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1 CHAPTER

Introduction

This work concerns optimal control of complex stochastic systems by
virtue of approximating them with simpler ones. We start with out-

lining the problem, its relevance and the previous results on this topic. It
follows by a summary of the authors’ contributions, and is concluded by
a scheme of the thesis.

1.1 Motivation

The focus of this thesis is on decision making in presence of uncertainty. A com-
mon approach is to come up with a mathematical model for the system under
consideration, e.g. a robot, biological cell, plant, and a performance criterion to
be optimized over this system. Such situations are present in a most of practical
applications, and depending on the kind of uncertainty, different models are used.

For example, whenever the uncertainty can be assumed to have only marginal
effect, the system can be described using deterministic dynamics. In continuous
time the classical framework for that is provided by ordinary differential equa-
tions (ODEs) [109], whereas transition systems (TSs) are often used in discrete-
time, e.g. event-driven, systems.

If uncertainty cannot be easily neglected, but is known to be bounded, the classical
control methods of control of deterministic systems can be extended to robust
control techniques [150], which look into performance under worst case scenario .
As in deterministic case, TSs are used to model the discrete-time case, whereas an
example of a continuous-time model is given by differential inclusions (DIs) [14].
Such framework is successfully used e.g. in safety-critical applications such as air
traffic control.

Finally, when uncertainty in the system can be statistically quantified, a natural
way to model it is by means of probability theory [50]. There are at least two
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2 Introduction

reasons to use this approach over robust control: first, often uncertainty can-
not be easily bounded and second, in many cases probabilistic bounds are suf-
ficient, whereas worst case scenario analysis may provide very conservative re-
sults. Continuous-time systems are modeled with controlled diffusions [86], and
Markov Decision Processes (MDPs) [111] are used for the discrete case. This ap-
proach is used in cases where random behavior of a system is crucial, and one can
allow summing up several events to get to the average results, e.g. in gambling,
trading, insurance etc.

In terms defined above, this thesis focuses on discrete-time probabilistic case. As
mentioned, MDPs is a common way to model such systems, and it will be the
benchmark model in this work. There are several reasons for that: a lot of results
were already developed for MDPs, and its semantics is arguably natural to model
the class of systems we are interested in. There are other models available in the
literature – similar either in syntax or semantics – and some of the results relevant
to our study are only available in those frameworks. Below we introduce these
models in more details whenever we need it, and restate those results for MDPs.

So far we focus on MDPs, so let us look at their semantics. At some step the system
resides in state x belonging to the state space X . The agent can pick any action u
from a set U(x) of actions enabled in x, and the new state x′ is randomly generated
according to the transition probability, which depends both on previous step and
the choice of action: x′ ∼ p(x, u). Such choice can be done based on the full history
of previous states and actions. A set of these choices is referred to as the strategy
of the agent: a sequential decision rule that chooses actions based on available
historical information. The agent may prefer one action to another according to
the performance criterion he seeks to optimize. For example, an additive criterion
(AC) rewards the agent on any transition with some value r(x, u, x′), and agent fo-
cuses on maximizing the expected cumulative reward: this classical problem was
treated in many studies [20, 70], and solution relies on dynamic programming
(DP) introduced in [18]. As an alternative, an agent may be interested in maxi-
mizing probability of reaching some set of goal states G ⊆ X , which was studied
in a setting of gambling [48, 95], and more recently revisited by compute science
community [145]. There it was also proposed to use modal logics such as LTL to
characterize more complex performance criteria, for example maximizing proba-
bility of reaching a goal state G via a checkpoint set A, while avoiding an unsafe
set B. Using the performance criterion to be optimized, the agent can evaluate a
given strategy. The strategy with the best value is called optimal; to solve MDP
problem is to find such strategy and/or its value.

When solving an MDP, one rarely expects to find an analytical solution. In case of
continuous state space such solutions are available e.g. for linear Gaussian mod-
els with additive performance criterion, where optimal value and policy can be
found by solving a system of matrix equations [77]. A large body of research was
devoted to optimal control of finite MDPs: those with finite state space X , and
finite set of actions for agent to choose from. For this models most of studied per-
formance criteria allow for computable algorithmic solutions, which enabled de-
velopment of several dedicated software packages such as PRISM [73] and MRMC
[80]. In particular, extending results from non-probabilistic finite models, these al-
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gorithms employ reducing control for general LTL specifications to basic problem
such as probabilistic reachability by enlarging the state space and using automata
expressions of LTL formulae [17].

Due to the fact that for continuous spaces MDPs only allow for precise solutions
in a limited class of models and performance criteria, one resorts to numerical
methods to find approximate solutions. Ideally such methods provide bounds on
the approximation error and devise a way to refine an approximation scheme to
achieve any a priori given accuracy. These methods can be split among the follow-
ing three paradigms, which we list in order of increasing generality of problems
they can tackle:

• The first in the list is a classical approach comprising direct solution of a
particular problem. For example, [6] provided approximation scheme for a
special case of MDP without control structure, also known as Markov Chain
(MC), with performance criterion given by finite-horizon probabilistic in-
variance. Namely, one seeks to compute a probability that a state of a system
stays in a safe set A for a given finite number of transitions n. Similarly, [57]
developed an approximation scheme for controlled MDPs and additive cost
criterion.

• An issue with the direct approach is that it is hard to extend it beyond some
fundamental but basic problems such as reachability, invariance, or additive
cost, for which there are well-known DP procedures. To cope with this is-
sue, one could use results from automata theory mentioned above to reduce
complex specification, such as ones given by LTL formulae, to basic prob-
lems. Authors of [7] successfully applied this approach to bounded time
horizon properties over MCs.

• A drawback of a second approach is the need to modify the underlying
model of a system, which in most cases enlarges its state space. Since ap-
proximate errors are often sensitive to the size of the latter, it is preferable
to find methods whose accuracy does not depend of the performance crite-
rion, or at least those that provide guarantees that hold uniformly for a large
class of criteria. Such goal was achieved for non-probabilistic systems with
the use of precise and approximate bisimulations [128], which was missing
for probabilistic systems at the moment of the start of the title project.

This work provides novel results that were not yet achieved when following the
paradigms above. Starting from the most general one, we suggest criterion-agnostic
methods (approximate bisimulations) for controlled MDPs. Assumptions used
there cannot guarantee bounded errors for infinite-horizon performance criteria,
so to cover this case we resort to the second solution paradigm, extending re-
sults of [7] to controlled MDPs. Finally, we provide ways to solve infinite-horizon
probabilistic reachability problem, which in particular is needed to complete the
previous step. Our contribution is detailed below in Section 1.3, but before that
we provide a literature review of the methods that were available before.
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1.2 Literature review

As many other numerical methods, approximation methods for general state-
space MDPs were studied already several decades ago, i.e. relatively early given
that the DP procedure itself was developed in mid 50s [18]. In most cases such
methods only provided rate of convergence, rather than formal bounds on the er-
ror, see e.g. [88] for the summary of some first results, and [66] for an example of
some recent developments.

Move to more precise guarantees came from the following two directions: approx-
imation work for finite MDPs and similar problems for general non-stochastic TSs.
With focus on the former, [90] seems to be the first work that tried extending (pre-
cise) bisimulation methods from TSs to an MDP-like model. The latter was given
the name Probabilistic Transition System (PTS), and syntactically was very close
to a discrete MDP, however its semantics was not as rich. Those ideas were fur-
ther developed in [40] for Labelled Markov Processes (LMP), again a model with
a syntaxis very close to PTS and MDP, but without a clearly defined semantics –
even though it was suggested the one may be inherited from PTSs. In contrast,
[114] studied more conventional and rich semantics of MDPs under the name of
Probabilistic Automata (PA), essentially MDPs with general state space, but only
discrete transition distributions. Focus again was on precise match between be-
haviors of the systems. It is interesting though, that it was in fact the area of
probabilistic systems where the idea of approximate bisimulation first popped
up, likely due to genuine quantitativeness in them, i.e. each property could have
been satisfied only with a certain probability. That casted results to be continu-
ous rather than boolean as in TSs, hence motivating looking for solutions that can
obtain those results with a given precision. Perhaps, the first work to introduce
this idea was [42], which replaced the standard Boolean logic used to characterize
precise bisimulation with a functions family, for which extreme levels sets were
exactly the states satisfying formulae of that logic. That was pretty much the state
where the development of the methods relevant to this thesis was put on hold,
e.g. [34] and [29] were refining the theory of earlier results and looking at them
from different angles. It is worth mentioning that a similar line of work started by
[37], picked up in [139] and extended in [143] tried to characterize bisimulations
in PTSs from the point of view of category theory, employing ideas from [92] and
[65] on probabilistic functors.

In the meantime, a relevant research was going for general TSs with focus on
optimal control policy synthesis. For example, [107] focuses on precise relations
between such systems, but already in [64] ideas on probabilistic approximations
receive development in the domain of TSs, where they – for the first time – are ap-
plied to a natural linear-time semantics, thus allowing to solve many interesting
problems inspired by practical applications. This approach found an immediate
response back in the probabilistic community. For example, even though [4] did
not try introducing a new conceptual framework like the works above, it has pro-
vided formal error bounds and a useful abstraction technique for a rather general
class of MDPs, even though with finite actions space only. Those errors were de-
rived with focus on an important task of optimal reachability. It is worth paying
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attention to the latter fact: in contrast to early works on probabilistic approxi-
mations that focused on the methods, perhaps hoping that they will find a later
use (with perhaps an exception of [57] that was also problem-oriented), the latter
tried to find a concrete solution to a concrete problem that was already known to
be relevant. Inspired by those results, [5] tried formalizing the developed approx-
imation approach, however results were quite conservative and only applied to
marginal distributions of uncontrolled MDPs. As a next step, [6] merged those
ideas and applied them to derive approximation error bounds for probabilistic
safety, again over uncontrolled MDPs. In parallel, there was also at attempt to
extend a theory of approximate bisimulations [64] MDPs: [76] focused on contin-
uous time case showed that under the assumption of the existence of a Lyapunov-
like approximate bisimulation function (ABF) that bounds divergence between
two MDPs, one can use a probability computed over the first (simpler) MDP to
bound that over the second (more complex) one. The paper provides sufficient
condition for existence and explicit examples of such ABFs for linear uncontrolled
diffusions: multi-dimensional version of geometric Brownian motion [106]. It was
followed by [1] that further related ABFs to stochastic stability [59], and [8] which
relaxed the bounds to allow for Monte-Carlo randomized methods, hence only
providing guarantees that would hold with a certain probability for continuous-
time uncontrolled MDPs. Similar relaxation was applied in [79] to classical DP
problems over general discrete-time MDPs. Coming back to the formal guaran-
tees, [119] laid down the way to refined approximation techniques by using adap-
tive gridding of the state space, and since most of the works on precise bounds
for MDPs mentioned in this paragraph were focused on a particular problem –
stochastic reachability – [7] extended these results to a bigger class of properties
by means of the automata theory [17].

A more elaborate survey of that progress one can find in [2], and more details are
provided at the end of each section below. For now it is important for us to sum-
marize what was left to do in this field, which will serve as a reasoning for the
list of the results of this thesis that follow in the next section. The first group of
work (e.g. [42]) has derived interesting bounds in a unified framework of bisim-
ulation for PTSs, but it was not clear whether those bounds can be used for any
popular optimal control problems. Another group (a benchmark would be [7])
derived bounds for a problem whose relevance is leaving no doubts, but the class
of properties covered coincides with bounded linear temporal logic (BLTL) [17],
and the derived bounds were growing linearly both in time horizon of the prob-
lem as well as in the size of the automata needed to express this property. The
latter part is especially important, as for bounded properties the automata tend to
have large sizes, hence one possibly gets bounds with higher polynomial degree
(rather than just linear) of dependence on the time horizon. For this reason, those
works lacked both the solutions to the infinite time-horizon case, and the unified
framework which could have allowed for bounds that are independent on the au-
tomata size. The third group (starting from [76]) tried to tackle those problems
and due to the use of stability assumptions, the bounds provided in there paper
hold over infinite time horizon for a large number of properties, however this as-
sumption does rarely hold in practice, and in the end the problem is only reduced
to a smaller dimension. Hence, even in case of success, one still has to solve the
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problem over a continuous-time MDP. This open questions in previous research
paved the way to the goals of this thesis.

1.3 Research goals and original contributions

The previous section describes the state of art in the field on the moment when
this thesis was started, hence the author was facing the following two challenges.

1. In case no stability assumptions are made and the focus is on the bounded
time horizon, is it necessary for bounds to depend on the shape of the prop-
erty? Namely, is it possible for the error bound to only depend on the time
horizon of the property and yet is less conservative than the on in [7]?

2. What are reasonable assumptions that one needs to provide good bounds
that hold on the infinite time horizon, at least with focus on a particular
problem of stochastic reachability?

Those were the main two topics the research of the author evolved over during
the work on this thesis. In the beginning just the second topic (infinite-horizon
approximations) was chosen as the core one, however on the way some results
were derived for the former topic as well. What follows is the list of the author’s
original contributions, separated in those two groups.

Infinite-horizon stochastic reachability over MDPs.

• [129] seeks to refine the results of [76] for the case of uncontrolled discrete-
time MDP. It establishes relations between the concepts of the latter pa-
per and classical stochastic theory methods, such as optimal stopping prob-
lem and minimal dominating supermartingales. For example, it shows that
reachability probability function is the best (in a certain sense) Lyapunov
function, and a ABF is its conservative approximate. This paper is the first
to notice the importance of absorbing sets for the solution of the infinite-
horizon reachability. It introduces a concept of the largest absorbing subset
(LAS) of a set, together with the explicit procedure to construct it. The latter
uses finite-horizon stochastic reachability value functions, and this interde-
pendence leads to the equivalence between empty LAS and trivial solution
of infinite horizon reachability, hence only leaving non-empty LAS case to
be tackled. For the latter situation, the paper first provides a solution to
infinite-horizon stochastic reach-avoid problem, and further uses it to de-
compose infinite-horizon reachability into two simpler problems. Finally, it
does find a suitable Lyapunov-like condition needed to wrap up the solu-
tion.

• [130] Builds upon the results of the previous paper and extends its results to
a bigger class of infinite-horizon problem, including the stochastic shortest
path/mean exit time problem. It relates Bellman equations to be solved to
find value functions to Dirichlet problems over partial differential equations
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[63]: in both cases one deals with a fixpoint of a linear operator that satisfies
some boundary conditions, just in case of discrete-time MDPs those opera-
tors are bounded. As a result, the decomposition technique of [129] can be
considered as a regularization of a Dirichlet problem, and its derivation can
be obtained from the monotonicity of the solutions of the latter problem with
respect to the boundary conditions. This provides an analytic derivation of
the method, that complements the probabilistic approach used in [129].

As it was established in the previous paper, the main challenge in finding
value function for infinite-horizon stochastic properties was reduced to find-
ing the LAS of a given set. Unfortunately, this problem is undecidable much
like the halting problem: if LAS is empty than the procedure will stop at
some point, but until that moment one cannot say whether LAS is empty or
not. For this reason, the current paper has provided an example of a class of
uncontrolled MDPs, over which the LAS problem is decidable.

• [134] Is the journal version of the previous two papers. It enriches and for-
malizes the ideas of those papers into complete results and provides com-
prehensive proofs. In addition, it applies the developed infinite-horizon
theory to solve the problems that appear as specifications of probabilistic
computational tree logic (PCTL).

• [131] extends [129] in a different direction, by going beyond unbounded
horizon stochastic reachability to a genuinely infinite-horizon property: stochas-
tic repeated reachability. It establishes asymptotic infinite-horizon behavior
of uncontrolled MDPs as LASs are natural candidates for stochastic attrac-
tors. It further introduces a natural form of stochastic stability with respect
to a given set, and a relevant notion of stochastically attractive sets, and
shows that an absorbing set is stochastically attractive if and only if it ad-
mits for a Lyapunov-like function that first appeared in the decomposition
technique [129], thus providing necessary and sufficient conditions for the
solution of infinite-horizon properties over uncontrolled MDPs, and fully
characterizing connection between stochastic stability and Lyapunov func-
tions, similarly to celebrated results for non-stochastic systems [118].

• [137] achieves several goals at once.

First, it expresses stochastic reachability as a classical additive cost perfor-
mance criterion (PC) over a controlled MDP. This fact allows using the rich
theory of [20] to fully characterize solution of the controlled stochastic reach-
ability problem, greatly simplifying and enhancing previous results of [9]
and [124] on that topic.

Second, it provides bounds for bounded-horizon controlled stochastic reach-
ability. This bounds still have linear growth, but relax the assumption on the
finiteness of the action space.

Third, it generalizes the concepts of the LAS to a controlled MDP, and pro-
vides a solution to the controlled stochastic reach-avoid problem in case of
empty LAS, thus extending the result of [129] to a more general class of sys-
tems.
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Finally, it uses ideas of [7] to motivate important of stochastic reachability
as a key problem for verifying more complex properties, exploiting the au-
tomata theory to cover all properties expressible as formulae of linear tem-
poral logic (LTL).

[132] Focuses on the infinite-horizon part of the challenge tackled by the pre-
vious paper, and provides a solution for the infinite stochastic reach-avoid
problem in case of non-empty LAS. It also shows the application of this the-
ory to the problem of ruin probability dealt with in the field of actuarial
mathematics [13].

• [138] is the journal version of the previous two papers. Besides provid-
ing comprehensive proofs, it even further completes characterization of the
stochastic reachability. Moreover, its main focus is set on the infinite-horizon
properties, extending now the results of [134] to obtain equivalence con-
ditions between the triviality of stochastic controlled reachability solution
and emptiness of relevant versions of LASs. This is further used to ob-
tain develop a decomposition technique and a Lyapunov-like method to
solve infinite-horizon reachability by means of stochastic reach-avoid prob-
lem solved in a previous paper.

While deriving most of the results on the unbounded-horizon problems, it was
presumed that one has a suitable procedure to solve their bounded-horizon coun-
terparts. This assumption was realistic as [4] already provided a numerical scheme
which yielded approximate solution with any given precision, and these results
we further refined by [119] and the followup research. These bounds work well
for the bounded-horizon reachability problem, however when applied to more
complex problems by means of the automata method of [7], the bound grows
with the size of the automaton used to express the problem, and may become of a
limited usability. Hence, the second branch of the author’s research was focused
on studying whether this is a feature of the problem, or just the bounds are not
tight enough. Given the idea of approaching verification of a class of properties,
rather than a single property only, this research also happened to be a quest for a
natural definition of approximate bisimulation for stochastic systems.

• [133] shows that the approximation error does only depend on the time
horizon of a specification, and as a result any bound derived for bounded-
horizon reachability can be applied to any BLTL formula. Moreover, the
generality of the result makes it useful for quantitative model-checking, pro-
viding bounds also for verification of properties with bounded reward.

• [10] the bounds in the previous paper are general and less conservative that
those available before, but they still have linear growth with respect to the
time horizon of the property. The current paper showed that these bounds
can be improved to be of bounded growth in time, slowly approaching the
value of 1 (the maximal possible difference between two probabilities), as
the time horizon of the property goes to infinity. This paper also shows
that these bounds are tight, and there are MDPs with probability differences
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that follow those bounds exactly, so that they can only be improved in some
specific cases, but not in general.

• [135]. The previous two papers provided all the essential results needed
for approximate model-checking, but it is still some fragments of the theory
rather than a solid framework. The current paper makes the first attempt
on formalizing previous results to fit them in a proper framework, similar to
the one of approximate bisimulations for non-stochastic systems. In partic-
ular, it puts forward a definition of behaviors of MDPs, and suggests which
properties should a natural behavioral metric on the space of MDPs satisfy.
As an example, it provides two such metrics: the total variation one use in
the previous two papers and pretty much all previous research on numer-
ical analysis of MDPs, and the Wasserstein one – a less conservative gen-
eralization of metric induced by ABFs of [76]. Finally, this paper provides
Monte-Carlo based bounds on those metrics, in contrast to more precise but
computationally more expensive bounds of [133, 10].

• This thesis. The previous paper introduces some important ideas, but is
yet far away from delivering a unified framework of approximate bisimu-
lations of MDPs that would fully and elegantly exploit the right bounds of
[10]. Also it was never shown explicitly how these bounds can be applied
to the case of controlled MDPs. To the best of the author’s knowledge, this
thesis provides such methods together with the whole framework for the
first time. It studies approximate stochastic bisimulations also from the cat-
egorical perspective, similar to attempts performed by [37].

1.4 Outline of the thesis

As mentioned in the previous section, this thesis contains original material on
how to put forward the framework of approximate stochastic bisimulations for
MDPs. We start with defining the scope of problems we deal with and concepts
we apply in Chapter 2. The bisimulation framework is then developed in Chapter
3. As the bounds provided by the latter cannot be extended to unbounded-horizon
properties in general, Chapter 4 applies a group of more focused method to solve
that case. As some results appear to be rather technical, or just branching out of
the main content, in order not to break the flow the are put in Appendices A, B
and C.





2 CHAPTER

Models and problems

This chapter introduces problems and models we deal with through-
out the thesis. It start from a simpler, and likely more familiar, set-

ting of non-stochastic transition systems to introduce the main concepts,
and the applies those ideas for the stochastic case.

2.1 Transition systems

To motivate and elucidate concepts and methods presented below for stochastic
systems (SSs), we plan to use the rich theory of transition systems (TSs) as a bench-
mark. For this reason, we start with a short recapitulation of the latter model, its
syntax and semantics. Our exposition of TSs closely follows [128], with minor
modifications made to better connect with the theory of SSs below.

Definition 2.1 A transition system (TS) is a tuple T = (X,T, Y, L) where X and Y
are arbitrary sets, T ⊆ X × X is an l.t.r. and L : X → Y . We say that X is the state
space, T is the transition relation, Y is the output space and L is the output map of
T. The TS T is said to be finite if the set T is finite, otherwise the TS T is called infinite.
The set of all TSs with the output space Y is denoted by TSY .

Unless the contrary is specified, further in this section we always assume that the
TS T = (X,T, Y, L) is given and fixed. Definition 2.1 provides the syntax of the TS
model only, whereas to define its semantics we need to describe the dynamics it
models. If the current state of T is xn, we observe the output value of yn = L(xn)
and then the new state is chosen among admissible successor states xn+1 ∈ T |xn

.
To formalize this procedure we use the notion of a (control) strategy. It does not
often appear explicitly in the literature on TSs, but it is crucial below for SSs, and
to better emphasize similarity between these two models we introduce strategies
for TSs.

11
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Definition 2.2 A strategy for the TS T is a sequential decision rule σ = (σn)n∈N, where
the map σn : Xn → X is such that σn(x0, . . . , xn) ∈ T |xn

for each xi ∈ X , i ∈ [0;n]
and n ∈ N. The set of all such strategies we denote by ΣT .

Notice that only the transition structure of the T given by a pair (X,T ) appears
in the definition of strategies, whereas the output structure (Y, L) has no effect.
In fact, T uniquely determines the transition structure as it is an l.t.r. and hence
X can be defined as a left projection of T . In particular, T alone uniquely defines
the set of strategies: due to this reason we use the notation ΣT instead of more
cumbersome ΣX,T .

Based on the definition of strategies for TSs we can now formalize their seman-
tics. Each combination of an initial state x ∈ X and strategy σ ∈ ΣT generate a
unique internal run of T denoted by V σx ∈ XN and defined as follows: v = V σx
iff v0 = x and vn+1 = σn(v0, . . . , vn). Sets of all internal runs and those that
start at x ∈ X are denoted by V(ΣT ) and V(ΣT , x) respectively, where clearly
V(ΣT ) :=

⋃
x∈X V(ΣT , x). Note that given an internal run v ∈ V(ΣT ) we can

uniquely deduce both the initial state x ∈ X and the strategy σ ∈ ΣT that gener-
ate v. A non-stochastic nature of TS makes the proof of this fact trivial, however
interestingly a similar result also holds for the SSs under some technical condi-
tions as we see below.

Since only outputs are observed externally, to each internal run v ∈ V(ΣT ) we as-
sign a corresponding external runw = L(v) ∈ Y N. We further denote by VL(ΣT ) :=
L(V(ΣT )) and VL(ΣT , x) := L(V(ΣT , x)) sets of all external runs, and those initi-
ated at x, respectively. We refer to VL(ΣT ) as the behavior1 of the TS T.

Given the set of outputs Y , by a linear temporal (LT) property2 we mean an arbi-
trary subsetH ⊆ Y N. For example, if S ⊆ Y is a set of “safe” outputs andG ⊆ Y is
that of “goal outputs”, then H = SN corresponds to the safety property, whereas
H = Y N \ (Gc)N corresponds to the reachability property. A lot of other interest-
ing and more intricate properties can be expressed e.g. by means of the automata
theory [17, Chapter 4], or modal logics [17, Chapter 5] using expressions similar
to those of natural languages.

We say that T satisfies LTH if there exists a behaviorw ∈ VL(ΣT ) such thatw ∈ H :
in such case we write T |= H , and we write T 6|= H otherwise. As a result, we have
defined the satisfaction and refutation relations |=, 6|=⊆ TSY × Y N. Clearly,

T |= H ⇐⇒ VL(ΣT ) ∩H 6= ∅. (2.1)

Note that due to (2.1) the behavior of T uniquely determines which LT properties
does T satisfy, regardless of what is the transition structure of T. Namely, if two
TSs induce the same behaviors, they satisfy exactly the same LT properties, even
if their transition structures happen to be different. This fact is crucial for us later,
when we want to describe behaviors of a complex system using a much simpler
one.

1 The terminology here may differ, for example in [64] such set is called the language of T. Our use
of the term “behavior” is inspired by [128].

2 For details on LT properties for TSs see e.g. [17, Chapter 3] and in particular [17, Definition 3.11].
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Note also that although we have defined the satisfaction relation |= using an ex-
istential quantifier, the ability to verify whether T |= H for any given H gives us
a way to check whether all the behavior of T belong to H as well. Indeed, the an-
swer to such question is affirmative if T |= Hc and negative if T 6|= Hc. The main
reason |= is defined above using the existential quantifier is that we are not only
focused on the verification problem (whether T |= H), but also on the synthesis
problem: given that T |= H , how to find x and σ such that V σx ∈ H . Computer
science community developed efficient automatic algorithms and dedicated soft-
ware (model checkers) for both problems over finite TSs: see [17] for the details
and references.

Despite the fact that the definition of TS is rather simple, it can be used e.g. to de-
scribe continuous, control or hybrid systems – see [128] for the details. However,
due to the fact that such systems are genuinely infinite, the resulting TS is un-
avoidably infinite as well. Due to the reason that aforementioned verification and
synthesis algorithms were developed for the finite TSs, [64] proposed to approxi-
mate an infinite system of interest with a finite one whose behavior is somewhat
related to that of the original infinite system. The new system is often referred to
as an abstraction, as it often provides a model for the real-world phenomenon de-
scribed by the original system on a higher level of abstraction. The original system
is referred to as the concrete one.

With focus on LT problems exclusively, behavioral inclusion plays a predominant
role. Given a new TS T̄ = (X̄, T̄ , Y, L̄) over the same output space as T, we say that
T̄ behaviorally includes T if VL(ΣT ) ⊆ VL̄(ΣT̄ ); in such case we write T 6 T̄. Why
would that be interesting to study behavior inclusions between TSs? Suppose that
T̄ is a finite system which is an abstraction of an infinite system T. If T 6 T̄ and
T̄ 6|= H for some LT property H , then we can immediately conclude that T 6|= H .
Similarly, if T |= H ′ then by definition there exist x̄ and σ̄ such that V̄ σ̄x̄ ∈ H ′. Thus,
behavioral inclusion of T in T̄ helps solving verification (synthesis) problems on T

(T̄) exploiting the results obtained for T̄ (T). Due to this reason, if we are interested
in a finite abstraction useful both for verification and synthesis, we shall talk of
behavioral equivalence. We say that T and T̄ are behaviorally equivalent if T 6 T̄

and T̄ 6 T; in such case we write T ≈ T̄.

Remark 2.3 The fact that behavioral equivalence allows solving synthesis problems shall
emphasize the nature of the version of the TS model considered in this thesis. Often the TS
is defined as a quintuple (X,U, T, Y, L) where U is an input space and T ⊆ X ×U ×X ,
see e.g. [128, Section 1.1]. In such case each transition from x requires the input u
to be chosen, and the successor state must then belong to T |(x,u). The choice of u is
called the external nondeterminism of T, whereas the choice of x′ ∈ T |(x,u) is referred
to as the internal nondeterminism of T. The TS with no internal nondeterminism is
called deterministic [128, Section 1.1]. Behavioral equivalence helps solving synthesis
problems only for deterministic systems. In our setting of Definition 2.1 the input space
U is omitted, however the resulting nondeterminism we treat as an external one although
it looks much more similar to the internal one – same approach has been taken e.g. in
[127]. To connect our setting with that of [128] one just needs to take U = X and extend
T from X ×X to X × U ×X in the obvious way.
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Although constructing a finite abstraction T̄ that behaviorally includes a concrete
infinite TS T is not a hard task, it is rarely the case that T ≈ T̂. In fact, if there exists
a finite T̄ such that the latter equivalence holds, then T much have a very special,
somewhat piecewise constant, transition structure. Obviously, this happens only
for a very limited class of continuous, control or hybrid systems. To cope with
this issue, [64] proposed the use of approximate relations (rather than exact ones
defined above) and corresponding pseudometrics: see the Appendix A.3 for the
theoretical background on exact and approximate relations, and their connections
with pseudometrics (see Appendix A.2) – we use this terminology below. Let us
briefly recapitulate how these ideas apply in our setting.

The main idea is to focus on the class of problems to be solved over TSs. Even
though there may not be a finite TS that is behaviorally equivalent to a given
infinite one T, often it is still useful to have a finite TS T̄ such that if T̄ |= H then
T |= H ′ where H and H ′ are close in some sense. To formalize this idea, [64]
suggested to look at output spaces that are endowed with metrics. Assume that
the output space Y is endowed with some pseudometric dY , and endow Y N with
the pseudometric d∞Y given by3

d∞Y (y0, y1, . . . , y
′
0, y
′
1, . . . ) :=

∞∨
n=0

dY (yn, y
′
n).

One says that T̄ behaviorally ε-includes T whenever VL(ΣT ) ⊆
[
VL̄(ΣT̄ )

]ε
; in such

case we write T 6ε T̄. Clearly, 6:= (6ε)ε∈R+ is an ε-preorder on TSY . Its sym-
metrization we denote by ≈:= (≈ε)ε∈R+ . Note that 60 and ≈0 are exactly the (ex-
act) behavioral inclusion and equivalence relations defined above. See Appendix
A.3 on notation for and properties of approximate relations.

Due to monotonicity of 6, for each ε > 0 the relation 6ε is weaker than the exact
behavioral inclusion 60, however it is still useful for the purposes of verification
and synthesis. For example, if T 6ε T̄ and T̄ 6|= H for some LT property H ⊆ Y N,
then T 6|= H ′ for any H ′ satisfying [H ′]ε ⊆ H . Conversely, if T |= H ′ then there
exist x̄ and σ̄ such that V̄ σ̄x̄ |= [H ′]ε. As a result, approximate behavioral inclusion
implies verification of strengthened properties, and existence of a strategy that
generates behavior satisfying a relaxed property.

To provide a stronger bridge between models for TSs above and that for SSs be-
low, let us remark on the definition of approximate behavioral inclusions. So far
we have considered LT properties that are subsets of the space of output trajecto-
ries, which is also the conventional approach [17]. However, the following gener-
alization is useful conceptually and in some applications. Imagine that every time
a system has a transition a certain cost is reward is received, and one tries to max-
imize this reward. Formally, there is a reward function r : X → R and the value
to be optimized is e.g.

∑
n∈N β

nr(yn), where β ∈ (0, 1) is some discount factor.
Notice that the latter expression is a function defined on the output trajectories, so
let us say that an LT property is now any function h : Y N → R, and instead of the

3 Note that the topology of (Y N, d∞Y ) often differs from the product topology induced on Y N by
(Y, dY ), however this fact does not cause any issues in our considerations.
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satisfaction relation |= let us define the following functional:

T(h) := sup
w∈VL(ΣT )

h(w). (2.2)

To see that T(·) is indeed an extension of |=, consider the case where h = 1H is
an indicator function of some H ∈ Y N. Notice that T(1H) = 1 iff T |= H and
T(1H) = 0 iff T 6|= H , which makes the satisfaction relation |= a special case of
T(·). Note also that it is not crucial whether sup or inf is used in (2.2). Indeed,
if one changes h to −h then T(·) can be used to compute minimal values as well,
rather than only maximal ones.

This new richer class of LT specifications relates to what is called quantitative
model-checking of TSs [17]. There instead of saying whether a particular TS sat-
isfies a given property or not, one needs to find the best (e.g. maximal) value the
TS can achieve w.r.t. this property. As we have just shown, that covers the case
of usual boolean (qualitative) satisfaction relation thanks to the use of indicator
functions. In fact, the functional T fully describes the behaviors of the TS T, which
is exactly why we denote them with the same symbol. It should come as no sur-
prise that T can be used to define behavior inclusions. In fact, this is be exactly
the most natural way to define them for SSs below. Proposition A.1 provides an
equivalent quantitative characterization of 6. For any ε ∈ R+ it holds that T 6ε T̄
iff

T(f) ≤ T̄(f) + ε ∀f ∈ Lip1(Y N, d∞Y ). (2.3)

The latter fact implies that if one is interested in quantitative properties of the
TSs that are Lipschitz continuous functions of the output trajectory, such as a
discounted accumulated cost for a Lipschitz continuous reward function, then
ε-relations ≈ and ' provide 2ε-wide estimates together with approximately opti-
mal policies. In fact, a version of (2.3) we use below as the definition of behavioral
inclusion for SSs, for details see the discussion in Appendix A.6.

2.2 Problem specifications

The framework of TSs and SSs is often used in optimization. In particular, one
of the most prominent questions to answer is the following: what is the maximal
achievable value of a given performance measure, and how can a strategy that
achieves such a value be derived? Clearly, the answer crucially depends on the
chosen criterion: this choice is quite broad in the literature, so let us discuss some
important cases.4

We do not consider multi-objective optimization where the performance criterion
has a partial order on its co-domain (see e.g. [26]), and instead focus on numerical
criteria, namely measures taking values on R. As we mentioned above, one of
the most general approaches for TSs would be to define a numerical performance
criterion as a function on its output trajectories, that is h : Y N → R. Unfortunately,

4 A comprehensive survey on different performance criteria, as well as on the general development
of the theory of MDP, is given in [12, Section 3].
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the generality of such approach does not allow for specific results related to the
computability of the optimal solutions. Due to this reason, more specific perfor-
mance criteria have attracted a significant interest, in particular the discounted cost
(DC) and the average cost (AC) criteria [12]. Consider some r : Y → R̄ and define

DC :=

n∑
k=0

βkr(yk),

AC := lim sup
n→∞

1

n

n∑
k=0

r(yk)

where β ∈ (0, 1] is the discounting factor and n ∈ N̄ is the time horizon. Clearly, both
provide examples of an output-trajectory dependent function h. The case β = 1
is often referred to as the total cost (TC) criterion or, alternatively, the additive cost.
These problems are extensively studied in the literature: see e.g. [20, 70] for the
DC, and [12] for the AC.

Reward-based numerical performance criteria are mostly popular in the SS liter-
ature, whereas the recent research on TSs more often that not focused on specifi-
cations where h = 1H for some desired set of output trajectories H ⊆ Y N. Modal
logic provides both a handy way to describe such sets, similar to expressions of
natural languages, and methods to solve verification and synthesis problems for
them in a unified fashion [17]. To give examples of such expressions, consider the
following tasks: “the output must always be a” or “if a was observed, then the output
value of b must appear infinitely many times”. The first task corresponds to a safety
problem, whereas the second task is more complicated, even in its qualitative de-
scription. For this purpose we introduce a modal logic called Linear Temporal
Logic (LTL), which is useful in the following two aspects. First of all, it provides
“a very intuitive but mathematically precise notation” [17, Section 5.1] to operate a
large class of complex and interesting events. Secondly, LTL allows reducing the
optimization problems for any of such events to one of the following two funda-
mental problems: reachability, requiring visiting a specified target set at least once;
or constrained repeated reachability, requiring visiting a target set infinitely often and
visiting an unsafe set only finitely often.

LTL is introduced using its grammar, namely the set of rules determining the con-
struction of LTL formulae. The meaning of each formula (that is, the event corre-
sponding to the formula) is formalized by the LTL semantics. It is common to refer
to the output space Y as an alphabet, since its elements y ∈ Y appear as letters in
the formulae. Sequences of letters are called (infinite) words w ∈ Y N – the output
trajectories, and sets of words are languages H ⊆ Y N. Languages correspond-
ing to LTL formulae fall within an important class of so-called ω-regular languages
[17]. The definition of ω-regular languages is lengthy and is omitted here, for
us it is only important below that such languages are measurable subsets of Y N,
and hence will be valid specifications for SSs below. The definition of ω-regular
languages is available in [17, Section 4.3.1]
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The grammar of LTL over the alphabet Y is given by the following set of rules

Φ ::= y ∈ Y | ¬Φ | Φ1 ∧ Φ2 | XΦ | Φ1U∞Φ2. (2.4)

The definition (2.4) shall be understood as follows: if Φ1 and Φ2 are LTL formulae,
so are the expressions Φ1 ∧ Φ2, Φ1U∞Φ2, ¬Φ1 etc. Here ∧ is the standard logical
conjunction and ¬ is the logical negation, which allows us defining disjunction as
Φ1 ∨ Φ2 := ¬(¬Φ1 ∧ ¬Φ2). Furthermore, X and U∞ are the neXt and unbounded
Until temporal modalities whose meaning is clarified below.

The semantics of LTL formulae is defined using the notion of accepted language,
that is L(Φ) ⊆ Y N is the collection of all infinite words over Y that are accepted by
the formula Φ. Firstly, we define the shift operator on infinite words θ : Y N → Y N

by
θ(w0, w1, w2, . . . ) = (w1, w2, . . . ).

The semantics of LTL formulae is defined recursively as:

w ∈ L(y) ⇐⇒ w0 = y

w ∈ L(¬Φ) ⇐⇒ w /∈ L(Φ)

w ∈ L(Φ1 ∧ Φ2) ⇐⇒ w ∈ L(Φ1) ∩ L(Φ2)

w ∈ L(XΦ) ⇐⇒ θ(w) ∈ L(Φ),

and in addition the semantics of the U∞ modality is as follows:

w ∈ L(Φ1U∞Φ2) ⇐⇒ θi(w) ∈ L(Φ2) for some i ∈ N and

θj(w) ∈ L(Φ1) for all 0 ≤ j < i.
(2.5)

It is useful to consider formulae describing bounded time horizon properties. We
first introduce powers of X inductively as X0Φ := Φ and XnΦ := X(Xn−1Φ) for
n ≥ 1. Using the latter notation, it is now possible for any n ∈ N to define the
formula

Φ1UnΦ2 :=

n∨
i=0

i−1∧
j=0

XjΦ1 ∧ XiΦ2

 , (2.6)

whose semantics is a finite-horizon equivalent of (2.5), that is

w ∈ L(Φ1UnΦ2) ⇐⇒ θi(w) ∈ L(Φ2) for some 0 ≤ i ≤ n and

θj(w) ∈ L(Φ1) for all 0 ≤ j < i.

Note that U∞ could be also expressed using (2.6), but the countably infinite num-
ber of operations of conjunction needed are not explicitly allowed in the syntax of
LTL. We further denote true :=

∨
y∈Y y, and introduce new temporal modalities:

eventually, ♦nΦ := trueUnΦ, and always, �nΦ := ¬♦n¬Φ, for all n ∈ N̄. We further
simplify the notation as U := U∞, ♦ := ♦∞ and � := �∞.

Let us provide some examples of how LTL formulae can be used to describe events
of interest. The event {yk = a, k ≥ 0} can be expressed as �a, {∃k ≤ n : yk = b}
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as ♦nb, {yk = b infinitely often } as �♦b, {∃k : yj = a, j ≥ k} as ♦�a, and finally
the event {∃k ≤ n : yk = b and yj = a, j < k} can be expressed as aUnb. As an
additional example, the specification we mentioned above “if a was observed, then
the output value of b must appear infinitely many times” can be expressed with the
following formula:

�(¬a) ∨ (♦a ∧�♦b)

We show now how automata theory can be used to reduce rich but complex LTL
specifications to some basic ones. One may think of an automaton as a TS whose
transitions are labeled with inputs over a finite alphabet5, and which is in addition
endowed with a simple acceptance condition [17, Chapter 4]. An input word is
accepted by an automaton if its corresponding run of the automaton satisfies its
acceptance condition. Unlike TSs where we care about the outputs, in automata
inputs play this role. Let us introduce these concepts formally.

Definition 2.4 Given an alphabet Y , a deterministic ω-automaton over Y is a tuple
D = (Q, qs, Y, t,A) where Q is a finite set, qs ∈ Q, t : Q × Y → Q is some map and
A ⊆ Y N. We say that Q is the state space, qs it the initial condition, Y is the alphabet,
t is the transition map and A is the acceptance condition of D.

Any word w ∈ Y N induces a run z ∈ QN of D which is defined as follows: z0 = qs

and zk+1 = t(zk, wk) for any k ∈ N. We can then introduce a map T : Y N → QN

that assigns to any input word the corresponding run.

The acceptance condition of an automaton indicates which runs are accepted by
the automaton (z ∈ A) and which are not (z /∈ A). Similarly, we say that a word is
accepted by a deterministic automaton if the corresponding run is accepted. There
are several versions of acceptance conditions for automata in the literature. In the
context of this work the following three are the most important:

(DRA) for a deterministic Rabin automaton the A is defined using (F ′i , F
′′
i )i∈I), where

I is some finite index set and F ′i , F
′′
i ⊆ Q for each i ∈ I . A DRA accepts a

run z if there exists i ∈ I such that r visits F ′i an infinite number of times
and F ′′i only a finite number of times.

(DBA) a deterministic Büchi automaton is a special case of a DRA with I being a sin-
gleton and F ′′ = ∅, that is precisely runs that visit F ′ ⊆ Q infinitely often
are accepted.

(DFA) a deterministic finite automaton can be seen as a special case of a DBA6 with
all final states having self-loops (t(q, y) = q for any q ∈ F ′, y ∈ Y ), that is it

5 Here we only consider deterministic automata – those for which the current input and state
uniquely determine the next state.

6 While it is canonical to introduce a DFA on finite words [17, Definition 4.9], we introduce it here
on infinite words for the sake of consistency: in that way we do not have to consider both spaces of
finite and infinite words over the alphabet Y , and can just focus on the latter. It should be clear that
our definition is also consistent with the canonical one in [17, Definition 4.9]: an infinite word w ∈ Y N

is accepted by our DFA if and only if there exists a finite prefix w′ ∈ Σ∗ that is accepted by their DFA.
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accepts precisely those runs that eventually visit F ′7.

For an automaton D we define its accepted language as the set of all infinite words
that are accepted by D; we further denote this language by L(D) := T−1(A).

Accepted languages of DRA are exactly ω-regular languages [17, Theorem 10.55],
so in particular for any LTL formula Φ there exists a DRA DΦ such that L(Φ) =
L(DΦ). Furthermore, DBA (DFA) are strictly less expressive than DRA (DBA) –
for details see [17, Chapter 4]. We consider all three kinds of automata, rather
than focusing on the most expressive DRA, due to the following reason. For any
automaton D, verification of specification given by its accepted language can be
reduced to a basic specification encoded by the accepting condition of such au-
tomaton. Unfortunately, solving this for DRA is rather difficult over SSs and we
only provide partial results for the DBA case (Section 4.3), whereas the acceptance
condition of the DFA allows for a much more complete characterization (Section
4.2).

Before we proceed, let us provide some examples of automata. The DBA for the
formula task is given in Figure 2.1(a): here if we do not label the transition (as the
loop at q1) it means that the transition happens for any label. The final state is q0

as indicated by a double circle. As we have mentioned above, the analysis of the
DBA acceptance condition is more complicated than that of the DFA one, hence
even if the original LTL formula does not allow for the DFA expression, it is worth
checking whether its negation does allow for one. For example, the DFA for the
negation of the first task is given in Figure 2.1(b).

q0start q1

S

¬S

(a) DBA for the first task

q0start q1

S

¬S

(b) DFA for the negation of the first
task

Figure 2.1: Automata representation of the first task of the case study

To explain how to reduce verification of a specification encoded as an automaton
to verification of its accepting conditions, we need to introduce a composition
between a TS and an automaton.

Definition 2.5 Given a TS T = (X,T, L, Y ) and an automaton D = (Q, qs, Y, t,A),
their composition is a TS T̂ = T⊗D = (X̂, T̂ , L̂, Q), where X̂ := X×Q, L̂ : (x, q) 7→ q
and

(x, q)T̂ (x′, q′) ⇐⇒ xTx′ and q′ = t(q, L(x)).

7 An important version of the DFA has an n-horizon acceptance condition [137, Section 2.4], which
requires the run to visit F in at most n steps. This is useful when one needs to to express formulae in
bounded LTL (BLTL) – a fragment of LTL (for details see Section C.1).
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To elucidate the idea behind this notion of composition, note that T̂ can be un-
derstood as follows: if the composed system is in the state (xk, qk), the next state
must satisfy the following recursion formula{

xk+1 ∈ T |xk
,

qk+1 = t(qk, L(xk)).

This dynamics should be understood as follows: the x-coordinate of the new state
evolves according to the law T of the original TS T, and its output L(x) is used as
an input to the transition system, which produces the q-coordinate. It should be
clear that if D is e.g. a DFA with the set of final states being F ′, then T satisfies
L(D) iff the output of T⊗D visits F ′ at least once: for details see e.g. [17]. We also
provide more formal exposition in the next section when talking about SSs.

2.3 Stochastic systems

There are many models of discrete-time probabilistic systems available in the lit-
erature, most of which have a dynamic feature similar to the TSs: once one knows
the current state x ∈ X , one has all the necessary information about the successor
state. In case of TSs this information contains a subset of a state space T |x, that is
the set of all possible successor states. In contrast, in the stochastic case one gets a
distribution (or a collection thereof) over the successor states.

For probabilistic systems such feature is called the Markovian property by the
name of a mathematician A.A. Markov who studied stochastic processes whose
conditional distributions only depended on the current state, rather than the whole
past: such processes are now called Markov processes8. The difference between a
probabilistic model and a stochastic process is that to each model there may cor-
respond different stochastic processes, or non at all. For example, a discrete-time
Markov Chain (MC) [105] is a probabilistic model that assigns to any initial dis-
tribution on its state space the corresponding (unique) stochastic process: a distri-
bution over the state trajectories. In turn, a probabilistic model called Markov De-
cision Process (MDP) model [111] is a generalization of the discrete-time MC one,
which in addition to fixed initial distribution requires specifying a sequential deci-
sion rule to determine the stochastic process9. Such mapping from a probabilistic
model to stochastic processes is actually the LT semantics of probabilistic models.
Not all probabilistic models are endowed with a natural LT semantics, e.g. prob-
abilistic transition systems (PTSs) [75], also known as labelled Markov processes
(LMPs) [25]. However, to the best of our knowledge, all the models where such
semantics is explicitly defined, have it defined in a very same way – namely there
is no argument about what exactly is the LT semantics of a probabilistic model

8 As a historical remark, interestingly one of the applications Markov considered for these processes
was to compute conditional probabilities of vowels and consonants in one of the most famous Russian
poems, see [99] for the English translation of the original paper.

9 As another historical remark, it is commonly assumed that Bellman introduced the MDP together
with the technique to solve optimization problem called dynamic programming (DP), see e.g. [19].



2.3 Stochastic systems 21

(in case it allows for one), which makes all these models somewhat equivalent to
MDPs10. Such model frameworks e.g. comprise probabilistic automata (PAs)11

[114] and gambling models (GMs) [48]. The differences in frameworks are mostly
technical, and the interpretation is very similar as we have mentioned above.

Due to the fact that LT semantics of probabilistic models is pretty much unique,
one can work out all necessary results for just one of those models, and then seam-
lessly extrapolate the results to the rest of them. We choose to work in a setting
inspired by the GMs: similarly to TSs and a model from [89, Definition 1] and in
contrast to MDPs, it does not have a distinguished action space which simplifies
its analysis. Yet, this model is as expressible as MDP [136], which we emphasize
by showing how to extrapolate the obtained results to the MDP framework in
Section 3.4.

Definition 2.6 A stochastic system (SS) is a tuple S = (X,Γ, Y, L) whereX and Y are
Borel spaces, Γ ∈ A(X ×P(X)) is an l.t.r. and L ∈ B(X,Y ). We say that X is the state
space, Γ is the stochastic relation, Y is the output space and L is the output map of
S. The SS S is said to be finite if the set Γ is finite, otherwise the SS S is called infinite.
The set of all SSs with the output space Y is denoted by SSY . If Γ|x contains exactly one
element for each x ∈ X , we denote it by Γ(x), and say that the SS S is autonomous.

Let us give some comments on Definition 2.6. First of all, a pair (X,Γ) with X a
Borel space and Γ ∈ A(X×P(X)) an l.t.r. is a GM as per [94]. Although in classical
GMs there is no specified output structure (Y,L), a GM can be understood as an
SS with Y = X and L = idX . The PTS model is syntactically similar to SS, and in
the PTS literature it is often assumed that Γ relates states to discrete distributions
only, rather than arbitrary elements of P(X). This allows avoiding issues related
to measurability, so X and Y can be arbitrary sets, Γ an arbitrary l.t.r. and L an
arbitrary map, similar to a TS. The fact that we work with general, not necessarily
discrete, probability measures should explain why we requireX and Y to be Borel
spaces and L to be a Borel map. We comment on the measurability of Γ later.
Unless the contrary is specified, further in this section we always assume that the
SS S := (X,Γ, Y, L) is given and fixed.

As in case of TSs, Definition 2.6 only describes the syntax of the SS, so let us which
dynamics does SS define. The evolution of a sample path of SS S is similar to that
of TSs with the only difference that first the distribution over states is chosen, and
then the successor state is drawn from that distribution. That is, if the current
state of the SS is xn, the output we also observe the output value of yn = L(xn),
choose the distribution of the successor state among admissible probability mea-
sures γn ∈ Γ|xn

, and the new state xn+1 is drawn randomly according to γn. To
formalize this procedure again we need to define how exactly his choice is made,

10 MDPs themselves also appear in the literature under different names such as stochastic optimal
control models [20], Markov Control Models [70], controlled discrete-time Stochastic Hybrid Systems
[4] and controlled discrete-time Markov processes [137].

11 The PA model is slightly different from the MDP one in that it allows for two types of non-
determinism: both internal and external [17, 128], so it can be interpreted as a stochastic game [89]
with an agent playing for the external non-determinism, and an adversary playing for the internal
one.
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namely introduce the strategies. In contrast to the case of TSs, strategies is a nec-
essary component of the definition of semantics of SSs12.

Definition 2.7 A strategy for the SS S is a sequential decision rule σ = (σn)n∈N, where
the map σn ∈ U(X|Xn) is such that σn(x0, . . . , xn) ∈ Γ|xn for each xi ∈ X , i ∈ [0;n]
and n ∈ N. The set of all such strategies we denote by ΣΓ.

We can now comment on why Γ is required to be an analytic set in the definition
of SSs. To work with general distributions over successor states, not only the
discrete ones, we needed measurability assumptions on the strategies. Although
it is easier to work with Borel strategies, it may happen that Γ does not contain
a graph of a Borel map even if Γ is a Borel space itself [23], hence it may happen
that there would not be any strategies at all. To guarantee the existence of such
a Borel map we would need rather restrictive assumptions on Γ. At the same
time, if Γ is at least analytic, let alone Borel, it is guaranteed to contain a graph of a
universally measurable map by Proposition C.17. Due to this reason, in Definition
2.6 we require stochastic relations of SSs to be analytic; this is also conventional in
the literature on stochastic control both for MDPs and GMs [20, 97]. Note that if S
is autonomous, then if Γ is analytic, it is Borel and hence is a graph of some Borel
map. Like in case of TSs only the GM component of the SS S, which is given by
a pair (X,Γ), plays a role in the definition of strategies and the output structure
(Y,L) has no effect13.

To understand how to define LT semantics for SSs, let us think what are the natu-
ral questions that we ask when dealing with probabilistic systems. For example,
in case of TS one would wonder whether it has a sample trajectory that reaches a
goal set at some point, or what is the reward one accumulates while moving along
such trajectory. Since an SS would have several sample trajectories with different
likelihoods, there instead one asks what is the probability of a sample trajectory
passing by a goal set, or what is the expected reward accumulated over it. For this
reason, naturally the LT semantics of an SS is not characterized by single trajec-
tories (runs), but instead by probability measures defined on the space of those
trajectories. These measures are also known as stochastic processes. Such stochas-
tic process is defined as follows: given any initial distribution α ∈ P(X) and a
strategy σ ∈ ΣΓ there exists a unique probability measure14p ∈ P(XN) whose first
marginal is α and whose transition probabilities are given by (σn)n∈N, i.e.

p�0= α,
dp�n+1

dp�n
= σn (p�n -a.s.) ∀n ∈ N. (2.7)

The measure satisfying (2.7) we denote by Pσα and call a strategic measure. The sets
of all strategic measures and those that start at α ∈ P(X) are denoted by S(ΣΓ)
and S(ΣΓ, α) respectively. Clearly, here S(ΣΓ) :=

⋃
α∈P(X) S(ΣΓ, α).

12 For probabilistic models, strategies are also known as control policies [20] or schedulers [17, Chap-
ter 10].

13 Note also that Γ uniquely determines the transition structure as it is an l.t.r., and hence X can be
defined as a left projection of Γ. In particular, Γ alone uniquely defines the set of strategies: due to this
reason we use the notation ΣΓ instead of cumbersome ΣX,Γ.

14 See the Appendix A.1, the part on kernels.
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Recall that for TSs we are able to deduce the initial state and the strategy uniquely
given a run they generate. A similar result applies to the case of SSs, although
it requires more technical machinery such as the existence of conditional distri-
butions for a given product measure15. Given any p ∈ S(ΣΓ) we can obtain the
corresponding α and σ by applying (2.7); note however that although α is unique
in such case, each σn is only determined (p�n-a.s.)-uniquely.

To each strategic measure Pσα ∈ S(ΣΓ) ⊆ P(XN) (that corresponds to an internal
run in TSs) we assign a corresponding observation measure Qσα := L∗P

σ
α ∈ P(Y N).

We further denote by SL(ΣΓ) := L∗(S(ΣΓ)) and SL(ΣΓ, α) := L∗(S(ΣΓ, α)) sets of
all observation measures, and those initiated at α respectively. To define the be-
haviors of the SS S, and their relations to outputs, let us first discuss LT properties
of SSs. Connecting to the case of TSs, consider some set of desired output trajec-
tories H ⊆ Y N, defined e.g. using an LTL formula, and think of the evolution of
the SS for a fixed initial distribution α and strategy σ. The output trajectory hence
is a random element with the distribution Pσα. A realization of the output trajec-
tory may belong to H or not, depending on the result of each probabilistic draw,
so in each non-trivial case neither H nor its negation Hc is surely satisfied by the
output trajectory. Perhaps in some applications it would be of interest whether
there does exist a single element of H which is “possible”, meaning it has positive
probability. Such statement would make some sense for SSs where only discrete
distributions are allowed (e.g. finite SSs): in that case some authors even define
the strategic measures not on all realizations of state trajectories (space XN), but
only on those where each transition xn → xn+1 happens with a positive probabil-
ity [17, Chapter 10]. This would make a little difference from the non-determinism
of the TSs, will not use any specifics of the probabilistic case and this is not appli-
cable to general SSs, since often each measure in Γ|xn gives zero mass to any single
candidate for the successor state xn+1, as also each strategic measure assigns zero
probability to any separate output trajectory. Due to this reason, we define strate-
gic and observation measures on spaces of all realizations of state and output
trajectories respectively: this is also a common practice in literature on probability
and stochastic processes. Thus it one cannot distinguish which realizations of out-
put trajectories are “possible” and which are not. Instead we can only talk about
the probability that the realization of an output trajectory belongs to a given set
H , the now conventional way to define LT properties of SSs in the computer sci-
ence literature [17, Section 10.1], and the only way considered in the literature on
probability theory, see e.g. [94]. See also [133, 135] for a similar discussion and
Appendix A.4 for more details.

Based on the ideas of the previous paragraph, one can define an LT specification
over SSY as some set H ∈ U(Y N): the measurability of H is needed to make sure
that q(H) is well-defined for each q ∈ SL(ΣΓ). We have already seen in Section 2.2
that automata and LTL formulae can be used to define some interesting subsets of
Y N in a handy way. In fact, not any language (subset of Y N) is a valid specification
for a SS, as it may happen not to be measurable, and hence one could not say
what is the probability of an output trajectory being in this set: recall that Y N

15 See the Appendix A.1, the part on kernels. For Borel spaces (regular) conditional distributions do
always exist [52], but for general measurable space that may not be the case.
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is uncountable, and any uncountable Borel space admits for a set which is not
universally measurable [82]. Fortunately, languages accepted by all automata we
consider here and LTL formulae are ω-regular [147], and hence are Borel subsets
of Y N [145, Proposition 2.3]. On the other hand, not any measurable language is
ω-regular: clearly any singleton {w} generated by a word w ∈ Y N is measurable,
but the language {w}may not be ω-regular if w is not a periodic word.

Similarly to TSs, for SSs we do not only focus on specifications expressible as
subsets of the output trajectories, and instead we can define a more general quan-
titative LT property as a map h ∈ bU(Y N) and talk about its expected value q[h].
It is a more general as one can always take h = 1H to express a set as a function.
As for TSs, we also define a maximization functional associated with an SS

Sα(h) := sup
q∈SL(ΣΓ,α)

q[h], (2.8)

where the arguments are α ∈ P(X) and h ∈ bU(Y N). Recall that as a first step
for TSs we defined a satisfaction relation, and only after that we introduced a
maximization functional as a more general version of the former. In contrast, even
if we only focus on properties expressed as sets of output trajectories for SSs, we
cannot have a single natural satisfaction relation which would allow us to say
whether a particular SS satisfies a given property or not. When dealing with SSs
such satisfiability will genuinely be a continuous quantity, rather than a boolean
outcome. For this reason it seems reasonable to care about those quantities, which
are exactly the values of the functional in (2.8), namely the maximal probabilities
and/or expectations. Note that one can use Sα to express the minimal values as
well by changing h to −h. Furthermore, if one still prefers to deal with relations,
this functional can be further used to introduce them as |=r⊆ SSY ×bU(Y N) in the
following way:

S |=r h ⇐⇒ sup
α∈P(X)

Sα(h) ≥ r

where a parameter r is any real number for R. For example, that way we can
ask questions of the kind “does there exist a strategy which makes a trajectory of S
belong to a set H with probability of at least r?” This is similar to what is done in
probabilistic computational tree logic (PCTL) [17, Section 10.2], however we do
not focus much on this approach here. Instead we just ask what exactly is the
maximal probability that a trajectory of the SS S belongs to H , and the functional
S precisely gives us the answer to this question. Like in TSs, to emphasize that this
functional is everything we need to know about the behavior of its underlying SS
we denote them with the same symbol.

Unlike the non-stochastic case, the class of problems expressible as a function h on
output trajectories is not the largest one that can be defined for SSs. Arguably one
of the most general approaches to the definition of numerical performance criteria
over SSs has been considered in [54]. There, a criterion is simply any function on
strategic measures F : P(Y N) → R. Here we only focus on a special case of it,
namely the expected utility [83, 84, 85], where h is precisely is a utility function.
One can see that this class only provides linear functions F of strategic measures,
of a shape Fh(q) = q[h]. An example of a criterion not expressible in this form is a
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probabilistic version of AC

AC := lim sup
n→∞

Qσα

[
1

n

n∑
k=0

r(yk)

]

For the expected utility criteria there are general results on characterization of the
optimal values and strategies, and more specific results were obtained when the
focus was on a specific criterion. For example, the probabilistic version of DC

DC := Qσα

[∑
n∈N

βnr(yn)

]

was studied in [20, 70], whereas [95] contains results on criteria considered in
gambling literature. We are particularly interested in properties expressible as
automata, solving which for SSs can also be reduced to reachability and repeated
reachability like for TSs. This technique has been employed to study finite SSs
[32], leading to analytical solutions for that setup, however there results seem to
crucially depend upon the finiteness assumption, which we relax here. As above,
for the reduction technique we introduce a composition between an SS and an
automaton.

Definition 2.8 Given an SS S = (X,Γ, L, Y ) and an automaton D = (Q, qs, Y, t,A),
their composition is an SS Ŝ = S⊗D = (X̂, Γ̂, L̂, Q), where X̂ := X×Q, L̂ : (x, q) 7→
q and

(x, q)Γ̂(µ, ν) ⇐⇒ xΓµ and ν = δ(t(q, L(x))).

Similarly to TSs, the dynamics of the composed SS just follows that of the original
SS, the outputs of which steer the state of the automaton: if the composed system
is in the state (xk, qk), the next state must satisfy the following recursion formula

µk+1 ∈ Γ|xk
,

xk+1 ∼ µk+1,

qk+1 = t(qk, L(xk)).

One of the first differences in working with TSs versus SSs we face now: in the
former case the composition system was obviously a TS, whereas in the latter
we need to show it satisfies the desired measurability condition. For example,
X̂ is a Borel space as a product of two Borel spaces, L̂ is a projection and hence
Borel-measurable, but the fact that Γ̂ is an analytic subset of X̂ × P(X̂) is less
straightforward. Notice that

Γ̂ = {(x, q, µ, ν) : (x, µ) ∈ Γ and ν = δ(t(q, L(x)))}

=
(

proj−1
X×P(X)(Γ)

)
∩ (P(X)×Gr(δ ◦ t ◦ (idQ tL)))

and hence is analytic as an intersection of two analytic sets.
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To formalize the composition technique, we first need to establish a strategy equiv-
alence between optimal utilities over S and Ŝ. More precisely, we relate classes ΣΓ

and ΣΓ̂ as follows. The former class can be treated as a subclass of the latter, where
strategies do not depend on q-coordinates of the history, so we let I : ΣΓ → ΣΓ̂

denote the corresponding embedding map. For the reverse, we introduce a pro-
jection map P : ΣΓ̂ → ΣΓ by the formula

(Pσ̂)n(x0, x1, . . . , xn) := σ̂n(x0, q0, x1, q1, . . . , xn),

where q0 = qs and qk+1 = t(qk, L(xk)), for all 0 ≤ k < n.

Lemma 2.9 For any α ∈ P(X), and any strategies σ ∈ ΣΓ and σ̂ ∈ ΣΓ̂, it holds that

Qσα(L(D)) = Q̂Iπ
α⊗δqs (Y N × A), Q̂σ̂α⊗δqs (Y N × A) = QPσ

α (L(D)).

Proof: Let us introduce a map χ : XN → X̂N as χ := idXN t(T ◦ L), so that
given a path v ∈ XB this map returns a path v̂ = χ(v) ∈ X̂N which has the same
x-coordinates, and the q-coordinates of which are obtained using the automaton
transition map. As a result, for any α ∈ P(X) and any σ ∈ ΣΓ it holds that

Pσα(L(v) ∈ L(D)) = Pσα((T ◦ L)(v) ∈ D) = (χ∗P
π
α)
(
L̂(v̂) ∈ Y N t A

)
.

Applying definitions of maps I and P immediately yields the desired result. 2

Given that Lemma 2.9 matches probability strategy per strategy, obviously it ap-
plies also to maximization and minimization, which gives us the desired reduction
method. For a wide class of such LT specifications there were developed efficient
algorithms over the finite SSs, and the dedicated model-checking software was
built [80, 73]. This motivates us to look for finite models that approximate infinite
SSs, which in turn leads to formalization of behaviors for them.

2.4 SS behaviors

Recall that in case of TSs a realization of an output trajectory alone determines the
satisfaction of any LT property, e.g. given w ∈ Y N we can say whether it belongs
to H ⊆ Y N or not, or which value a utility function h achieves on w. In con-
trast, when dealing with SSs if we are given a particular realization of the output
trajectory it tells us nothing about which LT properties are satisfied: we need to
know its strategic measure instead. Even if we know in addition the realization of
the state trajectory and which distributions were chosen at each time step, it will
only determine a limited subset of LT properties – precisely those expressible in
the form h(q�0, q�1, q�2, . . . ) such as the discounted cost criterion. Such approach
was proposed in [148], however note that this information would not be sufficient
even to compute the value of q(y0 ∈ A, y1 ∈ B), not to mention LTL formulae
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which contain some operations besides the “Next” modality and the negation16.
As a result, not the particular choice of marginal distributions {q�0, q�1, q�2, . . . }
determines LT properties of the SS, but rather the way they have been chosen
conditional on the previous history: namely, the strategy σ itself.

Based on the ideas above it is natural to say that the behavior of the SS S it the family
of its observation measures. In most of the applications not all the behaviors of
an SS are of interest, but only extreme ones – those where the maximum in the
definition of Sα is achieved; of course, such maximum may depend on a particular
LT property. Due to this reason, instead of defining the approximate behavioral
inclusion for SS as a (strong) set inclusion of families of observation measures, we
exploit the concept of the weak inclusion introduced in the Appendix A.5. The
former would be a direct analogue of the method we used for TSs, however the
latter also has its similarities – see Appendix A.6 for a discussion.

The case of TSs strongly motivates to use approximate relations, so we skip the
step of precise behavioral inclusion for SSs. Given an SS S and a new SS over the
same output space S̄ := (X̄, Γ̄, Y, L̄) we say that the SS S̄ behaviorally ε-includes
S whenever for any α ∈ P(X) there exists ᾱ ∈ P(X̄) such that SL(ΣΓ, α) vε
SL̄(ΣΓ̄, ᾱ), that is

Sα(h) ≤ S̄ᾱ(h) + ε, ∀h ∈ bU1(Y N).

In such case we write S 6ε S̄. From the properties of v it follows that 6 is an
ε-preorder . Note that S 6ε S̄ implies that

inf
q̄∈SL̄(ΣΓ̄,ᾱ)

q̄[h]− ε ≤ inf
q∈SL(ΣΓ,α)

q[h] ≤ sup
q∈SL(ΣΓ,α)

q[h] ≤ sup
q̄∈SL̄(ΣΓ̄,ᾱ)

q̄[h] + ε (2.9)

for any LT property f ∈ bU1(Y N), hence 6 provides bounds for the verification
problem. However, due to the way it is defined it may not help solving the syn-
thesis problem: we show below the approximate bisimulation relation between
SS (which is stronger and implies approximate behavioral equivalence) is use-
ful for the both problems. Also, the leftmost and rightmost values in (2.9) are
often rather conservative bounds for supq∈SL(ΣΓ,α) q[f ] and infq∈SL(ΣΓ,α) q[f ] re-
spectively, as the quality of such bounds crucially depends on the gap between
the latter two values, which cannot be controlled by ε. This gap is obviously zero
for autonomous SSs, since there is only one element in the set of observation mea-
sures, however in general it may be rather large. Unfortunately, even if S 6ε S̄ and
S̄ 6ε S, it may still happen that for some α ∈ P(X) there is no ᾱ ∈ P(X̄) such that
Sα can be bounded in terms of Sᾱ and ε. Due to this reason, we do not define ap-
proximate behavioral equivalence for SS as a symmetrization of an approximate
behavioral inclusion, and instead propose the following definition.

Definition 2.10 SSs S and S̄ are behaviorally ε-equivalent if for any initial distribu-
tion α ∈ P(X) (ᾱ ∈ P(X̄)) there exists ᾱ ∈ P(X̄) (α ∈ P(X)) such that SL(ΣΓ, α) ≡ε

16 It shall be clear now that although probabilistic models of [148] are endowed with LTL specifi-
cations, the LT semantics of these models is different from ours or the ones in [17, Chapter 10]. For
example, it is neither clear how to interpret the fact that a probabilistic model of [148] satisfies a given
LTL specification, nor how to use guarantees provided there.
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SL̄(ΣΓ̄, ᾱ); in such case we write S ≈ε S̄.

If S ≈ε S̄ we can obtain a solution of a verification problem over the former system
by solving it on the latter since the following inequality applies:

∣∣Sα(h)− S̄α(h)
∣∣ =

∣∣∣∣∣ sup
q∈SL(ΣΓ,α)

q[h]− sup
q̄∈SL̄(ΣΓ̄,ᾱ)

q[h]

∣∣∣∣∣
=

∣∣∣∣ inf
q∈SL(ΣΓ,α)

q[h]− inf
q̄∈SL̄(ΣΓ̄,ᾱ)

q[h]

∣∣∣∣ ≤ ε
∀h ∈ bU1(Y N).

(2.10)

Note that in (2.10), in contrast to (2.9), the upper and lower bounds for the solution
of the maximization/minimization problem over S are given in terms of the solu-
tion of the same type problem over S̄. As a result, when providing such bounds
the gap between solutions for the maximization and minimization problem of S̄
has no effect on bounds, which hence converge to each other when ε goes to 0.

Let us emphasize the difference in the notation v (≡) and 6 (≈): the former is a
relation on the families of measures, whereas the latter is a relation on SSs. Even
though 6 and ≈ are defined using v and ≡, another part of the definition puts
important conditions concerning initial distributions. See the Appendix A.3 for
the notation used here for relations. There is an interesting connection between
the ways the approximate behavioral inclusion is defined for TSs and SSs, see the
discussion in the Appendix A.6.

The following classification of strategies is often used in the literature. Although
we do not focus on any particular class here, later we are interested in preserving
the strategy class when refining a strategy from the abstraction SS to the concrete
one. All strategies are by default referred to as history-dependent.

Definition 2.11 A strategy σ = (σn)n∈N ∈ ΣΓ is called

• Markov if σn depends only on xn for all n ∈ N, subclass of such strategies is
denoted by ΣΓ

M ;

• stationary if it is Markov and σn = σ0 for all n ∈ N;

• (ε, α)-optimal for h ∈ bU(Y N) if Qσα[h] ≥ Sα(h)− ε;

• uniformly ε-optimal for h ∈ bU(Y N) if it is (ε, α)-optimal for each α ∈ P(X).

Let us provide an example of two simple finite autonomous SSs which intuitively
are behaviorally equivalent. After we introduce bisimulation for SSs, we prove
that these two systems are bisimilar and hence indeed behaviorally equivalent.

Example 2.12 Let the output space be a two-letter alphabet Y = {A,B}, and consider
an SS S on Figure 2.2(a). Here X := {a1, a2, b}, L({a1, a2}) := A and L(b) := B, and
Γ is given by Γ(a1) := ( 1

3 ,
1
3 ,

1
3 ), Γ(a2) := ( 2

3 , 0,
1
3 ) and Γ(b) := (0, 0, 1). The SS S̄ is
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depicted on Figure 2.2(b) with X̄ := {ā, b̄}, L̄(ā) := A, L̄(b̄) := B and Γ̄(a) = ( 2
3 ,

1
3 ),

Γ̄(b) = (1, 0).

Although states a1, a2 ∈ X have different successor distributions, the share the same
output A, and those distributions give the same probability to b. Thus, we may expect
that S can be “lumped” as S̄ so that they have same behaviors. This is perhaps one of
the simplest example of behaviorally equivalent SSs, and in particular we would like our
notion of bisimulation to hold true for S and S̄. We formalize this idea in Example 3.9.

a1

A

b

B

a2

A

1
3 1

3

1
3

2
3

1
3

1

(a) The SS S depicted.

ā

A

b̄

B

2
3

1
3

1

(b) The SS S̄ depicted.

Figure 2.2: Example of two finite autonomous SSs.

The main focus of this chapter is on providing sufficient conditions for approx-
imate behavioral inclusion of SSs, which we build off the notion of approximate
simulation for TSs [64], and they ways to construct an approximately similar finite
SS for a given possibly infinite one.

Before we proceed, let us just comment on the way we have defined behaviors
and their inclusions above. If we departed from the case of TSs, how would we
define behaviors for SSs? Recall that a TS T̄ behaviorally includes T if any output
trajectory of the latter system can be matched by that of the former one. This is
equivalent to say that any (qualitative) LT property satisfied by T is also satisfied
by T̄. Since every trajectory of SSs occurs only with a certain probability, it might
have been an interesting idea to say that T̄ has a richer set of behaviors if it gives
higher probability to any trajectory relatively to T. This is however impossible
unless two systems give exactly same probabilities to every trajectory: indeed, if
we look at sets of trajectories instead and H ⊆ Y N appears in T and T̄ with prob-
abilities p and p̄ > p respectively, then necessary Hc appears with probabilities
(1− p) and (1− p̄) < (1− p). The latter fact is a consequence of the full probability
being exactly 1, so to cope with this issue one may also propose to use substochas-
tic measures: those whose full mass is possibly less than 1. This way was chosen
by [41], but it is by no means natural and does not lead to any comprehensive set
of results that would help to solve problems that we are interested in. The trick
is to understand that not a single trajectory is an element of behavior of an SSs,
but a distribution over the trajectories is. For example, even though autonomous
SSs (i.e. Markov Chains) may seem similar to TSs in that in both cases one has
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a choice over the successor states – non-deterministic in the former setting and
probabilistic in the latter – this similarity is misguiding, and it makes little sense
to say that one MC behaviorally includes another one, as each MC only has one
behavior.

2.5 Comments on models and problem formulation

The exposition of the model in this work is rather standard and is similar to that in
[70, Section 2.2]. However the present model is more general: for example we al-
low for a feasibility set K that is analytic, and for universally measurable policies.
It can be shown that whenever the initial distribution α ∈ P(X) is fixed, for a large
class of performance criteria including all expected bounded utility cases it is suf-
ficient to consider only analytically measurable deterministic policies depending
exclusively on state coordinates of the history [24]. Moreover, one can sufficiently
deal with Borel measurable policies, provided they do exist. However, if one is in-
terested in finding a policy that is optimal or ε-optimal for any initial distribution,
it is more convenient to deal with the class of universally measurable policies: the
latter is rich enough to assure the existence of policies for many interesting prob-
lems – see e.g. the discussion in [20, Section 1.2]. This class also possesses some
nice closure properties in contrast to the class of analytically measurable policies:
e.g. the composition of two universally measurable functions is again universally
measurable, but the composition of analytically measurable functions may not
be analytically measurable. Such closure properties are important to ensure the
appropriate measurability of the performance criterion with respect to the initial
state. More details on this topic can be found in [117].

It is worth mentioning that there is an alternative approach to sequential decision
making in a stochastic environment, which is known as gambling [48]. The differ-
ence with the MDP is mainly conceptual: if the current state is x, instead of first
making a choice of a control action u and drawing a new state according to the dis-
tribution T(x, u), in gambling the agent is allowed to choose the distribution of the
new state directly, from the set of available gambles Γ|x17. The set Γ ⊆ X ×P(X) is
called the gambling house. On the methodological level, the difference between the
MDP and gambling is that the latter extensively uses stopping time-like methods
to derive most of the results, whereas the former is more focused on techniques
based on DP. Finally, the difference between MDP and gambling models is also
technical. First of all, initially the research on gambling theory has been done
in the framework of finitely-additive probability measures [48]. Later, gambling
models have also been considered in the σ-additive framework, which made it
possible to compare them with MDP: for example, [24] showed the equivalence
between some classes of MDP and gambling models – this result also holds for

17 Note that in MDP the choice of the distribution of the successor state is “labelled” by actions,
whereas in gambling models such choice is unlabelled. One may think of this being similar to internal
and external non-determinism in probabilistic automata [114], however there is no semantic difference
between MDP and gambling models, and in both cases non-determinism can be considered both as an
internal one or as an external one.
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the MDP model we consider in this thesis. Further gambling models have been
used more recently, e.g. in [94] and [96].

Research on gambling has broadly looked into the optimization of probabilities
of given events. For example, [94] has obtained results for safety properties (that
are clearly also applicable to the reachability), and [94, 96] has characterized the
repeated reachability property. Due to this reason, although we do not use the
gambling framework explicitly, sometimes we recall the results obtained there.
For example, using the MDP framework for reachability properties seems more
beneficial, however we mostly use the results of gambling for the repeated reach-
ability. Another important point is that [95, Chapter 6] proposes an idea to opti-
mize the probabilities of events, which is an alternative to the one we convey here.
More precisely, it is shown that in the case of a countable state space the functional
M∗ possesses some useful properties of capacities [38]. In particular, [95, Theorem
(1.2), Chapter 6] claims that for any state x ∈ X and any event A ∈ B(H) it holds
that

Sx(A) = inf {Sx(B) : B is open and B ⊇ A} . (2.11)

Furthermore, M∗ for open events can be obtained by means of stopping times –
see [95, Chapter 6] for more details. This result may be extendable to the more
general case we deal with, where X is uncountable and one is interested only in
events that can be described using some finite alphabet Σ. Unfortunately (2.11)
does not provide a direct and explicit way to compute quantities of interest, or
to derive optimal policies, so we do not pursue such direction here, preferring
instead more explicit methods based on LTL formulae and automata theory.

The problem of optimizing the probability of a given event (or a property) is a
problem that often appears in computer science, see e.g. a wide range of examples
described in [17, Section 10.6]. Using LTL and automata theory for finite state-
space MDP has a long history, part of which can be consulted in [17, Section 10.8].
However, extensions to the general state-space case have only appeared recently:
[7] has provided an extension to the uncontrolled case (where trivially U = {u} is
a singleton), whereas [78] and [137] worked out the controlled case18.

18 The difference between the approaches in these two works is that [78] has allowed for Markov
policies only, but clearly the policies over the composed system may depend on the state of the transi-
tion system: the map P can map Markov policies to history-dependent ones. To cope with this issue,
extended Markov policies have been proposed in [78], namely policies that can depend also on an
additional historical variable – the state of the transition system, which is a deterministic function of
the MDP state history.





3 CHAPTER

Finite-horizon case

This chapter formally develops ideas of precise and stochastic bisim-
ulation for stochastic systems and introduces main results for the

finite-horizon properties.

3.1 Approximate simulation of TSs

In most of the cases solving verification or synthesis problems over the concrete
TS is easier than checking behavioral inclusion or equivalence over two given TSs
directly, which questions usefulness of the latter relations. That task of providing
a finite system that behaviorally includes or is equivalent to a given one is even
more complicated. To cope with this issue, a different way to compare TSs was
developed on the level of transition relations, rather than on the level of behaviors.
These new relations tend to me more conservative than behavioral ones, but are
easier to check and serve as sufficient conditions for the latter to hold.

Definition 3.1 The TS T̄ simulates T if there exists an l.t.r. R ⊆ X × X̄ such that

1. for any (x, x̄) ∈ R it holds that L(x) = L̄(x̄),

2. for any (x, x̄) ∈ R and x′ ∈ T |x there exists x̄′ ∈ T̄ |x̄ such that (x′, x̄′) ∈ R.

In such case we say that R is an abstraction relation from T to T̄ and write T � T̄1.

1 Often the definition of TS requires specification of the set of initial conditions X0 ⊆ X , and in
the definition of simulation R is required to be such that R|x contains some element of X̄0 for each
x ∈ X0, so that R is not necessary an l.t.r. At the same time [128, Definition 4.7] requires existence of
simulating abstract states also for x /∈ X0. In our case it is always assumed that X0 = X which does
not have any significant effect on the results.

33
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As we said, verifying simulation for two TSs or constructing a TS that simulates
the given one is often much easier than solving analogous problems over the be-
havioral inclusion [64]. At the same time, simulation is a sufficient condition for
behavioral inclusion: this is easy to prove using induction, see e.g. [128, Propo-
sition 4.9]. We provide a proof here just to compare it later with a much more
technically intricate proof of the analogous result for SSs.

Theorem 3.2 If the TS T̄ simulates T, then for any x ∈ X there exists x̄ ∈ X̄ such that
VL(σT , x) ⊆ VL̄(ΣT̄ , x̄). In particular, T 6 T̄.

Proof: Consider an arbitrary x ∈ X and pick any x̄ ∈ R|x. Let us show that for
any v ∈ V(σT , x) there exists σ̄ ∈ ΣT̄ such that v̄ := V̄ (x̄, σ̄) satisfies

(v0, . . . , vn)Rn+1(v̄0, . . . , v̄n) ∀n ∈ N. (3.1)

For n = 0 this result is trivial, so suppose it holds for some n ∈ N. In particular
(3.1) implies that vnRv̄n, so there exists v̄n+1 ∈ T̄ |v̄n such that vn+1Rv̄n+1. The
desired map σ̄n is given by σ̄n(v̄0, . . . , v̄n) := v̄n+1 and in arbitrary way for all
other arguments. To finish the proof just note that (3.1) implies that L̄(v̄) = L(v),
and since v ∈ V(σT , x) is arbitrary, we obtain that VL(σT , x) ⊆ VL̄(ΣT̄ , x̄). 2

Hence, if we would like to use T̄ to solve verification and synthesis problems over
T it is sufficient to have that T � T̄ and T̄ � T. If the two latter conditions are sat-
isfied we say that T and T̄ are simulation equivalent and denote it by T ' T̄. Clearly
both the behavioral inclusion 6 and the simulation relation � are preorders on
TSY according to the terminology of the Appendix A.3. As a result, behavioral
equivalence ≈ and simulation equivalence ' are indeed equivalence relations, as
their names suggest.

The approximation version of simulation is given as follows:

Definition 3.3 The TS T̄ ε-simulates T if there exists an l.t.r. R ⊆ X × X̄ such that

1. for any (x, x̄) ∈ R it holds that dY (L(x), L̄(x̄)) ≤ ε,

2. for any (x, x̄) ∈ R and x′ ∈ T |x there exists x̄′ ∈ T̄ |x̄ such that (x′, x̄′) ∈ R.

In such case we say that R is an ε-abstraction relation from T to T̄ and write T �ε T̄.

Again, �:= (�ε)ε∈R+
is an ε-preorder on TSY ; its symmetrization we denote by

':= ('ε)ε∈R+ . From Proposition A.2 it follows that≈ and' define pseudometrics
on TSY : they were first considered in [64]. Relations �0 and '0 are precisely
(exact) simulation and simulation equivalence defined above. As in the case of
their exact counterparts, for each ε ∈ R+ it holds that T �ε T̄ implies that T 6ε T̄,
which can also be easily proved by induction similar to [128, Proposition 9.4].

After the introduction of ε-relation �, the main challenge in the area of infinite
TSs with metric output spaces become the construction of a finite TS T̄ for a given
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infinite T such that T 'ε T̄ for ε small enough. One of the leading methods is to
come up with relevant stability assumption on the continuous, control or hybrid
system underlying T and use these assumptions to partition the state space of
such system in order to assure the desired result. An example of such assumption
is provided by approximate simulation functions that were extensively used in
[64].

3.2 Precise simulation of SSs

The notion of simulation for SSs provided in this section serves as a sufficient con-
dition for the (exact) behavioral inclusion. The following lemma provides simpler
sufficient conditions which are used in proofs below.

Lemma 3.4 For every α ∈ P(X) it holds that

i. S(ΣΓ, α) ⊆ S(ΣΓ′ , α) for any Γ′ ⊇ Γ and

ii. S(ΣΓ, α) ≡0 S(Σsco Γ, α).

Proof: The proof of the statement [i] is trivial, so let us focus on the second state-
ment. It follows from [97, Theorem 2.1] that S(Σsco Γ, α) = scoS(ΣΓ, α), and hence
one is only left to apply Proposition A.7.[ii]. 2

To prove Lemma 3.4.[ii] we use a very important result concerning the random-
ized choice. Indeed, choosing measures from sco Γ is equivalent to choosing mea-
sures from Γ at random, according to some distribution [97]. Note that [97, The-
orem 2.1] used in the proof of Lemma 3.4.[ii] states that the family of strategic
measures for a convex set Γ is convex itself, which in particular implies that any
strategic measure generated in sco Γ (using a randomized choice over Γ) is rep-
resentable as a convex combination of those generated in Γ, and that nothing is
gained by applying the randomized choice. Similar results were obtained for dif-
ferent kind of stochastic models as well – see [55] and references therein.

We are now ready to introduce simulation for SSs.

Definition 3.5 The SS S̄ simulates S if there exists an l.t.r. R ∈ A(X × X̄) such that

1. for any (x, x̄) ∈ R it holds that L(x) = L̄(x̄),

2. for any (x, x̄) ∈ R and γ ∈ Γ|x there exists γ̄ ∈ Γ̄|x̄ such that γR∗γ̄.

In such case we say that R is an abstraction relation from S to S̄ and write S 4 S̄. If in
addition S simulates S̄ via R−1, we say that S and S̄ are bisimilar and write S ∼ S̄.
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Remark 3.6 Note that by Lemma B.9 the requirement for R to be an l.t.r. in Definition
3.5 is equivalent to a seemingly stronger condition: for any α ∈ P(X) there exists ᾱ ∈
P(X̄) satisfying αR∗ᾱ.

Note also that if S 4 S̄ via R and S̄′ is an SS over the state space X̄ which agree with S̄ on
projX̄(R), then S 4 S̄′ as well.

The next result shows that similarity is sufficient for the behavioral inclusion.

Theorem 3.7 If the SS S̄ simulates S, then S 60 S̄.

Proof: Let α ∈ P(X) be arbitrary. Remark 3.6 implies that there exists ᾱ ∈ P(X̄)
such that αR∗ᾱ. We consider an arbitrary p ∈ S(ΣΓ, α) and claim that there exists
p̄ ∈ S(Σsco Γ̄, ᾱ) such that p �n Rn+1

∗ p̄ �n for all n ∈ N. This is the main part of
the proof and the most technical one; after establishing this result we show how it
implies the statement of the theorem. Let σ ∈ ΣΓ be such that p = Pσα; we construct
σ̄ by induction and then define p̄ := P̄σ̄ᾱ. The induction hypothesis is satisfied for
n = 0 since p�0= α and p̄�0= ᾱ. Suppose the induction hypothesis is satisfied
for some n ∈ N. For any (ω, ω̄) := (x0, . . . , xn, x̄0, . . . , x̄n) such that ωRn+1ω̄ there
exists γ̄(ω, ω̄) ∈ Γ|x̄n

such that σn(ω)R∗γ̄(ω, ω̄). Let G(ω, ω̄) ∈ C(σn(ω), γ̄(ω, ω̄)) by
any coupling satisfying G(R|ω, ω̄) = 1. In Lemma C.21 put

Ω := Xn+1 Ξ := X Φ := Rn+1 µ := p�n κ := σn

Ω̄ := X̄n+1 Ξ̄ := X̄ Ψ := R µ̄ := p̄�n Ῡ := X̄n × Γ̄.

We obtain that there exists σ̄n+1 such that σ̄n+1(ω̄) ∈ sco Γ̄|xn
for all ω̄ ∈ X̄n+1 and

such that p�n+1 R
n+2
∗ p̄�n+1 as desired.

To show the main result, let us fix n ∈ N and pick up P ∈ C(p�n, p̄�n) such that
P(Rn+1) = 1. Since S 4 S̄, (ω, ω̄) ∈ Rn+1 implies that L(ω) = L̄(ω̄). The latter
statement can be equivalently written as (L× L̄)−1(∆Y n+1) ⊇ Rn+1, hence

(L× L̄)∗P(∆Y n+1) = P
(
(L× L̄)−1(∆Y n+1)

)
≥ P(Rn+1) = 1. (3.2)

Since (L × L̄)∗P ∈ C(L∗(p �n), L̄∗(p̄ �n)) by Lemma C.18, we obtain L∗(p �n) =
L̄∗(p̄�n). Due to the fact that n ∈ N is arbitrary, L∗p = L̄∗p̄. As a result, SL(ΣΓ) ⊆
SL̄(Σsco Γ̄), which together with Lemma 3.4 yields the statement of the theorem. 2

Corollary 3.8 If SSs S and S̄ are bisimilar, then S ≈0 S̄.

Proof: Let R be the corresponding abstraction relation from S to S̄, Since S 4
S̄, it follows from the proof of Theorem 3.7 that any pair (α, ᾱ) ∈ R∗ satisfies
SL(ΣΓ, α) v0 SL̄(ΣΓ̄, ᾱ). Similarly, since S̄ 4 S we obtain that any pair (ᾱ, α) ∈
R−1
∗ satisfies SL̄(ΣΓ̄, ᾱ) v0 SL(ΣΓ, α). As (R−1)∗ = (R∗)

−1 (cf. Appendix B.2), we
obtain that (α, ᾱ) ∈ R∗ iff (ᾱ, α) ∈ R−1

∗ , so any such pair satisfies SL(ΣΓ, α) ≡0

SL̄(ΣΓ̄, ᾱ). Since both R and R−1 are l.t.r., by Remark 3.6 there always exists ᾱ (α)
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for a given α (ᾱ) such that αR∗ᾱ, hence all the conditions of behavioral inclusion
are satisfied. 2

Let us show that systems in Example 2.12 are bisimilar, which would in turn imply
their behavioral equivalence by Theorem 3.7.

Example 3.9 Consider a map f : X → X̄ given by f({a1, a2}) := ā and f(b) := b̄. Let
us show that S and S̄ are bisimilar via Gr(f). The graph of a map is always an l.t.r., and
since f is surjective, so is Gr(f)−1. Recall that (x, x̄) ∈ Gr(f) iff x̄ = f(x), so the first
conditions of bisimilarity reads as L̄ ◦ f = L, which is satisfied in our case.

The second condition for S 4 S̄ via Gr(f) reads as Γ(x) Gr(f)∗Γ̄(f(x)), or equivalently
Γ̄(f(x)) = f∗Γ(x), for each x ∈ X . It is easy to check that indeed Γ̄(f(x)) is a push-
forward of Γ(x) along f , however to elucidate the connection between f∗ and Gr(f)∗, and
in particular to elucidate Example B.2, let us provide explicit coupling measuresG(x, x̄) ∈
P(X × X̄) of Γ(x) and Γ̄(x̄) that are supported on Gr(f) for every x ∈ X and x̄ ∈ X̄ .
These couplings are depicted on Figure 3.1.

For the converse direction, S̄ 4 S via Gr(f)−1, note that again the second condition is
Γ(x) Gr(f)∗Γ̄(f(x)) for each x ∈ X , hence it is obviously satisfied, and the same coupling
measures G(x, x̄) can be used.

1
3

1
3 0

0 0 1
3

a1 a2 b

ā

b̄

(a) Coupling G(a1, ā)

2
3 0 0

0 0 1
3

a1 a2 b

ā

b̄

(b) Coupling G(a2, ā)

0 0 0

0 0 1

a1 a2 b

ā

b̄

(c) Coupling G(b, b̄)

Figure 3.1: Coupling measures for Example 3.9; Gr(f) is depicted in dark.

Before establishing some properties of 4 and ∼, let us introduce their relaxed
versions which are also sufficient for the behavioral inclusion and equivalence
respectively. For the SS S let us denote its convex hull as another SS given by
sco S := (X, sco Γ, Y, L). Here sco is applied to Γ section-wise, that is sco Γ|x :=
sco(Γ|x). It follows from [98, Lemma 2.3] that sco Γ is analytic whenever Γ is, so
sco S is a well-defined SS.

Definition 3.10 The SS S̄ probabilistically simulates S via R whenever S 4 sco S̄ via
R; in such case we write S E S̄ and say that R is a probabilistic abstraction relation
from S to S̄. If in addition S̄ probabilistically simulates S via R−1, we say that S and S̄ are
probabilistically bisimilar and write S P S̄.

Note that S 4 S̄ (S ∼ S̄) implies that S E S̄ (S P S̄), but not vice-versa.

Corollary 3.11 If S E S̄ (S P S̄), then S 60 S̄ (S ≈0 S̄).
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Proof: If S E S̄, Theorem 3.7 implies that for any α ∈ P(X) there exists ᾱ ∈ P(X̄)

such that SL(ΣΓ, α) v0 SL̄(Σsco Γ̄, ᾱ). Since SL̄(Σsco Γ̄, ᾱ) ≡0 SL̄(ΣΓ̄, ᾱ) by Lemma
3.4, we obtain that S 60 S̄. The proof that probabilistic bisimilarity of S and S̄

implies S ≈0 S̄ is similar to that of Corollary 3.8. 2

Let us now formulate some properties for simulation and its probabilistic version.

Theorem 3.12 The following statements hold:

i. if S̄ = (X, Γ̄, Y, L) and Γ ⊆ Γ̄ then S 4 S̄ and S E S̄ via ∆X ;

ii. if S E S̄ via R then sco S 4 sco S̄ via R;

iii. if S 4 S̄ (S E S̄) via R and S̄ 4 Ŝ (S̄ E Ŝ) via R̄, then S 4 Ŝ (S E Ŝ) via R̄ ◦R;

iv. 4 and E are preorders on SSY ;

v. ∼ and P are equivalences on SSY ;

Proof: The proof is as follows:

i. The proof is trivial.

ii. R satisfies the first condition of similarity since only Γ is transformed into
sco Γ, and other components of SSs are left unchanged. To prove that the
second condition of similarity holds, consider (x, x̄) ∈ R and apply Lemma
B.10 to Γ|x and sco Γ̄|x̄ ⊇ R∗|(Γ|x) recalling that (sco)2 = sco over analytic
sets.

iii. Let Ŝ := (X̂, Γ̂, Y, L̂). We first consider the case of 4. For any (x, x̂) ∈ R̄ ◦ R
there exists x̄ ∈ X̄ such that xRx̄ and x̄R̄x̂ by definition of composition of
relations (A.4). The first condition of similarity now follows immediately,
and for the second condition consider any γ ∈ Γ|x. Since S 4 S̄ and xRx̄,
there exists γ̄ ∈ Γ̄|x̄ such that γR∗γ̄. Similarly, since S̄ 4 Ŝ and x̄R̄x̂, there
exists a measure γ̂ ∈ Γ̂|x̂ satisfying γ̄R̄∗γ̂. By Lemma B.6 we obtain that
γ(R̄ ◦R)∗γ̂.

With focus on E: if S̄ E Ŝ via R̄ then sco S̄ 4 sco Ŝ via R̄ by [ii]. Since
S 4 sco S̄ viaR, using the just shown property of4, we obtain that S 4 sco Ŝ,
or equivalently S E Ŝ, via R̄ ◦R as desired.

iv. 4 and E are reflexive by [i] and transitive by [iii].

v. ∼ and P are reflexive by [i], symmetric by definition,and transitive by [iii].

2

Results above suggest that simulations, bisimulations and their probabilistic coun-
terparts are useful in solving verification problems, similar to the case of TSs. The
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bisimulation relation is also useful for the synthesis problem: we discuss this pro-
cedure in the general setting of approximate bisimulations below in Section 3.3.

Let us provide some guidelines on how the theory above is applied in practice,
and in particular how to check (bi-)similarity or to construct a (bi)-similar SS for
a given one. Here we assume that S represents a concrete system and S̄ is its
abstraction. Perhaps, the most important case to consider concerns abstraction
relation R ∈ A(X × X̄) being a graph of some map f ∈ B(X, X̄). Namely, we say
that f is an abstraction map from S to S̄ if Gr(f) is an abstraction relation from S to
S̄. Note that Gr(f) is always an l.t.r. Furthermore the two conditions of similarity
translate into two simpler conditions for f to be abstraction map from S to S̄,

1. L̄ ◦ f = L, that is L̄(f(x)) = L(x) for each x ∈ X ;

2. (f ‖ f∗)(Γ) ⊆ Γ̄, that is f∗γ ∈ Γ̄|f(x) for each x ∈ X and γ ∈ Γ|x.

In fact, one can propose a version of Definition 3.5 based purely on abstraction
maps rather than general abstraction relations. Such approach allows avoiding
introduction of lifting of relations from states to measures described in the Ap-
pendix B.2, thus significantly simplifying the proofs and yet yielding similarity in
a number cases where it intuitively should hold. However, although the two SSs
in Example 2.12 are bisimilar, there does not exist an abstraction map from S̄ back
to S as the following example shows.

Example 3.13 Suppose that there exists an abstraction map from S̄ to S in Example 2.12,
The first condition of similarity implies that such map f̄ satisfies f̄(b̄) = b and f̄(ā) ∈
{a1, a2}, so there are only two choices for f̄ . For i ∈ {1, 2} let f̄i denote the choices
satisfying f̄i(ā) = ai. We obtain that

(f̄i)∗Γ̄(b̄) = {0, 0, 1} = Γ(b) = Γ(f̄i(b̄))

as desired for either choice, however

(f̄1)∗Γ̄(ā) =

{
2

3
, 0,

1

3

}
6= Γ(a1) = Γ(f̄1(ā)),

(f̄2)∗Γ̄(ā) =

{
0,

2

3
,

1

3

}
6= Γ(a2) = Γ(f̄2(ā))

so neither choice of f̄i satisfies the second condition of similarity.

Note that the second condition of similarity for abstraction maps suggests that
there is the “best” choice of Γ̄ that ensures similarity. More precisely:

Definition 3.14 An abstraction pair for S is an arbitrary Borel space X̄ together with
an arbitrary surjective map f ∈ B(X, X̄) consistent with L. The minimal abstraction
of S by an abstraction pair (X̄, f) is an SS S(X̄,f) := (X̄, Γ̄, Y, L̄), where L̄ ∈ B(X̄, Y )

is a unique map satisfying L̄ ◦ f = L, and Γ̄ := (f ‖ f∗)(Γ).
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Similarity conditions on abstraction maps imply that S 4 S(X̄,f) and that L̄ =

L̄′, Γ̄ ⊆ Γ̄′ whenever S 4 (X̄, Γ̄′, Y, L̄′) via f , which justifies the name “minimal
abstraction”. Let us comment on Definition 3.14, and show that assuming f to be
surjective and consistent with L is necessary. If f is not consistent with L, then
it is never an abstraction map since it violates the first condition of similarity. If
f is consistent, then L̄(x̄) = L(x) for any x ∈ f−1(x̄) and x̄ ∈ X̄ , which gives us
an explicit expression for L̄. Furthermore, Γ̄ = (f ‖ f∗)(Γ) is analytic, and it is an
l.t.r. since f is surjective. A more convenient explicit expression for sections of Γ̄
is given by Γ̄|x̄ =

⋃
x∈f−1(x̄) f∗(Γ|x) for each x̄ ∈ X̄ .

One may try extending Definition 3.14 to non-surjective maps by saying that Γ̄
coincides with (f ‖ f∗)(Γ) only on f(X), L̄ is uniquely determined on f(X) and
that Γ̄ and L̄ are defined in an arbitrary way over f(X)c. In such case the minimal
abstraction would be unique unless f is not surjective, but this is not the main
issue. Unfortunately, there may not exist an analytic Γ̄ which coincides with (f ‖
f∗)(Γ) on f(X). For example, consider the case when (f ‖ f∗)(Γ) is Borel and f(X)
is analytic but not Borel, thenA := Γ̄\(f ‖ f∗)(Γ) is analytic, hence so is projX̄(A).
On the other hand, the latter set equals X̄ \ f(X) which is strictly co-analytic; this
leads to a contradiction.

The minimal abstraction is related to the abstraction by partitioning. Indeed,
given an abstraction pair (X̄, f) we can define a partition Xf := (Xx̄)x̄∈X̄ with
Xx̄ := f−1(X̄) for each x̄ ∈ X̄ . As a result, we can treat the abstract state space
X̄ as an index set for a partition of the concrete state space X . The first condi-
tion of similarity for f implies that such partition is done “within labels”, that
is L is constant on partition cells Xx̄. Recall that f defines the equivalence rela-
tion Ef ∈ B(X2) such that xEfx′ iff f(x) = f(x′); then Xf is exactly a collection of
equivalence classes for Ef . One may also expect a converse result to hold true, and
try constructing an abstraction pair given some equivalence relation E ∈ B(X2)
satisfying E ⊆ L−1(∆Y ), however this task cannot always be accomplished with
our framework. More precisely, since f is a surjective map, X̄ = X/E is the quo-
tient space, which may even fail to be analytic, let alone Borel [82]. Even if do not
require f to be a surjective map hence relaxing the condition on X̄ to X̄ ⊇ X/E,
then we can take a Borel X̄ iff E is a smooth equivalence [82]. A sufficient con-
dition for smoothness is the existence of a Borel selector for E, which in addition
implies that X/E is a Borel space so that a projection map f : X → X/E can be
chosen to be surjective. Sufficient conditions for existence of a Borel selector can
be found in [146]. To summarize, unless the partition has countably many cells, it
is not a trivial task to construct an abstraction pair and hence the minimal abstrac-
tion even in theory. Due to this reason, here we always assume that such a pair
is given – in each practical case it is rather easy to find it as one rarely deals with
Borel spaces whose structure is too complicated.

Let us now discuss bisimilarity in terms of abstraction maps. As above, suppose
that S represents the concrete system, and consider any abstract state space X̄
which has the same cardinality as X does. Recall that X and X̄ are Borel iso-
morphic, so let f ∈ B(X, X̄) be any Borel isomorphism. By checking the simi-
larity conditions for abstraction maps we obtain that S 4 S(X̄,f) via f , and that
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S(X̄,f) 4 S via f−1. Since f is bijective, Gr(f−1) = Gr(f)−1, hence S ∼ S(X̄,f) via
f . In particular, for any SS over an uncountable state space we can construct a
bisimilar SS over X̄ = [0, 1]2. Although one can even come up with a constructive
version of f , in most of the cases it does not preserve the structure of interest such
as continuity, hence not much useful in practice. As a result, the question whether
an SS admits a bisimilar abstraction over the state space of the same cardinality,
even if it of lesser dimension, has an affirmative answer, so one shall instead think
of bisimilar abstractions with nice structure rather than over a “smaller” state
space.

Due to the argument above, we study bisimilarity conditions a given abstraction
map f has to satisfy, rather than looking for such maps for a given abstract state
space X̄ . Suppose that S 4 S̄ via f , then S̄ 4 S via Gr(f)−1 iff f is surjective and
for each x̄ ∈ X̄ , γ̄ ∈ Γ̄|x̄ and x ∈ f−1(x̄) there exists γ ∈ Γ|x such that γ̄ = f∗γ. As
a result, if S ∼ S̄ via f , then necessarily S̄ = S(X̄,f) which emphasizes importance
of the concept of the minimal abstraction and leads to the following result.

Theorem 3.15 If SSs S and S̄ are bisimilar via f , then S̄ = S(X̄,f). In addition, S ∼
S(X̄,f) via f for an abstraction pair (X̄, f) iff f∗(Γ|x) = f∗(Γ|x′) for each (x, x′) ∈ Ef .

Proof: The proof follows from the discussion above the statement of the theorem.
2

Note that the condition of Theorem 3.15 reminds of those used as the definition of
bisimulation for PTSs in [91]. It is likely that PTSs can be expressed as SSs and that
in such case our version of bisimilarity generalizes the one used for PTSs. How-
ever, since PTSs were not given an explicit semantics, we cannot formally claim
that such an expression is valid so we omit it here. Nevertheless, it is worth dis-
cussing the ideas used in the aforementioned literature, focusing on our setting
of SSs. As we have observed above, each SS admits a bisimilar one over the state
space of the same cardinality, so it is interesting to find an SS from the latter class
with simpler structure. One way to do this is to consider an equivalence relation
E ∈ B(X2) which satisfies the following property: if xEx′ then for any γ ∈ Γ|x
there exists γ′ ∈ Γ|x′ such that γ(A) = γ′(A) for any E-closed set A ∈ B(X).
Clearly, if X/E is a Borel space and f is a projection map, then S ∼ S(X/E,f) by
Theorem 3.15. Hence, it is of interest whether there does exist “the largest” E of
such kind: that would lead to “the smallest” bisimilar representation of S. Un-
fortunately, as we have discussed above, verifying that X/E is a Borel space is
hard even in theory. Even if some logical characterization of E would be avail-
able (such as in [43]), then it still may happen that X/E is analytic3. Even though
analytic spaces posses nice closure properties, our analysis of the interplay be-
tween simulation (bisimulation) and behavioral inclusion (equivalence) required
some features of Borel spaces that analytic ones may fail to have, so introducing
bisimulation from the relation on states does not seem to be worth dealing with

2 Although perhaps an interesting fact, this shall come as no surprise since a similar result holds
for the TSs, where also each bijection is an isomorphism as state spaces of TSs are arbitrary sets.

3 See e.g. the discussion in [40, Section 1] and also [40, Lemma 4.9].



42 Finite-horizon case

SSs over analytic spaces. A possible alternative is to work with relations that are
compact sets: the latter are closed under continuous images much as analytic sets
are. In such case even the theory of relation lifting from the Appendix B.2 is likely
to be simpler yield richer results. This may be an interesting direction to pur-
sue, however the compactness assumption seems to be restrictive – in particular,
compactness of Γ is a kind of continuity assumption on the dynamics of S – so
such investigation goes beyond the scope this work. Let us emphasize that the
arguments above further clarify why do we prefer working with bisimulation de-
fined via relations between states of two systems, rather than via an equivalence
relation on the states of one (e.g. joint) system.

Let us also briefly comment on probabilistic (bi-)similarity via probabilistic ab-
straction maps. Since S E S̄ via f iff S 4 sco S̄ via f , for f to be a probabilistic
abstraction map from S to S̄ the first condition is the same: L̄ ◦ f = L and the
second takes form (f ‖ f∗)(Γ) ⊆ sco Γ̄, or equivalently sco(f ‖ f∗)(Γ) ⊆ sco Γ̄.
There may not be the smallest Γ̄ satisfying the latter condition unless some regu-
larity assumptions are made4, however to study probabilistic bisimulation any Γ̄
for which the equality holds suffice our purposes.

Definition 3.16 The SS S̄ is a minimal probabilistic simulation of S by an abstrac-
tion pair (X̄, f) if L̄ ∈ B(X̄, Y ) is such that L̄ ◦ f = L, and sco Γ̄ = sco(f ‖ f∗)(Γ). In
case Γ̄ = sco(f ‖ f∗)(Γ), we say that S̄ is the largest minimal probabilistic simulation
of S by (X̄, f), and write S̄ = Sp(X̄,f).

Note that any minimal probabilistic simulation S̄ probabilistically simulates S by
definition. Also at least one minimal probabilistic simulation does always exist
for S, e.g. S̄ = Sp(X̄,f). Furthermore, if S̄′ = (X̄, Γ̄′, Y, L̄) is a minimal proba-
bilistic simulation for S via (X̄, f) then necessarily Γ̄′ ⊆ Γ̄ which justifies the name
“largest minimal probabilistic simulation”. Recall that by Corollary B.11 the push-
forward f∗ and sco commute, so Γ̄ = (f ‖ f∗)(sco Γ), however in case X̄ is finite
it is likely to be simpler to characterize and compute a finite-dimensional convex
set sco(f ‖ f∗)(Γ), rather than sco Γ.

The next theorem provides necessary and sufficient conditions for probabilistic
abstraction map to ensure probabilistic bisimilarity in terms of minimality.

Theorem 3.17 If S and S̄ are probabilistically bisimilar via f , then S̄ is a minimal proba-
bilistic simulation of S. In such case S P S̄′ via f for each minimal probabilistic simulation
S̄′. Furthermore, S P Sp(X̄,f) via f iff sco f∗(Γ|x) = sco f∗(Γ|x′) for each (x, x′) ∈ Ef .

Proof: Recall that S and S̄ are probabilistically bisimilar via f iff Γ̄|x̄ ⊆ f∗(sco Γ|x)
for each x̄ ∈ X̄ and x ∈ f−1(x̄), or equivalently sco Γ̄|x̄ ⊆ sco f∗(Γ|x), from which

4 If sco(f ‖ f∗)(Γ) is a compact convex set, then the Choquet-Bishop-de Leeuw theorem [21] im-
plies that sco(f ‖ f∗)(Γ) = scoE where E is a set of extreme points of sco(f ‖ f∗)(Γ). In particular,
E ⊆ Γ̄ whenever sco(f ‖ f∗)(Γ) ⊆ sco Γ̄, so in such case E can be taken to be the smallest candidate
for Γ̄.
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the rest of the proof follows. For example, to show the first part just note that since
S E S̄ via f , sco Γ̄|x̄ ⊇ sco f∗(Γ|x) which leads to sco Γ̄ = sco(f ‖ f∗)(Γ). 2

Similar to the case of exact bisimilarity, the last part of Theorem 3.17 can be used to
define probabilistic bisimilarity through equivalence relations on states. It comes
as no surprise that in general case one still faces the same problems related to quo-
tients of Borel spaces, so we do not pursue this approach to probabilistic bisimi-
larity either.

We conclude the discussion on abstraction maps with an example of constructing
a sound finite abstraction for a given SS S. Consider an abstraction pair (X̄, f)
where X̄ = [0;n] and n ∈ N. For f to be consistent with L it is necessary that
the cardinality of L(X) is less or equal to n + 1, so we assume that S satisfies
this restriction. Note that although S(X̄,f) has a finite state space, it may not be a
finite SS: in most of the cases if S is infinite then so is Γ̄ = (f ‖ f∗)(Γ). To cope
with this issue, as a next step we look for a finite SS on X̄ which probabilistically
simulates S(X̄,f). Recall that S(X̄,f) P sco S(X̄,f), so if we find finite Γ̄′ satisfying
sco Γ̄′ = sco Γ̄, then S̄′ := (X̄, Γ̄′, Y, L̄) would be the desired abstraction since S E
S̄′. One candidate for Γ̄′|i is a set of extreme points of sco Γ̄|i due to [21], however
we may know little about the structure of sco Γ̄|i so such a set may be hard to find.
Needless to say, it may appear to be infinite as well. Due to this reason, instead
of requiring S̄′ to be a minimal probabilistic simulation of S(X̄,f), we look for a
satisfaction of a relaxed condition sco Γ̄′ ⊇ sco Γ̄, where e.g. sco Γ̄′|i is a convex
polytope which covers sco Γ̄|i, so that Γ̄′|i is a finite set of its vertices.

The construction of such polytopes in fact can be done without introducing Γ̄
explicitly, and by using a little information about Γ. Define

l(i, j) := inf
γ∈Γ|x

x∈f−1(i)

f∗γ({j}), u(i, j) := sup
γ∈Γ|x

x∈f−1(i)

f∗γ({j}) i, j ∈ X̄,

and let Γ̄′|i be the set of the vertices of the polytope θn∩
∏n
j=0[l(i, j), u(i, j)], where

θn is the n-dimensional probability simplex as in (A.1). Such procedure have been
proposed for finite autonomous SSs [53, 81] using abstract Markov Chains (AMCs).
Some details of the construction of Γ̄′ for a finite autonomous S can be found in
aforementioned works, and we do not further elaborate on this for the general
case as such abstraction is just sound and only guarantees behavioral inclusion.
In fact, although defining Γ̄′ via l and u is practically feasible, verifying properties
over S̄′ is likely to lead to rather conservative result due to the conservative nature
of l and u. Clearly, although S E S̄′, by no means we shall expect that S P S̄′.
Our main interest concerns approximate notions introduce below, which provide
stronger guarantees. Still, the construction of S̄′ may come handy in some cases,
so we elucidate it on Figure 3.2.
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Figure 3.2: The scheme of the construction of a sound abstraction, and relations
that hold between systems constructed on each step.

3.3 Approximate simulation of SSs

Above we have used the transitivity of 4 to prove the transitivity of E, taking ad-
vantage of the way the latter relation has been defined through sco and4. Bearing
this in mind, we define approximate simulation of SSs in a similar fashion, just in-
stead of convexification we consider an inflation of an SS, which is defined as
follows.

Definition 3.18 Given ε ∈ R+, the ε-inflation of S is given by Sε := (X,Γε, Y, L)
where Γε is defined section-wise by Γε|x := (Γ|x)ε for all x ∈ X .

Notice that Γε is an image of the following set

{(x, p, q) : xΓp and ‖p− q‖ ≤ ε} = (Γ× P(X)) ∩
(
X ×∆ε

dTV

)
under proj02. Since dTV ∈ B(P(X) × P(X)) by Corollary C.14, Γε ∈ A(X × P(X))
and thus Sε is a well-defined SS. Let us show that inflation of SSs preserves simi-
larity as much as sco does by Theorem 3.12.[ii].

Lemma 3.19 If S 4 S̄ via R, then Sε 4 S̄ε via R for all ε ∈ R+.
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Proof: Consider (x, x̄) ∈ R and γ ∈ Γε|x. There exist γ′ ∈ Γ|x and γ̄′ ∈ Γ̄|x̄ such
that ‖γ − γ′‖ ≤ ε and γ′R∗γ̄

′, so by Lemma B.12 there exists γ̄ ∈ Γ̄ε|x̄ satisfying
γR∗γ̄. 2

Before defining approximate simulation of SSs, let us first relate behaviors of S

and Sε. Unfortunately, it is often the case that the behavioral distance between
the original SS and its inflation is maximal, and d≈(S, Sε) = 2 regardless of how
small ε > 0 is. This is due to the reason ≈ compares systems on the infinite time
horizon. The following example supports this statement.

Example 3.20 Consider a simple autonomous SS with only two states: X = {a, b},
Y = X and L = idX . Suppose that Γ(a),Γ(b) ∈ (0, 1)2. It follows that the Markov
Chain corresponding to this SS is ergodic; let α̃ ∈ P(X) denote its unique invariant
distribution [100]. For any function f : Y 2 → R define

Af :=

{
(y0, y1, . . . ) : lim

n→∞

1

n

n−1∑
i=0

f(yi, yi+1) =

∫
Y 2

f(y, y′)Γ(dy′|y)α̃(dy)

}
.

It holds that Qx(Ah) = 1 for any initial distribution α ∈ P(X). For Sε let σ be any
stationary strategy satisfying σ(x) 6= Γ(x) for some x ∈ X . The corresponding Markov
Chain is also ergodic for ε small enough, so let α̃ε be its invariant distribution. Define

Aεf :=

{
(y0, y1, . . . ) : lim

n→∞

1

n

n−1∑
i=0

f(yi, yi+1) =

∫
Y 2

f(y, y′)σ(dy′|y)α̃ε(dy)

}
.

It holds that Qσx(Aεh) = 1 for any initial distribution α ∈ P(X), so choosing f such that∫
Y 2

f(y, y′)Γ(dy′|y)α̃(dy) 6=
∫
Y 2

f(y, y′)σ̃(dy′|y)α̃ε(dy)

we obtain that ‖Qα − Qεα′‖ = 2 for any α, α′ ∈ P(X), hence d≈(S, Sε) = 2.

Remark 3.21 Note that the setAf over which the maximum is achieved for dTV(Qα,Qεα′)
in Example 3.20 is unlikely to be ω-regular5. Thus one may hope that the distance between
measures only over regular or ω-regular events may be less conservative. Unfortunately,
this is not the case. By Lemma C.13 the variation distance between Sα and Sεα′ over
any algebra that generates B(Y N) equals dTV(Sα, Sεα′), so in particular the distance over
acceptance languages of BLTL, which form an algebra, coincides with the total variation.
The same applies to the collection of regular and ω-regular subsets of Y N.

To obtain non-trivial and meaningful results we thus restrict our attention to the
bounded time horizon case. For each n ∈ N define SnL(ΣΓ) :=

(
SL(ΣΓ)

)
�n and

SnL(ΣΓ, α) :=
(
SL(ΣΓ, α)

)
�n to be families of bounded-horizon marginals of all

observation measures and those that start at α ∈ P(X) respectively. We say that
S̄ behaviorally (ε, n)-includes S whenever SnL(ΣΓ) vε SnL̄(ΣΓ̄); in such case we write
S 6εn S̄.

5 See e.g. the discussion in [31], which also provide a different version of a maximizing set.
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Lemma 3.22 For each α ∈ P(X), n ∈ N and ε ∈ R+ it holds that SnL(ΣΓ, α) ≡ε⊗n

SnL(ΣΓε

), and in particular S ≈ε⊗n,n Sε.

Proof: Fix an arbitrary initial distributionα ∈ P(X). Clearly, SnL(ΣΓ, α) ⊆ SnL(ΣΓε

)
so we only have to show that SnL(ΣΓε

) 6εn SnL(ΣΓ, α) for all n ∈ N. Consider some
σ ∈ ΣΓε

and denote p := Pσα. Let us construct σ̄ ∈ ΣΓ such that p̄ := Pσ̄α satisfies
‖p�n −p̄�n ‖ ≤ εn for each n ∈ N: that would imply the desired result. Let us
prove the latter inequality by induction; since it trivially holds for n = 0, assume
that it is true for some n ∈ N. Denote q := 1

2 (p �n +p̄ �n); there exists a kernel
σ′n ∈ B(X|Xn+1) and a set E1 ∈ B(Xn+1) such that σn(ω) = σ′n(ω) for all ω ∈ E1

and such that q(E1) = 1. By definition of Γε and σ′n, for any ω = (x0, . . . , xn) ∈ E1

there exists γ(ω) ∈ Γ|xn
satisfying the inequality ‖σ′n(ω)− γ(ω)‖ ≤ ε. Let us show

that such choice of γ can be done in a universally measurable way. Consider the
set J = J1 ∩ J2 ⊆ Xn+1 × P(X) we have to choose over. Here J1 = Xn × Γ is
analytic, and J2 is an image of the Borel set

{(ω, µ, ν) : µ = σ′n(ω) and ‖µ− ν‖ ≤ ε} = (Gr(σ′n)× P(X)) ∩
(
Xn+1 ×∆ε

dTV

)
under the projection projXn+1×P(X) : (ω, µ, ν) 7→ (ω, ν), hence analytic as well. As
a result, Proposition C.17 applies and we can assume that γ ∈ U(X|Xn+1).

Consider a kernel σ̄′n ∈ B(X|Xn+1) and a set E2 ∈ B(Xn+1) such that σ̄′n(ω) =
γ(ω) for all ω ∈ E2 and such that q(E2) = 1. Define E = E1 ∩ E2 and put
σ̄′n(ω) := σ′n(ω) for all ω /∈ E. Given that ‖p�n −p̄�n ‖ ≤ εn, from [10, Lemma
2] it follows that

‖(p�n ⊗σ′n)− (p̄�n ⊗σ̄′n)‖ ≤ εn+1.

Since q(E) = 1 we obtain that p�n (E) = p̄�n (E) = 1, so in particular p�n ⊗σ′n =
p�n+1. Finally, as Xn×Γ is an analytic l.t.r. it contains a graph of some universally
measurable map. Let σ̄n coincide with that map on Ec and with σ̄′n on E, then
σ̄n ∈ ΣΓ and satisfies ‖p�n+1 − (p̄�n ⊗σ̄n)‖ ≤ εn+1 as desired. 2

We are now ready to define approximate similarity for SS and to show that it is
a sufficient condition for approximate behavioral inclusion on the bounded time
horizon.

Definition 3.23 The SS S̄ ε-simulates S if there exists an l.t.r. R ∈ A(X × X̄) such
that

1. for any x ∈ X there exists x̄ ∈ X̄ satisfying (x, x̄) ∈ R,

2. for any (x, x̄) ∈ R it holds that L(x) = L̄(x̄),

3. for any (x, x̄) ∈ R and γ ∈ Γ|x there exists γ̄ ∈ Γ̄ε|x̄ such that γR∗γ̄.

In such case we say that R is an ε-abstraction relation from S to S̄ and write S �ε S̄.
If in addition S ε-simulates S̄ via R−1, we say that S and S̄ are ε-bisimilar and write
S 'ε S̄.
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Notice that S �ε S̄ iff S 4 S̄ε; this is useful in proofs of the following results.

Theorem 3.24 If the SS S̄ ε-simulates S, then for any α ∈ P(X) there exists ᾱ ∈ P̄(X)

such that SnL(ΣΓ, α) vε,n Sn
L̄

(ΣΓ̄, ᾱ) for all n ∈ N and in particular, S 6εn,n S̄ where

εn := 2(1− (1− ε)n).

Proof: Fix an arbitrary initial distribution α ∈ P(X). Since S 4 S̄ε, by Theorem 3.7
there exists ᾱ ∈ P(X̄) such that SL(ΣΓ, α) v0 SL(ΣΓ̄ε

, α), so in particular it follows
that SnL(ΣΓ, α) v0 SnL(ΣΓ̄ε

, α) for all n ∈ N. To finish the proof of the theorem one
is only left ot us the triangularity of v and the result of Lemma 3.22. 2

Let us elaborate on the properties of � and '.

Theorem 3.25 The following statements hold:

i. �0 is 4 and '0 is ∼;

ii. if S �ε S̄ via R and S̄ �ε̄ Ŝ via R̄, then S �ε+ε̄ Ŝ via R̄ ◦R;

iii. � (') is an ε-preorder (ε-equivalence) on SSY .

Proof: The proof is as follows:

i. This fact immediately follows from the definition.

ii. Lemma 3.19 implies that S̄ε 4 (Q̂ε̄)ε via R̄, and since (Γ̂ε̄)ε ⊆ Γ̂ε+ε̄ we ob-
tain that S̄ε 4 Q̂ε+ε̄ by Theorem 3.12.[i]. The result follows from Theorem
3.12.[iii].

iii. This result follows from [ii].

2

Remark 3.26 One can also define probabilistic ε-simulation by saying that S̄ probabilis-
tically ε-simulates S if Q E S̄ε. Unfortunately, such a relation is not triangular since sco
and ε-inflations do not commute. More precisely, sco(Γε) ⊂ (sco Γ)ε and there exist cases
when such inclusion is strict. Perhaps, for a metric different from TV such operations do
commute, however this goes beyond the scope of the thesis.

The examples above show how to use ε-bisimulation to obtain a solution of the
verification problem for the concrete SS by solving the same problem over its ε-
bisimilar abstraction. Let us now discuss the synthesis problem. Suppose that
over S we are given an initial distribution α ∈ P(X) and an LT specification h ∈
Hn

1 (Y ) to maximize. Since there may not be an optimal strategy, let us also fix
some precision level ε. We would like to find a strategy σ ∈ ΣΓ such that Qσα[h] ≥
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Sα(h)−ε. How this can be done using the relations introduced above. Let us show
that even in case of a exact bisimulation it is not always an easy task.

If S ∼ S̄ via some relation R, then there exists ᾱ ∈ P(X̄) such that Sα(h) = S̄ᾱ(h).
Let σ̄ ∈ ΣΓ be any strategy satisfying Q̄σ̄ᾱ[h] ≥ S̄ᾱ(h) − ε/2. Since in particular
S̄ 4 S, it follows from the proof of Theorem 3.7 that there exist σ′ ∈ Σsco Γ such
that Qσ

′

α = Q̄σ̄ᾱ. Since S(Σsco Γ, α) ≡0 S(ΣΓ, α) by Lemma 3.4, there exists a strategy
σ ∈ ΣΓ such that Qσα[h] ≥ Qσ

′

α [h]+ ε/2, and combining all the inequalities: Qσα[h] ≥
Sα(h) − ε. Note that to construct σ from α, ᾱ and σ̄ we performed the following
two steps:

1. constructed σ′ ∈ Σsco Γ satisfying Qσ
′

α = Q̄σ̄ᾱ as in the proof of Theorem 3.7;

2. constructed σ ∈ ΣΓ satisfying Qσα[h] ≥ Qσ
′

α [h]− ε/2.

The procedure in the first step is “constructive” in the sense that in the proof of
Theorem 3.7 one inductively applies Lemma C.21 which provides an analytic ex-
pression for σ′n. However, such construction is rather complicated and is unlikely
to be applicable in practice, at least since as a part if its procedure it requires com-
puting conditional distributions of abstract trajectories given concrete trajectories.
Moreover, even if the abstract strategy σ̄ is Markov, stationary or uniformly ε-
optimal, the corresponding σ′ may not satisfy any of these properties. The use of
aforementioned conditional distributions may turn Markov or stationary strategy
into a history-dependent one, and dependence on α may compromise uniform
ε-optimality. The second step is even harder .

Perhaps, one can avoid decomposing the problem into two steps as above, and
given σ̄ ∈ ΣΓ̄ directly construct σ ∈ ΣΓ satisfying Qσα[h] ≥ Q̄σ̄ᾱ[h] − ε/2 as such
strategy does always exist. At the same time, we are not aware of any such direct
method which would significantly differ from the procedure above, and it is un-
likely that such a method would be of practical importance. Due to this reason,
we focus again on abstraction maps and provide a neat construction of σ for a
given σ̄.

As a motivational example, suppose that S 4 S̄ via Gr(f)−1 for some f . Given
an abstract strategy σ̄ ∈ ΣΓ̄ we can “imitate” it over the concrete SS as follows.
If the the current state history is (x0, . . . , xn), the corresponding abstract history
is f(x0, . . . , xn) and hence the distribution γ̄ = σ̄n(f(x0, . . . , xn)) is chosen over
the abstraction. To match it, over the concrete system we choose any distribution
γ ∈ Γ|xn

satisfying γ̄ = f∗γ: it always exists since S̄ 4 S. Intuitively, such choice
shall generate same observation measure over the concrete system as σ̄ generates
over the abstraction. Before we prove this, let us show that such choice can be
made dependent only on xn and γ̄ in a formal and consistent way. We do this via
a concept of a refinement map.

Definition 3.27 If the SS S ε-simulates S̄ via Gr(f)−1 for some f ∈ B(X, X̄), we say
that rf : X × P(X̄) → P(X) is an ε-refinement map for f if for each x ∈ X and
γ̄ ∈ Γ̄|f(x) it holds that rf (x, γ̄) ∈ Γ|x and there exists γ′ such that dTV(rf (x, γ̄), γ′) ≤ ε
and f∗γ′ = γ̄.
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The existence of an ε-refinement map follows from the definition of approximate
simulation, however not any such map serves out purposes well. Since it is ought
to be used in the construction of strategies, we want it to be at least universally
measurable.

Lemma 3.28 If the SS S ε-simulates S̄ via Gr(f)−1 for some f ∈ B(X, X̄), then there
exists a universally measurable ε-refinement map.

Proof: Conditions an ε-refinement map has to satisfy lead to the following choice
set:

A = {(x, γ̄, γ′, γ) : (x, γ) ∈ Γ, dTV(γ, γ
′) ≤ ε, γ̄ = f∗γ

′}

which is analytic as an intersection of analytic sets: Γ is analytic, dTV and f∗
are Borel maps. Define A′ := proj124(A), so that rf is an ε-measurable map iff
rf (x, γ̄) ∈ A′|(x,γ̄) for each x ∈ X and γ̄ ∈ Γ̄|f(x). Since A′ is a projection of an
analytic map, it is analytic as well, so that Proposition C.17 applies. 2

Given an ε-refinement map rf ∈ U(P(X)|X×P(X̄)), we define its action on strate-
gies R : ΣΓ̄ → ΣΓ for each x0, . . . , xn ∈ X , n ∈ N and σ̄ ∈ ΣΓ̄ as follows:

(Rf σ̄)n(x0, . . . , xn) := rf (xn, σ̄n(f(x0, . . . , xn))).

The following theorem characterizes the main property of the refinement maps.

Theorem 3.29 Suppose that the SS S ε-simulates S̄ via Gr(f)−1 for some f ∈ B(X, X̄),
and consider any ε-refinement map rf ∈ U(P(X)|X × P(X̄)). For each σ̄ ∈ ΣΓ̄, ᾱ ∈
P(X̄) and any α ∈ P(X) such that f∗α = ᾱ, the ε-refined strategy σ = Rf σ̄ ∈ ΣΓ

satisfies ∥∥(f∗P
σ
α)�n −

(
P̄σ̄ᾱ
)
�n
∥∥ ≤ ε⊗n, ∀n ∈ N. (3.3)

Proof: The idea of the proof is the following: since S̄ 4 Sε, we can construct a
strategy σ′ ∈ ΣΓε

such that f∗Pσ
′

α = P̄σ̄ᾱ. Although Lemma 3.22 further implies
the existence of σ′′ ∈ ΣΓ such that ‖(Pσ′α )�n −(Pσ

′′

α )�n ‖ ≤ ε⊗n for all n ∈ N, the
question is whether σ can be taken as an instance of such σ′′: in this case (3.3)
would follow immediately.

To formalize the idea above, denote pn := Pσα�n and p̄n := P̄σ̄ᾱ�n for each n ∈ N.
Let us show that there exists a measure p′ ∈ P(XN) such that p′n := p′�n satisfies
p′n = f∗p̄n and ‖pn − p′n‖ ≤ ε⊗n. The proof is done by induction: for n = 0 one
just takes P′0 = α. Suppose we have constructed p′n with the desired properties for
some n ∈ N. There exists a set E ∈ B(Xn+1) and a kernel σ′n ∈ B(X|Xn+1) such
that p′n(E) = 1 and such that σn(ω) = σ′n(ω) for all ω ∈ E. From Lemma C.21 and
the definition of an ε-refinement map it follows that there exists κ ∈ U(X|Xn+1)
such that f∗(p′n⊗κ) = p̄n+1 and such that ‖κ(ω)−σn(ω)‖ ≤ ε for all ω ∈ E. Hence
p′n+1 := p′n ⊗ κ satisfies f∗p′n+1 = p̄n+1, and also by Lemma C.19 we obtain that
‖p′n+1 − pn+1‖ ≤ ε⊗(n+1) as desired. 2
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Corollary 3.30 Suppose that the SSs S and S̄ are ε-bisimilar via Gr(f) for some f ∈
B(X, X̄), and consider some h ∈ Hn

1 (Y ) and α ∈ P(X). If σ̄ ∈ ΣΓ̄ is (ε̄, f∗α)-optimal
for h, then Rf σ̄ is (ε̄+ 2ε⊗n, α)-optimal for h. In particular, if σ̄ is uniformly ε̄-optimal
for h, then Rf σ̄ is uniformly (ε̄+ 2ε⊗n, α)-optimal for h.

Proof: Denote σ := Rf σ̄. Since S ε-simulates S̄ via Gr(f)−1, Theorem 3.29 implies
that

(Qσα)�n [h] ≥
(
Q̄σ̄f∗α

)
�n [h]− ε⊗n ≥ S̄f∗α(h)− ε̄− ε⊗n ≥ Sα(h)− ε̄− 2ε⊗n,

so that σ is (ε̄+ 2ε⊗n, α)-optimal for h as desired. 2

In Section 3.2 we have seen that exact and probabilistic (bi-)simulations via ab-
straction maps, as opposed to general abstraction relations, posses some nice prop-
erties. Theorem 3.29 further shows that abstraction maps are also useful for the
solution of the synthesis problem, whereas even exact bisimilarity via general ab-
straction relation only allows for a refinement procedure which is difficult to im-
plement in practice. For this reason, let us discuss approximate (bi-)simulation in
terms of abstraction maps.

One of the properties probabilistic (bi-)simulations via abstraction maps have is
minimality. This property allows for necessary and sufficiency conditions for ex-
act and probabilistic bisimilarity given only the abstraction pair (X̄, f), without
Γ̄ specified. Provided such conditions are satisfied, one can take any minimal
Γ̄, which is also unique for exact bisimulation. Clearly, the ε-inflation is neither
idempotent, unlike sco, not does it have an inverse operation. For example, f is
an ε-abstraction map from S to S̄ iff (f ‖ f∗)(Γ) ⊆ Γ̄ε, but it is by no means clear
how to define minimality here in such a way that if S and S̄ are ε-bisimilar via
f , then S̄ is necessary minimal. Due to the reasons, for purposes of approximate
bisimilarity we introduce the following object.

Definition 3.31 An abstraction triple for S is an abstraction pair (X̄, f) together with
an l.t.r. D ∈ A(X × P(X)). The abstraction triple (X̄, f,D) is said to be regular
whenever D|x = D|x′ for each (x, x′) ∈ Ef . The candidate approximate abstraction
of S by the abstraction triple (X̄, f,D) is an SS S(X̄,f,D) = (X̄, Γ̄, Y, L̄) where L̄ ∈
B(X̄, Y ) is a unique map satisfying L̄ ◦ f = L, and Γ̄ := (f ‖ f∗)(D).

Note that the “discretization” set D in Definition 3.31 is not required to be a sub-
set of the concrete stochastic relation Γ. The simplest case when it can be useful
is given by autonomous SSs: often Γ(x) 6= Γ(x′) whenever x 6= x′, however these
distributions may be close enough for us to want x to represent x′ in an abstrac-
tion. Note also that the minimal abstraction is a special case of the candidate
approximate abstraction given by the choice D = Γ. Notice that S ' S(X̄,f,D) via
f iff

(f ‖ f∗)(Γ) ⊆ ((f ‖ f∗)(D))
ε
, (f ‖ f∗)(D)|x̄ ⊆

⋂
x∈f−1(x̄)

f∗(Γ
ε|x) ∀x̄ ∈ X̄.

(3.4)
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This formulation allows us providing sufficient conditions for ε-bisimilarity.

Theorem 3.32 For any regular abstraction triple (X̄, f,D) it holds that

d'
(
S, S(X̄,f,D)

)
≤ sup
x∈X

dH (D|x,Γ|x) .

Proof: It is equivalent to show that if dH(D|x,Γ|x) ≤ ε for each x ∈ X , then
S 'ε S(X̄,f,D) via f . We have f∗(D|x) ⊆ (f∗(Γ|x))ε and f∗(Γ|x) ⊆ (f∗(D|x))ε for
each x ∈ X , and in particular f∗(Γ|x) ⊆ (f∗(D|x))ε, so S �ε S(X̄,f,D) via f . To
show the converse direction, note that (f ‖ f∗)(D)|x̄ = f∗(D|x) ⊆ f∗(Γ

ε|x) for
every x̄ ∈ X̄ and x ∈ f−1(x̄), hence (3.4) holds and S 'ε S(X̄,f,D) via f . 2

To give a more specific example, consider some m,n ∈ N and a pointed partition
(Xi, xi)i∈[0;n] of X consistent with L, together with a collection of distributions
(γij)i∈[0;n],j∈[0;m] such that γij ∈ Γ|xi

for all i ∈ [0;n] and j ∈ [0;n].

Corollary 3.33 Consider an arbitrary metric dX onX , and suppose that for all i ∈ [0;n]:

Γ ∈ Lipβi
((Xi, dX), (P(X), dTV)) and Γ|xi

⊆
(⋃

j∈[0;m] γij

)εi
. Then

d'
(
S, S(X̄,f,D)

)
≤ max
i∈[0;n]

(εi + βi · diamdX (Xi))

where X̄ = [0;n], f is the natural projection and D =
⋃
i∈[0;n]Xi × (

⋃
j∈[0;m] γij).

Proof: The result follows directly from Theorem 3.32. 2

Let us also show that introduced notions of (bi-)simulation are compositional.

Definition 3.34 The product of two SSs S1 = (X1,Γ1, Y1, L1) and S2 = (X2,Γ2, Y2, L2)
is a SS S1 × S2 given by (X1 ×X2,Γ1 × Γ2, Y1 × Y2, L1 × L2).

Theorem 3.35 Denote R := R1 ×R2. It holds that

i. if S1 4 S̄1 via R1 and S2 4 S̄2 via R2, then (S1 × S2) 4 (S̄1 × S̄2) via R;

ii. if S1 E S̄1 via R1 and S2 E S̄2 via R2, then (S1 × S2) E (S̄1 × S̄2) via R;

iii. if S1 �ε1 S̄1 via R1 and S2 �ε2 S̄2 via R2, then (S1× S2) �ε1⊗ε2 (S̄1× S̄2) via R.

Proof: Recall that (x1, x2, x̄1, x̄2) ∈ R iff (x1, x̄1) ∈ R1 and (x2, x̄2) ∈ R2. Thus,
R is an l.t.r. whenever R1 and R2 are, and L1(x1) = L̄1(x̄1), L2(x2) = L̄2(x̄2)
for all (x1, x2, x̄1, x̄2) ∈ R. Due to this reason, we only need to check the second
condition of similarity in each of the cases. Fix (x1, x2, x̄1, x̄2) ∈ R and denote
x := (x1, x2), x̄ := (x̄1, x̄2), Γ = Γ1 × Γ2 and Γ̄ = Γ̄1 × Γ̄2. Consider any γ ∈ Γ|x,
that is γ = (γ1, γ2) where γi ∈ Γi|xi for i = 1, 2.
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i. There exist γ̄i ∈ Γ̄i|x̄i
such that γi(Ri)∗γ̄i for i = 1, 2, and hence γR∗γ̄ where

γ̄ = (γ̄1, γ̄2).

ii. There exist γ̄i ∈ sco Γ̄i|x̄i such that γi(Ri)∗γ̄i for i = 1, 2. Further, (γ̄1, γ̄2) ∈
sco(Γ̄1|x̄1 × Γ̄2|x̄2). and hence γR∗γ̄ where γ̄ = (γ̄1, γ̄2).

iii. There exist γ̄i ∈ (Γ̄i|x̄i
)εi such that γi(Ri)∗γ̄i for i = 1, 2. By Lemma C.19,

(γ̄1, γ̄2) ∈ (Γ̄1|x̄1
× Γ̄2|x̄2

)ε1⊗ε2 .

2

Corollary 3.36 d'(S1 × S2, S̄1 × S̄2) ≤ d'(S1, S̄1)⊗ d'(S2, S̄2).

Proof: The proof follows immediately from Theorem 3.35. 2

3.4 Theory for MDPs

Above we have developed a theory of exact and approximate (bi)simulations for
SSs. As we have mentioned in the beginning of Section 2.3, the results we obtained
are likely to be applicable also in other modelling frameworks that have similar
syntax and semantics. To support this statement, here we provide an interpre-
tation of the above theory over the MDPs, perhaps the most popular stochastic
control model. We also hope that the MDP framework elucidates technical expo-
sition of the theory for SSs. A particular version of the MDP model we consider
here is inspired by [20] and have been previously studied in [137, 138].

Definition 3.37 A Markov Decision Process (MDP) is a tuple M = (X,U,K, τ, Y, L)
where X,U and Y are Borel spaces, K ∈ A(X × U) is an l.t.r., τ ∈ B(X|X × U) and
L ∈ B(X,Y ). We say that X is the state space, U is the action space, K is the
feasibility set, τ is a transition kernel, Y is the output space and L is the output map
of M. The MDP M is said to be finite if the set K is finite, otherwise the MDP M is
called infinite. The set of all MDPs with the output space Y is denoted by MDPY . If K|x
contains exactly one element for each x ∈ X , we denote it by K(x), and τ(x,K(x)) by
τ(x), and say that the MDP M is autonomous.

Unless the contrary is specified, we assume the MDP M = (X,U,K, τ, Y, L) to
be given and fixed. The evolution of M shall be understood as follows: given
a current state xn we observe its output yn = L(xn) and choose some feasible
action un ∈ K|xn , the successor state is distributed according to τ(xn, un). This
is very similar to the case of SSs, the only difference is that instead of choosing
the distribution of the successor state γn directly, we first choose the action un and
then obtain γn as τ(xn, un). Thus, one can think of the set U as and indexation or
parametrization of the successor distributions. This is particularly important for
infinite system: for them Γ is rarely given directly in practice, as it would require
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specifying sets of probability measures over uncountable Borel spaces. The latter
task is often done through parametrization in one way or another, so one can think
of MDPs as practically useful representations of SSs. For finite models there is no
such problem: there are only finitely many measures to index; in fact, finite MDPs
are sometimes defined as SSs, see e.g. [89, Definition 1].

The fact that the choice of the successor distribution is done directly in SSs and in
a parameterized way in MDPs constitute to the main difference between them6.
Following the previous paragraph, it is thus natural to define for a each MDP M

the corresponding SS as S(M) = (X,Γ, Y, L) where Γ|x :=
⋃
u∈K|x τ(x, u) for each

x ∈ X . This SS is well-defined since

Γ := projX×P(X)

(
Gr(τ) ∩ (K × P(X))

)
is an analytic set whenever K is. Note that the map S : MDPY → SSY is not in-
jective, that is different MDPs can generate the same SSs. Yet, it is a surjective
map since each SS S = (X,Γ, Y, L) can be also expressed as an MDP M(S) =
(X,P(X),Γ,projP(X), Y, L). The map M : SSY → MDPY is injective, but not sur-
jective since its range does contain MDPs with U 6= P(X); it further holds that
S ◦ M = idSSY . We call S the embedding map; below it is used to pull back
(bi)simulation relations on MDPY from SSY .

Similarly to TSs and SSs above, the LT semantics of MDPs is introduced by means
of the sequential decision rules.

Definition 3.38 A policy for the MDP M is a sequential decision rule π = (πn)n∈N,
where the map πn ∈ U(Xn, U) is such that πn(x0, . . . , xn) ∈ K|xn

for each xi ∈ X ,
i ∈ [0;n] and n ∈ N. The set of all such policies we denote by ΠK .

We use the term “policy” for MDPs to distinguish them from strategies used for
SSs: we comment more on this slightly later. By Proposition C.17 there does al-
ways exist at least one policy since K is an analytic set. Moreover, if M is an
autonomous MDP, then K is a graph of a Borel map7. Given any initial distribu-
tion α ∈ P(X) and a policy π ∈ ΠK there exists a unique probability measure
p ∈ P(XN) satisfying

p�0= α,
d(p�n+1)

d(p�n)
= τ(projn, πn) (p�n -a.s.) ∀n ∈ N. (3.5)

We denote this measure by Pπα and also call it a strategic measure. The sets of
all strategic measures and those that start at α ∈ P(X) are denoted by S(ΠK) and
S(ΠK , α) respectively. Clearly, here S(ΠK) :=

⋃
α∈P(X) S(ΠK , α). To each strategic

measure Pπα ∈ S(ΠK) there corresponds an observation measure Qπα := L∗P
π
α. We

further denote by SL(ΠK) := L∗(S(ΠK)) and SL(ΠK , α) := L∗(S(ΠK , α)) sets of

6 In fact, MDP and GM are equally expressible [136].
7 Due to this fact, autonomous MDPs are exactly the models known in the literature under the

names general Markov Chains [112] or discrete-time Markov processes [134].
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all observation measures, and those initiated at α respectively. We treat observa-
tion measures as behaviors of MDPs and introduce the following functional

Mα(h) := sup
q∈SL(ΠK ,α)

q[h], α ∈ P(X), h ∈ bU(Y N).

For each n ∈ N we further define SnL(ΠK) :=
(
SL(ΠK)

)
�n and SnL(ΠK , α) :=(

SL(ΠK , α)
)
�n to be families of bounded-horizon marginals of all observation

measures and those that start at α ∈ P(X) respectively.

Equipped with the notion of behaviors for MDPs, we can now define approxi-
mate behavioral inclusion and equivalence directly, as we have done for SSs in
Section 2.4. We can also go further and introduce various (bi)simulation rela-
tions over MDPs, and then try to show that they imply their behavioral coun-
terparts. Of course this does not make much sense as we have planned to use
the results obtained above, rather than to redevelop them over the new modelling
framework. For this purpose, below we define approximate behavioral inclusion,
equivalence and exact, probabilistic or approximate (bi)simulation relations on
MDPY by pulling them back from SSY along S; in particular, all the properties of
these relations are preserved (see Appendix A.4).

Let us emphasize why is that fine to pull relations back from SSs to MDPs, and
why it would not work for TSs. For example, we can define another embedding
map T : MDP′Y → TSY by T(M) := (X,T, Y, L), where the transition relation is
given by

T |x = {x′ ∈ X : τ({x′}|x, u) > 0} x ∈ X,

where MDP′Y is a collection of all finite MDPs8. As a result, the transition from x
to x′ is allowed in T(M) iff it can happen with some non-zero probability in M,
that is T(M) contains all “possible” transitions of M. One can say that the map T
“forgets” the probabilistic structure of MDPs9. Using the map T we can pull back
e.g. exact behavioral inclusion and equivalence or exact (bi-)simulation from TSY
to MDP′Y and obtain well-defined relations over the latter modelling framework.
Moreover, defined in such way (bi)simulation and behavioral inclusion (equiva-
lence) would be consistent for finite MDPs, that is the former would be a stronger
relation than the latter10. However, such behavioral equivalence would not be nat-
ural for MDPs and would not be strong enough in the following sense. Consider
another MDP M̄ := (X̄, Ū , K̄, τ̄ , Y, L̄). In case M and M̄ are finite we could say
that they are behaviorally equivalent iff T(M) ≈0 T(M̄), however it may happen
that for some α ∈ P(X) there does not exist ᾱ ∈ P(X̄) such that Mα = M̄ᾱ as the
next example shows.

Example 3.39 Suppose that M and M̄ are finite autonomous MDPs given as follows:
X = X̄ := {a, b, c} with U := {0}, K := X × U , Y := {A,B,C} and L(a) := A,
L(b) := B, L(c) := C. Suppose further that their transition kernels are given by τ(a) =

8 We cannot define T as above for all MDPs since it may happen that T is not an l.t.r. if M is infinite.
9 This statement can be made more formal by treating T as a functor between two categories, e.g. if

one treats MDPs and TSs as coalgebras (see Appendix B), so that T would be a forgetful functor.
10 Such version of bisimulation for PTSs was introduced in [91].
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2} and τ(b) = τ̄(b) = {0, 1, 0}, τ(c) = τ̄(c) = {0, 0, 1}.

Note that T(M) = T(M̄): all the systems are depicted on Figure 3.3. Consider h being
an indicator of the event {y0 = A, y1 = C} and let α = δ(a), then Mα(h) = 2

3 , but
M̄ᾱ(h) ≤ 1

2 for all ᾱ ∈ P(X).
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(b) The MDP M̄.
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(c) The TS T(M) = T(M̄).

Figure 3.3: Example of two finite autonomous SSs.

To summarize, we could always pull back relations defined over one modelling
framework to another as long as we have an embedding map from the latter to
the former, however such induced relations may fail to be useful or natural. This
issue can be caused e.g. by a “forgetting” structure of the embedding map used, as
it happens for T : MDP′Y → TSY . Although the map S : MDPY → SSY has forgetting
features as well since it eliminates action spaces and transition kernels from the
model syntax, it still serves well our purposes due to the following fact:

S(M)α = Mα ∀α ∈ P(X) (3.6)

for any M ∈ MDPY . For models with quantitative semantics, (3.6) can be thought
of a sufficient condition on an embedding map to pull back behavioral relations to
the desired ones. As a trivial example, T does not satisfy (3.6) even if one considers
only deterministic initial conditions. The identity (3.6) says that essentially MDPs
and SSs (or GMs) are equally expressive models: this have been first shown for
some versions of these modelling frameworks in [24], and [136] extended this
result to our current setting in particular. As a result, due to (3.6) we can pull back
the relations defined for SSs to MDPs in such a way that they provide us desired
behavioral properties. At the same time, since one of the goals of this section is to
provide clarifying examples to the above theory, we give explicit definitions.

Definition 3.40 The MDP M̄ behaviorally ε-includes M if for any α ∈ P(X) there
exists ᾱ ∈ P(X̄) such that SL(ΠK , α) vε SL̄(ΠK̄ , ᾱ), that is

Mα(h) ≤ M̄ᾱ(h) + ε ∀h ∈ bU1(Y N).
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In such case we write M 6ε M̄. MDPs M and M̄ are behaviorally ε-equivalent if for
any initial distribution α ∈ P(X) (ᾱ ∈ P(X̄)) there exists ᾱ ∈ P(X̄) (α ∈ P(X)) such
that SL(ΠK , α) ≡ε SL̄(ΠK̄ , ᾱ); in such case we write M ≈ε M̄.

The MDP M̄ behaviorally (ε, n)-includes M whenever SnL(ΠK) vε Sn
L̄

(ΠK̄); in such
case we write S 6εn S̄. MDPs M and M̄ are behaviorally (n, ε)-equivalent if for any
initial distribution α ∈ P(X) (ᾱ ∈ P(X̄)) there exists ᾱ ∈ P(X̄) (α ∈ P(X)) such that
SnL(ΠK , α) ≡ε SnL̄(ΠK̄ , ᾱ); in such case we write M ≈εn M̄.

As we have mentioned, by (3.6) approximate behavioral inclusion and equiva-
lence for MDPs per Definition 3.40 are exactly pullbacks of their SS counterparts.
Hence, M 6ε M̄ (M ≈ε M̄) iff S(M) 6ε S(M̄) (S(M) ≈ε S(M̄)). Let us now
proceed to the definition of (bi)simulations for MDPs.

Definition 3.41 Consider MDPs M and M̄ and suppose there exists an l.t.r. R ∈ A(X×
X̄) such that L(x) = L̄(x̄) for all (x, x̄) ∈ R.

• We say that M̄ simulates M via R, and write M 4 M̄, if for any (x, x̄) ∈ R and
u ∈ K|x there exists ū ∈ K̄|x̄ such that τ(x, u)R∗τ̄(x̄, ū). If in addition M̄ 4 M

via R−1, we say that M and M̄ are bisimilar. In such case we write M ∼ M̄.

• We say that M̄ probabilistically simulates M via R, and write M E M̄, if for any
(x, x̄) ∈ R and u ∈ K|x there exists ν̄ ∈ P(U) such that ν(K|x̄) = 1 and such
that τ(x, u)R∗

∫
τ̄(x̄, ū)ν̄(dū). If in addition M̄ EM via R−1, we say that M and

M̄ are probabilistically bisimilar. In such case we write M P M̄.

• We say that M̄ ε-simulates M via R, and write M � M̄, if for any (x, x̄) ∈ R and
u ∈ K|x there exists ū ∈ K̄|x̄ and γ̄ ∈ P(X̄) such that dTV(τ̄(x̄, ū), γ̄) ≤ ε and
such that τ(x, u)R∗γ̄. If in addition M̄ � M via R−1, we say that M and M̄ are
ε-bisimilar. In such case we write M ' M̄.

Again, exact (probabilistic, approximate) simulation and bisimulation relations
for MDPs are exactly the pullbacks of the corresponding relations over SSs. Since
pullback of relations preserves properties of reflexivity, symmetry, transitivity,
monotonicity and triangularity, we obtain the following result.

Theorem 3.42 Over MDPY it holds that

i. 4 and E (∼ and P) imply 60 (≈0);

ii. 4 and E (∼ and P) are preorders (equivalences);

iii. for each ε ∈ R+ and n ∈ N, �ε ('ε) imply 6ε⊗n,n (≈ε⊗n,n) ;

iv. � (') is an ε-preorder (ε-equivalence);
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Recall that whenever two SSs S and S̄ are ε-bisimilar, one can use S̄ to solve synthe-
sis problems over S by means of refinement maps (cf. Definition 3.27). A similar
result applies to MDPs, however we cannot use refinement maps directly in this
setting since any refinement map returns a successor distribution rather than an
action. Although the former is sufficient to define a strategy over an SS, the lat-
ter is needed to construct a policy over an MDP. For this reason, we introduce a
related concept of an interpolation map.

Definition 3.43 If the MDP M ε-simulates M̄ via Gr(f)−1 for some f ∈ B(X, X̄), we
say that if : X × Ū → U is an ε-interpolation map for f if τ ◦ (projX ×if ) is an ε-
refinement map for f . That is, for each x ∈ X and ū ∈ K̄|f(x) it holds that if (x, ū) ∈ K|x
and there exists γ′ such that dTV(τ(x, if (x, ū)), γ′) ≤ ε and f∗γ′ = τ̄(f(x), ū).

The next result shows that there always exists a measurable interpolation map.

Proposition 3.44 If the MDP M ε-simulates M̄ via Gr(f)−1 for some f ∈ B(X, X̄),
then there exists a universally measurable ε-interpolation map.

Proof: Just notice that an ε-interpolation map has to choose over

A = {(x, u, γ, γ′, ū, γ̄) : (x, u) ∈ K, γ̄ = τ(f(x), ū), γ̄ = f∗γ
′, γ = τ(x, ū), dTV(γ, γ

′) ≤ ε}

which is an analytic set. 2

Finally, let us provide a procedure to build a finite ε-bisimilar abstraction for a
given concrete system. With focus on the MDP M consider some m,n ∈ N and
a pointed partition (Xi, xi)i∈[0;n] of X consistent with L. For each i pick con-
trol actions (uij)i∈[0;n],j∈[0;m] such that uij ∈ Γ|xi for all i ∈ [0;n] and j ∈ [0;n].
The abstraction MDP is M̄ = ([0;n], [0;m], K̄, τ̄ , Y, L̄) where K̄ := [0;n] × [0;m],
τ̄({i′}|i, j) := τ(Xi′ |xi, uij) and L̄(i) := L(xi) for all i, i′ ∈ [0;n] and j ∈ [0;m].

Proposition 3.45 Consider arbitrary metrics dX and dU on X and U respectively, and
let dX×U be the product metric. Suppose that for all i ∈ [0;n]: K ∈ Lipβi

((Xi, dX), (U, dU )),

K|xi
⊆
(⋃

j∈[0;m] uij

)εi
and τ ∈ Lipρi((Xi × U, dX×U ), (P(X), dTV)). Then

d' (M, m̄) ≤ max
i∈[0;n]

ρi · (εi + (1 ∨ βi) · diamdX (Xi)) .

Proof: The result follows directly from Corollary 3.33. 2

Lipschitz continuity of the transition kernel τ in Proposition 3.45 can be estab-
lished based on the following sufficient condition.

Proposition 3.46 Suppose that τ admits an integral representation τ(x, u) = t(x, u, x̃)µ(x̃)
where t ∈ B(X × U ×X) and µ is some positive σ-finite Borel measure on X . If

|t(x, u, x̃)− t(x′, u′, x̃)| ≤ ri(x̃)dX×U ((x, u), (x′, u′))
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for all x, x′ ∈ Xi, u ∈ U , x̃ ∈ X and some ri ∈ B(X) and metric dX×U on X × U , then
τ ∈ Lipρi((Xi × U, dX×U ), (P(X), dTV)) where ρi =

∫
X
ri(x̃)µ(x̃).

Proof: For any f ∈ bU1(X) we obtain that

|τ(x, u)[f ]− τ(x′, u′)[f ]| =
∣∣∣∣∫
X

f(x̃) (t(x, u, x̃)− t(x′, u′, x̃))µ(dx̃)

∣∣∣∣
≤
∫
X

|f(x̃)| · |t(x, u, x̃)− t(x′, u′, x̃)|µ(dx̃)

≤
∫
X

ri(x̃)dX×U ((x, u), (x′, u′))µ(dx̃)

≤ ρi · dX×U ((x, u), (x′, u′)),

and since f is arbitrary, dTV(τ(x, u), τ(x′, u′)) ≤ ρi · dX×U ((x, u), (x′, u′)). 2

3.5 Comments on approximate stochastic bisimulation

Some historical remarks regarding (bi-)simulation for TSs can be found in [17, Sec-
tion 7.10], which in particular states that these notions are originated from [101].
Similarly, [17, Section 10.8] provides some bibliographical notes regarding (bi-
)simulation for probabilistic systems. We discuss the latter topic in some detail
here as well.

There are two approaches used when defining (bi-)simulations for different mod-
els. The first one is to define (bi-)simulation directly as relation between systems:
we refer to this approach as system-based. This approach is the one used in our
thesis, see e.g. Definition 3.5. Alternatively, one can define (bi-)simulation as a re-
lation between states of a single system. In such case, one then says that systems
A and B are (bi-)similar if their initial states are (bi-)similar as states over a “joint”
system A∪B, which is defined in some intuitive way. We call such approach here
state-based, see e.g. [43] for clarifying examples. Within the state-based approach it
is often required that (bi-)simulation is a preorder (equivalence) on states, which
casts the corresponding relation between systems being a preorder (equivalence)
as well.

Clearly, the system-based approach to the definition of (bi-)simulation is more
general: given a state-based (bi-)simulation one can always define a correspond-
ing relation between systems, by relating their initial state over a joint system.
However, it may happen that some system-based version of (bi-)simulation does
not allow for a suitable state-based analogue. For example, exact and probabilis-
tic bisimulations for SSs from Definitions 3.5 and 3.16 have natural state-based
versions discussed after Theorems 3.15 and 3.17, however if two SSs are bisimilar
via some analytic relation R, there may not exist a corresponding Borel relation E

over a joint system. Yet, for some syntaxes of systems such as TSs and finite SSs
the two approaches are equivalent.
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The paper [90] was among the first works on equivalence relations for probabilis-
tic systems, and in particular proposed a state-based version of bisimulation for
PTSs through partitioning. That is, two states of a PTS were said to be bisimi-
lar whenever their associated transition probabilities coincided over each equiv-
alence class. Such procedure is hard to generalize for non-symmetric relations,
so a follow-up work [75] introduced state-based simulation for PTSs by lifting
relations from states to measures. It also showed that a version of bisimulation
defined through such lifting is equivalent to the one defined through partitioning
in [90]: this result is an analogue of Theorem 3.15 here. Since PTSs were not given
explicit semantics, one could not say that (bi-)simulation implies behavioral inclu-
sion (equivalence) as no notion of behaviors was introduced. Due to this reason,
[90] and [75] only showed that proposed versions of (bi-)simulation preserve a
certain limited class of properties, such as testing.

This theory was enriched by the work [114] which introduced a model of prob-
abilistic automaton (PA). The PA model is similar to the MDP one and resolves
non-determinism by means of policies (called schedulers in [114]), and is thus en-
dowed with the conventional quantitative semantics11. The paper [114] defined
system-based (bi-)simulation for PAs via a familiar method of relation lifting12.
Furthermore, it also proposed a notion of probabilistic (bi-)simulation and showed
that both exact and probabilistic versions preserve PCTL properties. A somewhat
stronger result, even though only for finite autonomous SSs, was obtained in [16]
which showed that bisimulation preserves PCTL∗ properties, and thus implies
behavioral equivalence.

Let us give some details regarding probabilistic (bi-)simulation from Definition
3.10. Here we generalize the concept introduced in [114] to general SSs via the
operation of sco, whereas in the original work probabilistic (bi-)simulation was
defined using “mixed” transitions as much as we have had to do this for MDPs
in Definition 3.41 using an auxiliary measure ν. Note that a name “probabilistic
bisimulation” also appears in [90], but it has a different meaning. In fact, “proba-
bilistic bisimulation” of [90] is just what we call here a bisimulation for probabilis-
tic systems, whereas a “bisimulation” there was defined as a coarser relation that
obtained by interpreting PTSs as TSs – see the Appendix A.4 for the details.

It was well-understood that a complex system rarely admits a bisimilar one which
is much simpler. For this reason, to solve verification problems over concrete
systems [35] proposed the following abstraction procedure for discrete SSs. One
starts with an abstraction which simulates the concrete system. Such abstraction
is assumed to be obtained by partitioning the state space of the concrete system;
by refining such partition, one improves the quality of abstraction in a certain
sense. This procedure was developed to provide bounds on maximal and mini-
mal reachability probabilities for discrete MDPs. A similar method for finite au-
tonomous SSs was proposed in [53] which used the concept of abstract Markov

11 In fact, the semantics of PAs is richer than that of MDPs as it allows for two kinds of non-
determinism, of which one is resolved as adversarial, and hence is close to stochastic zero-one games
[89].

12 The paper is written in a technically cumbersome language as it introduces a new probability
space for each probability measure it considers. To follow its ideas in an easy way, one shall abstract
away all but a probability measure whenever a probability space is mentioned in [114].
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Chains (AMCs): an AMC is a representation of SSs where one is only given mini-
mal and maximal probabilities of going from one state to another. The latter work
proposed an abstraction procedure similar to the one on Figure 3.2, and used the
fact that Γ set of an SS obtained from an AMC consists of convex polytopes, and
hence one can deal just with a finite set of their extreme points. This procedure
was further elaborated on in [81] which also extended it to (finite) continuous-time
Markov Chains. The abstraction methods above, when applied to autonomous
systems, could perform well, but over controlled system the quality of bounds
on the reachability probabilities they provide would crucially depend on the gap
between the values of minimal and maximal reachability probability over the orig-
inal system, which clearly cannot be controlled by refining an abstraction: see e.g.
the discussion following (2.9). To cope with this issue, [89] developed a theory
of abstracting finite SSs with stochastic games where a non-determinism obtained
by an abstraction was treated as an adversary. Thus, both minimal and maximal
reachability probabilities over the concrete system could be bounded by the cor-
responding pairs of probabilities over a abstract stochastic game, and the quality
of such abstraction would not depend on the aforementioned gap.

All the works mentioned above dealt with discrete probabilistic models, finite in
most of the cases. However, due to inherently quantitative semantics, even such
models motivated the development of approximate relations and metrics between
probabilistic systems. Similarly to exact notion of (bi-)simulation, its approxi-
mate counterpart could be defined either as an ε-relation on the level of systems
(system-based approach), or first as an ε-relation between states of a single sys-
tem (model-based approach). Recall further than any approximate equivalence
defines a pseudometric and vice-versa. A major part of the relevant literature
focused on state-based approximate bisimulations (rather than simulations) in-
troduced as a pseudometric. Less often it is introduced as state-based ε-relation
and even more rarely approximate simulation is defined.

It is likely that [61] was the first work to introduce notion of ε-bisimulation over
discrete probabilistic systems: the latter was defined as a state-based ε-relation.
This has further led to a series of works on pseudometrics for discrete and general
PTSs such as [42], [142] and [58] to name a few. The former work used ideas based
on a logical characterization of state-based exact bisimulation for PTSs, in this and
some following papers called Labelled Markov Processes (LMPs). Namely, [25] has
shown that two states of a PTS are bisimilar iff they satisfy the same formulas of a
certain logic L. Such logic was extended in [42] to a family of functions F, and the
value of the F-distance between two states was defined as a difference between
functions evaluations over these states. In particular, F-distance equals zero iff
the two states are bisimilar. Again, due to the reason that PTS were not given ex-
plicit semantics, one could not claim that such pseudometric implies some kind
of approximate behavioral inclusion. The work in [142] followed a coalgebraic
approach to PTSs introduced in [37], see the Appendix B for some details on coal-
gebras. The authors of [142] proposed a functor in the category of pseudometric
spaces based on the Kantorovich metric [62], and have shown that such functor
admits the final coalgebra (with a corresponding unique pseudometric), so that
one could define a distance between two states of a PTS as a value of pseudometric
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between their (unique) images in the final co-algebra. Interestingly, although de-
fined in completely different manners, pseudometrics of [42] and [142] appeared
to be the same up to a scaling factor [139, Theorem 2], so below we refer to it just
as the PTS pseudometric.

Some part of the follow-up work was devoted to computing this pseudometric
over finite PTSs [140], however the reason for this computational challenge is not
quite clear. Although [42] motivated the use pseudometric for PTSs as a tool to
use abstraction for computation of interesting properties over concrete systems, as
we have above mentioned, it is still unknown which exactly valuable properties
such pseudometric preserves for a simple reason that PTSs are not given explicit
semantics. For example, since the syntax of PTSs and MDPs is the same, one can
endow PTSs with the semantics of MDPs, however it is by no means clear whether
the pseudometric of [42] and [142] is capable of providing non-trivial bounds for
such basic quantitative properties of MDPs as maximal reachability probabilities.
Indeed, although by [16] exact bisimulation implies behavioral inclusion over fi-
nite autonomous PTSs endowed with the semantics of Markov Chains, and two
states are bisimilar iff their F-distance is zero, there is no guarantee that non-zero
F-distance bounds difference in quantitative properties, and even if it does, how
to derive such bounds13. Unfortunately, none of the papers on the PTS pseudo-
metric contains an illustrative case study at least with finite model of some inter-
esting process, which could help understanding usefulness of this pseudometric.
Hence, from the approximation point of view, the value of such pseudometric is
rather questionable, and it is not clear what is the reason for its computation if not
for practical purposes. One attempt to cope with this issue was performed in [58]
where a similar pseudometric was used to bound DC criterion over MDPs with
finite action spaces. A state-based version of approximate simulation for finite
PTSs was proposed in [44], which studied its connection with some of the logics
that are richer than L. A corresponding notion of state-based approximate bisim-
ulation was exploited in [46] to provide guarantees for the satisfaction of PCTL
properties over finite autonomous SSs.

The research on approximate relations for probabilistic systems inspired studied
on this topic over TSs. The work in [64] introduced approximate behavioral in-
clusion (equivalence), together with approximate (bi-)simulation for TSs. Since
showing that the former is implied by the latter is considerably easier over TSs
than over SSs, the goal of [64] and the follow-up works was to provide sufficient
conditions to assure that two given systems are ε-bisimilar, or that a given con-
crete system admits a finite ε-bisimilar abstraction. Since ε-bisimulation over TSs
implies behavioral ε-inclusion over the infinite time horizon, such conditions were
provided via the notion of Lyapunov-like approximate bisimulation functions.

The methods developed over TSs in turn have led to two novel approaches to ap-
proximate bisimulation over probabilistic systems. The first was developed in [76]
where a stochastic version of an approximate bisimulation function was used as

13 In fact, there can be other families of functions different from F that induce different distances
which are yet zero exactly over bisimilar states. As a result, unless such bounds are derived there is no
particular reason for the choice of F done in [42] to be the natural one.
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an upper-bound on the probability of ε-divergence, that is the probability that out-
puts of the concrete system and the abstraction become ε-far from each other on
the infinite time horizon. For linear continuous-time autonomous stochastic pro-
cesses [76] provided ways to fine quadratic approximate stochastic bisimulation
functions in terms of matrix inequalities. A discrete-time version of this result
was obtained in [2]14. Furthermore, [1] proposed sufficient conditions for non-
linear stochastic processes and [8] suggested a Monte-Carlo procedure to compute
the probability of ε-divergence over a finite time horizon when no approximate
stochastic bisimulation function is available in a closed form. These line of work
can be seen as a system-based approach to approximate bisimulation for proba-
bilistic systems. Although the probability of ε-divergence provides upper-bounds
on the reachability probabilities of the concrete systems in terms of those com-
puted over the abstraction, such bounds are often conservative. The reason is that
these works assumed a given coupling of a concrete system and an abstraction,
whereas such coupling can be chosen freely to minimize the distance between
systems – see e.g. the discussion in [135]. The second approach was pursued in
[148]: there stochastic systems were given a semantics of transition systems on
with states being probability measures over the original state space, see the Ap-
pendix A.4 for the details. With such interpretation one can use all the machinery
of [64] to develop approximate bisimulation theory over probabilistic systems via
approximate bisimulation functions. However, as we have mentioned in Section
2.4, exactly due to this interpretation, the semantics of systems considered in [148]
differs from the conventional semantics of probabilistic systems, and it is not clear
which properties do their result provide guarantees on.

Our work proposes using the total variation distance for measures, and as we
have shown this choice allows approximating solutions of verification and syn-
thesis problems on the one hand, and yet admits finite approximate abstraction
of many non-trivial infinite systems on the other. Clearly, the proposed approach
has some drawbacks, the main one concerning the validity of the approximation
theory only for finite time horizons. Although one may think of posing some sta-
bility assumptions on SSs to extend the finite-time horizon bounds of Theorem
3.32 to the infinite horizon, we have not found any interesting sufficient condi-
tions. Perhaps, one such condition is to assume that there exists a state which is
always reached by the trajectory of the SS, and from which there are no tran-
sitions to other states, however such assumption is too conservative. For this
reason, so far we can only provide specification-dependent approximate solution
method for the infinite-time horizon verification and synthesis problems. Due
to the aforementioned reasons, it also shall be clear that any metric between SSs
that upper-bounds the total-variation distance between their infinite-time horizon
strategic measures is likely to give the trivial value 1 in most of the cases unless
on restricts attention to discrete SSs exclusively. A similar approach was later in-
dependently pursued in [67], where the authors work directly with MDPs rather
than SSs, and notion of precise (bi)similarity introduced there is close to the one
in Definition 3.41 here, whereas their notion of approximate (bi)similarity allows
for small differences both in available distributions, and in observations (the set Y

14 This work also contains a survey on approximate bisimulation for probabilistic systems.
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is supposed to be endowed with some metric there). Unfortunately, even though
claimed so by [67, Theorem 5], the introduced relations there fail to be transitive:
state relations are supposed to be Borel-measurable there15, and according to the
proof of that theorem, a composition of relations is used to show the transitivity.
As we have mentioned above, the resulting relation itself may fail to be Borel-
measurable, which is exactly one of the reasons why in this thesis relations are
assumed to be analytic sets. The authors also follow framework of [114], operat-
ing with probability spaces, rather than simply focusing on measures.

One way to overcome the issue mentioned in the previous paragraph is to con-
sider a metric on distribution different from the total variation distance. It seems
that the Kantorovich metric between strategic measures could be a good choice,
see e.g. examples in [135]. Unfortunately, it is unclear how to bound such met-
ric just based on the distances between stochastic relations Γ16. For example, al-
though [58] and [142] use Kantorovich metric to define approximate bisimulation
for MDPs and PTSs, in their case this metric is only used over state spaces and
is not propagated to measures over trajectories. There is a large choice of metrics
for probabilities [62], and some of them may be as useful as the total variation
distance to approximate behaviors, yet being easier to work with. Perhaps, some
also behave nicely w.r.t. the operation sco and may even allow defining a com-
bined version of probabilistic and approximate simulation which is triangular (cf.
Remark 3.26).

15 The measurability requirements are somewhat imprecise there, e.g. in [67, Definition 6] the rela-
tion is assumed to be a Borel set, whereas in [67, Definitions 7, 9, 10] explicit measurability require-
ments are replaced by an unclear statement “under the same conditions as above”. In case this means
that relations are just any subsets of the product space, those definitions are not formal as they use
lifting of relations, which was only defined for Borel sets in [67, Definitions 5, 8].

16 The authors has recently discovered that imposing strong stability assumptions on autonomous
SSs, such as Lipschitz continuity of transition kernels in Kantorovich metric, and uniform stability of
them w.r.t. some state is enough to bound infinite trajectories in this metric. However, these results
seem to require too conservative assumptions, and estimates made there are not tight: for example,
the maximum of the infinite sequence of distances is replace by a sum thereof.





4 CHAPTER

Infinite-horizon case

This chapter tackles the case of infinite-horizon properties, as the
framework of approximate stochastic bisimulation in general does

not allow for non-trivial results off the finite time bound.

4.1 Motivation

As we have seen in Chapter 3, in general we cannot use ε-bisimulation to control
error over the infinite horizon specifications. To cope with this issue, we use the
automata reduction techniques and focus on problems, whose specification can
be expressed as some DFA or DBA. Even though that does cover all ω-regular
expressions, or even the full LTL, it is still enough to describe a lot of practical
situations.

Recall from Lemma 2.9 that due to the reasons above, for our purposes it is suf-
ficient to learn how to solve reachability (for DFA) and repeated reachability (for
DBA) problems for any given SS, which is exactly the goal of this section. We
start the former problem, and provide a rather detailed approach to its solution.
Unfortunately, results for the latter problem are relatively scarce.

4.2 Reachability problem

4.2.1 Characterization

It is more convenient to consider a slightly more general setup, called the con-
strained reachability problem [17, Section 10.1.1].1 To satisfy the constrained reach-
ability property, the path of an SS does not only have to reach a given goal set, but
also to stay within some safe set before hitting the goal one. In terms of the LTL

1 The constrained reachability problem is also known as the reach-avoid problem [124].

65
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grammar, we are going to deal with the property SUnG, where S is a safe set and
G is a goal set. The (unconstrained) reachability problem corresponds to the special
case ♦nG = true UnG.

More precisely, consider an SS S = (X,Γ, Y, L), where Y = {G,S,D} are the labels
corresponding to goal, safe and dangerous states. For example, L−1(S) ∈ B(X)
is a set of safe states. For any initial distribution α, any strategy σ ∈ ΣΓ, and any
time horizon n ∈ N̄ we are thus interested in the value of Qσα(SUnG). It is more
convenient to focus on the initial distribution supported on single points and thus
consider a function Qσδ(·)(SUnG) : X → [0, 1], extending the results to arbitrary
initial distributions at a later stage. To make the notation easier, we write Qx in
place of more cumbersome but formal Qδ(x). Clearly, Qσ(·)(SUnG) ∈ bU(X) for any
σ ∈ ΣΓ and n ∈ N̄. Moreover, the sequence (Qσx(SUnG))n∈N is non-decreasing in
n and furthermore for any fixed x ∈ X

Qσx(SUG) = lim
n→∞

Qσx(SUnG). (4.1)

Obviously, the unconstrained reachability is a special instance of the constrained
reachability in case the safe set is the whole state space, i.e. D = ∅. On the other
hand, the constrained reachability can be also obtained from the unconstrained
one by changing the dynamics of the SS on the set D [137, Section 3.1].

Note that on a part of the state space the value function is already known:

Qσx(SUnG) =

{
1, if x ∈ G,
0, if x ∈ D

(4.2)

and, as a result, the constrained reachability problem needs to be solved only for
states in S. Recall from Section 2.2 that DFAs are not closed under negations, and
hence if we consider both minimization and maximization reachability problems
it would allow us to cover a bigger class of specifications (cf. Appendix C.1). As
in Section 2.3, we use notation Sx(SUnG) for the maximal probability; and now
we also adopt the notation SOx (SUnG) for the minimal one.

In optimal control, the principles of dynamic programming (DP) allow decom-
posing the general optimization problem into smaller and simpler subproblems
[19]. In the literature there have been several results developing DP characteriza-
tions of the constrained reachability problem. One of the main differences in these
studies has been the choice of the structural representation of the value function
Q(·)(SUnG). For example, the work in [9] has considered the max cost representa-
tion for the unconstrained reachability, as

Qσx(XUnG) = Qσx

[
max
k≤n

1G(yk)

]
, (4.3)

and using the dual safety problem, an alternative multiplicative cost representa-
tion

Qσx(SUnG) = 1− Qσx

[
n∏
k=0

1Gc(yk)

]
. (4.4)
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These results have been extended in [124], which has dealt with the general con-
strained reachability problem in the form of a sum-multiplicative cost

Qσx(SUnG) = Qσx

 n∑
k=0

k−1∏
j=0

1S\G(yj)

 1G(yk)

 . (4.5)

Later, [30] suggested a cost formulation using the notion of a first hitting time as

Qσx(SUnG) = Qσx

[
n∧τG∧τD∑
k=0

1G(xk)

]
, (4.6)

where τA := inf{k ≥ 0 : xk ∈ A} is the first hitting time of the set A ∈ B(X).
Unfortunately, none of the above cost functions was well-studied in the literature.
Our idea instead is to express the reachability problem through the additive dis-
counted cost (DC) criterion: recall from Section 2.2 that such case allows for a rich
theory of DP in a rather general setting. For example, the aforementioned studies
in [9], [124] and [30] have recovered only a subset of these results for the reach-
ability problem, sometimes requiring restrictive assumptions on the structure of
the model. In contrast, here we show that the reachability problem has an equiva-
lent DC formulation, which allows us proving all results available for this general
performance criterion.

In general it may not be possible to characterize the constrained reachability prob-
lem as a DC criterion over the original SS S. The key idea is to consider an auxil-
iary SS Ŝ, constructed from the original one by adding a new binary variable that
represents whether the path of S has left the safe set S or not. To our knowledge,
the first time such construction has been explicitly used in [137].2 For the sake
of consistency, here we introduce a new SS, using the notion of the composition
between SSs and automata from Definition 2.8

qs qfS
D,G

Figure 4.1: Transition system for the TC formulation of constrained reachability

Let us consider an automaton D = (Q, qs, Y, t,A) as in Figure 4.1 with a state space
Q = {qs, qf}, an input alphabet Y = (D,G, S), and transition function given by

t(qs, S) = qs, t(qs, {D,G}) = qf , t(qf , Y ) = qf .

Let Ŝ := S ⊗ D = (X̂, Γ̂, L̂, Q) denote the composed SS. Of special interest are
functions f̂ : X̂ → R that are zero off qs, namely f̂(·, qf ) ≡ 0: they can be always
represented in the form

f̂(x, q) = 1{q = qf} · f(x) (4.7)

2 In [45] a similar construction was used to formulate reachability problem as a final cost problem.
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for some f : X → R. Let c : X̂ → {0, 1} be a cost function c(x, q) := 1{q =
qs} · 1G(x) that is zero off qs, and define the corresponding DC utility for any
n ∈ N̄ as follows:

Ĵn :=

n∑
k=0

c(xk, qk), (4.8)

where x and q are the components of the state process of the composed system.
The corresponding maximization and minimization problems are given by

Ŝ(x,q)(Ĵn) = sup
σ̂∈ΣΓ̂

P̂σ(x,q)

[
Ĵn

]
, ŜO(x,q)(Ĵn) = inf

σ̂∈ΣΓ̂

P̂σ(x,q)

[
Ĵn

]
. (4.9)

In order to show the equivalence between the optimal constrained reachability
problem over the SS S and the formulation in (4.9) over the SS Ŝ, we apply the
technique from Lemma 2.9. Let us again denote by I : ΣΓ → ΣΓ̂ the embedding
map used there, and consider a slightly different he projection map P̂ : ΣΓ̂ → ΣΓ

given by

(P̂σ̂)n(x0, . . . , xn−1, xn) := σ̂n(x0, q
s, . . . , xn−1, q

s, xn, q
s). (4.10)

Note that P̂ is not the projection map P used in Lemma 2.9, in particular, below
we use the fact that P̂ preserves Markovianity of strategies, in contrast to P. The
following equivalence holds true:

Lemma 4.1 For any n ∈ N̄, σ ∈ ΣΓ and σ̂ ∈ ΣΓ̂, it holds that

Q̂σ̂(x,qs)(Ĵn) = Qσ̂x(SUnG), Qσx(SUnG) = Q̂σ̂(x,qs)(Ĵn). (4.11)

Proof: We prove this theorem by induction. First of all, both equalities in (4.11)
clearly hold true for n = 0 as in this case all functions are simply 1G(x). Further-
more, with focus on the first equality, we have that

Q̂σ̂(x,qs)(Ĵn+1)− Q̂σ̂(x,qs)(Ĵn) = P̂σ̂(x,qs) [c (xn+1,qn+1)] .

As c(xn+1,qn+1) is a Bernoulli random variable supported on {0, 1}, we obtain
that

P̂σ̂(x,qs) [c (xn+1,qn+1)] = P̂σ̂(x,qs) (c (xn+1,qn+1) = 1)

= P̂σ̂(x,qs) ({xk ∈ S, k ≤ n} , {xn+1 ∈ G} , {qk = qs, k ≤ n+ 1}) .

On the other hand,

Qσ̂x(SUn+1G)− Qσ̂x(SUnG) = PP̂σ̂
x ({xk ∈ S, k ≤ n} , {xn+1 ∈ G}) .

The fact that these probabilities are equal follows immediately from their integral
expressions in from the definition of the projection map P̂. By induction we obtain
the first part in (4.11) for n < ∞, and the case n = ∞ follows by taking the limit.
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Finally, the proof of the second part of (4.11) is obtained the same way, mutatis
mutandis. 2

Lemma 4.1 leads to several important results that allow us to develop a DP frame-
work for constrained reachability. First of all, it clearly implies that both optimiza-
tion problems are equivalent in the following sense:

Theorem 4.2 For all n ∈ N̄ and x ∈ X we have Ŝ(x,qf )(Ĵn) = ŜO(x,qf )(Ĵn) = 0 and

Sx(SUnG) = Ŝ(x,qs)(Ĵn), SOx (SUnG) = ŜO(x,qs)(Ĵn). (4.12)

Proof: To prove the first part, one has to notice that if q0 = qf , then qn = qf for all
n ∈ N, hence Q̂σ̂(x,qf )(Ĵn) = 0 for all n ∈ N, x ∈ X , and σ̂ ∈ ΣΓ̂. Furthermore, (4.12)
is an immediate consequence of Lemma 4.1 and Lemma C.9 in the Appendix. 2

As we have mentioned above, Theorem 4.2 allows us to extrapolate the rich theory
developed for the DC criterion to the case of the constrained reachability problem.
However, most of the results for DC are developed for the minimization case [20,
70], considering either positive or negative costs c. As such, we can directly derive
the results for the minimization problem since SOx (SUnG) = ŜO(x,qs)(Ĵn), however
for the maximal constrained reachability we need to interpret

Sx(SUnG) = −ŜO(x,qs)(−Ĵn),

thus characterizing both optimization problems as a minimization of some DC.
Note that for the minimization of the constrained reachability we use a positive
cost c, thus falling into the setting of the positive DP [22] corresponding to [20,
Assumption (P), Chapter 9]. On the other hand, for the maximization of the con-
strained reachability a negative cost −c is used, hence leading to the case of the
negative DP [121] corresponding to [20, Assumption (N), Chapter 9]. This differ-
ence is not always important and only matters in the case n = ∞. In particular,
we show below that it affects the convergence of bounded-horizon functions to
the unbounded-horizon ones, as well as the existence of optimal policies.

Let us proceed with the application of Lemma 4.1 and Theorem 4.2 to the char-
acterization of the optimal constrained reachability problems. The next results
shows that it is sufficient to deal with Markov policies.

Proposition 4.3 For any n ∈ N̄ and any policy σ ∈ ΣΓ, there exists a Markov strategy
σ′ ∈ ΣΓ

M such that Qσ(·)(SUnG) = Qσ
′

(·)(SUnG), and as a consequence

Sx(SUnG) = sup
σ∈ΣΓ

M

Qσx(SUnG), SOx (SUnG) = inf
σ∈ΣΓ

M

Qσx(SUnG). (4.13)

Proof: Fix any state x ∈ X and any strategy σ ∈ Σ. It follows from Lemma 4.1
that Qσx(SUnG) = Q̂σ̂(x,qs)(Ĵn). On the other hand, [20, Proposition 8.1] assures the
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existence of a Markov strategy σ̂′ ∈ ΣΓ̂
M satisfying Q̂σ̂(x,qs)(Ĵn) = Q̂σ̂

′

(x,qs)(Ĵn). From

the definition of the projection map P̂ it follows that σ′ := P̂σ̂′ ∈ ΣΓ
M and as a

result
Qσ
′

x (SUnG) = Q̂σ̂
′

(x,qs)(Ĵn) = Q̂σ̂(x,qs)(Ĵn) = Qσx(SUnG),

as desired. In order to obtain (4.13) we only have to apply Lemma C.9. 2

The results above, obtained for deterministic initial conditions, can be extended
to the case of general initial distributions: we show that a value function over
an initial distribution α ∈ P(X) can be obtained by integrating value functions
over deterministic initial conditions. Although this result is obvious in case the
strategy is fixed, it is not trivial to show this for optimal value functions. We show
a proof for the case of the minimization problem on the unbounded time horizon,
however similar results can be obtained for the unbounded-time maximization
case, as well as for both bounded-horizon problems.

Proposition 4.4 For any distribution α ∈ P(X) it holds that

SOα(SUG) =

∫
X

SOx (SUG) α(dx). (4.14)

Proof: From [20, Propositions 9.2, 9.3, 9.5] it follows that

ŜOα̂(Ĵ∞) =

∫
X̂

ŜO(x,q)(Ĵ∞)α̂(dx× dq)

for any distribution α̂ ∈ P(X̂). As a result, for any α ∈ P(X) it holds that

SOα(SUG) = inf
σ∈Σ

∫
X̂

Q̂Iσ
(x,q)(Ĵ∞)(α⊗ δqs)(dx× dq)

≥
∫
X̂

ŜO(x,q)(Ĵ∞)(α⊗ δqs)(dx× dq)

=

∫
X̂

ŜO(x,qs)(Ĵ∞)α(dx) =

∫
X

SOx (SUG) α(dx).

The converse inequality we get as follows:∫
X

SOx (SUG) α(dx) =

∫
X̂

ŜO( x, q
s)(Ĵ∞)α(dx)

=

∫
X̂

ŜO(x,q(Ĵ∞)(α⊗ δqs)(dx× dq)

= inf
σ̂∈ΣΓ̂

∫
X̂

Q̂σ̂(x,q)(Ĵ∞)(α⊗ δqs)(dx× dq)

= inf
σ̂∈ΣΓ̂

∫
X

Qσ̂x(SUG)α(dx) ≥ SOα(SUG).
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Since both inequalities hold true, we obtain the desired result. 2

Although in general one cannot switch the order of the minimization (or maxi-
mization) and of the integral, Proposition 4.4 shows this can be done in the case
of (4.14). Thus, it is sufficient to deal with deterministic initial distributions: the
value function for the general one can be obtained by integrating with respect to
the initial distribution of interest.

Before proceeding, we need to introduce some concepts useful in solving the
reachability problem. The reader should take heart from now on, as despite our
best effort, notation is going to become even more cumbersome than before. Alas,
to the best of our knowledge, better and simpler notation was not yet introduced
to describe the things that follow.

In Chapter 3 we have discussed how to approximate quantitative behaviors of one
SS with those of another one, however we have never mentioned how does one
actually compute the latter values, as it was not important back then. Now we
have to face it directly, and it should come as no surprise that since we are using
DP, the methods are going to be iterative. In particular, we are considering effect
of one transition in an SS on some function defined over its state space. For this
purpose, we introduce the following two operators:

We are ready to formulate one of the most relevant outcomes of Theorem 4.2: a DP
procedure for the constrained reachability problem over a general class of policies.
For this purpose we introduce the following DP operators:

rMf(x) = 1G(x) + 1S(x) · TMf(x), f ∈ bAM(X),

rOf(x) = 1G(x) + 1S(x) · TOf(x), f ∈ bAO(X).

From the properties of operators TM and TO, it follows that rM maps bAM(X) into
itself and rO maps bAO(X) into itself.

Theorem 4.5 It holds that S(·;SU0G) = SO(·;SU0G) = 1G(·), and for any n ∈ N̄

S(·;SUn+1G) = rM [S(·;SUnG)] , SO(·;SUn+1G) = rO
[
SO(·;SUnG)

]
.

Moreover, S(·;SUG) and SO(·;SUG) are the least non-negative fixpoints of the corre-
sponding operators, that is if there exists a non-negative function f ∈ bAM(X) (or
f ∈ bAO(X)) that satisfies the inequality f ≥ rM[f ] (or f ≥ rO[f ]), then it holds that
f(·) ≥ S(·;SUG) (or f(·) ≥ S(·;SUG)).

Proof: We provide an explicit proof for the minimization problem, and appeal to
duality for the maximization case.

First of all, the fact that SO(SU0G) = 1G(·) follows immediately from the definition
of the constrained reachability. Furthermore, for any n ∈ N̄ by Theorem 4.2 we
have that SOx (SUnG) = ŜO(x,qs)(; Ĵn). The DP recursion for the TC is given in [20,
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Proposition 8.2, Proposition 9.8], and applied here yields the following:

SOx (SUn+1G) = ŜO(x,qs)(Ĵn+1) = inf
γ̂∈Γ̂|(x,qs)

(
c(x, qs) + γ̂SO(x,qs)(Ĵn)

)
= inf
γ∈Γ|x

(
1G(x) + 1S(x)γSO(x,qs)(Ĵn)

)
= 1G(x) + 1S(x)(Γ|x)OSO(SUnG) = rO

[
SOx (SUnG)

]
.

This results in both the DP recursion (n < ∞) and in the fixpoint equation (for
n =∞).

Consider now a non-negative function f ∈ bAO(X) satisfying f ≥ rO[f ], and
define a new function f̂ : X̂ → [0,∞) by the formula f̂(x, q) := 1{q = qs} · f(x).
Clearly, the function f̂ is zero off qs, so that we obtain:

inf
γ̂∈Γ̂|(x,qs)

(
c(x, q) + γ̂f̂(x, q)

)
= 1{q = qs} · rOf(x) ≤ 1{q = qs} · f(x) = f̂(x, q).

As a result, [20, Proposition 9.10 (P)] implies that ŜO(J∞) ≤ f̂(·) and thus

SOx (SUG) = ŜO(x,qs)(Ĵ∞) ≤ f̂(x, qs) = f(x),

so SO(SUG) is the least fixpoint in the class of non-negative bAO functions. 2

In view of Theorem 4.5 we can compute the value of the bounded horizon op-
timal constrained reachability problems backward-recursively, starting from the
indicator function 1G. The computation of the fixpoint problem is more intricate
and is addressed below in Section 4.2.2. Due to this reason, it is worth discussing
the relation between the solution of the constrained reachability problem on the
bounded time horizon, and that on the unbounded time horizon. In particular, an
interesting question is whether the latter can be in general obtained as the limit
of the former, as the time index n goes to infinity. This is one of the anticipated
cases where the difference between the maximization and minimization problems
becomes important: the answer is positive in the first case and is negative in the
second.

Proposition 4.6 For every state x ∈ X it holds that

Sx(SUG) = lim
n→∞

Sx(SUnG). (4.15)

Furthermore, for any x ∈ X there exists a limit

fO := x 7→ lim
n→∞

SOx (SUnG) ≤ SO(SUG). (4.16)

Moreover, SO(SUG) = fO if and only if fO is a fixpoint of the DP operator rO.

Proof: We start with the maximization case, which corresponds to Assumption
(N) of [20, Chapter 9] since Sx(SUnG) = −ŜO(x,qs)(−Ĵn) for any x ∈ X . It fol-
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lows from [20, Section 9.5] that the sequence
(
ŜOx (q;−Ĵn)

)
n∈N

has a limit for any

x ∈ X and q ∈ Q. Furthermore, [20, Proposition 9.14] implies that this limit is
ŜOx (q;−Ĵ∞), which leads to (4.15).

For the minimization case we satisfy Assumption (P) of [20, Chapter 9]. The dis-
cussion in [20, Section 9.5] implies the existence of the point-wise limit for the
sequence (ŜOx (q; Ĵn))n∈N: we denote this limit by f̂O. Furthermore, it follows from
[20, Proposition 9.16] that f̂O(·) ≤ ŜO(·; Ĵ∞), and that the equality holds if and
only if f̂O is a fixpoint of the corresponding DP operator, i.e.

f̂O(x, q) = c(x, q) + T̂Of̂O(x, q). (4.17)

For the constrained reachability case, we now obviously have the existence of the
limit

fO(x) := lim
n→∞

SOx (SUnG) = 1{q = qs}f̂O(x, q).

Clearly, fO(·) ≥ SO(·;SUG); if fO is a fixpoint of rO, then f̂O satisfies (4.17), thus
f̂O(·) = M̂(·; Ĵ∞) and hence fO(·) = SO(·;SUG). Conversely, if fO(·) = SO(·;SUG)
then by Theorem 4.5 it has to be a fixpoint of the DP operator rO. 2

The following example shows that the inequality in (4.16) can be strict.3

Example 4.7 Let X = N and Γ|0 = {δ(n)}n∈N and Γ|x = δ(x − 1) for x 6= 0, so that
the dynamics is deterministic. Let G := {1} be the goal set, and let the safe set be its
complement S := X \ G. Let us focus on the case when x0 = 0. If we would like to
minimize the probability of reaching G over some finite horizon n ∈ N, one of the optimal
strategies is to choose σ0(0) = δ(n+ 2). Then x1 = n+ 1, x2 = n and xn = 2, so that G
is not reached. As a result, for any finite n ∈ N we have that SO0 (SUnG) = 0. However,
regardless of the first choice σ0(0) = δ(n), the set G is reached by the path of the process
in at most n <∞ steps. Thus,

1 = SO0 (SUG) 6= lim
n→∞

SO0 (SUnG) = 0.

So far we have developed DP over the value functions for the constrained reach-
ability problem. The main tool we have used is a TC reformulation of the original
performance criterion, which makes it possible to apply the rich theory that has
been developed for the DC problem. Following similar lines as in the proofs of
the theorems above, one can reformulate for the constrained reachability problem
almost any result developed for the DC criterion. While in this thesis we do not
have a focus on the existence of optimal strategies, one can easily tailor a num-
ber of results from [20], as we overview next. Recall that Assumption (P) in [20,
Chapter 9] corresponds to the minimization problem, whereas Assumption (N)
corresponds to the maximization one.

(P) [20, Proposition 9.12] and its corollary provide necessary and sufficient con-
ditions for the optimality of stationary policies, together with results to com-

3 The example is obtained by modifying [20, Example 1].
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pute such policies. Moreover, [20, Propositions 9.17, 9.18] and their corollar-
ies provide various sufficient conditions for the existence of optimal station-
ary policies, for their Borel measurability, and for the equality in (4.16).

(N) [20, Proposition 9.13] gives necessary and sufficient conditions for the opti-
mality of stationary policies. However, it does not give a way to construct
a policy (such as the one available for (P)). This is almost the only result on
the optimality of policies under Assumption (N).

4.2.2 Computation

The DC formulation of the constrained reachability problem not only leads to re-
sults for the characterization of its solution, but also connects to computational
methods developed for this criterion. For example, see [49] and references therein.
Alternatively, one could use the theory of Chapter 3 to solve bounded-horizon
reachability with precise bounds on the error. In the present context we are inter-
ested in extending these results to the unbounded time horizon case.

Let us recall the classical theory for the DC performance criterion. If its discount-
ing factor satisfies γ < 1, one falls into the setting of discounted problems for
which the corresponding DP operator is contractive on some function space. Such
a property has nice consequences: the unbounded-horizon value function is the
unique fixpoint of this operator, and it can also be efficiently approximated by
means of the bounded-horizon value functions, as it follows from the contrac-
tion mapping theorem.4 This approach is clearly interesting to us because of the
computational techniques developed for the bounded time horizon case. Unfor-
tunately, the DC formulation of the constrained reachability problem (4.8) has a
discounting factor γ = 1, so the contractivity of the DP operators rM and rO can-
not be established using classical techniques. Due to this reason, we come up with
new sufficient conditions for the DP operators associated to the constrained reach-
ability problem to be contractive: the approach is based on Lemma C.12, which is
inspired by [69, Proposition A.2].

The DP operators for the constrained reachability problem are rarely contractive
over the whole state space X , so it is worth restricting attention to the safe set
S exclusively. This also emphasizes the leading role of the set S in the solution
of the problem (in contrast to the goal set G), as we discussed before: we have
already mentioned that the solution of the constrained reachability problem is
trivial outside of the safe set (4.2), so we can work with the restriction of value
functions to the set S. Let us define

ΓM
Sf(x) := sup

γ∈Γ|x
γ(1Sf), ΓO

Sf(x) := inf
γ∈Γ|x

γ(1Sf).

Note that the operators ΓM
S and ΓO

S map spaces bAM(S) and bAO(S) into them-
selves respectively. Moreover, for f ∈ bAO(X) it holds that f |S ∈ bAO(S), which

4 The contraction mapping theorem is alternatively known as Banach’s Fixed Point Theorem [69,
Proposition A.1].
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follows immediately from the definition of lower-semianalytic functions and Borel
measurability of S. Clearly, the same applies to the restrictions of functions in
bAM(X). In particular, if we define

wM
n (x) := SMx (SUnG)|S , wO

n (x) := SOx (SUnG)|S

for any x ∈ X and n ∈ N̄, then wM
n ∈ bAM(S) and wO

n ∈ bAO(S). Thus, we can
rewrite the DP over the safe set S as follows:

wM
n+1 = rMS

[
wM
n

]
, wO

n+1 = rOS
[
wO
n

]
for any n ∈ N̄, where wM

0 = wO
0 = 0, and the truncated DP operators are given by

rMSf(x) := sup
γ∈Γ|x

γ(1G + 1Sf), f ∈ bAM(S),

rOSf(x) := inf
γ∈Γ|x

γ(1G + 1Sf), f ∈ bAO(S).

Clearly, these operators map their domains into themselves, so that they can be
applied recursively.

In order to formulate the main result on the contractivity of the DP operators, we
are only left to introduce a very important special case of constrained reachability:
safety [9]. This can be characterized by the LTL formula �nS and thus

Qσx(�nS) = 1− Qσx(SUnS
c)

for all x ∈ X and any n ∈ N̄. We are interested in the restriction of the safety
problem to the safe set S itself, the main focus being the characterization of con-
tractivity. Let

vMn (x) := Sx(�nS)|S , vOn (x) := SOx (�nS)|S .

The DP for safety over S is hence given by

vMn+1 = ΓM
Sv

M
n , vOn+1 = ΓO

Sv
O
n , n ∈ N̄.

with vM0 = vO0 = 1. Clearly, we have that 0 ≤ vMn ≤ 1 for all n ∈ N̄. Let us define

βn(S) := sup
x∈S

vMn (x) = sup
x∈X

SMx (�nS) ∈ [0, 1],

m(S) := inf{n ∈ N : βn(S) < 1} ∈ N̄,

and note that both βn and m are monotonic functions of S with respect to set
inclusion. We are now ready to provide sufficient conditions for contractivity.

Theorem 4.8 If m := m(S) < ∞, then operators (rMS)m and (rOS)m are contractions
with modulus βm(S) on the spaces bAM(S) and bAO(S) respectively. In particular, each
of them has a unique fixpoint, for any n ∈ N the following inequalities hold true:

|wM
∞(x)− wM

mn(x)| ≤ βn, |wO
∞, w

O
mn| ≤ βn (4.18)
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for all x ∈ S, operators (ΓM
S)m and (ΓO

S)m are contractions as well and vM = vO∞ = 0.

Proof: We are going to apply Lemma C.12 in order to establish the contractiv-
ity property. Let us consider the case of rMS first, so in Lemma C.12 we put F =
bAM(S). The condition (1) of the lemma is obviously satisfied for rMS and hence for
(rMS)n regardless of n ∈ N. Furthermore, for any two functions f, g ∈ bAM(S) we
have that

rMS(f(x) + g(x)) = sup
γ∈Γ|x

γ(1G + 1Sf + 1Sg)

≤ sup
γ∈Γ|x

γ(1G + 1Sf) + sup
γ∈Γ|x

γ(1Sg)

= rMSf(x) + ΓM
Sg(x).

As a result, for any f ∈ bAM(S) and any c ≥ 0 it holds that

rMS(f + c) ≤ rMSf + c · vM1 ,

and further by induction for any n ∈ N

(rMS)n(f + c) ≤ (rMS)nf + c · vMn .

In particular, for the case n = m we obtain the following:

(rMS)m(f + c) ≤ (rMS)mf + c · vMm ≤ (rMS)nf + c · β.

Hence, (rMS)m satisfies all the assumptions of Lemma C.12 and thus is a contraction
on bAM(S). The contractivity of (rOS)m can be shown by a similar argument, with
the only difference being the inequality

rOS(f + g) ≤ rOSf + ΓM
Sg,

rather than the one with ΓO
Sg, and with conditions on contractivity that are state

in terms of functions vMn rather than vOn .

After the contractivity of the operators is established, the uniqueness of the so-
lutions of fixpoint equations and the bounds in (4.18) follow immediately from
the contraction mapping theorem [69, Proposition A.1]. Finally, the statement for
operators ΓM

S and ΓO
S follows directly if one considers the special case G = ∅. 2

Theorem 4.8 shows that in the case of contractive operators the unbounded-horizon
value function can be approximated by bounded-horizon ones with any precision
level. However, there are some questions left: what are the cases in which the con-
tractivity conditions are violated, and what would be a solution for such cases?
Let us first address the former question. For example, whenever the conditions of
Theorem 4.8 are met, the equality holds in (4.16). As a result, Example 4.7 does
not admit contractive operators since the equality does not hold there. Some of
other important examples can be given using the notion of absorbing set.
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Definition 4.9 The set A ∈ B(X) is called strongly absorbing if γ(A) = 1 for all
x ∈ A and γ ∈ Γ|x. The set A ∈ B(X) is called weakly absorbing if there exists a
selector κ ∈ U(X|X) for Γ such that κ(A|x) = 1 for all x ∈ A. We say that the set
A ∈ B(X) is simple if it does not have non-empty weakly absorbing subsets.

Note that a strongly absorbing set is always also weakly absorbing, one can e.g.
take κ = σ0 regardless of σ ∈ ΣΓ, the converse is obviously not true in general,
which the use of the adjectives “weak” and “strong” in Definition 4.9. Further-
more, in case of autonomous SSs, the notion of weak and strong sets coincide with
that of an absorbing set [100]. Intuitively, a strongly absorbing set remains absorb-
ing under any possible control action, whereas for a weakly absorbing set there
has to exist a strategy that makes this set absorbing. Similarly to [138] one could
show that for a weakly absorbing set it is sufficient to find a selector over sco Γ,
rather than just over Γ itself, which corresponds to randomized control policies
over MDPs, however this is not of our concern here when dealing with SSs.

As promised, absorbing sets can be used to provide examples when the contrac-
tivity of truncated DP operators is violated, and in particular when the fixpoint
equations do not have unique solutions. Note that in the case of the unconstrained
reachability G = Sc, it holds that the operators rMS and rOS always admit the trivial
fixpoint 1. However, if S is not simple (that is, if it admits absorbing subsets), then
the optimal value functions are different than 1. For example, if a trajectory starts
in an absorbing subset of S then it never reaches the goal set. More precisely:

Proposition 4.10 Let A ∈ B(X) be a subset of S. If A is

i. strongly absorbing then SMx (SUSc) = 0 for each x ∈ A. In particular, wM
∞(x) = 0

for each x ∈ A, and (rMS)n is not a contraction for any n ∈ N.

ii. weakly absorbing then SOx (SUSc) = 0 for each x ∈ A. In particular, wO
∞(x) = 0

for each x ∈ A, and (rOS)n is not a contraction for any n ∈ N.

Proof: With focus on case i. fix a point x ∈ A. Then Pσx(xn ∈ A) = 1 for all n ∈ N
regardless of a strategy σ ∈ ΣΓ. As a result, Pσx(xn ∈ Sc) = 0 for each n ∈ N, so

Qσx(SUSc) ≤
∞∑
n=0

Pσx(xn ∈ Sc) = 0

for each strategy σ ∈ ΣΓ. Thus, we obtain that SMx (SUSc) = 0 for each x ∈ A.
Clearly, it follows immediately that wM

∞(x) = 0 for each x ∈ A. Suppose now that
(rMS)n is contractive for some n. In such a case the solution of the fixpoint equation
would be unique and hence it would imply that wM

∞ = 1, which is clearly not the
case.

Let now A be a weakly absorbing set and consider a stationary strategy σ′ ∈ ΣΓ
S

with σ′0 = κ where κ is as per Definition 4.9. It follows that Pσ
′

x (xn ∈ A) = 1 and
hence Pσ

′

x (xn ∈ Sc) = 0 for all x ∈ A, so

SO(·;SUSc) ≤ Qσ
′

x (SUSc) ≤
∞∑
n=0

Pσ
′

x (xn ∈ Sc) = 0.
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As for rMS , one can now show that (rOS)n is not a contraction for any n ∈ N. 2

In general the presence of absorbing sets is not the only reason that may violate
contractivity. For example, it is easy to see that the set S in Example 4.7 does not
have weakly absorbing subsets, and still the contractivity does not hold. How-
ever, the following assumption allows to characterize precisely the relationship
between absorbing sets and contractivity.

Assumption 4.11 The SS S is continuous and the set S is compact.

We are going to show that, under Assumption 4.11, the case m(S) < ∞ precisely
coincides with the case when S does not admit weakly absorbing sets. In order
to prove this fact some preparation is required: let us define Sn := {vMn = 1} for
each n ∈ N. Note that for any x ∈ S and σ ∈ Σ the sequence (vM(x))n∈N is non-
increasing in n, hence so is (Sn)n∈N, i.e. Sn+1 ⊆ Sn for each n ∈ N. Let us denote
by S∞ :=

⋂∞
n=0 Sn the limit of this sequence. We are now ready to formulate the

main result connecting absorbing sets to the contractivity.

Theorem 4.12 Under Assumption 4.11 the set S∞ is weakly absorbing and coincides
with {vM = 1}. Moreover, the following statements are equivalent:

i. it holds that m(S) <∞ (contractivity);

ii. the operator ΓM
S has a unique fixpoint (uniqueness);

iii. it holds that vM = 0 (triviality);

iv. it holds that S∞ = ∅ (simplicity).

Proof: We start with characterizing the set S∞. First of all, let us show that Sn
satisfies

Sn+1 = {x ∈ S : ∃γ′ ∈ Γ|x s.t. γ′(Sn) = 1} (4.19)

for any n ∈ N. Indeed, if such γ′ exists for a given x ∈ S, then

vMn+1(x) = sup
γ∈Γ|x

γvMn ≥ γ′vMn ≥ γ(1Snv
M
n ) = 1,

and hence x ∈ Sn+1. Conversely, assume that the latter inclusion holds, then

vMn+1(x) = sup
γ∈Γ|x

γ(1Sv
M
n ) = 1. (4.20)

Let us show that the maximum is achieved in (4.20). Notice that vM0 = 1S ∈
bCM(X) since S is closed by being a compact subset of a metrizable space. If
vMn ∈ bCM(X) for some n ∈ N, then supγ∈Γ|x γv

M
n ∈ bCM(X) by [20, Proposition

7.33] and as a result, vMn ∈ bCM(X) by Lemma C.11. Since the supremum in (4.20)
is taken over a bCM(X) function over a compact set, there exists γ′′ ∈ Γ|x where
this maximum is achieved. Hence γ′′(1SvMn ) = 1 which implies γ′′(Sn) = 1 since
vMn ≤ 1, so (4.19) is proved.
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The case S∞ = ∅ is trivial. Indeed, the empty set is weakly absorbing by definition,
and if vM(x) = 1 for some x, then x ∈ Sn for each n ∈ N and hence x ∈ S∞. Let
us hence focus the case when S∞ contains at least one element, some x. Define
a sequence of sets Pn = {γ′ ∈ Γ|x : γ′(Sn) = 1}, then Pn is non-empty for each
n, otherwise from (4.19) we would get that x /∈ Sn+1, which contradicts the fact
that x ∈ S∞. Furthermore, since Sn are non-increasing, so are Pn. Finally, since
each Sn is a level set of a bCM(X) function, it is closed, and compact as a subset
of a compact set S. Hence, Pn is also compact for each n ∈ N, and as a result
P∞ :=

⋂
n∈N Pn is non-empty. Let γ′ be some element of P∞, then γ′(Sn) = 1

for each n ∈ N and hence by continuity of probability γ′(S∞) = 1. As a result,
for each x ∈ S∞ there exists γ′ such that the latter equality holds. Since S∞ is
a intersection of a non-increasing sequence of compact sets, it is compact, and
hence by [20, Proposition 7.33] there exists a selector κ ∈ B(X|X) from Γ such that
κ(S∞|x) = 1 for each x ∈ S∞, which casts the latter set to be weakly absorbing.
Trivially, vM = 1 on S∞, and conversely if vM(x) = 1 for some x, then x ∈ Sn for
each n ∈ N and hence x ∈ S∞.

Let us now prove the equivalence result. The fact that i. =⇒ ii. has been proven
in Theorem 4.8. Also, ΓM

Sf = f always has a solution f = 0, so the uniqueness
of a fixpoint of ΓM

S implies vM = 0 and thus ii. =⇒ iii. If vM = 0, then by just
proven characterization of S∞ it is empty, so iii. =⇒ iv. Finally, if m(S) = ∞
then supx∈X v

M
n (x) = 1 for all n ∈ N . Since each of the functions is in bCM(X), the

maximum over a compact set S is attained, so that m(S) = ∞ implies Sn 6= ∅ for
all n ∈ N. As we have seen, that casts S∞ 6= ∅ and hence iv. =⇒ i. 2

Note that the above results also implies that under Assumption 4.11 the set S∞ is
not only weakly absorbing itself, it also does contain any other weakly absorbing
subset of S. We have obtained a rather precise characterization of the contractivity
condition m(S) <∞ in terms of presence or absence of weakly absorbing subsets
of the safe set. In particular, if both Assumption 4.11 and the condition S∞ = ∅
are satisfied, then regardless of the setGwe are able to approximate SMx (SUG) and
SOx (SUG) by their bounded horizon counterparts. Moreover, Theorem 4.12 also
justifies the following intuitive statement: if one wants to keep the path of the
process inside a set with some non-zero probability, there has to be an “attractor”
within such set, which in our case appears to be the largest weak absorbing subset
of S, that is S∞: If such attractor is absent, no matter what control policy is chosen,
the path will leave the desired set almost surely – we discuss this in greater detail
for autonomous SSs below in Section 4.3. The “if and only if” nature of Theorem
4.12 also implies that for the maximal safety problem such condition is necessary.
However, it still may be the case that S∞ 6= ∅ but rOS is a contraction, even though
rM is not. Although such cases are interesting to study, this goes beyond the scope
of this thesis: we are now interested in techniques that allow us reducing the
unbounded horizon problem to the bounded horizon one in the situation where
S∞ 6= ∅. These results are particularly powerful under the following assumption.

Assumption 4.13 Stationary policies are sufficient for the solution of the constrained
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reachability problem on the unbounded time horizon, that is for any x ∈ X :

SMx (SUG) = sup
σ∈ΣΓ

S

Qσx(SUG), SOx (SUG) = inf
σ∈ΣΓ

S

Qσx(SUG).

Before we provide the main result, the following technical lemma is needed.

Lemma 4.14 LetC ∈ B(X) be any subset of S. Under Assumption 4.13, for each x ∈ X

|Sx(SUG)− Sx((S \ C)UG)| ≤ χ∗(C) := sup
σ∈ΣΓ

S

sup
x′∈C

Qσx′(SUG),

|SOx (SUG)− SOx ((S \ C)UG)| ≤ χ∗(C) := inf
σ∈ΣΓ

S

sup
x′∈C

Qσx′(SUG).

Proof: Let us fix an arbitrary policy σ ∈ ΣΓ
S and an arbitrary state x ∈ X . Denote

χσ(C) := supx′∈C Qσx′(SUG). Clearly, S \ C ⊆ S means that Qσx(SUG) ≥ Qσx((S \
C)UG). On the other hand

Qσ(SUG)− Qσ((S \ C)UG) ≤ χσ(C)

which together with Lemma C.10 immediately yields the desired result. 2

Let us discuss how Lemma 4.14 can be useful. Suppose that Assumption 4.11
holds true and that for the original problem we have that S∞ 6= ∅, so that m(S) =
∞, and hence we cannot apply Theorem 4.8 to compute the optimal value func-
tions. If we find a set C ⊇ S∞ such that m(S \ C) < ∞, then we can solve the
unconstrained problem with truncated safe set S\C. Also, sinceC contains S∞we
can expect that χ∗(C) and χ∗(C) are close enough to zero, which would make the
bounds in Lemma 4.14 useful. To further elaborate this idea we need the notion
of a locally excessive function.

Definition 4.15 Let κ ∈ U(X|X) be a selector from Γ. A non-negative function g ∈
bB(X) is called locally κ-excessive, if for any x ∈ {g ≤ 1} it holds that κg(x) ≤ g(x).
If in addition for some A ∈ B(X) we have that A∞ ⊆ {g = 0}, {g ≤ 1} ⊆ A and
{g < ε} is an open set for all ε > 0, we say that g is locally κ-excessive on A.

A non-negative function g ∈ bB(X) is called locally uniformly excessive if for any x ∈
{g ≤ 1} and γ ∈ Γx it holds that γg ≤ g(x). If in addition for some A ∈ B(X) we have
that A∞ ⊆ {g = 0}, {g ≤ 1} ⊆ A and {g < ε} is an open set for all ε > 0, we say that
g is locally uniformly excessive on A.

Theorem 4.16 Let Assumptions 4.11 and 4.13 hold true. Suppose that gM is locally
uniformly excessive on S, and that gO is locally σ′0-excessive for some σ′ ∈ ΣΓ

S . For any
ε ∈ (0, 1] the following inequalities are valid:

χ∗({gM < ε}) ≤ ε χ∗({gM < ε}) ≤ ε

and that sets S \ {gM < ε}, S \ {gO < ε} are simple.
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Proof: We start with the case of the maximization. For any policy σ ∈ ΣΓ
S we have

that
Qσx(XU{gM > 1}) ≤ gM(x)

whenever x ∈ {gM ≤ 1}, as it follows from [134, Lemma 3]. Furthermore, since
{g ≤ 1} ⊆ S and G ⊆ Sc, it holds that G ⊆ {gM > 1}. As a result,

Qσ(SUG) ≤ Qσ(XU{gM > 1}).

Combining both inequalities, we obtain that

sup
x′∈{gM<ε}

Qσx′(SUG) ≤ ε,

and thus after maximizing over all stationary policies we obtain that χM({gM <
ε}) ≤ ε.
For the case of the minimization we similarly have

sup
x′∈{gO<ε})

Qσ
′

x′ (SUG) ≤ ε,

and since χO(C) ≤ supx′∈C Qσ
′

x′ (SUG) for any set C ∈ B(X), we immediately
obtain that χO({gM < ε}) ≤ ε for all ε ≤ 1, as desired.

Finally, simplicity of S \ {gM < ε} and S \ {gO < ε} follows from the fact that
they are compact. Indeed, S is compact whereas {gM < ε} and {gO < ε} are open.
Moreover, the simplicity follows from the definition of functions locally excessive
on S which implies that S∞ ⊆ {gM < ε} and S∞ ⊆ {gO < ε}. 2

4.2.3 Comments on the reachability problem

Let us mention how the DP formulation has been developed for the (un)constrained
reachability problem in the SS setting. To our knowledge, the first work with
this goal has been [9], which has considered a class of models called controlled
discrete-time Stochastic Hybrid Systems (cdt-SHS), namely a class of SS with a
state space comprised of a collection of Borel subsets of Rn. It has treated the
unconstrained reachability property ♦nG = trueUnG and the dual safety one
�nS = ¬♦nSc, and has proposed their characterization using a maximal cost
(4.3) for the first problem, and a multiplicative cost (4.4) for the second. Within
this formulations, the DP recursion has been derived for the bounded time hori-
zon n < ∞, while restricting the attention to Markov policies. [124] has ad-
dressed a more general5 constrained reachability problem SUnG within a simi-

5 Although the constrained reachability includes the unconstrained one as a special case, the latter
can be used to solve the former if one just slightly modifies dynamic by making the set of unsafe sets
D = X \ (S∪G) absorbing. Indeed, in such case ♦nG is equivalent to SUnG sinceG is never reached
by a trajectory that has visited D at least once [137, Proposition 1]. In particular, one immediately
obtains [124, Theorem 8] by applying [9, Theorem 1] over a modified model. Similarly, rendering the
set D absorbing allows one to recast a related terminal hitting-time reach-avoid problem [124, Section
4] as a special case of a terminal cost problem [70, Section 3].
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lar setting: cdt-SHS models, Markov policies, and bounded time horizons: a new
sum-multiplicative cost (4.5) has been proposed, leading to the DP scheme in [124,
Theorem 8]. In contrast to these studies, here we have proposed a TC formula-
tion, which has allowed dealing with non-Markovian policies, and to show that
Markov policies are sufficient. In particular, one obtains [9, Theorems 1, 2] and
[124, Theorem 8] as special cases of Theorem 4.5. At the same time, the TC formu-
lation has also led to simpler proofs, which mostly rely on known results for the
TC performance criterion [20, Chapters 8,9].

The case of the unbounded time horizon problem has received some attention al-
ready in [124, Section 3.3] and [3, Section V]. There it was suggested to use the con-
vergence of the bounded-horizon values to the unbounded-horizon one, which
led to considering the fixpoint equations. Although we have shown in Theorem
4.5 that fixpoint equations are indeed valid, they can not be obtained using lim-
iting arguments as the latter may fail as shown in Example 4.7. An alternative
approach via a hitting time formulation (4.6) has been proposed in [30], and the
fixpoint equation for the maximal constrained reachability has been obtained in
[30, Theorem 2.10 (i)]. However, one of the assumptions of this theorem required
the first hitting time of the complement of the safe set τSc to be almost surely finite
for any Markov policy. As a result, in the case of the unconstrained reachability
this theorem assumes that the value is fixed and constant. Finally, [78, Theorem 2]
has shown the convergence of the maximal bounded-horizon unconstrained reach-
ability to the unbounded-horizon one, and has showed that the latter satisfies
the fixpoint equation. In contrast to the aforementioned contributions, Theorem
4.5 does not pose any limitations and establishes fixpoint equations for both the
maximization and the minimization problems in generality, without for example
requiring any continuity assumptions that are often imposed otherwise (cf. [78,
Assumption 1] or [30, Assumption 2.9]). In addition, Proposition 4.6 provides a
complete characterization of the convergence of bounded-horizon problems to the
unbounded-horizon ones, and is further supported by Example 4.7. On a paral-
lel note, related results for the reach-avoid problem – but for the continuous-time
MDPs were obtained in [103] and [102].

The approximation of the unbounded-horizon reachability problem with bounded-
horizon counterparts is an extension to the controlled case of the result in [134].
This extension requires no additional assumptions and (weak) continuity of the
kernel T is sufficient to establish important results such as Theorems 4.12 and 4.16.
At the same time, in the proofs we have extensively used continuity assumption,
and so the equivalence in Theorem 4.12 may fail to hold without such assumptions
– see e.g. [134, Appendix]. In particular, we acknowledge that [137, Proposition
2] is not correct: although uniqueness of fixpoint indeed yields trivial constant
solutions for the maximal and minimal unconstrained reachability in the general
case, without continuity assumptions it may happen that the solution is trivial
but yet there are multiple fixpoints. In emphasizing the role of absorbing sets, it is
crucial to use the connection between m(S) and the contractivity of powers of the
operators rM and rO in Theorem 4.8. In particular, as a special case we obtain [78,
Proposition 1], which has obtained conditions for the contractivity in the special
case m(S) = 1, but that would not be enough to obtain stronger results on the
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connection with absorbing sets. The characterization of the absorbing sets, as well
as finding an appropriate µ-excessive function, is an interesting and important
problem. For example, there seems to be a connection between weakly absorbing
sets (such as S∞) and maximal controlled invariant sets in non-stochastic sys-
tems [113]. Another related concept is that of the maximal end component (MEC)
[17, Section 10.6], which is used to solve both the reachability and the repeated
reachability problems in the case of finite-state SS. Such techniques are extremely
powerful and allow for the full solution of those problems, but unfortunately the
discrete structure of the finite state and control spaces is crucial, and most of the
nice properties MEC has are lost in the more general case of uncountable state
spaces.

An alternative approach to the computation of the unbounded-horizon maximal
reachability is in [78, Proposition 3], where it is proposed to recast the original fix-
point equation as a linear constrained optimization over the infinite-dimensional
space bU(X), and to apply numerical methods for its solution. However, the
uniqueness of the solution of this problem has not been addressed yet. Other
possible alternatives are the theory of Poisson’s equations [71, Chapter 7] and the
theory of transient SS [71, Section 9.6], both of which should be applied over the
truncated operator ΓM

S . Another interesting way to approach this problem is it im-
pose the ψ-irreducibility on the model and to tailor the results in [56, Chapter 10]
developed for the AC performance criterion. All those extensions, however, are
out of the scope of the present contribution.

4.3 Repeated reachability

4.3.1 Characterization

It follows from Lemma 2.9 that model-checking a SS against any property ex-
pressed as a DRA can be reduced to solving the Rabin-like conditions �♦F ′ ∧
(¬�♦F ′′) over the composition of the SS with the underlying transition system
of the DRA. This result applies in particular to all ω-regular languages and LTL
formulae. Unfortunately, we cannot provide a theory that is as comprehensive
as for the reachability case (namely, for DFA or safe LTL specifications), as it has
been presented in Section 4.2, and only focus on some partial results. In partic-
ular, we focus only on the case of the Büchi acceptance condition �♦F , which is
also easier to characterize by means of its dual property ♦�S, known as persis-
tence. As mentioned in Section 2.5, we show how results developed in the setting
of gambling theory apply to the SS case discussed here. This problem was studied
in [94, 96]. In accordance with those works we call a function f ∈ bU(X) exces-
sive6 if ΓMf ≤ f , deficient if (−f) is excessive, and invariant if its both deficient and
excessive. Clearly, invariant functions are precisely the fixpoints of the operator
ΓM.

6 Note that excessive functions are similar to locally uniformly excessive ones as per Definition 4.15.
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The next result provides a characterization of the maximal persistence probabil-
ity SM(♦�S) and emphasizes its connection with the maximal safety probability
SM(�S).

Theorem 4.17 For any set S ∈ B(X) it holds that SM(♦�S) ∈ bAM(X). It is also an
invariant function, and for any excessive function f ∈ bAM(X) satisfying the inequality
f ≥ ΓMSM(�S) it holds that f ≥ SM(♦�S). Moreover, the following DP holds true:

Sx(♦�S) = lim
n→∞

(ΓM)nSx(�S), (4.21)

where the limit is non-increasing point-wise, for all x ∈ X .

Proof: The result follows immediately from [94, Theorem 1.2] and [96, Theorem
4.5, Corollary 5.5]. 2

Note that Theorem 4.17 connects the maximal safety probability SM(·;�S) and the
maximal persistence probability SM(♦�S). As a result, we can use results on the
former function obtained in Section 4.2 to derive properties of the latter one.

Proposition 4.18 SM(�S) = 0 if and only if SM(♦�S) = 0

Proof: Note that (4.21) immediately implies that SM(♦�S) = 0 is sufficient to
claim that SM(♦�S) = 0. On the other hand, since SM(♦�S) ≥ SM(�S), thanks to
Theorem 4.17 we obtain the converse implication. 2

4.3.2 Computation

Although the recursions in (4.21) already suggest a possible computational proce-
dure for computing the value of the maximal probability of persistence SM(♦�S),
the scheme requires an infinite number of iterations that are initialized at the max-
imal safety probability SM(�S), which in turn has to be computed in advance. For
the latter quantity we have already discussed non-trivial issues in Section 4.2, so
the result of Theorem 4.17 is not in general practically applicable. Instead, we pro-
pose tailoring the technique developed in Theorem 4.16 to the problem at hand.
Since the latter result is obtained for stationary policies, we can in fact focus on
the autonomous case and provide a rather comprehensive characterization. Un-
fortunately, extending the results below to the general case is a rather challenging
task.

Recall that in autonomous systems Γ is a graph of some Borel map, which we
also denote by Γ, i.e. in each x ∈ X we can only choose a single distribution
Γ(x) ∈ P(X). As stated above, absorbing sets are crucial when dealing with
infinite-horizon problems over SSs, and they also hint upon certain convergence
properties of sample paths of SSs. We start with discussing the latter concept.
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Definition 4.19 For a sequence (xn)n∈N of elements of X , we say that xn → A with
n → ∞ whenever lim

n
ρ(xn, A) = 0. If for f ∈ B(X) it holds that f |A = c ≡ const,

then the notation lim
x→A

f(x) = c denotes that f(xn) → c for any xn → A. Equivalently,

for any ε > 0 there is θ > 0 such that |f(x)− c| < ε for all x ∈ Aθ.

The definition of an attractive set A ⊆ X for a classical deterministic dynamical
system [109] requires the set A to satisfy the following conditions: 1) to be closed,
2) to be invariant under the flow of the system and 3) to to have a neighborhood
with the property that the system, starting within this neighborhood, never leaves
it and converges to the set A. The set of all points in X which are initial points for
trajectories converging to A is called the domain of attraction of A. For SSs such
requirements may be in general too conservative, which inspired us to introduce
the following definition.

Definition 4.20 We call a set A ⊆ X stochastically attractive for S if

lim
x→A

Px (xm → A) = 1. (4.22)

The equation (4.22) means that selecting an initial condition x closer to A makes
the probability of the event that “the process X converges to A” closer to 1 (below
we show that this probability is in fact well-defined). Thus, Definition 4.20 is a
modified version of the condition 3) above. Also, it captures the closure property:
if (4.22) holds for the set A then it holds as well for its closure A. However, it does
not imply that within some neighborhood of set A the probability to stay always
within this neighborhood is close to 1 (safety). Moreover, the notion of being in-
variant required in deterministic systems and here interpreted as in Definition 4.9
is too restrictive for the discrete-time stochastic framework (we enlighten it below
in Example 4.34) — this is the reason why such a requirement is not included in
Definition 4.20.

The definition of stochastic attractivity leads to studying probabilities related to
events, as in (4.22). In contrast to deterministic dynamical systems, where the
study is often restricted to the attractivity of equilibria and closed orbits, in this
work we embrace a more general approach which first selects potentially attrac-
tive subsets of X and thereafter verifies their attractivity. A special focus is given
to compact subsets of X , thus excluding possible divergent behaviors of the pro-
cess X . Due to this reason we introduce appropriate value functions that depend
both on the point x ∈ X and on the set A ∈ B. In line with the notation of Section
4.2, we let v(x;A) = Sx(�A) and w(x;A,B) = Sx(AUB) for each A,B ∈ B(X).

We also introduce a value function for the convergence event: {xn → A}. Clearly,
unlike the properties above, it does not have a finite horizon version. We start by
defining another, closely related event. By direct application of the definition of
limit, we have that xn → A if and only if for any m ∈ N there is N ∈ N, such that
xn ∈ A1M, for all n ≥ N . We call the property that, for some B ⊆ X there is an N
such that xn ∈ B for all n ≥ N , “xn is eventually always in B,” and denote it as
xn ∈→ B. Now, if xn ∈→ B then obviously xn → B and xn → B if for any m ∈ N,
xn ∈→ B1/m.
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For a set A ∈ B(X) the event {xn ∈→ A} is measurable. Indeed, it is first the com-
plement of the event “xn visits Ac infinitely often,” which is used to character-
ize properties such as transience and recurrence, and is proven to be measurable
[100]. Secondly, this event is invariant, i.e. it is independent on any finite prefix
of the sequence xn. For more detailed discussion, see [100, Section 15] and [112,
Section 3.3]. As a result, it is legitimate to introduce the value function defined
as h(x;A) := Px(xn ∈→ A). Let us now introduce a value function for the conver-
gence probability: c(x;A) = Px(xn → A).

{xn → A} =

∞⋂
m=0

{
xn ∈→ A1/m

}
,

hence the probability in (4.22) is well defined. Furthermore:

c(x;A) = lim
m
h
(
x;A1/m

)
, (4.23)

for any x ∈ X and A ∈ B(X). As a result, (4.22) is equivalent to

lim
x→A

c(x;A) = 1. (4.24)

Functions c and h play a prominent role below.

4.3.3 Characterization through harmonic functions

We provide a formal way to derive h through the safety value function v. First of
all, let us define a safety operator iA on bB1(X) by iAf(x) = 1A(x)Γf(x), so from
Section 4.2

v(x;A) = iAv(x;A). (4.25)

We say that function f ∈ bB(X) is superharmonic if f ≥ Γf , subharmonic if
f ≤ Γf , and harmonic if f = Γf . Clearly, the function v is subharmonic: if x ∈ A
then

v(x;A) = iAv(x;A) = Γv(x;A),

whereas if x ∈ Ac, then v(x;A) = 0 ≤ Γv(x;A).

Theorem 4.21 For all x ∈ X and A ∈ B(X) it holds that

h(x;A) = lim
n

Γnv(x;A), (4.26)

so that h = Γh and c = Γc. Moreover, if f is a harmonic function and f ≥ v then f ≥ h,
i.e. h is the smallest harmonic majorant of the function b. In particular,

inf
x∈X
|h(x;A)− v(x;A)| = 0. (4.27)
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Proof: First of all

{xn ∈→ A} =

∞⋃
n=0

{ ∞∏
k=n

1A(xk) = 1

}
,

so

h(x;A) = Px(xn ∈→ A) = Px

( ∞⋃
n=0

{ ∞∏
k=n

1A(xk) = 1

})

= lim
n

Px

( ∞∏
k=n

1A(xk) = 1

)

= lim
n

Γn

(
Px

( ∞∏
k=0

1A(xk) = 1

))
= lim

n
Γnv(x;A),

which proves the first part. Now notice that for all x ∈ X and A ∈ B(X)

Γh(x;A) =

∫
X

lim
n

Γnv(y;A)Γ(dy|x)

= lim
n

∫
X

Γnv(y;A)Γ(dy|x)

= lim
n

Γn+1v(x;A) = h(x;A)

where we used dominated convergence theorem [50] to interchange the limit and
the integral operators.

Let now f be a harmonic function such that f ≥ v. The operator Γ is clearly
monotone, so f = Γnf ≥ Γnv for all n ∈ N. The limit n→∞ yields that f ≥ h, so
h is the least harmonic majorant of v. Suppose that

ε = inf
x∈X
|h(x;A)− v(x;A)| > 0

then h(x;A) ≥ v(x;A)+ε and hence f(x) := h(x;A)−ε ≥ v(x;A) being in addition
a harmonic function. But it contradicts with the fact that f ≥ h, so (4.27) holds.

Finally, with regards to the function c we have

Γc(x;A) = Γ lim
m→∞

h
(
x;A1/m

)
= lim
m→∞

Γh
(
x;A1/m

)
= c(x;A)

since functions h are harmonic. 2

Let us discuss the result above. First, the convergence Γnv → h is monotonically
non-decreasing: Γu ≥ u, because v is subharmonic, furthermore Γn+1v ≥ Γnv,
because Γ is a monotone operator. On the other hand, the convergence may not
be uniform, which makes it difficult to find the bounds on the quantity ‖Γnu−h‖.
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Second, the equation h = Γh is called the Laplace equation and admits infinitely
many solutions, e.g. any constant function. Finally, although h is the least har-
monic majorant of v and (4.27) holds, there are cases when h(x;A) > v(x;A) for
all x ∈ X .

These remarks emphasize possible difficulties related to finding the function h.
Moreover, recall from above that the problem of finding the safety function v (and
thus Γnv) is difficult by itself. On the other hand, although the function h in gen-
eral cannot be computed with any accuracy, we show that there are cases when
this problem has a solution. Also, here we provide techniques that allow one to
find the value of h directly, without calculating v in advance.

With focus on the function c, its evaluation is even more difficult: from a compu-
tational perspective view we have that

c(x;A) = lim
i

lim
j

lim
k

(
Γj ikA1/i

)
1A1/i(x), (4.28)

for all x ∈ X,A ∈ B(X), In order to tackle this problem, we show how to eliminate
the limit with respect to i, which leads to the calculation of function h.

Although it is in general hard to find an analytical expression for h(x;A), given
x ∈ X and an A ∈ B(X), in some cases it is possible. We characterize such
instances using absorbing sets: in autonomous SSs there is no difference between
weakly and strongly absorbing sets. They are analogues of equilibrium points,
closed orbits and more generally, of invariant manifolds for classical deterministic
dynamical systems [109]. The next lemma further highlights this similarity.

Definition 4.22 An autonomous SS S is called continuous if Γf is continuous for any
continuous function f .

Lemma 4.23 If S is continuous and A is absorbing then A is absorbing.

Proof: Note that Γ(A|x) = Γ1A(x) = 1 for all x ∈ A, so it is sufficient to prove
that Γ(A|x) is continuous on A. Define

g(x) = min
{
ρ
(
x,A

)
, 1
}

so g ∈ C(X). Put fn(x) = (1 − g(x))n then fn(x) ∈ [0, 1] for all x ∈ X and n ∈ N
and fn ∈ C(X). Moreover, fn(x) = 1 for x ∈ A and fn ↓ 1A pointwise.

Now, since fn(x) ≥ 1A(x) then Γfn(x) ≥ Γ1A(x) = 1 for all x ∈ A. Since S

is continuous, a function Γfn ∈ C(X) and hence Γfn(x) ≥ 1 for all x ∈ A. By
monotone convergence theorem we obtain that Γfn(x) ↓ Γ1A(x) = Γ(A|x), so
Γ(A|x) = 1 for all x ∈ A, which proves the statement of the lemma. 2

We denote with l.a.s.(A) the largest absorbing subset of a given set A ∈ B(X). In
contrast to the general case, for autonomous SSs it is always well-defined and is
provided by A∞ = {v(·;A) = 1}. We further introduce the following notation: for
any f ∈ bB(X) we define mM

f = {f = supx∈X f(x)} and mO
f = {f = infx∈X f(x)}.
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Lemma 4.24 For a superharmonic f , the set mO
f is absorbing.

Proof: If mf is empty, it is absorbing by the definition. Hence, we assume that
there is at least one x ∈ mO

f . We have

0 ≤ f(x)− Γf(x) =

∫
X

(
inf
x′′∈X

f(x′′)− f(x′)

)
Γ(dx′|x) ≤ 0

where the left inequality holds since f is superharmonic and the right one holds
because infx′′∈X f(x′′) ≤ f(x) for all x ∈ X . As a result, Γ(mO

f |x) = 1 as needed.
2

As a corollary, we have that for a subharmonic function f the set mM
f is absorbing,

and furthermore that if f is harmonic bothmO
f andmM

f are absorbing. Let us show
how these results are employed to find function h.

Theorem 4.25 For any set A ∈ B the function v(·;A) is harmonic iff mO
v = {v(·;A) =

0} is absorbing. In that case h(·;A) = v(x·;A).

Proof: If v is harmonic then mO
v is absorbing by Lemma 4.24. On the other hand,

let mO
v be absorbing. For each x ∈ A we have v(x;A) = Γv(x;A). Now let x ∈ Ac,

then x ∈ mO
v and so

Γv(x;A) =

∫
X

v(x′;A)Γ(dx′|x) =

∫
mO

v

v(x′;A)Γ(dx′|x) = 0

so 0 = v(x;A) = Γv(x;A) and hence v is harmonic, so v is the least harmonic
majorant of itself and hence h = v. 2

Theorem 4.25 implies that if the set mO
v is absorbing then the problem of finding

h is reduced to that of finding v. Although the analytical expression for v is in
general hard to obtain and thus the verification of absorbance ofmO

v is not a trivial
problem, there exist cases with an analytical solution.

We show now which measurable subsets of X are essentially not attractive. First,
since equation (4.25) is linear, it always admits a trivial zero solution, though this
may happen when v(·;A) is not a constant zero function – a simple example being
A = X . From Theorem 4.12 we have that l.a.s.(A) = ∅ iff v(·;A) = 0 under the
assumption that S is continuous A is compact. We can now formulate criteria for
h(x;A) and c(x;A) to be constantly zero based on the simplicity of the set A.

Theorem 4.26 For a set A ∈ B(X) it holds that:

i. h(·;A) = 0 iff v(·;A) = 0;

ii. in particular, if S is continuous and A is compact, then h(·;A) = 0 iff A is simple;
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iii. if S is continuous, X is locally compact and A is compact then c(·;A) = 0 iff A is
simple.

Proof: The proof is as follows:

i. If v(·;A) = 0 then it is harmonic and hence h = v = 0. On the other hand,
since h(·;A) ≥ v(·;A) ≥ 0, the fact that h = 0 implies v = 0.

ii. If S is continuous and A is compact, v(·;A) = 0 iff if A is simple by Theorem
4.12. Hence in that case ii. easily follows from i.

iii. Clearly, {xn ∈→ A} ⊆ {xn → A}, thus h(·;A) ≤ c(·;A). If c(x·;A) = 0 then
h(·;A) = 0 and by ii. the set A is simple.

Conversely, assume that A is a compact simple set. Let us denote hm(x) =
h
(
x;A1/m

)
so c(x;A) = lim

m
hm(x) for all x ∈ X , and the idea is to show that

hm = 0 for m big enough, provided that A is simple. First, we show that
there is M > 0 such that A1/M is a compact set. Since X is locally compact,
each x ∈ A has a compact neighborhood, so let ε : A → R be such that
{x}ε(x) is contained in some compact set. We have that

{
{x}ε(x) : x ∈ A

}
is

an open cover of A, thus there is an open subcover {{xk}εk}k≤n with εk :=

ε(xk). Now, {xk}εk is compact for each k ≤ n, as closed subsets of compact
sets. Hence the set

C =
⋃
k≤n

{xk}εk

is compact and Aε′ ⊆ C where ε′ = min
k≤n

εk. We only need now to pick

up M > 1
ε′ , then A1/M is a compact as a closed subset of a compact C.

For m ≥ M we denote Bm = A1/m and B′m = l.a.s.(Bm). Then we have
A1/(m+1) ⊆ Bm+1 ⊆ A1/m and so hm(x) ≤ h (x;Bm) for all x ∈ X .

Second, let us show that there is M ′ ≥ M such that Bm is simple for all
m ≥ M ′. Suppose contrary: namely that B′m 6= ∅ for all m ≥ M . B′m are

compact sets so B′ :=
∞⋂

m=M

B′m ⊆ A is not empty. For any x ∈ B′ it holds

that x ∈ B′m for all m ≥M , thus Γ(B′m|x) = 1. We have

Γ(B′|x) = Γ

( ∞⋂
m=M

B′m

∣∣∣∣∣x
)

= lim
m

Γ(B′m|x) = 1

which means that the set B′ is a non-empty absorbing subset of A and con-
tradicts with the simplicity of A.

Finally, since for some M ′ ≥ M sets (Bm)m≥M ′ are compact and simple,
h(x;Bm) = 0 by ii.. On the other hand, 0 = h(x;Bm) ≥ hm(x) and so
c(x;A) = lim

m
hm(x) = 0.

2
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Corollary 4.27 It follows that:

i. If A ∈ B(X) and for some θ > 0 the set Aθ is trivial, then A is not stochastically
attractive.

ii. If X is locally compact, S is continuous and A is compact and simple then A is not
stochastically attractive.

Proof: The proof is as follows:

i. For all m ≥ 1/θ we have h(x;A1/m) = 0 and hence c(·;A) = 0. As a result,
(4.24) does not hold for A.

• Follows directly from the statement iii. of Theorem 4.26.

2

Corollary 4.27 provides conditions for sets not to be stochastically contractive. Al-
though the problem of verification of simplicity or triviality of a given set A does
not have a general (respectively analytical or computational) solution, there exist
sufficient conditions. The first (analytical) conditions require super- or subhar-
monic functions to be constants, implying that v(·;A) = 0 for all A 6= X . The
second (computational) conditions require that An is empty for some n ∈ N [129,
Theorem 2].

So far we have discussed sets that do not satisfy the given definition of stochastic
attractivity. Next, the attention is shifted over a class of sets that satisfies it. We
start with the following useful result. Notice that lim

n
v(xn;A) exists Px-a.s. for all

x ∈ X , since v is a bounded subharmonic function, hence the existence of the limit
is insured by the martingale convergence theorem [50].

Lemma 4.28 For any x ∈ X and A ∈ B(X) we have

Px
(

lim
n
v(xn;A) = lim inf

n
1A(xn)

)
= 1, Px

(
lim
n
h(xn;A) = lim inf

n
1A(xn)

)
= 1.

In particular,

h(x;A) = Px
(

lim
n
v(xn;A) = 1

)
= Px

(
lim
n
h(xn;A) = 1

)
.

Proof: We define an operator q on bB(X) as qf(x) = max{f(x),Γf(x)}. From
[116, Lemma 6, Lemma 8, p. 43] it follows that if f ∈ bB(X) and g(x) = lim

n→∞
qng(x)

then

Px

(
lim
n
g(xn) = lim sup

n
f(xn)

)
= 1. (4.29)

We take f = 1Ac gives us the first equality of the lemma. Furthermore, h(x;A) =
lim
n

Γnv(x;A) = lim
n

qnv(x;A) since v is subharmonic, Γnv are subharmonic for all
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n ∈ N. Hence, qΓnv = Γn+1v for all n ∈ N and we obtain the second equality
of the lemma from (4.29). For any x, Px-a.s. we have that lim

n
v(xn;A) = 1 and

lim
n
h(xn;A) = 1 iff lim inf

n
1A(xn) = 1 and the latter statement mean {xn ∈→ A}.

Recalling of the definition of h completes the proof. 2

Lemma 4.29 If S is continuous and A is a compact set, then lim
n
v(xn;A) → 1 implies

xn → l.a.s.(A), for any sequence (xn)n∈N of elements of X .

Proof: Suppose, that lim
n
v(xn;A) = 1 and xn 9 A, i.e.

lim sup
n

ρ(xn, l.a.s.(A)) > 0.

Since v(x;A) = 0 for all x ∈ Ac, we have xn ∈→ A. Compactness of A implies that
there is a convergent subsequence x′n → x′ ∈ A such that lim

n
ρ(x′n, l.a.s.(A)) > 0

but lim
n
v(x′n;A) = 1. Since v ∈ bCM(X) we get that v(x′;A) = 1 and hence x′ ∈

l.a.s.(A), but ρ(x′, l.a.s.(A)) > 0, which leads us to a contradiction. 2

Lemmas 4.28 and 4.29 show that under assumptions of continuity of S and com-
pactness of A, xn → l.a.s.(A) is a necessary condition for xn ∈→ A, Px-a.s. for all
x ∈ X . On the other hand, this is not a sufficient condition in general. Due to this
reason we introduce the concept of stable absorbing set.

Definition 4.30 An absorbing set A ∈ B is called stable if there exists a compact neigh-
borhood UA of A such that A = l.a.s.(UA) and

lim
x→A

v(x;UA) = 1. (4.30)

Remark 4.31 The stability property of absorbing sets can be related to the Lyapunov
stability for classical deterministic dynamical systems [109]. Indeed, (4.30) means that if
A is a stable absorbing subset, then for any ε > 0 there is a neighborhood of A starting
from which the process never leaves such neighborhood with a probability at least 1− ε.

The compactness of set UA plays a role in the following result.

Theorem 4.32 If S is continuous and A is a stable absorbing set, then A is stochastically
attractive and there exists M ∈ N such that

h
(
x;A1/m

)
= h(x;UA) = c(x;A)

for all x ∈ X and m ≥M .

Proof: Let A ∈ B be a stable absorbing set and UA be as in Definition 4.30. Since
UA is compact and A = l.a.s.(UA), A is compact too. Moreover, since UA is a com-
pact neighborhood of A, each x ∈ A has a compact neighborhood and similarly
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to the proof of Theorem 4.26 we pick up M such that A1/M is a compact set. Thus
for all m ≥M the set A1/m is compact.

Let us consider an arbitrarym ≥M . By Lemma 4.29 we obtain that v
(
xn;A1/m

)
→

1 implies xn → A. Let us show that the converse statement is also true. Since X
is a metric space, it is equivalent to show that for any ε > 0 there is θ(ε) > 0 such
that ρ(x,A) < θ(ε) implies

v
(
x;A1/m

)
≥ 1− ε. (4.31)

We fix ε > 0 and denote f(x) := 1− v(x;UA). Since f is a superharmonic function
with a range in [0, 1], the process (f(xn))n∈N is a non-negative Px-supermartingale
for all x ∈ X [116]. Hence, the Doob’s inequality [50] holds:

Px

(
sup
n∈N

f(xn) > r

)
≤ 1

r
f(x) (4.32)

for all x ∈ X and r > 0. In the level sets notation, the inequality (4.32) takes the
form v(x; {f ≤ r}) ≥ 1− 1

rf(x).

Let us show that the stability ofA implies an existence of r > 0 such that {f ≤ r} ⊆
A1/m. Indeed, if it was true, we would be able to pick up a sequence xk /∈ A1/m

such that f(xk) ≤ 1/k. Clearly,

lim
k
v(xk;UA) = 1− lim

k
f(xk) = 1

but ρ(xk, A) ≥ 1
m which contradicts with Lemma 4.29.

It follows from the existence of r that

v
(
x;A1/m

)
≥ v(x; {f ≤ r}) ≥ 1− 1

r
f(x).

Leveraging the stability of A again, we obtain that there exists θ > 0 such that
f(x) ≤ rε for all x ∈ Aθ, and hence for all such x the inequality (4.31) holds.

As a result, for any m ≥M we obtain that v
(
xn;A1/m

)
→ 1 iff xn → A. Since

h
(
x;A1/m

)
= Px

(
v
(
xn;A1/m

)
→ 1

)
= Px (xn → A)

we obtain that
h
(
x;A1/m′

)
= h

(
x;A1/m′′

)
.

for all m′,m′′ ≥M and x ∈ X . Furthermore, since

h
(
x;A1/m

)
≥ h

(
x;A1/m

)
≥ h

(
x;A1/(m+1)

)



94 Infinite-horizon case

for all m ≥M and x ∈ X , we obtain that

c(x;A) = lim
m
h
(
x;A1/m

)
= h

(
x;A1/m′

)
for all m′ ≥ M and x ∈ X . Moreover, v(xn;UA) → 1 iff xn → A, so c(x;A) =
h(x;UA).

To complete the proof of the theorem we observe that h
(
x;A1/m′

)
≥ v

(
x;A1/m′

)
,

and for the latter we proved that it converges to 1 on any sequence which con-
verges to A. As a result, A is stochastically attractive. 2

Let us discuss examples showing that some of the conditions we have provided
are sufficient but not necessary in general. Let X =

{
± 1
n

}
n∈N ∪ {0} be endowed

with the Euclidean metric, which makes it a complete separable compact (and lo-
cally compact) metric space. We first show that the reverse statement of Theorem
4.32 does not hold.

Example 4.33 (A stochastically attractive absorbing set is not necessary stable) Let
Γ({0}|0) = 1, Γ({−1}|1) = 1, Γ

({
1

n−1

}
| 1n
)

= 1 for all n ∈ N\{1} and Γ
({
− 1
n+1

}
| − 1

n

)
=

1 for all n ∈ N. The corresponding dynamics is clearly deterministic, still it is a contin-
uous SS. This process converges to an absorbing set A = {0} starting from any initial
condition, so c(·;A) = 1 and hence A is stochastically attractive. However, there is no
such neighborhood UA of A such that A = l.a.s.(UA).

The second example shows that there may exist a setA such that c(·;A) = 1, which
in particular means that A is stochastically attractive, but it is not absorbing. This
fact relates to the discussion given after Definition 4.20.

Example 4.34 (A stochastically attractive set is not necessary absorbing) In the pre-
vious example we only change Γ({1}|0) = 1. We still have A = {0} stochastically attrac-
tive since c(x;A) ≡ 1 but now A is not absorbing. Note that the update in the dynamics
leads to the lack of continuity of the process, thus this assumption cannot be relaxed in
Theorem 4.26, statement iii.

Theorem 4.32 shows that the stability of an absorbing set under mild conditions
implies its stochastic attractivity. Moreover, it helps eliminating the outermost
limit in the computation of the function c as in (4.28). The question is hence in
how to show a stability of a given absorbing set. We introduce the following
Lyapunov-like functions for that purpose.

Lemma 4.35 An absorbing set A is stable iff the following stabilizing pair exists:

• a compact neighborhood UA of A such that A = l.a.s.(UA);

• a function f ∈ bB(X) such that infx∈X f(x) = 0, mO
f = A, lim

x→A
f(x) = 0 and

there exists r > 0 such that {f ≤ r} ⊆ UA and f(x) ≥ Γf(x) for all x ∈ {f ≤ r}.
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If S is continuous, A is stable iff there is a stabilizing pair with an l.s.c. function f .

Proof: Suppose that such f and UA exist. From the local version of Doob’s in-
equality [129, Theorem 6] it follows that

v(x; {f ≤ r}) ≥ 1− 1

r
f(x)

for all x ∈ X . As a result, lim
x→A

v(x;UA) = 1 since v(x;UA) ≥ v(x; {f ≤ r}).

Now, let A be a stable absorbing set. Then there exists an compact neighborhood
UA of A such that A = l.a.s.(UA). Clearly (UA, 1− v(x;UA)) is a stabilizing pair. 2

We have provided conditions for an absorbing setA to be stable, and hence stochas-
tically attractive, under the conditions of Theorem 4.32. With regards to its domain
of attraction, the set of points for which it holds with probability 1 is clearly given
by {c(·;A) = 1}. Since c is a harmonic function, such set is itself absorbing and
hence may coincide either with A or with X . So, the claim that convergence must
hold with probability 1 may be too conservative and instead one may consider
ε-domains of attraction given by {c(·;A) ≥ 1 − ε}. To characterize such domains
the procedure of computing the function c with explicit bounds on the error is
needed. We show that the knowledge of a Lyapunov-like function as in Lemma
4.35 is not only useful to establish the stability of A, but also for such a computa-
tional procedure.

Lemma 4.36 For any A ∈ B(X) the following trichotomy holds: either h(·;A) = 0 or
h(·;A) = 1, or inf

x∈X
h(x;A) = 0 and sup

x∈X
h(x;A) = 1.

Proof: Suppose that inf
x∈X

h(x;A) > 0. Clearly, Px
(

lim
n→∞

h(xn;A) = 0
)

= 0, hence

by Lemma 4.28 we obtain that h(·;A) = 1. Applying the same argument to the
case sup

x∈X
h(x;A) < 0 we obtain that h(·;A) = 0. 2

Theorem 4.37 Assume that S is continuous, A is a stable absorbing set which admits a
stabilizing pair (UA, f) with f ∈ bCO(X), and r > 0 is as in the statement of Lemma
4.35. Assume also that there exists an open set E such that inf

x∈E
c(x;A) = 0, UA∩E = ∅,

A = l.a.s.(Ec) and put Dr′ = (f≤r′ ∪ E)c for all r′ ∈ R. Then

|c(x;A)− w (x;Dεr, {f ≤ r})| ≤ max

(
ε, sup
x′∈E

c(x′;A)

)
, (4.33)

for any ε ∈ (0, 1).

Proof: From the proof of Theorem 4.32 we obtain that c(x;A) = h(x;UA). More-
over, since lim

x→A
f(x) = 0, we obtain that there existsm ∈ N such thatA1/m ⊆ {f ≤

r} and since
A1/(m+1) ⊆ {f ≤ r} ⊆ UA,
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we obtain that c(x;A) = h(x; {f ≤ r}).

Let us denote by τε = inf {n ∈ N : xn ∈ {f ≤ εr} ∪ E}. Then:

h(x) = Px (xn ∈→ {f ≤ r}, τε =∞) + Px (xn ∈→ {f ≤ r}, τε <∞) . (4.34)

For the first term of (4.34) we have:

Px (xn ∈→ {f ≤ r}, τε =∞) = Px (xn ∈→ {f ≤ r} \ {f ≤ εr}, τε =∞) = 0.

To prove it we show that {f ≤ r} \ {f ≤ εr} has function v zero everywhere.
Since lim

x→A
f(x) = 0 there exists m ∈ N such that A1/m ⊆ {f ≤ εr}, so UA \ A1/m

is compact and simple, hence has a zero v function. Hence {f ≤ r} \ {f ≤ εr} ⊆
UA \A1/m its v function is zero as well.

For the second term of (4.34) we have

Px {xn ∈→ {f ≤ r}, τε <∞} =

∫
E

h(y)κ(dx′|x) +

∫
{f≤εr}

h(x′)κ(dx′|x)

where κ(B|x) = Px {xτε ∈ B, τε <∞}. We obtain:

inf
x′∈{f≤εr}

h(x′)w(x;Dεr, {f ≤ εr}) ≤ h(x) ≤ sup
x′∈E

h(x′) + w(x;Dεr, {f ≤ εr})

since inf
x′∈E

h(x′) = 0. Now, h(x) ≥ v(x; {f ≤ r}) ≥ 1 − 1
rf(x) and hence for all

x ∈ {f ≤ εr}we have h(x) ≥ 1− ε, which completes the proof. 2

Let us make some remarks on Theorem 4.37. First, the reach-avoid value function
w in (4.33) can be computed with explicit bounds on the error [129]. Combining
such bounds with the right-hand side in (4.33), we obtain an approximate value
of c with a known precision. Second, weak continuity of X and stability of A
ensure that a necessary stabilizing pair exists by Lemma 4.35. Moreover, since
c(x;A) = h(x;UA), it is either a constant function equal to 1, or the set E exists by
Lemma 4.36.

Applying the result of Lemma C.10 one could extend Theorem 4.37 to the non-
autonomous SSs.

Theorem 4.38 Let Assumption 4.11 hold true and further assume stationary policies are
sufficient, that is for all x ∈ X assume that

S (x;♦�A) = sup
σ∈ΣΓ

S

Qσx (♦�A) .

Suppose that g is a locally σ′0-excessive function on A for some stationary policy σ′ ∈ ΣΓ
S .

Let E ∈ B(X) be any open set such that infx∈E SMx (♦�A) = 0, E ∩ {g ≤ 1} = ∅, Ec is
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a compact set, and (Ec)∞ = A∞. Then for all x ∈ X and ε ∈ (0, 1] it holds that

|S (x;♦�A)− S (x;FεUBε)| ≤ max

(
ε, sup
x∈E

SMx (♦�A)

)
, (4.35)

where Bε := {g ≤ ε} and Fε = (Gε ∪ E)c.

4.3.4 Comments on the repeated reachability problem

We have mentioned that the characterization in Theorem 4.17 is taken from the
literature on gambling: indeed we have not been able to find similar results ob-
tained for the SS framework. It is interesting to see that the function S (x;♦�S)
satisfies a fixpoint equation, similarly to the uncontrolled case [131]. The connec-
tion between the solution of this problem and the value of the maximal safety
probability S (x;�S) appears to be useful in characterizing simple instances, as
we have encountered in Proposition 4.18.

There is range of literature in gambling on utilities with the form J := lim supn→∞ c(xn)
and J := lim infn→∞ c(xn), which turn out to be repeated reachability specifica-
tions in the case the cost is an indicator function, namely c(x) = 1S(x). For the
lim sup criterion, conditions on sufficiency of stationary policies have been ob-
tained in [122] and [72], while for the lim inf case in [123]. A number of results
valid for these criteria are summarized in [95, Section 4], in particular [95, The-
orem 9.1, Chapter 4] provides a procedure to find S (x;�S) using the transfinite
induction algorithm over all countable ordinals, rather than a simple recursion
like in (4.21). Although this book only focuses on the case when the state space
is countable, some of those results seem to allow for extensions to general Borel
state spaces – more research is needed towards this goal. Unfortunately how-
ever, they do not seem to lead to practical computational procedures. To the best
of our knowledge the result of Theorem 4.38 is novel, and is an extension of a
version for uncontrolled processes in [131], where the focus was on studying the
stability properties of the absorbing sets. Alternatively, it may be worth invok-
ing some results obtained for recurrence [100]: however, such results are only
strong when obtained under assumption of ψ-irreducibility of the transition ker-
nel Γ [56, Chapter 10], which are often restrictive and lead to results that are rarely
computational. The AC criterion also seems to be related to the lim sup and lim inf
criteria in general, and to the repeated reachability property in particular, how-
ever much more research is needed to formally clarify the precise relationship.
To summarize, on the one hand there are many results in gambling related to the
repeated reachability problem, however they do not seem to lead to practically
useful computational methods. On the other hand, in the SS setting such criteria
have not received much attention, and although some related methods for other
criteria [56] may be useful, such relationship is by no means direct or clear. The
current contribution only makes an initial step towards numerical procedures for
repeated reachability properties over SS, and much more research on the topic is
needed.





5 CHAPTER

Conclusions and future research

This chapter summarizes the thesis and shortly discusses its main
contributions. We also provide some possible directions of future

research.

5.1 Conclusions

In this thesis we have explored approximate solutions of diverse stochastic opti-
mization problems over general Markov Decision Processes (MDP) in the frame-
work of stochastic systems (SS), and equally expressible model, for which it is a
bit easier and less cumbersome to derive the desired results. We have studied
both optimization criteria popular in the control community, e.g. the discounted
additive cost criterion, and even more focus was given to less explored group of
specifications expressed as formulae of linear temporal logic (LTL), more common
in the computer science community.

In order to make things somewhat more natural and intuitive, we have departed
from the problems at hand, motivating each of our concept through the fact it is
useful for the solution of the problems we think of and discarding alternatives
which would not bring us closer to that solution, while keeping a direction in
some sense parallel to a well-developed theory for non-probabilistic transition
systems (TS). For example, as a first step we have defined behaviors for SSs in
Section 2.4, showed that they do not exactly coincide with those of TSs, but yet
are similar to the latter in the sense that concepts of behaviors for both models are
helping in solving the linear temporal optimization problems for each of them.
Due to slight difference in the problems one should not expect the precise match
of behaviors in absolute sense, but only in the relative: how comprehensive is the
concept of behavior for this particular model. We believe that contribution of this
thesis covers both concrete problems and conceptual advancements that came up
while trying to solve the former. Hence, in the list below we go over results of
both categories, increasing the degree of abstractness.
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• Bisimulations theory for MDPs. In Chapter 3 we presented a novel theory
of approximate bisimulation of MDPs strong enough to cover error in opti-
mization of any bounded-horizon linear temporal specification, or any dis-
counted cost criterion. Relations we have introduced exhibit many desired
properties such as transitivity, which makes it possible to combine them,
and achieve stronger results step by step. We have shown that the bounds
provided on approximation techniques are tight in a sense that they can-
not be improved in general, without introducing additional assumptions on
the closeness of the models. Finally, we have provided concrete algorithmic
procedures of constructing finite abstractions for infinite systems: sound ab-
stractions in general case, and approximate abstractions with any precision
for MDPs whose dynamics is continuous.

• Analysis of infinite-horizon LTL optimization for MDPs. As bounds pro-
vided by approximate bisimulation methods do not always extend well be-
yond the finite time horizon, for infinite-horizon problems we gave a more
specific treatment in Chapter 4, using automata theory to reduce those prob-
lems to fundamental ones: reachability and repeated reachability. The for-
mer problem we have solved by restating it as an additive cost criterion,
which gave us an access to a rich toolbox of optimization results devel-
oped for that criterion in classical stochastic control literature. We have also
studied more thoroughly cases which went beyond that literature, and dis-
covered strong relations between stability of MDPs through absorbing sets
and solutions of reachability problem, which led us to a strong equivalence
result: if there are no absorbing sets outside the goal set the latter will be
reached with probability 1, and otherwise one needs to “cut-off” those sets
with some Lyapunov-like function, and solve the problem on the rest of the
space. The results for repeated reachability in the most general setting did
not yield so strong results, so we further focused on the case when the con-
trol strategy is fixed or the MDP is autonomous, i.e. a Markov Chain (MC).
For that we have connected repeated reachability with harmonic functions
theory and stochastic stability, which allowed us to achieve an equivalence
result between existing of stable absorbing sets and Lyapunov functions for
them. This result is practically important, as Lyapunov functions are needed
in solutions of both reachability and repeated reachability problems when
non-trivial absorbing sets are present.

• More conceptually, we have formalized notions of approximate bisimula-
tions in Appendix A.3, providing general theory for approximate relations,
defining their properties that are of use for us, and relating them to a more
familiar notion of pseudometrics. This theory is agnostic of the model defi-
nition, and applies to TSs, SSs, MDPs and likely many other models.

• In Appendix A.4 we have given a try to formalize the notion of model syntax
and semantics the way we use it in the thesis, and perhaps also useful for
other works. In particular, we have argued what are the relevant versions
of behaviors one should focus on, and that they should be motivated by the
semantics of the model, rather than by its syntax. We have provided several
example from this thesis and from the literature.



5.2 Future research 101

• In Appendix A.6 we have stressed how strongly similar definitions of be-
havioral inclusions for TSs and SSs in fact are, and that they are like to be
particular cases of more general framework, which perhaps can cover more
models in one go. We have done this with the help of theory of weak (con-
vex) inclusions developed in A.5

• Finally, in Appendix B.2 we have in detail discussed a known lifting proce-
dures of operations from states to measure, and to the best of our knowledge
we are the first to study comprehensively properties of this lifting applied
to lifting analytic relations between state to those between measures. In par-
ticular, we have shown that it can be considered as an endofunctor in the
category where objects are Borel spaces and morphisms are analytic rela-
tions between them. This can be considered as an extension of the work by
Lawvere and Giri on probabilistic functor, which is a special case of our func-
tor, when the latter is restricted to graphs of Borel maps. Those results were
particularly useful in showing transitivity-like properties of precise and ap-
proximate relations between SSs.

5.2 Future research

We envision the following three directions of how to extend the results of this
thesis.

i. Finite-horizon theory of approximate bisimulation is rather complete and
comprehensive in here, which is supported by the tightness of the bounds.
For the infinite horizon case, though, we had focus on fundamental prob-
lems separately. It is likely that one still can come up with a notion of
approximate bisimulation of SSs that is more helpful for the latter type of
tasks. One approach would be to try out bisimulation functions: those are
very likely to provide strong bounds on dynamics between different mod-
els, but they often exist only in a small subclass of cases when the models
exhibit certain global stability properties. Conservativeness of this approach
is even stronger in SSs compared to TSs, as in the former case one has to deal
with the issue of choosing the best coupling to bound the dynamics – see e.g.
[135]. As an alternative, likely replacing the total variation distance with the
Kantorovich metric in comparing behaviors of the SSs and hence in the no-
tions of approximate bisimulations would yield results that are less conser-
vative both w.r.t. the current approach, and the one based on approximate
bisimulation functions.

ii. Even though we think that finite horizon theory for bounding optimization
results in total variation is now in a good shape, yet from authors personal
experience those bounds are still happen to be rather conservative in some
cases, especially when it comes to high-dimensional models. Even though
precise estimates are hard to improve in such cases, one can allow for less
certain errors by using e.g. randomized methods, for example an interesting
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procedure was discussed in [79]. Even though the bounds there are less for-
mal then the one we focused on, from a practical point of view they may be
sufficient in many tasks, while being easier to achieve even for very complex
systems.

iii. Finally, if we shift the focus away from MDPs and look at things from more
general perspective, we believe that results on abstract models and their be-
haviors in this system can be further extended to a more general framework,
which perhaps will make it easier to extrapolate results from one model type
to another.



A APPENDIX

General concepts

A.1 Notation and conventions

This work is motivated by the problems arising in stochastic optimal control. Even
over finite models one cannot avoid dealing with uncountable sets, for example
a set of all trajectories of the system – see e.g. [95]. For this reason, one needs
measure-theoretical probability theory even in such case, let alone when solving
control problems over stochastic models with uncountable state or actions sets.
Therefore, the structure of such sets is of little importance, and there is no differ-
ence whether the states of a system belong to the interval [0, 1] or to some infinite-
dimensional manifold. Due to this reason, instead of restricting ourselves to e.g.
hybrid spaces [28], we present most of the results in a rich and neat framework
of Borel spaces which combines topology and measure theory. We assume the
reader to be familiar with basic notions in topology, measure theory and proba-
bility; they can also be consulted e.g. in [60, Chapters 0-4 & 10]. Whenever we
use more advanced results from these areas, we try our best to put precise refer-
ences. Usually such results concern Borel spaces and their analytic subsets: most
of the relevant material can be found in [20, Chapter 7], with a specific focus on
stochastic optimal control, or in dedicated books [108], [82] and [120]1.

A Borel space is a topological space homeomorphic to a Borel subset of a complete
separable metric space. Examples of Borel spaces are the sets of reals R endowed
with the Euclidean topology, its subset of non-negative reals R+ with a subspace
topology, the set of non-negative integers N endowed with the discrete topology,
or its finite subsets [0;n] := {0, 1, . . . , n} for each n ∈ N with the discrete topology.
A countable product of Borel spaces is a Borel space, and its Borel σ-algebra equals
its product σ-algebra [20, Proposition 7.13]

The Borel σ-algebra of a Borel space Ω is denoted by B(Ω), and the space of all
Borel probability measures on Ω by P(Ω). In this thesis we use terms “probability

1 There was also developed a framework for stochastic optimal control in discrete time over general
sets which avoids measurability issues, by dealing with finitely-additive measures [36], as opposed to
countably-additive ones usually met in probability theory. The details of this framework can be found
in [48]. Although an interesting approach, it comes with its own trade-offs, so we do not follow it here.
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measure” and “distribution” interchangeably. We always assume that P(Ω) is en-
dowed with the topology of weak convergence, so that it is a Borel space itself [20,
Corollary 7.25.1]. It follows that B(P(Ω)) coincides with a σ-algebra generated by
the evaluation maps (eA)A∈B(Ω), where eA : µ 7→ µ(A).

Given another Borel space Ξ, the set of all Borel measurable maps from Ω to Ξ is
denoted by B(Ω,Ξ). We use a shorthand B(Ω) for B(Ω,R). A bijection ϕ ∈ B(Ω,Ξ)
is called an isomorphism if ϕ−1 ∈ B(Ξ,Ω)2. We say that Ω and Ξ are isomorphic
if there exists an isomorphism between them. If ϕ ∈ B(Ω,Ξ) is an injection, then
ϕ(A) ∈ B(Ξ) for each A ∈ B(Ω), and ϕ−1 ∈ B(ϕ(Ω),Ω) [20, Proposition 15].
Furthermore, a powerful result called the Borel isomorphism theorem claims that
any two uncountable Borel spaces are isomorphic, and any countable Borel space
is isomorphic to a subset of N [20, Proposition 16]3. Often to prove a fact concern-
ing a general Borel space, one proves it first for a “convenient” Borel space (e.g.
NN) and then applies the Borel isomorphism theorem. Similarly, if a counterex-
ample is found in for some particular Borel space, it can be translated to a general
setting.

In case we relax the assumption that ϕ ∈ B(Ω,Ξ) is injective, then it may happen
that ϕ(A) /∈ B(Ξ) for some A ∈ B(Ω) even if ϕ is continuous [125]. Such maps are
called analytic; applying the Borel isomorphism theorem, we can define analytic
subsets of Ω as images of [0, 1] under all possible maps ϕ ∈ B([0, 1],Ω), so in par-
ticular any Borel set is analytic. We denote the collection of analytic subsets of Ω
by A(Ω); it admits several other equivalent characterizations [82]. The collection
A(Ω) is closed under countable unions and intersections, and under Borel images:
ϕ(A) ∈ A(Ξ) for each A ∈ A(Ω) and ϕ ∈ B(Ω,Ξ). Yet A(Ω) is not a σ-algebra
as the complement of an analytic set is not necessarily analytic [82]. Sets whose
complements are analytic are often referred to as co-analytic sets, and a subset
of a Borel space is both analytic and co-analytic iff it is Borel [125]. A countable
product of analytic sets is an analytic subset of a product space [82]. The connec-
tion between A(Ω) and A(P(Ω)) is as follows: for each A ∈ A(Ω) it holds that
{µ : µ(A) ≥ c} ∈ A(P(Ω)) for every c ∈ R.

Given a measure µ ∈ P(Ω), we denote by Bµ(Ω) the p-completion of B(Ω). The
universal σ-algebra of Ω is given by U(Ω) :=

⋂
µ∈P(Ω) B

µ(Ω); its elements are
called universally measurable sets. The universal σ-algebra of a countable product
of Borel spaces contains the product of their universal σ-algebras, but does not
equal it in general [20]. Furthermore, every analytic subset of a Borel space is
universally measurable. A map ϕ : Ω → Ξ is called universally measurable if
ϕ−1(B) ∈ U(Ω) for each B ∈ B(Ξ); in such case we write ϕ ∈ U(Ω,Ξ). Despite
the asymmetry in their definition, for Borel spaces a composition of universally
measurable maps is universally measurable [20], so in particular ϕ−1(B) ∈ U(Ω)
even if B ∈ U(Ξ). The following characterization is often useful: universally
measurable maps are essentially Borel measurable, that is ϕ ∈ U(Ω,Ξ) iff for any
µ ∈ P(Ω) there exists ϕ′ ∈ B(Ω,Ξ) such that ϕ = ϕ′ (µ-a.s.) [20]. In particular,
A ∈ U(Ω) iff for each µ ∈ P(Ω) there exists A′ ∈ B(Ω) such that µ(A4A′) = 0. As

2 Isomorphisms for Borel spaces play a role of homeomorphisms for topological spaces.
3 This is a formalization of the idea we have mentioned above that from the point of view of Borel

spaces, there is no difference between [0, 1] or infinite-dimensional spaces.
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a result, any µ ∈ B(Ω) extends uniquely to U(Ω).

For a product of Borel spaces
∏
n∈N Ωn and an arbitrary index set I ⊆ N we

denote by projI :
∏
n∈N Ωn →

∏
n∈I Ωn the corresponding projection map, i.e.

projI : ((ωn)n∈N) 7→ ((ωn)n∈I). If An ∈ B(Ωn) for each n ∈ I , then the set
(projI)

−1
(∏

n∈I An
)

is called a measurable rectangle. Given a sequence of maps
(ϕn)n∈I , where ϕn : Ξ→ Ωn for each n ∈ I , we define(∏

n∈I
ϕn

)
: ξ 7→ (ϕn(ξ))n∈I

to be the product map. We further denote their parallelization4 by(∐
n∈I

ϕn

)
: (ξn)n∈I 7→ (ϕn(ξn))n∈I .

In case I = {i, j}we simply write ϕi×ϕj and ϕitϕj instead of more cumbersome∏
n∈{i,j} ϕn and

∐
n∈{i,j} ϕn. Moreover, we slightly abuse notation by using ϕ

for
∐
n∈I ϕn if ϕn = ϕ for all n ∈ I , namely we extend ϕ to its element-wise

application on vectors of values. If ϕn ∈ B(Ξ,Ωn) or ϕn ∈ U(Ξ,Ωn) for each n ∈ I ,
then

∏
n∈I ϕn,

∐
n∈I ϕn belong to B(Ξ,

∏
n∈I Ωn) or U(Ξ,

∏
n∈I Ωn) respectively.

Given a measure µ ∈ P(Ω) and a map f ∈ U(Ω,Ξ), the pushforward of µ along
f is a measure f∗µ ∈ P(Ξ) satisfying f∗µ(B) = µ(f−1(B)) for each B ∈ B(Ξ). If
M ∈ P(Ω × Ξ), then (proj0)∗M and (proj1)∗M are called left and right marginals
of M respectively. Given µ ∈ P(Ω) and µ′ ∈ P(Ξ), their coupling is any measure
M ∈ P(Ω × Ξ) whose left and right marginals are µ and µ′ respectively. The set
of all couplings of µ and µ′ is denoted by C(µ, µ′). If M ∈ P

(∏
n∈N Ωn

)
, then

(projI)∗M is called a finite-dimensional marginal of M . Whenever I = [0;n],
we use a shorthand M �n instead of (projI)∗M . Recall that if F generates B(Ω)
and is closed under finite intersections, then measures µ, µ′ ∈ P(Ω) are equal iff
µ(A) = µ′(A) for each A ∈ F. In particular, the measures M,M ′ ∈ P

(∏
n∈N Ωn

)
are equal iff they agree on measurable rectangles, or equivalently if M �n= M ′�n
for each n ∈ N.

A map κ : Ω → P(Ξ) is alternatively called a stochastic kernel on Ξ given Ω.
Given ω ∈ Ω and B ∈ B(Ξ), instead of κ(ω)(B) we use a less cumbersome nota-
tion κ(B|ω). A shorthand κ ∈ B(Ξ|Ω) is used for κ ∈ B(Ω,P(Ξ)), and similarly
κ ∈ U(Ξ|Ω) means that κ ∈ U(Ω,P(Ξ)). Given µ ∈ P(Ω) and κ ∈ U(Ξ|Ω), the
corresponding product measure in P(Ω× Ξ) is denoted by µ⊗ κ, and is uniquely
defined by the following formula:

(µ⊗ κ)(A×B) :=

∫
A

κ′(B|ω)µ(dω), A ∈ B(Ω), B ∈ B(Ξ),

where κ′ ∈ B(Ξ|Ω) is any kernel satisfying κ = κ′ (µ-a.s.). Conversely, for M ∈
4 The

∐
and t symbols usually denote co-products in respective categories, so here we may use

them in a non-canonical way. At the same time, we do not use co-products of maps in this thesis, so
there should no be any confusion.
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P(Ω×Ξ) and µ ∈ P(Ω) the regular conditional probability kernel dM
dµ has to satisfy

µ⊗ dM
dµ = M . Since Ξ is a Borel space, such kernel always exists [52] and is defined

uniquely only (µ-a.s.) since µ ⊗ κ = µ ⊗ κ′ iff κ = κ′ (µ-a.s.) for each κ, κ′ ∈
U(Ξ|Ω). A version of the Ionescu Tulcea theorem in [20, Proposition 7.45] implies
that for any sequence of Borel spaces (Ωn)n∈N, initial distribution µ ∈ P(Ω0) and
a sequence of transition kernels (κn)n∈N, where κn ∈ U

(
Ωn+1|

∏i
k=0 Ωi

)
for each

n ∈ N, there exists a unique product measure M ∈ P
(∏

n∈N Ωn
)

satisfying

M�0= µ,
d(M�n+1)

d(M�n)
= κn (M�n -a.s.) ∀n ∈ N.

One of the simplest examples of kernels is given by a Dirac kernel δ ∈ B(Ω|Ω)
satisfying

δ(A|ω) = 1A(ω) =

{
1, if ω ∈ A,
0, if ω /∈ A,

ω ∈ Ω, A ∈ B(Ω).

Here 1A is an indicator function of the set A. Furthermore, for any ϕ ∈ U(Ω,Ξ) we
denote δϕ := δ ◦ ϕ ∈ U(Ξ|Ω).

The graph of a map ϕ : Ω→ Ξ is denoted by

Gr(ϕ) := {(ω, ϕ(ω)) : ω ∈ Ω} ⊆ Ω× Ξ.

It holds that ϕ ∈ B(Ω,Ξ) iff Gr(f) ∈ B(Ω × Ξ) [27]. For any A ⊆ Ω × Ξ and any
ω ∈ Ω, ω- and ξ-sections of A is given by

A|ω := {ξ : (ω, ξ) ∈ A}, A|ξ := {ω : (ω, ξ) ∈ A}.

For B ⊆ Ω and C ⊆ Ξ we also write A|B :=
⋃
ω∈B A|ω and A|C :=

⋃
ξ∈C A|ξ. We

say that a map ϕ is a selector for a set A if ϕ(ω) ∈ A|ω for each ω ∈ projΩ(A). Sim-
ilarly, a kernel κ : Ω → P(Ξ) is a randomized selector for A if κ∗ (A|ω|ω) = 1 for
all ω ∈ projΩ(A). Note that for every selector ϕ one can put in a correspondence a
randomized selector δ(ϕ). Obviously, every set admits a selector (let along a ran-
domized one), so the question usually is wether such a selector can be chosen to be
measurable. Since δ is a Borel-measurable kernel, δ(ϕ) preserves measurability of
ϕ, so existence of a measurable selector implies existence of a randomized selector
with the same measurability properties. The converse is not necessarily true [82].
Moreover, even if A ∈ U(Ω × Ξ), there may not exist a universally measurable
randomized selector for A [82]. There is a number of results on the existence of
measurable selectors, but here we mostly use the fact that any analytic set admits
a universally measurable selector [20].

We say that a measure µ ∈ P(X) is discrete if it is a linear combination of Dirac
measures, i.e. there exists (ωn)n∈N ⊆ Ω and ν ∈ P(N) such that µ =

∑
n∈N δ(ωn)ν({n}).

More generally, given a family of measures P ⊂ P(X), we say that µ is a barycen-
ter of P if there exists ν ∈ P(P(X)) and P ′ ∈ U(P(Ω)) such that P ′ ⊆ P and
µ =

∫
P ′
µ′ ν(dµ′). Note that if P ∈ U(P(Ω)), one can always take P ′ = P . We de-
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note the set of all barycentres of P by scoP and refer to it as the strong convex hull
of P 5; for P ∈ A(P(Ω)) it holds that scoP ∈ A(P(Ω)) and that sco(scoP ) = scoP
[39, 33], so that sco is an idempotent operation on analytic subsets of P(Ω). In
particular, P ⊆ scoP ′ iff scoP ⊆ scoP ′ for each P, P ′ ∈ A(P(Ω)).

For any ϕ ∈ U(Ω) we define its norm as ‖ϕ‖ := supω∈Ω |f(ω)|, and denote

bUc(Ω) := {ϕ ∈ bU(Ω) : ‖ϕ‖ ≤ c}, c ∈ R+ ∪ {∞}.

Given µ ∈ P(Ω) we often write µϕ instead of
∫

Ω
ϕdµ. We write that ϕ ∈ Hn

c (Ω)

if ϕ ∈ bUc(Ω
N) and µϕ = µ′ϕ whenever µ�n= µ′�n for any µ, µ′ ∈ P(ΩN), that is

ϕ depends only on first n + 1 coordinates. Although the topological space P(Ω)
is metrizable with the Prokhorov metric [108], we are interested in considering a
different metric on P(Ω) called the total variation metric

dTV(µ, µ
′) := sup

ϕ∈bU1(Ω)

∣∣∣∣∫
Ω

ϕdµ−
∫

Ω

ϕdµ′
∣∣∣∣ , µ, µ′ ∈ P(Ω).

This definition of dTV for general measures admits a special formula in our case:

dTV(µ, µ
′) = 2 · sup

A∈U(Ω)

|µ(A)− µ′(A)|, ∀µ, µ′ ∈ P(Ω).

Note also that if ϕ ∈ bU∞(Ω) is such that ϕ(ω) ∈ [a, b] for each ω ∈ Ω, then∣∣∣∣∫
Ω

ϕdµ−
∫

Ω

ϕdµ′
∣∣∣∣ ≤ 1

2
· (b− a) · dTV(µ, µ′).

If Ω is a countable space, each probability measure µ ∈ P(Ω) can be decomposed as
µ =

∑
ω∈Ω µ({ω})δ(ω), and hence dTV(µ, µ′) =

∑
ω∈Ω |µ(ω)− µ′(ω)|. Furthermore,∫

P

µ ν(dµ) =

∫
P

∑
ω∈Ω

µ({ω})δ(ω)ν(dµ) =
∑
ω∈Ω

(∫
P

µ({ω})ν(dµ)

)
δ(ω)

In particular, when Ω is a finite space of cardinality n + 1, say Ω = [0;n], P(Ω) is
an n-dimensional space which can be identified with a probability simplex

θn :=

{
θ ∈ Rn+ :

n∑
i=0

θi = 1

}
, (A.1)

the homeomorphism obviously being θi = µ({i}) for each i ∈ [0;n]. Note that dTV
in such case is just the 1-norm on θn, and the metric topology of dTV coincides with
the topology of weak convergence P(Ω) is endowed with by default, however for
general Borel spaces these topologies differ [62].

5 Here we use notation and terminology of [97, 98], although perhaps it would be more correct to
say that the set of all barycentres of P is its barycentric closure. For more details on this topic, see [39].
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For ε, ε′ ∈ R we introduce the following arithmetic operation

ε⊗ ε′ := 2

(
1−

(
1− ε

2

)(
1− ε′

2

))
.

Note that it is a symmetric and associative binary operation on reals. We use the
following shorthand: ε⊗1 := ε and ε⊗n := ε⊗(n−1) ⊗ ε, so ε⊗n = 2(1− (1− ε/2)n).
We further write ε ∨ ε′ and ε ∧ ε′ for the maximum and minimum of ε, ε′ ∈ R
respectively.

A.2 Pseudometrics

A pseudometric on Ω is a function d : Ω2 → [0,∞) which

• is symmetric: d(ω, ω′) = d(ω′, ω) for all ω, ω′ ∈ Ω;

• satisfies the triangular inequality: d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′) for all
points ω, ω′, ω′′ ∈ Ω.

Note that the triangular inequality in particular implies that d(ω, ω) = 0 for all
ω ∈ Ω, however it may happen that d(ω, ω′) = 0 for ω 6= ω′. In case d(ω, ω′) = 0
only for ω = ω′ we say that d is a metric on Ω.

By a pseudometric space we mean a pair (Ω, d) where Ω is an arbitrary set and d is
some pseudometric on Ω. A pseudometric topology on (Ω, d) is the one generated
by the family ({ω′ ∈ Ω : d(ω, ω′) < ε})ω∈Ω,ε∈R+ of open d-balls. We always
assume a pseudometric space to be endowed with its pseudometric topology. A
pseudometric space is called bounded if ‖d‖ < ∞. If the original pseudometric
space is not bounded, we can introduce a new pseudometric d′ := d/(1 + d): it is
bounded by 1 and generates the same topology as the original pseudometric does.

If (Ω̄, d̄) is another pseudometric space, for any map f : Ω→ Ω̄ we let

c(f) := sup
d(ω,ω′)>0

d̄ (f(ω), f(ω′))

d(ω, ω′)

denote the modulus of continuity of f . If β = c(f) < ∞, we say that f is a β-
Lipschitz map. In particular, each such map is continuous. For each β ∈ R+ the
space of all β-Lipschitz maps we denote by

Lipβ
(
(Ω, d), (Ω̄, d̄)

)
:= {f : Ω→ Ω̄ such that c(f) ≤ β}.

When Ω̄ = R and d̄ is the Euclidean metric we use a shorthand Lipβ(Ω, d).

An important example of 1-Lipshitz function is given by a pseudometric itself.
For each A ⊆ Ω define the distance to A by d(ω,A) := infω′∈A d(ω, ω′). From the
triangular inequality it follows then that d(·, A) ∈ Lip1(Ω, d). We also denote

Aε := {ω ∈ Ω : d(ω,A) ≤ ε}.
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The following proposition connects set inclusion with Lipschitz functions.

Proposition A.1 Consider two arbitrary sets A,B ⊆ Ω, then A ⊆ Bε iff

sup
ω∈A

f(ω) ≤ sup
ω′∈B

f(ω′) + ε, ∀f ∈ Lip1(Ω, d). (A.2)

Proof: Let us show first that for all ω ∈ Bε and f ∈ Lip1(Ω, d) it holds that

f(ω) ≤ sup
ω′∈B

f(ω′) + ε. (A.3)

Consider a sequence (ωn)n∈N ⊆ B such that d(ω, ωn) ≤ ε+ 1
n . Since f is 1-Lipschitz

|f(ω)− f(ωn)| ≤ ε+
1

n
=⇒ f(ωn) ≥ f(ω)− ε− 1

n
.

As a result, supω′∈B f(ω′) ≥ supn∈N f(ωn) ≥ f(ω)− ε which is equivalent to (A.3).
The latter inequality further implies (A.2) in case A ⊆ Bε.
Conversely, if (A.2) holds, then letting f = d(·, B) yields supω∈A d(ω,B) ≤ ε. 2

A.3 Approximate relations

Let Ω and Ω̄ be arbitrary sets. A relation on Ω and Ω̄ is just a subset of their
product: Φ ⊆ Ω × Ω̄. Sometimes we write ωΦω̄ to mean (ω, ω̄) ∈ Φ in order to
emphasize that we treat the set Φ as a relation.

One can consider a category Rel where objects are sets and morphisms are rela-
tions. The identity relation on any set Ω is given by its diagonal ∆Ω, and the
composition of relations Φ ⊆ Ω× Ω̄ and Φ̄ ⊆ Ω̄× Ω̂ is given by

Φ̄ ◦ Φ := {(ω, ω̂) : ∃ω̄ ∈ Ω̄ such that (ω, ω̄) ∈ Φ and (ω̄, ω̂) ∈ Φ̄}. (A.4)

The inverse of a relation Φ ⊆ Ω× Ω̄ is defined as

Φ−1 := {(ω̄, ω) : (ω, ω̄) ∈ Φ}.

It further holds that (Φ−1)−1 = Φ and (Φ̄ ◦ Φ)−1 = Φ−1 ◦ Φ̄−1.

Whenever Φ ⊆ Ω×Ω̄ and Ψ ⊆ Ξ×Ξ̄ are two relations, we can define their product
Φ×Ψ ⊆ Ω× Ω̄× Ξ× Ξ̄ as a usual Cartesian product of sets:

Φ×Ψ = {(ω, ω̄, ξ, ξ̄) : (ω, ω̄) ∈ Φ and (ξ, ξ̄) ∈ Ψ}.

We say that Φ ⊆ Ω × Ω̄ is a left-total relation (l.t.r.) if projΩ(Φ) = Ω. Any l.t.r. can
be regarded as graph a multi-valued map φ : Ω → 2Ω̄ \ {∅} given by φ(ω) = Φ|ω .
In particular, whenever ϕ : Ω → Ω̄ is a usual single-valued map, ωGr(ϕ)ω̄ iff
ω̄ = ϕ(ω).



110 Appendix A

Whenever Ω̄ = Ω, the following classification applies. A relation Φ ⊆ Ω2 is said to
be

• reflexive if ωΦω for any ω ∈ Ω, or equivalently ∆Ω ∈ Φ;

• symmetric if ωΦω′ implies ω′Φω for any ω, ω′ ∈ Ω, or equivalently Φ = Φ−1;

• transitive if ωΦω′ and ω′Φω′′ together imply ωΦω′′ for any ω, ω′, ω′′ ∈ Φ, or
equivalently Φ ◦ Φ ⊆ Φ.

We say that the relation Φ is a preorder if it is both reflexive and transitive; a sym-
metric preorder is called equivalence. The symmetrization of a relation Φ ⊆ Ω2 is
another relation Φ̃ given by Φ̃ := Φ ∩ Φ−1, so that ωΦ̃ω′ iff ωΦω′ and ω′Φω. If Φ is
symmetric that its symmetrization is clearly Φ itself. Furthermore, note that if Φ is
reflexive or transitive, then so is its symmetrization. In particular, a symmetriza-
tion of any preorder defines an equivalence. An example of a preorder is the linear
order on reals ≤⊆ R2; its symmetrization is an equivalence relation given by the
equality of reals =⊆ R2.

In our work relations appears on different levels: those between states of different
models are usually defined for Ω and Ω̄ being unequal sets, so that we cannot ap-
ply the classification above to them. At the same time, we lift relations from states
to models themselves hence inducing relations on the set of models – these can
be classified as reflexive, symmetric or transitive. Such “exact” relations between
systems are known to be insufficient for the practical purposes [64]. Due to this
reason we also study families of relations on Ω indexed by some “approximation”
parameter ε ∈ R+. We refer to such objects as approximate relations or ε-relations.
Note that an ε-relation is not a single relation but rather a family thereof.

Let Ψ := (Ψε)ε∈R+
be an ε-relation on Ω. We say that Ψ is reflexive (symmet-

ric) whenever Ψε is reflexive (symmetric) for all ε ∈ R+. Furthermore, for the
ε-relation Ψ it is also important to study the interplay between its components Ψε

for different values of ε. We say that an ε-relation Ψ is

• monotone if Ψε ⊆ Ψε′ for all ε′ ≥ ε ∈ R+;

• finite if it is monotone and for each ω, ω ∈ Ω there exists ε ∈ R+ such that
ωΨεω

′, or equivalently
⋃
ε∈R+

Ψε = Ω2;

• triangular if ωΨεω
′ and ω′Ψε′ω

′′ together imply that ωΨε+ε′ω
′′, or equiva-

lently Ψε′ ◦Ψε ⊆ Ψε+ε′ , for all ε, ε′ ∈ R+;

• continuous at ρ ∈ R+ if Ψ is monotone and Ψρ =
⋂
ε>ρ Ψε;

• continuous if it is continuous at each ρ ∈ R+.

Note that Ψρ ⊆
⋂
ε>ρ Ψε for any monotone Ψ and ρ ∈ R+. Hence, for the conti-

nuity it is sufficient to check only the converse inclusion. Notice also, that if Ψ is
triangular then necessary Ψ0 is transitive. Due to this reason, we say that Ψ is an ε-
preorder if it is reflexive, monotone, finite and triangular. A symmetric ε-preorder
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we call an ε-equivalence; notice that in such case Ψ0 is an equivalence relation. For
an ε-relation Ψ its symmetrization is defined as an ε-relation Ψ̃ = (Ψ̃)ε∈R+ where
for each ε ∈ R+ the relation Ψ̃ε is a symmetrization of Ψε. If Ψ is monotone, finite,
triangular or continuous at ρ ∈ R+ then its symmetrization is monotone, finite,
triangular or continuous at ρ respectively. In particular, the symmetrization of
any ε-preorder is an ε-equivalence.

Examples of ε-relations can be given using pseudometrics. For any pseudometric
d on Ω we can define its ε-diagonals for ε ∈ R+ by

∆ε,d := {(ω, ω′) : d(ω, ω′) ≤ ε} ⊆ Ω2.

Their connection with the diagonal of Ω is obviously given by ∆Ω ⊆ ∆0,d; also,
these sets coincide iff d is a metric. It is easy to check that ∆d := (∆ε,d)ε∈R+

is a
continuous ε-equivalence (in particular, ∆0,d is an equivalence relation), so it is a
natural example of an ε-relation having all the properties of ε-relations introduced
above.

It follows that a somewhat converse result holds true: any ε-equivalence Ψ in-
duces a corresponding pseudometric dΨ such that Ψε ⊆ ∆ε,dΨ

for all ε ∈ R+,
given by

dΨ(ω, ω′) := inf{ε ∈ R+ : ωΨεω
′}.

The function dΨ is indeed a pseudometric as the following result shows.

Proposition A.2 Let Ω be an any set, and (Ψε)ε∈R+
be an ε-equivalence on Ω. Then:

i. Ψ0 is an equivalence relation on Ω;

ii. ωΨdΨ(ω,ω′)+δω
′ for all δ > 0;

iii. dΨ is a pseudometric on Ω;

iv. ∆ε,dΨ
=
⋂
δ>ε Ψδ , and in particular Ψε ⊆ ∆ε,dΨ

, for all ε ∈ R+;

v. Ψρ = ∆ρ,dΨ
iff Ψ is continuous at ρ;

vi. dΨ is a metric iff Ψ is continuous at 0 and Ψ0 = ∆Ω.

Proof: The proof is as follows:

i. To show that Ψ0 is an equivalence relation, we only need to notice that it is
reflexive and symmetric by assumptions, and as we have mentioned above,
triangularity of Ψ implies transitivity of Ψ0.

ii. Suppose that (ω, ω′) /∈ ΨdΨ(ω,ω′)+δ for some δ > 0, then

dΨ(ω, ω′) = inf{ε ∈ R+ : ωΨεω
′} ≥ dΨ(ω, ω′) + δ

which is obviously a contradiction.
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iii. Clearly, dΨ is a symmetric non-negative function, so let us show that dΨ sat-
isfies the triangular inequality. By [ii] and triangularity of Ψ, for any points
ω, ω′, ω′′ ∈ Ω and any δ > 0 it holds that ωΨdΨ(ω,ω′)+dΨ(ω′,ω′′)+2δω

′′ so that
dΨ(ω, ω′′) ≤ dΨ(ω, ω′) + dΨ(ω′, ω′′) + 2δ. Since δ > 0 is arbitrary, dΨ satisfies
the triangular inequality. Finally, since Ψ is finite, dΨ(ω, ω′) < ∞ for each
ω, ω′ ∈ Ω, so dΨ satisfies all the conditions in the definition of pseudomet-
rics.

iv. The first assertion follows directly from the definition of dΨ, and the second
one from the monotonicity of Ψ.

v. Follows immediately from [iv].

vi. Recall that dΨ is a metric iff ∆0,dΨ
= ∆Ω. Since Ψ0 is an equivalence relation

by [i], ∆Ω ⊆ Ψ0. Furthermore, by [iv] Ψ0 ⊆ ∆0,dΨ
, hence dΨ is a metric iff

∆0,dΨ
= Ψ0 = ∆Ω, and the rest follows from [v].

2

Consider an arbitrary map ϕ : Ω′ → Ω, and given an ε-relation Ψ = (Ψε)ε∈R+
on

Ω define an ε-relation Ψ′ = (Ψ′ε)ε∈R+ on Ω′ as follows: ω′Φεω̄′ iff ϕ(ω′)Ψεϕ(ω̄′).
In this case we say that Ψ′ is a pullback of Ψ along ϕ. Pullback preserves many
properties of ε-relations: Ψ′ is reflexive (symmetric, triangular, monotone, finite,
continuous at ρ) whenever Ψ is. Note also that as sets, Φε = ϕ−1(Ψε) for all
ε ∈ R+.

A.4 Modelling terminology

This thesis describes several models together with corresponding (bi-)simulation
relations. Since the latter serve as sufficient conditions for behavioral inclusion
(equivalence) over the underlying models, here we introduce some formal termi-
nology for models, behaviors and related concepts we use throughout the whole
thesis. This also helps supporting the ideas we have used to introduce behaviors
of SSs above, and to connect model relations for different models.

Definition A.3 A model is a triple Mod = (Syn, Spec, Sem) where Syn and Spec are
arbitrary sets, and Sem : Syn × Spec → R. We say that Syn is the syntax, Spec is
the specification set and Sem is the semantics of Mod. The semantics Sem is said to be
qualitative whenever the range of Sem is finite, and quantitative otherwise.

To clarify concepts introduced in this section, a running example of the TS model
is used. For a better fit we consider only pointed versions of the models below,
that is those for which initial conditions are specified. For a fixed output set Y , the
syntax of the model TSY consists exactly of all tuples T = (X,x0, T, Y, L) where X
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is an arbitrary set, x0 ∈ X , T ⊆ X × X is an l.t.r. and L : X → Y (cf. Definition
2.1). The specification set of TSY is 2Y

N
and the semantics is given by

Sem(T, H) =

{
1, if VL(ΣT , x0) ∩H 6= ∅
0, otherwise.

(A.5)

Clearly, the semantics of the TSY is qualitative since the range of Sem is {0, 1} in this
case. As a result, Sem can be identified with a satisfaction relation |= ⊆ Syn×Spec,
which is exactly what have been done for TSs above (cf. (2.1)). Notice that (A.5)
does not directly define the semantics of TSs for each instance T of the syntax, but
in fact uses the set of output words VL(ΣT , x0) as a proxy for the definition of the
semantics. This construction we generalize through the notion of behaviors.

Definition A.4 A behavior of a model Mod is a triple Beh = (B, bs, bt) where B is an
arbitrary set, and bs : Syn→ B, bt : B× Spec→ R. We say that B is the domain, bs is
the source map and bt is the target map of Beh. The behavior Beh is called regular if

bt ◦ (bs t idSpec) = Sem. (A.6)

Let us motivate concepts in the definition above. First of all, B in Beh is a set of
behaviors that we think is useful, a trivial example is a set of paths produced by
a system, but for example in case of an SS a better choice is a set of probabilities
measures on those paths. In turn, bs connects between the model syntax and a par-
ticular subset of behaviors, i.e. it tells what is the set of behaviors for each model.
Finally, the aim of bt is similar to Sem, but instead of quantifying specifications on
models directly, we now quantify the behaviors those models produce against the
very specifications. As a result, (A.6) means that Sem and Beh are consistent.

Behaviors can be used as a proxy to define semantics of the model as follows.
Suppose we are only given two sets Syn and Spec, which we would like to be the
syntax and the specification set of our model respectively, but we have not defined
its semantics so far. For any triple Beh = (B, bs, bt) such that bs : Syn → B and
bt : B×Spec→ R, we can define the semantics SemBeh := bt ◦ (bst idSpec). Clearly,
in such case Beh is a regular behavior for the model (Syn, Spec, SemBeh). Hence,
by changing Beh we can come up with various models over (Syn, Spec) that differ
in their semantics. The behavioral method of the semantics construction has been
used for the TSs in Section 2.1, where we have set B = 2Y

N
, bs(T) = VL(ΣT , x0)

and bt(b,H) = 1{b ∩ H 6= ∅}. On the other hand, in Section 2.4 for SSs we have
chosen B = P(Y N), bs(S) = SL(ΣΓ, α) and bt(S, h) = supq∈SL(ΣΓ,α) qh, where now
Spec = bU1(Y N). We could have left B to be just the set of paths, but that would
only allow us to come up with rather unnatural semantics, which perhaps are not
rich enough to cover most of the interesting properties one would think of. Below
we further elaborate on this point.

Recall from Section 2.1 that all versions of (bi-)simulation relations for TSs have
been defined only in terms of syntax. Due to this reason, we refer to them as
syntactical relations and to the corresponding pseudometrics as syntactical pseudo-
metrics. Similarly, we say semantical relations for behavioral inclusion and equiv-
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alence (exact or approximate), and semantical pseudometrics for the corresponding
pseudometrics.

Whenever the bisimulation theory is developed for Mod, it may be of interest to use
this theory in another modeling framework, say Mod′ = (Syn′, Spec′, Sem′). In such
case, one may want to interpret the new model Mod′ in terms of Mod, for which the
theory is available. Here this is done via the concept of interpretation maps.

Definition A.5 An interpretation map between two models I : Mod′ → Mod is a pair
I = (I0, I1), where I0 : Syn′ → Syn and I1 : Spec′ → Spec. We say that I is regular
whenever Sem′ = Sem ◦ I. If Syn′ = Syn and I0 = idSyn, then a regular interpretation
map is called a semantical enlargement of Mod′.

The idea of a semantical enlargement is that for a syntax of given model Mod′ we
would like to consider a new larger specification set Spec, leaving the semantics of
the old specifications from Spec′ untouched. An example of a semantical enlarge-
ment over TSY is given in the Appendix A.6. There, the qualitative semantics is
enlarged to a more general quantitative one as follows: Spec′ = 2Y

N
, Spec = RY N

and I1(H ′) = 1H′ for each H ′ ∈ Spec′. Since the quantitative semantics over Spec
is

Sem(T, h) := sup
w∈VL(ΣT ,x0)

h(w),

we obtain a regular interpretation map, hence a semantical enlargement.

As we have mentioned above, regular interpretation maps provide a tool to ex-
tend the bisimulation theory from one modelling framework to another. Suppose
that Mod is some benchmark model, and let Φ and Ψ be two ε-relations on Syn that
we regard as syntactical and semantical ones, respectively. Assume that Φε ⊆ Ψε

for all ε ∈ R+, that is SΨεS̄ whenever SΦεS̄. For example, if Mod = TSY then
Φ and Ψ could be ε-simulation and ε-behavioral inclusion, respectively. Let Mod′

be another model and I : Mod′ → Mod some interpretation map. Recall from the
Appendix A.3 that we can pull back Φ from Syn to Syn′ along I0, and define a
new ε-relation Φ′ on Syn′ satisfying S′Φ′εS̄′ iff I0(S′)ΦεI0(S̄′). Similarly, let Ψ′

be a pullback of Ψ along I0. Since pullbacks of ε-relations preserve many useful
properties, and in particular monotonicity, we obtain that Φ′ε ⊆ Ψ′ε for all ε ∈ R+.
To highlight the importance of this fact, let us consider two examples of Ψ. Define
Ψ1 to be such that SΨε

1S̄ iff

Sem(S,H) ≤ Sem(S̄,H) + ε ∀H ∈ Spec.

For the second example, let Λ be an ε-relation on Spec and let SΨε
2S̄ iff

Sem(S,H) ≤ Sem(S̄, H̄) ∀(H, H̄) ∈ Λε.

Instances of Ψ1 and Ψ2 are behavioral ε-inclusions for SSs and TSs, respectively. In
particular, recall that for the latter case Spec = 2Y

N
, so the corresponding example
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of Λ would be HΛεH̄ iff Hε ⊆ H̄ . In case I is regular, we obtain that

Sem′(S′, H ′) = Sem(I0(S′), I1(H ′)) ≤ Sem(I0(S̄′), I1(H ′)) + ε = Sem′(S̄′, H ′) + ε
(A.7)

for all H ′ ∈ Spec′ whenever S′Ψ′ε1 S̄′. Similarly,

Sem′(S′, H ′) = Sem(I0(S′), I1(H ′)) ≤ Sem(I0(S̄′), I1(H̄ ′)) = Sem′(S̄′, H̄ ′) (A.8)

for all (H ′, H̄ ′) ∈ Λ′ε whenever S′Ψ′ε2 S̄′, where Λ′ is the pullback of Λ along I1. As
a result, whenever I is a regular interpretation map and Φ and Ψ are syntactical
and semantical relations such that Φ is stronger than Ψ, then their pullbacks Φ′

and Ψ′ have the same property. Using this fact, in Section 3.4 we have developed
the bisimulation theory for MDPs based on that for SSs.

Interpretation maps do not only provide a way of extending bisimulation theory
from one model to another. In addition, they can be used to define behaviors
and semantics of a model. Suppose that we are only given (Syn′, Spec′), whereas
Sem′ is left unspecified. For any map I = (I0, I1) satisfying I0 : Syn′ → Syn and
I1 : Spec′ → Spec, we can pull back the semantics from Mod to Mod′ and define
Sem′I := Sem ◦ I. Clearly, I is a regular interpretation map for (Syn′, Spec′, Sem′I)
and Mod. Assume that Beh is a regular behavior for Mod, then Beh′ = (B, b′s, b

′
t)

given by
b′s := bs ◦ I0, b′t := bt ◦ (idB tI1)

is a regular behavior for (Syn′, Spec′, Sem′I). Even without given Spec′, one can
always define Spec′ := Spec and let I1 := idSpec. By changing I we obtain vari-
ous models for (Syn′, Spec′) with different behaviors and semantics. This feature
is extremely important when dealing with probabilistic models, in contract to the
case of non-probabilistic ones. Although in the latter framework there may still
be several distinct semantics of interest, e.g. linear-time and branching-time se-
mantics of TSs, such distinction is usually transparent and thus rarely casts the
meaning of the model being confusing. At the same time, within the probabilistic
framework one can introduce two rather different semantics that look very simi-
lar, which can cause issues when interpreting solution of verification or synthesis
problems obtained over such models.

The situation described in the previous paragraph may happen when Mod′ is en-
dowed with a commonly accepted semantics that does not admit regular interpre-
tation maps to a model for which the bisimulation theory is mature. Although in
such case it may still be tempting to pull back the relations from Mod to Mod′, one
also does pull back the new semantics to Mod′ without caring about the old one. To
give a concrete example, let us consider the approach to the bisimulation theory
for probabilistic systems taken in [148] and the follow-up works. In their setting,
Mod is the TS model whereas Mod′ is a continuous controlled stochastic system.
That is, Syn′ comprises all tuples S′ = (n′, f ′, g′, U ′, Y ′, L′), where f ′ and g′ are the
drift and diffusion terms in

dx′t = f ′(x′t, u
′
t)dt+ g′(x′t)dB

′
t (A.9)
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over the state space Rn′ and the action space U ′, Y ′ is some Borel (output) space
and L′ is a continuous (output) map. It would be natural to define Spec′ =
bU(C(Y ′),R), behaviors based on decision strategies and corresponding strate-
gic measures from P(C(Y ′)) [55], and Sem′(S′, H ′) to be the maximal expectation
of H ′ over all strategies/strategic measure available for S′. It is highly unlikely to
find a regular interpretation map from Mod′ to TY . Due to this reason, [148] implic-
itly suggested an interpretation map constructed as follows. For a fixed time step
δt, given (n′, f ′, g′, U ′, Y ′, L′) ∈ Syn′ the corresponding TS (X,T, Y, L) is given by
X = P(Rn) endowed with a mean-square metric, Y = X and L = idX , whereas
the transition relation T is such that x̃ ∈ T |x iff there exists a solution of (A.9) such
that x′0 and x′δ have distributions x and x̃, respectively.

In addition, [148] does not comment on how to embed the natural specifications
for Mod′ as those of TY , and instead puts Spec′ = Spec by definition. Thus, only
the syntax of Mod′ is left whereas specifications, behaviors and semantics are all
taken from Mod in order to develop the bisimulation theory over continuous-time
stochastic systems. As a result, not only solutions of verification and synthesis
problems over Mod′ using relations pulled back from TSs are not suitable for the
conventional semantics of probabilistic systems, but also their meaning is uncer-
tain. For example, the solution of the safety problem would tell that the distri-
bution of x′t from (A.9) belongs to the safe set A ⊆ X (of probability distribu-
tions) for each t ∈ R+. It is rather unclear how such a statement shall be in-
terpreted over a real-life process modeled as a probabilistic system. However,
in case A is an ε-inflation of “deterministic points” that is Dirac distributions
A′ := (η(a1), . . . , η(an)), one may misinterpret the safety result above as follows:
x′t belongs to the ε-inflation of A′ (in the Euclidian metric) for all t ∈ R+ which is
a much stronger result6. Due to this reason, a person not experienced in probabil-
ity theory may overestimate the guarantees provided by [148] and the follow-up
works.

Another interesting example of an irregular interpretation map is inspired by [90].
Let Mod′ be the SS model from Section 2.4 that only consists of discrete SSs, and let
Mod be the semantical enlargement of the TS model to the quantitative semantics
as in the Appendix A.6, so that Spec′ = Spec. Define I by I1 = idSpec and I0(S) =
(X,T, Y, L) for S = (X,Γ, Y, L), where

T |x = {x̃ ∈ X : γ(x̃) > 0 for some γ ∈ Γ|x} x ∈ X.

Note that we cannot define I as above for all SSs since T is not an l.t.r. if Γ|x
does not contain a discrete distribution for some x. As a result, the transition
from x to x̃ is allowed in I0(S) iff it can happen with a positive probability in S,
that is I0(S) contains all “possible” transitions of M. One can say that the map
I “forgets” the probabilistic structure of SSs7. Recall discussion in the beginning
of this section, where we have mentioned that one could have define B = 2Y

N

for SSs as well, but that would have caused problems with the semantics. Pulling
back the bisimulation from TSs to SSs along I, we obtain the exact bisimulation

6 A related discussion can be found in [149, Sections 5.1, 5.3].
7 This statement can be made more formal by treating I as a functor between two categories, e.g. if

one treats MDPs and TSs as coalgebras (see Appendix B), so that I would be a forgetful functor.
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in the terminology of [90], whereas their probabilistic bisimulation is the exact
bisimulation of SSs in our terminology. The issues of bisimulation pulled back
to probabilistic systems along such forgetful interpretation maps are discussed in
Section 3.4 on the example of MDPs.

Let us further comment on PTSs introduced in [90]. The notions of exact and
approximate bisimulations for PTSs were developed purely based on their syntax,
which is similar to that of MDPs. One could think that it is easy to provide an
interpretation map for such case, or at least its I0 component, however since the
PTSs are not given concise semantics, it is not clear what to take as Spec and Sem

in this case. One can still pull back exact and approximate bisimulation from PTSs
to MDPs just based on I0, but such relations are not guaranteed to be of any use
for MDPs.

A.5 Weak inclusion of families of probability mea-
sures

In this section we introduce two useful ε-relations (cf. the Appendix A.3) between
families of probability measures. The first one is the weak inclusion which general-
izes a usual inclusion of families of measures as sets, and the second one is weak
equivalence which symmetrizes the weak inclusion. We prove some basic results
regarding these concepts, and in particular define the corresponding pseudomet-
ric.

Let Ω be an arbitrary Borel space, and let P, P̄ ⊆ P(Ω) be two families of Borel
probability measures on Ω. For ε ∈ R+ we say that P is weakly ε-included in P̄ , and
write P vε P̄ , if P ?f ≤ P̄ ?f + ε for any f ∈ bB1(Ω).

We start with some fundamental properties of the weak inclusion v:= (vε)ε∈R+
.

Proposition A.6 Consider some Borel space Ω and P, P̄ ⊆ P(Ω). It holds that

i. if P ⊆ P̄ then P v0 P̄ ;

ii. v is a reflexive, monotone and triangular ε-relation;

iii. v is a continuous ε-relation;

iv. if P, P̄ are non-empty then P v2 P̄ ;

v. if P vε P̄ for some ε ∈ R+, then P ?f ≤ P̄ ?f + rε for any r ∈ R+ and f ∈
bBr(Ω); in particular P ?1B ≤ P̄ ?1B + ε/2 for any B ∈ B(Ω).

Proof: The first two statements follow immediately from the definition ofvε. For
the rest, let f ∈ bB1(Ω) be an arbitrary function.

With focus on [ii], if P vε P̄ for all ε > ρ then P ?f ≤ P̄ ?f + ε for all ε > ρ and
hence P ?f ≤ P̄ ?f + ρ. Since f is arbitrary, P v P̄ .
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Regarding [iv], since P and P̄ are non-empty we have P ?f, P̄ ?f ∈ R. Moreover,
for any p ∈ P and p̄ ∈ P̄ :

|pf − p̄f | ≤ ‖f‖ · ‖p− p̄‖ ≤ 2

and hence |P ?f − P̄ ?f | ≤ 2 by Lemma C.16, which in particular leads to [iv.].

Finally, for [vi] the case r = 0 is trivial. Let r > 0, then f ∈ bBr(Ω) iff f/r ∈
bB1(Ω). Since P vε P̄ , we obtain P ?(f/r) ≤ P̄ ?(f/r) + ε which is equivalent to

P ?f ≤ P̄ ?f + rε

as r > 0. Now, let B ∈ B(X) be any set and define f := 1B − 1
2 . Clearly, f ∈

bB 1
2
(X) and hence the desired result follows from the shift-invariance of P ? and

P̄ ?. 2

In accordance to the terminology of the Appendix A.3,v is a continuous ε-preorder.
Furthermore, Proposition A.6.[iv] implies that v2 is the trivial relation on the col-
lection of non-empty families of probability measures. Finally, although the weak
inclusion is introduced in terms of functions f ∈ bB1(Ω), the scaling property
in Proposition A.6.[vi] shows that v can be also used to argue about any class of
functions with a known uniform bound.

Let us discuss which operations on families of measures preserve the ε-relationv.

Proposition A.7 Consider some P, P̄ ⊆ P(Ω) and ε ∈ R+, and let Ξ be an arbitrary
Borel space. If P̄ vε P then

i. ϕ∗P̄ vε ϕ∗P for any ϕ ∈ B(Ω,Ξ);

ii. scoP vε P̄ .

Proof: The proof is as follows:

i. Consider any g ∈ bB1(Ξ) and recall that (ϕ∗p)g = p[g ◦ ϕ] for all p ∈ P(Ω).
Since g ◦ ϕ ∈ bB1(Ω) for any g ∈ bB1(Ξ), we obtain the desired result.

ii. Let f ∈ bB1(Ω) be an arbitrary function and consider some measure p ∈
scoP , then there exists ν ∈ P(P(Ω)) such that pf =

∫
P
p′fν(dp′). Thus

pf ≤
∫
P

(P̄ ?f + ε)dν = P̄ ?f + ε

and so (scoP )?f ≤ P ?f + ε. Since f is arbitrary, we obtain that scoP vε P̄ .

2

We denote the symmetrization of v by ≡ and say that P, P̄ ⊆ P(Ω) are weakly
ε-equivalent whenever P ≡ε P̄ . In particular this means that

|P ?f − P̄ ?f | ≤ ε ∀f ∈ bB1(Ω).
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It follows from Proposition A.6 that ≡ is a continuous ε-equivalence, and hence
induces a pseudometric d≡ on p(Ω). Let us briefly summarize the rest of basic
properties of ≡.

Proposition A.8 For any Borel space Ω and families P, P̄ , P̂ ⊆ P(Ω):

i. if P, P̄ are non-empty then P ≡2 P̄ ;

ii. if P ≡ε P̄ for some ε ∈ R+, then |P ?f − P̄ ?f | ≤ rε for all r ∈ R+ and f ∈
bBr(Ω); in particular |P ?1B − P̄ ?1B | ≤ ε/2 for any B ∈ B(Ω);

iii. if P ≡ε P̄ for some ε ∈ R+ and Ξ is some Borel space, then ϕ∗P ≡ε ϕ∗P̄ for any
Borel map ϕ : Ω→ Ξ;

iv. scoP ≡0 P .

Proof: The proof immediately follows from the corresponding properties of v. 2

A.6 Strong and weak inclusions

Let us comment on the difference between the weak inclusion and the usual subset
inclusion on the example of P(Ω) and use it to underline the similarity between
behavioral comparisons for TSs and SSs. Endow P(Ω) with the total variation
distance dTV and recall that we say that P is ε-included in P̄ whenever P ⊆ P̄ ε.
From Proposition A.1 it follows that this is equivalent to

sup
p∈P

G(p) ≤ sup
p̄∈P̄

G(p̄) + ε ∀g ∈ G, (A.10)

where G = Lip1(P(Ω), dTV). In contrast, for the weak inclusion instead of arbitrary
g ∈ Lip1(P(Ω), dTV) we require (A.10) to hold only for functions of the formG(p) =
pf for f ∈ bB1(Ω). Clearly, g of such form always belong to Lip1(P(Ω), dTV),
moreover it is a linear function, however not every such linear function in admits
this representation8. Hence, both weak and strong ε-inclusions can be defined as
special cases of more general condition (A.10), where G is some class of functions.
As a result, we see that approximate behavioral inclusions for TSs and SSs are just
versions of the following condition

sup
b∈bs(Syn)

G(b) ≤ sup
b∈bs( ¯Syn)

G(b) + ε ∀g ∈ G

8 As an example, consider a functional that maps the measure to its discrete part

g : p 7→ sup{p(S) : S ⊆ Ω is countable}.

Linearity can be verified by noticing, that the maximum is always achieved, which also help to show
the Lip1 property. To prove that there does not exist f such that g(p) = pf , take Ω = [0, 1] and
consider p = aδ(0) + (1− a)λ for different a ∈ [0, 1], where λ is the Lebesgue measure. What is f(0)?
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for some class G of functions g : B→ R. Here we use the terminology of Appendix
A.4, in particular bs(Syn) ⊆ B is a set of all behaviors of some generic model with
a syntax Syn.



B APPENDIX

Categorical concepts

B.1 Categories

Category theory provides a unified approach to study different mathematical struc-
tures that yet have similar features. A category C consists of objects and mor-
phisms (or arrows) relate by the following fundamental maps:

• dom and cod assign to each morphism ϕ objects Ω = dom(ϕ) and Ξ = cod(ϕ)
called the domain and codomain of ϕ. We write ϕ ∈ Hom(Ω,Ξ) to mean that
dom(ϕ) = Ω and cod(ϕ) = Ξ.

• ◦ assigns to each pair of morphisms (ϕ,ψ) satisfying dom(ψ) = cod(ϕ) a
morphism ψ ◦ ϕ called the composition of ψ and ϕ. The composition of mor-
phisms must be associative: (χ ◦ ψ) ◦ ϕ = χ ◦ (ψ ◦ ϕ).

• id assigns to each object Ω the identity morphism idΩ ∈ Hom(Ω,Ω) satisfying
ϕ ◦ idΩ = idΞ ◦ϕ = ϕ for any morphism ϕ ∈ Hom(Ω,Ξ).

For each n ∈ N let Cn denote the collection of n-tuples of C-morphisms (ϕ1, . . . , ϕn)
satisfying dom(ϕk+1) = cod(ϕk) for k ∈ [0;n − 1], with the convention that C0 is
the collection of objects of C.

One of the simplest examples of categories is a category of sets, denoted by Set;
there objects are sets, morphisms are functions and composition and identity have
usual meanings. For example, a morphism ϕ ∈ Set1 given by a function ϕ : Ω→ Ξ
satisfies dom(ϕ) = Ω and cod(ϕ) = Ξ. Similarly, the category Mes (Top) of measur-
able (topological) spaces has sets endowed with σ-algebras (topologies) as objects,
and measurable (continuous) maps as morphisms: recall that composition of mea-
surable (continuous) maps is measurable (continuous) as well, so the property of
composition of morphisms holds in this case. The category Rel provides an ex-
ample where morphisms are not functions; it has sets as objects and relations as
morphisms. The composition of morphisms in Rel is given by (A.4), and the di-
agonal of a set is its identity morphism. For more examples of categories and an
accessible introduction to category theory see e.g. [1].

121
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One of the key features of categories is that one can define diverse abstract con-
structions and prove a multitude of useful facts about all categories in one go
just in terms of objects and morphisms. For example, a product of two objects
Ω, Ω̄ ∈ C0 is a triple (Ξ, ψ, ψ̄) with ψ ∈ Hom(Ξ,Ω) and ψ̄ ∈ Hom(Ξ, Ω̄) such that
for any other triple (Ξ′, ψ′, ψ̄′) of that kind there exists a unique χ ∈ Hom(Ξ′,Ξ)
satisfying ψ′ = ψ ◦ χ and ψ̄′ = ψ̄ ◦ χ. In case of Set we obtain Ξ = Ω × Ω̄ is a
usual Cartesian product of sets and ψ = projΩ, ψ̄ = projΩ̄ are usual projection
maps. For more complex structures such as Mes (Top), the categorical product of
two measurable (topological) spaces is a usual Cartesian product endowed with
the classical product σ-algebra (topology). At the same time, the product in Rel
has Ξ being a disjoint union of sets.

The product construction is one of the basic in category theory, and yet it shows
that natural objects (such as products of spaces) can be unambiguously defined
solely in terms of morphisms. Hence, instead of showing some properties of a
product separately in measurable and topological spaces, one can try establishing
such a property purely in categorical terms, so that it automatically holds for all
instances of categories with products as special cases. The very same logic applies
to other constructions; although arguably the biggest success category theory had
is in algebraic topology and related fields, it appeared to be useful to relate existing
and introduce new concepts in measure theory, probability theory, dynamical sys-
tems and logic, which is the reason we discuss categories in this work. In partic-
ular, the categorical notion of co-algebra discussed below is useful in representing
dynamical systems and studying their behaviors and corresponding equivalence
relations. It is in our interest to relate the framework developed in this thesis to
the co-algebraic approach.

To introduce co-algebras, we need to discuss a couple of another categorical con-
cepts. First of all, some objects are equivalent from the point of view of cate-
gory theory, which can be formalized via the notion of isomorphism. An morphism
ϕ ∈ Hom(Ω,Ξ) is said to be an isomorphism if there exists an inverse morphism
ψ ∈ Hom(Ξ,Ω) satisfying ψ ◦ ϕ = idΩ and ϕ ◦ ψ = idΞ. Two objects are called
isomorphic if there exists an isomorphism between them. For example, in Set
an isomorphism is any bijection so that two sets are isomorphic iff they have the
same cardinality, whereas in Rel an isomorphism is any l.t.r. whose inverse it l.t.r.
as well so that any two sets are isomorphic. In Mes (Top) an isomorphism is a mea-
surable (continuous) bijection whose inverse is measurable (continuous) as well;
in case of Top isomorphisms are exactly homeomorphisms.

We say that 1 ∈ C0 is the final object of C if for any Ω ∈ C0 it holds that Hom(Ω, 1)
has cardinality of 1, that is from any object there exists exactly one morphism to a
final object; such morphism is often denoted as !Ω. Clearly, final objects (whenever
they exist) are defined up to isomorphism. For example, in Set, Rel, Mes and Top
singletons are final objects.

As much as morphisms can be considered abstract versions of maps between sets,
functors are regarded as maps between categories. A functor F : C→ C̄ assigns to
each object Ω ∈ C0 an object F(Ω) ∈ C̄0, and to each morphism ϕ ∈ Hom(Ω,Ξ) ⊆
C0 a morphism F(ϕ) ∈ Hom(F(Ω),F(Ξ)) ⊆ C̄1 such that F(idΩ) = idF(Ω) and
F(ψ◦ϕ) = F(ψ)◦F(ϕ). As a result, to define a functor one needs to define its action
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both on objects, and on morphisms. In addition, its action on morphisms must
preserve identities and composition. For example, the functor B : Top → Mes
does not change morphisms and assigns to any topological space object in Top0

a measurable space object in Mes0 with the same underlying set endowed with
the Borel σ-algebra generated by the topology of the original object. A functor
F : C → C is called an endofunctor on C. For example, if C is a category where
object are Borel spaces and morphisms are measurable maps, then an endofunctor
P : Mes→ Mes sends a Borel space Ω to P(Ω): the set of probability measures over
Ω endowed with the topology of weak convergence with respect to the topology
of Ω, and a map ϕ : Ω → Ξ to a pushforward map ϕ∗ : P(Ω) → P(Ξ). One of our
results below shows that the latter endofunctor can be generalized to relations,
which is useful to use when working with MDPs.

Given an endofunctor F on some category C, an F-coalgebra is a pair (Ω, ϕ) where
ϕ ∈ Hom(Ω,F(Ω)). Coalgebras appeared to be extremely useful in describing
dynamical systems, where one considers F(Ω) to be a dynamical structure on Ω.
For example, in Set let Y be some fixed set of observations or label, and define
F(Ω) := Ω × Y with F(ψ) := (ψ t idY ). In that case ϕ assigns to any point ω ∈ Ω
its successor ϕ0(ω) ∈ Ω and its observation ϕ1(ω) ∈ Y . For each category C we
can define a new category of its F-coalgebras, latter being objects in this category.
Morphisms between coalgebras are exactly the maps between objects of C that are

consistent with F, i.e. (Ω, ϕ)
ψ−→ (Ω̄, ϕ̄) iff ϕ̄ ◦ ψ = F(ψ) ◦ ϕ. Those morphisms

were noticed to correspond to the known notions of bisimulation by model repre-
sented by coalgebras, see e.g. [37], [139] and [68]. This results further inspired the
following approach: if a model of interest can be encoded through a coalgebra in
a suitable category, then one can just use a coalgebraic definition of bisimulation,
and hence get that theory for the desired models. However, apparently notions
of bisimulation – let along approximate bisimulations – as being dependent on
the syntax of the model, not necessarily agree with its semantics, as the latter is
not always unique for the given syntax (nor does it have to be, see discussion
in Appendix A.4). As a result, coalgebras provide just one possible way to define
bisimulations, not necessarily the most natural or useful one.

With focus on the approximate notions, it is worth mentioning that some of the
aforementioned works suggested using the final coalgebra in pseudometric cat-
egories to introduce pseudometrics between the models: when the latter are en-
coded as coalgebras, each has exactly one morphism to the final coalgebra, so if
it has a pseudometric structure, the distance between coalgebras can be defined
as distance between the “images” of them under those morphisms. From pseu-
dometric one can hope to go to bisimulations, or directly to the approximation
bounds. This approach is unlikely to be useful in practice, since as a first step one
has to show existence of a final coalgebra – see e.g. [104] for such methods. But
even if such an object does exist, it is neither clear how to compute the desired dis-
tances efficiently (see [141, 143, 144, 140]), nor how to use them even one happens
to finish those computations.

Below we present theory for the functor that sends analytic relations between
states to those between measures on state spaces, which is extensively used in
Chapter 3. Even though we show that this is indeed a well-defined functor in
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a certain category, and likely stochastic systems can be described as coalgebras
w.r.t. this functor, due to the reason we are not certain about the usefulness of the
coalgebraic approach, we do not particularly focus on studying the coalgebraic
properties of that functor.

B.2 Category of Borel relations

As we have mentioned above, the ε-relations are important for us on the level of
systems. To show that two systems belong to a particular ε-relation, we deal with
usual (exact) relations on the level of states. The latter we can lift from states to
measures, the idea which seems to be mentioned for the first time over discrete
probability spaces in [75] for purposes similar to ours. Independently, such lift-
ing procedure was studied in a greater generality over Polish spaces in [93] as
an extension of the notion of stochastic orders (see e.g. [115]). Before compar-
ing our account with the aforementioned works, let us first introduce the lifting
procedure.

For any two Borel spaces Ω and Ω̄, and a relation Φ ∈ A(Ω × Ω̄) we define a cor-
responding relation Φ∗ ⊆ P(Ω) × P(Ω̄) as follows: (µ, µ̄) ∈ Φ∗ if there exists a
coupling M ∈ C(µ, µ̄) such that M(Φ) = 1. Equivalently, two probability mea-
sures µ and µ̄ are related via Φ∗ whenever there exist two random variables w and
w̄ on the common probability space such that w (w̄) is distributed according to µ
(µ̄) and (w, w̄) ∈ Φ (a.s.). Clearly, P is a monotone operation with respect to set
inclusion. Let us consider two important special cases of P applied to relations.

Example B.1 It holds that δ(ω)Φ∗δ(ω̄) iff ωΦω̄. As a result, Φ∗ indeed can be seen as
an extension of relations between points, embedded as Dirac distributions, to more general
probability measures. In case only one of measures is Dirac, the following useful property
holds true: δ(ω)Φ∗µ̄ iff µ̄(Φ|ω) = 1, where µ̄ ∈ P(Ω̄) is arbitrary.

Example B.2 Let µ and µ̄ be arbitrary and let Φ := Gr(ϕ) for some ϕ ∈ B(Ω, Ω̄). In
this case µΦ∗µ̄ iff µ̄ = ϕ∗µ. To show this define M := (idΩ×ϕ)∗µ. We obtain:

M(Gr(ϕ)) = µ
(
(idΩ×ϕ)−1(Gr(ϕ))

)
= µ(Ω) = 1.

Let us now show that M ∈ C(µ, µ̄):

(projΩ)∗M = (projΩ ◦(idΩ×ϕ))∗ µ = (idΩ)∗µ = µ,

(projΩ̄)∗M = (projΩ̄ ◦(idΩ×ϕ))∗ µ = ϕ∗µ = µ̄.

Conversely, if µΦ∗µ̄ and M ∈ C(µ, µ̄) is such that M(Gr(ϕ)) = 1, then

µ̄(B̄) = M(Ω× B̄) = M
(
Gr(ϕ) ∩ (Ω× B̄)

)
= M((ω, ω̄) : ω̄ = ϕ(ω) and ω̄ ∈ B̄)

= M(Ω× ϕ−1(B̄)) = µ(ϕ−1(B̄)) = ϕ∗µ.
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As a result, µP(Gr(ϕ))µ̄ is equivalent to µ̄ = ϕ∗µ and hence relations between measures
can be seen as a generalization of pushforwards, as much as relations between points can
be seen as generalizations of the usual maps.

The couplingM is referred to as a "weight function" in works on discrete probabil-
ity spaces that followed up on [75], e.g. [81] which among others interprets M as
a solution of a maximal flow problem, but does not mention a perhaps more intu-
itive interpretation we have provided above. Such interpretation is yet provided
in [93]; the difference between out approaches is that our exposition is slightly
more general, as we consider relations being analytic subsets of Borel spaces rather
than closed subsets of Polish spaces. It is likely that focusing on the latter frame-
work would not reduce much the practical problems we can tackle here, but it
might require certain auxiliary continuity assumptions on SSs, which we prefer to
avoid. At the same time, working with non-closed measurable relations is more
technically involved. For example, we cannot focus only on Borel relations: as we
show now, their composition may fail to be Borel again, whereas compositions of
analytic relations are always analytic.

We can in fact define a category where the objects are Borel spaces and arrows
are analytic relations the are composed according to (A.4), we further refer to this
category as BoRel. Our main result here concerns the fact that BoRel is indeed a
category, and that P is an endofunctor in this category. To show this, we need
some supplementary statements that are of use for us throughout the thesis.

Lemma B.3 Let Ω, Ω̄, Ω̂ be arbitrary Borel spaces. For any two relations Φ ∈ A(Ω× Ω̄)

and Φ′ ∈ A(Ω̄× Ω̂) their composition satisfies Φ′ ◦ Φ ∈ A(Ω× Ω̂).

Proof: The composition of relations can be equivalently expressed as follows:

Φ′ ◦ Φ = projΩ×Ω̂

((
Φ× Ω̂

)
∩ (Ω× Φ′)

)
. (B.1)

Note that Φ× Ω̂ is analytic as a product of analytic sets, and so is the intersection
in parentheses. Hence Φ′ ◦ Φ is analytic as a projection of an analytic set. 2

Theorem B.4 The category BoRel where objects are Borel spaces, morphisms are analytic
relations with identities being diagonals and compositions given by (A.4), is well-defined.

Proof: To prove the theorem we only need to verify that morphisms satisfy the
desired property. The associativity of the composition follows from Lemma B.3,
and the diagonal is an identity since it is in Rel since diagonals of Borel spaces are
Borel sets. 2

Let us show now that P is an endofunctor on BoRel. We first show that P sends
morphisms to morphisms, that is it preserves the analyticity of relations.

Lemma B.5 Φ∗ ∈ A(P(Ω)× P(Ω̄)) for any Borel spaces Ω, Ω̄ and Φ ∈ A(Ω× Ω̄).
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Proof: Let A := (eΦ)−1(1) be set of all measures in P(Ω × Ω̄) concentrated on Φ,
so that A ∈ A(P(Ω× Ω̄)). Notice further that

Φ∗ = ((projΩ)∗ × (projΩ̄)∗) (A).

From Lemma C.15 we obtain that (projΩ)∗ × (projΩ̄) ∈ B(P(Ω× Ω̄),P(Ω)× P(Ω̄))
as a product of two Borel maps, so Φ∗ is an analytic set being the image of the
analytic set A under a Borel map. 2

Note that Φ ∈ A(Ω×Ω̄) iff Φ−1 ∈ A(Ω̄×Ω). It follows immediately from the defini-
tion of P that P(Φ−1) = Φ−1

∗ . The proof that P does not only preserve inverses, but
also compositions, requires some work and is presented in the two next lemmas.

Lemma B.6 Consider some Borel spaces Ω, Ω̄, Ω̂, Φ ∈ A(Ω × Ω̄) and Φ′ ∈ A(Ω̄ × Ω̂).
For any measures µ ∈ P(Ω), µ̄ ∈ P(Ω̄) and µ̂ ∈ P(Ω̂) it holds that

µΦ∗µ̄ and µ̄Φ′∗µ̂ =⇒ µ(Φ′ ◦ Φ)∗µ̂.

Proof: Let M ∈ C(µ, µ̄) and M ′ ∈ C(µ̄, µ̂) be such that M(Φ) = 1 and M ′(Φ′) = 1.
It follows from [126] that there exists a conditional coupling ofM andM ′, that is a
measure M ∈ P(Ω× Ω̄× Ω̂) satisfying (projΩ×Ω̄)∗M = M and (projΩ̄×Ω̂)∗M = M ′,
so that

(projΩ)∗M = µ, (projΩ̄)∗M = µ̄, (projΩ̂)∗M = µ̂.

Let us define M ′′ := (projΩ×Ω̂)∗M, so clearly M ′′ ∈ C(µ, µ̂). Furthermore,

M ′′(Φ′ ◦ Φ) = M ((ω, ω̄, ω̂) : (ω, ω̂) ∈ Φ′ ◦ Φ)

≥M ((ω, ω̄, ω̂) : (ω, ω̄) ∈ Φ and (ω̄, ω̂) ∈ Φ′) = 1

since M((ω, ω̄) ∈ Φ) = M(Φ) = 1 and M((ω̄, ω̂) ∈ Φ′) = M ′(Φ′) = 1. As a result,
we obtain that M ′′ ∈ C(µ, µ̂) and M ′′(Φ′ ◦Φ) = 1 so that µ(Φ′ ◦Φ)∗µ̄ as desired. 2

Lemma B.7 Let Ω, Ω̄, Ω̂ be arbitrary Borel spaces, Φ ∈ A(Ω× Ω̄) and Φ′ ∈ A(Ω̄× Ω̂).
For any two measures µ ∈ P(Ω) and µ̂ ∈ P(Ω̂) satisfying µ(Φ′ ◦Φ)∗µ̂ there exists a third
probability measure µ̄ ∈ P(Ω̄) such that µΦ∗µ̄ and µ̄Φ′∗µ̂.

Proof: Let M ′′ ∈ C(µ, µ̂) be such that M ′′(Φ′ ◦ Φ) = 1. Define a set

A := (Φ× Ω̂) ∩ (Ω× Φ′) ∈ A(Ω× Ω̄× Ω̂)

and recall from (B.1) that Φ′ ◦ Φ = projΩ×Ω̂(A). In Lemma C.1 put ν := M ′′ and
ϕ := projΩ×Ω̂; it follows that there exists some measure P ∈ P(Ω×Ω̄×Ω̂) such that
P(A) = 1 and (projΩ×Ω̂)∗P = M ′′, so in particular (projΩ)∗P = µ and (projΩ̂)∗P =
µ̂. Let us define M := (projΩ×Ω̄)∗P, M ′ := (projΩ̄×Ω̂)∗P and µ̄ := (projΩ̄)∗P.
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Clearly, we immediately obtain that M ∈ C(µ, µ̄) and M ′ ∈ C(µ̄, µ̂). Furthermore,

M(Φ) = P(Φ× Ω̂) ≥ P(A) = 1,

M ′(Φ) = P(Ω× Φ′) ≥ P(A) = 1,

so that µΦ∗µ̄ and µ̄Φ′∗µ̂ as desired. 2

Theorem B.8 The endofunctor P on BoRel is well-defined.

Proof: We check properties P has to satisfy in order to be an endofunctor. First of
all, for any Borel space Ω we have P(Ω) being again a Borel space, hence P sends
objects of BoRel to objects of this category again.

Second, for any morphism in BoRel between objects Ω and Ω̄ given by Φ ∈ A(Ω×
Ω̄) it follows from Lemma B.5 that Φ∗ ∈ A(P(Ω) × P(Ω̄)), hence it is again a
morphism in BoRel now between objects P(Ω) and P(Ω̄). To show that P pre-
serves identity notice that µ(∆Ω)∗µ

′ iff µ′ = (idΩ)∗µ = µ as in Example B.2 since
∆Ω = Gr(idΩ). Finally, to show that (Φ′◦Φ)∗ = Φ′∗◦Φ∗ recall that (Φ′◦Φ)∗ ⊆ Φ′∗◦Φ∗
by Lemma B.6 whereas the converse inclusion holds by Lemma B.7. 2

Example B.2 shows that P is an extension of the probabilistic functor developed
by Lawvere and Giry [92, 65]. However, it is not clear whether P defines a monad:
at least δ is not a natural transformation anymore in a sense that

Gr(δ) ◦ Φ = {(ω, δ(ω̄)) : ωΦω̄}

in general differs from

Φ∗ ◦Gr(δ) = {(ω, p) : δ(ω)Φ∗p} = {(ω, p) : p(Φ|ω) = 1}

where Ω, Ω̄ are generic Borel spaces and Φ ∈ A(Ω × Ω̄). In fact it is unlikely
that there are other natural candidates for such a transformation which makes the
existence of a monad for P questionable.

The next results describe other useful properties of the lifting of relations.

Lemma B.9 Consider some Borel spaces Ω, Ω̄ and Φ ∈ A(Ω × Ω̄), then Φ is an l.t.r. iff
so is Φ∗.

Proof: If Φ∗ is an l.t.r., then for any ω ∈ Ω there exists µ̄ ∈ P(Ω̄) such that δ(ω)Φ∗µ̄,
that is µ̄(Φ|ω) = 1 and hence Φ|ω 6= ∅. Conversely, if Φ is an l.t.r., Proposition C.17
implies that there exists a map ϕ ∈ U(Ω, Ω̄) such that Gr(ϕ) ⊆ Φ. For any µ ∈ P(Ω)
we obtain that µΦ∗ϕ∗µ and hence Φ∗ is an l.t.r. 2

Lemma B.10 Consider some Borel spaces Ω, Ω̄ and Φ ∈ A(Ω × Ω̄), then sco(Φ∗|P ) =
Φ∗|scoP for each P ∈ A(P(Ω)).
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Proof: Let us denote P̄ := Φ∗|P ; note that P̄ = projP(Ω̄)

(
Φ∗ ∩

(
P × P(Ω̄)

))
∈

A(Ω̄). We prove the lemma by showing that Φ∗|scoP ⊆ sco(P̄ ) and vice-versa.
The former inclusion can be equivalently restated as follows: for any µ′ ∈ scoP
there exists µ̄′ ∈ sco P̄ such that µ′Φ∗µ̄′. By definition of P̄ , there exists a map
M : P(Ω)→ P(Ω×Ω̄), which for any µ ∈ P satisfies the following three conditions:

1. M(Φ|µ) = 1;

2. (projΩ)∗M(µ) = µ;

3. (projΩ̄)∗M(µ) ∈ P̄ ;

By Lemma C.20 M can be chosen to be universally measurable. Consider an ar-
bitrary µ′ ∈ scoP and let ν ∈ P(P(Ω)) be any measure satisfying µ′ =

∫
P
µ ν(dµ).

Define M ′ :=
∫
P
M(µ)ν(dµ). From the definition of M it follows that µ̄′ :=

(projΩ̄)∗M
′ ∈ sco P̄ , M ′ ∈ C(µ′, µ̄′) and M ′(Φ) = 1.

The converse direction is proven in a similar way. Let M̄ : P(Ω̄) → P(Ω × Ω̄)
be such that M(Φ̄|µ̄) = 1, (projΩ̄)∗M̄(µ̄) = µ̄ and (projΩ)∗M̄(µ̄) ∈ P for each
µ̄ ∈ P̄ . As above, we can assume that M̄ is universally measurable. Given some
µ̄′ =

∫
P̄
µ̄ ν̄(dµ̄), define M̄ ′ :=

∫
P̄
M̄(µ̄)ν̄(dµ̄). The latter measure satisfies µ′ :=

(projΩ)∗M̄
′ ∈ scoP , M̄ ′ ∈ C(µ′, µ̄′) and M ′(Φ) = 1, which completes the proof. 2

Corollary B.11 Consider some Borel spaces Ω, Ω̄ and ϕ ∈ B(Ω, Ω̄), then sco(ϕ∗P ) =
ϕ∗(scoP ) for each P ∈ A(P(Ω)).

Proof: Apply Lemma B.10 to Φ := Gr(ϕ). 2

Lemma B.12 Consider some Borel spaces Ω, Ω̄ and let Φ ∈ A(Ω × Ω̄). If measures
µ ∈ P(Ω) and µ̄ ∈ P(Ω̄) satisfy µΦ∗µ̄, then for any µ′ ∈ P(Ω) there exists µ̄′ ∈ P(Ω̄)
such that ‖µ̄− µ̄′‖ ≤ ‖µ− µ′‖ and µ′Φ∗µ̄′.

Proof: Let M ∈ C(µ, µ̄) satisfy M(Φ) = 1 and denote m := dM
dµ ∈ B(Ω̄|Ω). Clearly,

m (Φ|ω|ω) = 1 (µ-a.s.), and since Φ contains a graph of a universally measurable
map, there existsm′ ∈ U(Ω̄|Ω) such thatm′ = m (µ-a.s.) andm′ (Φ|ω|ω) = 1 for all
ω ∈ Ω. Define M ′ := µ′ ⊗m′ and µ̄′ := µ′m′, then M ′ ∈ C(µ′, µ̄′) and M ′(Φ) = 1.
Finally,

‖µ̄− µ̄′‖ = 2 sup
Ā∈Ω̄

∣∣∣∣∫
Ω

m′(A|ω)µ(dω)−
∫

Ω

m′(A|ω)µ′(dω)

∣∣∣∣
= 2 sup

Ā∈Ω̄

∣∣∣∣∫
Ω

(
m′(A|ω)− 1

2

)
µ(dω)−

∫
Ω

(
m′(A|ω)− 1

2

)
µ′(dω)

∣∣∣∣ ≤ ‖µ− µ′‖
since m′(A|·)− 1

2 ∈ bU 1
2
(Ω) for each A ∈ B(Ω̄). 2
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Other topics

C.1 Important fragments of LTL

Although any LTL formula can be expressed as a DRA, such generality is not
very useful in practice. Even when dealing with finite cdt-MP D, expressing a
given formula as a DFA A = (TS, D) (if possible) may reduce the complexity of
the automaton comparing to some DRA expressions of the formula, as well as al-
lows applying simpler solution methods, which altogether leads to a smaller state
space of the composition D t TS and hence to a lower computational time. In the
case when the cdt-MP D is not finite, in addition the solution methods are much
more involved and as Sections 4.2 and 4.3 suggest, solution of a bounded-horizon
reachability problem simpler than the one of an unbounded horizon reachability,
which in turn is easier than the repeated reachability problem. As a result, e.g.
although any LTL formula that encodes some bounded-horizon property can be
expressed as a DRA, it is worth analyzing the formula to check whether it allows
for an automaton expression with a simpler acceptance condition. In this section
we describe how to perform such analysis, and what are the useful fragments of
LTL that allow for an expression via an automaton that is simpler than a DRA.

The syntactically safe LTL (sLTL) [87] expresses safety languages. A language
φ ⊆ Y N is called a safety property iff any word w /∈ φ has a finite “bad” prefix:

w /∈ φ ⇐⇒ ∃n ∈ N : proj−1
Y n (projY n(w)) ∩ φ = ∅.

The syntactically co-safe LTL (scLTL) [87] expresses co-safety languages, where a
co-safety language φ is the one for which any word w ∈ φ has a good prefix, that
is

w ∈ φ ⇐⇒ ∃n ∈ N : proj−1
Y n (projY n(w)) ⊆ φ.

Clearly φ is a safety language if and only if Y N \ φ is a co-safety one. This comes
as no surprise as safety languages are exactly closed subsets of Y N in the product
topology, whereas co-safety languages are open [11]. It follows that any co-safety
language can be expressed as a DFA, and hence DFA can be used for negations of

129
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safety languages. Here we only give a grammar of sLTL1. For this purpose, in the
LTL setting let us define a temporal modality Weak until W∞ by

Φ1W
∞Φ2 := Φ1UΦ2 ∨�Φ1.

The grammar of sLTL is given as follows:

Φ ::= σ ∈ Σ | ¬σ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | XΦ | Φ1W
∞Φ2.

Note that in sLTL the negation can be only applied on the level of letters, so that ∨
could not be expressed through ∧ in general in sLTL in contrast to the LTL setting.
Moreover, in general it is not possible to express Φ1UΦ2 using sLTL grammar.
An example of an sLTL formula is �nσ, and that of an csLTL formula are ♦nσ
and σ1U

nσ2where n ∈ N∞ in all three cases. One immediate way to see whether
a given LTL formula belongs to sLTL is to write it in a negation normal form
(NNF), where the negation is presented on the level of atomic propositions by
means of the following identities: ¬XΦ = X(¬Φ), ¬(Φ1UΦ2) = ¬Φ1W

∞¬Φ2 etc.
However, even a LTL formula corresponding to a safety language may lead to
a NNF which does not belong to sLTL, so for more elaborate methods see [87].
Recent examples of applications of sLTL and of csLTL can be found in papers
[113] and [15] respectively.

Although sLTL and scLTL are related to the expression of formulae via DFA rather
than DRA, they still lead to the unbounded-horizon reachability problem over
D t TS, even in case when the original formula encodes a bounded-horizon spec-
ification. A useful framework to deal with the latter is given by the bounded LTL
(BLTL) [133] which expresses bounded languages: a language φ ⊆ Y N is called
bounded if there exists n ∈ N such that

w ∈ φ ⇐⇒ proj−1
Y n (projY n(w)) ⊆ φ.

In particular, it appears that bounded languages are exactly those that are both
safety and co-safety languages [110, Proposition 3.10, Chapter III], that is they are
clopen subsets of Y N. The grammar of BLTL is given as follows:

Φ ::= σ ∈ Σ | ¬Φ | Φ1 ∧ Φ2 | XΦ (C.1)

so that it still allows for negations to be applied on all the levels, but U is not
absent. On the other hand, (2.6) implies that Φ1U

nΦ2 belongs to BLTL for finite
n ∈ N. It is likely that any BLTL formula allows to be expressed as a bounded-
horizon version of the DFA [133, Section 3.4] which accepts only those runs that
visit the set of final states in at most n steps, where n is specified a priori, in the
definition of the automaton. For the applications of BLTL see e.g. [74].

1 The grammar of scLTL can be easily deduced from the one of sLTL; see also [15, Definition 2.1].
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C.2 Stochastic equations

Throughout the thesis sometimes we face the following problem: let Ω and Ξ
be two Borel spaces, ϕ ∈ B(Ω,Ξ) and ν ∈ P(Ξ). Does there exist a probability
measure µ ∈ P(Ω) such that ν = ϕ∗µ?

The expression ν = ϕ∗µ with given ϕ, ν and unknown µ is called a stochastic
equation [51], and can be considered as an abstract form of Itô stochastic differ-
ential equations [106]. Also, a stochastic equation can be seen as an extension of
a measure from a smaller sub-σ-algebra to a bigger one: clearly, given ϕ and ν
we can define a measure ν′ on a sub-σ-algebra ϕ−1(B(Ξ)) ⊆ B(Ω). The question
is whether it is possible to extend ν′ to the whole Borel σ-algebra B(Ξ): such an
extension µ would be a desired solution of a stochastic equation ν = ϕ∗µ.

The aforemention paper [51] provides several useful conditions for the existence
of solutions of stochastic equations, however the case we deal with is slightly
different. Due to this reason, we provide a proof for a specific situation of our
interest, which is based on methods used in [51]: construction of a measurable
inverse of ϕ.

Lemma C.1 Consider some Borel spaces Ω,Ξ, and ϕ ∈ B(Ω,Ξ). For each A ∈ A(Ω)
and probability measure ν ∈ P(Ξ) satisfying ν(ϕ(A)) = 1 there exists a solution of the
stochastic equation µ ∈ P(Ω) such that µ(A) = 1 and such that ν = ϕ∗µ.

Proof: Since ϕ is a Borel map, Gr(ϕ) ∈ B(Ω × Ξ) and Gr(ϕ)−1 ∈ B(Ξ × Ω).
Proposition C.17 implies the existence of ψ ∈ U(Ξ,Ω) satisfying ϕ(ψ(ξ)) = ξ for
each ξ ∈ ϕ(A). We extend the map ψ to Ξ by defining ψ(ξ) = ω′ ∈ Ω, an arbitrary
auxiliary point. By [33, Lemma 1.2] there exists ψ′ ∈ B(Ξ,Ω) such that ψ = ψ′

(ν-a.s.).

Let us define µ := ψ′∗ν and show that it satisfies the desired properties. First of all,

µ(A) = ν (ξ ∈ Ξ : ψ′(ξ) ∈ A) = ν (ξ ∈ Ξ : ψ(ξ) ∈ A) ≥ ν(ϕ(A)) = 1.

Second, for any B ∈ B(Ξ) we obtain that

ϕ∗µ(B) = (ϕ ◦ ψ)∗ν(B) = ν (ξ : ϕ(ψ(ξ)) ∈ B) ≥ ν (B ∩ ϕ(A)) = ν(B).

which completes the proof. 2

C.3 Auxiliary results

Lemma C.2 Consider some Borel space Ω, and for any class of sets F ⊆ 2Ω denote

dTV,F(µ, µ′) = 2 · sup
F∈F
|µ(F )− µ′(F )|, µ, µ′ ∈ P(Ω).

If F is an algebra that generates B(Ω), then dTV,F = dTV.
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Proof: If F is an algebra that generates B(Ω) then F ⊆ B(Ω), so clearly dTV,F ≤ dTV,
hence only the converse inequality needs to be proved. It is easy to show that for
any ν ∈ P(Ω), ε > 0 and A ∈ B(Ω) there exists F ∈ F such that ν(A4F ) ≤ ε. In
particular, if ν = 1

2 (µ + µ′) for some µ, µ′ ∈ P(Ω), then µ(A4F ) ≤ 2ε and hence
|µ(A)− µ(F )| ≤ 2ε, and similarly for µ′. Thus

|µ(A)−µ′(A)| ≤ |µ(A)−µ(F )|+ |µ(F )−µ′(F )|+ |µ′(A)−µ(F )| ≤ dTV,F(µ, µ′)+4ε.

Since µ, µ′, A and ε are arbitrary, we obtain the desired result. 2

Corollary C.3 dTV ∈ B(P(Ω)× P(Ω)) for each Borel space Ω.

Proof: Let F be an algebra that generates B(Ω). Since the latter is countably gener-
ated, we can assume F to be countable. Note that dTV,F(µ, µ′) = 2 ·supF∈F |eF (µ)−
eF (µ′)| and hence is a Borel function as a countable supremum of Borel functions.
Since dTV = dTV,F by Lemma C.13, the desired result follows immediately. 2

Lemma C.4 Let Ω, Ω̂ be arbitrary Borel spaces and let f : Ω → Ω̂ be a Borel map. Then
f∗ : P(Ω)→ P(Ω̂) is also a Borel map.

Proof: For the proof see e.g. [47, Proposition 1.27]. 2

Lemma C.5 Let Ω be an arbitrary set and consider any two functions f, g : Ω → R. If
|f(ω)− g(ω)| ≤ ε for all ω ∈ Ω then | supω∈Ω f(ω)− supω∈Ω g(ω)| ≤ ε.

Proof: For the proof see e.g. [69, Appendix A.3]. 2

Proposition C.6 Consider some Borel spaces Ω,Ξ and Φ ∈ A(Ω × Ξ). There exists a
map ϕ ∈ U(Ω,Ξ) such that ϕ(ω) ∈ Φ|ω for all ω ∈ projΩ(Φ).

Proof: For the proof see e.g. [20, Proposition 7.49]. 2

Lemma C.7 Coupling can be pushed.

Lemma C.8 Consider some Borel spaces Ω,Ξ, and let µ, µ̄ ∈ P(Ω) and κ, κ̄ ∈ U(Ξ|Ω).
If there exists a set E ∈ B(Ω) such that µ̄(E) = 1 and ‖κ(ω)− κ̄(ω)‖ ≤ ε for all ω ∈ E,
then ‖µ⊗ κ− µ̄⊗ κ̄‖ ≤ ‖µ− µ̄‖ ⊗ ε.

Proof: Define ν := 1
2 (µ+ µ̄), so thatA ∈ B(Ω) satisfies ν(A) = 1 iff µ(A) = µ̄(A) =

1. Then there exists E′ ∈ B(Ω) and κ′, κ̄′ ∈ B(Ξ|Ω) such that ν(E′) = 1 and such
that κ(ω) = κ′(ω) and κ̄(ω) = κ̄′(ω) for each ω ∈ E′. Define E′′ = E ∩ E′, then
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ν(E′′) = 1 and ‖κ′(ω)− κ̄′(ω)‖ ≤ ε for all ω ∈ E′′. Define κ′′ := 1E′′κ
′ + 1(E′′)c κ̄

′,
so ‖κ′(ω)− κ̄′(ω)‖ ≤ ε for all ω ∈ Ω and by [10, Lemma 2] it holds that ‖µ⊗ κ′′ −
µ̄ ⊗ κ̄′‖ ≤ ‖µ − µ̄‖ ⊗ ε. The result follows from the fact that µ ⊗ κ = µ ⊗ κ′′ and
µ̄⊗ κ̄ = µ̄⊗ κ̄′. 2

Lemma C.9 Let Y , Y ′ be arbitrary sets and let g : Y → R and g′ : Y ′ → R be some
functions. Suppose that there exist maps a : Y → Y ′ and a′ : Y ′ → Y such that

g(y) = g′(a(y)), g′(y′) = g(a′(y′)), ∀y ∈ Y, y′ ∈ Y ′

Then: infy∈Y g(y) = infy′∈Y ′ g
′(y′) and supy∈Y g(y) = supy′∈Y ′ g

′(y′).

Proof: The following sequences of inequalities

inf
y∈Y

g(y) = inf
y∈Y

g′(a(y)) ≥ inf
y′∈Y ′

g′(y′) = inf
y′∈Y ′

g(a′(y′)) ≥ inf
y∈Y

g(y)

sup
y∈Y

g(y) = sup
y∈Y

g′(a(y)) ≤ sup
y′∈Y ′

g′(y′) = sup
y′∈Y ′

g(a′(y′)) ≤ sup
y∈Y

g(y)

yield the desired result. 2

The next lemma shows that point-wise bounds also hold for the optimal values.

Lemma C.10 Let Y be an arbitrary set and consider any two function f, g : Y → R. If
|f(y)− g(y)| ≤ ε for all y ∈ Y then | supy∈Y f(y)− supy∈Y g(y)| ≤ ε.

Proof: The proof is given in [69, Appendix A.3]. 2

Lemma C.11 If Y is a Borel space, the set S is closed in Y and the function f ∈ bC∗(X)
is such that f ≥ 0, then it holds that 1S · f ∈ bC∗(X).

Proof: Notice that for any c ≤ 0 it holds that {1S · f ≥ c} = X , whereas for c > 0
we obtain {1S · f ≥ c} = S ∩ {f ≥ c}which is a closed set as well. 2

Lemma C.12 Let A be any set, and let (F, ρ) be a metric space where F is any class of
bounded functions f : A → R and ρ : (f ′, f ′′) 7→ supa∈A |f ′′(a) − f ′(a)|. Consider an
arbitrary operator G : F → F that satisfies the following two properties:

1. if f, g ∈ F such that f ≤ g, then Gf ≤ Gg,

2. there exists β ∈ [0, 1) such that if f ∈ F and c ≥ 0 then G(f + c) ≤ Gf + βc.

Then G is a contraction on F with a modulus β.
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Proof: Let f, g ∈ F be arbitrary, then f ≤ g + ρ(f, g) and thus

Gf ≤ Gg + βρ(f, g) =⇒ Gf −Gg ≤ βρ(f, g).

By a symmetric argument, we obtain that

Gf −Gg ≤ βρ(f, g) =⇒ |Gf −Gg| ≤ βρ(f, g) =⇒ ρ(Gf,Gg) ≤ βρ(f, g),

so that G is a contraction with a modulus β. 2

Lemma C.13 Consider some Borel space Ω, and for any class of sets F ⊆ 2Ω denote

dTV,F(µ, µ′) = 2 · sup
F∈F
|µ(F )− µ′(F )|, µ, µ′ ∈ P(Ω).

If F is an algebra that generates B(Ω), then dTV,F = dTV.

Proof: If F is an algebra that generates B(Ω) then F ⊆ B(Ω), so clearly dTV,F ≤ dTV,
hence only the converse inequality needs to be proved. It is easy to show that for
any ν ∈ P(Ω), ε > 0 and A ∈ B(Ω) there exists F ∈ F such that ν(A4F ) ≤ ε. In
particular, if ν = 1

2 (µ + µ′) for some µ, µ′ ∈ P(Ω), then µ(A4F ) ≤ 2ε and hence
|µ(A)− µ(F )| ≤ 2ε, and similarly for µ′. Thus

|µ(A)−µ′(A)| ≤ |µ(A)−µ(F )|+ |µ(F )−µ′(F )|+ |µ′(A)−µ(F )| ≤ dTV,F(µ, µ′)+4ε.

Since µ, µ′, A and ε are arbitrary, we obtain the desired result. 2

Corollary C.14 dTV ∈ B(P(Ω)× P(Ω)) for each Borel space Ω.

Proof: Let F be an algebra that generates B(Ω). Since the latter is countably gener-
ated, we can assume F to be countable. Note that dTV,F(µ, µ′) = 2 ·supF∈F |eF (µ)−
eF (µ′)| and hence is a Borel function as a countable supremum of Borel functions.
Since dTV = dTV,F by Lemma C.13, the desired result follows immediately. 2

Lemma C.15 Let Ω, Ω̂ be arbitrary Borel spaces and let f : Ω→ Ω̂ be a Borel map. Then
f∗ : P(Ω)→ P(Ω̂) is also a Borel map.

Proof: For the proof see e.g. [47, Proposition 1.27]. 2

Lemma C.16 Let Ω be an arbitrary set and consider any two functions f, g : Ω→ R. If
|f(ω)− g(ω)| ≤ ε for all ω ∈ Ω then | supω∈Ω f(ω)− supω∈Ω g(ω)| ≤ ε.

Proof: For the proof see e.g. [69, Appendix A.3]. 2
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Proposition C.17 Consider some Borel spaces Ω,Ξ and Φ ∈ A(Ω × Ξ). There exists a
map ϕ ∈ U(Ω,Ξ) such that ϕ(ω) ∈ Φ|ω for all ω ∈ projΩ(Φ).

Proof: For the proof see e.g. [20, Proposition 7.49]. 2

Lemma C.18 Coupling can be pushed.

Lemma C.19 Consider some Borel spaces Ω,Ξ, and let µ, µ̄ ∈ P(Ω) and κ, κ̄ ∈ U(Ξ|Ω).
If there exists a set E ∈ B(Ω) such that µ̄(E) = 1 and ‖κ(ω)− κ̄(ω)‖ ≤ ε for all ω ∈ E,
then ‖µ⊗ κ− µ̄⊗ κ̄‖ ≤ ‖µ− µ̄‖ ⊗ ε.

Proof: Define ν := 1
2 (µ+ µ̄), so thatA ∈ B(Ω) satisfies ν(A) = 1 iff µ(A) = µ̄(A) =

1. Then there exists E′ ∈ B(Ω) and κ′, κ̄′ ∈ B(Ξ|Ω) such that ν(E′) = 1 and such
that κ(ω) = κ′(ω) and κ̄(ω) = κ̄′(ω) for each ω ∈ E′. Define E′′ = E ∩ E′, then
ν(E′′) = 1 and ‖κ′(ω)− κ̄′(ω)‖ ≤ ε for all ω ∈ E′′. Define κ′′ := 1E′′κ

′ + 1(E′′)c κ̄
′,

so ‖κ′(ω)− κ̄′(ω)‖ ≤ ε for all ω ∈ Ω and by [10, Lemma 2] it holds that ‖µ⊗ κ′′ −
µ̄ ⊗ κ̄′‖ ≤ ‖µ − µ̄‖ ⊗ ε. The result follows from the fact that µ ⊗ κ = µ ⊗ κ′′ and
µ̄⊗ κ̄ = µ̄⊗ κ̄′. 2

Lemma C.20 Consider some Borel spaces Ω, Ω̄ and Ξ, Ξ̄, and let Υ ∈ A(Ω × P(Ξ)),
Ῡ ∈ A(Ω̄ × P(Ξ̄)) be l.t.r. and Φ ∈ A(Ω × Ω̄), Ψ ∈ A(Ξ × Ξ̄). Suppose that for any
(ω, ω̄) ∈ Φ there exists G(ω, ω̄) ∈ P(Ξ× Ξ̄) satisfying

1. G(Ψ|ω, ω̄) = 1;

2. (projΞ)∗G(ω, ω̄) ∈ Υ|ω ;

3. (projΞ̄)∗G(ω, ω̄) ∈ Ῡ|ω̄ .

Then there exists a kernel in U(Ξ× Ξ̄|Ω× Ω̄) satisfying conditions (1)− (3).

Proof: Clearly, G is a particular choice in Φ × P(Ξ × Ξ̄) that satisfies the three
conditions, so we need to show that such choice could be done in a universally
measurable way. For this purpose, we are going to show that the set J ⊆ Φ ×
P(Ξ× Ξ̄) to do the choice over is analytic, so that Proposition C.17 applies.

It follows that J =
⋂3
i=1 Ji, where Ji corresponds to the i-th condition. In particu-

lar,

J1 = {(ω, ω̄, p) : (ω, ω̄) ∈ Φ, p(Ψ) = 1} = Φ× (eΨ)−1(1) ∈ A(Φ× P(Ξ× Ξ̄))

as a product of two analytic sets. Furthermore, for J2 we have

J2 = {(ω, ω̄, p) : (ω, ω̄) ∈ Φ, (ω, (projΞ)∗p) ∈ Υ}

=
(
Φ× P(Ξ× Ξ̄)

)
∩
(

Ω̄× (idΩ×(projΞ)∗)
−1

(Υ)
)
.
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As projΞ is Borel so is (projΞ)∗ : P(Ξ × Ξ̄) → P(Ξ) by Lemma C.15. Since the
product of two Borel maps is Borel, by [20, Proposition 7.40] (idΩ×(projΞ)∗)

−1
(Υ)

is an analytic set, hence so is J2. A similar argument implies that J3 is an analytic
set as well, so that J is analytic as an intersection of analytic sets. 2

Lemma C.21 Consider some Borel spaces Ω, Ω̄ and Ξ, Ξ̄, Φ ∈ B(Ω×Ω̄) and Ψ ∈ B(Ξ×
Ξ̄), µ ∈ P(Ω) and µ̄ ∈ P(Ω̄), a stochastic kernel κ ∈ U(Ξ|Ω) and an l.t.r. Ῡ ∈ A(Ω̄ ×
P(Ξ̄)). Suppose that µΦ∗µ̄ and that for any (ω, ω̄) ∈ Φ there exists a probability measure
G(ω, ω̄) ∈ P(Ξ× Ξ̄) satisfying

1. G(Ψ|ω, ω̄) = 1;

2. (projΩ)∗G(ω, ω̄) = κ(ω);

3. (projΩ̄)∗G(ω, ω̄) ∈ Ῡ|ω̄ .

Then there exists a stochastic kernel κ̄ ∈ U(Ξ̄|Ω̄) that satisfies (µ⊗ κ)P(Φ×Ψ)(µ̄⊗ κ̄)
and such that κ̄(ω̄) ∈ sco Ῡ|ω̄ for any ω̄ ∈ Ω̄.

Proof: Since µΦ∗µ̄, there exists M ∈ C(µ, µ̄) such that M(Φ) = 1. Our main goal
is to useG to construct a kernelK ∈ U(Ξ× Ξ̄|Ω×Ω̄) such that (M⊗K)(Φ×Ψ) = 1
and the left marginal of M ⊗K is µ⊗ κ. We then define κ̄ using K and show that
it satisfies desired properties.

Consider an arbitrary κ′ ∈ B(Ξ|Ω) such that κ = κ′ (µ-a.s.). By taking Υ := Gr(κ)
we obtain Υ ∈ B(Ω × P(Ξ)), so that Lemma C.20 implies the existence of K ∈
U(Ξ× Ξ̄|Ω× Ω̄) satisfying conditions (1) and (3) from the statement and such that

(projΩ)∗K(ω, ω̄) = κ′(ω)

for all (ω, ω̄) ∈ Φ. Denote m̄ := dM
dµ̄ ∈ B(Ω|Ω̄) and define

κ̄(ω̄) :=

∫
Ω

(projΩ̄)∗K(ω, ω̄)m̄(dω|ω̄) ω̄ ∈ Ω̄. (C.2)

By [20, Proposition 7.46] κ̄(B̄|·) ∈ bU(Ω̄) for any B̄ ∈ B(Ω̄), and thus κ̄ ∈ U(Ξ̄|Ω̄)
by [20, Lemma 7.28(b⇒a)]. Note that

1 = M(Φ) =

∫
Ω̄

m̄
(

Φ|ω̄
∣∣ω̄) µ̄(dω̄)

and hence there exists some set Ē ∈ B(Ω̄) such that µ̄(Ē) = 1 and m (Φ|ω̄ |ω̄) = 1,
so that κ̄(ω̄) ∈ sco Ῡ|ω̄ for all ω̄ ∈ Ē. Let ῡ ∈ U(Ξ̄|Ω̄) be any kernel satisfying
Gr(ῡ) ⊆ Ῡ and redefine κ̄(ω̄) := ῡ(ω̄) for all ω̄ ∈ Ēc, so that κ̄(ω̄) ∈ sco Ῡω̄ for all
ω̄ ∈ Ω̄.

Now, let us show that (µ ⊗ κ)P(Φ × Ψ)(µ̄ ⊗ κ̄); we are going to use M ⊗ K as a
desired coupling. Let us check properties of M ⊗K: first of all

(M ⊗K)(Φ×Ψ) =

∫
Φ

K(Ψ|ω, ω̄)M(dω × dω̄) = 1
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by condition (1). To show that M ⊗K has the desired marginals, it is sufficient to
focus only on measurable rectangles. For any A ∈ B(Ω) and B ∈ B(Ξ):

(M ⊗K)(A× Ω̄×B × Ξ̄) =

∫
A×Ω̄

K(B × Ξ̄|ω, ω̄)M(dω × dω̄)

=

∫
A×Ω̄

κ′(B|ω)M(dω × dω̄)

=

∫
A

κ′(ω,B)µ(dω) = (κ⊗ µ)(A×B)

where the second equality is satisfied thanks to condition (2). Finally, for any
Ā ∈ B(Ω̄) and B̄ ∈ B(Ξ̄) it holds that

(M ⊗K)(Ω× Ā× Ξ× B̄) =

∫
Ω×Ā

K(Ξ× B̄|ω, ω̄)M(dω × dω̄)

=

∫
Ω×Ā

(projΩ̄)∗K(B̄|ω, ω̄)M(dω × dω̄)

=

∫
Ā

κ̄(B̄|ω̄)µ̄(dω̄) = (µ̄⊗ κ̄)(Ā× B̄).

2
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List of symbols

N = {0, 1, 2, . . .} set of non-negative integer numbers
[a; b] = {a, a+ 1, . . . , b} finite set of integers from a to b
R set of real numbers
→ going to
7→ maps to
B(Ω) Borel σ-algebra of a Borel space Ω
U(Ω) universal σ-algebra of a Borel space Ω
A(Ω) collection of analytic subsets of a Borel space Ω
P(Ω) Borel space of all probability measure over a Borel

space Ω
f∗ a pushforward of a map f from points to measures
R∗ a lifting of a relation R from points to measures
κ(A|ω) evaluation of a stochastic kernel κ on a set A given a

point x
1A an indicator function of a set A
δ a Dirac stochastic kernel
R|x a left-section of a set R at x
R|x a right-section of a set R at x
Rn an n-times product of R with itself
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List of Abbreviations

i.i.d. independent identically distributed

TS Transition System

SS Stochastic System

PA Probabilistic Automaton

PTS Probabilistic Transition System

LMP Labelled Markov Process

MDP Markov Decision Process

GM Gambling Model

MC Markov Chain

AMC Abstract Markov Chain

DFA Deterministic Finite Automaton

DBA Deterministic Büchi Automaton

DRA Deterministic Rabin Automaton

LT Linear Temporal

LTL Linear Temporal Logic

BLTL Bounded Linear Temporal Logic

PCTL Probabilistic Computation Tree Logic

DP Dynamic Programming

DC Discounted additive cost Criterion

AC Average cost Criterion

TC Terminal cost Criterion

ABF Approximate Bisimulation Function

l.t.r. left-total relation
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Summary

Bisimilar Stochastic Systems

Ilya Tkachev

Stochastic systems have been widely investigated and employed in numerous
applications in different areas such as finance, biology and engineering as

they allow accounting for imprecisions so often faced in every practical tasks. Of-
ten that task would require to find the best action sequence in order to optimize
the outcome. When the model is small, one can efficiently employ algorithmic
techniques to synthesize such a control policy. Hence, in case of more complex
models, instead of solving control tasks there directly, one may want to approxi-
mate them with simpler ones and then use those algorithms. This method is called
abstraction for it abstracts the original “physical” model to an “abstract” one, only
needed to ease the computations. Ideally, this abstract model is somewhat similar
to the original one, as we want to extrapolate results achieved over the former
to the setting of the latter. One way this similarity can be ensured is by means
of the (bi)simulation methods, that give sufficient conditions to the closeness of
behaviors of the two systems being compared. Such techniques became popular
in discrete non-stochastic models, then advanced to continuous ones and started
making steps to discrete stochastic systems. Yet, definite results were not achieved
for abstractions of continuous stochastic models. There were trials to extend ideas
from continuous non-stochastic framework, or discrete stochastic one, but they
were mostly fragmentary. This thesis brings those methods together to build a
unified framework and shows immediate benefits of doing this.

To define the closeness between the systems we look at their path-wise properties,
which cover most of the tasks whose relevance was praised in the literature. That
comprises both additive cost-like criteria and formal specifications, e.g. encoded
by LTL formulae of the kind “reach the goal set through the safe set while avoid-
ing dangerous states”. We derive guarantees on the approximation error and sug-
gest how to build an abstraction for a given tolerance level. These guarantees
work mostly for the finite time horizon properties, hence for the rest we develop
task-dependent solution methods, further connecting with the existing literature.
Besides those concrete results, we also put some effort in developing the concep-
tual side of the bisimulation framework for stochastic systems. For example, we
show how important it is to choose a definition of behavior here, since bisimil-
iarity is useful as long as it guarantees closeness of behaviors one is interested in.
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We hence stress the importance of keeping in mind the final goal while extrapo-
lating abstract solution methods, and show which issues may arise when this goal
is forgotten. We also extend the framework we deal with beyond bisimulation of
stochastic systems only, providing a formalization of approximate relations and
their connections with pseudo-metrics, proving several theorems in probabilistic
approximation, whose generality is greater than the scope of this thesis, and also
provide a category-theoretical basis for bisimulations of stochastic systems, hence
opening one more door from which this problem can be approached.



Samenvatting

Bisimilaar Stochastische Systemen

Ilya Tkachev

Stochastische systemen zijn op grote schaal onderzocht en gebruikt in tal van
toepassingen in verschillende gebieden, zoals financiën, biologie en bouw-

kunde, omdat ze rekening kunnen houden met de onnauwkeurigheden die zo
vaak bij praktische taken voor komen. Vaak vereist een taak het vinden van de
beste actiereeks om de uitkomst te optimaliseren. Als het model klein is, kan men
op efficiënte wijze algoritmische technieken gebruiken om een dergelijke control
policy te vinden. Complexere modellen zou men kunnen benaderen met eenvou-
digere modellen teneinde dezelfde efficiënte algoritmische technieken te kunnen
gebruiken om ze op te lossen. Deze benadering wordt abstractie genoemd omdat
men het oorspronkelijke “fysieke” model abstraheert tot een “abstract” model,
dat gebruikt wordt om de berekeningen te vergemakkelijken. Idealiter lijkt dit
abstracte model enigszins op het originele model, omdat we de resultaten van het
één willen extrapoleren naar het ander. Een manier om deze gelijkenis te waar-
borgen is door middel van (bi) simulatiemethoden, die voldoende voorwaarden
geven aan de nabijheid van het gedrag van de twee systemen die worden verge-
leken. Dergelijke technieken werden populair in discrete niet-stochastische mo-
dellen, vervolgens doorontwikkeld naar continue niet-stochastische systemen, en
begonnen met het maken van stappen naar discrete stochastische systemen. Toch
zijn geen definitieve resultaten bereikt voor abstracties van continue stochastische
modellen. Er is geprobeerd om ideeën uit te breiden vanuit het continue of dis-
crete niet-stochastisch raamwerk, maar deze pogingen waren meestal fragmenta-
risch. Dit proefschrift brengt die methoden bij elkaar om een uniform raamwerk
op te bouwen en laat de directe voordelen zien die hier uit voortkomen.

Om de nabijheid van systemen te bepalen, bekijken we hun padsgewijze eigen-
schappen; deze bestrijken de meeste relevante taken in de literatuur. Dat omvat
zowel additieve kosten-achtige criteria als formele specificaties, bijv. gecodeerd
door LTL-formules van het soort “bereik de doel set door de veilige set en ver-
mijdt gevaarlijke toestanden”. We leiden garanties op de benaderingsfout af en
suggereren hoe we een abstractie kunnen opbouwen voor een bepaald toleran-
tieniveau. Deze garanties werken meestal voor de eigenschappen van de eindige
tijdshorizon, daarom ontwikkelen we voor de rest taakafhankelijke oplossingsme-
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thoden, wat verder aansluit op de bestaande literatuur. Naast die concrete resulta-
ten hebben we ook enige moeite gedaan om de conceptuele kant van het bisimula-
tiekader voor stochastische systemen te ontwikkelen. We laten bijvoorbeeld zien
hoe belangrijk het is om hier een definitie van systeem gedrag te kiezen, omdat
bisimilariteit alleen nuttig is als het garanties geeft op dat nabijheid van het sys-
teem gedrag waarin iemand geïnteresseerd is. We benadrukken daarom het be-
lang van het in gedachten houden van het uiteindelijke doel terwijl we abstracte
oplossingsmethoden extrapoleren, en laten zien welke problemen zich kunnen
voordoen wanneer dit doel uit het oog wordt verloren. Hiernaast breiden we het
raamwerk uit met methoden die verder gaan dan alleen bisimulatie van stochas-
tische systemen, en verschaffen een formalisering van benaderde relaties en hun
connecties met pseudo-metrics. Verder bewijzen we verschillende stellingen in de
probabilistische benadering waarvan de algemeenheid verder gaat dan alleen het
toepassingsgebied van dit proefschrift, en die ook een categorietheoretische basis
bieden voor bisimulaties van stochastische systemen, wat een nieuwe invalshoek
verschaft van waaruit dit probleem kan worden benaderd.
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