
Implementing and Preforming Randomized Tests on the HotStuff BFT Protocol

Lubomir Marinski

Supervisor: João Miguel Louro Neto

Responsible Professor: Dr. Burcu Kulahcioglu Özkan

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Lubomir Marinski
Final project course: CSE3000 Research Project
Thesis committee: Dr. Burcu Kulahcioglu Özkan, João Miguel Louro Neto, Dr. Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Although Byzantine Fault Tolerant (BFT) protocols
such as HotStuff are nominally resistant to a num-
ber of faulty or unreliable participants, implemen-
tation or design errors can cause violations in their
expected properties. Because of this, it is useful
to have reliable automated testing frameworks that
can simulate Byzantine behaviour to make bug de-
tection easier. In this paper, we examine the per-
formance of the ByzzFuzz BFT testing tool using
our implementation of the HotStuff protocol. We
describe the design choices necessary to create a
working HotStuff implementation. Then we pur-
posefully introduce implementation flaws to eval-
uate the behaviour of ByzzFuzz with different pa-
rameters and mutation scopes. We compare its per-
formance to that of a baseline random fault injec-
tion scheduler. Our results show that it was able
to detect the introduced bugs using either process
or network faults. ByzzFuzz’s partition-based net-
work faults were more effective at detecting bugs
than the ’Random’ scheduler’s network faults. For
process faults, we were unable to register signif-
icant differences in performance possibly due to
HotStuff’s simplistic pipelined structure. In our
tests, any-scope mutations performed better than
their small-scope counterparts for the same config-
uration. This could be attributed to the nature of the
selected faults and HotStuff’s pipelined structure.

1 Introduction
Byzantine Fault[1] Tolerant (BFT) protocols allow the non-
faulty participants in a distributed system with n nodes to
reach consensus even if f of the participating nodes are
Byzantine (malicious or unreliable). This is important for
situations where either not all of the participants are trusted
or high-availability is important. Example applications in-
clude keeping track of a distributed ledger for a cryptocur-
rency, and ensuring aircraft flight controls remain operational
even if some system parts are malfunctioning.

Over the years there have been many proposals for prac-
tical BFT protocols, the first of which, PBFT[2], was devel-
oped in 1999. Since then there have been many other pro-
posals for improved practical BFT protocols. Examples are
Zyzzyva[3], BFT-SMaRt[4], Tendermint[5], hBFT[6]. How-
ever, due to communication complexity, most of these proto-
cols are not easily scalable. A more recent protocol which
attempts to solve this problem is the HotStuff[7] protocol,
which was developed in 2019. It is the first BFT protocol
that enables a correct leader to drive the protocol to consensus
at the pace of actual network delay and with communication
complexity that is linear in the number of participants in the
system. HotStuff is also used as the basis of practical produc-
tion systems such as Facebook’s LibraBFT/DiemBFT[8].

Although BFT protocols aim to be resilient to Byzantine
faults, errors in the protocol design, implementation bugs or
network faults can cause violations of the protocol’s expected

properties. Many of the protocols mentioned above have been
shown to have design faults[9] [10]. Despite the correctness
proofs it is not uncommon to find previously undiscovered
faults even years after a protocol has been deployed and is
widely used in practice. This is why rigorous systematic test-
ing is needed to increase the reliability of fault detection. A
practical way to achieve this is through randomized testing
tools such as ByzzFuzz [11] - a recently designed random-
ized testing tool for finding design or implementation faults
in BFT algorithms. It simulates process faults using round-
based structure-aware mutations that take into account the
expected structure of the message to avoid parsing errors. It
can also simulate network faults by partitioning the replicas
into non-overlapping sets that cannot communicate with each
other. ByzzFuzz has already successfully identified both al-
ready known as well as new unknown faults in the design or
implementation of other protocols such as PBFT and Ripple.

To evaluate the performance of such testing methods we
have implemented HotStuff in Java and have integrated it
with the ByzzBench BFT protocol benchmarking suite. We
intentionally introduce various flaws in our implementation
to evaluate the performance of ByzzFuzz and a baseline ran-
domized testing strategy that does not exhibit ByzzFuzz’s
properties. We also compare the performance of mutations
with a different scope.

In this paper, we go over the relevant background infor-
mation in Section 2, describe our methodology in Section 3,
the implementation details and decisions made during the im-
plementation process in Section 4, the experimental setup in
Section 5 and summarize our results in Section 6. Then using
the obtained empirical data we answer the following research
questions:

• RQ1 - Can ByzzFuzz find any bugs in our implementa-
tion of the HotStuff protocol?

• RQ2 - How does the bug detection performance of Byz-
zFuzz compare to a baseline testing method that arbitrar-
ily injects network and process faults?

• RQ3 - How do small-scope and any-scope message mu-
tations of ByzzFuzz compare in their performance of
bug detection for the HotStuff protocol?

Finally, we discuss what our findings mean for BFT protocol
implementation and testing and we present our conclusions
in Sections 7 and 8.

2 Background
In this section we describe some of the related work, how
ByzzFuzz works, the relevant details of the HotStuff protocol
and its variants as well as the properties which will be used to
evaluate the correctness of our simulated executions.

2.1 Related work
ByzzFuzz has already been tested with implementations of
other protocols. It has successfully found both liveness and
safety violations on a PBFT implementation, a potential live-
ness violation in a Tendermint implementation, a previously
known termination violation and a new unknown agreement
violation in Ripple.

1



Twins [12] is another BFT testing method which simulates
process faults by duplicating a correct node and creating a
twin. Together they both act as a single node in the network
even though they may have different internal states. Process
faults are simulated by changing which twin sends/receives
messages. It uses similar to our approach to evaluate the test-
ing framework’s performance where bugs are intentionally in-
troduced in an otherwise assumed to be correct implementa-
tion.

Other BFT testing algorithms include: LOKI [13] - a
fuzzing framework which has found faults in several BFT
protocols including DiemBFT, BFTDiagnosis [14] - a frame-
work which can inject predefined malicious behaviours in
BFT protocols, Fluffy [15] - tool for finding consensus bugs
in Ethereum using fuzzing.

A recent paper by Decouchant et al. [16] investigates the
performance of 3 different liveness checking methods (tem-
perature, lasso and timeouts) on 3 protocols from the HotStuff
family (Basic HotStuff, Sync HotStuff and 2-Phase HotStuff).
We do not use any of these methods for our evaluation. In-
stead, in Section 4.2 we introduce our own liveness invariant
which is specifically tailored to our Event-Driven HotStuff
implementation.

2.2 ByzzFuzz
ByzzFuzz is a randomized testing algorithm for BFT proto-
cols. It relies on several heuristics to generate process and
network faults. The main features of ByzzFuzz are that the
faults it generates are fault-bounded - there are a limited num-
ber of process or network faults applied during each run,
round-based - Faults are applied to a specific round instead
of randomly mutating or dropping messages. The process
faults are structure-aware - they take into account the mes-
sage structure when applying mutations and small-scope -
the mutations are based on small changes of the original val-
ues rather than replacing them with arbitrary values. Byzz-
Fuzz also applies network faults. A network fault is applied
for a specific round during which the replicas are distributed
among random non-overlapping network partitions such that
messages between replicas in different partitions are always
dropped.

ByzzFuzz uses only 3 parameters for its scenario configu-
ration - numRoundsWithProcessFaults - the bound on the
rounds with process faults, numRoundsWithNetworkFaults
- the bound on the rounds with network faults and
numRoundsWithFaults - the bound on the round faults (no
faults are inserted after this round).

2.3 The HotStuff protocol
HotStuff is a leader-based partially synchronous[17] BFT
SMR protocol. The core properties of HotStuff which to-
gether differentiate it from previous practical BFT protocols
are:

• Linear View Change - During each view, a correct
leader, even during a view change, needs to send only
O(n) messages to make progress.

• Optimistic Responsiveness - A correct leader needs to
wait only for n − f messages to guarantee that it can
create a proposal which will make progress.

These two properties are achieved through the use of Quo-
rum Certificates (QC) which require only n − f valid sig-
natures and by introducing a third phase which removes the
need for waiting for maximum network delay (compared to
protocols like Tendermint[5] and Casper[18] that necessitate
only 2 phases before a decision can be made but require wait-
ing for maximum network delay).

Each replica maintains a blockchain of nodes where each
node contains a client command, a QC, a reference to its par-
ent and a height corresponding to the view number during
which it was proposed. The protocol makes progress in views,
where each view has a unique monotonically increasing num-
ber and a replica designated as leader.

The protocol works under the assumption of a point-to-
point, authenticated and reliable network. It adopts the partial
synchrony model of Dwork et al. [17], where there is a known
bound ∆ and an unknown Global Stabilization Time (GST),
such that after GST, all transmissions between two correct
replicas arrive within time ∆.

Basic HotStuff
The ’Basic’ version of the protocol uses 4 message types and
operates in 4 core phases:

• PREPARE - The leader collects n−f NEW-VIEWmessages
to determine the highest QC. Creates a new node and sends
it to all n replicas in a PREPARE message. Each replica
votes for the proposal in a PREPARE-VOTE message to the
leader if it determines that the proposal is safe to accept.

• PRE-COMMIT - The leader collects n − f PREPARE-
VOTEs and uses them to create a QCPREPARE which is sent
to all n replicas in a PRE-COMMIT message. Each replica
votes for it in a PRE-COMMIT-VOTE message.

• COMMIT - The leader collects n− f PRE-COMMIT-VOTEs
and uses them to create a QCPRE−COMMIT which is sent
to all n replicas in a COMMIT message. Each replica votes
for it in a COMMIT-VOTEmessage and becomes locked on it.

• DECIDE - The leader collects n − f COMMIT-VOTEs and
uses them to create a QCCOMMIT which is sent to all n
replicas in a DECIDE message. Each replica executes the
client’s command associated with the proposed node and
enters the next view.

Chained HotStuff
Because all 4 phases of Basic HotStuff have the same struc-
ture they can be combined into a single GENERIC phase for
each view. This way the process of making a decision can
be pipelined. With this approach, it takes 4 views to make a
decision. The GENERIC phase in each view simultaneously
serves as each of the 4 Basic HotStuff phases for the 4 chained
nodes. During each view, the leader makes only one proposal
and each replica casts only one vote. Appendix A contains a
visualisation.

Event-Driven HotStuff
Event-Driven HotStuff further generalizes Chained HotStuff
by separating the liveness mechanism from the safety logic. It
also relaxes the direct ancestry constraints for performing the
PRE-COMMIT and COMMIT procedures on chained nodes.

2



2.4 Correctness properties
To evaluate the correctness of each experimental scenario we
consider the following safety and liveness properties:

• Agreement (safety) - Correct replicas do not make con-
flicting decisions.

• Termination (liveness) - All correct replicas eventually
reach a decision.

3 Methodology
Our research is primarily experimentation-based. To answer
the research questions described in Section 1 we conduct ex-
periments using our implementation of the HotStuff protocol
with ByzzFuzz and a baseline ’Random’ fault scheduler.

A precondition for our experiments is to create an im-
plementation of the HotStuff protocol. For the implemen-
tation, we have chosen to use the ByzzBench BFT protocol
benchmarking suite to make running tests and investigating
faults easier. ByzzBench can simulate multiple replicas con-
currently. It contains a web-based GUI which allows us to
monitor the execution and internal state of a simulation in
real-time. It also allows us to easily create experimental con-
figurations and to run a large number of experiments using
ByzzFuzz. ByzzBench’s replica simulation logic is written in
Java. For the purpose of compatibility, our HotStuff imple-
mentation also needs to be written in Java.

There are multiple different versions of the HotStuff pro-
tocol described in its original paper. They all share the same
core properties. For this experiment, we have chosen to im-
plement the ’Event-Driven HotStuff’ variant described under
the ’Implementation’ section of the HotStuff paper, because
it is what the authors recommend for practical implementa-
tions. However, the high-level algorithm description does not
clearly specify all the necessary details needed to create a
working implementation of HotStuff and leaves a lot of room
for the reader to make decisions which impact the protocol
behaviour. The specific choices we have made are described
in the next section.

We create a working baseline implementation that contains
no detectable flaws and several intentionally buggy variations
of it. The baseline implementation is created by closely fol-
lowing the description of the safety mechanism in the Hot-
Stuff paper and when necessary by making decisions which
aim to prevent liveness violations. We verify that it does not
contain faults detectable by our invariants. Then we create
variations of our it by purposefully introducing bugs. This
would give us a better understanding of how the two sched-
ulers and the two mutation types behave when faced with dif-
ferent violations.

Finally, we use our implementations to run numerous sim-
ulated scenarios. We create different experimental configura-
tions for both schedulers with various parameters which de-
termine the amount of dropped messages, process and net-
work faults and the scope of the mutations. For each sim-
ulated scenario, we use our correctness invariants to detect
violations. We use the empirical data collected this way to
determine the usefulness of ByzzFuzz in isolation, then we
compare its performance to the ’Random’ scheduler and eval-

uate the performance of small-scope mutations compared to
any-scope mutations.

4 Implementation
In this section we describe the decisions necessary to make
while implementing the protocol, the message structures and
how we evaluate the protocol’s correctness properties.

4.1 Implementation decisions
The HotStuff paper and the pseudocode provided in it only
describe the core features of the protocol needed to guarantee
linear view change and optimistic responsiveness which dif-
ferentiate it from other practical BFT protocols. It acts as a
more of guideline on how to create an SMR protocol exhibit-
ing these properties rather than a description of a complete
protocol. Because of this decisions that affect the protocol’s
properties need to be made and additional functionality needs
to be implemented for the protocol to work in practice. This
includes:

Replica catch-up mechanism - A catch-up mechanism is
necessary to guarantee liveness in the event of a replica falling
behind. If a correct replica is missing a node it would not
be able to process any nodes descendent from it and as a re-
sult, it would be unable to participate in any subsequent view.
This would prevent the other correct replicas from making
progress because they would lack quorum. In the original pa-
per, the necessity of such a mechanism is mentioned, but a
description of how it would be implemented is omitted. To
solve this problem we have implemented a catch-up mecha-
nism which introduces 2 additional message types - one for
requesting a node and one for providing a node.

The catch-up mechanism we have implemented works as
follows: Whenever a replica receives a message which ref-
erences the digest of a node missing from the replica’s node
list, the message is moved to a buffer instead of being pro-
cessed. Then the replica sends an ASK message containing
the digest of the missing node to the replica which sent the
message. If the replica which receives the ASK message has a
node which matches the digest it sends a TELL message con-
taining the missing node. Upon receiving a TELLmessage the
replica adds the node to its set of known nodes and processes
all buffered messages which are dependent on it.

This guarantees that a replica cannot enter an invalid in-
ternal state because of a missing node since no message will
be processed until the replica has all of the necessary ances-
tor nodes. This includes TELL messages as well so even if
multiple ancestor nodes are missing the replica will remain
in a valid state by sending and receiving a chain of ASK and
TELLmessages dependent on each other. If the TELLmessage
is lost the messages dependent on it will remain buffered in-
definitely. This will not cause a liveness violation because
as long as all other system properties hold the replica will
eventually receive a message referencing either the same or
higher node. Even if the system is unable to make progress in
the current view a new view timer will eventually cause a cor-
rect replica to send a NEW-VIEW message to the replica with
missing node(s). This will cause the replica to send another
TELL message which will give it another opportunity to catch
up.

3



Client requests de-duplication - A client sends a com-
mand to all replicas. Each replica stores it in a list of pending
client commands. During the replica’s turn to propose a node,
it selects a command which is not already included in any of
the node’s ancestors. Once a node containing the command
becomes committed it is removed from the list of pending
commands. For our simulations, we have only one client so
to avoid liveness issues due to lack of requests we allow repli-
cas to propose a node containing a client request referenced
by its ancestors, but is not committed. We do not register this
as a violation because this mechanism is not subject to our
evaluation.

Leader election - The logic necessary to determine the
leader is entirely omitted from the description of HotStuff,
however, it is crucial for guaranteeing liveness. While the
quorum mechanism guarantees safety a poorly chosen leader
rotation schedule could prevent progress from being made
indefinitely. Because of the pipelined structure of Event-
Driven HotStuff and the two-chain direct ancestry require-
ment the protocol requires 4 consecutive views to be success-
ful for progress to be made. This is affected by the handling
of failed rounds during which a QC could not be obtained.
Because the chain is extended with dummy nodes to ensure
that the height is equal to the current view number anytime
a leader fails to obtain a QC the chain is interrupted. If the
chain could be extended directly in non-successive views then
any leader rotation schedule would suffice. However, because
of the viewNumber = proposalHeight requirement if the
leader schedule does not guarantee the existence of 4 con-
secutive views led by non-faulty leaders a single faulty leader
would be able to prevent progress from ever being made. This
prevents us from using a simple round-robin schedule where
the leader is changed every view because in this case live-
ness could not be guaranteed with only 2f + 1 correct repli-
cas. What this example highlights is that the leader schedule
affects the number of correct replicas required to guarantee
liveness. Because of this, we choose to use a round-robin
schedule where each replica remains leader for 4 consecutive
views instead of only one. This ensures that as long as there
is at least one correct replica there will always be a chain of
at least 4 correct consecutive leaders.

Event-Driven HotStuff Pacemaker - The HotStuff paper
provides a code skeleton for the pacemaker liveness mech-
anism of Event-Driven HotStuff, but many details such as
when a leader should propose a new node, when replicas enter
the next view and what happens after a new-view timeout are
missing. To keep it consistent with the other variants we have
decided to propose a node whenever the leader either collects
a quorum of votes and forms a QC for the previously pro-
posed node or whenever it collects a quorum of NEW-VIEW
messages indicating a failure of the previous leader.

Message validation - We also validate the content mes-
sages when they are received. This includes checking the
validity of the quorum certificates, making sure the sender
of a proposal is a leader, the height of the proposed node
matches the message view, and that the proposal’s view num-
ber matches that of the current view.

Handling failed rounds - When a replica fails to obtain
a QC it will be unable to make progress. Eventually, a NEW-

VIEW timeout will be triggered, and each replica will send a
NEW-VIEW message to the next leader and will move on to the
next view. The next leader collects a quorum of NEW-VIEW
messages instead of votes and proposes a node which refer-
ences its highest known QC. The node referenced in the QC
is extended with (implicit) dummy nodes up to the height of
the current view. A dummy node is a node which does not
reference a QC and does not carry a client request. It serves
only as an indicator that the proposer does not have a QC
for that height. For the sake of simplicity instead of creat-
ing actual dummy nodes we simply link the proposal directly
to the node with the highest QC. This means that nodes with
non-consequent heights are linked as if they are in a parent-
child relation. However when verifying direct ancestry in the
update procedure we add the requirement that the height of a
direct ancestor must be exactly one plus the height of its par-
ent. Otherwise, we assume the existence of implicit dummy
nodes.

4.2 Correctness invariants
We use the following correctness invariants for the purpose
of detecting whether one of the protocol’s properties has been
violated.

Agreement - We keep track of each replica’s commit log
and compare them. If they differ we terminate the simulation
due to agreement violation.

Termination - Because each replica has a NEW-VIEW timer.
Messages will continue to be exchanged even if no actual
progress is made. This means that we cannot simply check
whether there are no more scheduled events which makes de-
tecting liveness violations more difficult.

However, as described in theorem 4 of the HotStuff paper
[7] the protocol should guarantee that ”After GST, there ex-
ists a bounded time period Tf such that if all correct replicas
remain in view v during Tf and the leader for view v is cor-
rect, then a decision is reached.” In practice, this means that
if all valid replicas remain in the same view for a sufficiently
long time for all messages sent up to this point to be delivered
and the leader is not faulty progress will be made. We can ver-
ify whether these conditions hold and check whether progress
has been made to determine whether the termination property
has been violated. The assumption of GST having passed
serves to ensure that the protocol will behave synchronously.
So instead of waiting for GST we simply observe whether the
replicas have remained synchronized for a sufficiently long
period.

Because the theorem mentioned above refers to the Basic
HotStuff variant which performs all 4 protocol phases in a
single view we need to consider 4 consecutive views for the
pipelined Event-Driven HotStuff. For each view, we check
whether all replicas have been simultaneously in the same
view. We also check whether there exists a NEW-VIEW time-
out which was triggered during the view before all messages
queued in the network were delivered. If so then we do not
consider the system to be synchronized during this view as
this would correspond to either asynchronous network be-
haviour before GST, which would violate our assumption of
synchronization, or an insufficient timeout smaller than the
actual network delay after GST, which would violate the as-

4



sumption that correct replicas remain in v during Tf . It is
possible to perform this check because unlike in a production
setting, we have full control over the simulated network and
we know at all times if there are undelivered messages.

We also check whether during the view there have been any
network or more than f process faults applied to the repli-
cas. If so we also do not consider the view to be valid for
the termination check since it would either break the assump-
tion of at least n− f valid replicas or that of a point-to-point
reliable network. When scheduling process faults we make
sure that they are not applied to more than f replicas so this
assumption would be violated only for scenarios where we
have network faults. Although permanently dropping a mes-
sage during any view should still invalidate the protocol’s as-
sumptions we still record termination violations after a view
with a dropped message has passed. The protocol could still
be able to recover due to the constant exchange of NEW-VIEW
messages.

Finally, if these conditions hold after the end of the last
view we check whether any new nodes have been commit-
ted. If not we assume that there has been a liveness violation.
However, this does not guarantee that all liveness violations
will be caught. Because both ByzzFuzz and the ’Random’
scheduler trigger timeouts probabilistically (the size of the
timeout has no effect on whether a message will be delivered
before the timeout or not) it is not guaranteed that during a
particular run, replicas will remain synchronized for a suffi-
ciently long sequence of views for all preconditions to hold.

4.3 Message types and data structures
Now we provide a summary of the serializable data structures
we have implemented to facilitate the message exchange.
The two most important data structures we use are:

• Quorum Certificate(QC) 〈n, s〉 - Contains the digest
for which the votes were collected and a quorum sig-
nature consisting of a list of partial signatures each of
which is produced by a unique replica and references the
same node digest as the QC.

• Node 〈h, p, 〈n, s〉, c〉 - Contains a height number, a
parent digest, a QC object in its entirety and a client
request.

Our implementation uses the following message types:
• GENERIC 〈v, 〈h, p, 〈n, s〉, c〉〉 - contains a view num-

ber and a node in its entirety.
• GENERIC-VOTE 〈v, 〈h, p, 〈n, s〉, c〉, s〉 - contains

a view number and a node in its entirety and a partial
signature

• NEW-VIEW 〈v, 〈n, s〉〉 - contains a view number and a
QC in its entirety

• ASK 〈n〉 - contains only a node digest
• TELL 〈〈h, p, 〈n, s〉, c〉〉 - contains only a single node in

its entirety

5 Experimental Setup
In this section we describe how scheduler decisions are made,
how process and network faults are simulated and the varia-

tions of our implementation created by intentionally introduc-
ing flaws.

5.1 Fault Scheduling
In our experiments we evaluate the performance of two fault
injection strategies - ByzzFuzz and randomly injecting faults.
ByzzFuzz injects faults based on its 3 parameters as described
in Section 2.2. The ’Random’ scheduler arbitrarily injects
mutations or drops messages based on some probability.

Both schedulers behave asynchronously. Messages have
the same probability of being delivered regardless of the order
they were sent in. Timeouts are also triggered arbitrarily, with
the condition that if the scheduler decides that a timeout will
be triggered then it must select the timeout with the lowest
target execution time.

5.2 Process faults
To simulate process faults we apply the following structure-
aware small-scope and any-scope mutations. Table B sum-
marizes the message properties to which we apply mutations
for each message type.

Small-scope mutation
For GENERIC and GENERIC-VOTE messages we apply
mutations that:
• Increment or decrement the view number and the node

height - They need to both be changed simultaneously for
the proposal to be considered valid.

• Substitute the parent node digest with the grandparent node
digest

• Substitute the QC with the previous QC
• Substitute both the parent node and the QC
• Substitute the client request with that of the parent node
For NEW-VIEW messages we apply mutations that:
• Substitute the QC with the previous QC
• Increment or decrement the view

Any-scope mutations
For GENERIC and GENERIC-VOTE messages we apply
mutations that:
• Replace the view number and the height with a random

number
• Substitute the parent node digest with that of a random node
• Substitute the QC with another random QC
• Substitute both the parent node and the QC
• Substitute the client request with a random request
For NEW-VIEW messages we apply mutations that:
• Substitute the QC with another random QC
• Replace the view number and the height with a random

number

5.3 Network faults
Both strategies can simulate network faults. The ByzzFuzz
scheduler introduces network partition faults according to
the numRoundsWithNetworkFaults parameter. The ’Ran-
dom’ scheduler arbitrarily drops messages based on a spec-
ified probability. It is important to note that HotStuff works
under the assumption of a point-to-point reliable network so
any amount of permanently dropped messages breaks this as-
sumption.

5



5.4 Introducing protocol flaws
For our evaluation we use our initial implementation as a
baseline, assumed to be correct at least according to our in-
variants. We then create several buggy variations of it in
which we have purposefully introduced flaws.

• Lowering the quorum - We change the minimum number
of valid replicas from n−f to f . Only f votes are enough to
create a QC and only f NEW-VIEW messages are enough
to move on to the next proposal.

• Not verifying whether the proposal height matches the
current view number - This is one of the message valida-
tion checks, referenced in Section 4.1, we have introduced.
Whenever a replica receives a GENERIC message it checks
whether it is intended for the current view. If not the mes-
sage is discarded. We remove this check and perform a
separate evaluation without it.

• Non-monotonically increasing bexec - In the ’Implemen-
tation’ section of the HotStuff paper the bexec variable is
introduced. It is meant to keep track of the last executed
node. The commit procedure is performed only if the node
to be committed has greater height than the previous com-
mitted node bexec. However in the provided pseudocode it
is always updated in the DECIDE procedure regardless of
whether the commit procedure was successful. This could
lead to bexec going back to a previous node which could
cause the same node to be committed more than once. To
avoid this in our baseline implementation we perform the
same height check as in the commit procedure before up-
dating bexec. We also perform a separate evaluation without
this check.

6 Results
In this section we present the results of our experiments first
with the baseline non-faulty implementation and later with
the flawed versions. Then we analyse the results and give
answers to the research questions.

6.1 Parameters
The ByzzFuzz scheduler runs simulations with number of
process faults and number of network faults as parameters.
They are represented by the p and n columns respectively,
while the r column corresponds to the maximum round
bound.

For our experiments with the ’Random’ scheduler we use
the following parameters: m - maximum number of muta-
tions to inject, d - maximum number of messages to drop,
mW - Weighted probability the scheduler mutates a message,
dW - Weighted probability the scheduler drops a message.

We simulate 1000 scenarios for each configuration. The
SS and AS columns represent small-scope and any-scope
mutations. A pair of cells under each column represents a
separate experiment consisting of 1000 scenarios.

6.2 Baseline implementation
No liveness or agreement violations were discovered. For
brevity we omit explicitly listing all baseline configurations.
For any configuration listed in the ’Flawed implementations’

section we have performed the same experiment for the base-
line implementation with 0 agreement or termination viola-
tions being detected. Since no faults were discovered during
these experiments there is no difference in the observed per-
formance of ByzzFuzz, the ’Random’ scheduler, small-scope
and any-scope mutations. Because of this it is not possible to
draw any conclusion form the baseline implementation alone.

6.3 Flawed implementations
We now examine the test results produced using the various
faulty protocol versions described above.

Lower quorum
The results of evaluating the implementation where the quo-
rum is set to f for both the ’ByzzFuzz’ and ’Random’ sched-
ulers are described in Tables 1 and 2 respectively.

Table 1: ’Low quorum’ implementation ’ByzzFuzz’ scheduler re-
sults

SS AS
p n r A T A T
1 0 20 0 0 4 0
2 0 20 1 0 10 0
3 0 20 1 0 16 0
4 0 20 2 0 20 0
5 0 20 2 0 24 0
10 0 20 6 0 55 0
5 5 20 12 0 24 0
10 10 20 46 0 85 0

p n r A T
0 0 0 0 0
0 1 20 3 0
0 2 20 1 0
0 3 20 2 0
0 4 20 5 0
0 5 20 13 0
0 10 20 51 0
0 1 10 1 0
0 2 10 1 0

p n r A T
0 3 10 1 0
0 4 10 8 0
0 5 10 26 0
0 10 10 127 0
0 1 5 0 0
0 2 5 0 0
0 3 5 8 0
0 4 5 18 0
0 5 5 30 0

Table 2: ’Low quorum’ implementation ’Random’ scheduler results

SS AS
m d mW dW A T A T
1 0 5 0 0 0 4 0
2 0 5 0 1 0 14 0
3 0 5 0 3 0 18 0
5 0 5 0 0 0 39 0
10 0 5 0 4 0 49 0
15 0 5 0 2 0 50 0
20 0 5 0 4 0 39 0
5 5 5 5 1 0 27 0
10 10 5 5 3 0 28 0

m d mW dW A T
0 0 0 0 0 0
0 1 0 5 0 0
0 2 0 5 0 0
0 3 0 5 0 0
0 4 0 5 0 0
0 5 0 5 0 0
0 10 0 5 4 0
0 15 0 5 4 0
0 20 0 5 5 0
0 25 0 5 7 0

We were able to detect agreement violations using both
schedulers. There is no significant difference in their perfor-
mance when considering process faults. ByzzFuzz’s network
faults appear to perform better than the randomly dropped
messages. Their performance improves significantly for sce-
narios where the round bound is low because they are more
likely to cause network partitions in successive views. Any-
scope mutations consistently outperform small-scope muta-
tions for finding agreement violations. With the quorum be-
ing this low any network partition would cause agreement
violation. A large amount of dropped or ignored messages
would also prevent the replicas from keeping up with each

6



other and following the same non-diverging chain. Any-
scope mutations are both more likely to produce invalid
messages which would be discarded (effectively acting as a
dropped message) and carry a QC which is more distant from
the original high QC so they are more likely to prevent the
replicas from catching up to the highest branch. The best-
performing way to detect this fault is to partition the network.
The network needs to remain partitioned for several consec-
utive views so scenarios where the round bound is lower per-
form better.

Skipping proposal height validation
All message validation, including this check, is omitted from
the pseudocode in the HotStuff paper. We examine the results
of our experiments without it in Tables 3 and 4.

Table 3: ’No proposal height validation’ implementation ’Byzz-
Fuzz’ scheduler results

SS AS
p n r A T A T
1 0 20 0 0 0 0
2 0 20 0 0 0 0
3 0 20 0 0 0 0
5 0 20 0 0 0 0
10 0 20 0 0 0 2
15 0 20 0 0 0 2

SS AS
p n r A T A T
20 0 30 0 0 0 5
30 0 40 0 0 0 7
10 1 20 0 0 0 2
15 1 20 0 0 0 2
20 1 20 0 0 0 0
30 1 40 0 0 0 5

p n r A T
0 0 0 0 0
0 1 20 0 0
0 10 20 0 0
0 20 30 0 0

Table 4: ’No proposal height validation’ implementation ’Random’
scheduler results

SS AS
m d mW dW A T A T
1 0 5 0 0 0 0 0
5 0 5 0 0 0 0 0
10 0 5 0 0 0 0 1
15 0 5 0 0 0 0 0
20 0 5 0 0 0 0 0
25 0 5 0 0 0 0 1
30 0 5 0 0 0 0 1

m d mW dW A T
0 0 0 0 0 0
0 1 0 5 0 0
0 2 0 5 0 0
0 3 0 5 0 0
0 4 0 5 0 0
0 5 0 5 0 0
0 10 0 5 0 0
0 20 0 5 0 0

We are unable to detect any violations with either scheduler
when the process fault count is low. In both cases, as the num-
ber of process faults grows we are able to detect some termi-
nation violations. Both are detected only with any-scope mu-
tations. The violations detected all share the same root cause.
Because replicas do not check whether they are currently in
the view of the incoming proposal they will process it re-
gardless of its height. This cannot cause an agreement viola-
tion, because the safety logic described in the ’Event-Driven’
HotStuff algorithm is unaffected. Replicas will continue to
vote on proposals only if they extend the currently locked
node and have monotonically increasing height. However,
this leaves the protocol open to an attack on liveness. A ma-
licious faulty node which knows the leader schedule can de-
termine in which future view it will be the designated leader.
With this information, it can construct a proposal which uses
its currently valid highQC and extends the currently locked

node but has a much larger height. The proposal will be valid
as long as the malicious replica selects a view for which it is
the leader. When a valid replica receives this proposal it will
vote for it and will set its variable which tracks the height
of the last voted node to the proposal’s height. As a con-
sequence, the correct replica will decide not to vote for any
proposal with a lower height so it will be unable to participate
until the rest of the replicas reach the view of the malicious
replica’s proposal. This view number could be much higher
than the current view and an attacker would be able to contin-
uously send proposals with ever-increasing heights to prevent
the system from making progress indefinitely.

Any-scope mutations are better suited to detect this fault
because they can set the view number of an otherwise valid
GENERIC message to an arbitrary number which could be
much higher than the current view. Because we are using
implicit dummy nodes this would be equivalent to a pro-
posal that extends the current locked node with many dummy
nodes. As long as the message sender happens to be the leader
for the randomly selected view number this would emulate
the malicious behaviour described above. Network faults and
small-scope mutations were unable to reproduce this fault
with any scheduler.

Non-monotonically increasing bexec

The results of the evaluation performed on this variant are
presented in Tables 5 and 6.

Table 5: ’Non-monotonically increasing bexec’ implementation
’ByzzFuzz’ scheduler results

SS AS
p n r A T A T
1 0 20 3 0 83 0
2 0 20 5 0 137 0
3 0 20 12 0 172 0
4 0 20 16 0 223 0
5 0 20 23 0 245 0
1 1 20 2 0 41 0
2 1 20 7 0 98 0
3 1 20 7 0 135 0
4 1 20 17 0 173 0
5 1 20 22 0 202 0

p n r A T
0 0 0 0 0
0 1 20 0 0
0 2 20 0 0
0 3 20 1 0
0 4 20 0 0
0 5 20 1 0
0 6 20 1 0
0 7 20 0 0
0 8 20 0 0
0 9 20 0 0
0 10 20 0 0

Table 6: ’Non-monotonically increasing bexec’ implementation
’Random’ scheduler results

SS AS
m d mW dW A T A T
1 0 5 0 1 0 89 0
2 0 5 0 5 0 144 0
3 0 5 0 9 0 224 0
4 0 5 0 23 0 309 0
5 0 5 0 16 0 316 0

m d mW dW A T
0 0 0 0 1 0
0 1 0 5 2 0
0 2 0 5 2 0
0 3 0 5 1 0
0 4 0 5 1 0
0 5 0 5 0 0

We were able to detect agreement violations with both
scheduling methods using process faults. There does not
seem to be a significant difference between the performance

7



of ByzzFuzz’s round-based faults and random faults. Net-
work faults do not appear to have any effect on the proto-
col. The few bugs found using only network faults can be at-
tributed to the asynchronous scheduling where a leader hap-
pens to send an old QC because it has fallen behind. Any-
scope mutations, on average, are around 15 times more likely
to cause this agreement violation compared to small-scope for
the same configuration.

6.4 Analysis
Given the results described above we answers the 3 research
questions.

RQ1 - Can ByzzFuzz find any bugs in our
implementation of the HotStuff protocol?
To answer RQ1 we look at the experimental results of the
ByzzFuzz scheduler in isolation. There were no bugs found
in our baseline implementation. When evaluating the other
faulty implementations ByzzFuzz was able to detect the intro-
duced bugs. For the implementation with a lower quorum, it
was able to detect the agreement violations both through pro-
cess and network faults with the network partitions of Byz-
zFuzz being particularly effective. ByzzFuzz was also able
to detect the ’No proposal height validation’ liveness viola-
tion and the ’Non-monotonically increasing bexec’ agreement
violation.

RQ2 - How does the bug detection performance of
ByzzFuzz compare to a baseline testing method that
arbitrarily injects network and process faults?
When using only process faults there was no significant dif-
ference in the performance of the two methods. HotStuff’s
simplistic pipelined structure and the lack of any resend
mechanism possibly negates some of the benefits of applying
ByzzFuzz’s round-based mutations. For the ’low quorum’
implementation ByzzFuzz was able to more reliably detect
the flaws due to its network partitions.

RQ3 - How do small-scope and any-scope message
mutations of ByzzFuzz compare in their performance of
bug detection for the HotStuff protocol?
Contrary to the assumptions of ByzzFuzz for our selected
faulty implementations any-scope mutations were consis-
tently more likely to detect the introduced bugs. Small-scope
mutations performed worse for the ’low quorum’ and ’Non-
monotonically increasing bexec’ implementations and were
unable to trigger the ’No proposal height validation’ termi-
nation violation at all. How well small-scope and any-scope
mutations perform depends on the nature of the specific im-
plementation flaw. Although any-scope mutations perform
better in our experiments further research is needed to deter-
mine which performs better for more ’natural’ implementa-
tion flaws.

7 Discussion
Our work shows the importance of using a wider range of test
configurations for reliable bug detection. The many instances
where any-scope mutations outperformed small-scope and

the lack of meaningful difference between randomly sched-
uled and round-based process faults show that the assump-
tions of ByzzFuzz that small-scope and round-based muta-
tions perform better may not be valid for pipelined protocols
such as Event-Drive HotStuff. Since the protocol requires 4
views to make progress flaws may be more easily revealed if
ByzzFuzz could purposefully schedule faults in multiple suc-
cessive views.

Our work also highlights some of the challenges and con-
siderations necessary for implementing a working version of
the HotStuff protocol - in particular the decisions that need
to be made to avoid liveness violations. While the algorithm
guarantees agreement numerous aspects of the protocol vital
for liveness are entirely omitted from the original HotStuff
paper. The lack of theoretical guarantees combined with the
difficulty of detecting such violations leaves implementations
potentially vulnerable to liveness attacks. As an example,
a recent paper highlights a problem with the timer doubling
view synchronization mechanism suggested by the authors of
HotStuff. [19]

8 Conclusions and Future Work
In this paper, we investigated the performance of the Byzz-
Fuzz randomized BFT protocol testing algorithm against the
’Random’ baseline scheduler based on their bug-detection
performance on our HotStuff implementation. We described
the challenges faced when implementing HotStuff, the
small-scope and any-scope mutations we apply as well as
the faults we purposefully introduce in our implementation
for evaluation purposes. We performed multiple experiments
with different parameters for each of our implementation
variants. Our results show that ByzzFuzz was able to find all
injected protocol flaws. When relying on process faults its
performance is consistent with the ’Random’ fault scheduler,
but its network partition faults may perform better in some
cases. For many of our experiments, we also observed that
any-scope mutations are more likely to detect the bugs we
introduced than small-scope mutations.

Further experiments are necessary to provide a more
complete understanding of how randomized testing strate-
gies perform with more advanced implementations of
HotStuff-like protocols. Such implementations may include
a more complex leader election mechanism, client request
de-duplication, and synchronization mechanism. Performing
experiments with additional BFT testing tools could provide
a better perspective of their comparative performance. Anal-
ysis and classification of bugs detected in production systems
could advise a more adequate selection of intentionally
introduced implementation flaws.

9 Responsible Research
To ensure the reproducibility of our results we have tried to
follow the pseudocode described in the HotStuff paper as
closely as possible. We have also documented any impor-
tant implementation decisions that had to be made to achieve
a working implementation. Before recording the results of

8



our experiments we have put effort into ensuring that the ex-
perimental setup closely matches its description in this paper.
We have also closely investigated the execution logs before
recording any results to ensure that the system has behaved
as expected. Our implementation will be made publicly avail-
able on GitHub so anyone can try to reproduce our results.

References
[1] Leslie Lamport, Robert Shostak, and Marshall Pease.

“The Byzantine Generals Problem”. In: ACM Trans.
Program. Lang. Syst. 4.3 (July 1982), pp. 382–401.
ISSN: 0164-0925. DOI: 10.1145/357172.357176. URL:
https://doi.org/10.1145/357172.357176.

[2] Miguel Castro, Barbara Liskov, et al. “Practical byzan-
tine fault tolerance”. In: OsDI. Vol. 99. 1999. 1999,
pp. 173–186.

[3] Ramakrishna Kotla et al. “Zyzzyva: speculative byzan-
tine fault tolerance”. In: Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Prin-
ciples. SOSP ’07. Stevenson, Washington, USA: As-
sociation for Computing Machinery, 2007, pp. 45–
58. ISBN: 9781595935915. DOI: 10 . 1145 / 1294261 .
1294267. URL: https : / / doi . org / 10 . 1145 / 1294261 .
1294267.

[4] Alysson Bessani, João Sousa, and Eduardo EP
Alchieri. “State machine replication for the masses
with BFT-SMART”. In: 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks. IEEE. 2014, pp. 355–362.

[5] Ethan Buchman. “Tendermint: Byzantine fault toler-
ance in the age of blockchains”. PhD thesis. University
of Guelph, 2016.

[6] Sisi Duan, Sean Peisert, and Karl N. Levitt. “hBFT:
Speculative Byzantine Fault Tolerance with Minimum
Cost”. In: IEEE Transactions on Dependable and Se-
cure Computing 12.1 (2015), pp. 58–70. DOI: 10.1109/
TDSC.2014.2312331.

[7] Maofan Yin et al. “HotStuff: BFT Consensus with
Linearity and Responsiveness”. In: Proceedings of the
2019 ACM Symposium on Principles of Distributed
Computing. PODC ’19. Toronto ON, Canada: As-
sociation for Computing Machinery, 2019, pp. 347–
356. ISBN: 9781450362177. DOI: 10.1145/3293611.
3331591. URL: https : / / doi . org / 10 . 1145 / 3293611 .
3331591.

[8] Diem Team. “Diembft v4: State machine replication
in the diem blockchain”. In: Diem (Libra, Novi a
Facebook Project. 2021. url: https://developers.
diem. com/papers/diem-consensus-state-machine-
replication-in-the-diem-blockchain/2021-08-17.
pdf.(accessed: 18.11. 2022)(pages 35, 121) (2021).

[9] Ittai Abraham et al. “Revisiting fast practical byzantine
fault tolerance”. In: arXiv preprint arXiv:1712.01367
(2017).

[10] Nibesh Shrestha, Mohan Kumar, and SiSi Duan.
“Revisiting hbft: Speculative byzantine fault tol-
erance with minimum cost”. In: arXiv preprint
arXiv:1902.08505 (2019).

[11] Levin N. Winter et al. “Randomized Testing of Byzan-
tine Fault Tolerant Algorithms”. In: Proc. ACM Pro-
gram. Lang. 7.OOPSLA1 (Apr. 2023). DOI: 10.1145/
3586053. URL: https://doi.org/10.1145/3586053.

[12] Shehar Bano et al. Twins: BFT Systems Made Robust.
2022. arXiv: 2004.10617 [cs.CR]. URL: https://arxiv.
org/abs/2004.10617.

[13] Fuchen Ma et al. “LOKI: State-Aware Fuzzing Frame-
work for the Implementation of Blockchain Consensus
Protocols.” In: NDSS. 2023.

[14] Jitao Wang et al. “BFTDiagnosis: An automated se-
curity testing framework with malicious behavior in-
jection for BFT protocols”. In: Computer Networks
249 (2024), p. 110404. ISSN: 1389-1286. DOI: https:
/ / doi . org / 10 . 1016 / j . comnet . 2024 . 110404. URL:
https : / /www.sciencedirect . com/science /article /pii /
S1389128624002366.

[15] Youngseok Yang, Taesoo Kim, and Byung-Gon Chun.
“Finding Consensus Bugs in Ethereum via Multi-
transaction Differential Fuzzing”. In: 15th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 21). USENIX Association, July
2021, pp. 349–365. ISBN: 978-1-939133-22-9. URL:
https : / / www . usenix . org / conference / osdi21 /
presentation/yang.

[16] Jérémie Decouchant, Burcu Kulahcioglu Ozkan, and
Yanzhuo Zhou. “Liveness Checking of the HotStuff
Protocol Family”. In: 2023 IEEE 28th Pacific Rim
International Symposium on Dependable Computing
(PRDC). IEEE. 2023, pp. 168–179.

[17] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
“Consensus in the presence of partial synchrony”. In:
J. ACM 35.2 (Apr. 1988), pp. 288–323. ISSN: 0004-
5411. DOI: 10.1145/42282.42283. URL: https://doi.
org/10.1145/42282.42283.

[18] Vitalik Buterin and Virgil Griffith. Casper the Friendly
Finality Gadget. 2019. arXiv: 1710.09437 [cs.CR].
URL: https://arxiv.org/abs/1710.09437.

[19] Kaiwen Guo, Kexin Hu, and Zhenfeng Zhang. “Live-
ness Attacks On HotStuff: The Vulnerability Of Timer
Doubling Mechanism”. In: The Computer Journal
67.8 (Apr. 2024), pp. 2586–2600. ISSN: 0010-4620.
DOI: 10 . 1093 / comjnl / bxae027. eprint: https : / /
academic .oup .com/comjnl / article - pdf /67 /8 /2586 /
58796506/bxae027.pdf. URL: https://doi.org/10.1093/
comjnl/bxae027.

9

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1109/TDSC.2014.2312331
https://doi.org/10.1109/TDSC.2014.2312331
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3586053
https://doi.org/10.1145/3586053
https://doi.org/10.1145/3586053
https://arxiv.org/abs/2004.10617
https://arxiv.org/abs/2004.10617
https://arxiv.org/abs/2004.10617
https://doi.org/https://doi.org/10.1016/j.comnet.2024.110404
https://doi.org/https://doi.org/10.1016/j.comnet.2024.110404
https://www.sciencedirect.com/science/article/pii/S1389128624002366
https://www.sciencedirect.com/science/article/pii/S1389128624002366
https://www.usenix.org/conference/osdi21/presentation/yang
https://www.usenix.org/conference/osdi21/presentation/yang
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://doi.org/10.1093/comjnl/bxae027
https://academic.oup.com/comjnl/article-pdf/67/8/2586/58796506/bxae027.pdf
https://academic.oup.com/comjnl/article-pdf/67/8/2586/58796506/bxae027.pdf
https://academic.oup.com/comjnl/article-pdf/67/8/2586/58796506/bxae027.pdf
https://doi.org/10.1093/comjnl/bxae027
https://doi.org/10.1093/comjnl/bxae027


A Pipelined HotStuff visualisation

Figure 1: Chained HotStuff View Change - The leader of each view
collects votes for the node proposed during the previous view

Figure 2: Node chain where each node represents different protocol
phase

B Message mutation summary

Table 7: Event-Driven HotStuff message mutations

Message Type Mutations

GENERIC

〈v′, 〈h′, p, 〈n, s〉, c〉〉
〈v, 〈h, p′, 〈n, s〉, c〉〉
〈v, 〈h, p′, 〈n′, s′〉, c〉〉
〈v, 〈h, p, 〈n′, s′〉, c〉〉

GENERIC-VOTE

〈v′, 〈h′, p, 〈n, s〉, c〉, s〉
〈v, 〈h, p′, 〈n, s〉, c〉, s〉
〈v, 〈h, p′, 〈n′, s′〉, c〉, s〉
〈v, 〈h, p, 〈n′, s′〉, c〉, s〉

NEW-VIEW 〈v′, 〈n, s〉〉
〈v, 〈n′, s′〉〉

10


	Introduction
	Background
	Related work
	ByzzFuzz
	The HotStuff protocol
	Basic HotStuff
	Chained HotStuff
	Event-Driven HotStuff

	Correctness properties

	Methodology
	Implementation
	Implementation decisions
	Correctness invariants
	Message types and data structures

	Experimental Setup
	Fault Scheduling
	Process faults
	Small-scope mutation
	Any-scope mutations

	Network faults
	Introducing protocol flaws

	Results
	Parameters
	Baseline implementation
	Flawed implementations
	Lower quorum
	Skipping proposal height validation
	Non-monotonically increasing bexec

	Analysis
	RQ1 - Can ByzzFuzz find any bugs in our implementation of the HotStuff protocol?
	RQ2 - How does the bug detection performance of ByzzFuzz compare to a baseline testing method that arbitrarily injects network and process faults?
	RQ3 - How do small-scope and any-scope message mutations of ByzzFuzz compare in their performance of bug detection for the HotStuff protocol?


	Discussion
	Conclusions and Future Work
	Responsible Research
	Pipelined HotStuff visualisation
	Message mutation summary

