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A gradient plasticity approach to finite element predictions

of soil instability (*)

J. PAMIN (') and R. DE BORST (?) (DELFT)

A DRUCKER-PRAGER gradient plasticity theory is applied in finite element simulation of two-
dimensional localization problems in geomaterials. The gradient-dependent theory preserves well-
posedness of the governing equations in presence of material instability and prevents a spurious
mesh sensitivity of numerical results, An internal length scale incorporated in the theory determines
the width of shear bands. Assuming weak satisfaction of the yield condition, a family of mixed finite
elements is developed, in which plastic strains are interpolated with C1-continuity in addition to
the standard discretization of the displacements, Instabilities in a biaxially compressed specimen
and in a slope under an increasing gravity load are simulated.

1. Introduction

FAILURE OF LOOSE and cemented granular materials like soil and rock is often
accompanied by a sudden transition from a uniform deformation field into a
number of localized shear bands. Although they are called sometimes slip planes,
they have a small but finite thickness. Soil and rock specimens exhibit also a
gradual degradation of stiffness with the increase of deformation and, beyond a
certain level of straining, even a decrease of the load-carrying capacity called soft-
ening. The phenomena of strain localization and softening are closely related [1].
In simple terms, material heterogeneity induces strongly nonlinear stress-strain
and volume change relations, and a local weakness of the material triggers strain
localization. As a result of the inhomogeneous deformations, a softening response
at the structural level is observed.

Localization can be considered as an instability in the macroscopic constitutive
description of inelastic deformation [2]. Within the classical continuum theory,
this kind of instability is associated with discontinuities in the strain-rate field,
which, under static loading conditions, coincides with the loss of ellipticity of the
governing partial differential equations. The acoustic tensor singularity condition
[2, 3] gives the critical value of the hardening modulus, for which the bifurca-
tion into a discontinuous strain-rate field is possible, and the direction of the
discontinuity plane.

At a continuum level softening is modelled by means of a descending rela-
tion between stresses and strains (strain softening), which introduces the material
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instability mentioned before [4]. It has been shown that, under the assumption of
small displacement gradients, the loss of material stability is a necessary condition
for the loss of ellipticity [5]. Some constitutive relations for frictional materials are
nonsymmetric, for instance, plasticity models do not obey the normality postulate,
which may also lead to violation of material stability. In this case localization may
be encountered even for a hardening model [2] and may occur prior to the limit
load [6].

The loss of ellipticity may thus be induced by softening or non-associated
plastic flow or a combination of the two effects. A meaningful prediction of
the post-critical behaviour is impossible within the classical continuum theory,
since the loss of ellipticity implies the loss of well-posedness of the rate boundary
value problem [7]. Localization of deformation in a set of measure zero then
ensues, which loses physical sense in the continuum description, since it predicts
total failure without energy dissipation. As a result, numerical solutions exhibit a
spurious discretization sensitivity.

The problem of mechanical representation of localized deformation can also
be interpreted as follows. As long as the deformation of a soil/rock mass is almost
uniform, the characteristic size of material heterogeneity is very small compared
to the wave length of the deformation mode. However, the classical model fails to
predict the real behaviour if the wave length of the deformation mode is compar-
able to the characteristic size of material heterogeneity, e.g. during localization
in a shear band [8].

A natural solution is to enhance, or to regularize, the continuum description.
There exist a few methods to regularize the governing equations [7]. They all in-
clude a so-called internal length scale that defines the width of the shear bands. In
this contribution the elasto-plastic continuum description is enhanced by making
the yield function dependent on the Laplacian of an equivalent strain measure
[9-12]. This non-local theory is thought to reflect the micro-mechanical changes
in an inhomogeneous material during failure processes. Due to the gradient de-
pendence, the consistency condition, which governs the plastic flow, becomes a
partial differential equation. To solve this equation, it is cast in a weak form and
the plastic strain field is discretized in addition to the usual discretization of the
displacement field.

The purpose of this paper is to examine the gradient plasticity approach for
shear band formation in geomaterials. The assumptions of static loading and small
deformations are adopted. We will limit our consideration to the non-associated
Drucker-Prager model, which includes the dilatancy and non-normality of the
plastic flow. In the first part of the paper we summarize the theory and the
algorithm of finite element computations. In the second part, the Drucker -Prager
gradient plasticity model and two special finite elements are used to solve an
example of localized deformations in a plane strain sample in biaxial compression
and in an embankment under an increasing gravity load.
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2. Drucker-Prager gradient plasticity

Firstly, we summarize the rate boundary value problem of gradient plasticity
(cf. [11, 12]). We introduce the displacement vector u = (ug, uy, u,), the strain
tensor in a vector form € = (€54, Eyy, €22, Toys Yyz» Vze) and the stress tensor in a
vector form o = (0yz, Oyy, 02z, Ty, Oyz, 02z). Under the assumption of small de-
formations and static loading we have the following equations for an elasto-plastic
body occupying a volume V' (Fig. 1):

F1G. 1. Idealization of an elastic-plastic body.

(2.1) 176 + b =0,
(2.2) é =L,
(2.3) G =D& — Am),

where superimposed dots denote the derivatives with respect to time, and the
superscript 7' is the transpose symbol. In the above equations L is a differential
operator matrix, b is a body-force vector and D¢ is the elastic stiffness matrix.
Eq.(2.3) contains the definition of the plastic strain-rate vector, called the flow
rule:

|
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(2.4) ér

in which* ) is a plastic multiplier and m defines the direction of the plastic flow.
The vector m may be derived from a plastic potential function G'.

The gradient dependence is included solely in the definition of the yield func-
tion F

(2.5) F = F(o,k, V),
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in which « is an invariant plastic strain measure (the hardening parameter). To-
gether with Eqs. (2.1)~(2.3) the Kuhn-Tucker conditions

(2.6) A>0, F<0, AF=0

must be fulfilled. To complete the rate boundary value problem we specify the
standard static and kinematic boundary conditions on complementary parts of
the body surface S

2.7) Sv,=1t, 0 =u,,

where ¥ is the stress tensor in a matrix form, v, denotes the outward normal
to the surface S and t is the boundary traction vector. It is noted that with the
motion equation instead of the equilibrium equation (2.1) and with additional
initial conditions, an initial value problem of gradient plasticity can be formulated
for dynamic loading [13].

The gradient dependence of the yield function makes the plastic consistency

condition F = 0 become a differential equation:

oFNT . OF .,  OF _,. _

(28) (5’0‘) o + —a-; K + mv K —O.
We introduce the gradient of the yield function n:

OF
(29) - 'é; y
the (variable) hardening modulus A:

2,y _ K~ OF

(2.10) h(k, V*K) TR
and the gradient influence variable g:

Kk OF
(2.11) g(k) = “)\— Vi’

which is assumed to be a function of x only. We can now write Eq.(2.8) in the
form:

(2.12) 0’6 —h A +gVEA =0

For softening the modulus A is negative and the additional variable ¢ is positive.
In the simplest case h and ¢ are constants (softening is linear). For ¢ = 0 the
classical flow theory of plasticity is retrieved. The consistency condition is then a
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nonlinear algebraic equation, from which the plastic multiplier can be determined
locally. The problem of solving Eq. (2.12), which is essentially valid in the plastic
part of the body V) (Fig. 1), is characteristic for the present theory.

In this paper we use a finite element discretization to solve simultaneously the
two coupled equations of equilibrium and plastic consistency. For this purpose we
assume a weak satisfaction of the consistency condition and discretize the plastic
strain field, in addition to the standard discretization of the displacements [9, 11].
This aspect will be further discussed in the remainder of the paper.

Secondly, we present the Drucker - Prager gradient plasticity model. We adopt
constant values of the friction and dilatancy angles, and only the cohesion exhibits
softening and gradient-dependence, which results in isotropy of the model. In the
context of the critical state models [14], the Drucker - Prager theory is capable of
describing the behaviour of geomaterials in the supercritical (softening) regime,
but is inadequate in the subcritical (hardening) regime, where a cap is necessary to
allow for yielding at high confining pressures. The Drucker - Prager yield function
for gradient-dependent plasticity can be written as follows:

(2.13) F =37y +ap - ft,(k, V2k),

N 1
where J3 is the second invariant of the deviatoric stress tensor, p = §(crm + oy, +
0,.) is the hydrostatic pressure, o and B are functions of the internal friction
angle ¢:
_ 6sing 5= 6cos¢
T 3-sing’ 3-sing’
and ¢, is a gradient-dependent measure of the cohesion. Introducing a matrix P
and a vector I, defined as

(2.14)

[ 2/3 -1/3 =1/3 0 0 0] [1/3]
-1/3 2/3 -1/3 000 1/3
-1/3 -1/3 2/3 000 1/3
. = II = ,
215) P 0 0 0200} 0
0 0 0020 0
| 0 o 000 2] | 0 ]
the yield function takes the form:
3 1o \'? T . 2
(2.16) F= (-2-0 Pa) + oIl — fz,(x, V2K),
so that the gradient to the yield function equals
2.17) n=— A +all
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For non-associated plasticity we define the plastic potential function and its gradi-
ent in a similar fashion:

(2.18) = v 3']2 + apv
(2.19) m= —00 44,
3 /2
2 (EGTPO')

where & is a function of the dilatancy angle 4 similar to the definition of « in

Eq. (2.14). To determine the relation between % to \ we use the strain-hardening
hypothesis:

(2. o\ 2 T
(220) K=(§£?j8?j> =[§(ep) er] )
with Q = diag[1,1,1,1/2,1/2,1/2]. Substituting the plastic strain-rate vector
€’ = A m into Eq.(2.20) and observing that PQP = P and PQII = 0, we
obtain:

. 9 \1/2
(2.21) k=nA\, n=<1+§a2> :
According to the definitions in Egs. (2.10) and (2.11) we have:
_ L0t _ Jz,
(2.22) h=nfZ=,  9=-18z-
For linear softening ¢, can be written as:
- h g o2

2.23 Ty =Cy + —K — =V°k
( ) g Y nﬂ nﬂ

with constant ~ and g and with the initial value of the cohesion ¢,. For nonlinear
softening the cohesion changes according to:

o 9(5) o2
2.24 ¢y = ¢(k) — —=V*k,
(2.24) y = (k) e
and the softening modulus is calculated as:

= 508K B9(K) o

The important advantage of the Drucker-Prager yield function is its smoothness,
since the presence of singular edges on the yield surface poses a difficulty for the
gradient plasticity algorithm [12]. In fact the Drucker~Prager yield surface also
possesses a vertex at the cross-section with the hydrostatic axis. From Eq. (2.13)
we calculate that at the vertex p = ¢,ctgé. It is assumed here that the stress
points in large triaxial tension, which would fall in the vertex regime p > ¢,ctg ¢,
are not admitted.
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3. Algorithm and finite elements

An incremental formulation of the above boundary value problem gives rise
to residual terms, which make a stress update necessary. The evolution of the
elastic-plastic boundary within a loading step must be also considered.

In order to derive an incremental-iterative algorithm [11, 12], we require a
weak satisfaction of the equilibrium condition

3.1) /6uT (L7041 + bjar )V =0
Vv
and the yield condition

(3.2) / SAF (11,5541, V2hijg1) AV = 0
Vv

at the end of iteration j+1 of the current loading step, where § denotes a variation
of a quantity. Unlike in the classical plasticity algorithms, the latter condition is
also satisfied in a weak sense and is only fulfilled when convergence is achieved.

Equation (3.1) can be modified using integration by parts and the standard
boundary conditions (2.7);, and decomposing o';,1 as 0; + do, where d indicates
an increment, i.e. the difference between the values of a variable at the end of
iteration j + 1 and iteration j:

(3.3) / 6e7 dor AV = / 6uTh; 1 dV + / sult 41 dS — / 6ec; dV.
14 |4 S 14

Using the incremental form of the relationship between the stress and the elastic
strain vector

(3.4) do = D°(de — dAm),

we obtain the following integral equation:

(3.5) / 5T D¢ (de —dAm) dV = f SuTbjsydV + [ 6uT'tjy1dS - / 5eTa; dV.
14 v s 14

‘We observe that this equation does not depend explicitly on the Laplacian of the
plastic multiplier and has a form similar to the incremental equilibrium equations
used for classical plasticity.
The yield function F in Eq.(3.2) is developed in a Taylor series around
(04, K4, V2k;) and truncated after the linear terms:
2 2 oFN\T
(3-6) F(O’j+1,f€j+l,v Kj+]) = F(U'j,h’,j,v K,j)'*‘ 5‘&—
or
oK

do
J
OF

. 2
. dr + 3V2le V4(dk),

-+
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where dk = k41 — ;. With the definitions (2.9)-(2.11) we obtain the following
form of Eq.(3.6):

(3.7)  F(0j+1,Ki+1, Vikju1) = F(0}, 55, V2k;) + nTdo — hd) + gV3(d)),

which after substitution into Eq. (3.2) gives the following integral equation:

(3.8) / 6 [n7D" de — (h + nTD*m) dA + g V(AN v
Vi
= - / 6/\F(0‘j, Kj, Vzlij)clv.
|14

The values of n, m, & and g on the left-hand side of Eq.(3.8) are determined
at the end of iteration j, i.e. for the state defined by (0}, k;, V2;). If the same
mesh is used for both the equilibrium and yield condition, i.e. if integrals over
the whole volume V appear in Egs. (3.2) and (3.8), either the admissible §\ must
vanish or we must enforce F = 0, n = 0 and d\ = 0 in the elastic part of the
body.

In the residual terms on the right-band side of Egs. (3.5) and (3.8) the stress
o ; appears. It is determined using the standard elastic predictor-plastic corrector
algorithm (backward Euler type) at each integration point which is in a plastic
state:

(3.9) o; = og + D°Ag; - A/\jDemj )

where o is the stress state at the end of the previous (converged) load increment,
and A denotes a total increment (from state 0 to iteration j). The values of ;
and V2x; are also updated using total increments. This necessitates the use of
so-called algorithmic consistent stiffness matrix H (instead of the elastic stiffness
D¢) in the tangent operator, otherwise the quadratic convergence rate of Newton’s
algorithm is not preserved [12]. Since the vector m; is known only after the
mapping in Eq. (3.9), it is approximated by the gradient calculated for the “trial”
stress:

(3.10) o, =0op+ D°Ag;.

To decide whether an elastic poirit enters the plastic regime, or whether a plastic
point begins elastic unloading, the trial value of the yield function F; is calculated
at each integration point:

(3.11) Fy = F(01,8,(rj, V5;)),
where the gradient-dependent yield strength is determined as follows:

(3.12) Ty =0 (k;) — 9(k;)V2;.
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An integration point is assumed to be in the plastic state when F, > 0 and in the
elastic state when F; < 0. In the elastic elements A = 0, so that for spreading
of the plastic zone it is important that the numerical solution should allow for
V2X > 0 at the elastic-plastic boundary. The gradient-dependent yield strength
G, is then reduced as a result of the plastic process in the neighbourhood.

In the integral equations (3.5) and (3.8) there appear at most first-order deriva-
tives of the displacements and second-order derivatives of the plastic multiplier.
Therefore, the discretization of the displacement field u requires C%-continuous
interpolation functions N and the discretization of the plastic multiplier ) requires
Cl-continuous shape functions h:

(3.13) u=Na, )=hTA,

where a is a nodal displacement vector and A denotes a vector of nodal degrees
of freedom for the plastic multiplier field. It is noted that the left-hand side of
Eq. (3.8) can be modified using integration by parts to decrease the order of the
differential operator and to symmetrize the ensuing matrix operator. However,
the dependence of the yield function on the Laplacian of the plastic strain mea-
sure is essential for the progressive plastification and for the determination of
the non-standard residual forces on the right-hand side of Eq. (3.8), which neces-
sitates C'-continuous interpolation functions. To be able to use C%-continuous
shape functions, it is necessary to introduce the first derivatives of the plastic
multiplier as independent, interpolated variables and add a penalty constraint to
the formulation [12].

According to the linear kinematic relation (3.2), the discretization of strains
has the form:

(3.14) e=Ba, B=LN

Introducing a vector p which contains the Laplacians of the shape functions in h,
we obtain the discretization formula for the Laplacian of the plastic multiplier:

(3.15) V2 = pTA.

Substitution of the identities (3.13)-(3.15) in Eq.(3.5) gives the discretized equi-
librium condition:

(3.16)  éa” / [B7D*B da — BTD*mh” dA] &V
14
= 6aT / NTb,,1dV + 6a” / NTt;,1dS — 6aT / BT, dV.
14 S Vv
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Substitution of Egs. (3.13),, (3.14) and (3.15) in Eq.(3.8) gives the discretized
yield condition:

(3.17) AT / [~hn7D®Bda + (b + 0’ Dem)hh” dA — ghp” dA] AV
14

= 6AT / F(o, x;, V2 hdV.
v

Equations (3.16) and (3.17) must hold for any admissible variation of 6a and §A,
so that we obtain the following set of algebraic equations [11]:

Kaa Ka.\ da _ fe + fu
019 el lal- 1)

with the elastic stiffness matrix

(3.19) Koo = / B7D*B 4V,
14

the off-diagonal matrices:

(320) Ky =- / BYD'mhT &V, Ky, = - / hn!D°B aV,
1% v

the nonsymmetric gradient-dependent matrix:

(3.21) Ky = / [(h + nTDem)hRT — ghpT] av,
Vv

the external force vector and the vector of nodal forces equivalent to internal
stresses:

(3.22) f, = / NTb, .1 dV + / NTt 1 dS, £ =— / BTo; 4V,
v S 1%

respectively, and the vector of residual forces emerging from the weak fulfilment
of the yield condition:

(3.23) fy = / F(oj, ), V2 )hdV.
v

The matrix Ky, is nonsymmetric due to the gradient-dependence, even if the
associated flow rule is considered (m = n).
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Since we have a higher-order continuum formulation, the problem of addi-
tional boundary conditions for the plastic multiplier field must be addressed. The
boundary conditions, derived from the variational principle for gradient plasticity
[9], have the form:

(3.24) §dd=0 or (Vd) vy =0.

For the present formulation the condition (3.24), is automatically satisfied on
the evolving elastic-plastic boundary (internal part of §y). However, one of the
conditions (3.24) must be enforced on the surface of the body 5 if the tangent
operator in Eq. (3.18) does not possess a sufficient rank for elastic elements.
We will consider the actual problem of a structure which is initially elastic and
then, due to an inhomogeneous stress distribution, exhibits a partial plastification.
If all elements are elastic, we have Ky, = 0 since the gradient vectors m and n
are set to zero. Then we obtain from Eq. (3.18) the classical set of equations in da

(3.25) Ky.da=1f, +f,
and the additional set of equations in dA
(3.26) ' SadA =1y,

For the elastic state we have F' < 0 and we set the residual forces f) to zero.
Equation (3.26) then yields the desired solution dA = 0 if the global matrix Kz is
non-singular after the element assembly and, if necessary, after the introduction
of boundary conditions for the A degrees of freedom.

If plastic elements appear in the structure, we have fy # 0 in elastic elements
adjacent to the plastic zone and we compute non-zero dA from Eq.(3.26). The
C'-continuous finite elements have the feature, that these nodal values of plastic
multiplier dA yield d) =~ 0 and V2(d)\) > 0 at the integration points. As a result,
the yield strength G, = & — gV2A is reduced and new elastic elements can enter
the plastic regime.

To avoid singularity of the tangent operator for elastic elements, the hardening
modulus & in Eq.(3.21) is initially set equal to Young’s modulus E. The gradient
term may be neglected in the matrix K5, for elastic elements (its inclusion only
slightly influences the results). Using numerical integration the matrix K, is then
determined as:

np
(3.27) Sa= > FhyphlVi,,

ip=1

where V;, is a volume contribution of an integration point. The rank of sub-
matrix K§, should be examined in order to determine the number of inte-
gration points and additional boundary conditions necessary to avoid spurious
zero-energy modes for the plastic multiplier field.
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A high-order integration scheme and too many additional boundary conditions
for the plastic multiplier field may lead to overconstrained plastic flow and may
have a negative influence on the accuracy of finite element predictions. Since the
yield condition may be conceived as a differential constraint to the equilibrium
condition of a nonlinear solid, the number of constraints for the plastic multiplier
field must be limited, otherwise the solution will be inaccurate or locked (just as it
happens for some standard elements in the incompressible limit). In other words,
we have a two-field theory similar to the mixed formulation with independent
displacement and pressure interpolation, and a proper constraint ratio should be
satisfied by the A degrees of freedom.

Figure 2 presents two gradient plasticity elements used in this study for plane
strain configurations. Element R32EG employs quadratic serendipity interpola-
tion of displacements, and uses bi-Hermitian shape functions for the plastic strain
field and 2x 2 Gauss integration. This element is the most robust of gradient plas-
ticity elements [12] due to the special qualities of the integration stations (BARLOW
points [15]), at which higher-order accuracy of the derivatives of the interpolated
fields is obtained and the yield condition is satisfied exactly upon convergence.
As alluded to in the preceding, the matrix K§, requires additional constraints,
which can be introduced by extra boundary conditions for derivatives of . For
an arbitrary assembly, the conditions A, = 0 and A,, = 0 on the whole model
boundary exactly supply the required number of constraints. Element T21EG has
quadratic interpolation of displacements and cubic interpolation of A, which is
based on a non-conforming plate bending triangle [16]. The element has A, and
A, degrees of freedom, but it does not fulfil the continuity requirements for A,
on its boundary. Integration with 3 Gauss points is used, as well as 3 Hammer
points at midsides of the triangle. Neither of these schemes is optimal, since re-
turn mapping to the inside of the yield locus is observed (F;, < 0) and stress
oscillations are found. Additional boundary conditions A, = 0 are necessary to
prevent the existence of non-zero A modes in elastic elements.

7 6 5 0S5

'y a,,a,,A,Ax.A,,AD.

-))
‘ 0. dy,ay, A\ AL A,

X ° ay,ay

F1G. 2. Gradient plasticity elements: C'-continuous rectangle and non-conforming triangle.
P g 4 g
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4. Applications in geomechanics

4.1. Shear layer

L X

e
S .

F16. 3. Shear layer.

To illustrate the regularization introduced by the gradient-dependence we
solve the one-dimensional problem of an infinite shear layer (Fig. 3). Introducing
the notation T = o, and 4 = &4, the elastic constitutive relation for this case
can be written as:

4.1) T =Gy°,

where G is the shear modulus. For the plastic regime we consider the yield
function of Eq.(2.13)

(4.2) F=+371-pg,

and we assume the case of volume-preserving plastic flow (& = 0). Equation
(2.21), then gives n = 1 and Eq. (2.23) provides the following gradient-dependent
evolution of the cohesion with a linear softening rule:

_ h g 2k
(4.3) Cg =c¢y + ,_éh B da?’
The hardening parameter can be calculated from Eq.(2.20) as:
o P
. T
4.4 P =
4 "B

and both » < 0 and ¢ > O are constant.

For this problem an analytical solution can be derived similar to that presented
in [11] for a bar in pure tension. We solve the differential equation (4.3) rewritten
as:

2 =
(4.5) 12‘_1_"_ Kk = AEg —¢y)

dz? h '
where a new parameter

(4.6) =,/-L
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the internal length scale of our gradient-enhanced continuum, has been intro-
duced. We notice that for Eq. (4.6) to make sense, ¢ must be positive. Assuming
a symmetric distribution of plastic strains with respect to the y-axis (Fig.3), the
solution of Eq. (4.5) is derived as:

4.7) k= Acos(z/l) + ﬂ%l@l.

We consider the evolution of the elasto-plastic process, so that Eq. (4.7) is differ-
entiated with respect to “time”:

(4.8) o= A cos(a)l) + P Ss.

We assume that the plastic strains localize near the centre of the layer in a zone
(-w/2, w/2), so that w is the width of the shear band. Using the boundary
condition & = 0 on the elastic-plastic boundary z = +w/2 we obtain

. _Bey cos(z/1)
(459) TR [1 B cos(w/ZI)] '

The derivation has so far been general for any one-dimensional stress state.

Now we return to the pure shear case and use the rate form of Eq.(4.1), the
consistency condition

(4.10) F=V3+-Bt,=0,
Eq.(4.4) and Eq. (4.9) to determine the total shear strain rate:

. . . 2 37 cos(z /1)

4.11 = 5°+ ”=l-+—-——[1————].

(4.11) 7 7 7 G h cos(w/2l)

Assuming the position of the supports as in Fig. 3, we calculate the transverse
velocity at the right-end of the layer » ,:

L2 w/2 U
@12) b, = / 4 Cdo + / 57 = 20+ 21w~ 2tan(uw/20)]
-L/2 —w/2

The ratio of the velocity and the shear stress rate then equals

(4.13) LA

3
L = %+ Tlw — 2 tan(w/2D)].
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To find the most critical equilibrium path we look for a value of w giving an
aperiodic solution with the steepest descending branch. Therefore we require

(4.14) U2el7) oy,

which results in the equation

(4.15) cos®(w/2l) = 1.

This equation has the smallest non-trivial solution w/2/ = =, so that
(4.16) w = 2rl

with the length scale | defined by Eq. (4.6). The width of the localization zone is
thus fully determined by the model parameters h and g. Substituting Eq. (4.16)
into Eq. (4.13) and dividing by L gives a ratio of the average strain rate and the
stress rate:

vefL 1  6rl

T a+lz L’

(4.17)

We observe that the post-peak response is governed by the ratio /L, which means
that a size effect is incorporated in the model. The increase of the structural size
L with constant / results in a more brittle behaviour.

In numerical simulations the shear layer in Fig.3 has been discretized using
20 and 80 rectangular elements. Linear dependence relations for the relevant
degrees of freedom have been added to prevent bending. The length of the layer
is L = 100 mm, the shear modulus G' = 10000 N/mm?, Poisson’s ratio v = 0, the
friction angle ¢ = 0° (8 = 2.0), the initial value of the cohesion ¢, = 1N/mm?,
the softening modulus A = —0.2G. To trigger localization, the centre 10 mm of
the layer have been assigned a 10% smaller value for ¢,.

Figures 4 and 5 compare the finite element predictions for three values of
the internal length: [ = 2.5, 5 and 10 mm. The gradient influence coefficients are
calculated from Eq. (4.6) as g = 12500, 50000 and 200000N, respectively. The
load-displacement diagrams in Fig. 4 show, that as long as all the points in the
structure remain in the softening regime, the results for the two meshes with
20 and 80 elements are practically the same. The inclinations of the post-peak
branches are close to the analytical values: — A7/Awv, =73.74,26.94, 11.87 [N/mm?]
for I = 2.5, 5 and 10 mm, respectively. When the strain in the centre elements
leaves the softening branch, the load-displacement diagrams bend upwards and
the localization zone broadens. This behaviour is a result of the fact that the
softening modulus h goes to zero in the centre elements and ¢ is kept constant,
so that the internal length [ locally increases to infinity. In this regime the cal-
culations are stable provided the discretization used is dense enough. In Fig. 4
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F1G. 4. Computed relations between the shear stress and the lateral displacement at the
right-hand end of the shear layer.
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F1a. 5. Distribution of plastic multiplier along the layer for two discretizations and three values
of the internal length (v, = 0.025mm).

the results for both meshes are similar for the larger internal length values, but
for | = 2.5mm and the coarse mesh oscillations are observed. From Fig. 4 it is
visible that the approach is capable of simulating the size effect, since the ratio
I/ L governs the response in the post-peak regime.

In Fig.5 the distribution of nodal values of the plastic multiplier is plotted
and only a slight mesh sensitivity is observed. The diagrams prove that the length
parameter | determines the width of localization zone, which is close to the ana-
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lytical value w = 2zl. Only for [ = 2.5mm the width of the localization zone is
broader than w = 15.7mm, since for v, = 0.025mm softening has already been
exhausted in the centre of the layer.

4.2. Biaxial compression

We investigate the standard plane strain biaxial compression test [17] using
gradient-dependent Drucker - Prager plasticity. The test configuration has the fol-
lowing dimensions: B = 60mm and H = 120mm (Fig.6). The bottom of the
specimen is smooth and rigid, the load is applied at the top and all nodes along
the upper edge are constrained to have the same vertical displacements. The ma-
terial data are: elastic shear modulus G = 1000 N/mm?2, Poisson’s ratio v = 0.2,
initial cohesion ¢, = 1N/mm?, constant softening modulus d¢/dx = —0.025G
and friction angle ¢ = 30°. First, we analyze the case of associated plastic flow
(@ = a). According to Eq.(2.21) n ~ 1.149 and according to Eq.(2.22),, the
softening modulus & =~ —0.060G. An internal length scale [ = 4 mm is assumed
and the gradient coeflicient is calculated from Eq.(4.6) as g = 955N. Three
discretizations have been used: 6 x 12, 12 x 24 and 24 x 48 elements R32EG.

yv P F/(Bcy)
8-
6-
4 All meshes
5 Homogeneous
O T T I
0 0.002 0.004 0. 006

Vip/H

Fia. 6. Test configuration (with imperfection in the bottom left-hand corner) and
load-displacement diagram for the associated plasticity case.

To follow an equilibrium path associated with the localized deformation mode,
one or more slightly weaker spots (imperfections) can be introduced in the model.
The bifurcation problem is then transferred into a limit problem and the imper-
fections initiate a localized deformation pattern. In our example an imperfect
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zone with 10% smaller ¢, is introduced in the bottom left-hand corner (Fig. 6).
Calculations are performed under arc-length control.

Figure 6 presents the relative load versus relative displacement diagrams for
the case of homogeneous deformations, which is obtained without inserting im-
perfections, and for the gradient plasticity model (all meshes). The pressure-
dependence of the yield function causes an initial stress build-up and hardening
behaviour, despite the cohesion softening. The whole specimen shows an almost
uniform plastic flow and a shear band-type localization is impossible at the onset
of plastification. This behaviour agrees with the fact that for this stress state the
acoustic tensor singularity condition [2, 3] gives a critical value of the softening
modulus, which is much smaller than the value used in our calculations.

At a load level F'//(Be,) ~ 8.4 a bulging localization mode emerges as shown
in Fig.7. The results obtained for the gradient-dependent continuum using the
three meshes are almost identical also in the post-critical regime.
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Fi1G, 7. Incremental deformations of the gradient-dependent model at I7/(Bc,) = 7.3.

During the plastic process the relations between the stress components change
and the critical value of the softening modulus increases. While at the onset of
instability the analytical expression from [3] gives he & —0.13G, which is smaller
than the input data, so that shear-band formation is impossible, in the post-critical
regime the bulging mode promotes a shear-band mode (Fig. 8).

Next, we consider the non-associated plasticity case. The test data are the same
as before with the exception of the dilatancy angle v, which is now equal to zero
(volume preserving plastic flow). The value the softening modulus is 2 ~ —0.052G
and the gradient constant is g ~ 831 N. Calculations are now performed under
displacement control.

The load-displacement curves for the three discretizations are shown in Fig. 9,
under homogeneous and inhomogeneous deformations. In this figure the shear
band obtained for classical, gradient-independent plasticity (I = 0) has also been
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F1aG. 8. Emergence of a shear band in presence of the bulging mode. Incremental displacements
of the medium mesh at I*/(Bcy) = 6.4 (left) and the evolution of the plastic multiplier
distribution along the vertical symmetry axis (right).
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FI1G. 9. Load-displacement diagram for the non-associated plasticity case and the incremental
deformations of the gradient-independent model for the medium mesh,

plotted. It shows how in the classical continuum the gradient-independent finite
elements attempt to predict localization in a discrete plane. The shear band width
converges to the smallest value admitted by the discretization. For other meshes
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completely different solutions are computed in the post-critical regime. On the
other hand, the gradient-dependent model removes the spurious mesh sensitivity.
Although the response for the coarse mesh is a bit too stiff, it is almost the same
for the medium and fine mesh. The shear band width is practically the same
for all meshes (Fig.10). Even though we now analyze a biaxial stress state, the
relation w = 2w/, derived for the one-dimensional case in the previous section,
gives a good approximation of the shear band width.

IR

1

+
1

Fic. 10. Incremental deformations of the gradient-dependent model at viop/H = 0.0083.

The non-associated plasticity model results in a more ductile and less stable
behaviour than the associated model. At the onset of plastification localization
is impossible (he ~ —0.427G according to [3]), but at the onset of numerically
predicted shear banding the analytical value of the critical hardening modulus is
already positive (he ~ 0.03G according to [3]).

4.3, Slope stability

Figure 11 shows two configurations used for the analysis of soil mass stability
under an increasing gravity load. On the left we present a slope with an inclination
of 45° (cf. [18]), and on the right a vertical embankment. In both cases the lower
edge is fixed and the right edge is supported in the horizontal direction.

The material data are based on [18]: Young’s modulus £ = 2.108 N/m?,
Poisson’s ratio v = 0.25, initial cohesion ¢, = 2000 N/m?, friction angle ¢ = 20°,
dilatancy angle 3 = 10°. The soil density p = 1000kg/m? is adopted. The linear
softening rate for cohesion is 9¢/dx = —0.01G. The strain hardening hypothesis

givesp = % /A =~ 1.015 and the softening modulus h = —0.060G. The results

for two internal length scales I = 0.02m and | = 0.04m are compared (the
gradient constants are g ~ 688N and g ~ 2752N, respectively).
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F1G. 11. Inclined and vertical embankment models (dimensions in m).

For the first configuration we use two crossed-diagonal meshes with 12 x 12 x 4
and 24 x 24 X 4 six-noded triangles T21EG with 3 integration points. For the
second configuration we use three discretizations with 12x 12, 24 x 24 and 48 x 48
eight-noded elements R32EG with a 2 x 2 integration scheme. The calculations
are performed under the arc-length or single displacement control. In the latter
case the vertical displacement of point A is the controlling parameter (cf. Fig. 11).

We begin the discussion with the vertical embankment. Figure 12 presents the
calculated relations between the gravity load factor and the vertical displacement
of point A obtained using the Drucker - Prager gradient plasticity model. When
the gravity load reaches the level 0.6, the first plastic points occur in the bottom
left-hand corner of the embankment. A shear band then gradually extends towards
the upper edge and a softening response follows.

load factor

2.0
{=0.04m
12x12,24%x24
1.5
1.0

1=0.02m
24 % 24,48 x 48

1=0.02m
0. 54

0 T ! T I
0 0.5 1.0 .5 2,0 2.5
X10'4 V4
F1G. 12. Mesh sensitivity of load-displacement diagrams for the vertical embankment and
gradient plasticity elements R32EG.
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Figure 13 presents the incremental displacements at the final load level for the
smaller internal length [ = 0.02m. It is observed that the medium and fine mesh
produce almost identical results. A too stiff response is found in Fig. 12 for the
coarse mesh (12 x 12 elements). The shear band width defined by the assumed
internal length is close to the smallest possible size that can be reproduced by this
mesh. Therefore the representation is insufficient, while for the larger internal
length I = 0.04m the coarse and medium meshes give already similar results.
Figure 14 illustrates the dependence of the shear band width w on the assumed
value of the internal length I. As for the biaxial compression test, a good cor-
respondence is found with the analytical relation w = 2w derived for the pure
shear case.
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F1a. 13. Incrementat deformation patterns for the medium and fine mesh (I = 0.02m).
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FiG. 14. Contour plots of equivalent plastic strain for | = 0.02m (left) and ! = 0.04m (right).

Next, we analyze the stability of the slope in Fig.11. In the gradient plas-
ticity calculations the length scale /| = 0.04m is used. Figure 15 presents the
load-displacement diagrams. With the increase of the dead-weight (at the load
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factor value 1.8), the compressed soil mass starts to plastify at the bottom of
the embankment. The plastic zone then gradually expands upwards and at the
peak-load a shear band forms, along which a part of the soil mass slides down.

load factor

7
6
5.
1=0.04m
4
=0 24 %24 x4
3 1=0.04m
2- 12x12%x4
1
0 T T T T

0 05 10 L5 20 25 3.0
X]0-4 Va

FiG. 15. Classical versus gradient plasticity solutions for the slope stability problem in terms of
gravity load factor and vertical displacement at point A.

Calculations for classical softening plasticity case (/ = 0) fail soon after the
formation of the shear band. The gradient plasticity algorithm gives a more stable
behaviour. The peak-load is higher and the response is more ductile when the
gradient terms are included. The results for both analyzed meshes are close, but
not the same (Fig. 15).

Figure 16 presents the final incremental deformations for the gradient plastic-
ity case and 24 x 24 x 4 element mesh. The expected smoothing effect is observed
and the curved shear band has the width of several elements. Figure 17 compares

\
(RS S

F1G. 16. Incremental deformation pattern for the finest mesh (24 x 24 x 4 elements T21EG)
and | = 0.04 m.
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the contour plots of the equivalent plastic strain obtained for the two analyzed
discretizations. The strains are slightly more localized for the fine mesh, but the
shear band width w ~ 0.25m is well reproduced.

1.00

2 s ) . L ‘? =2 i, P .
0 0.313 0.67 1.00 1.33 1.67 2.00 0 0.33 0.67 1.00 1.33

F1G. 17. Contour plots of equivalent plastic strain for two discretizations (I = 0.04m).

1. Conclusions

The employed gradient plasticity theory, which incorporates a yield function
dependent on higher-order spatial derivatives of a plastic strain measure, pre-
serves ellipticity of the governing equations in the post-critical regime. Therefore,
the boundary value problem for a softening continuum remains well-posed. An
internal length scale is present in the theory and determines the width of the
shear localization bands. Therefore, the results of finite element simulations are
almost insensitive to the mesh refinement.

The fundamental feature of the used algorithm is a weak (and not pointwise)
satisfaction of the yield condition, which is coupled with a weak equilibrium
condition. The dependence of the yield function on the Laplacian of the plastic
strain measure induces the necessity of C'!-continuous interpolation of the plastic
strain field in the incremental formulation. A C'l-continuous rectangular element
and a non-conforming triangular element have been implemented and applied in
some soil instability problems.

The results have shown that the gradient plasticity models may be success-
fully applied in the numerical simulation of localization phenomena in frictional
materials. The Drucker-Prager flow theory with a gradient-dependent soften-
ing cohesion is an example of a plasticity formulation that can be employed for
prediction of various instability modes in overconsolidated soils. A further inves-
tigation of advanced elasto-plastic models like the Cam-clay model [14] with the
gradient localization limiter is necessary. The experimental determination of the
internal length scale for various geomaterials is also of primary importance.
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