted packets
and DUP ACKs coming from the appliance and the end-user device, similar

44

Figure 5.3: Latencies of TCP sessions at 24 kbps

to the technique proposed in [31]. This would reduce the number of packets
on the NFC channel and improve the system performance.

4. modifying the NFC protocol in order to optimize the NFC handshake se-
quence as suggested in [32].

5.4 Bandwidth utilization

The bandwidth utilization of the NFC channel for the experiments performed is
illustrated in Figure 5.5. It is calculated using the following equation.

BW Utilization =
Throughput

Theoretical BW
∗ 100 (%) (5.1)

The average bandwidth utilization is found to be 88.4% at 11.2 kbps and
70.89% at 24 kbps. Lower bandwidth utilization is observed at higher bit rate
because the processing time which includes packet transmission time over the
UART and WiFi/Ethernet channels, packet processing time by the stack, etc.
remains constant irrespective of the NFC bit rate. This processing time over-
head will be more significant at higher bit rates because it has smaller NFC
transmission time. When Figures 4.18 and 5.6 are compared, it can be seen that
the UART Data Tx time is the same at both 11.2 kbps and 24 kbps, which is a
fixed overhead. However, NFC Data Tx time is smaller at 24 kbps compared to
11.2 kbps. This keeps the NFC channel idle for a longer period at higher bit rate,
thus reducing the bandwidth utilization. The main factors affecting the NFC
bandwidth utilization of this system are:

45

Figure 5.4: System throughput at 11.2 kbps and 24 kbps

Figure 5.5: Bandwidth Utilization at 11.2 kbps and 24 kbps

1. Packet processing time: The NFC channel remains idle while the TCP/IP
packet is being processed and transferred over the UART from the stack to
the NFC module.

2. Synchronization of data transfer with the communication time-slot: The
packet arrival time at the MCU can lie anywhere between two consecutive
time-slots. As explained earlier, the NFC module requires the packet to be
available for transmission at least 2 ms before the time-slot occurs. This
may result in a waiting time of up to 12 ms for every packet (assuming
that the subsequent chunks arrive on time), which adds to the total packet
transmission time.

Some ways to improve bandwidth utilization are listed below. These techniques

46

Figure 5.6: TCP session capture in the direction from the appliance through the
NFC-CE and NFC-RW modules at 24 kbps

could not be tested due to the limitations in the available hardware.

1. Parallelizing the packet processing and packet transmission operations

2. Increasing bit rate of serial communication (UART)

3. Eliminating the MCUs and directly interfacing the appliance and the PTx
stacks to their respective NFC devices. This will reduce the processing
delay caused by the serial communication.

47

48

Chapter 6

Parametric Analysis of the
Bridge Architecture

The Chapter 4 discussed how the TCP RTT and RTO parameters can be adap-
ted to the cordless kitchen system. The results after the adaptation were shown
in Chapter 5. This chapter focuses on analyzing the TCP MSS and CWND
parameters, and also other factors that affect the latency of the system. Sim-
ulations and theoretical calculations have been made to analyze the effects of
parameters like the NFC bit error rate, communication time-slot size, frequency
of non-TCP/IP messages over the NFC channel, etc.

6.1 Effect of TCP CWND size and slow start process
on the system latency

The TCP congestion control mechanism controls the maximum amount of data a
sender can transmit before receiving an ACK from the receiver. The sender main-
tains a contention window (CWND) to keep track of this. The TCP congestion
control consists of the slow start and congestion avoidance mechanisms, as shown
in Figure 6.1. The TCP slow start mechanism starts with an initial minimum
CWND size and increases the window size by 1 MSS for every ACK received,
until the slow start threshold (ssthresh) is reached. The congestion avoidance
mechanism then takes over and gradually increases the window size until the
network’s capacity is reached or until a packet loss occurs. If it encounters a
packet loss the slow start process starts over with the minimum CWND size and
with ssthresh set to half of the current CWND, as shown in Figure 6.1 (Note:
Refer [26] for a detailed explanation on the working of the TCP/IP protocol).

It can be hypothesized that if the initial CWND is very small then the latency
of the TCP session would increase as the slow start process would take longer
to reach the maximum window limit, making the channel idle for a significant
amount of time. This hypothesis is tested with the LwIP configuration given

49

Figure 6.1: TCP slow start and congestion avoidance mechanisms (Source: [33])

in Table 6.1, and with a data transfer of 50 kB from the end-user device to the
appliance. In the slow start process, for every ACK received the CWND increases
by 1 MSS. In case of packet loss, the ssthresh is set to half of current CWND and
the slow start process begins with initial CWND size of 1 MSS. This experiment is
performed to find the optimum initial CWND size for the system such that there
is minimum latency considering the congestion on the Ethernet/WiFi channels.

Table 6.1: LwIP configuration for the TCP CWND experiments

TCP MSS 1024 bytes

Initial CWND size 4096 bytes

Maximum CWND size 8192 bytes

Sender buffer size 8192 bytes

NFC bit rate in slotted mode 11.2 kbps

Figure 6.2 shows the result of transferring 50 kB of data for different initial
CWND sizes of 2048 bytes, 4096 bytes and 8192 bytes. It can be noticed that
the difference in latency between the two extreme sizes is only about 76.07 ms.
This implies that choosing higher initial CWND size will not give a significant
improvement in performance. The reasons for this behavior are explained below.

1. The NFC channel is half-duplex and has a low bandwidth in the time-
slotted mode. So the bandwidth utilization of NFC channel will be already
high considering the small delay on the Ethernet channel and high speed
of the TCP/IP stacks. The data packets are almost always available to the
NFC module unless the initial CWND is less than 2*MSS. Therefore, the
reduction in the latency obtained by opting for a high initial CWND size
will be very insignificant, as the bandwidth of the NFC channel cannot be
improved further by a large factor.

50

2. If the delay on the Ethernet/Wifi channel is higher than or comparable to
that of the NFC, the effects of a small initial CWND can be noticed. This is
because the NFC channel may sometimes be idle when the packet is slowly
traveling over the Ethernet/Wifi channel. In this case if it is made sure
that there is at least one packet available at the NFC module at any point
of time, it is possible to achieve maximum bandwidth utilization. So it is
not necessary to always go for the maximum initial CWND size.

Figure 6.2: TCP session latency for different initial CWND sizes

The experiment is repeated by varying the delays on the Ethernet channel
to check if smaller initial CWND increases the latency by a significant amount.
Figure 6.3 shows the results for Ethernet delays of < 1 ms, 250 ms, 500 ms
and 1 s, for different initial CWND sizes. It can be noticed that as the delay
on the Ethernet increases, the difference in the latencies between the maximum
and minimum initial CWND sizes increases. At an Ethernet delay of 1 s, there
is a 1.08 s difference in the overall latency. This is not a very high gain in the
performance though. Furthermore, the latencies with initial CWND sizes of 4096
bytes and 8192 bytes are almost the same. This implies that the NFC bandwidth
utilization reaches the maximum with the initial CWND size of 4096 bytes. Any
further increase will not result in any improvement.

Figure 6.4 shows the goodput graphs of the TCP sessions for different initial
CWND sizes for a data transfer of 50 kB. It is interesting to see that no matter
what the initial CWND size is, the goodput eventually comes to be 1 kBps or
8 kbps, which is the maximum achievable goodput on the NFC channel at 11.2
kbps, considering the NFC chunk size of 14 bytes with 10 bytes of usable payload
size. This result supports the fact that the size of the TCP CWND does not have
much effect on the throughput of the cordless kitchen system.

The TCP slow start process takes place only at the beginning of the TCP
session if no packet loss is observed. So as long as there are no retransmissions,
the effect of a small CWND may not be noticed in the system. This may not be
true when retransmissions are taken into account, because every retransmission

51

Figure 6.3: TCP session latency for different initial CWND sizes and Ethernet
delays

triggers the slow start process, making the TCP start over with a small initial
CWND size. This could affect the overall latency. To verify this hypothesis,
an experiment is designed where the end-user transfers 100 kB of data to the
appliance, and the channel is lossy, where one out of twenty five packets are lost.
Ethernet delay of < 1 ms is considered for this experiment. Figure 6.5 shows the
latency for different initial CWND sizes. A reduction up to 7.5% can be achieved
when a bigger CWND size is chosen. Therefore it can be concluded that the
size of the initial CWND does not have a significant effect on the latency of
the cordless kitchen system. This is because the NFC channel has a very small
bandwidth and has almost maximum utilization even with small window sizes.
So larger CWND does not help in further increasing the utilization of the channel.
It should be noted that the intention of the TCP slow start process is to avoid
congestion in the channel. It is recommended not to choose very high CWND as
it may aggravate the latency in lossy congested channels.

6.2 Effect of TCP MSS size on the system latency

The TCP segments carry the actual data that is being transmitted. Choosing the
right maximum segment size is very important to achieve minimum latency. If
the MSS is very large, the size of the IP datagram will increase which may cause
IP fragmentation reducing the efficiency of transmission. It may also increase the
chance of the TCP segment getting lost. If the MSS size is too small, it would
create more number of packets with very small data in each. In this case the
TCP/IP header overhead would become very prominent resulting in inefficient
use of the channel bandwidth, thus increasing the latency.

Table 6.2 summarizes the average results of transferring 5 kB of data from the

52

Figure 6.4: Goodput of the TCP session for different initial CWND sizes for 50
kB data transfer

Figure 6.5: TCP session latency for different initial CWND sizes over a lossy
channel

end-user device to the appliance using different TCP MSS sizes at 11.2 kbps. The
results show that unless a very small (< 512 bytes) is chosen, the latency will
not increase by a large number. A small MSS of 256 bytes increases the latency
by 26.28%, however, choosing a size greater than or equal to 512 bytes increases
the latency only by < 10%. So an MSS value of 1024 bytes or greater would give
a very high performance with minimal latency. It is important to note that in
case of an erroneous NFC/WiFi channel with a high bit error rate (BER), large
packets would be more susceptible to errors compared to smaller packets. So the
TCP MSS should be chosen depending on the conditions of the channel in order
to avoid retransmissions caused by packet errors.

53

Table 6.2: TCP session latency for different TCP MSS values

TCP MSS (Bytes) 1460 1024 512 256

TCP session latency (s) 6.24 6.29 6.78 7.88

6.3 Effect of NFC BER on the system latency

The bit errors in the NFC channel would introduce errors in the TCP/IP packets
being tunneled through the NFC channel causing the packets to be dropped by
the TCP/IP stacks due to failing checksum. In the given setup, there is no error
detection or correction mechanisms implemented in the NFC layer. So even a
single bit error in the packet would lead to retransmission as the packet will be
dropped. Therefore, the presence of bit errors in the NFC channel will have a
huge impact on the system latency.

Bit errors in the NFC channel can be random or bursty. Random errors would
lead to more number of packet drops as the errors are randomly distributed,
which can affect any packet in the TCP session. On the contrary, the burst
errors come as a block, so the errors would be confined to a single or a couple
of packets depending on the size of the block and the time of occurrence. So
the burst error would have less impact on the TCP session latency compared
to random error. An experiment is designed to verify this hypothesis where the
appliance and end-user device exchange 100 packets of 500 bytes each. Random
and burst errors of 10−4, 10−5 and 10−6 are introduced in the NFC channel to
test the latency of the TCP session.

6.3.1 Random errors

The random bit errors are modeled using the following formula.

P (0) = 1− P (1) (6.1)

where, P(0) and P(1) denote the probabilities of transmitting bits 0 and 1 without
errors.

6.3.2 Burst errors

The burst errors are introduced based on the Gilbert−Elliott model as shown in
Figure 6.6. The states Good and Bad represent the bit error conditions. p and q
are the transition probabilities between these states. The average burst length is
taken as 4 bits in this experiment. An example below shows the steady state and
transition probabilities of the Good and Bad states for an NFC BER of 10−4.

πGood =
q

q + p
(6.2)

54

πBad =
p

p+ q
(6.3)

where, πGood = 1 - 10−4 (Steady state probability of state Good) and πBad =
10−4 (Steady state probability of state Bad). The transition probabilities p and
q are calculated by taking Average Burst Length (ABL) as 4 bits. So q becomes
0.25 and p becomes 25 ∗ 10−6.

Figure 6.6: Gilbert-Elliot error model for simulating burst errors

Figures 6.7, 6.9 and 6.11 show the output of the TCP session with random
NFC BERs of 10−4, 10−5 and 10−6 respectively at 11.2 kbps. It can be seen
that as the BER reduces, the number of retransmissions decreases and hence the
TCP session latencies. The same behavior is observed with burst NFC BER as
shown in Figures 6.8, 6.10 and 6.12 at 11.2 kbps. As per the hypothesis, at a
given NFC BER, fewer retransmissions are observed with burst errors compared
to that with random errors. This proves that burst errors have less impact on the
system latency as the errors come in bursts which affect fewer TCP/IP packets.

Table 6.3 summarizes the latencies of the TCP sessions with random and burst
errors at different NFC BERs. At a BER of 10−4, the latency with the burst error
is around 54.56% less than that with random error. However, as the BER reduces,
the difference in latency between the two types of errors reduces. At a BER of
10−6, there is only about 1.8% difference in the session latencies. Therefore, it
can be concluded that at lower BERs the type of error will not matter much but
at higher BERs burst errors will have lesser impact on the overall latency.

Table 6.3: TCP session latencies with random and burst errors at different NFC
BERs

NFC BER
TCP session latency (s)

Random error Burst error

10−4 439.22 199.6

10−5 150.07 134.46

10−6 127.32 125.03

55

Figure 6.7: TCP session with a ran-
dom BER of 10−4

Figure 6.8: TCP session with a burst
BER of 10−4

Figure 6.9: TCP session with a ran-
dom BER of 10−5

Figure 6.10: TCP session with a
burst BER of 10−5

Figure 6.11: TCP session with a ran-
dom BER of 10−6

Figure 6.12: TCP session with a
burst BER of 10−6

6.4 Effect of varying the NFC communication time-
slot duration on the system latency

The cordless kitchen specification defines an NFC communication time-slot size
of 1.5 ms in the time-slotted mode. If the the size of the time-slot size is increased,
the latency of the system can be reduced because more data can be transferred
over bigger time-slots. The decrease in latency with the increase in time-slot
size will be non-linear because they are inversely proportional. An experiment is
carried out to find out the optimum NFC time-slot size for the system such that
minimum latency is maintained.

The standard payloads of NFC read and write commands, as defined in the
cordless kitchen specification, are used in this experiment (refer Section B.2.2).

56

A short TCP session exchanging 1 kB of data is considered, with NFC time-slot
sizes varying from 1 ms to 2.5 ms. The latencies are theoretically calculated using
the RTT Equation 4.1 as described in Section 4.3.2.1. Figures 6.13, 6.14 and 6.15
show the results of tunneling the TCP/IP packets over different time-slot sizes at
212 kbps, 424 kbps and 848 kbps respectively. The graphs represent an inverse
variation function. The rate at which the latency decreases with increasing slot
size, is steep at the beginning, and it gradually flattens out at higher slot sizes.
This behavior is more noticeable at lower bit rates because the amount of data
that can be sent over a time-slot is small compared to that at higher bit rates.
This implies that the choice of the correct time-slot size is more critical at lower
bit rates for maintaining a reasonable latency.

Figure 6.13: Latencies of TCP ses-
sions for different NFC time-slot
sizes at 212 kbps

Figure 6.14: Latencies of TCP ses-
sions for different NFC time-slot
sizes at 424 kbps

Figure 6.15: Latencies of TCP ses-
sions for different NFC time-slot
sizes at 848 kbps

In the cordless kitchen system there is a trade-off between the efficiency of
power transfer and communication. As the size of the time-slot increases, the
efficiency of the power transfer decreases. Moreover, bigger time-slot sizes would
generate harmonics in the power signal leading to vibrations and heating in the
PTx module. Therefore it is important to choose an optimum slot size such that
both power transfer and data transfer are efficient. An optimum time-slot size
needs to be chosen for the lowest NFC bit rate, which is 212 kbps in this case.
This slot size would give a better performance at higher bit rates as well.

At 212 kbps, an efficiency of about 50% in data transmission can be achieved

57

with a time-slot size of 1.5 ms. Higher efficiency with the same slot size can
be achieved at higher bit rates. A slot size of 1.5 ms results in an efficiency of
75% at 424 kbps and about 95% at 848 kbps. An efficiency close to 99% can be
achieved with a slot size of 1.9 ms at 848 kbps. Depending on the criticality of
the Internet applications, appropriate slot size can be chosen such that desired
efficiency is achieved at all data rates.

6.5 Considering non-TCP/IP messages over the NFC
channel

For the ease of analysis, in all of the experiments the NFC channel was assumed
to comprise of only TCP/IP messages. However, in real case scenario, the NFC
channel would also carry other types of messages such as power control, ne-
gotiation, measurements, state transition, etc. The frequency of these messages
would depend on the type of application being used. An experiment is performed
to analyze the performance of the TCP session in the presence of such messages
at different frequencies of their occurrence.

The frequency of non-TCP/IP messages is taken as a fraction, for example,
2 slots every 10 slots used for other messages. This will impact the RTT of
a TCP/IP packet over the NFC channel, i.e. the tNFC in Equation 4.4 will
increase by the number of slots used by other messages while the packet is being
transferred over the NFC channel. The modified version of Equation 4.4 is as
follows:

tNFC =
slotspckt

1− freqctrlmsgs
∗ 10 (ms) (6.4)

where,

freqctrlmsgs =
a

b
(6.5)

a/b signifies ’a’ slots every ’b’ slots format. b is taken as section size and b− a
will be usable slots per section. The tNFC has to be rounded up to the nearest
section size b because the usable slots can occur anywhere in the section. As the
frequency of other messages increases, the TCP session latency also increases.
This increase will be non-linear because the number of usable slots varies inversely
with latency. If freqctrlmsgs = 0, all slots will be available for TCP/IP packets
and the Equation 6.4 will be same as Equation 4.4. If freqctrlmsgs = 1 i.e.
all slots are used for other messages, then the tNFC becomes ∞ which means
that the TCP/IP messages cannot be transferred. A TCP session with 1 kB
data exchange and a section size b of 10 slots is considered for the experiment.
Theoretical calculations are made for TCP session latencies using the Equation
4.1 and for an NFC bit rate of 848 kbps.

58

The result of the experiment is depicted in Figure 6.16. The graph shows an
inverse variation function, so the rate of increase in latency will be steep as the
frequency of non-TCP/IP messages increases. At lower frequencies, the latency
varies slightly. It can be inferred from the results that an efficiency of around
72% can be achieved in the transmission of TCP/IP messages at a frequency of
5/10. Appropriate frequencies can be chosen depending on the criticality of the
Internet application.

Figure 6.16: Latencies of TCP sessions for different frequencies of non-TCP/IP
messages at 848 kbps

59

60

Chapter 7

Conclusion and Future Work

This thesis focused on enabling Internet connectivity to a new generation of smart
kitchen appliances that work on wireless power technology. In order to provide
an efficient and seamless communication with the appliances, the possibilities
of utilizing the NFC channel for Internet connectivity were explored. Two ar-
chitectures called proxy and bridge were proposed to enable connectivity via a
time-slotted NFC channel of the cordless kitchen. The bridge architecture was
adopted for the cordless kitchen as it implements the full TCP/IP stack on the
appliance and provides it more control over the TCP communication.

As most of the IoT applications use the TCP/IP protocol, this work mainly
focused on adapting the TCP/IP protocol to the cordless kitchen system. Two
major problems, namely spurious retransmissions and packet drops at the NFC
interface, that arise while adapting the TCP to the time-slotted NFC channel,
were recognized and discussed in detail. To eliminate the spurious retransmis-
sions a generalized solution was provided to compute the optimum RTO values
for TCP/IP packets tunneled over the NFC channel. Using this, the spurious
retransmissions were completely removed in short TCP sessions. As the TCP
does not consider the payload sizes for RTO estimation, spurious retransmissions
were observed when there was high variability in payload sizes. To mitigate this,
a new algorithm was proposed that dynamically estimates and updates the RTO
of the packets considering the payload sizes and changing channel delays. This
algorithm provided more accurate estimation of the RTO values compared to
the VJ’s algorithm used in the LwIP stack. A reduction of about 29.32% in
latency was observed with this algorithm for the data set considered. To avoid
packet drops at the NFC module caused due to small inter-packet delays, an NFC
channel sensing mechanism was introduced in the cordless kitchen system. This
mechanism eliminated all the retransmissions that existed due to packet loss at
the NFC interface. Using all these techniques, up to 38% reduction in the system
latency is achieved at an NFC bit rate of 11.2 kbps and up to 53% at 24 kbps.

A comprehensive performance analysis with respect to the different paramet-
ers of TCP/IP that affect the system performance such as the TCP RTO value,

61

MSS and CWND size. Take-aways of this study include: (a) the initial CWND
size does not have a significant impact on the system latency; and (b) recom-
mended MSS value is ≥ 1024 bytes to get a good performance. The thesis also
analyzed the effects of non-TCP/IP factors on the system performance such as
NFC bit error rates, communication time-slot sizes and influence of transferring
other control messages along with TCP/IP packets over the NFC channel. It
concluded that the system has relatively better performance with bursty errors
in the NFC channel than with random bit errors. It showed that close to 99%
data transmission efficiency can be achieved with a slot-size of 1.9 ms at higher
NFC bit rates. The results also showed that if the frequency of non-TCP/IP mes-
sages on the channel stays under 50%, a transmission efficiency of 75% can be
achieved. By adopting the proposed architectures with improvement techniques
and recommendations, the Internet connectivity can be enabled in the cordless
kitchen system using its time-multiplexed NFC channel.

7.1 Future Work

The performance of the bridge architecture needs to be tested with a higher NFC
bit rate of 848 kbps. In this work, experiments were carried out with bit rates
of 212 kbps and 424 kbps. Due to unavailability of the NFC kitchen compliant
software supporting 848 kbps, the performance of tunneling the TCP/IP at this
rate could not be analyzed. Furthermore, the experiments need to be performed
with a real power transmitter having a built-in NFC antenna. This would help
in understanding the effects of magnetic fields on the behavior of the NFC com-
munication. As the required hardware support was unavailable, this aspect could
not be analyzed.

One of the extensions to this work is to explore different compression mech-
anisms like the 6LoWPAN and CoAP to further reduce the system latency and
increase the responsiveness of the Internet applications of the cordless kitchen.
Using these techniques the communication overhead in the bridge architecture
would reduce and improve the goodput.

Security aspects of the bridge architecture need to be studied by exploring
encryption techniques like the TLS. This would make the communication between
the end-user device and the appliance more secure. The main aspects to be
analyzed in case of TLS are the impact on system latency and the key sharing
protocol. TLS introduces overhead in terms of certificate exchange and additional
bytes in the TCP/IP packets which would increase the load on the NFC channel
and thus the latency of transmission. The key sharing might become a problem
as the PTx is like a man-in-the-middle who has access to all the packets sent by
the appliance. These problems need to be studied in detail and the impact on
performance has to be assessed.

62

Appendix A

Implementation
Recommendations

This section highlights certain use case scenarios for Internet connectivity with
bridge architecture, and it provides some recommendations for handling/implementing
them.

1. Non-identical NFC buffer and MTU sizes in PTx and appliance:
The appliances and the PTxs may have different versions of software im-
plementations and they could be from different manufacturers. So it is not
necessary that the uplink and downlink characteristics of the communica-
tion channel between the two will be the same.

The PTx and appliance may have different buffer sizes in their NFC mod-
ules. Before starting a TCP connection it is necessary to exchange inform-
ation regarding buffer sizes so that packets with appropriate sizes can be
sent without causing buffer overflows. It is also important for the appliance
to know the Maximum Transmission Unit (MTU) size of the PTx. The
TCP MSS size can then be adjusted accordingly to prevent packet drops.

2. Increased communication overhead due to small packet buffer
size:
The memory allocated for the TCP/IP packets by the stack should be large
enough to hold an entire packet with maximum segment size. In the LwIP
stack a single TCP/IP packet is stored in multiple small packet buffers
that are chained together. This type of storing increases the overhead in
the packet and adds to the latency on the NFC channel.

3. Upgrading the TCP/IP stack in the end-user devices:
The new algorithm proposed for handling the RTO mechanism requires
modifications to be made in the TCP/IP stack. This would be easy for
the appliance because its stack needs to support only the NFC enabled
kitchen applications. On the contrary, the end-user device cannot readily

63

make these changes as its TCP/IP stack is shared by various other applic-
ations. The stack needs to be upgraded with the new algorithm such that
it dynamically supports all types of applications and channels.

As explained in Section 4.3.2.2, the algorithm sets the RTO of the packets
by considering the NFC transmission rate, packet size and observing the
delay on the Ethernet/WiFi channel. Similarly, this method could also be
used for applications that do not involve NFC channels. The stack can
study the channel delay by constantly measuring the RTT of the packets
and use this to calculate the delay experienced per byte on the channel.
It can then set the RTO of the packets using the current packet size and
the delay per byte factor. A better RTO estimation can be achieved with
this method which would help in avoiding spurious and delayed retrans-
missions especially in high delay, low bandwidth channels. By upgrading
the TCP/IP stack with this algorithm, it can dynamically adapt itself to
different channels and support a wide variety of applications with improved
performance.

64

Appendix B

Cordless Kitchen: Detailed
Description

The Wireless Power Consortium [3] is an open-membership cooperation of 200+
companies aiming to create global specifications for wireless power technology.
One of the applications of this technology is the cordless kitchen. In the cordless
kitchen system, the appliances are powered by inductive power transfer in which a
permanently-mounted power source containing a coil draws power from the mains
and transfers it via electromagnetic induction [4] to a secondary coil placed in the
appliance. The power is then converted within the appliance back into electrical
power and/or heat for cooking as required. The cordless kitchen also has an
NFC channel to establish one-to-one communication between the power source
and the cordless appliance. The NFC technology is preferred for the cordless
kitchen environment over other wireless technologies like Bluetooth, Zigbee, etc.
because of the following advantages of NFC.

• For safety reasons, the cordless kitchen system requires a very short range
detection/ communication between the PTx and the appliance. This would
ensure that the cordless appliance is detected and the power is transferred
only when it is placed on top of the PTx. The most suitable communication
technology for such a system would be the NFC, which offers a short-range
communication limited to a distance of up to 10 cm, in compliance with
the cordless kitchen specification.

• The NFC provides a one-to-one communication between devices unlike
other short range wireless protocols. This ensures that an PTx is connected
to only one appliance at a time.

• The detection and connection of devices with NFC is almost instantaneous
and the connection happens automatically in a fraction of a second. There
is no need to manually setup connections unlike other technologies.

65

• NFC is capable of supplying power to passive devices alongside the commu-
nication, through RF energy harvesting [6]. This would help the appliances
to keep some of their functionalities like the User Interface (UI) active even
when the PTx is not transferring power.

The cordless kitchen specification defines two profiles of communication: Basic
and Extended. The basic profile is based on the NFC Type 2 tag specification
and only supports a bit rate of 106 kbps. On the other hand, the extended profile
is based on the NFC type 4 tag specification and supports bit rates of 106 kbps,
212 kbps, 424 kbps and 848 kbps.

B.1 Phases of operation

The operation of the cordless kitchen system is categorized into different phases.
These phases are depicted in Figure B.1 and explained in detail below.

Figure B.1: Phases of operation

B.1.1 Idle phase

In the idle phase, the NFC reader in the PTx is typically polling for the presence
of a device in its vicinity, or is in the standby mode waiting for a wake-up event
while the appliance is inactive or powered off. The wake-up event is triggered
when there is an impedance change at the communication antenna of the PTx
or when an event occurs at the PTx’s UI or when an Internet event occurs from
devices like mobile phones. The PTx consumes very low power in the idle phase.
Upon receiving a wake-up event, the PTx detects the RFID device type. Once

66

an NFC Type A device is detected, and no other devices are present, the PTx
and the appliance enter the configuration phase.

B.1.2 Configuration phase

In the configuration phase, the PTx collects the configuration data from the
appliance, and checks if it is a compliant kitchen device. Two types of configura-
tions take place in this phase. The first one is the NFC configuration, where the
device initialization and anti-collision processes are carried out for NFC Type A
devices. Bit rate negotiation occurs at this stage. The second type is the static
configuration, where the PTx retrieves application specific data from the appli-
ance. This data includes application identifier, specification version, power class,
power rating, etc. Once the configuration is done, the PTx and the appliance
enter the connected phase.

B.1.3 Connected phase

The connected phase mainly concentrates on preparing the system for operation
under user control and in the power transfer phase. While the PTx is in the
configuration phase, it has full control on the communication and sequence of
interactions with the appliance. However, in the connected phase, the PTx del-
egates this control to the appliance and also enables the appliance to interact
with the user.

The PTx and the appliance communicate by exchanging messages carrying in-
formation related to power control/negotiation, measurements, state transition
requests and auxiliary data. There is no specific order in which these messages
are exchanged. The auxiliary data messages are mainly used to connect the ap-
pliance to the Internet using the NFC communication channel. This is when
the appliance does not have its own WiFi module and relies on the PTx for In-
ternet connectivity. These data messages are communicated over the auxiliary
channel which is a logical channel over the standard NFC channel. By exchan-
ging these messages the appliances can have Internet connectivity which can be
used for receiving cooking recipes, communicating with a remote user interface,
downloading software updates, web browsing, IoT applications etc.

B.1.4 Power transfer phase

In the power transfer phase, the PTx drives current through its power coil to
generate magnetic field from which the appliance retrieves power for its load.
The power transfer and the communication in this phase happen in a time-
multiplexed fashion as explained earlier. The communication between the PTx
and the appliance takes place at the zero crossings of the power signal for a
duration of 1.5 ms. There is no specific sequence for the communication, however,
the appliance should frequently send heartbeat messages to the PTx to inform

67

about its status. Similarly, the PTx should respond to the control messages of
the appliance on time. When the PTx does not hear from the appliance within a
predefined interval of time, it cuts off the power and goes to the connected phase.
Similar to the connected phase, the PTx and the appliance exchange messages
related to power control/negotiation, state transition requests, measurements and
auxiliary data.

B.2 NFC protocol extensions for cordless kitchen

The idle and configuration phases use the standard NFC protocol, i.e., the stand-
ard READ and WRITE commands of the basic profile and, the standard READ
BINARY and UPDATE BINARY commands of the extended profile. However
these standard commands cannot be used for the connected and power transfer
phases. These phases need dedicated NFC application states and commands to
handle the time multiplexing of the NFC communication signals and the power
signal.

B.2.1 Dedicated application states

The NFC communication in the power transfer phase takes place in 1.5 ms time
slots that occur periodically (once every 10 ms). During the power transfer,
the NFC tag in the appliance loses the detection of the communication carrier.
The standard NFC requires the NFC tag to restart from the idle phase upon
re-detection of the communication carrier. This would require re-running the
NFC configuration which consumes too much time for the given 1.5 ms time slot,
so there will not be enough time to exchange other messages. This problem is
solved by defining two dedicated application states - Alive and Suspend. When
the appliance loses the communication carrier, it goes to the suspend state, and
upon re-detection, it does not reconfigure NFC but goes to the alive state where
it continues its operation from where it had left off.

B.2.2 Dedicated NFC commands

New NFC commands are defined to reduce the communication overhead and
meet the 1.5 ms time slot requirement. The READ2 and WRITE2 commands
are introduced for the basic profile which are used to read and write data from
and to the NFC buffer. Similarly, the READ4 and WRITE4 commands are added
to the extended profile. The formats of these commands are explained in detail
below.

• READ2:
Figures B.2 and B.3 show the standard READ and READ2 commands
respectively. The standard READ command can carry 16 bytes of data. In
the time multiplexed mode, sending large amount of data becomes a major

68

constraint. Therefore the READ2 command is designed to carry data in
multiples of 4 bytes. This ensures that the NFC read sequence completes
in the given 1.5 ms time slot.

Figure B.2: READ command in standard NFC

Figure B.3: READ2 command in dedicated NFC

The basic NFC protocol uses a bit rate of 106 kbps. The amount of data
that can be sent through the NFC channel using the READ2 command
within the 1.5 ms time slot is shown in Figure B.4. It can be seen that a
maximum of 8 bytes (n = 2) of data can fit into a time slot of 1.5 ms.

Figure B.4: Number of bytes that can be sent using READ2 command

• WRITE2:
The standard WRITE command limits its data to 4 bytes only (Figure
B.5). With the WRITE2 command (Figure B.6), more data can be sent in
the given 1.5 ms time slot. Similar to the READ2 command, the WRITE2
command carries data in the multiples of 4 bytes. From Figure B.7, it can
be seen that for a bit rate of 106 kbps, 8 bytes (n = 2) of data can be
transferred in one time slot of 1.5 ms. The standard READ and WRITE
commands are used to read and write the static configuration data in the
EEPROM. The READ2 and WRITE2 commands are used to read and
write data into the dynamic buffer memory of the NFC tag.

69

Figure B.5: WRITE command in standard NFC

Figure B.6: WRITE2 command in dedicated NFC

• READ4:
The READ BINARY command of the extended profile is used for reading
the static configuration data in the NFC Type 4 tags. Figure B.8 shows
the format of this command. Any amount of data up to a maximum of 255
bytes can be read. However, in case of time slotted mode, this command
can result in a lot of overhead. Therefore the new READ4 command is
defined with reduced overhead, as shown in Figure B.9. This command is
used to read the dynamic data from the buffer memory of the Type 4 NFC
tag.

Figure B.10 shows the number of bytes that can be read using the READ4
command for different NFC bit rates. It can be seen that the amount of
data that can be transferred increases with the bit rates. Data transfer of
up to 104 bytes can be achieved with a bit rate of 848 kbps.

• WRITE4:
Similar to the READ BINARY command (Figure B.11), the UPDATE
BINARY command can carry up to a maximum of 255 bytes of data in
its payload. In time slotted mode, it produces too much overhead because
of which the WRITE4 command (Figure B.12) is introduced with reduced
overhead for extended profile.

The maximum number of bytes that this command can carry in its payload
is calculated for different NFC bit rates. The results are shown in Figure
B.13. With a bit rate of 848 kbps, 103 bytes of data can be transferred
across the NFC channel in 1.5ms.

The NFC read and write commands carry messages of the kitchen communic-
ation protocol in the connected and power transfer phases. A frame of messages
is transferred over one time slot of 1.5 ms. The frame payload contains a header

70

Figure B.7: Number of bytes that can be sent using WRITE2 command

Figure B.8: READ BINARY command in extended NFC

Figure B.9: READ4 command in dedicated NFC

Figure B.10: Number of bytes that can be sent using READ4 command

with one or more messages. The message and the frame formats are depicted
in Figures B.14 and B.15 respectively. Different types of messages are listed in
Figure B.16. The messages carry measurements data, operating limits, control
data, auxiliary data, etc. and are sent across the NFC channel in connected and
power transfer phases.

71

Figure B.11: UPDATE BINARY in extended NFC

Figure B.12: WRITE4 command in dedicated NFC

Figure B.13: Number of bytes that can be sent using WRITE4 command

Figure B.14: The kitchen communication protocol: Message format

72

Figure B.15: The kitchen communication protocol: Frame format

Figure B.16: Message types and extensions in the kitchen communication pro-
tocol

73

74

Bibliography

[1] “Connected Smart Kitchen,” Smart Kitchen Gadgets —
2017 Guide to the Best Cooking Devices. [Online]. Available:
https://www.postscapes.com/connected-kitchen-products/.

[2] “Cordless kitchen appliances,” Cordless kitchen appliances. [Online].
Available: https://www.wirelesspowerconsortium.com/developers/cordless-
kitchen-appliances.html.

[3] “Wireless Power Consortium,” Wikipedia, 19-Jun-2017. [Online]. Available:
https://en.wikipedia.org/wiki/Wireless Power Consortium.

[4] “Electromagnetic induction,” Wikipedia, 21-Jun-2017. [Online]. Available:
https://en.wikipedia.org/wiki/Electromagnetic induction.

[5] “Near field communication,” Wikipedia, 13-Jun-2017. [Online]. Available: ht-
tps://en.wikipedia.org/wiki/Near field communication.

[6] “The Transfer of Power in Near Field Communication,” dummies. [On-
line]. Available: http://www.dummies.com/consumer-electronics/transfer-
power-near-field-communication/.

[7] J. Hui, Ed., Arch Rock Corporation, P. Thubert and Cisco, “Compression
Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks,” 2011.

[8] J. J. Echevarria, J. Ruiz-De-Garibay, J. Legarda, M. Álvarez, A. Ayerbe, and
J. I. Vazquez, “WebTag: Web Browsing into Sensor Tags over NFC,” Sensors,
vol. 12, no. 12, pp. 8675–8690, 2012.

[9] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial Links,”
1990.

[10] “UIP (micro IP),” Wikipedia, 14-Jun-2017. [Online]. Available: ht-
tps://en.wikipedia.org/wiki/UIP (micro IP).

[11] S. Grunberger and J. Langer, ”Analysis and Test Results of Tunneling IP
over NFCIP-1,” 2009 First International Workshop on Near Field Communic-
ation, Hagenberg, 2009, pp. 93-97. doi: 10.1109/NFC.2009.21

75

[12] Y. Hong, Y. Choi, M. Shin and J. Youn, ”Analysis of design space and
use case in IPv6 over NFC for resource-constrained IoT devices,” 2015 Inter-
national Conference on Information and Communication Technology Conver-
gence (ICTC), Jeju, 2015, pp. 1009-1012. doi: 10.1109/ICTC.2015.7354725

[13] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, Assump-
tions, Problem Statement, and Goals,” 2007.

[14] Y. Hong, Y. Choi, J. Youn, D. Kim, J. Choi, ”Transmission of ipv6 pack-
ets over near field communication”, draft-hong-6lo-ipv6-over-nfc-03, June 2017
(work in progress).

[15] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, C. Gomez,
”IPv6 over BLUETOOTH(R) Low Energy”, Internet Requests for Comments
RFC Editor RFC 7668, October 2015.

[16] G. Montenegro, N. Kushalnagar, J. Hui and D. Culler, “Transmission of ipv6
packets over ieee 802.15.4 networks” RFC 4944, September, 2007

[17] J. Park, S. Lee, S. H. Bouk, D. Kim, and Y. Hong, “6LoWPAN adapta-
tion protocol for IPv6 packet transmission over NFC device,” 2015 Seventh
International Conference on Ubiquitous and Future Networks, 2015.

[18] “Constrained Application Protocol,” Wikipedia, 13-Aug-2017. [Online].
Available: https://en.wikipedia.org/wiki/Constrained Application Protocol.

[19] P. Benko, G. Malicsko and A. Veres, ”A large-scale, passive analysis of end-
to-end TCP performance over GPRS,” IEEE INFOCOM 2004, Hong Kong,
2004, pp. 1882-1892 vol.3. doi: 10.1109/INFCOM.2004.1354598

[20] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” ACM SIGCOMM Computer Communic-
ation Review, vol. 32, no. 4, p. 89, Jan. 2002.

[21] S. Dawkins, G. Montenegro, M. Kojo, and V. Magret, “End-to-end Perform-
ance Implications of Slow Links,” 2001.

[22] K. K. Leung, T. Klein, C. Mooney, and M. Haner, “Methods to improve
TCP throughput in wireless networks with high delay variability,” IEEE 60th
Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[23] T. Klein, K. Leung, R. Parkinson, and L. Samuel, “Avoiding spurious TCP
timeouts in wireless networks by delay injection,” IEEE Global Telecommu-
nications Conference, 2004. GLOBECOM 04.

[24] G. Fotiadis and V. Siris, “Improving TCP Throughput in 802.11 WLANs
with High Delay Variability,” 2005 2nd International Symposium on Wireless
Communication Systems.

76

[25] Copyright 2017 Free Software Foundation, Inc. Verbatim copying and distri-
bution of this entire article is permitted in any medium, provided this notice
is preserved., “lwIP - A Lightweight TCP/IP stack - Summary [Savannah],”
lwIP - A Lightweight TCP/IP stack - Summary [Savannah]. [Online]. Avail-
able: https://savannah.nongnu.org/projects/lwip/.

[26] W. R. Stevens and G. R. Wright, TCP IP illustrated. Reading, Mass.:
Addison-Wesley, 2007.

[27] V. Paxon, M. Allman, J. Chu, and M. Sargent, ”Computing TCP’s Retrans-
mission Timer,” RFC 6298, Jun. 2011.

[28] V. Jacobson, “Congestion avoidance and control,” Symposium proceedings
on Communications architectures and protocols - SIGCOMM 88, 1988.

[29] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” 2009.

[30] M. Degermark, M. Engan, B. Nordgren, and S. Pink, “Low-loss TCP/IP
header compression for wireless networks,” Proceedings of the 2nd annual in-
ternational conference on Mobile computing and networking - MobiCom 96,
1996.

[31] Y. Kim and D. Cho, “Considering spurious timeout in proxy for improv-
ing TCP performance in wireless networks,” GLOBECOM 03. IEEE Global
Telecommunications Conference (IEEE Cat. No.03CH37489).

[32] H. Sakai and A. Arutaki, “Protocol Enhancement for Near Field Commu-
nication (NFC): Future Direction and Cross-Layer Approach,” 2011 Third In-
ternational Conference on Intelligent Networking and Collaborative Systems,
2011.

[33] A. Ghassan, M. Ismail, and K. Jumari, ”A survey on performance of con-
gestion control mechanisms for standard TCP versions,” Australian Journal of
Basic and Applied Sciences, 2011.

77

	Preface
	Introduction
	Overview of the Cordless Kitchen Concept
	NFC communication interface
	Internet connectivity in cordless kitchen

	Challenges and Contributions
	Organization

	Architectures for Internet Connectivity
	Proxy architecture
	Bridge architecture
	Comparison of transmission latency

	Related Work
	Tunneling standard TCP/IP protocol over NFC
	6LoWPAN adaptation for TCP/IP protocol over NFC
	TCP/IP adaptation mechanisms for high delay networks

	Adapting TCP for the Bridge Architecture
	Experimental setup
	Challenges in adapting TCP
	TCP spurious retransmissions
	Packet drops due to small inter-packet delay

	Addressing the challenges
	Packet drops due to small inter-packet delay
	TCP spurious retransmissions

	Results
	Packet retransmissions
	Latency
	Throughput and goodput
	Bandwidth utilization

	Parametric Analysis of the Bridge Architecture
	Effect of TCP CWND size and slow start process on the system latency
	Effect of TCP MSS size on the system latency
	Effect of NFC BER on the system latency
	Random errors
	Burst errors

	Effect of varying the NFC communication time-slot duration on the system latency
	Considering non-TCP/IP messages over the NFC channel

	Conclusion and Future Work
	Future Work

	Appendices
	Implementation Recommendations
	Cordless Kitchen: Detailed Description
	Phases of operation
	Idle phase
	Configuration phase
	Connected phase
	Power transfer phase

	NFC protocol extensions for cordless kitchen
	Dedicated application states
	Dedicated NFC commands

	Bibliography

