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ON THE MONOTONICITY OF TAIL PROBABILITIES∗

BY

ROBBERT F O K K I N K (DELFT), SYMEON PA PAVA S S I L I O U (ATHENS), AND

CHRISTOS P E L E K I S (ATHENS)

Abstract. Let S and X be independent random variables, assuming val-
ues in the set of non-negative integers, and suppose further that both E(S)
and E(X) are integers satisfying E(S) ­ E(X). We establish a sufficient
condition for the tail probability P(S ­ E(S)) to be larger than the tail
P(S +X ­ E(S +X)), when the mean of S is equal to the mode.

2020 Mathematics Subject Classification: Primary 60G50; Secondary
60E15.
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1. MAIN RESULT

We are interested in the comparison between the tails P(S ­ E(S)) and P(S+X ­
E(S + X)), where S and X are independent random variables. In everyday lan-
guage, suppose an enterprise S is successful if the result exceeds the mean; would
it be beneficial to include one more enterpriseX? In many applications, S is a sum
of independent random variables and X adds one more to the sum. By the central
limit theorem, P(S ­ E(S)) converges to 1/2. Therefore, if P(S ­ E(S)) > 1/2
(the enterprise is favorably skewed), one would expect that adding one more term
to the sum would lower this probability.

All random variables under consideration take values in N ∪ {0}. We establish
an inequality that applies to random variables that satisfy certain “skewness” condi-
tions. Throughout the text, given a positive integer n, we denote the set {1, . . . , n}
by [n].

∗ Research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and
the procurement of high-cost research equipment grant” (Project Number: HFRI-FM17-2436).
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DEFINITION 1.1 (Right-skewness). Assume that S is unimodal with mode s.
Then we say that S is right-skewed if

P(S = s− i) ¬ P(S = s+ i− 1) for all i ∈ [s].

In our definition, we allow that the mode is not unique. It is possible that
P(S = s − 1) = P(S = s) and that is why we put the ¬ sign. If the inequal-
ity is strict, then the inequality in our main result is also strict.

DEFINITION 1.2 (Left-loadedness). Let X be a random variable such that
m := E(X) is an integer. For i ∈ [m], set αi := P(X ¬ m− i)−P(X ­ m+ i).
Then we say that X is left-loaded if either of the following two conditions holds
true:

(L1): The sequence {αi}mi=1 changes sign once from positive to negative, i.e., there
exists ` ∈ [m] such that αi ­ 0 for i ¬ `, and αi ¬ 0 for i > `.

(L2):
∑k

i=1 αi ­ 0 for all k ∈ [m].

A random variable can be both right-skewed and left-loaded. For instance, if
E(S) = 1 then it is not hard to prove that S is left-loaded. If such an S is unimodal,
such as the binomial distribution Bin(n, 1/n), then it is also right-skewed. Another
example is a geometric random variable with parameter 1/n. Our main result reads
as follows.

THEOREM 1.1. Let s ­ m be two positive integers. Suppose that S and X are
independent random variables, assuming values in the set of non-negative integers,
that satisfy the following conditions:

• S is right-skewed with mode s.
• X is left-loaded with mean m.

Then P(S ­ s) ­ P(S +X ­ s+m) .

Note that we have replaced the mean of S by its mode. If S is binomial or
Poisson with integer mean, then the mean is equal to the mode. We will show that
Poisson random variables with integer mean are both right-skewed and left-loaded,
and that binomial random variables are right-skewed if p ¬ 1/2. We conjecture that
a binomial random variable is left-loaded if it has integer mean and p ¬ 1/2. This
seems to be hard to prove and is related to an old inequality of Simmons [6].

Our inequality is well-established for standard random variables. Let Poi(λ)
denote a Poisson random variable of mean λ. Teicher [7] showed that

(1.1) P(Poi(k) ­ k) ­ P(Poi(k + 1) ­ k + 1) for all k ­ 1,

which follows from our result if we take S ∼ Poi(k) and X ∼ Poi(1). Let
Bin(m, p) denote a binomial random variable of parameters m and p ∈ (0, 1).
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Chaundy and Bullard [1] showed that for every fixed positive integer n ­ 1 and
probability p = 1/n,

(1.2) P(Bin(nk, p) ­ k) ­ P(Bin(n(k + 1), p) ­ k + 1) for all k ­ 1.

This follows from our result if we take S ∼ Bin(nk, p) and X ∼ Bin(n, p)
for p = 1/n. We remark that both inequalities (1.1) and (1.2) concern the mono-
tonicity of tail probabilities of the form P(Sk ­ E(Sk)), where Sk is a sum of k
independent random variables of mean 1. These results have been extended to the
case of integer means (see [3, Theorem 2.1] and [4, Theorem 2.3]), and several
of those extensions can be deduced from our main result. However, Theorem 1.1
provides a bit more, since it allows one to convolute different distributions. For
example, it follows from the results in Section 3 that Theorem 1.1 implies that
P(S ­ s) ­ P(S + X ­ E(S + X)) for S ∼ Bin(n, s/n) with n ­ 2s, and
X ∼ Poi(m) with s ­ m, a result which may be seen as a “mixture” of (1.1)
and (1.2).

The tail probability P(S ­ E(S)) has been extensively studied for Poisson
random variables, motivated by a conjecture by Ramanujan that was eventually
settled by Flajolet. This research is ongoing and results continue to be sharpened
and extended; see [2] for recent progress and further references. It is not possible
to deduce such refined results for parametrized families from our inequality, which
puts relatively weak constraints on the distributions of S and X .

2. PROOF OF MAIN RESULT

We begin with an observation.

LEMMA 2.1. Let X be a random variable, assuming non-negative integer val-
ues, such that m := E(X) is an integer. Then

m∑
i=1

(
P(X ¬ m− i)− P(X ­ m+ i)

)
=

∑
i­m+1

P(X ­ m+ i).

In particular,
∑m

i=1

(
P(X ¬ m− i)− P(X ­ m+ i)

)
­ 0.

Proof. Notice that

m =
m∑
i=1

P(X ­ i) +
2m∑

i=m+1

P(X ­ i) +
∑

i­2m+1

P(X ­ i),

which, upon transferring the first two sums on the right to the other side, is equiv-
alent to

m∑
i=1

(P(X ¬ m− i)− P(X ­ m+ i)) =
∑

i­m+1

P(X ­ m+ i). �
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We now prove our main result, which applies to random variables that are
skewed to the right. One would expect that there exists a corresponding result for
variables that are skewed to the left. However, our proof does not easily transfer
to this case. One problem is that the inequality

∑m
i=1

(
P(X ¬ m − i) − P(X ­

m+ i)
)
­ 0 holds for all random variables. It does not change sign if we skew the

random variable to the left.

Proof of Theorem 1.1. If we condition on S we have

P(S +X ­ s+m) =
∑
i­0

P(X ­ s+m− i) · P(S = i)

= P(S ­ s+m) +
s+m−1∑
i=0

P(X ­ s+m− i) · P(S = i).

Hence P(S +X ­ s+m) ¬ P(S ­ s) is equivalent to

s+m−1∑
i=0

P(X ­ s+m− i) · P(S = i) ¬
s+m−1∑
i=s

P(S = i),

which can be rearranged as

s−1∑
i=0

P(S = i) · P(X ­ s+m− i) ¬
s+m−1∑
i=s

P(S = i) · P(X ¬ s+m− i− 1).

This is equivalent to

(2.1)
s∑

i=1

P(S = s− i) ·P(X ­ m+ i) ¬
m∑
i=1

P(S = s+ i−1) ·P(X ¬ m− i).

Let L and R denote the left-hand side and the right-hand side of (2.1). Since S is
unimodal with mode s ­ m, we can estimate L as follows:

L ¬
m∑
i=1

P(S = s− i) · P(X ­ m+ i)

+ P(S = s−m− 1) ·
s∑

i=m+1

P(X ­ m+ i)

=: `1 + `2,

with the convention that `2 is equal to 0 when s = m. Now, since S is right-skewed,
we have

(2.2) `1 ¬
m∑
i=1

P(S = s+ i− 1) · P(X ­ m+ i) =: R1.
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Using again the right-skewness of S and Lemma 2.1, we have

(2.3) `2 ¬ P(S = s+m) ·
( m∑
i=1

(P(X ¬ m− i)− P(X ­ m+ i))
)

=: R2.

It follows from (2.1)–(2.3) that it is enough to show that R1 +R2 ¬ R, or equiva-
lently

(2.4)
m∑
i=1

(
P(S = s+ i− 1)−P(S = s+m)

)
·
(
P(X ¬ m− i)−P(X ­ m+ i)

)
­ 0.

For each i ∈ [m], let ∆i := P(S = s + i − 1) − P(S = s + m) as well as
αi := P(X ¬ m− i)− P(X ­ m+ i), and note that (2.4) is equivalent to

(2.5)
m∑
i=1

∆i · αi ­ 0.

The unimodality of S implies that ∆1 ­ · · · ­ ∆m ­ 0. We distinguish two cases.
Suppose first that X satisfies condition (L1). Let ` ∈ [m] be such that αi ­ 0

for i ¬ `, and αi ¬ 0 for i > `. Then, since {∆i}i∈[m] is non-increasing, it follows
that

m∑
i=1

∆i · αi ­ ∆`

∑̀
i=1

αi + ∆`

m∑
i=`+1

αi = ∆`

∑
i∈[m]

αi ­ 0,

where the last estimate follows from the second statement in Lemma 2.1. Hence
we obtain (2.5) and the result follows.

Now assume that X satisfies condition (L2). Set Σi :=
∑i

j=1 αj for i ∈ [m],
and notice that Σi ­ 0 by assumption. Using summation by parts, we have

m∑
i=1

∆i · αi = ∆m · Σm +
m−1∑
i=1

(∆i −∆i+1) · Σi ­ 0.

Hence, we obtain (2.5) and the result follows. �

3. SKEWNESS OF RANDOM VARIABLES

The standard examples of non-negative random variables that take values in
N∪{0} are Poisson, binomial, or negative binomial. We examine their “skewness”
properties.

LEMMA 3.1. Fix a positive integer s, and let S ∼ Poi(s). Then S is right-
skewed.

Proof. Since s is a positive integer it follows that the mode of S is equal to s.
For i ∈ [s], let βi = P(S=s−i)

P(S=s+i−1) . Since the mode of S is equal to s, it follows that
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β1 ¬ 1. Next, note that βi ­ βi+1 is equivalent to s2 ­ s2 − i2, which is clearly
correct for each i ∈ [s]. Hence, the sequence {βi}si=1 is non-increasing, and the
fact that β1 ¬ 1 finishes the proof. �

LEMMA 3.2. Fix a positive integer s, and let S ∼ Bin(n, p) for some n ­ 2s
with p = s/n. Then S is right-skewed.

Proof. The proof is similar to the proof of Lemma 3.1. Let βi = P(S=s−i)
P(S=s+i−1)

for i ∈ [s]. Since S is unimodal with mode s, we have β1 ¬ 1. Furthermore,
βi ­ βi+1 is equivalent to

(3.1) s2 · ((n− s+ 1)2 − i2) ­ (n− s)2 · (s2 − i2).

Now observe that (3.1) holds true when s2 ·((n−s)2−i2) ­ (n−s)2 ·(s2−i2) and
the latter is equivalent to n−s ­ s, which is true by assumption. Hence (3.1) holds
true and we conclude that the sequence {βi}i∈[s] is non-decreasing. The result
follows. �

We denote the negative binomial distribution by NB(r, p) where r ∈ N is the
number of failures and p ∈ (0, 1) is the probability of success. If S ∼ NB(r, p)

then P(S = k) =
(
k+r−1
r−1

)
pkqr with q = 1 − p the probability of failure. If

q = 1/n, the negative binomial has mean r(n− 1) and mode (r − 1)(n− 1).

LEMMA 3.3. Let S ∼ NB(r, p) with p = 1 − 1/n for some integer n > 1.
Then S is right-skewed.

Proof. Let ak = P(S = k). Then

ak+1

ak
=

(k + r)p

k + 1

is ¬ 1 if and only if k + 1 ­ p(r − 1)/q. In particular, S is unimodal with
mode bp(r − 1)/qc, which is equal to s = (n − 1)(r − 1) for our choice of p.
To prove that S is right-skewed, it suffices to show that as−i−1

as−i
¬ as+i

as+i−1
, in other

words,
s− i

(s+ r − 1− i)p
¬ (s+ r − 1 + i)p

s+ i
.

For our choice of p, this is equivalent to

s− i
s− ip

¬ s+ ip

s+ i
,

which obviously holds true. �

We have thus established the right-skewness of standard non-negative discrete
random variables for certain parameters. Left-loadedness is more difficult to ver-
ify. We will prove that a Poisson random variable with integer mean is left-loaded.
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Simmons [6] proved that a binomial random variable X with integer mean m sat-
isfies P(X ¬ m − 1) > P(X ­ m + 1) if n > 2m. This has been generalized to
other distributions by Perrin and Redside [5, Proposition 3.3].

LEMMA 3.4. Let X be a random variable with integer mean m. Then

P(X ¬ m− 1) > P(X ­ m+ 1)

if X is Poisson.

LEMMA 3.5. Fix a positive integer m ­ 3, and let X ∼ Poi(m). Then

P(X ­ 2m) > P(X = 0).

Proof. It is enough to show that P(X = 2m) > P(X = 0), or equivalently
that m2m > (2m)! . This holds if m = 3 and we proceed by induction:

(m+ 1)2(m+1) =

(
m+ 1

m

)2m

· (m+ 1)2 ·m2m

> 4(m+ 1)2 · (2m)! > (2(m+ 1))!. �

A sequence {ai}mi=1 of real numbers is said to be U-shaped if there exists
` ∈ [m] such that a1 ­ · · · ­ a` and a` ¬ · · · ¬ am.

LEMMA 3.6. Let m ­ 3 be an integer, and let X ∼ Poi(m). Then X is left-
loaded.

Proof. We show that X satisfies condition (L1). Recall that αi = P(X ¬
m− i)−P(X ­ m+ i). We have to show that {αi}mi=1 changes sign once. Lemma
3.4 implies that α1 > 0 and Lemma 3.5 implies that αm ¬ 0, and it suffices to
show that the sequence {αi}mi=1 is U-shaped. Since for every i ∈ [m− 1] we have

αi+1 = αi − P(X = m− i) + P(X = m+ i),

it is enough to show that the sequence {bi}mi=1, where bi := P(X = m − i) −
P(X = m+ i), changes sign once. To this end, for i ∈ [m], let

βi =
P(X = m+ i)

P(X = m− i)
.

Then βi ­ βi+1 is equivalent to i2 + i ¬ m. Since the sequence {i2 + i}mi=1 is
increasing, it follows that the sequence {βi}mi=1 is U-shaped. Now note that β1 < 1,
and the proof of Lemma 3.5 implies that βm ­ 1. Since {βi}mi=1 is U-shaped, there
exists a unique k ∈ [m] such that βi < 1 for i ¬ k, and βi ­ 1 for i ­ k + 1,
which in turn yields bi > 0 for i ¬ k, and bi ¬ 0 for i ­ k+ 1. In other words, the
sequence {bi}mi=1 changes sign once, as desired. �
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LEMMA 3.7. LetX ∼ Poi(m) for a natural numberm. ThenX is left-loaded.

Proof. We need to verify the remaining two cases of m = 1 and m = 2.
If m = 1, then the second statement in Lemma 2.1 implies that X satisfies con-
dition (L2). If m = 2, then Lemma 3.4 and the second statement in Lemma 2.1
imply that X satisfies condition (L2). If m ­ 3 then Lemma 3.6 implies that X
satisfies condition (L1). The result follows. �

In a similar way, one can show that a Bin(n,m/n) random variable is left-
loaded for a certain range of parameters. More precisely, it satisfies condition (L2)
when m ∈ {1, 2}, and condition (L1) when 4 ¬ m ¬ n/3, but numerical ex-
periments suggest that it is left-loaded for m ¬ n/2 (see the conjecture below).
The same appears to be true for a negative binomial distribution with parameter
p = 1− 1/n.

4. CONCLUDING REMARKS

We expect that a binomial random variable is left-loaded if p ¬ 1/2. More specif-
ically, we conjecture the following.

CONJECTURE 4.1. Fix positive integers n,m such that n ­ 2m, and let X ∼
Bin(n,m/n). Then X is left-loaded.

Condition (L2) says that
∑k

i=1 αi ­ 0 for all 1 ¬ k ¬ m. Note that our
conjecture extends Simmons’ inequality (see [6] and [5]).

We have established the right-skewness of random variables for a limited set
of parameter values. It is likely that this parameter range can be considerably ex-
tended.

The main restriction on our result is that E(X) is an integer. This is used in
Lemma 2.1, which is just a rearrangement of terms. To extend our result to X with
non-integer mean, one needs to find a way around this lemma.
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