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Abstract 
The emission of reactive nitrogen species increased rapidly in the twentieth century causing a significant 

perturbation of the nitrogen cycle. This causes many detrimental effects for both humans and 

ecosystems such as eutrophication, acidification and biodiversity loss. Ammonia, which is a reactive 

nitrogen species is difficult to quantify because the compound is hard to observe with measurement 

equipment such as ground-based measurement stations and remote sensing instruments such as CrIS. 

Therefore, this thesis aims to improve the monitoring of surface ammonia concentrations with a 

machine learning technique called random forests (RF). These type of models can detect complex and 

non-linear relationships between variables and are frequently used in other air pollution studies. In this 

study, a RF model has been built to estimate the ammonia surface concentration with vertical column 

density (VCD) datasets, meteorological variables and land-use variables. Different combinations of 

VCD datasets (either modelled or CrIS VCD data) have been used to train the model and to predict 

the surface ammonia concentration. The result of the study is that RF models are statistically more 

accurate at estimating the surface ammonia concentration than the LOTOS-EUROS model when 

validated by ground-based measurements stations from the MAN and LML network. Especially 

trained RF models that have been supplied with CrIS VCD data during the prediction phase show 

strong performance. Moreover, when comparing the RF model that has been trained without VCD 

data to the ‘complete’ RF models, the complete RF models show better performance, proving the 

added benefit of incorporating satellite data in RF modelling. Recommendations for further research 

include performing similar experiments with other input variables and other machine learning 

algorithms, validating the performance of the RF model in different years and considering using other 

datasets as the ground-truth variable for RF models – such as ground-based measurement data from 

MAN and LML. 
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Reactive nitrogen species such as ammonia can have a detrimental impact on both ecosystems and 

society and the emission of ammonia has increased rapidly during the twentieth century. Monitoring 

ammonia has proved to be difficult due to many obstacles, such as the lack of ground-based 

measurement stations and the uncertainty of satellite ammonia observations. Therefore, this explores 

the possibilities for modelling ammonia surface concentrations with random forest algorithms. 
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Section 1: Introduction 
Nitrogen is an essential component for biological life as it is the key element of amino acids and nucleic 

acids (Denk et al., 2017). Most of the nitrogen on earth is found in the atmosphere as dinitrogen (N2) 

and is classified as nonreactive nitrogen, while the remaining nitrogen species are called reactive 

nitrogen (Nr; Galloway et al., 2003). Examples of Nr species are nitric oxide (NO), nitric dioxide (NO2), 

ammonia (NH3), and nitrate (NO3-) Atmospheric nitrogen is naturally converted into Nr species by, 

among others, lightning, biomass burning and biological nitrogen fixation. Before the Anthropocene, 

the production of Nr was balanced by denitrification, which converts Nr back to N2 (Ayres et al., 1994).  

However, in the twentieth century, the Nr production rapidly expanded as the global population 

increased. The main processes that led to this increase are the production of artificial fertilizer (Haber-

Bosch process), increased livestock activities, the combustion of fossil fuels and the increased 

cultivation of legumes and rice (Galloway et al., 2003). This caused a perturbation in the nitrogen cycle, 

leading to a wide range of detrimental effects on ecosystems such as eutrophication, acidification, 

biodiversity loss, global warming and the depletion of the ozone layer.  

Currently, the Netherlands is undergoing a nitrogen crisis, as 118 of 162 Dutch nature reserves have 

exceeded nitrogen deposition thresholds (Stokstad, 2019). This crisis has far-reaching consequences 

for the Netherlands because it not only threatens the environment but also the Dutch economy. Due 

to nitrogen emission limits, housing and infrastructural projects are halted and the speed limit on the 

Dutch highway had to be restricted from 130 to 100 kilometres per hour. A significant portion of the 

emitted reactive nitrogen can be allocated to the ammonia emission by the agricultural industry (TNO, 

2019). 

Global regulations to mitigate ammonia emissions are limited. In contrast to nitrogen oxides, 

regulations aimed at controlling ammonia emissions have drawn less attention (Sutton et al., 2020). An 

exception to the rule is the policy in EU member states: the NEC Directive (National Emission 

Ceilings) sets long-term goals and emission ceilings aimed at reducing the ammonia emission in its 

member states (European Commission, 2001).  

The quantification of the ammonia emissions, concentrations and deposition rates is challenging – 

even though the contribution of this compound to the perturbed nitrogen cycle is significant (Erisman 

et al., 2007). Ground observations are limited and there is a considerable level of uncertainty 

surrounding the observations made by various satellites (e.g. van Damme et al., 2015; Dammers et al., 

2016; Dammers et al., 2017b; Dammers et al., 2019). Chemical transport models (CTMs) such as 

LOTOS-EUROS models atmospheric compounds through physical laws and estimates the emission, 

distribution and deposition of ammonia. While offering a high spatiotemporal resolution of ammonia 

emission and deposition, they generally seem to underestimate the actual ammonia concentration (van 

Damme et al., 2014, van der Graaf, 2022).  

Given these challenges, this thesis aims to improve the monitoring of surface ammonia concentrations 

in the atmosphere by machine-learning modelling. With the Netherlands as study domain, random 

forest (RF) models will use remote-sensing, meteorological and land-use datasets to predict the 

ammonia surface concentration. The results will be compared to the LOTOS-EUROS model and 

ground-based measurements stations such from the LML and MAN network. Previous studies which 

have used machine learning algorithms for modelling air quality demonstrate its advantages such as the 

ability to detect complex and non-linear relationships, the possibility to inquire which variables are 
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most important in air quality modelling and how these variables influence the pollutant concentration 

(Breiman, 2001; Brokamp et al., 2017). 

This thesis is structured as follows: In Section 2, the core concepts and the knowledge gap are further 

explained. Moreover, the research question and the objective are formulated in this section. In Section 

3, the research methods and data requirements are described. In Section 4, the results of the research 

will be described, discussed and limitations and recommendations for further research will be provided. 

In Section 5, the thesis is concluded by answering the research question and the sub-research questions. 

Section 2: Literature review  
In this Section, the core concepts, such as the behaviour of ammonia in the biosphere, ammonia 

monitoring methods and the utilization of machine learning in trace gas modelling will be discussed. 

Moreover, the objective of this thesis, the research question and the sub-research questions will be 

formulated. 

2.1: Ammonia in the biosphere 
Ammonia is one of the reactive nitrogen species causing a perturbation in the nitrogen cycle. The 

sources, sinks, processes and pressure of ammonia on the environment will be further explained with 

the atmospheric dispersion box model as a theoretical framework (Figure 1). Inflow, chemical 

production and emission are the sources of a compound in a box, outflow, chemical loss and 

deposition are the sinks in the box. 

 

Figure 1: Graphical representation of the classic atmospheric dispersion model. The concentration of compound X increases by 
chemical production, emission and inflow due to the wind. In contrast, the concentration can also decrease again by chemical 

loss processes, deposition or by the outflow due to the wind. (Source: Jacob, 1999.) 

2.1.1: Emission, chemistry, deposition and transport of ammonia 

The emission of ammonia is mainly caused by the agricultural industry due to several processes such 

as livestock housing and grazing, manure volatilization and fertilizer application (Sutton et al., 2013). 

Unmetabolized nitrogen from animal feed ends up in urine and faeces and through microbial 

processes, ammonia is released from the excreta into the atmosphere (Gay & Knowlton., 2005). The 

volatilization rate of ammonia from excreta is influenced by meteorological conditions. Ammonia 

volatilization increases with rising temperature, relative humidity, wind speed and soil moisture (Sutton 

et al., 2013, Sommer et al., 1991). Ammonia emissions from livestock housing also depend on the 

ventilation and the building type (Koerkamp et al., 1998). Natural sources of ammonia include biomass 

burning (Hegg et al., 1988), ocean-atmosphere exchange of ammonia (Johnson et al., 2008), plant-

atmosphere exchange (Sutton et al., 1995), volcanoes (Sutton et al., 2008; Uematsu et al., 2004), land 
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animals (Dentener & Crutzen, 1994) and seabird and sea lion colonies (Riddick et al., 2012; Fariña et 

al., 2003). 

In the atmosphere, ammonia can interact with acidic gases to form solid aerosols which consist of 

ammonium (NH4+; Ferm, 1998). Examples are nitric acid and sulfuric acid which convert ammonia to 

respectively ammonium sulphate and ammonium nitrate, as shown in reactions R2.1 and R2.2. In 

contrast to Reaction 2.1, Reaction 2.2 is reversible and determined by atmospheric temperature and 

relative humidity (Stelson & Seinfield, 1982). 

2 𝑁𝐻3 (𝑔) + 𝐻2𝑆𝑂4(𝑔) → (𝑁𝐻4)2𝑆𝑂4 (𝑠) [R2.1] 

𝑁𝐻3 (𝑔) + 𝐻𝑁𝑂3 (𝑔) ↔ 𝑁𝐻4𝑁𝑂3 (𝑠) [R2.2] 

  

Ammonia deposition can take place by either dry or wet deposition. Ammonia can be scavenged by 

precipitation or dissolve in clouds (Asman et al., 1998). These processes fall under wet deposition. On 

the other hand, through dry deposition, ammonia and ammonium are removed from the atmosphere 

by depositing on surfaces such as vegetation, soil and water (Farquhar et al. 1980; Duyzer, 1994; Quinn 

et al., 1988). This deposition is bidirectional, as ammonia can be re-released towards the atmosphere, 

dependent on the type of surface, surface conditions, the amount of ammonium in the surface and the 

amount of ammonia in the atmosphere above the surface (Nemitz et al., 2001). The soil, vegetation 

and water can thus be seen as a reservoir of ammonia, which if not re-released, is chemically 

transformed by soil processes or removed through run-off.  

The inflow and outflow of ammonia take place by atmospheric transport, which is determined by wind 

speed and wind direction. As stated previously, ammonia can be converted in the atmosphere to 

aerosols such as ammonium sulphate and ammonium nitrate. The atmospheric lifetime of these 

aerosols is between 1-15 days, in contrast to just several hours up to two days for NH3 (Behera et al., 

2013; Lutsch et al., 2016; Dammers et al., 2019), which implies NH3/NH4+ can be transported over 

longer distances.  

Finally, indirectly, the ammonia concentration at the surface can be influenced by the boundary layer 

height (Stull, 1988). Assuming that the boundary layer is mixed homogeneously, an increase in the 

boundary layer height implies a greater volume in which atmospheric compounds can mix. If the 

amount of ammonia in the boundary layer remains constant, dilution would take place during the 

extension of the boundary layer height.  

2.1.2: Detrimental effects of ammonia on society and the environment 

The accumulation of ammonia (and reactive nitrogen in general) in the atmosphere has many 

detrimental consequences. First, an excess of ammonia in water bodies – mainly caused by leaching 

and surface runoff - may result in extreme algae plant growth, reducing water quality and light 

penetration (Chislock et al., 2013). This process is better known as eutrophication and can cause 

hypoxia and ultimately ‘dead zones’. For humans, this implies that drinking water systems can be 

contaminated and that regions that depend on the fishing industry will experience economical issues 

(Walker, 1983; Selman et al., 2008).  

Second, acidification of soils can take place due to ammonia deposition, causing damage to soil and 

plant organisms (Tian & Niu, 2015). This can lead to a decrease in crop yields produced by the 

agricultural industry. Third, as mentioned in Section 2.1.1, ammonia can be converted into aerosols, 
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which can cause detrimental health effects such as cardiovascular and pulmonary diseases (Wolfe & 

Patz, 2002; Pope III & Dockery, 2006). 

Finally, excessive deposition of ammonia is a threat to biodiversity as ecosystems can be damaged by 

eutrophication and acidification (de Vries, 2011). Especially Nr-sensitive areas such as grasslands and 

peatlands are vulnerable. For society, biodiversity loss will imply the loss of a multitude of essential 

ecosystem services such as food supply and climate regulation (Haines-Young & Potschin, 2010). 

2.2: Techniques for determining the budget of ammonia: ground-based stations, 

modelling and remote sensing 

Ground-based measurements of ammonia with a high temporal resolution are sparse, making it 

difficult to understand the behaviour of ammonia in the atmosphere. This sparseness is mostly caused 

by the measurement of ammonia itself, which can be manpower intensive and expensive, mostly due 

to the physical properties of the species (Shaw et al., 1998, von Bobrutzki et al., 2010). In the 

Netherlands, hourly ground-based measurements are made by the miniDOAS instrument at six 

locations (Volten et al., 2012). Monthly averaged observations are done by the Dutch MAN network 

at more than 300 locations in Natura 2000-areas by passive samplers (Noordijk et al., 2020). According 

to Dammers (2017a), the Netherlands has the most extensive ammonia measuring network in the 

world but still struggles to give a good representation of ammonia dispersion and deposition in the 

Netherlands. This is mostly due to the limited number of instruments measuring ammonia at a 

sufficiently high spatiotemporal resolution, as well as a lack of instruments measuring the deposition 

(Schrader et al., 2018). 

Another method of observing the ammonia concentration is by using satellite instruments such as the 

Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-track Infrared Sounder (CrIS). 

Satellite remote sensing observations are very valuable because they can homogeneously measure 

vertical column densities (VCD) over large areas with a high frequency. However, there is a 

considerable uncertainty bound to individual satellite observations of approximately 30-50% 

(Dammers et al., 2019). This is caused by systematic biases and random errors that occur in the CrIS 

and IASI instruments and the retrievals applied to the spectra thereafter. Moreover, the availability of 

satellite observations is highly dependent on the cloud cover and the thermal contrast, which is the 

temperature difference between the surface and the atmosphere at 1.5 km (van Damme et al., 2015)  

Ammonia concentrations can also be estimated by chemical transport models (CTM), which simulate 

the emission, deposition, transformation and transportation that take place in the atmosphere. 

Important inputs for CTMs are emission inventories, land-use maps and meteorological data (Manders 

et al., 2017). Examples of models that can simulate ammonia concentrations and deposition are 

LOTOS-EUROS, EMEP, GEOS, CMAQ and WRF. These models require detailed emission 

inventory data which is necessary for capturing the spatial and temporal variability of ammonia. 

Furthermore, these models are often based on land-use data and animal density maps which are too 

coarse to accurately model ammonia concentrations (Paulot et al., 2014). 

2.3: Machine learning modelling 
An addition to CTMs are machine learning models: These are statistical learning algorithms that can 

detect complex and non-linear relationships between predictors and the response variable (Rybarczyk 

& Zalakeviciute, 2018). In contrast to CTMs, statistical models do not calculate the physical and 

chemical processes in a certain domain. Examples of machine learning methods that have been used 
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in atmospheric modelling include random forests (Lu et al., 2020), artificial neural networks (Di et al., 

2016), support vector regression (Dun et al., 2020) and generalized boosted machines (Zhan et al., 

2017).  

Random forest algorithms are one of the most frequently used methods in machine learning-based 

atmospheric research (Rybarczyk & Zalakeviciute, 2018). Random forests have been developed by 

Breiman (2001) and are a collection of many decision trees. Decision trees are machine-learning models 

that predict the value of a response variable inferred from the given explanatory variables (Fürnkranz, 

2017).  

Decision trees consist of root nodes, sub-nodes and leaf nodes. The decision tree starts with the root 

node, is followed by subsequent sub-nodes and ends with the leaf node. The goal of the decision tree 

is to split the dataset in such a manner, that a certain response variable can be predicted as good as 

possible. At each node, a conditional test – i.e. a test with has either ‘yes’ or ‘no’ as the outcome – is 

passed which further splits the dataset (Figure 2; Quinlan, 1983). These splits are based on the Gini 

Impurity, which determines the goodness of the split: The lower the Gini impurity, the better a 

conditional statement would split and categorize the dataset into unambiguous results (Robnik-

Šikonja, 2004). The leaf node is the final node of the branch and supplies the user with a prediction of 

the response variable. A decision tree on its own is often unstable and prone to overfitting, but in an 

ensemble such as the random forest, it can be very powerful.  

 

Figure 2: Example decision tree and the corresponding sample data. The response variable is the type of animal; the explanatory 
variables are whether the animal has feathers, can fly or has fins (Source: Towards AI, 2020). 

The rationale behind using an ensemble of decision trees is to cancel out the effect of overfitting by 

an individual decision tree (Müller & Guido, 2016). To build a random forest model, many different 

decision trees must be created. The difference in each decision tree is caused by the randomness of the 

data used for training a decision tree and by randomly selecting explanatory variables for each test split. 

The data used for training each decision tree is bootstrapped from the total dataset. Assume we have 

data with 10 samples. Bootstrapping means that a random sample is drawn from the total dataset 10 

times, which results in a new dataset of 10 samples. Some samples may be drawn multiple times, while 

other samples will not be drawn at all. Thereafter, a decision tree is built with a bootstrapped dataset. 

At each node, the algorithm only selects a pre-defined set of variables (instead of all variables) on which 

the node can be split – hence the randomness of the random forest. After all individual decision trees 

have been built, the random forest can start predicting: Each decision tree in the random forest makes 
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a prediction and for random forest regression the average of all predictions amount to the final 

prediction. For random forest classification, the class which has been predicted most often is chosen.  

The main advantage of the random forest algorithm is that it overcomes the weaknesses of decision 

tree models, as it can prevent overfitting by introducing the randomness in how each decision tree is 

built. This is supported by the law of large numbers, which states that the average outcome of executing 

an experiment a large number of times is close to the expected outcome (Dekking et al., 2005). 

Concerning random forest modelling, a prediction becomes more accurate with a great number of 

decision trees. Moreover, because not all explanatory variables will be used in decision trees, 

multicollinearity between variables will not impair the performance of random forest models – in 

contrast to e.g. linear regression models (e.g. Tomaschek et al., 2018) 

Another advantage of random forests is the calculation of the feature importance (Breiman, 2001). 

This is a score that explains how important an explanatory variable is to predict the response variable. 

However, the feature importance can be misleading, as they are biased towards explanatory variables 

with high cardinality (meaning they have many unique values). In contrast, features with low cardinality 

such as binary data are often perceived by feature importance as less important. An alternative to this 

is the permutation-based feature importance: This sensitivity procedure randomly shuffles data of one 

explanatory variable and tests how noticeably the model performance decreases (Breiman, 2001; Fisher 

et al., 2018). The shuffled variable has larger permutation importance if the model performance 

decreases strongly. 

Another valuable tool is the partial dependency plot, which reveals the relationship between input 

variables and the response variable (Goldstein et al., 2015). The partial dependence must be interpreted 

as the marginal effect of an explanatory variable on the response variable when all other explanatory 

variables are kept constant (Friedman, 2001). Both the feature importance and partial dependency 

analysis support the user to get better insight into how random forest models function, which are often 

treated as black-box models. 

Multiple studies have already been performed where trace gases or aerosols are modelled with random 

forests. For instance, Lu et al. (2020) investigated the feasibility of modelling nitrogen dioxide (NO2) 

surface concentrations at a high spatial resolution with several machine learning algorithms. Inquired 

algorithms include several linear regression models and ensemble tree-based approaches such as 

random forests, stochastic gradient boosting (SGB), extreme gradient boosting (XGB). Predictors that 

have been used include road maps and industrial area land-use data, population counts, monthly 

average temperatures, wind speed, elevation, GEOS-CHEM NO2 surface data and satellite data from 

OMI and TROPOMI.  

In general, the ensemble tree-based models had a higher accuracy when compared to linear models in 

terms of root mean squared error (RMSE). Moreover, the tree-based models showed more spatial 

details compared to the linear models, as shown in Figure 3. The authors prefer the random forest 

model over XGB, as XGB models tend to create artefacts. In the feature importance analysis, it became 

clear that the TROPOMI VCD data and road map data had the highest feature importance. 
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Figure 3: Annual mean prediction of NO2 in μg m-3
 in Phoenix, as modelled by a random forest model (a), gradient boosting 

machine (b) and Lasso (c) at a resolution of 25m × 25m (Source: Lu et al., 2020). 

2.5: Objective and research question 

Given that estimating the concentration, emission, deposition and transformation of ammonia in the 

atmosphere is a challenge, and that ammonia plays a central role in environmental degradation, the 

objective of this thesis is to use random forest machine learning to model surface ammonia 

concentrations by combining satellite data, meteorological data, and land-use data, to analyse how these 

variables influence the ammonia concentration. To the best of my knowledge, there has as of yet no 

research been done on modelling atmospheric ammonia concentrations based on random forests. The 

main research question in this thesis is as follows: 

How can random forest models be applied with ammonia data from the CrIS satellite, 

meteorological variables and land-use based variables to improve the accuracy of ammonia 

surface concentration datasets, demonstrated by validation with ground-truth data? 

Which can be subdivided into three sub-research questions: 

1. Which of the explanatory variables used as input for the random forest model are the most 

important predictors for the surface ammonia concentration? 

2. Which random forest model setup is most accurate when validated by ground-based 

measurement data from the LML- and MAN-network? 

3. What is the added value of the CrIS vertical column density retrievals when estimating the 

surface ammonia concentration with random forest models? 

The research question and the sub-research questions will be answered in the conclusion. 
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Section 3: Materials and methods 
In this section, the data and methods used in this study will be discussed. Before going into detail on 

the methodology, the response variable and the explanatory variables that will be used for the random 

forest model are discussed. This is followed by a discussion of the standard algorithm used to acquire 

useful output for each experiment. Thereafter, the experimental setup will be discussed. Finally, the 

data that will be used for validation will be briefly discussed. The methodology must align with the 

following four elements: 

• The problem: The biogeochemical nitrogen cycle is perturbed due to anthropogenic activities, 

which causes a wide range of detrimental effects on the environment and society. 

• The knowledge gap: The lack of ground stations measuring atmospheric ammonia, the 

dependency of CTMs on emission inventory data and the moderately high uncertainty of the 

satellite observations by CrIS and IASI make it difficult to monitor the ammonia emission, 

deposition, transportation and transformation. 

• The research objective: Construction of a random forest model which can model surface 

ammonia concentrations based on satellite, land-use and meteorological variables, and analyse 

how each input variable influences the ammonia surface concentrations. 

• Research question: How can random forest models be applied with ammonia data from the 

CrIS satellite, meteorological variables and land-use based variables to improve the accuracy 

of ammonia surface concentration datasets, demonstrated by validation with ground-truth 

data? 

3.1: Response variable 
The response variable in this study is the LOTOS-EUROS ammonia surface concentration (in parts 

per billion) at CrIS overpass time (13:30 LST), which is approximately at 12:30 in the geographical 

domain of this study. Therefore, in this study, the time of 12:00 GMT+1 has been selected. This data 

is representative of the concentration in the surface layer at 2 meters height and incorporates emission 

and deposition processes that influence the surface concentration. The homogenous coverage of the 

LOTOS-EUROS model output ensures that ample data is available on which the random forest can 

train. Furthermore, the LOTOS-EUROS model output has been chosen as the ground-truth variable 

because the dataset was shown to be a relatively accurate representation (e.g. Ge et al., 2020). 

It must be pointed out that in the optimal case, the RF model would be trained with in-situ 

measurements but due to a lack of ground-based measurement stations measuring ammonia at a high 

temporal resolution, the LOTOS-EUROS surface output is used for this. Also, it must be emphasized 

that the goal of this study is not to perfectly replicate the LOTOS-EUROS model but to create a new 

model that goes beyond the performance of the LOTOS-EUROS model when validated by ground-

based measurements. 

3.2: Explanatory variables 

The candidate explanatory variables were all resampled to the boundaries and resolution of the 

LOTOS-EUROS model output. The target grid resolution is 0.05°× 0.025° or approximately 5.6 km 

× 2.8 km in horizontal and vertical direction respectively. Explanatory variables with different spatial 

resolutions were resampled with the GeoPandas overlay function to the target grid resolution (Jordahl 

et al., 2020). Moreover, all explanatory variables that have hourly data available, were set to match the 
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overpass time of the CrIS satellite as close as possible. As mentioned before, the time of 12:00 GMT+1 

is selected. 

The variables can be considered in three different categories: vertical column-based variables, 

meteorological variables and land-use based variables. Based on the atmospheric box-model 

framework discussed in Section 2.1.1, variables relevant to ammonia emission, deposition, chemical 

transformation and dispersion have been selected. The explanatory variables that will be used in various 

combinations in this study to predict the ammonia surface concentration are the following: 

• LOTOS-EUROS vertical column density data 

• Synthesized CrIS VCD of ammonia 

• CrIS VCD of ammonia 

• Surface temperature from LOTOS-EUROS 

• Specific humidity from ECMWF 

• Total precipitation from ECMWF 

• Boundary layer height from ECMWF 

• Windspeed on the horizontal plane in west-east and south-north direction from ECMWF 

• Corine land cover map of 2018 

• CAMS-REG v4.1 time profile map from manure application 

• Cattle, pig and chicken density maps from the FAO 

These input variables will be explained in greater detail in the subsection hereafter. 

3.2.1: Vertical column-based variables 

In this study, three different vertical column variables are used: LOTOS-EUROS VCD data, synthetic 

CrIS VCD data and VCD measurements from CrIS (in molecules cm-2). Note that during the training 

phase of the model, only one of the three VCD datasets will be used as input.  

The CrIS instrument has a sun-synchronous orbit and has two overpasses per day at 13:30 and 01:30 

LST (Dammers et al., 2019). Although CrIS observations have been validated and show decent 

accuracy, lower ammonia column densities (< 1016 molecules cm-2) close to the detection limit are 

often overestimated (Dammers et al., 2017b). Not all CrIS observations can be used and therefore 

three filters have been applied to assure quality control (Shepherd et al., 2020). First, night-time 

observations have been filtered as these have not been validated yet. Moreover, observations with a 

quality flag equal to or lower than 2 and cloudy retrievals have been removed from the CrIS dataset as 

these retrievals are less reliable. 

Besides actual CrIS VCD data, LOTOS-EUROS and synthetic CrIS VCD data have been created as 

follows: The LOTOS-EUROS pixel which is nearest to the satellite observations is selected. From 

twelve layers, the weight per layer is calculated and subsequently multiplied with the mole fraction of 

each matching layer to calculate the LOTOS-EUROS VCD. For the synthetic CrIS VCD, a systematic 

error and random noise term have been added to the LOTOS-EUROS VCD to simulate the behaviour 

of the CrIS satellite. For vertical column densities below 1016 molecules cm-2, a term of 3.3 × 1015 

molecules cm-2 with a standard deviation of 4.1 × 1015 molecules cm-2 has been added (Dammers et 

al., 2017b). For vertical column densities above 1016 molecules per cm-2, a term of 0.4 × 1015 molecules 

cm-2 with a standard deviation of 5.3 × 1015 molecules cm-2 has been added. 
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3.2.2: Meteorological variables and land-use based variables 

Five meteorological variables have been added to the random forest model to account for the influence 

they have on emission, deposition, transformation and transportation of ammonia (See Section 2.1.1). 

From the LOTOS-EUROS model, surface temperature data (in K) has been retrieved. From the 

European Centre for Medium-Range Weather Forecasts (ECMWF), total precipitation (in m), specific 

humidity in the surface layer (in kg kg-1), boundary layer height (in m) and the wind speed (m s-1) at 10 

meters height on the horizontal plane in the west-east and south-north direction have been retrieved. 

Furthermore, three types of land-use datasets have been used in this study as input in the random 

forest model. First, the Corine land cover map from 2018 has been used, which is a raster dataset with 

a 100m × 100m resolution. The land-use map consists of 44 different land-use types and is divided 

into five major categories: artificial surfaces, agricultural areas, forest and semi-natural areas, wetlands 

and water bodies (See Table A1 in appendix A for all land-use classes). For the sake of simplicity, these 

five Corine land-use classes will be used as input in this study. Although there is no specific land-use 

map for neither 2015, 2016 or 2017, it is assumed that the land-use has not changed significantly 

between these years and 2018. Because the output grid size of the experiments (approximately 5.6 km 

× 2.7 km) in this study has a considerably lower spatial resolution, the Corine land cover map is 

resampled to a lower spatial resolution. The resampled pixel value will be based on the most frequent 

land-use type that occurs in the new pixel boundary.  

The second land-use based variable is time profile data of ammonia emissions from manure 

application. Time profile data accounts for the temporal variation in ammonia and is from the CAMS-

REG v4.1 model (Kuenen et al., 2021). Finally, the third land-use dataset is gridded livestock density 

from the Food and Agricultural Organization (FAO, 2010). In this study, livestock density data of 

cattle, pigs and chickens (in the number of animals per km2) will be supplied to the random forest 

model. 

3.4: Machine learning algorithm 

The experiments are done in the programming language of Python, and the “Sci-kit Learn” package is 

used to execute the random forest modelling (Pedregosa et al., 2011). To statistically validate the 

accuracy, the random forest model is split into a training subset and a testing subset. Using the 

complete dataset to train the model would be incorrect as the model cannot be validated with data that 

it has ‘seen’ before. In all experiments, the random forest model is trained in 2015 and 2016 and tested 

in 2017. These years have been selected due to data availability and because these were relatively normal 

in terms of meteorology and emission (e.g. neither long heatwaves such as in 2018 or 2019 nor 

potentially anomalous emissions patterns in 2020 during the COVID-19 pandemic). 

Another important step is that satellite data must be filtered for NaN-values (Not-A-Number). Satellite 

datasets do not homogeneously cover the geographical domain and a NaN-value would be interpreted 

by the random forest algorithm as no ammonia in the atmosphere in a specific pixel. Therefore, all 

pixels without satellite observations are filtered. 

Moreover, the land-use data is categorical (e.g. pastures or fruit-and-berry plantations) and must be 

pre-processed by one-hot-encoding because random forest algorithms only handle numerical data 

(Müller & Guido, 2016). The categorical variable is replaced with binary variables (0 or 1) for each 

individual land-use class. 
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The random forest consists of hyperparameters, which are parameters that influence the machine 

learning procedure (Müller & Guido, 2016). Through an algorithm, these hyperparameters can be 

optimized which can result in improved model performance. The hyperparameters that are optimized 

are the number of decision trees being built (n_estimators), the number of features used per decision 

tree (max_features), the maximum depth of each tree (max_depth), the minimal number of samples at 

which an internal node is split into another node (min_samples_split) and the minimal number of 

samples in a leaf node.  

These hyperparameters are optimized with an algorithm called Bayesian Optimization. A simplified 

explanation of this process is that an external function assigns random values for the hyperparameters, 

builds the random forest model with the training subset and validates the model performance with the 

testing subset (Snoek et al., 2012). The external function remembers the outcome and searches further 

for the most optimal set of hyperparameters which provides the most accurate results. In this study, 

the optimization algorithms search and evaluate 20 sets of hyperparameters. This is less than the default 

setting of 100 iterations, to limit computational costs. In this study, the gp_minimize function by Scikit-

optimize has been used for Bayesian optimization (Head et al., 2018) 

For each iteration in the Bayesian optimization algorithm, k-fold cross-validation is conducted which 

splits the training subset into k parts. In this study, the number of folds is 4. The training subset will 

be split into four parts, and the model will always be trained with ¾ of the training subset and will be 

tested with the remaining part. This means that per optimization iteration, four different random forest 

models are built. The benefit of k-fold cross-validation is that splitting the training set in multiple folds 

is that it balances out potential folds that might influence the model performance too positively or too 

negatively. In other words, it will eliminate the possibility of training the model on a very hard subset 

and testing it on the easy-to-predict subset – or vice versa. The reason for the four folds in this study 

is because it assumed that enough data is available within the training set to cancel out possible biases 

between the training and testing subset. 

After Bayesian Optimization, the random forest model is trained and fitted with the most optimal set 

of hyperparameters. Thereafter, the model can predict the daily surface ammonia concentration for 

each pixel. Because the satellite VCD data is one of the explanatory variables of the random forest 

model, the model can only predict at locations where satellite observations have been made. 

Statistical metrics and figures are computed to assess the performance of the model. The root mean 

square error (RMSE), mean average error (MAE) and r are calculated to assess how well the model 

predicts the surface ammonia concentration when validated by ground-based measurement stations. 

The RMSE is a measure to explain the difference between the observed value and the predicted value, 

has the same unit as the response variable and is calculated as follows: 

𝑅𝑀𝑆𝐸 =  √∑
(�̂� − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 

 

Besides, the normalised RMSE (NRSME) will be calculated to allow easy comparison between 

different model outputs. The NRMSE is calculated by dividing the RMSE by the mean of the 

observations: 
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𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�
  

 

In contrast to the RMSE, the MAE is a linear score, as all individual differences are weighted equally. 

This implies that the MAE measures the average difference between the observed and the predicted 

values. With the RMSE, the error is squared which implies that greater errors get a relatively higher 

weight. Together, the RMSE and the MAE can identify the variation in the errors in the dataset. The 

RMSE will always be equal to or greater than the MAE. If the RMSE and the MAE are equal, the 

average error is equal over all predictions. The MAE is calculated as follows: 

𝑀𝐴𝐸 =
∑ |�̂� − 𝑦𝑖|

𝑛
 

The correlation r represents the strength of a relationship between two variables. In contrast to the 

RMSE, the r is measuring the correlation and the rule is that the higher r is, the better the fit. The r is 

calculated as follows: 

𝑟 = 1 −
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
 

Finally, a linear regression model will be fitted to analyse the relationship between the predicted random 

forest model values and the ground-based measurements. The residual standard error (RSE) will be 

calculated, which measures the standard deviation of the residuals (the difference between the 

prediction and the linear regression model). The lower the RSE, the lower the noise around the linear 

regression model. The RSE is calculated as follows: 

𝑅𝑆𝐸 = √
∑(𝑦𝑖 − 𝑦�̂�)2

𝑛 − 2
 

To get more information about the utility of the explanatory variables, the permutation importance 

will be calculated. The permutation importance will be calculated instead of the feature importance 

because both low- and high cardinality data are used as input variables. The permutation importance 

can be calculated with the permutation_importance function from Scikit-learn (Head et al., 2018). 

Moreover, partial dependency plots will be produced for each random forest model to analyse how 

each variable influences the surface concentration.  

To summarize, the following steps are followed for each experiment: 

1. The response variables and explanatory variables are loaded. 

2. Data is filtered to only consist of pixels where satellite observations have been made. 

3. Land-use data is transformed into dummy variables. 

4. The dataset is split into a training subset with data from 2015 and 2016 and a testing subset 

with data from 2017. 

5. With Bayesian Optimization, the most optimal hyperparameters are determined for the 

random forest function. 

6. The random forest model is built with the most optimal hyperparameters. 

7. The random forest model predicts the surface ammonia concentrations for each day in 2017. 
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8. Statistical metrics are computed and figures comparing the observed and predicted surface 

ammonia concentrations are created. 

9. The permutation importance of each feature is assessed. 

10. A partial dependency plot will be created to assess how each explanatory variable influences 

the response variable. 

3.5: Experiments 

The geographical boundaries remain the same in all the experiments and cover all of the Netherlands, 

and parts of Germany, Belgium and France (Figure 4). The longitudinal boundaries are 3.175° – 7.475° 

and the latitudinal boundaries are 50.6625° - 53.6875°. The target grid size is 0.05°× 0.025°, (horizontal 

and vertical distance respectively). The reason why this particular domain has been chosen is due to 

the large number of ground observations from the LML and MAN network available for validation. 

 

Figure 4: The geographical boundaries of this study. 

In total, three main random forest models are built (see Table 1). Each random forest uses the LOTOS-

EUROS surface concentration as the response variable and the explanatory features described in 

section 3.2. However, each of the three random forest models is trained with a different VCD dataset: 

either the LOTOS-EUROS VCD, the synthetic CrIS VCD or the actual CrIS VCD. The LOTOS-

EUROS VCD dataset is used to train and test a random forest model with the most optimal 

combination of variables (because both the explanatory variable and response variable come from the 

same model). The synthetic CrIS values are used to mimic the CrIS satellite data as closely as possible. 

From this, we can analyse the influence on the outcome of the random forest when adding noise to 

the original LOTOS-EUROS VCD dataset. Finally, the real CrIS VCD dataset is used to analyse 

whether the satellite observations can already be used in random forest modelling. 

After the random forest models have been fitted, they will predict the surface concentration in 2017 

with the three different VCD datasets. Nine results will be computed in total by the random forest 

models and will be validated by the LML network and the MAN network (Table 1). Besides the three 

main random forest models, a fourth random forest model is trained without VCD data. This is done 

to understand the potential added value of VCD data when estimating the ammonia surface 

concentrations. 
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The rationale behind this experimental setup is to understand which combination of VCD dataset used 

for training and VCD dataset used as input during the prediction phase leads to the most accurate 

results when validated by ground-based measurements. A RF model is trained with LOTOS-EUROS 

VCD data as a baseline to understand how the RF algorithm would perform when supplied with the 

most optimal dataset (given that the data of the response variable is also from the LOTOS-EUROS 

model). Incorporating synthetic or real CrIS VCD data could add new information about the 

spatiotemporal distribution of the ammonia surface concentration because the CrIS satellite shows a 

different distribution of ammonia through time and space when compared to LOTOS-EUROS. Van 

der Graaf et al. (2022) discuss this phenomenon and showed that the CrIS surface concentrations are 

lower than LOTOS-EUROS during the spring and higher from June to October. 

It can be expected that the results from RF models 2 and 3 which have been supplied with LOTOS-

EUROS VCD data during the training phase will not lead to meaningful outcomes. However, for the 

sake of completeness, the results of all nine combinations (i.e. RF models 1 to 3, which all predict the 

ammonia concentration with the three different input VCD datasets) have been added in this report 

to portray better how the RF models work when supplied with different VCD datasets. 

Table 1: Summary of the conducted experiments in this study. The 10 results in total are named as followed: RF is followed by the 
experiment number. Thereafter it is followed with the name of the VCD dataset which is used for the prediction phase.  

  VCD dataset used as input for prediction phase 

RF no/ 

Exp. no 

RF model trained with LOTOS-EUROS VCD Synthetic CrIS VCD CrIS VCD 

1 LOTOS-EUROS VCD RF1-LE RF1-Synth RF1-CrIS 

2 Synthetic CrIS VCD RF2-LE RF2-Synth RF2-CrIS 

3 CrIS VCD RF3-LE RF3-Synth RF3-CrIS 

4 No VCD data RF4 

 

3.6: Validation of results 
The outcome of the random forest results will be validated by the LML network (Landelijk Meetnet 

Luchtkwaliteit) and the MAN-network (Meetnet Ammoniak in Natuurgebieden). The LML network 

consists of six stations in the Netherlands which measure the hourly ammonia concentration with 

miniDOAS instruments (Berkhout et al., 2017). These six instruments are active differential optical 

absorption instruments and are stationed at low, medium and high ammonia emission areas. The 

measurements from the Vredepeel site will not be included for validation in this study since these are 

not reliable enough. The MAN-network provides monthly averaged ammonia concentrations in more 

than 82 low-emission natural areas with Gradko passive samplers(Lolkema et al., 2015). The 

measurements of MAN are calibrated by the more accurate measurements of the LML stations. In this 

study, 266 MAN measurement stations are used for validation. 

The LOTOS-EUROS model output at overpass time will also be validated with the LML and MAN 

datasets. From this, there can be concluded whether the RF model performs better than the LOTOS-

EUROS dataset. Additionally, CrIS surface retrieval data will also be validated by LML and MAN and 

serve as a reference. 
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Section 4: Results and discussion 
In this section, the results of the four random forest (RF) models will be explained objectively by 

comparing the yearly averaged RF output of 2017 to the yearly averaged LOTOS-EUROS output. In 

Appendix B, the scatterplots which compare the LOTOS-EUROS model output with the RF model 

output are shown. Moreover, the permutation importance of each variable is reported. By calculating 

the permutation importance of each explanatory variable, the sensitivity of the model per explanatory 

variable is determined. Thereafter, the output of the RF models will be validated with LML and MAN-

network measurements. Furthermore, in the partial dependency analysis, the marginal effect of each 

explanatory variable on the response variable (the surface ammonia concentration) is assessed. Finally, 

the results and limitations of the experiments will be discussed. Moreover, the recommendations for 

further research will be explained. 

4.1.1: Experiment 1. Random forest model 1 trained with LOTOS-EUROS VCD 

For experiment 1, the RF model has been trained with LOTOS-EUROS VCD data (Figure 5). The 

RF model with LOTOS-EUROS VCD as input closely resembles the actual LOTOS-EUROS model, 

although it seems to underestimate the ammonia concentration in high emission areas (e.g. Gelderse 

Vallei, east Noord-Brabant and the Dutch-German border). When the RF model is supplied with 

synthetic and real CrIS VCD data, the surface concentrations are much higher in most regions when 

compared to the LOTOS-EUROS model output. 

 

 

Figure 5: The yearly averaged output of the RF model in 2017 which has been trained with the LOTOS-EUROS VCD on data of 
2015 and 2016. (a) The LOTOS-EUROS model output. (b) The RF model with LOTOS-EUROS data as input VCD. (c) The RF 
model with synthetic CrIS VCD as input VCD. (d) The RF model with CrIS VCD as input VCD. The unit of the surface 
concentration is in parts per billion (ppb). 

The most dominant explanatory variable in RF model 1 is VCD data (Figure 6), followed by the 

boundary layer height, the CAMS-reg time profiles for manure application and cow density data.  
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Figure 6: Permutation importance of the explanatory variables used as input for RF model 1. The permutation importance of the 
variables has been standardized to add up to 100%.  

It is worth bearing in mind that the resolution of the satellite footprint datasets is lower than the 

resolution of the LOTOS-EUROS surface dataset. Therefore, it can be expected that the predictions 

by the RF model have less spatial detail. This explains the underestimation by the RF-LE model in 

high emission areas such as de Gelderse Vallei, east North-Brabant and the Dutch-German border. 

4.1.2: Experiment 2. Random forest model 2 trained with synthetic CrIS VCD data 

For experiment 2, the RF model has been trained with synthetic CrIS VCD data. In Figure 7, the 

LOTOS-EUROS output is shown next to the output of the RF model. The RF models which have 

been supplied with LOTOS-EUROS and synthetic CrIS VCD data as input VCD generally 

underestimate the surface ammonia concentration when compared to the LOTOS-EUROS output. 

Similarly to experiment 1, when the trained RF model is supplied with real CrIS VCD data, the 

ammonia concentration increases significantly in most regions. Nevertheless, the peak concentration 

levels in the Gelderse Vallei cannot be estimated well by the RF model. 
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Figure 7: The yearly averaged output of the RF model in 2017 which has been trained with synthetic CrIS VCD data in the years 
2015 and 2016. (a) The LOTOS-EUROS model output. (b) The RF model with LOTOS-EUROS data as input VCD. (c) The RF 
model with synthetic CrIS VCD as input VCD. (d) The RF model with CrIS VCD as input VCD. The unit of the surface 
concentration is in parts per billion (ppb). 

The permutation importance of most important explanatory variables in RF model 2 (Figure 8) is 

almost similar to RF model 1. Compared to RF model 1, the permutation importance drops from 77% 

to 57%. This is likely caused by the systematic and random error terms which have been added to the 

LOTOS-EUROS VCD. Additionally, the CAMS-reg time profile for manure application and boundary 

layer height variables are more significantly present in RF model 2 with a permutation importance of 

16% and 13% respectively. 

 

Figure 8: Permutation importance of the explanatory variables used as input for RF model 2. The permutation importance of the 
variables has been standardized to add up to 100%.  

4.1.3: Experiment 3. Random forest 3 model trained with CrIS VCD data 

For experiment 3, the RF model has been trained with CrIS VCD data (Figure 9) It is evident that 

there is very little difference in the RF model output when supplied with either LOTOS-EUROS VCD, 
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synthetic CrIS VCD or real VCD data. Although the RF model can locate areas of medium-to-high 

ammonia emission, it systematically underestimates the ammonia surface concentration in these 

regions. Moreover, it seems to overestimate the ammonia surface concentration in Flanders. 

 

Figure 9: The yearly averaged output of the RF model in 2017 which has been trained with CrIS VCD data in the years 2015 and 
2016. (a) The LOTOS-EUROS model output. (b) The RF model with LOTOS-EUROS data as input VCD. (c) The RF model 
with synthetic CrIS VCD as input VCD. (d) The RF model with CrIS VCD as input VCD. The unit of the surface concentration 
is in parts per billion (ppb). 

The permutation importance of the variables reported in RF 3 (Figure 10) vary significantly with the 

previous two models. Where the VCD data in RF models 1 and 2 had an importance of more than 

60%, it is reduced in this RF model to just 3%. This also explains why the RF model output does not 

change significantly when providing it with different VCD datasets. With 63%, the CAMS-reg time 

profiles for manure application has the highest importance, followed by meteorological variables such 

as windspeed in the west-east direction, surface temperature and boundary layer height. 

 

Figure 10: Permutation importance of the explanatory variables used as input for RF model 3. The permutation importance of 
the variables has been standardized to add up to 100%. 

0% 20% 40% 60% 80%

Total precipitation

LU_wetlands

LU_forests

LU_artificial_areas

Specific humidity

LU_water_bodies

LU_agriculture

Pig density

Windspeed v

Chicken density

NH3 VCD

Cow density

Boundary layer height

Temperature

Windspeed u

CAMS-reg time prf.



25 
 

4.1.4: Experiment 4: Random forest model 4 trained without VCD data 

For experiment 4, the RF model has been trained without VCD data. In Figure 11, the output of the 

LOTOS-EUROS model and the RF model is shown. The RF closely resembles the RF output of 

experiment 3: It can locate the medium-to-high emission areas but does underestimate the surface 

concentration in these regions. Also, it overestimates the surface ammonia concentration in Flanders. 

 

 

Figure 11: The yearly averaged output of the RF model in 2017 which has been trained with CrIS VCD data in the years 2015 
and 2016. (a) The LOTOS-EUROS model output. 

The permutation importance of the explanatory variables in Figure 12 show similar scores as the 

permutation importance of the variables reported in RF model 3: The CAMS-reg time profiles or 

manure application has an importance of ~60% and is followed to a lesser extent by variables such as 

temperature, windspeed and boundary layer height. 

 

Figure 12: Permutation importance of the explanatory variables used as input for RF model 4. The permutation importance of 
the variables has been standardized to add up to 100%. 

4.2: Validation of results with LML  

In this subsection, the results of experiments 1, 2, 3 and 4 will be compared to the LML network 

measurements in chronological order. As a reference, the original LOTOS-EUROS model output and 

CrIS surface retrievals will also be validated with the LML-measurements The validation will be done 

by comparing the monthly average output of each RF model, with the monthly average concentration 

of the LML-station. The most nearby pixel of the RF model is matched with the location of each LML-

station. Moreover, the monthly-averaged value for each station will be calculated from the ammonia 
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concentration at CrIS overpass time – which is approximately at 12:00. The daily validation of the RF 

output with the LML network can be found in Appendix C. Finally, the measurements from the 

Vredepeel station will not be included in this study because it is an unreliable station to use for 

validation. 

For the sake of clarity, the results are referred to by their experiment number and the VCD dataset 

which has been used as input during the prediction phase (See Table 1 for naming convention). 

4.2.1: Validation of results of experiment 1 with LML-measurements 

First, the results from RF model 1 will be validated against the LML measurements (Figure 13). This 

RF model has been provided with LOTOS-EUROS VCD data during the training phase. Result RF1-

CrIS has the smallest RMSE of 5.73 ppb – meaning the RF output varies 5.73 ppb on average with the 

LML measurements. RF model RF1-LE has the highest RMSE of 6.91 ppb. The correlation between 

the RF model output and the LML measurements is the highest for the RF1-CrIS model with r = 0.52 

and lowest for the RF1-Synth model with r = 0.37. 

When analysing the performance per station, RF1-LE generally reports moderate-to-high correlation 

coefficients in stations Wekerom, Valthermond, de Zilk and Zegveld. In RF1-Synth, the performance 

per station drops significantly, although stations de Zilk and Wekerom still have moderate-to-high 

correlation coefficients. In RF1-CrIS, stations Valthermond, Wekerom and Zegveld have moderate-

to-high correlation coefficients while the correlation with de Zilk is significantly lower when compared 

to the other results. This seems to be caused by a strong outlier. In all three results, the station of 

Wieringerwerf does not correlate with the RF-output. 
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Figure 13: The monthly-averaged validation of the output of RF model 1 with LML. The red line depicts the fitted linear regression 
model. The grey line is the 1:1 line. Each colour depicts a different station.  

4.2.2: Validation of results of experiment 2 with LML-measurements 

Second, the results from RF model 2 will be validated against the LML-measurements (Figure 14). This 

RF model has been provided with synthetic CrIS VCD data during the training phase. From the three 

results, RF2-CrIS has the lowest RMSE of 6.57 ppb and the highest correlation of 0.50. RF2-LE has 

the highest RMSE of 7.26 ppb and RF2-Synth has the lowest correlation of 0.46. 

When analysing the performance per station, stations Wekerom, De Zilk and Valthermond have the 

highest r for RF2-LE and RF2-Synth. For RF2-CrIS, only Valthermond, Wekerom and Zegveld have 

moderate-to-high correlation coefficients. There is no correlation between RF2-CrIS and de Zilk, 

which seems to be caused by an extreme outlier. Similarly to experiment 1, Wieringerwerf does not 

correlate when compared to the RF model output. 



28 
 

  

 

 

Figure 14: The monthly-averaged validation of the output of RF model 2 with LML. The red line depicts the fitted linear regression 
model. The grey line is the 1:1 line. Each colour depicts a different station.  

4.2.3: Validation of results of experiment 3 with LML-measurements 

Third, the results from RF model 3 will be validated against the LML-measurements (Figure 15). This 

RF model has been provided with CrIS VCD data during the training phase. From the three results, 

RF3-CrIS has the lowest RMSE of 6.89 ppb while RF3-LE has the highest RMSE of 7.08 ppb. 

Moreover, RF3-CrIS also has the highest correlation of 0.50, while the other two results have a 

correlation of 0.47. 

Similarly to the previous two random forest models, the correlation between the RF model and the 

LML-measurements are the highest for Wekerom, Valthermond and De Zilk. In Zegveld the 

correlation is moderate and in Wieringerwerf there is no correlation with the RF model output. 



29 
 

  

 

 

Figure 15: The monthly-averaged validation of the output of RF model 2 with LML. The red line depicts the fitted linear regression 
model. The grey line is the 1:1 line. Each colour depicts a different station. 

4.2.4: Validation of results of experiment 4 with LML-measurements 

Fourth, the results from RF model 4 will be validated against the LML-measurements (Figure 16). This 

RF model has not been provided with VCD data during the training phase and does not require VCD 

data during the prediction phase. The RMSE of the RF output of experiment 4 is 6.88 ppb and the 

correlation between the monthly average LML-measurements and the RF model output is 0.46. 

Similarly to the previous experiments, the RF model is most accurate at the stations Valthermond, de 

Zilk and especially Wekerom with medium-to-high correlations. 
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Figure 16: The monthly-averaged validation of the output of RF model 4 with LML. The red line depicts the fitted linear regression 
model. The grey line is the 1:1 line. Each colour depicts a different station. 

4.2.5: Validation of LOTOS-EUROS model output as CrIS surface retrieval with LML 

In this section, LOTOS-EUROS and CrIS surface retrievals from 2017 will be validated by the LML-

measurements to serve as a reference to the validation results of experiments 1 to 4 (Figure 17). When 

validated by the LML-measurements, the LOTOS-EUROS model has a RMSE of 7.11 ppb and a 

moderate correlation of 0.48. Stations such as the Zilk, Wekerom and Valthermond have the highest 

correlation when validated while Zegveld has a moderate correlation and Wieringerwerf has no 

correlation. 

The CrIS surface retrievals have a RMSE of 9.59 ppb and a moderate-to-high correlation of 0.61 when 

validated by the LML-measurements. In opposition to previous experiments, all stations (except 

Wieringerwerf) have similar correlations between 0.49 and 0.66. 
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Figure 17: The monthly averaged validation of the LOTOS-EUROS ammonia surface concentrations (left) and the CrIS surface 
retrievals (right) with LML measurements. The red line depicts the fitted linear regression model. The grey line is the 1:1 line. Each 
colour depicts a different station. 

4.2.6: Interim conclusions on the validation of random forest models 1-4 by LML-

measurements 

In this subsection, the results from the validation of the random forest models by the LML-

measurements will be briefly summarized and discussed. In Table 2, the results of the validation by the 

LML-measurements are shown.  

The CrIS surface retrievals have the highest correlation of 0.61 with the LML-measurements, which is 

a moderately high correlation. In return, it also has the highest RMSE of 9.59 ppb. The RF1-CrIS 

model output has the lowest RMSE of 5.98 ppb and also has the second-highest correlation coefficient. 

As a reference, the LOTOS-EUROS model output has a RMSE and correlation of 7.11 and 0.48 

respectively, when validated by the LML measurements. From this, there could be concluded that the 

RF model has a better performance than the LOTOS-EUROS model at overpass time. However, this 

validation is done at just five locations and with such sample sizes, there cannot be inferred with 

certainty that the RF model is generally better than the LOTOS-EUROS model. 

Finally, when comparing the validation results of RF model 4 which has been trained without VCD 

data to the other RF models which have been trained with VCD data, there can be concluded that 

adding VCD data to the RF models has added value. The performance of RF model 4 with a RMSE 

and correlation of 6.88 ppb and 0.46 respectively, is significantly less than most RF models which have 

been trained with VCD data. 

Table 2: The RMSE and correlation of the RF experiment output, LOTOS-EUROS model output and CrIS surface retrievals when 
validated by LML-measurements. The best results are marked in green. 

Experiment RMSE (ppb) r Experiment RMSE (ppb) r 

RF1-LE 6.91 0.50 RF3-LE 7.08 0.47 

RF1-Synth 6.56 0.37 RF3-Synth 7.05 0.47 

RF1-CrIS 5.73 0.52 RF3-CrIS 6.89 0.50 

RF2-LE 7.26 0.48 RF4 (No VCD) 6.88 0.46 

RF2-Synth 7.13 0.46 LOTOS-EUROS 7.11 0.48 

RF2-CrIS 6.57 0.50 CrIS surface retr. 9.59 0.61 

 

Moreover, when analysing the performance per station, stations such as de Zilk, Valthermond and 

Wekerom – which are low-, medium- and high-emission areas respectively – have a moderate-to-high 

correlation in most experiments (Table 3). Moreover, Zegveld only has a moderate correlation in most 

experiments and Wieringerwerf has almost no correlation in most experiments. When comparing the 

validation of the RF output with the LOTOS-EUROS model output, the RF model performs 

significantly better at the Valthermond and Wekerom sites and slightly better than at the Zegveld site. 

Only at de Zilk, the LOTOS-EUROS output is more accurate. From this analysis per station, we can 

again conclude that the RF model performs better at these locations than the LOTOS-EUROS model. 

However, we must again be careful with such conclusions because the validation is performed at just 

five stations. 
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Table 3: The correlation coefficients of each station when validated by the LML-measurements for the different experiments. The 
result with the best correlation per station is marked in green. The bold black line shows the demarcation between the RF 
experiments and the LOTOS-EUROS model output and CrIS surface retrievals which serve as a reference. 

Experiment De Zilk Valthermond Wekerom Wieringerwerf Zegveld 

RF1-LE 0.61 0.67 0.81 -0.05 0.50 

RF1-Synth 0.57 0.47 0.74 -0.08 0.37 

RF1-CrIS -0.23 0.70 0.59 -0.07 0.52 

RF2-LE 0.72 0.62 0.83 -0.08 0.48 

RF2-Synth 0.73 0.57 0.79 -0.07 0.46 

RF2-CrIS -0.06 0.67 0.60 0.02 0.50 

RF3-LE 0.67 0.60 0.83 -0.04 0.47 

RF3-Synth 0.68 0.60 0.83 -0.04 0.47 

RF3-CrIS 0.68 0.63 0.84 -0.04 0.50 

RF4 (No VCD) 0.62 0.63 0.82 -0.00 0.46 

LOTOS-EUROS 0.82 0.64 0.75 -0.01 0.48 

CrIS surface retr. 0.49 0.66 0.62 0.32 0.61 

 

4.3: Validation of results with MAN 

In this subsection, the results of experiments 1, 2, 3 and 4, and LOTOS-EUROS output and CrIS 

surface retrievals will be validated by the MAN network. The MAN measurements are compared to 

the yearly averaged ammonia concentration of each RF model at the matching pixel of the station 

location. For the sake of clarity, the results are referred to by their experiment number and the VCD 

dataset which has been used as input during the prediction phase (See Table 1 for naming convention). 

The scatterplots will also show in which month the observations have been done to acquire more 

information about how the RF model performs throughout different seasons. The yearly averaged 

validation plots of the RF experiments and the performance of each model per month can be found 

in Appendix D.  

4.3.1: Validation of results of experiment 1 with MAN-measurements 

In the first experiment, the RF model has been trained with LOTOS EUROS VCD data. When 

validated by the MAN measurements, the RF1-CrIS has the lowest RMSE of 4.21 ppb (Figure 18) and 

the highest correlation of 0.47. Furthermore, the RF1-LE model has the highest RMSE of 4.49 ppb 

and the RF1-Synth output has the lowest correlation of 0.38. Models RF1-LE and RF1-Synth have a 

fairly similar outcome and show that the RF models overestimate the ammonia concentration in 

February and March and underestimate the concentration in October, November and December. The 

RF1-CrIS model output differs from the two aforementioned models: Although in February and 

March the RF1-CrIS model still overestimates the ammonia concentration, the concentration is 

estimated more accurately between March and July (See Table D1)  



33 
 

  

 

 

Figure 18: The monthly averaged validation of the output of RF model 1 with MAN measurements. The grey line depicts the 1:1 
line and each colour depicts another month. 

4.3.2: Validation of results of experiment 2 with MAN-measurements 

In the second experiment, the RF model has been trained with synthetic CrIS VCD data. When 

validated by the MAN measurements, the RF2-CrIS has both the lowest RMSE of 4.12 ppb and the 

highest correlation of 0.50 (Figure 19). Moreover, the RF2-LE model has the highest RMSE of 4.54 

ppb and the RF2-Synth has the lowest correlation of 0.45. Similarly to experiment 1, RF2-LE and RF2-

Synth have a very similar outcome. Again, the concentrations are overestimated by these models in 

February and March and underestimate the ammonia concentrations in October, November and 

December. Moreover, the output of RF2-CrIS again overestimates the concentration in February and 

March, but the estimation of the ammonia concentration is more accurate between March and 

November (See Table D1). 
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Figure 19: The monthly averaged validation of the output of RF model 2 with MAN measurements. The grey line depicts the 1:1 
line and each colour depicts another month. 

4.3.3: Validation of results of experiment 3 with MAN-measurements 

In the third experiment, the RF model has been trained with CrIS VCD data. When validated against 

MAN, RF3-CrIS has the lowest RMSE of 4.32 ppb (Figure 20) and also has the highest correlation of 

0.47. Furthermore, the RF3-LE model has the highest RMSE of 4.50 ppb and RF3-Synth has the 

lowest correlation of 0.43. The validation of the results of experiment 3 leads to similar outcomes 

because the permutation importance of the VCD dataset is very low, implying that varying the VCD 

dataset will not have much effect (See Section 4.1.3). Similar to the previous experiments, the RF 

models overestimate the ammonia concentration significantly in February and March and 

underestimate the ammonia concentration in October, November and December.  
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Figure 20: The monthly averaged validation of the output of RF model 3 with MAN measurements. The grey line depicts the 1:1 
line and each colour depicts another month. 

4.3.4: Validation of results of experiment 4 with MAN-measurements 

In experiment 4, no VCD data has been added to the RF model. When this model is validated by the 

MAN measurements, it has a correlation of 0.43 and a RMSE of 4.43 (Figure 21). Again the RF model 

overestimates the ammonia concentration in February and March, and in October, November and 

December it underestimates the ammonia concentration. 
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Figure 21: The monthly averaged validation of the output of RF model 4 with MAN measurements. The grey line depicts the 1:1 
line and each colour depicts another month. 

4.3.5: Validation with MAN of the LOTOS-EUROS model output and the CrIS surface 

retrieval  

In this subsection, the LOTOS-EUROS model output of 2017 and the CrIS surface retrievals are 

validated by the MAN measurements. The LOTOS-EUROS model output has a RMSE of 4.54 ppb 

and a correlation of 0.43 when validated (Figure 22). In March, the LOTOS-EUROS model 

significantly overestimates the ammonia concentration and in November the LOTOS-EUROS model 

underestimates the ammonia concentration. In the other months, the mean error between the LOTOS-

EUROS model and the MAN measurements is less notable. 

When validating the CrIS surface retrieval with the MAN measurements, the RMSE is 5.38 ppb, and 

the correlation is 0.44. The CrIS instrument performs poorly in January, February, March, November 

and December and underestimates the ammonia concentration significantly. The other months 

generally have a lower error between the CrIS surface retrieval and the MAN measurements, although 

the spread around the 1:1 line is moderately broad.  
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Figure 22: The monthly averaged validation of the LOTOS-EUROS ammonia surface concentrations (left) and the CrIS surface 
retrievals (right) with MAN measurements. The grey line is the 1:1 line. Each colour depicts a different month. 

 

4.3.6: Interim conclusions on the validation of the random forest models 1-4 by MAN-

measurements 

In this section, the interim conclusions are drawn from the validation by the MAN-measurement 

stations (Table 4). From all experiments, RF2-CrIS had both the lowest RMSE of 4.12 ppb and the 

highest correlation of 0.50. In comparison with the validation results of the LOTOS-EUROS model, 

the RF2-CrIS model – but also many other RF models – have better performances when validated 

with MAN data. From this, we can also infer that these RF models could be a viable addition to the 

LOTOS-EUROS model. However, it must be stressed that although this validation has been 

performed at 266 different stations, this validation with MAN measurements only takes place in natural 

areas where the ammonia concentrations are generally lower. 

The validation result of RF model 4 which has been trained without VCD data also shows that adding 

VCD data has an added value: With a RMSE of 4.43 ppb and a correlation of 0.43, it has a lower 

performance than most RF models which have been supplied with VCD data. 

Table 4: The RMSE and correlation of the RF experiment output, LOTOS-EUROS model output and CrIS surface retrievals when 
validated by MAN measurements. The best results are marked in green. 

Experiment RMSE (ppb) r Experiment RMSE (ppb) r 

RF1-LE 4.49 0.45 RF3-LE 4.50 0.44 

RF1-Synth 4.25 0.38 RF3-Synth 4.49 0.43 

RF1-CrIS 4.21 0.47 RF3-CrIS 4.32 0.47 

RF2-LE 4.54 0.46 RF4 (No VCD) 4.43 0.43 

RF2-Synth 4.47 0.45 LOTOS-EUROS 4.54 0.43 

RF2-CrIS 4.12 0.50 CrIS surface retr. 5.38 0.44 

 

When assessing the performance of the RF models and also the LOTOS-EUROS model over the 

months, the most significant phenomenon was the clear overestimation of the ammonia concentration 
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in February and March and the underestimation in the final three months of the year. Two general 

remarks can be made when comparing the performance of the RF models with the LOTOS-EUROS 

model over the months. In the months of January, February and December, the LOTOS-EUROS 

model has higher accuracy in terms of RMSE (See Table D1). However, the RF models perform better 

than the LOTOS-EUROS model in the majority of the months – namely from March to November. 

4.4: Partial dependency analysis 

In this subsection, the partial dependency analysis is performed: For each explanatory variable, the 

marginal effect on the response variable is calculated while all other explanatory variables are kept 

constant (Friedman, 2001). The partial dependency plots for each RF model will be briefly discussed 

to infer whether the variables have a logical relationship with the ammonia surface concentration. Note 

that the partial dependency plot of random forest model 4 is excluded in this section, as random forest 

models 3 and 4 are nearly the same. The partial dependency plot of random forest model 4 can be 

found in Appendix E. 

An important assumption during partial dependency analysis is that the explanatory variables used as 

input for the RF model are not correlated. Due to collinearity, the calculation of the relationship 

between the explanatory variable and the response variable can be distorted. In Figure 23, the 

correlation matrix between all explanatory variables is shown. The correlation between the LOTOS-

EUROS VCD, the synthetic CrIS VCD and the CrIS VCD can be ignored as these VCD datasets will 

never be used at the same time during the prediction phase. 

For most explanatory variables, the absolute correlation with other variables is below 0.5. However, 

for the following variable pairs, a moderate to strong correlation (r > 0.5 or r < -0.5) has been found: 

• Specific humidity and surface temperature. 

• Cow density, chicken density and pig density. 

• LOTOS-EUROS VCD with CAMS-reg time profiles for manure application. 

• Synthetic CrIS VCD with CAMS-reg time profiles for manure application. 

• Cow density and the land-use class agriculture 

• Cow density and the land-use class water bodies 

• The land-use classes water bodies and agriculture 
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Figure 23: The correlation matrix for all explanatory variables used in this study. Note that the three VCD datasets (numbers 11, 
12 and 13) will be used at the same time in an experiment as input: These correlations can be ignored. 

4.4.1.: Partial dependency analysis of random forest model 1  

The partial dependency plot of random forest model 1 clearly shows the great influence the VCD 

dataset has on the surface concentration: As the VCD increases, the surface ammonia concentration 

also increases (Figure 24). Other explanatory variables that show a clear effect on the ammonia surface 

concentration are the boundary layer height and the CAMS-reg time profiles for manure application. 

It is evident that as the boundary layer height increases, the surface ammonia concentration decreases. 

This is a logical effect, as the depth of the mixing layer increases which causes the concentration of 

pollutants to decrease (Stroll, 1988). Moreover, the surface concentration increases both with 

increasing CAMS-reg time profile values and increasing cow densities. Finally, a typical effect can be 

noticed for the surface temperature: As the temperature drops below ~275K, the ammonia 

concentration increases. Normally, the volatilization of ammonia from manure should decrease when 

the temperature drops. The temperature variable is likely correlated with another variable that is not 

included in this study. The permutation importance of temperature is 1%, so this will not have serious 

consequences for the model output. 

The other variables do not have a significant impact on the surface ammonia concentration. This 

division between important and unimportant explanatory variables is also reflected in the outcome of 

the permutation importance of each variable of RF model 1, which has been discussed in Section 4.1.1.  
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Figure 24: Partial dependency plot of RF model 1. The black lines along the x-axis show the deciles of the original dataset. The x-
axis displays the values of the explanatory variable, while the y-axis displays the marginal effect of the variable on the ammonia 
concentration. 

4.4.2: Partial dependency analysis of random forest model 2 

The partial dependency plot for random forest 2 is quite similar when compared to the plot of random 

forest 1 (Figure 25). First, it is shown again that as the boundary layer height increases, the surface 

concentration decreases. Second, when the temperature increases, the surface concentration also 

increases. This is reasonable, as the volatilization of ammonia from manure increases with temperature 

(Sutton et al., 2013). Again, the dubious effect of the increasing ammonia concentrations below 275 K 

can be seen. The partial dependency of windspeed in horizontal (u) and vertical (v) direction on the 

ammonia concentration is limited but does show that the concentration is higher when the windspeeds 

are near 0 m s-1.  

The CAMS-reg time profiles for manure application show a clear positive relationship: the higher the 

value of the time profile, the higher the ammonia concentration. The impact of the animal density 

datasets by the FAO remains very limited and a plateau is reached very quickly. Considering the 

correlation between the datasets of chicken-, cow-, and pig density, these partial dependence plots 

must be interpreted with care. Therefore, thorough conclusions should not be drawn. Finally, the 

synthetic CrIS VCD still has the strongest (positive) effect on the ammonia surface concentration. 
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Figure 25: Partial dependency plot of RF model 2. The black lines along the x-axis show the deciles of the original dataset. The x-
axis displays the values of the explanatory variable, while the y-axis displays the marginal effect of the variable on the ammonia 
concentration. 

4.4.3: Partial dependency analysis of random forest model 3 

In random forest model 3, the permutation importance of the VCD dataset dropped significantly (see 

Section 4.1.3) causing other explanatory variables to have a greater influence on the ammonia 

concentration (Figure 26). The effect of the windspeed on the surface concentration is dubious: While 

higher windspeeds in the eastward (positive u) and southward direction (negative v) lead to lower 

ammonia surface concentrations, the effect of the wind from the opposite directions remains very 

limited.  

The CAMS-reg time profile data is the dominant variable and has the most significant effect on the 

surface concentration. Moreover, the marginal effect of the CrIS VCD dataset is less steep compared 

to the marginal effect of the LOTOS-EUROS VCD and synthetic CrIS VCD datasets (see Sections 

4.4.1 and 4.4.2). At a VCD of 5 x 1016 molecules cm-2, the increase in the ammonia surface 

concentration even reaches a plateau. Finally, the effects of the land-use variables ‘Agricultural area’ 

and ‘Water bodies’ can be seen, although the effect on the ammonia surface temperature is very limited. 

The relationship of these two variables with the ammonia surface concentration is rational: In 

agricultural areas (a value of 1 indicates the presence of agricultural area in a grid cell), the ammonia 

concentration increases slightly, while the ammonia concentration is slightly lower above water bodies. 
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There must be noted that these two land-use variables have a correlation, which could distort the 

calculation of the partial dependency. 

 

Figure 26: Partial dependency plot of RF model 3. The black lines along the x-axis show the deciles of the original dataset. The x-
axis displays the values of the explanatory variable, while the y-axis displays the marginal effect of the variable on the ammonia 
concentration. 

4.5: Discussion of results 
In this section, the results will be briefly summarized and discussed. Also, the limitations and 

recommendations will be deliberated. In this study, four different RF models have been trained with 

either LOTOS-EUROS VCD, synthetic CrIS VCD, CrIS VCD or no VCD data. Consequently, each 

RF model (except RF model 4) has been supplied with either LOTOS-EUROS VCD, synthetic CrIS 

VCD or CrIS VCD data during the prediction phase. This is the phase in which the ammonia surface 

concentrations are predicted for 2017. Thereafter, the results of each experiment has been validated 

with ground-based measurements from LML and MAN. 

RF models 1 and 2 were both heavily reliant on VCD data, while RF model 3 depended mainly on 

CAMS-reg time profiles for manure application, surface temperature, windspeed and boundary layer 

height. RF model 4 which has been trained without VCD data mostly relied on CAMS-reg time profile 

data and meteorological variables such as the surface temperature, windspeed and boundary layer 

height. In all random forest models, the effect on the ammonia surface concentration by Corine land-

use data, FAO animal density data, total precipitation and specific humidity was very limited. 
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The validation of the RF experiments has been done with ground-based measurement data from LML 

and MAN. When validated with LML, the most accurate RF model was trained with LE VCD data 

and supplied with CrIS VCD. With a RMSE of 5.73 and a correlation of 0.52, this RF model had a 

stronger performance than the LOTOS-EUROS model output. The LOTOS-EUROS model had a 

RMSE of 7.11 and a correlation of 0.48. Frankly, most other RF models also had a better performance 

than the LOTOS-EUROS output. Also when comparing the validation scores of the LE-model and 

the RF model per LML measurement station, it became apparent that the RF model predicted the 

ammonia concentration with better accuracy in 3 out of 5 stations. Although this proves that the RF 

model can be a useful addition to the LOTOS-EUROS model, it should be noted that this validation 

is only performed at five locations, which is a low sample size. 

Similarly to the validation with LML, the RF models show promising results when validated by the 

MAN measurement stations. The RF models show better performance than the LOTOS-EUROS 

model. The strongest RF model is the model which is trained with synthetic CrIS data and fed with 

real CrIS data during the prediction phase with a RMSE of 4.12 ppb and a correlation of 0.50. This RF 

model shows to be more accurate than the LE-model, which has a RMSE of 4.54 ppb and a correlation 

of 0.43. Moreover, when analysing the performance per month, the LOTOS-EUROS model still 

performed the best in the winter (December to February) while the RF models performed better in 

the spring, summer and fall. 

Finally, it was also proven that adding VCD data to RF models is beneficial when estimating the surface 

ammonia concentration. The validation results of RF model 4 which has been trained without VCD 

data shows a weaker performance than the regular RF models. However, RF model 3 which has been 

trained with CrIS VCD data, is among the weaker RF models. This is caused by the inability of the RF 

algorithm to interpret the CrIS VCD data. Nonetheless, the low performance of this RF model should 

not be interpreted as the futility of the CrIS VCD dataset in general. When the CrIS VCD data is 

applied to the RF model which has been trained with the LOTOS-EUROS VCD or the synthetic CrIS 

VCD dataset, it results in the most accurate datasets when validated by LML and MAN. 

During the partial dependency analysis, it was demonstrated that most explanatory variables had a 

relationship with the surface ammonia concentration which is consistent with basic meteorology. 

However, the effect of the windspeed on the surface concentrations is doubtful: While stronger 

eastward and southwards windspeeds led to a lower ammonia concentration, windspeeds in the 

westward and northward direction do not lead to lower ammonia concentrations. This does not cohere 

with standard meteorology because an increase in ventilation would normally decrease the ammonia 

concentration. Finally, from the partial dependency analysis, it also became clear once more that the 

influence of specific humidity, total precipitation and especially the Corine land-use data was very 

limited.  

When comparing the results of this study with the study by Lu et al. (2020) mentioned earlier in the 

literature review (Section 2.3), this study has a lower performance in terms of NRMSE: Their global 

RF model for predicting the NO2 concentration had a NRMSE of 0.28, while the strongest RF model 

in this study had a NRMSE of 0.55. There are several possible explanations for why the results by Lu 

et al. have a stronger performance: First, Lu et al. train their RF model with the ground station NO2 

measurements as the response variable and validate their model with this dataset, meaning that the 

model will be optimized to predict the surface concentration as measured by the ground stations as 

good as possible. On the other hand, the RF model in this thesis is trained with the LOTOS-EUROS 
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surface concentration as the response variable, instead of the ground-based measurement stations by 

which the RF output will be validated. This will partly cause the lower performance of the RF model 

in this thesis because it has not been made to optimize the ammonia concentration based on the 

ground-based measurements stations. Another factor that could explain the difference in the model 

performance is that Lu et al. use more than 3500 NO2 monitoring stations with an hourly resolution. 

Currently, sample sizes in this order of magnitude cannot be achieved with ammonia ground stations. 

Moreover, the low permutation importance of the Corine 2018 land-use classes in this study is 

remarkable. In the study by Lu et al. (2020), among the variables with the highest feature importance 

were land-use classes representing roads of different sizes. A possible explanation why the Corine land-

use classes – and the land-use class ‘Agriculture area’ in particular – was not useful in this study could 

be because it is too general. The class ‘Agricultural area’ does not give information about whether the 

grid cell contains livestock housing or if it contains a pasture that will be fertilized. Moreover, it also 

does not specify the number of animals, the type of animals or (in the case livestock housing is present) 

the type of indoor ventilation in the grid cell. In contrast, in the study of Lu et al. (2020) road length is 

arguably a better proxy for the intensity of the NO2 emission.  

Another point that must be considered is the fact that satellite observations can only be done during 

clear-sky conditions. The result of this is that the RF model might be biased towards days on which 

the sky was relatively clear. The lack of clouds can influence other meteorological variables, such as 

temperature, windspeed, humidity or precipitation. This could cause a serious underrepresentation of 

certain meteorological conditions in the training and testing datasets and could decrease the 

representability of the RF model output. This potential bias has also been discussed by Schiferl et al. 

(2016) concerning the ammonia observations by IASI and in several other air pollution studies (e.g. 

Geddes et al., 2012). Another disadvantage related to the use of satellite data is that the RF model can 

only predict the surface concentrations where satellite observations have been made, implying that the 

model is very dependent on satellite retrievals. 

Two final limitations that must be discussed are related to the validation of the RF output. First, the 

RF model that has been built in this study is only tested in 2017, which makes it uncertain how the RF 

model would perform in other years. Moreover, there is a lack of ground-truth data points where the 

RF model can be validated. Although the MAN network is extensive in space, it is placed in natural 

areas where the ammonia concentration is lower. Also, it has a low temporal resolution of one 

measurement per month. The miniDOAS equipment used for the LML network does have a high 

temporal resolution of one observation per hour. However, there are just six LML stations in total, 

which is too little for the validation of a novel ammonia product such as the one created in this study. 

A few recommendations for further research can be given. First, it is recommended to experiment 

with other machine learning models to predict the ammonia surface concentration. This can be other 

ensemble tree-based approaches such as stochastic gradient boosting (SGB) or extreme gradient 

boosting (XGB), but also other machine learning algorithms such as support vector machines and 

neural networks which show to be promising for air quality modelling (Rybarczyk & Zalakeviciute, 

2018). 

Second, as mentioned before, the random forest algorithm in this study only predicts the surface 

ammonia concentration at grid cells where VCD observations are available. The result of this is that 

potentially valuable data will not be used in the case that no satellite observations have been made in 

certain grid cells. A solution to this problem can be to implement value imputation, which is the process 
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of using the “information and relationships among the non-missing predictors to provide an estimate 

to fill the missing value” (Kuhn & Johnson, 2019). Various strategies for gap-filling satellite data have 

already been studied (Xiao et al., 2021) and could be further researched for atmospheric ammonia 

remote sensing. 

The third recommendation for further research would be to investigate other useful explanatory 

variables that can be used as input for RF models. Examples of new variables that can be added are 

aerosol optical depth (AOD) data (ammonia can transform into aerosols when it reacts with nitrate or 

sulphate), NO2 and SO2 concentration data, NH3 VCD data from the IASI instrument and soil 

moisture data. 

A fourth recommendation is to broaden the geographical boundaries of the study domain. Doing 

similar experiments in a bigger domain increases the amount of data on which the RF model can train, 

which can lead to a stronger RF model. However, modelling ammonia can also become more complex 

when increasing the study range because new meteorological and topological conditions will be 

introduced when extending the geographical boundaries (e.g. the influence of elevation on the 

ammonia concentration when extending beyond the Dutch borders). Additionally, the potential also 

lies in training a model in a certain region and using it to predict the ammonia concentration in other 

regions. This concept is better known as transfer learning in the machine learning discipline and the 

added value of this could be that a RF model can be trained and validated in one region, which can 

then be applied in another region. 

Fifth, it is recommended to train and test the model in different years to understand how the RF 

performance would be affected. In the current model setup, the model is trained in 2015 and 2016 and 

tested in 2017 only. However, to test whether this new method for modelling the ammonia surface 

concentrations would be a viable addition, the model should also be trained and tested in other years 

as conclusions should not be drawn from just one year. 

A sixth recommendation is to use the LOTOS-EUROS ammonia surface dataset which has been 

assimilated with CrIS data instead of the regular LOTOS-EUROS model data which has been used in 

this study. With a local ensemble transform Kalman filter (LETKF), the model output is altered to 

better match the spatiotemporal ammonia distribution of CrIS (van der Graaf et al., 2022). Using this 

dataset could improve the model performance when validated by ground-based measurement stations. 

A seventh recommendation is to explore the capability of RF models to model the ammonia 

concentration at a higher spatiotemporal resolution. Especially for a highly dispersible compound such 

as ammonia, datasets with a higher resolution in space and time would be useful. In the research by Lu 

et al. (2020), an ultra-high resolution of 25 × 25 meters has already been computed for NO2 

concentrations with success. 

The final recommendation is to research the possibility to use ground ammonia concentrations 

measured by the MAN- and LML-stations as the response variable instead of the LOTOS-EUROS 

surface values. This would be the same approach as the study by Lu et al. (2020). Although the number 

of stations measuring at a daily temporal resolution is low, a RF model can be constructed to calculate 

the monthly average concentrations at other locations than the MAN and LML measurement stations. 

Such a RF model can help with filling the gaps between the measurement stations which would create 

a new interpolated ammonia concentration dataset independent of the LOTOS-EUROS model. 
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Moreover, an advantage of such as model is that it will be optimized specifically to approach the 

measurements by MAN and LML as good as possible (in contrast to the RF constructed in this study). 
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Section 5: Conclusion 
In this study, the surface concentrations of ammonia in the Netherlands have been modelled with the 

random forest algorithm and validated with LML and MAN measurement stations. The research 

question posed in this thesis is how random forest models can be applied with CrIS satellite data, 

meteorological variables and land-use based variables to improve the accuracy of ammonia surface 

concentration datasets when validated by ground-truth data. 

The results of this study have shown the potential that lies in RF models: The comparison of the results 

of the RF models and the LOTOS-EUROS model when validated by the LML and MAN networks 

show that RF models have a higher correlation and a lower error. More specifically, while the LOTOS-

EUROS model had a RMSE of 7.11 ppb and a correlation of 0.48 when validated by LML, the best 

RF model had a RMSE of 5.73 ppb and a correlation of 0.52. Likewise, when validated with MAN 

measurements, the LOTOS-EUROS model had a RMSE of 4.54 and a correlation of 0.43, while the 

best RF model had a RMSE of 4.12 and a correlation of 0.50. 

The results also show that in the current experimental setup, the RF model which was trained with 

CrIS VCD does not perform properly yet. However, the CrIS satellite data is very beneficial when it is 

applied to a RF model which has been trained with either the LOTOS-EUROS VCD (RF model 1) or 

the synthetic CrIS VCD dataset (RF model 2). Furthermore, the validated results of the RF model 

which has been trained without VCD data (RF model 4), show a lower performance compared to the 

regular RF models. This proves the added benefit of incorporating VCD datasets in RF models for 

estimating the ammonia surface concentration. 

For the strongest RF models (RF models 1 and 2), the VCD was by far the most important explanatory 

variable with a permutation importance above 50%. Thereafter, the CAMS-reg time profiles for 

manure application and the boundary layer height were the most important variables. Variables that 

had a smaller contribution were chicken-, cow- and pig density, the surface temperature and the 

windspeed in the vertical and horizontal direction. Explanatory variables which practically had no 

impact on the model performance were the Corine 2018 land use classes, the specific surface humidity 

and the precipitation per day. 

The results in this study are promising, although there are some limitations: The RF model constructed 

in this study only supplies output for locations where satellite observations have been made, meaning 

that the daily coverage of the model is fully dependent on the ability of the CrIS instrument to capture 

the VCD. Moreover, there is a chance that the model is biased towards cloud-free conditions because 

the CrIS retrievals in this study are made during clear-sky conditions. Given the possibility that the lack 

of clouds can be correlated with other meteorological variables (e.g. precipitation, windspeed, surface 

temperature), this could potentially cause an underrepresentation of certain meteorological conditions 

in the RF model. Furthermore, the RF model is only tested in the year 2017, making it unknown how 

the model would perform over more years. Finally, there are too few ground stations measuring the 

ammonia concentration, which makes it hard to conduct a thorough validation of the RF model output.  

Recommendations for further research include testing the capabilities of other machine learning 

algorithms to model the ammonia concentration, experimenting with value imputation to increase the 

coverage of the RF model, and investigating other explanatory variables (e.g. IASI VCD or AOD data) 

which can improve the model performance. Additionally, it is necessary to also test and validate the 

RF model in other years than 2017 to infer whether random forest modelling is a viable addition to 
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other ammonia monitoring methods. Finally, it is also suggested to experiment with using ground-

based measurement stations as the ground-truth for the RF algorithm instead of the LOTOS-EUROS 

surface concentration. In line with the research by Lu et al. (2020), such an approach can create a new 

ammonia concentration dataset that is independent of the LOTOS-EUROS model and is optimized 

to approach the MAN and LML measurements as closely as possible. 

Although the monitoring of ammonia concentrations and emissions have proven to be difficult and 

full of uncertainty, many new promising techniques are being explored and developed which can help 

to better understand the behaviour of this challenging compound in the biosphere. This thesis can be 

considered as a stepping stone towards exploring the full potential for modelling ammonia in the 

atmosphere with machine learning techniques such as the random forest model. As an addition to the 

existing methods of monitoring ammonia, it can contribute to mitigating the damage caused by reactive 

nitrogen emissions on both ecosystems and society. 
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Appendix A: The Corine 2018 land-use classes 
Table A1: A list of the Corine 2018 land-use classes. The land-use classes in bold have been used in this study. These main land-
use classes can be further specified by the land-use classes listed below. 

Artificial surfaces Agricultural areas Water bodies 

Continuous urban fabric Non-irrigated arable land Water courses 

Discontinuous urban 
fabric 

Permanently irrigated land Water bodies 

Industrial or commercial 
units 

Rice fields Coastal lagoons 

Road and rail networks 
and associated land 

Vineyards Estuaries 

Port areas Fruit trees and berry plantations Sea and ocean 

Airports Olive groves Sea and ocean 

Mineral extraction sites Pastures 
 

Dump sites Annual crops associated with permanent 
crops 

 

Construction sites Complex cultivation patterns 
 

Green urban areas 
Sport and leisure facilities 

Land principally occupied by agriculture with 
significant areas of natural vegetation 

 

 
Agro-forestry areas 

 
   

Forest and semi-natural 
areas 

Wetlands  

Broad-leaved forest Inland marshes  

Coniferous forest Peat bogs  
Mixed forest Salt marshes  

Natural grasslands Salines  
Moors and heathland Intertidal flats  

Sclerophyllous vegetation 
 

 

Transitional woodland-
shrub 

Water bodies 
 

Beaches dunes sands Water courses 
 

Bare rocks Water bodies 
 

Sparsely vegetated areas Coastal lagoons 
 

Burnt areas Estuaries 
 

Glaciers and perpetual 
snow 

Sea and ocean 
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Appendix B: Hexbin plots with the comparison of LOTOS-

EUROS output versus random forest output 
 

  

 

 

Figure B1: Hexbin plots comparing the LOTOS-EUROS surface concentration with the surface concentrations predicted by RF 
model 1 which has been trained with LOTOS-EUROS VCD. Each plot shows the output of RF model 1 which has been supplied 
with either the LOTOS-EUROS VCD, synthetic CrIS VCD or the CrIS VCD. 
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Figure B2: Hexbin plots comparing the LOTOS-EUROS surface concentration with the surface concentrations predicted by RF 
model 2 which has been trained the synthetic CrIS VCD. Each plot shows the output of RF model 2 which has been supplied with 
either the LOTOS-EUROS VCD, synthetic CrIS VCD or the CrIS VCD. 
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Figure B3: Hexbin plots comparing the LOTOS-EUROS surface concentration with the surface concentrations predicted by RF 
model 3 which has been trained with the CrIS VCD. Each plot shows the output of RF model 3 which has been supplied with 
either the LOTOS-EUROS VCD, synthetic CrIS VCD or the CrIS VCD.  

 

Figure B4: Hexbin plot comparing the LOTOS-EUROS surface concentration with the surface concentration predicted by RF 
model 4, which has been trained without VCD data. 
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Appendix C: Daily validation results of the random forest output 

with LML stations 

  

 

 

Figure C1: The daily validation with the LML measurement stations of the output of RF model 1, which has been trained with 
LOTOS-EUROS VCD. Each plot shows the output of RF model 1 which has been supplied with either the LOTOS-EUROS 
VCD, synthetic CrIS VCD or the CrIS VCD. 
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Figure C2: The daily validation with the LML measurement stations of the output of RF model 2, which has been trained with the 
synthetic CrIS VCD. Each plot shows the output of RF model 2 which has been supplied with either the LOTOS-EUROS VCD, 
synthetic CrIS VCD or the CrIS VCD. 
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Figure C3: The daily validation with the LML measurement stations of the output of RF model 3, which has been trained with the 
CrIS VCD. Each plot shows the output of RF model 3 which has been supplied with either the LOTOS-EUROS VCD, synthetic 
CrIS VCD or the CrIS VCD. 

 

Figure C4: The daily validation with the LML measurement stations of the output of RF model 4, which has not been trained with 
a VCD dataset.  
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Appendix D: Yearly validation results of the random forest output 

with MAN stations and monthly validation per month of random 

forest output with MAN stations 

  

 

 

Figure D1: The yearly validation with the MAN measurement stations of the output of RF model 1, which has been trained with 
the LOTOS-EUROS VCD. Each plot shows the output of RF model 1 which has been supplied with either the LOTOS-EUROS 
VCD (a), synthetic CrIS VCD (b) or the CrIS VCD (c). 
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Figure D2: The yearly validation with the MAN measurement stations of the output of RF model 2, which has been trained with 
the synthetic CrIS VCD. Each plot shows the output of RF model 2 which has been supplied with either the LOTOS-EUROS 
VCD (a), synthetic CrIS VCD (b) or the CrIS VCD (c). 

  

 

 

Figure D3: The yearly validation with the MAN measurement stations of the output of RF model 3, which has been trained with 
the CrIS VCD. Each plot shows the output of RF model 3 which has been supplied with either the LOTOS-EUROS VCD (a), 
synthetic CrIS VCD (b) or the CrIS VCD (c). 
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Figure D4: The yearly validation with the MAN measurement stations of the output of RF model 4, which has been trained with 
no VCD dataset.  

Table D1: The RMSE of all MAN stations per month, per experiment. The values which have been marked in bold green show 
the lowest RMSE of all experiments in a certain month. 

RMSE Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

RF1-LE 2.22 3.09 7.15 4.47 5.11 4.12 4.98 4.70 4.06 4.18 4.84 3.02 

RF1-Synth 3.61 3.26 7.70 4.50 4.73 3.60 4.59 4.17 3.34 3.39 3.39 2.37 

RF1-CrIS 3.06 3.93 7.45 3.69 4.04 4.06 4.14 3.95 2.91 3.23 3.50 4.72 

RF2-LE 2.27 3.33 6.67 4.36 5.31 4.28 5.00 4.75 4.06 4.72 5.07 3.10 

RF2-Synth 2.06 3.36 7.21 4.32 5.11 4.02 4.84 4.57 3.89 4.54 4.81 2.92 

RF2-CrIS 2.42 3.87 7.09 3.59 4.07 3.83 4.26 3.99 3.46 3.89 4.02 3.36 

RF3-LE 2.15 3.31 6.68 3.77 5.27 4.60 5.15 4.93 3.99 4.70 4.80 2.86 

RF3-Synth 2.14 3.31 6.76 3.76 5.22 4.54 5.10 4.90 3.94 4.69 4.80 2.86 

RF3-CrIS 2.12 3.28 6.41 3.62 4.86 4.20 4.90 4.71 3.86 4.64 4.78 2.86 

RF4 (no VCD) 2.09 3.45 6.73 3.84 4.86 4.38 4.75 4.59 3.56 4.64 4.94 2.92 

LE 1.91 2.57 7.23 4.39 5.66 4.94 5.49 4.46 3.99 4.45 4.28 2.15 

CrIS-sfc 4.05 6.67 4.49 6.10 4.88 5.08 5.88 5.76 5.33 6.07 5.68 3.76 
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Appendix E: Partial dependency plot of random forest model 4 

 

Figure E1: The partial dependency plot of random forest 4, which has been trained without VCD data. 


