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Abstract

Greenhouses offer the promise to mitigate the challenges faced by traditional open field agri-
culture. Operating these systems on a commercial scale demands effective control and forecast
models. This thesis contributes to the increasing field of research that applies methods from
systems and control to greenhouse systems. The primary objective was to evaluate various cli-
mate prediction models for their applicability in forecast and predictive control within green-
houses. Comparative analyses were conducted on linear and non-linear data-driven models
across one week and one hour time horizons. The linear models include an autoregressive with
exogenous input (ARX) model, subspace identification using the Multivariable Output-Error
State-space algorithm (MOESP), and dynamic mode decomposition with control (DMDc).
Of the linear methods, MOESP performed the best on both time horizons. The nonlinear
methods included several long-short term memory (LSTM) models with different architec-
tures. A stacked LSTM model was found to outperform the other LSTM models as well as
all linear models over the one-week time horizon. The Koopman with inputs and control
(KIC) framework, a novel nonlinear approach, was also examined. The choice of lifting func-
tions proved to be a challenge, yielding only partial improvements over linear methods on the
training set. For the short-term one-hour time horizon, the data-enabled predictive control
(DeePC) algorithm was also implemented and yielded the most accurate results. Notably,
the stacked LSTM predictor did not show any advantages on the one-hour timescale. Finally,
a novel approach combining Koopman theory with DeePC was introduced and compared to
the regular DeePC algorithm. No improvement was observed with this proposed method for
one hour-ahead predictions. The comparison concluded with the insight that for the one hour
time-horizon, the nonlinear methods that were investigated did not show advantages over
linear methods in the greenhouse system. On the one week time horizon, nonlinear methods
outperform linear ones. It affirmed the challenges around finding observables that fully span
a Koopman invariant subspace. Further investigation on the proposed extension to DeePC
should be the focus of future work.
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Chapter 1

Introduction

1-1 Motivation

As the climate crisis continues to threaten food security around the globe by reducing arable
land [1], [7], controlled environment agriculture is one of the adaptation technologies to guar-
antee yields in a changing climate.

Controlled environment agriculture offers a solution to adapt to a changing climate since it
uses less water and requires less land for the same output as traditional open field agriculture
[2]. Glass greenhouses are one of these controlled agriculture systems and are very successfully
deployed in the Netherlands, where the majority of agricultural land is under a greenhouse
[38].

One of the main challenges of the greenhouse sector today is energy consumption. In the
Netherlands, greenhouses account for 5% of the total energy consumption of the country [11].

As a consequence, energy consumption plays a major role in the economics of a greenhouse.
Through the use of forecast models, the energy consumption of a greenhouses can be reduced
[33]. These forecast models rely on weather predictions and an underlying greenhouse climate
model to guide the decision-making of the growers to reduce energy consumption and ensuring
profitable yields.

Accurate temperature predictions within greenhouses are also important as the temperatures
impact crop growth significantly [42]. Maintaining suitable temperatures is crucial for en-
hancing plant quality, quantity, and mortality rates. The use of model predictive control
algorithms has become popular in the search to find more optimal ways to control the green-
house temperature[16].

Thus, there exists a demand for accurate climate predictions, both for model predictive control
applications, as well as for economic forecast models. Many different approaches can be taken
to mathematically model a greenhouse system, but according to Yu et al. (2016) [40] there
are two main approaches. The first type is the physics-based model, which tries to model
the underlying thermodynamic mechanisms that affect the change of the climate. They are
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2 Introduction

typically made up of differential equations that are derived from thermodynamic principles to
describe the climate. These models typically have a large number of parameters. The second
type of model are data-driven models. As it is often difficult to measure every parameter
for the physics-based models, data-driven models aim to determine the system behaviour by
collecting measurement data.
The focus of this research is a comparison of the second model type for forecast and predictive
control applications. Furthermore, the Koopman with inputs and control (KIC) framework by
Proctor et al. (2018) [29] has gained a lot of attention in recent years as a novel, data-driven
modelling technique.
The Koopman operator was first developed by Bernard Koopman (1931) [20] and only started
to get attention in recent years, initially to investigate spectral properties (Mezic et al. [25])
and later to be applied for some engineering-oriented applications (Budivsic et al.) [5]. This
method has already seen applications in combination with model predictive control (MPC)
and shows promising potential to control multi-dimensional nonlinear systems [3]. This mod-
elling approach has not been applied to the greenhouse system yet.

1-2 Contribution

The greenhouse is a nonlinear system where in some cases, a lot of sensor data is already
being collected. There has been an increasing interest in Data-driven system identification
and control approaches for nonlinear systems in a world that increasingly generates more
data.
This thesis compares some existing data-driven climate modelling approaches in two distinct
applications for the greenhouse system. Firstly, it compares the models on their performance
as forecast models for the time horizon of one week. Secondly, it compares the modelling
approaches on their performance for the application in model predictive control, where the
time horizon is one hour.
The performance of these models is compared on the two different time horizons. Two main
modelling paradigms are compared. The first is models that rely on an underlying linear
structure to create forecasts, and the second is models that contain nonentities within their
structure. Lastly, models that have been designed specifically with the application of model
predictive control have been included in the comparison focused on predictive control perfor-
mance.
The linear models included are an auto-regressive with exogenous input (ARX) model, a sub-
space identification model using the MOESP algorithm and a model based on the dynamic
mode decomposition with control. Furthermore, in the evaluation of predictive performance
for control, the Data enable predictive control (DeePC) algorithm is included in the compar-
ison.
The nonlinear models that are compared are firstly, LSTM implementations with different
architectures and secondly, a Koopman based predictor that uses the KIC framework that
was first proposed in [29].
LSTMs have been applied to greenhouses before [17], [23],[34]. While these implementations
typically use single-layer LSTM architectures, a stacked LSTM architecture is also imple-
mented and evaluated.
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1-3 Research Question 3

The Koopman based approach has not been applied to the greenhouse system yet. Its im-
plementation is evaluated and the problems that arose from the implementation are analysed
and described.

Lastly, an extension to the Data-Enabled Predictive Control (DeePC) approach is proposed
and compared to the original algorithm. The extension seeks to combine the KIC framework
with DeePC in order to improve predictions over the time horizon of one hour.

There are several contributions of this work. The first is the implementation and comparison
between single layer and stacked LSTM architectures for the greenhouse system. The second
contribution is the implementation and evaluation of a Koopman based predictor for the
greenhouse system, which was the original motivation for this thesis. Furthermore a proposed
extension of the DeePC control algorithm is presented. Lastly, insight is gained into the
performance of each modelling type on different time horizons, as well as recommendations
for how to improve future data-driven greenhouse modelling approaches.

1-3 Research Question

While the original research question of this project was focused on the implementation of a
controller based on a Koopman predictor, the focus shifted towards a comparison of different
data-driven modelling approaches for different time horizons. This resulted in the following
research question:

How do different data-driven modelling approaches compare as forecast and predictive
control models when applied to greenhouse data?

Several sub-questions were derived to further investigate this question:

• How does the selection of linear models compare to the selection of nonlinear models
for the purpose of week ahead forecast?

• How can a predictor using the Koopman in control (KIC) framework be implemented
and what are its challenges?

• What data-driven modelling approaches included in the comparison are best suited for
model predictive control in the greenhouse system?

• How can a Koopman theory be included in the formulation of the data enabled predictive
control algorithm and how does it perform?

1-4 Outline

This work has the following structure: In Chapter 2, the ground truth model that provides the
data for all subsequent modelling approaches is described. A sub-system of this ground truth
model is chosen to be the focus of analysis and its governing equations are shown. Chapter 3
will discuss linear data-driven modelling methods and compare their performance as forecast
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4 Introduction

models. In Chapter 4, different implementations of a Long-Short-Term Memory (LSTM)
model are presented and compared to the linear forecast models of chapter 3. In chapter 5,
Koopman theory and the KIC predictor are explained and the implementation of the KIC
predictor for the greenhouse system is discussed and analysed. In chapter 6, the predictive
performance on the one-hour time horizon of the previously derived models is evaluated.
Furthermore, the data-enabled predictive control (DeePC) algorithm is presented and its
implementation is compared. Additionally, a proposed extension to the DeePC algorithm is
included in the chapter and its implementation is also compared. Lastly, Chapter 7 will give
a summary and answer the research questions that were set out in the beginning as well as
give some recommendations for future work.
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Chapter 2

The Ground Truth Model - GreenLight

In order to create data-driven greenhouse climate models, a data source is required. The
following chapter will discuss the GreenLight model by Katzin et al. [19] as it was chosen
to form the ground truth model for the subsequent data-driven modelling approaches. The
GreenLight model was chosen due to its open source nature as well as having been experi-
mentally validated. First, the full GreenLight model is discussed. After that, a selection of
states that will be approximated in the data driven approaches in the following chapters is
described. Lasly, the underlying equations that GreenLight uses are shown.

2-1 The GreenLight Model

The GreenLight model is a physics based model with many parameters and is based on the
already validated model by Vanthoor (2011) [35]. Furthermore, the GreenLight model itself
was validated using measured experimental data. It was shown that the model simulated
temperatures accurately, with some deviations in CO2-levels and relative humidity. In the
next subsections, the states that GreenLight considers are discussed to give an understanding
of the granularity of the model.

2-1-1 States

Temperature

The temperature is affected by solar radiation and the outside temperature, ventilation, wind
as well as any heating, cooling or fogging system inside the greenhouse. Furthermore, the
plant itself will also interact with the temperature mainly through evaporating water.

In the GreenLight model, the temperature state is described by 17 different state variables.
These include five different soil temperatures TSo1 ... TSo5 and four states for the lamp
temperature TLamp, TIntLamp, TGroP ipe and TBlScr, which describe the temperature of the top
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6 The Ground Truth Model - GreenLight

lights, the inter lights, the grow pipes and the blackout screens, respectively. Furthermore,
there is a state for the temperature on the external side of a cover TCov,e, the internal side
of a cover TCov,in, the air above the thermal cover TT op, the thermal screen TT hScr, the air
in the main compartment Tair, the canopy TCan, the pipe rail system TP ipe and the floor
TF lr. It should be noted that the cover in this model represents a lumped cover that includes
all elements of the permanent greenhouse cover. All temperature states are given Degree
centigrade [C◦].

TSol(t) =

TSol1(t)
...

TSol5(t)

 , TLight(t) =


TLamp(t)

TIntLamp(t)
TGroP ipe(t)
TBlScr(t)

 (2-1)

T(t) =



TCov,e(t)
TCov,in(t)
TT hScr(t)

Tair(t)
TCan(t)
TP ipe(t)
TF lr(t)
TSol(t)

TLight(t)


(2-2)

Humidity

In the GreenLight model, the vapor pressure is used as the measure for humidity. It is taken
at two locations, in the main compartment and at the top. The states are denoted by V PAir

and V PT op, respectively and use the pressure unit Pa. Equation 2-3 represents the humidity
state of GreenLight:

VP(t) =
[

V PAir(t)
V PT op(t)

]
(2-3)

CO2 concentration

The CO2 concentration also modelled in two different locations in a similar manner as is done
for the vapor pressure. Thus, the concentration is modelled in the main compartment and at
the top and is denoted by CO2Air and CO2Top, respectively. The state vector for the CO2
concentration is given by:

CO2(t) =
[

CO2Air(t)
CO2Top(t)

]
(2-4)
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2-1 The GreenLight Model 7

The state vector for the climate of the greenhouse of the example model can be fully defined
by the vectors for each relevant climate variable. This is summarised by expression 2-5, where
the overall state vector is compromised by the concatenated climate variable vectors.

x(t) =

 T(t)
VP(t)
CO2(t)

 (2-5)

2-1-2 Exogenous Signals

Disturbances

The GreenLight model considers seven different disturbances that act on the greenhouse
system. These are outside global radiation IGlob(Wm−2), outside temperature Tout (C◦), the
temperature of the sky Tsky (C◦), outer soil temperature TSoOut (C◦), outside vapour pressure
V POut (Pa), outside CO2 concentration CO2Out (ppm) and wind speed vwind. Together these
external disturbances can be collected in a vector as shown in equation 2-6

d(t) =



IGlob(t)
Tout(t)
Tsky(t)

TSoOut(t)
V POut(t)
CO2Out(t)
dwind(t)


(2-6)

Inputs

Multiple inputs are considered in the GreenLight model. They all take on values in the range
[01], with 0 being no actuation and 1 being full actuation. The vector of inputs is given by:

in(t) =



Boil(t)
BoilGro(t)
ExtCo(t)
Roof(t)
ThScr(t)
BlScr(t)
Lamp(t)

IntLamp(t)


(2-7)

All inputs are given on a continous range, with the exception of Lamp and IntLamp . These
lamp inputs are actuated discretely.
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8 The Ground Truth Model - GreenLight

2-1-3 Crop Model of GreenLight

The crop model in the GreenLight model is a simplified one when compared to the original
Vanthoor (2011) [35] model. The GreenLight model employs a single stage crop model that
only considers dry mass of the fruit. It does not consider multiple crop development stages.
This was done to simplify simulation since the goal of this model was to simulate the effect
of different lighting systems. It also does not consider number of fruits. Instead it considers
the total fruit dry mass. The crop states are summarized by:

xc =



CBuf

CLeaf

CStem

CF ruit

TCanSum

TCan24


(2-8)

The term CBuf refers to the mass of accumulated carbon-hydrate buffer and CLeaf , CStem and
CF ruit refer to the carbon-hydrates in the leaves, stem and fruit, respectively. The average
temperature canopy rate TCan24 is related to the fruit growth period and the size of the fruit.
The integral of the canopy temperature TCanSum

experienced by the plant is used to indicate
the development of the crop.

The focus of this work was set on predicting the climate states of the greenhouse over one
week and one hour time horizons. On these time horizons, the crop development did not
have a significant influence on the predictions. The energy balance of the greenhouse is the
most relevant to predicting future climate states. The energy balance is determined through
radiative, convective, conductive and latent heat exchanges. The radiative heat exchanges
are broken up into photosynthetically active radiation (PAR), near infrared radiation (NIR)
and far infrared radiation (FIR). This energy balance is summarised in figure 2-1. All heat
exchanges in the simulation are in the unit of Wm−2 and the evolution of the heat exchanges
is determined through differential equations.

2-2 The Sub-System in Consideration

For the purpose of comparing Data-Driven modelling approaches, a subsystem of the Green-
Light model is considered. This has several reasons, but the main reason is that considering
all states and exogenous input signals during for each method requires significantly more
computing power and increases the complexity of the problem.

Hence, a subsystem was chosen. Since the temperature states are the most relevant for a
crop and due to the fact that they were also the most accurately approximated states by the
GreenLight model [19], a focus was set on temperature prediction.

The temperatures that were considered were the air temperature TAir and canopy temperature
TCan. For the choice of exogenous inputs, they were chosen to be the most relevant for these
two temperatures. The external disturbances that were taken into consideration were the
global radiation IGlob, the outside temperature Tout and the wind speed dwind. The most
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2-2 The Sub-System in Consideration 9

Figure 2-1: Schematic of the energy balance of the GreenLight model, where dashed and bold
lines are additions to the Vanthoor model. All items in Grey exchange FIR between each other
[19]

relevant control inputs were chosen to be the pipe temperature TP ipe, the temperature of
the grow pipe TGroP ipe, the thermal screen uthScr and the roof uroof . The input signals for
the thermal screen uthScr and the roof uroof are values between zero and one that indicate
how open or closed they are. A value of zero means it is fully closed and a value of one
reflects it being fully open. The temperatures of the pipes, while not true control inputs, are
closely linked to the state of the two boiler inputs uboil and ugroBoil. It is assumed that the
relation between these boiler inputs and the temperature of the pipes is known and hence the
temperature of the pipe is used.

The goal with the prediction and forecast models is to find a system approximation that takes
initial temperatures y0(k), known inputs and disturbances over some time horizon from k + 1
to N , and predict temperatures over this time-horizon. Essentially capturing the relationship
between the external signals and the temperature inside. An overview of the subsystem that
is supposed to be approximated is given by figure 2-2

It is worth noting that the weather disturbances d(k + 1) to d(N) are treated as known
variables, while in reality these can only be approximated for any future time horizon N .
Still, any prediction model for a greenhouse in practice has to rely on weather forecasts,
since it significantly affects the temperature within the greenhouse. So for the purpose of
week-long forecasts and for the purpose of short-term prediction for control, it is assumed
that the weather disturbances are known or at least estimated. This results in the combined
exogenous input vector for time-step k to be expressed by 2-9.
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10 The Ground Truth Model - GreenLight

Figure 2-2: Chosen subsystem to be approximated by the data-driven modelling approaches

u(k) =
[
in(k)
d(k)

]
(2-9)

In all subsequent model estimations, this combined vector is used and is referred to as the
input.

2-2-1 Governing Equations of the Subsystem

Within the simulation of GreenLight, these Temperatures are calculated through differential
equations. The differential equation used for the evolution of the temperature TAir is given
by:

capAir ṪAir =HCanAir + HPipeAir + RGlob_SunAir − HAirFlr − HAirThScr

− HAirOut − HAirTop − HAirBlScr + HLampAir

+ RLampAir + HIntLampAir + HGroPipeAir

(2-10)

And for TCan this differential equation is:

capCan ṪCan =RPARSunCan + RNIRSunCan + RPipeCan − HCanAir − LCanAir

− RCanCov, in − RCanFlr − RCanSky − RCanThScr − RCanBlScr

+ RPARLampCan + RNIRLampCan + RFIRLampCan

+ RPARIntLampCan + RNIRIntLampCan + RFIRIntLampCan

+ RGroPipeCan

(2-11)

In these equations, terms denoted by R are radiative heat exchanges, with FIR and PAR
referring to the spectrum radiation of the heat exchanged. Terms denoted as H are convective
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and L are latent heat exchanges and the subscript denotes the source of the heat exchange
as well as its endpoint. Hence, the term RPipeCan would be the radiative heat exchange from
the pipe to the canopy and HCanAir would be the convective heat exchange from the canopy
to the air temperature. A summary of all relevant subscripts can be found in table 2-1.

Air main greenhouse comparement
below the thermal screen Lamp Top lights

Glob Global radiation InLamp Inter lights
Can Canopy ThScr Thermal screen
Flr Floor BlScr Blackout screen

e External side Top Compartment above
the thermal screen

in Inside Pipe Heating floor Pipes
Out Outside GroPipe Heating grow pipes
Sky Sky Cov Cover

Table 2-1: Table summarising the meaning of subscripts in the differential equations

2-3 Generating the Data

2-3-1 Training Set

In order to have a meaningful comparison between models, they were all trained or fitted
using the same data. The training set was chosen to be a mixture of artificially generated
data, as well as regular operational data. The artificially generated data used several differ-
ent excitation signals for the inputs and disturbances. This was done to sufficiently excite
the nonlinear system. The three different excitation signals that were chosen were a pseudo
random binary input sequence (PRBS), a random Gaussian signal (RGS) and an amplitude
modulated pseudo random binary input sequence (APRBS). The first two signals are com-
mon excitation signals in system identification [36]. Amplitude-modulated PRBS is a common
excitation signal specifically for nonlinear system identification [12]. The data that was gener-
ated with the different excitation signals was concatenated with the regular operational data.
The total length of the training data was 27 840 time steps, which is roughly equal to three
months of greenhouse simulation data.

The first 10 000 time-steps of the training data were driven by the three different excitation
signals. From time-step 10 000 to time-step 27 840, the data was compromised of regular
operations simulation data. The end of the training set was chosen to coincide with the end
of a day, hence the choice of that number. The temperature of the air and the canopy of the
training set can be seen in figure 2-3.
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12 The Ground Truth Model - GreenLight

Figure 2-3: Air and canopy temperatures of the training set, combining artificial excitation and
regular operations data
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2-3-2 Test Set

For the purpose of evaluating the forecast accuracy, the test set was chosen to be a week long.
The chosen week also contained a change in the dynamics from the first day to the rest of the
days of the week. This choice was motivated by the idea that if a model could more accurately
model the change of the dynamics, it would be an indication that the model has come closer
to capturing the true dynamics of the sub-system. Furthermore, on day four of the test week,
there is a stronger decoupling between the canopy and the air temperature, whereas on the
other days, there are more closely correlated. If a models captures this decoupling, it is also
an indicating that it captured the individual dynamics of the canopy temperature and the air
temperature, rather than simply determining one based on the value of the other.

The canopy and air temperatures of the test week are shown in figure 2-4. For some compar-
isons, only the first day is used of the test set described in figure 2-4.

Figure 2-4: Air and canopy temperature of the chosen test week

All subsequent forecast models were trained on the same data, as well as tested on the same
test set. The exception to the training set are the DeePC and eDeePC algorithms described in
chapter 6. Further details on how those models were trained are detailed in that chapter. All
data was scaled using a maximum absolute scaling before training and testing and un-scaled
before the results were plotted.
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Chapter 3

Linear Modelling

In this chapter, three common data-driven modelling approaches are presented and imple-
mented using the greenhouse training data that was presented in the previous chapter. Their
performance as forecast models on the test week will serve as a baseline for the non-linear
data-driven models implemented in subsequent chapters. The three linear models that were
implemented are an Auto-Regresssive with eXogenous input (ARX) model, a Dynamic Mode
Decomposition with control (DMDc) model and a model based on subspace identification
using the Multivariable Output-Error State-sPace (MOESP) algorithm. The ARX and the
MOESP model were included because of they are established model structures in the field of
system identification [36]. The DMDc model has also been widely applied but its inclusion
is due to its close relation to the Koopman operator and the extended Dynamic Mode De-
composition. It will be used in subsequent chapters as a benchmark for the Koopman based
approach.

3-1 ARX Model

3-1-1 Background

The first of the linear models that was tried is an Auto-Regressive with eXogeneous input
model (ARX). It is a prediction error method that assumes an underlying model structure,
given by equation 3-1.

y(k) = B(q)
A(q)u(k) + 1

A(q)e(k) (3-1)

Here, the term e(k) is assumed to be a zero-mean white noise signal and the polynomials
A(q) and B(q) are given by equations 3-2 and 3-3, with q being the time shift operator.

A(q) = 1 + a1q−1 + · · · + anaq−n (3-2)
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3-1 ARX Model 15

B(q) = b1q−1 + · · · + bnb
q−n (3-3)

The ARX predictor takes on the form as given by equation:

ŷ(k) = B(q)u(k) + [1 − A(q)]y(k) (3-4)

This predictor can be written as ŷ(k) = ϕ(k)Tθ with θ and ϕ(k) given by equations 3-5 and
3-6, respectively.

θ =
[

−a1 −a2 · · · −ana | b1 b2 · · · bnb

]T
(3-5)

ϕ(k) =
[

y(k − 1) · · · y(k − n) | u(k − 1) · · · u(k − n)
]T

(3-6)

The coefficients for the predictor are then found by minimizing the cost function given by
3-7.

JN (θ) = 1
N

N−1∑
k=0

(
y(k) − ϕ(k)Tθ

)2
(3-7)

3-1-2 Implementation

In order to fit this model for the chosen sub-system, the parameters na, nb have to be deter-
mined first. na represents the number of previous outputs that are taken into consideration
for the next step prediction, and can also be thought as the number of poles. The parameter
nb represents the number of previous inputs that are taken into account and is also referred
to as the number of zeros. Furthermore, the parameter nk is introduced and represents the
delay after which the input affects the output. Essentially, this represents an additional shift
to the input. Writing this as a difference equation without the shift operator q, this becomes:

ŷ(k)) = b1u(k − nk) + . . . + bnb
u(k − nb − nk + 1) − a1y(k − 1) − . . . − anay(k − na) (3-8)

Since the system has two outputs, TCan and TAir, the ARX model can be written as a
MIMO model by fitting a difference equation for each output. Each output is also taking
the influence of the respective other output into account. The ARX model was fit using the
system identification toolbox in MATLAB and the parameters na, nb and nk were determined
by tuning the model. The best fit was achieved with values of na = 2, nb = 2 and nk = 10.
This resulted in predictions over the test set as shown in figure 3-1.
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16 Linear Modelling

Figure 3-1: ARX predictor performance on the test set
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3-2 Dynamic Mode Decomposition with control 17

3-2 Dynamic Mode Decomposition with control

3-2-1 Background

The Dynamic Mode Decomposition with Control (DMDc) is a method first described by [28].
It builds on the Dynamic Mode Decomposition initially developed by Schmid [32] as a tool
to analyse and predict high dimensional complex systems. The DMDc attempts to find a
discrete state space approximation, shown by equation 3-9 [28].

x(k + 1) = Ax(k) + Bu(k) (3-9)

The idea of DMD and DMDc is to collect snapshots of high dimensional input and output
data, and estimate a reduced order model of the form that is shown in equation 3-9. It does
this by utilizing the input matrix given by 3-10, the output measurements matrix 3-11 and
the shifted output measurement matrix 3-12.

Υ0,N−1 =

 | | |
u(0) u(1) . . . u(N − 1)

| | |

 (3-10)

X0,N−1 =

 | | |
x(0) x(1) . . . x(N − 1)

| | |

 (3-11)

X1,N =
[

x(1) x(2) · · · x(N)
]

(3-12)

Note that the output matrices X0,N−1 and X1,N contain snapshots of the state. This is
because in the DMDc approach described by [28], the measured output is treated as equal to
the state of the system. This means that the output matrix C is considered to be C = In

with n being the dimension of the reduced order system. This means there is the assumption
that the state is directly observable.

Substituting the data matrices into the system representation given by 3-9 yields the data
equation 3-13:

X1,N = AX0,N−1 + BΥ0,N−1 (3-13)

In order to solve for the matrices A and B, the system can be rearranged to become:

X1,N =
[

A B
] [ X0,N−1

Υ0,N−1

]
= GΩ (3-14)

Where Ω =
[

X0,N−1
Υ0,N−1

]
matrices and G =

[
A B

]
. The analytical solution to find the best

fit matrix G is given by 3-15.
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18 Linear Modelling

G = min
G

∥X1,N − GΩ∥F = X1,N Ω† (3-15)

With high dimensional data matrices, dimensionality reduction in the form of a truncated
singular value decomposition (SVD) is often applied to both Ω and X1,N . The decompositions
are denoted as Ω ≈ Ũ Σ̃Ṽ ∗ and X1,N ≈ Û Σ̂V̂ ∗, with truncation values p and r, respectively.
The matrix Ũ can be divided into two matrices based on the dimension of input l and
dimension of the state n into matrix Ũ1 ∈ Rn×p and Ũ2 ∈ Rl×p, where Ũ =

[
Ũ∗

1 Ũ∗
2

]T
.

With this information, the reduced order approximations of A and B become:

Ã = Û∗X1,N Ṽ Σ̃−1Ũ∗
1 Û (3-16)

B̃ = Û∗X1,N Ṽ Σ̃−1Ũ∗
2 (3-17)

3-2-2 Implementation

While originally designed for high dimensional systems, the DMDc algorithm was included
in the comparison due to its close relation to the Koopman with input and control (KIC)
approach, described in chapter 4. When DMDc was applied to the sub-system, the only two
measurements were TCan and TAir. With an output dimension of n = 2 and input dimension
l = 8, dimensionality reduction was not necessary to compute the analytical solution of
equation 3-15.

Furthermore, Tikhonov regularization was applied. This is commonly done to reduce over-
fitting and improve stability [26], [31]. The minimization problem described in 3-15, resulting
in the formulation:

G = min
G

∥X1,N − GΩ∥F + λ2∥G∥F (3-18)

Additionally, an alternative notation to the pseudo-inverse was used to avoid close to ill
conditioned matrices in MATLAB. This notation uses the "/" operator also referred to as
"mrdivide" function in MATLAB and is more computationally robust compared to the built-
in pseudo-inverse function [13]. Using the notation as described in Garcia-Tenorio (2022) [13],
the solution to the minimization problem in 3-15 becomes:

G = V/M (3-19)

with auxiliary variables V = X1,N ΩT and M = ΩΩT .

The following algorithm summarizes the DMDc as it was implemented in MATLAB:

Figures 3-2 shows the predictions of the DMDc algorithm on the test set:
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3-2 Dynamic Mode Decomposition with control 19

Figure 3-2: DMDc predictor performance on the test week
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20 Linear Modelling

Algorithm 1: DMDc with Thikonov regularization and without dimensionality reduction
Input: X1,N , X0,N−1, Υ0,N−1
Output: Ã, B̃

1 Choose λ
2 Construct Ω by stacking X0,N−1 and Υ0,N−1
3 Compute V = X1,N ΩT

4 Compute M = ΩΩT

5 Compute the solution to the regularized least squares as G = V/(M + λIn)
6 Extract Ã and B̃ from G through knowledge of nx and nu

3-3 Subspace Identification - MOESP

3-3-1 Background

The goal of subspace identification is to find a linear time-invariant system representation of
the form given by

x(k + 1) = Ax(k) + Bu(k), (3-20)

y(k) = Cx(k) + Du(k), (3-21)

This representation assumes a deterministic system. Subspace identification uses a finite
number of samples of the input signal u(k) and output signal y(k) to find the system matrices
(A, B, C, D) and initial state vector up to a similarity transform.

Several different algorithms for subspace identification exist, but the one that was chosen to
be included in the comparison was the Multivariable Output-Error State-sPace (MOESP)
algorithm as described in Verhaegen (2007) [36].

The MOESP algorithm finds the state space representation as shown in 3-20 and 3-21, by
stacking the input and output data into block Hankel matrices of depth s:

Y0,s,N =

 y(0) y(1) · · · y(N − 1)
...

... . . . ...
y(s − 1) y(s) · · · y(N + s − 2)

 (3-22)

U0,s,N =

 u(0) u(1) · · · u(N − 1)
...

... . . . ...
u(s − 1) u(s) · · · u(N + s − 2)

 (3-23)

These hankel matrices can be substituted into the system representation given by 3-20 and
3-21 to formulate the Data Equation given by:

Y0,s,N = OsX0,N + TsU0,s,N (3-24)
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where X0,N =
[

x(0) x(1) · · · x(N − 1)
]
. The so called extended observability Os ma-

trix is given by:

Os =


C

CA
CA2

...
CAs−1

 (3-25)

And the matrix Ts is given by:

Ts =


D 0 0 · · · 0

CB D 0 · · · 0
CAB CB D 0

... . . . . . .
CAs−2B CAs−3B · · · CB D

 (3-26)

The strategy of MOESP is to first find the extended observability matrix up to a similarity
transform T and to then solve for the remaining system matrices by solving a least squares
problem. The extended observability matrix is found by stacking the output and input block
Hankel matrices Y0,s,N and U0,s,N and applying an RQ-factorization:

[
U0,s,N

Y0,s,N

]
=
[

R11 0
R21 R22

] [
Q1
Q2

]
(3-27)

After this, an SVD is applied to the matrix R22 and the first n columns of the resulting matrix
Un will be equal to the extended observability matrix up to a similarity transform T .

R22 =
[

Un U2
] [ Σn 0

0 Σ2

] [
V T

n

V T
2

]
(3-28)

An extended proof for range (Un) = range (Os) can be found in Verhaegen (2007) [36]. The
model order n is a parameter choice that is usually estimated based on the signular values of
the SVD of R22.

Once the extended observability matrix is identified up to a similarity transform T , it is trivial
to determine the system matrices C and A up to similarity transformation T .

Un = OsT =


CT

CT
(
T −1AT

)
...

CT
(
T −1AT

)s−1

 =


CT

CT AT
...

CT As−1
T

 (3-29)

Using the knowledge of the system matrices CT and AT , the system from equations 3-20 and
3-21 can be rewritten to result in:
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y(k) =CT Ak
T xT (0) +

(
k−1∑
τ=0

u(τ)T ⊗ CT Ak−τ−1
T

)
vec (BT )

+
(
u(k)T ⊗ Iℓ

)
vec (DT ) .

(3-30)

By defining a vector θ

θ =

 xT (0)
vec (BT )
vec (DT )

 (3-31)

And a matrix ϕ,

ϕ(k)T =
[

ĈT Âk
T

(∑k−1
τ=0 u(τ)T ⊗ ĈT Âk−τ−1

T

) (
u(k)T ⊗ Iℓ

) ]
(3-32)

the remaining system matrices up to a similarity transform BT , DT and the initial condition
xT (0) can be found by solving the minimization problem given by:

min
θ

1
N

N−1∑
k=0

∥∥∥y(k) − ϕ(k)Tθ
∥∥∥2

2
(3-33)

3-3-2 Implementation

The MOESP algorithm was implemented using the subspace identification toolbox function
n4sid in MATLAB. The model order was determined to be n = 9. The resulting performance
on the test set can be seen in figure 3-3.

3-4 Comparing Linear Models

A comparison of the different models based on root mean square error (RMSE) can be seen
in table 3-1.

ARX DMDc MOESP
RMSE TAir 0.9083 0.8386 0.5873
RMSE TCan 0.7004 0.7569 0.6034

Table 3-1: Comparison of RMSE values of linear models on the test week

The performance of all linear models was compared on the same test set. The ARX model and
the DMDc model had similar performance and the model with the lowest prediction errors on
the test set was the MOESP predictor. The main difference between the DMDc model and
the ARX model is the inclusion of delay embeddings, as well as the inclusion of regulariztation
for the DMDc approach. The state of the DMDc model was equal to the dimension of the
output and did not include any delay embeddings. Furthermore, a time-shift nk for when the
input affects the output was included in the ARX model. However, little significant different
exists between the two approaches, when in comes to the prediction error on the test set.
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Figure 3-3: MOESP predictor performance on the test set

Master of Science Thesis E. Gökalan



24 Linear Modelling

The best predictions were found using the MOESP model, which models a higher-dimensional
linear system (in this case n = 9). In contrast, the DMDc approach only attempts to esti-
mate a two-dimensional system based on the outputs. The higher dimensionality of the
MOESP approach results in better predictions. The underlying system is non-linear and only
a sub-system is being modelled, with the full system that determines the dynamics having a
higher dimensionality. Thus, a higher dimensional linear state space representation will come
closer to the true, high dimensional nonlinear model, than a lower dimensional state space
representation as in the case of the DMDc model.

Since the ARX model is also only using the two dimensional outputs, with an additional
delay embedding to propagate the output, the performance is similar to the two dimensional
representation of the DMDc approach.

A complete comparison of the different linear modelling approaches on the test set can be
seen in figure 3-4. The figure illustrates that the subspace identification using the MOESP
algorithm performed the best. However, the MOESP model still results errors on the test
set of over 1.5C

◦ . This provides motivation to implement models that have non-linearities
encoded in the model structure to improve prediction errors.
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Figure 3-4: Comparing all linear predictors performance on the same test set
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Chapter 4

Long Short-Term Memory Models

Long Short-Term Memory models are a type of gated recurrent neueral network architecture
that is commonly used for time series prediction. It was originally introduced by Hochreiter
(1997) [15]. Like other recurrent neural networks it is a type of black-box model that contains
non-linearities in the form of non-linear activation functions that are combined with linear
weights. Because of their proven capability to predict time series data well, and because of
its successful application in greenhouse climate prediction [34], it was chosen to be included
in the comparison.

4-1 LSTM Cell Architecture

Several variations of LSTMs exist. The one that was used in this thesis is the implementation
that the keras python library is using. This implementation follows the original variation
presented in [15]. Figure 4-1 shows the internal structure of an LSTM cell with its different
gates.

The innovation of LSTMs is the introduction of a memory cell variable ct and gating control
signals it, ft and ot. The propagation of memory overcomes the vanishing gradient problem
during training and captures long term dependencies [30]. The memory cell of an LSTM
functions in the following manner:

A simple recurrent neural network (RNN) takes the input vector st, the (previous) hidden
state ht at time t and computes an intermediate memory cell variable c̃t. The weighted sum
of this intermediate cell state and the previous cell state ct−1 is then added to the weighted
sum of the previous state ct−1 and the forget gating signal ft to produce the new cell state
ct. The new hidden state is then a weighted sum of the output signal ot and the hyperbolic
tangent of the new cell state g(ct). Equations 4-1, 4-2 and 4-3 show the calculation of the
intermediate memory state c̃t, the memory state ct and the hidden state ht, respectively.

c̃t = g (Ucht−1 + Wcxt + bc) (4-1)
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Figure 4-1: Schematic of an LSTM cell [30]

ct = ft ⊙ ct−1 + it ⊙ c̃t (4-2)

ht = ot ⊙ g (ct) (4-3)

The weighted sum from equations 4-2 and 4-3 is an element-wise (Hadamard) multiplication
and is denoted by ⊙.

The three control gating signals it, ft and ot correspond to the input, forget and output gate
of the LSTM cell. Their equations are described by 4-4, 4-5 and 4-6.

it = σ (Uiht−1 + Wixt + bi) (4-4)

ft = σ (Uf ht−1 + Wf xt + bf ) (4-5)

ot = σ (Uoht−1 + Woxt + bo) (4-6)

Like other recurrent neural networks, the weights of an LSTM are trained by using back-
propagation through time (BPTT). For the three gates and the memory cell, the werights to
be trained are Wi, Ui, bi, Wf , Uf , bf , Wo, Uo, bo, Wc, Uc, and bc. These are the parameters that
are updated at each training iteration.

4-2 Default Single Layer LSTM

The application to the green house system followed the example as has been described by
[17], [23], [34]. The implementation outlined in the work by Liu et al. (2022) [23] served as
the basis for the implementation in this thesis. Their approach to forecasting future climate
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trends is rooted in the notion that short-term climate variations play the most relevant role in
the overall climate trajectory. From this notion, a sliding window approach was implemented.

In the implementation of Liu et al (2022) [23] a window size of five was chosen. This meant
that the input signals from time-step one to five were used to predict the climate at time-step
six. After that the window would slide and the inputs from time-step two to six were used to
predict the climate at time-step seven.

The length of this window size is a variable that needs to be redefined for each use case. In
this work, the implementation had a sliding window size of 36, corresponding to three hours
of previous input data. Figure 4-2 depicts the sliding window approach as it was adapted to
for this thesis. Note that the input vector st from figure 4-1 has now been changed to uk with
k being the time-step. This is to be in accordance with the rest of the notation used earlier
and to illustrate that this is the same input vector that was used for the linear methods.
Similarly, the hidden state ht was directly used as the output without any further embedding
layers and thus is referred to as yk.

Figure 4-2: Single layer sliding window LSTM approach based on Liu et al (2022) [23]

The weights of the architecture described by figure 4-2 were trained on the data described in
2-3-1 for ten epochs using BPTT. The resulting predicitons on the test set are shown in figure
4-3. While the error on the first day still is above two degrees, similar to the linear methods,
the LSTM performs better as the week continues and stays below one degree of error for
the canopy temperature and within 1.5 degrees error for the air temperature. Similarly to
the previous models, the air temperature predictions are worse than the canopy temperature
predictions.
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Figure 4-3: Single layer LSTM predictions on the test set
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4-3 Stacked LSTM

The architecture presented in figure 4-2 depicts the default, single layer LSTM architecture.
However, in order to further improve prediction results, different architectures were imple-
mented. Stacking two LSTMs has proven to be able to capture more complex temporal
dependencies [39]. In order to better capture the complex dynamics of the greenhouse sys-
tem, a stacked architecture was implemented using the same sliding window approach that
was applied in the single layer architecture. The same window size of 36 was chosen. An
illustration of how the stacked architecture works, can be seen in figure 4-4. The hidden state
of the first layer is used as the input vector for the second layer. Staying in the same notation
for inputs and outputs, the hidden state of the first layer at time k is denoted by y0

k and the
memory state at time k denoted by c0

k. Consequently, the hidden state of the second layer
at time k is referred to as y1

k and the memory state of the second layer at time k as c1
k. The

input vector at time step k is denoted the same way as in the single layer LSTM as uk.

Figure 4-4: Stacked LSTM Architecture

Because this stacked LSTM architecture now contained more parameters that require training,
the model was now trained for 100 epochs. This stacked architecture was better able to capture
the changing dynamics from the first to the second day and overall had lower prediction errors
over the entire week as shown in figure 4-5. The prediction error stayed within half a degree
for all but the first days of the test set. It also performed significantly better on the first day
when compared to the single layer LSTM.

The stacked LSTM architecture also outperforms the best linear predictor as a forecast model
for the week ahead prediction on the test set. A summary of the RMSE values over the test
sets between the MOESP model, default LSTM and stacked LSTM model can be seen in
table 4-1.
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Figure 4-5: Stacked and Single LSTM Architecture Results on Test Trajectory
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MOESP default LSTM stacked LSTM
RMSE TAir 0.5873 0.5055 0.3234
RMSE TCan 0.6034 0.4916 0.3363

Table 4-1: Comparison of RMSE values of LSTM architectures with MOESP model on the test
set

Table 4-1 and figure 4-5 show that a stacked LSTM architecture can increase the accuracy
of greenhouse climate forecasts over single layer architectures that have been implemented in
the literature [17], [23], [34]. This is because a stacked architecture can capture more complex
dynamics by essentially increasing the memory of the system [39]. Table 4-1 also illustrates
the advantage of LSTM models over the implemented linear models.

4-4 Multiple parallel LSTMs

In an attempt to come up with a further improved LSTM architecture, another approach was
devised. The intuition behind this approach was that the dynamics are different throughout
the day and go through different phases. The dynamics during the day are different when
compared to the dynamics of the night and in the morning and in the evening the rising
and falling temperature dynamics are different from the middle of the day and the middle of
the night. Hence, the idea was to train separate LSTMs that each capture the behaviour of
different sections of the day cycle.

The full day in the simulation consists of 288 time-steps and four main phases of the day were
identified. Each phase was chosen to be of equal length and determined to be 72 time-steps
long. These can be seen in figure 4-6. The first phase is the rising of the temperature , the
second is the evolution during the middle of the day. In the third phase, the temperature
decreases again and in the last phase, the temperature remains at a low level during the night
time.

The training data was then split up according to these four phases and a separate LSTM was
trained for each phase, resulting in four different LSTMs. For each LSTM, the structure that
was used was the default single layer architecture, outlined in section 4-2. This also meant
that the same sliding window approach as was outlined in figure 4-2 was applied. The same
window length of 36 was chosen. An illustration for this multiple LSTM architecture can
be seen in figure 4-7. In the figure, u(k, 36) denotes the 36 previous inputs that correlate to
output y(k) at time k. This means output y(k) is predicted using the k − 36 previous inputs
up to and including input at time k.

Note that each LSTM was trained on data that only consisted on the respective phase of
the day and the predictions are also only limited to the part of the day that the LSTM was
trained for. The first LSTM only predicts from the first to the 72nd time-step of the day, the
second from time-step 73 to 144 and so on. By training each LSTM only on a specific part of
the day, the goal was that this would result in more specialised models that would be better
at predicting the dynamics of each phase of the day. This also meant that each LSTM would
have less training data, since now the same training data was split up between four models.
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Figure 4-6: Division of the day into similar dynamics

Figure 4-7: Multiple parallel LSTM architecture based on similar dynamics of the day cycle
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After the temperatures for each phase of the day are predicted, the predictions are concate-
nated together to form one trajectory. Due to the fact that the predictions of each phase of
the day are done separately, the predictions can contain jumps when concatenating predic-
tions together. In order to avoid this, the internal state from one LSTM was passed onto the
internal state of the LSTM for the following phase. This is possible because all LSTMs have
the same internal structure. It is illustrated in figure 4-7 with the arrows that pass on the
internal state ci from one LSTM to the next.

The resulting predictions of this alternative architecture can be seen in figure 4-8. They are
compared to the predictions of the default single layer LSTM presented in section 4-2. As
can be seen in this figure, the multiple LSTM implementation still contains discontinuous
jumps even though the internal cell states have been passed on. These discontinuous jumps
are due to the fact the internal gates of the LSTM described by equations 4-4, 4-5 and 4-6
also contain the non transferable weights and biases denoted by Wi, Ui, bi, Wf , Uf , bf , Wo, Uo

and bo. These are determined during training and due to the fact that each LSTM is trained
on separate training data, the weights are different for each LSTM. While transferring the
state can bring the predictions closer together and reduce the jumps, it cannot eliminate
the discontinuity. Furthermore, figure 4-8 shows little to no improvement over the default
implementation. Using the same amount of data, the predictions do not appear to be further
improved by dividing the data up and training specialised LSTMs for each phase of the day.

While this alternative approach using multiple parallel LSTMs was proposed to further im-
prove the prediction accuracy, no significant improvement was achieved and the introduced
discontinuity issue is not resolvable. The most accurate LSTM predictor remains a stacked
LSTM architecture.
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Figure 4-8: Multiple parallel LSTM vs Default LSTM on the same day
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Chapter 5

Modelling with Koopman Theory

Koopman operator theory has gained attention in recent years as a novel method to model
nonlinear dynamics. Through data-driven algorithms such as the extended dynamic mode
decomposition (eDMD) [37], it has found applications in the aerospace sector for the control
of cubesats [6], controlling soft robotics [3], quad-rotors [41] and many more. Koopman based
approaches focus on a crucial idea: they elevate the original state space variables using a
nonlinear transformation. This process shifts them into a lifted space where the evolution of
the transformed state space becomes linear. A globally linear representation of the system
can then be used for control or forecast models and promises to yield better prediction results
for nonlinear systems than simple linear models. Finding the transformation that will yield
a linear evolution in the lifted space remains the biggest challenge when applying Koopman
theory in practice [18].

5-1 Koopman Theory

The Koopman operator framework provides a different perspective on dynamical systems.
The following will focus on the discrete-time dynamical system descriptions since this is also
the case of application. The description and equations for this background are taken from
Mauroy et al. [24].
Assuming a discrete time system that evolves through a nonlinear transformation S : X → X,
where the state space X is a finite-dimensional euclidean space, one can describe the system
through its trajectories

{
Sk(x)

}∞

k=0
, with x being an initial condition. The innovation of the

Koopman operator framework is that a system can also be viewed though its output functions
g : X → C, also referred to as observable functions and on the trajectories

{
f
(
Sk(x)

)}∞

k=0
.

The evolution of all observable functions is defined by the (linear) Koopman operator.

definition 5-1.1. Consider a hilbert space of observables g : X → C. The Koopoman operator
KS : H → H associated with the map S : X → X is defined through the composition

g(xk+1) = KSg(xk) = g ◦ F (xk) (5-1)
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The advantage that the Koopman operator framework provides it that it results in a globally
linear system description of a nonlinear systems [37]. The drawback is that, the Koopman
operator is inifinte-dimensional. To overcome this challenge and to be useful in practice, the
goal often is to find a finite dimensional subset of observable functions that can either fully
describe the system dynamics or converges with increasing order such that a truncation at a
sufficiently high dimension of the lifted state will yield a good approximation of the system
dynamics. Several methods for how to find these observable functions have been proposed
[18], [4]. This remains an open research challenge when applying Koopman operator theory
[18].

5-1-1 Extended Dynamic Mode Decomposition

A commonly applied method for approximating the Kooopman operator has been the ex-
tended dynamic mode decomposition (eDMD), proposed initially by Williams et al. [37] and
further extended for control (eDMDc) by Korda et al.[21]. As the name suggests, eDMD is
closely related to the dynamic mode decomposition and the dynamic mode decomposition
with control, described in the section 3-2. However, instead of directly using measurements
of the state to approximate a linear mapping to the next time-step, it takes the state mea-
surements and applies a transformation using the (nonlinear) observables first. This results
in a new, augmented state vector:

g (xk) =


g1 (xk)
g2 (xk)

...
gn (xk)

 (5-2)

Here, xk is the measurement at time k and represents the state space vector. Because eDMD
is related to DMD and DMDc, this approach also assumes direct measurements of the state
are available.

This augmentation to the state measurement, also referred to as lifting, is applied to the
time-series of measurements:

g(X0,N−1) =

 | | |
g (x0) g (x1) · · · g (xN−1)

| | |

 (5-3)

From here on, the algorithm is the same as the DMD. Using a time shift, a second lifted data
matrix composed of shifted snapshots is constructed:

g (X1,N ) =

 | | |
g (x1) g (x2) · · · g (xN )

| | |

 (5-4)

The goal is to find a best fit approximation of the Koopman operator K, that describes the
evolution in the lifted space. The hope is that if the observables were chosen correctly, a best
fit linear mapping between these two lifted time-series should be approximating the Koopman
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operator. This approximation is denoted by K instead of K. The best fit linear approximation
that evolves g(X) to g (X ′) is found by solving the least squares problem:

min
K

∥g (X1,N ) − Kg (X0,N−1)∥F (5-5)

Here, ∥·∥F is the Frobenius norm. The analytical solution to this problem is given by:

K = g (X1,N ) g (X0,N−1)† (5-6)

With † being the Moore-Penrose pseudoinverse.

In practice, this linear regression often includes a regularization term in order to prevent
overfitting of the approximation of Koopman operator K [9].

5-1-2 Generalizing Koopman Theory for Control - KIC

Several expansions for adapting eDMD for control. The most closely related to DMDc is
eDMDc, as described in [21]. This has been the framework commonly applied to estimate
the Koopman operator to systems with inputs [6], [3], [41]. The eDMDc algorithm treats
inputs linearly with respect to the system dynamics. Building on this work, Proctor et al.
[29] developed a generalized framework to also include inputs in the nonlinear observables.
This framework is called Koopman with inputs and control and is referred to henceforth
as KIC. As described in section 2-2 of chapter 2, the inputs and disturbances are treated
as exogenous input signals that evolve independently. Using this information and the KIC
framework described in [29], the definition of the Koopman operator is as follows:

Kg (xk, uk) ≜ g (f (xk, uk) , 0) (5-7)

This formulation explicitly allows for mixed observables, as for example g(x, u) = xu. This is
relevant to the application in the greenhouse since a lot of the dynamics within the greenhouse
climate are nonlinearly evolving as a function of external disturbances, such as the outside
temperature TOut or input signals, such as the temperature of the heating pipe TP ipe.

In order to simplify notation, the observable functions dependent on state measurement x at
time-step k will be denoted as zx,k = gx(xk). Mixed observables, dependent on x and u at
time-step k, the notation becomes zxu,k = gxu(xk, uk) and observables only dependent on the
input u at time-step k are now denoted by zu,k = gu(uk). Using the new notation, equation
5-7 can be rewritten to result in:

 zx,k+1
zxu,k+1
zu,k+1

 =

 G11 G12 G13
G21 G22 G23
G31 G32 G33


 zx,k

zxu,k

zu,k

 (5-8)

Since the goal is not to predict the evolution of the input or the mixed observables, the
formulation of equation 5-8 can be simplified:
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 zx,k+1
zxu,k+1
zu,k+1

 =

 G11 G12 G13
0 0 0
0 0 0


 zx,k

zxu,k

zu,k

 (5-9)

The approximation of the Koopman operator from this KIC framework thus results in the
following formulation:

zx,k+1 = Kzk = K

 zx,k

zxu,k

zu,k

 (5-10)

The approximation of the Koopman operator in the KIC framework can be found in a similar
way as with the eDMD algorithm, as presented in the analytical solution in equation 5-6.
This means that a linear regression including regularization can be used in the KIC approach
as is done in the eDMD algorithm.

5-2 Implementation

5-2-1 Choice of Lifting Functions

The choice of the right lifting functions remains an open challenge [22]. Trying to find a good
basis of lifting functions by using common choices such as radial basis functions or different
polynomial series did not yield any acceptable results. Thus, the choice was made to choose
lifting functions based on the underlying equations of the differential equations that dominate
the dynamics of the temperature.

The underlying differential equations for the two temperatures are given by equation 2-10 and
2-11. The non-zero components of the differential equation for TAir are functions of states
of the system. Stacking all heat transfers of TAir, which are dependent on other states and
inputs, yields the following expression:



HCanAir(TCan, TAir)
HPipeAir(TP ipe, TAir)
RGlobSunAir(uT hScr, diGlob)
HAirFlr(TF lr, TAir)
HAirThScr(uT hScr, TT hScr, TAir)
HAirOut(TAir, TOut, dwind)
HAirTop(TAir, TT op, uT hScr)
HGroPipeAir(TAir, TGroP ipe)


(5-11)

Some heat exchanges depend on states that are not included in the sub-system description that
was outlined in section 2-2. These terms are HAirTop(TAir, TT op, uT hScr), HAirFlr(TF lr, TAir)
and HAirThScr(uT hScr, TT hScr, TAir). These functions were excluded from the set of observable
functions, since they would have required information that was not available to the sub-
system.
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As was mentioned before, in this approach, the output is assumed to be equal to the state.

By sticking with the same notation, this means that xk = yk =
[

TCan

TAir

]
. The state without

any augmentation is typically included in the set of observable functions. Using the notation
from equation 5-10 the terms for zx,k and zxu,k thus become:

zx,k =
[

TCan

TAir

]
(5-12)

zxu,k =



HCanAir(TCan, TAir)
HPipeAir(TP ipe, TAir)
RGlobSunAir(uT hScr, diGlob)
HAirFlr(TF lr, TAir)
HAirThScr(uT hScr, TT hScr, TAir)
HAirOut(TAir, TOut, dwind)
HAirTop(TAir, TT op, uT hScr)
HGroPipeAir(TAir, TGroP ipe)


(5-13)

The term zu,k that refers to observables only dependent on the input uk is chosen to be
simply the input itself. This is because the evolution of the state does not contain nonlinear
dynamics that are only dependent on input uk. Thus, the term for zu,k becomes:

zu,k =



uTGroP ipe

uTP ipe

uroof

uT hScr

diGlob

dTout

dwind


(5-14)

The combined augmented state is a concatenation of zx,k, zxu,k and zu,k. This is expressed
by:

zk =

 zx,k

zxu,k

zu,k

 (5-15)

The approximation of the Koopman operator K, as expressed in equation 5-10 was found
using Tikhonov regularization in the minimization problem given by:

min
K

∥zx,k+1 − Kzk∥F + λ2∥K∥F (5-16)

The implementation of the KIC model used the same change of notation to calculate the
pseudo-inverse as was done for the DMDc algorithm from section 3-2, that was described in
[13]. The implemented KIC model was constructed using the algorithm described by 2:
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Algorithm 2: KIC algorithm
Input: X0,N , Υ0,N

Output: K
1 Define a library of lifting functions g(x, u)
2 Apply the lifting functions to the data matrices Z = g(X0,N−1,Υ0,N−1)
3 Compute V = X1,N ZT

4 Compute M = ZZT

5 Solve the regularized optimization problem as K = V/(M + λIn)

The resulting predictor was applied to the test set. The results when compared to the DMDc
where the state was not lifted, can be seen in figure 5-1. Table 5-1 compares the RMSE values
of the KIC predictor to the MOESP and DMDc predictors:

KIC DMDc MOESP
RMSE TAir 1.1371 0.8386 0.5873
RMSE TAir 1.3369 0.7569 0.6034

Table 5-1: Comparison of RMSE values of KIC predictor with DMDc and MOESP model on the
test set

As can be seen in figure 5-1 and table 5-1, the performance of the KIC predictor is in fact
worse than that of the DMDc and MOESP models that are using a non-augmented state.
Especially during the night time dynamics, where more control is applied to maintain the
temperature inside the greenhouse, the KIC predictor has much larger errors and does not
seem to capture the dynamics.

5-3 Redefining Sub-system Boundaries

The observable functions that were previously used were based on functions describing the
convective heat exchange of the air temperature TAir using the information available to the
defined sub-system. The heat exchanges that determine TCan were left out of the augmented
state. Furthermore, some heat exchanges, which are quite significant contributions to the air
temperature had to be left out from the set of observable functions because they dependent
on terms outside the sub-system boundaries. The most significant heat exchange contributing
to the air temperature TAir in the GreenLight model is the convective heat exchange with
the top of the green house, denoted by HAirT op. Because the temperature of the top TT op

cannot be assumed to be known, the only way to include the dynamics of HAirT op, was to
also predict the temperature TT op.

This meant to increase the dimension of the predictor. In order to predict TT op, the convective
heat exchanges that dominate the evolution of TT op were also included as lifting functions in
the augmented state. The differential equation that describes the evolution of TT op is given
by:

capTop ṪTop = HThScrTop + HAirTop − HTopCov,in − HTopOut (5-17)

Master of Science Thesis E. Gökalan



42 Modelling with Koopman Theory

Figure 5-1: KIC and DMDc predictor performance on the test set
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While some of these heat exchanges could now be calculated with the expansion of the state,
the terms HT hScrT op and HT opCov,in are heat exchanges that could still not be determined.

Thus the temperatures TT hScr and TT opCov,in were also included in the predictor in order to
be able to include HT hScr and HT opCov,in as observable functions in the extended state. The
differential equations for these terms are given by:

capThScr ṪThScr =HAirThScr + LAirThScr + RCanThScr + RFlrThScr + RPipeThScr

− HThScrTop − RThScrCou,in − RThScrSky
(5-18)

capCov,in ṪCov, in =HTopCov,in + LTopCov,in + RCanCov,in + RFlrCov, in

+ RPipeCov,in + RThScrCov, in − HCov,inCov,e
(5-19)

It can be noted that the augmented state quickly grows if all components of the differential
equations are meant to be included. By including TT op, TT hScr and TT opCov,in in the predic-
tions, almost all but five heat exchanges can be included in the extended state. The heat
exchanges that remain undetermined in this expansion of the state are: HCov,inCov,e RFlrCov,in,
LTopCov,in , RFlrThScr and LAirThScr .

Furthermore, the heat exchanges that determine the value for TCan, that are described in
equation 2-11, were now also included as observable functions in the augmented state. Only
two heat exchanges of equation 2-11 remain undetermined with this expansion of the state.
Those are: LCanAir and RCanF lr.

All heat exchanges and their contribution to the dynamics of the temperatures were in-
vestigated and the heat exchanges with the floor (RFlrCov, in , RFlrThScr , RCanF lr) and the
external cover (HCov,inCov,e ) were deemed to be negligible for being warranting an inclusion
in the predictors augmented state.

The significant contributions that remained were the heat exchanges due to condensation,
which were LTopCov,in , LAirThScr and LCanAir. They depend on the vapour pressure vpAir

and vpT op inside the greenhouse, which is also not accessible information for the sub-system
configuration described in 2-2. In order to avoid further extension of the augmented state
and for the purpose of investigating this approach, the vapour pressure vpAir and vpT op were
assumed to be known as external inputs such that the heat exchanges LTopCov,in , LAirThScr
and LCanAir could be included in the augmented state.

The new terms for zx,k and zu,k remain the same, with the addition of vpAir and vpT op for
zu,k. The added heat exchange functions now extend zxu,k to become:
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zxu,k =



HCanAir

HP ipeAir

HAirT hScr

HAirOut

HAirT op

HGroP ipeAir

RGlobSunAir

RP arSunCan

RP ipeCan

RCanT hScr

RCanCovIn

HT hScrT op

HT opCovIn

HT opOut

RP ipeT hScr

RT hScrCovIn

RP ipeCovIn

LAirT hScr

LT opCovIn



(5-20)

With this expansion, the sub-system now takes on the form as shown in figure 5-2. As can
be seen, the extra inputs vpAir and vpT op are assumed to be known in this figure.

Figure 5-2: Expanded system for investigating KIC approach
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The resulting predictions from this expanded system can be seen in figure 5-3. The expanded
KIC approach is compared to the DMDc predictor that does not have the augmented state.

Figure 5-3: Expanded system KIC and DMDc performance on test set
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5-4 KIC Problem Analysis

It is noteworthy that on the first day of the expanded system configuration, the KIC predictor
seems to have a minor advantage over the DMDc predictor, but over the rest of the test week,
it performs a lot worse with an increasing drift of the error. In order to understand why, the
performance of the two predictors on a week of the training set was investigated. The two
predictors are compared for the air temperature TAir on a week in the training set where little
control action was taken. The control inputs in question were the pipe temperature TP ipe and
the thermal screen input uT hScr and were plotted over the predictions of the air temperature
from both KIC and DMDc predictors. This is shown in figures 5-4 and 5-5, respectively.

Figure 5-4: Comparison of DMDc and KIC predictor on training set with less TP ipe control
action

As can be seen in these figures, the KIC predictor performs better during the day on this
week of the training set than the DMDc predictor. Furthermore, it can be noted that the
largest errors for the KIC predictor are correlated when more control action is taken. That
means when the pipe temperature is much higher than air temperature or when the thermal
screens are active. This can be contrasted to a week that is earlier in the training set where
more heating occurs and overall more control action is applied to the greenhouse. The control
action and the correlated predicted temperatures are shown in figure 5-6 and 5-7.

The most notable difference between 5-6 and 5-4 is that in the former, the more heating occurs
also throughout the day. Furthermore, the week depicted in 5-4, shows a heating process with
only one peak during the night. In figure 5-6 the heating occurs with more constant control
action to keep the heating at a certain level during the night as well as with peaks at the end
of the night and the end of the day. It is notable that there is a strong correlation with spikes
of the pipe temperature TP ipe and larger errors of the KIC predictor. While there is also some
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Figure 5-5: Comparison of DMDc and KIC predictor on training set with less uthScr control
action

correlation with the thermal screen opening and closing, the thermal screen also is strongly
correlated with the heating pipes since they work together to heat the greenhouse. Another
notable difference is that there is a much higher frequency in the closing of the thermal screen
during the week depicted in 5-7 than in 5-5. The thermal screens in week 5-7 are also closed
for longer.

5-4-1 KIC Problem Explanation

The correlation between the error and the heating pipe and thermal screen actuation is likely
due to the fact that dynamics related to the heating of the greenhouse remain not included in
the augmented state. This explains the difference between the performance of the predictor
when there is little heating, where the KIC predictor performs relatively well compared to
the DMDc predictor, and the poor performance when a lot of heating actuation occurs. This
is also reflected in the later half of the test set depicted in figure 5-3.
A likely explanation is that some heat exchanges that were not included as lifting functions
are resulting in the increasing error of the KIC predictor. The heat exchanges with the floor
were not included in the set of observable functions due to the fact that those dynamics were
deemed negligible. However, the temperature of the floor is also strongly correlated with the
heating pipe temperature TP ipe. Thus, excluding the convective heat exchange between the
air and the floor temperature, is a possible explanation for why there continues to be large
errors when a more temperature control action is applied.
This can be explained from the Koopman theory perspective. From [27], we can state that if
the Koopman operator has sufficient eigenfunctions, it might be possible to discover nonlinear
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Figure 5-6: Comparison of DMDc and KIC predictor on training set with more TP ipe control
action

Figure 5-7: Comparison of DMDc and KIC predictor on training set with more uthScr control
action
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transformation with observable function, where the behavior becomes linear, at least in a
specific part of the state space. This transformation can be done using the eigenfunctions
of the Koopman operator K. Unfortunately, these eigenfunctions are unknown and infinite
dimensions are not practical to work with. The hope is that there exists a finite dimensional
subspace SN that is invariant under K. The projection of K onto the invariant subspace SN

has been denoted by K. It is also not known if such an invariant subspace exists.

It was hypothesised that the functions that determine the differential equations of the outputs
TAir and TCan would span the invariant subspace SN s.t. Kg(x) = Kg(x) for any g(x) ∈ Sn.
In most cases, K is an approximation of K that pointwise converges to K as n → ∞.

An expansion of the system as illustrated by figure 5-2 was used to include more heat ex-
changes in the set of observable functions g (xk, uk) = [g1 (xk, uk) , g2 (xk, uk) , . . . gn (xk, uk)]T .
This increase in dimension n did not yield better results for the entire dynamics of the system.

An explanation for this is that the state xk and input uk available to the observable functions
g (xk, uk), was first limited to the outputs and inputs of the sub-system in figure 2-2 and
then to the sub-system illustrated by 5-2, while the true dynamics of the simulation also
include terms that influence the dynamics of the air temperature that are not included in
either sub-system boundaries (such as the floor temperature TF lr).

In short, the set of observables in the first configuration did not span a Koopman invariant
subspace Sn and while the expanded system with a larger set of observables showed some
improvement for certain dynamics, it still failed to fully span an invariant subspace Sn and
was not useful for longer forecasts. However, the correlation of the error with the actuator
of the heater that is also strongly correlated with the floor temperature TF lr indicates the
source of the error. Furthermore, it seems that the a Koopman invariant subspace Sn is
at least partially spanned with these lifting functions, even if that still does not result in a
reliable predictor.

A different approach that was not explored is to discover observable functions from the data.
One option would be sparse regression of a dictionary of functions like in the Sparse Regression
of Nonlinear Dynamics with Control (SINDYc) [4] or learning the observable functions using
an artificial neural network as was done by Han et al. (2020) [14].

Finding the correct set of observable functions that will span a Koopman invariant subspace
remains the main challenge when applying Koopman theory to real systems. In the expanded
system that was presented in this chapter, the invariant subspace could only be partially
spanned. The implementations and the necessity to expand the sub-system also illustrate
the difficulty of finding the Koopman invariant subspace when the true dynamics are higher
dimensional and only part of the state is available. To overcome this issue, the ground truth
model should either be reduced or the entire state of the system should be predicted such
that the lifted state can include observable functions that include nonlinear dynamics of the
full state space.
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Chapter 6

Models for Predictive Control

Apart from forecast models for economic predictions and decision making for the grower,
another application of prediction models in greenhouses is for model predictive control.

Model predictive control has become has become a very popular control strategy and has seen
applications in many industries. It is based on a rolling forecast model between the current
time step k and k + m, where m is the prediction horizon. The number of future time steps
from k to k + p for which optimal control inputs are determined is called the control horizon.
This optimal control input calculation is done using a receding horizon as illustrated in figure
6-1.

The first part of this chapter will focus on evaluating the previously derived predictors on
their performance for a model predictive control strategy. In the second part, the data
enabled predictive control algorithm that is specifically designed for the application in control
is presented and implemented and compared to the previously derived models. Lastly, an
extension of the data enabled predictive control algorithm is proposed, implemented and
compared.

Figure 6-1: Receding Horizon Principle of MPC[10]
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6-1 Methodology

Model predictive control implementations use a moving horizon and perform a new prediction
of the trajectory at each time-step. To evaluate the different models for their performance in
an MPC implementation, the predictions are evaluated on their accuracy. The control action
is left out as this is only a comparison of prediction accuracy. The predictions at each time-
step are evaluated by calculating the root mean square error (RMSE) between the predicted
trajectory and the true trajectory. Since a new prediction is performed at each time-step
of the trajectory, the RMSE values of each prediction are then plotted for each time-step.
This gives an indication for how accurate the model predicts in an MPC implementation for
the chosen prediction horizon. The prediction horizon is set to be 12 time-steps, which is
equivalent to one hour.
A schematic of how the performance of the predictors is evaluated is shown in figure 6-2. A
lower RMSE value along the trajectory means more accurate predictions in that region and
a lower overall RMSE means better performance for an MPC implementation.

Figure 6-2: Figure illustrating the evaluation of the prediction perfromance for MPC

6-2 LSTM and Linear Models for Predictive Control

The previously implemented Linear Models are reconfigured to perform the predictions ac-
cording to figure 6-2 and the RMSE of the predictions happening at each time-step is calcu-
lated and plotted along the trajectory. The linear models were given a new initial state at
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each time-step and the prediction length was changed from previously a week to one hour.
The same was done for the stacked LSTM model, except without an initial state since the
LSTMs do not make use of initial states. The resulting RMSE values over the first day of the
test trajectory can be seen in figure 6-3. As can be seen in this figure, the models with better
forecast performance also performed better in this metric, with the ARX and the DMDc
models having the highest RMSE values. The MOESP and stacked LSTM model performed
best overall. While the stacked LSTM had better performance for the week ahead prediction,
there is not a notable difference on this metric that evaluates the performance of one hour
ahead predictions.

Figure 6-3: Compare Linear Models and stacked LSTM on their moving horizon prediction
accuracy with the prediction horizon set to 12 time-steps
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6-3 Data-Enabled Predictive Control

A recent approach that has combined behavioural system representation and sequential sys-
tem identification is the so called Data-Enabled Predictive Control (DeePC) approach pro-
posed by [8]. Its main contribution is the integration of system identification within a model
predictive control algorithm. The following section will explain the theory behind the DeePC
as well as its implementation and evaluation on its predictive performance for a model pre-
dictive control framework. The description of the DeePC algorithm is following the original
explaination from Coulso et al. (2018) [8].

6-3-1 Background

Non-Parametric system representation

According to Willem’s behavioral theory, the definition of a dynamical system consists of three
elements. These elements determine the subspace of the signal space in which the system’s
trajectories exist. Using this way of describing a system, behavioral system theory has the
capability to describe the characteristics of a dynamical system without being reliant on any
specific parametric representation of the system. How a dynamical system can be defined by
its behaviour alone is given by [8] and is fully described by the following definitions:

Definition 1 Dynamical system is a 3-tuple (Z>0,W,B) where Z>0 is the discrete-time axis,
W is a signal space and B ⊆ WZ≥0 is the behavior.

Definition 2: Let (Z>0,W,B) be a dynamical system.
(i) (Z>0,W,B) is linear if W is a vector space and B is a linear subspace of WZ≥0

(ii) (Z>0,W,B) is time invariant if B ⊆ σB where σ : WZ≥0 → WZ≥0 is forward time shift
defined by (σw)(t) = w(t + 1) and σB = {σw | w ∈ B}.
(iii) (Z>0,W,B) is complete if B is closed in the topology of pointwise convergence.

When fulfilling condition (i) and (ii), fulfilling condition (iii) is equivalent to W being finite
dimensional. Furthermore, the class of systems

(
Z>0,Rnu+ny , B

)
is denoted by L nu+ny ,

where nu, ny ∈ Z>0.

Now that this has been defined, we create a set called:

BT =
{

w ∈
(
Rnx+nu

)T
∃v ∈ Bs.t.wt = vt, 1 ≤ t ≤ T

}
.

This contains trajectories of length T . It is assumed that the set B can be broken down into
two parts, Bu and By. Bu represents the input signals, and By represents output signals.
They are defined as Bu = (Rm)Z≥0 and By ⊆ (Rp)Z≥0 . Essentially, any trajectory in B can
be represented as a linear combination of input and output signals. This is formulated as any
trajectory w ∈ B can be expressed as w = col(u, y), with col(u, y) :=

(
uT , yT

)T
. Next, the

following two definitions are about two important concepts: controllability and persistency
of excitation:

Definition 3: A system is controllable if for every T ∈ Z>0, w1 ∈ BT , w2 ∈ B there exists
w ∈ B and T ′ ∈ Z>0 s.t. wt = w1

t for 1 ≤ t ≤ T and wt = w2
t−T −T ′ for t > T + T ′.

Master of Science Thesis E. Gökalan



54 Models for Predictive Control

This essentially means that a behavioral system is controllable if you can connect any two
trajectories in a finite amount of time. Lastly, the definition for persistency of excitation is
as follows:

Definition 4: Let s, T ∈ Z>0 s.t. T ≥ s. The signal w = col (w1, . . . , wT ) ∈ RT nu is
persistently exciting of order L if the Hankel matrix

HL(w) :=

 w1 · · · wT −s+1
... . . . ...

ws · · · wT

 (6-1)

is full row rank.

Parametric system representation

Equivalently, behavioural systems can also be represented in a parametric, state space repre-
sentation. This is denoted by B(A, B, C, D) =

{
col(u, y) ∈

(
Rnx+nu

)Z≥0 | ∃x ∈ (Rn)Z≥0 s.t.
σx = Ax + Bu, y = Cx + Du}.

The smallest number of parameters for an input/output/state representation, is called a
minimal representation. It is referred to with the notation n(B) to refer to its size. Another
important system property is lag. This is the smallest positive whole number, denoted as
ℓ ∈ Z>0, s.t. the observability matrix described by Oℓ(A, C) := col

(
C, CA, . . . , CAℓ−1

)
has

rank n(B). This lag is referred to as ℓ(B). Lastly, the lower triangular Toeplitz matrix is
denoted by:

TN (A, B, C, D) :=


D 0 · · · 0

CB D · · · 0
... . . . . . . ...

CAN−2B · · · CB D

 (6-2)

With these definitions, uniqueness for the trajectory of the system can be inferred using the
following lemmas:

Lemma 6-3.1. Let B ∈ Lnx+nu and B(A, B, C, D) a minimal input/output/state represen-
tation. Let Tini, N ∈ Z>0 with Tini ≥ ℓ(B) and col (uini, u, yini, y) ∈ BTini +N . Then there
exists a unique xini ∈ Rn(B) such that:

y = ON (A, C)xini + TN (A, B, C, D)u (6-3)

This result means that if we have enough data about the initial state of a system and the
inputs it receives over a significant period, we can uniquely determine the state the system
will end up in. Additionally, if we know certain mathematical matrices (A, B, C, D), we can
calculate the exact initial state (xini) of the system.

The following lemma is known as the Fundamental Lemma in behavioural systems theory:
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Lemma 6-3.2. Consider a controllable system B ∈ Lnx+nu. Let T, s ∈ Z>0, and w =
col(u, y) ∈ BT . Assume u to be persistently exciting of order s+n(B).Then colspan (Hs(w)) =
Bs.

What this effectively means is that given input-output dataset (u[0, T − 1], y[0, T − 1]), rep-
resented in a Hankel matrix as described by:

[
U0,s,T −s+1
Y0,s,T −s+1

]
=



u(0) u(1) . . . u(T − s)
u(1) u(2) . . . u(T − s + 1)

...
... . . . ...

u(s − 1) u(s) . . . u(T − 1)
y(0) y(1) . . . y(T − s)
y(1) y(2) . . . y(T − s + 1)

...
... . . . ...

y(s − 1) y(s) . . . y(T − 1)


(6-4)

And assuming the underlying system can be represented by a Linear Time-Invariant system,
is controllable, observable and u[0, T − 1] is persistently exciting of order nx + s, then any
s-long trajectory can be expressed as:

[
u[0,s−1]
y[0,s−1]

]
=
[

U0,s,T −s+1
Y0,s,T −s+1

]
· g (6-5)

with g ∈ RT −s+1. This fundamental lemma is what is utilized for predicting future trajecto-
ries. Using a T -long input output trajectory, a linear combination of the columns of the block

hankel matrix
[

U0,s,T −s+1
Y0,s,T −s+1

]
will give an s-long input-output trajectory of the system.

6-3-2 Prediction Model of DeePC

The underlying assumption is that input-output data (ud, yd) of an unknown controllable LTI
system B ∈ Lnx+nu with a minimal representation B(A, B, C, D) is collected. An important
aspect to consider is making sure that this data accurately represents the system’s behavior.
This means that the input sequence needs to be persistently exciting for a duration equal to
T + n(B) to meet Willem’s fundamental lemma. For it to be persistently exciting, it also
needs to have at least a certain length, which is given by the inequality:

T ≥ (nu + 1) (s + n(B)) − 1 (6-6)

For the purpose of prediction, the input-output data is partitioned into two halves, which are
referred to as past and future. Note that the term future in this context is referring to the
second half of the block Hankel matrix and does not contain actual future values that will be
predicted. Past and future block Hankel matrices are both created from previously generated
data. The depth of past and future block Hankel matrices are denoted as Tini ∈ Z>0 and
N ∈ Z>0, respectively. The partitioned Hankel matrices are denoted as:
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(
Up

Uf

)
:= HTini +N

(
ud
)

,

(
Yp

Yf

)
:= HTini +N

(
yd
)

(6-7)

Using Lemma 6-3.2 and the partitioned hankel matrices, a trajectory of length Tini +N for the
system BTini+N can be constructed. In fact, a trajectory represented as col (uini, uN , yini, yN )
is only part of BTini +N if and only if there is a g ∈ RT −Tini−N+1 that satisfies the condition:


Up
Yp
Uf
Yf

 g =


uini
yini
uN

yN

 (6-8)

In a model predictive control implementation, this linear relationship described by 6-8 is used
as a linear constraint in the optimization problem for the optimal control input. However,
since the focus here is on prediction only, the algorithm is modified.

The partitioned matrices are leveraged to formulate an optimization problem to first find the
value for g by solving:

min
g

∥uf − Uf · g∥
s.t. [

Up

Yp

]
· g =

[
uini
yini

] (6-9)

Subsequently, this g, together with the block Hankel matrix Yf , is used to make a prediction
through the relation yN = Yf · g. In the next step, the initial values uini and yini are shifted
by one time-step, a new optimal g is found, and through a new multiplication with Yf , the
next prediction yN is found.

6-3-3 Implementation with Greenhouse Data

A description of the adapted DeePC algorithm is given by

Algorithm 3: DeePC based predictor
1 Define T ,Tini, and N s.t. inequality 6-6 is satisfied
2 Collect previous input output data sequences of length T + Tini + N
3 Construct Hankel matrices Up, Yp, Uf and Yf

4 while True do
5 Define uini, yini, and uN

6 Compute g by solving the optimization problem 6-9
7 Compute and store the predicted output sequence yN = Yf · g
8 Shift by one time-steps
9 end while
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The prediction length N was set to 12 in order to be evaluated on the same metric that the
other models were evaluated on. The length of Tini was set to 5-steps, through experimenta-
tion. This meant that five time-steps were used for the constraint in the optimization problem
described by 6-9.

The length T of the input-output signal was set to 4320 time-steps or equivalent to 15 days
worth of data. This meant that the training set for this prediction algorithm was less than
that of the previously implemented methods. This is because the longer the value of T , the
more computationally intensive the problem becomes, where at some point the computational
time exceeds the time until the next time-step. Thus only the 15 days of the training set right
before the test set were taken.

The linear least squares problem from equation 6-9 was solved using the built-in MATLAB
function lsqlin using the interior-point algorithm.

The resulting RMSE values for the hour ahead predictions along the first day of the test set
can be seen 6-4. Included in the figure are the RMSE plots of the MOESP and LSTM predictor
from figure 6-3, since they were the two best performing from the previous comparison.

As can be see in figure 6-4, the DeePC algorithm has mostly lower RMSE values along the
first test day than the other two predictors with only a spike for the air temperature RMSE
at around time-step 190, which exceeds the RMSE of the LSTM and MOESP. For the canopy
temperature predictions, the RMSE values almost entirely fall below the ones of the LSTM
and MOESP predictor.

Both MOESP and DeePC make use of block Hankel matrices. The difference lies in the fact
that DeePC does not explicitly solve for system matrices (A, B, C, D). Rather, it attempts
to find a linear relation g from the block Hankel matrices directly. While the simulation
of the trajectories using MOESP uses one initial state, in the DeePC implementation, the
Tini previous outputs are used as a constraint to calculate g. This means that the DeePC
algorithm has more initial information around the dynamics close to the prediction, which
can explain the improved performance over MOESP.

6-4 Extending Data Enabled Predictive Control

This section will focus on a proposed extension to the Data-Enabled Predictive Control algo-
rithm. This extension seeks to combine the regular DeePC algorithm with the KIC framework.
This proposed method will be referred to as extended DeePC or eDeePC.

As was shown in chapter 5, the Koopman with inputs and control (KIC) framework seeks to
approximating the Koopman operator of a system by augmenting the state with nonlinear
functions. The motivation is to ultimately end up with a predictor that better reflect the
underlying non-linear system. Including the benefits of accounting for the non-linear dynamics
of the system while making use of the integrated formulation of DeePC for model predictive
control, is the purpose of this extension.

First the background behind why this extension seems feasible is discussed.
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Figure 6-4: Comparison of DeePC, MOESP and stacked LSTM on their moving horizon predic-
tion accuracy with the prediction horizon set to 12 time-steps
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6-4-1 Connecting generalized Koopman to DeePC

In the KIC framework described in chapter 5, the correct choice of observable functions
g(x, u) = [g1(x, u), . . . , gm(x, u)] can result in a linear system representation for nonlinear
dynamics. This equivalent system can be represented as:

zx,k+1 = K

 zx,k

zxu,k

zu,k

 (6-10)

Using the same notation as in chapter 5, the obsevables at time step k that are dependent on
both input and output are denoted as zxu,k = gxu(xk, uk). The ones at time-step k that are
only dependent on on the input u are denoted as zu,k = gu(uk) and the ones only dependent
on x at k are denoted as zx,k = gx(xk).

The formulation of equation 6-10 serves to illustrate that in the KIC framework, the evolution
of the state occurs in a linear and time invariant manner.

The reason for why this is the case is that the observables can be written as linear combinations
of the eigenfunctions of the Koopman operator [29]:

g(x, u) =


g1(x, u)
g2(x, u)

...
gm(x, u)

 =
∞∑

j=1
φj(x, u)vj (6-11)

Where the term vj is also commonly referred to as the Koopman modes. This can further be
expressed with relation to the Koopman operator, since the eigenfunctions span the operator
as:

Kg (xk, uk) = g (f (xk, uk)) =
∞∑

j=1
λjφj (xk, uk) vj (6-12)

A finite dimensional approximation of the Koopman operator occurs when the lifting functions
span a Koopman invariant subspace Sn. Thus, given set of observables that spans an invariant
subspace of the Koopman operator of the underlying system, then the lifted state space will
linearly span the output space. In other words, the behaviour of the system in the lifted space
will be linear.

6-4-2 Connection to Willem’s fundamental Lemma

Willem’s fundamental Lemma aims to describe the behaviour of an LTI system B(A, B, C, D),
described by:

xk+1 = Axk + Buk

yk = Cxk + Duk

, (6-13)
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With Hankel matrices of the input and output dataset (ud[0, T −1], yd[0, T −1]), as described
by equation 6-4. Given that this system is controllable, observable and that the input signal
ud[0, T −1] is persistently exciting of order nx + t, then any s-long trajectory can be expressed
as a linear combination of the concatenated Hankel matrix 6-4. The term nx here refers to
the order of the minimal realization of the LTI system.

The proposal of the extended dynamic mode decomposition is to describe the behaviour
of the LTI Koopman representation, given by 6-10, through a linear combination of lifted,
input-output Hankel matrices.

The input-output data set (ud[0, T −1], yd[0, T −1]) are transformed with the set of observable
functions

g(x, u) =

 gx(x)
gxu(x, u)

gu(u)

 =

 zx

zxu

zu

 (6-14)

These new coordinates are used to construct the block Hankel matrices of depth s, using
input-output data of length T .

 Zx[0,s,T −s+1]
Zxu[0,s,T −s+1]
Zu[0,s,T −s+1]

 =



zx(0) zx(1) . . . zx(T − s)
...

... . . . ...
zx(s − 1) zx(s) . . . zx(T − 1)

zxu(0) zxu(1) . . . zxu(T − s)
...

... . . . ...
zxu(s − 1) zxu(s) . . . zxu(T − 1)

zu(0) zu(1) . . . zu(T − s)
...

... . . . ...
zu(s − 1) zu(s) . . . zu(T − 1)



(6-15)

From the linear description of the system in the Koopman invariant subspace it follows that
the behaviour B(K) of the controllable system can be expressed as a linear combination in
the lifted space as:

 zx[0,s−1]
zxu[0,s−1]
zu[0,s−1]

 =

 Zx[0,s,T −s+1]
Zxu[0,s,T −s+1]
Zu[0,s,T −s+1]

 · g (6-16)

That is given the conditions of persistency of excitation and controllability from Lemma 6-3.2
are fulfilled.

6-4-3 Prediction Model of extended DeePC

The same lifting functions for zx zxu and zu described in chapter 6-3 by equations 5-12, 5-13
and 5-14 were used for the implementation of the extended DeePC algorithm. Since zx = y
and zu = u in this formulation, the block Hankel matrices became:

E. Gökalan Master of Science Thesis



6-4 Extending Data Enabled Predictive Control 61

 Y[0,s,T −s+1]
Zxu[0,s,T −s+1]
U[0,s,T −s+1]

 =



y(0) y(1) . . . y(T − s)
...

... . . . ...
y(s − 1) y(s) . . . y(T − 1)
zxu(0) zxu(1) . . . zxu(T − s)

...
... . . . ...

zxu(s − 1) zxu(s) . . . zxu(T − 1)
u(0) u(1) . . . u(T − s)

...
... . . . ...

u(s − 1) u(s) . . . u(T − 1)



(6-17)

The same approach to predict future outputs as for DeePC was used. The condition for per-
sistency of excitation has to be checked since n(B(K)) is larger than the minimal realization
of the system B(A, B, C, D) due to increased dimension of the lifted state.

Using the collected data, the block Hankel matrices are divided up into past and future as
was done in subsection 6-3-2, now with the addition of a block Hankel matrix that contains
the nonlinear transformation using the observable functions:

(
Up

Uf

)
:= HTini +N (ud) ,

(
Yp

Yf

)
:= HTini +N (yd) ,

(
Zxup

Zxuf

)
:= HTini +N (gxu(x, u))

(6-18)

The partitioned matrices are then also used in the same way as was done in the DeePC
approach to first find an optimal g solving the optimization problem given by:

min
g

∥uf − Uf · g∥
s.t.  Up

Zxup

Yp

 · g =

 uini
zxuini

yini

 (6-19)

This g is then used as before with the stacked block Hankel matrix Yf and Zxuf
, to find

the prediction through the relation
[

yN

zxuN

]
=
[

Yf

Zxuf

]
· g. From this, the prediction yN is

trivially recovered. Note that the future values of the observables zxuN are not of interest in
this application. In the next step, the initial values uini, yini and zxuini are shifted by one
time-step. In the next time-step, a new optimal g is found and with Yf , the next prediction
yN is found.

It has to be noted that the formulation of the optimization problem 6-19 only works linearly
for prediction. For an MPC application, the future values of zxuN are a free variable in
the optimization since it depends on the input u. In DeePC, all matrices are used as linear
constraints as described in equation 6-8. Since zxuN is a result of the nonlinear transformation
zxu = gxu(x, u), this would not function as a linear constraint for the optimization of u as it
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would be a nonlinear constraint. Other methods to overcome this challenge for the application
in control have to be found.

For the purpose of investigating this approach and to only compare the predictive performance
to the regular DeePC, the formulation of the problem in 6-19 works. The implemented
algorithm is described as follows:

Algorithm 4: extended DeePC predictor
1 Define a library of lifting functions g(x, u)
2 Define T ,Tini, and N s.t. inequality 6-6 is satisfied
3 Collect previous input output data sequences of length T + Tini + N
4 Apply the lifting functions to the input output sequence zk = g(xk, uk)
5 Construct Hankel matrices Up, Yp, Uf , Yf , Zxup , Zxuf

6 while True do
7 Define uini, yini, uN , zxuini

8 Compute g by solving the optimization problem 6-19
9 Compute and store the predicted output sequence yN = Yf · g

10 Shift by one time-steps
11 end while

Using the same values as the DeePC with N = 12, Tini and T = 4320, the resulting comparison
can be found in figure 6-5. The length of the input-output data T = 4320, still satisfied the
condition for persistency of excitation even with increased augment state representation of
B(K). As can be seen in figure 6-5, the regular DeePC approach does perform on average
better than the extended DeePC approach. Only at a peak around time-step 180, the extended
DeePC has a lower RMSE value and it has much higher peaks at the beginning than the
DeePC approach.

6-4-4 Problem explanation for eDeePC

The likely explanation as to why the extended DeePC algorithm did not improve the pre-
diction error over the test day is that as was shown in chapter 5, the set of chosen lifting
functions does not span the Koopman invariant subspace Sn. In order to verify this, a day in
the training set was also investigated in order to further evaluate the predictor performance.
The result can be seen in figure 6-6. As can be seen in this figure, the extended dynamic
mode decomposition also performs worse on the training set.

The next step would be to further expand the system as was done in chapter 5 to see if the
extended DeePC would have a better performance on a day where the KIC implementation
seems to at least partially span a Koopman invariant subspace. However, the problem here
would became that if the state was expanded to the formulation of zxu from equation 5-20, the
size of the block Hankel matrix significantly increased to the point that computational time
to solve the least squares problem with the linear constrains 6-19 became computationally
too expensive.

Furthermore, the individual trajectories were quite well approximated using the linear DeePC
algorithm because at the time horizon of 12 time-steps, the evolution of the trajectories
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Figure 6-5: Comparison of DeePC, and extended DeePC on their moving horizon prediction
accuracy with the prediction horizon set to 12 time-steps on the first day of the test set
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Figure 6-6: Comparison of DeePC, and extended DeePC on their moving horizon prediction
accuracy with the prediction horizon set to 12 time-steps on a day during the training set
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is close to linear. This becomes clear in the comparison of the MOESP and the LSTM
predictor. While the MOESP predictor showed significant improvement in the longer week
ahead prediction when compared to the MOESP predictor, it performed very similar on the
short time horizon of one hour. Thus, it remains questionable to what degree the nonlinear
embedding of the extended DeePC can provide any improvements on the short time horizon
of one hour in the application of a greenhouse system.

To evaluate and validate the extended DeePC approach, the algorithm should be tested on a
smaller dimensional system where the observable functions of a Koopman invariant subspace
are known.

6-5 Discussion

Several forecast models were reconfigured and compared for the short horizon prediction of
one hour. It was shown that the nonlinear stacked LSTM model, that showed significant
improvements over linear model in the forecast comparison, was performing similarly to the
linear models on the shorter time horizon. This is to indicate that nonlinear models do not
yield significant performance gains on the shorter time horizon that is typically implemented
for a model predictive control strategy in a greenhouse.

Subsequently, the DeePC algorithm was implemented and included in the comparison. It
showed an overall improved performance over the stacked LSTM and MOESP models while
still having a spikes at certain points of the trajectory. The spikes and and more abrupt
changes in prediction accuracy is due to the fact that a least squares problem with linear
constraints is performed at every time-step. The other models are identified once and then
the same model is used to predict the one hour ahead trajectory at every time-step, which
resulted in a smoother trajectory.

The extended DeePC was proposed and implemented. However, it failed to show any im-
provements over the regular DeePC on both test and training data. This is likely due to
the fact that the chosen lifting functions did not fully span the Koopman invariant subspace
as was explained in chapter 5. When trying to use the expanded system representation,
computational costs became too expensive.

The result from the stacked LSTM further suggests that non-linear models likely provide
little benefit for predicting on a one hour time-horizon in the greenhouse climate. Thus the
extended DeePC algorithm should be tested on a system where there are gains to be had
when accounting for non-linearities.
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Chapter 7

Conclusion

7-1 Summary

This thesis project aimed to compare various data driven modelling approaches and eval-
uate their accuracy on different time horizons. A special focus was set on whether or not
Koopman operator based predictors would be able to represent the climate dynamics within
a greenhouse. Furthermore, a comparison was made between nonlinear and linear modelling
methods for a week long time horizon and a time horizon of one hour.

In the first chapter, the ground truth model that was used to generate the climate data was
presented. This generated input-output data was used to create the data driven models in
subsequent chapters. The purpose of this was to introduce the reader to the greenhouse
system and further illustrate the underlying dynamics to be modelled by the data driven
approaches. Furthermore, the sub-system to be approximated was defined, as well as the test
and training data sets.

In the next chapter, the linear models were introduced, implemented and compared. The ones
included in the comparison were an ARX model, a DMDc model and a subspace identification
model based on the MOESP algorithm. These models were compared on the one week
prediction horizon and it was found that the MOESP algorithm resulted in the best predictive
model for the one week time horizon amongst the linear models.

Chapter 4 introduced LSTM modelling approaches. Different implementations of LSTM
models were explored and it was shown that for a prediction horizon of one week, a stacked
LSTM architecture would outperform the best linear model forecast. The subsequent chapter
went over the Koopman based predictor implementation, which was the other non-linear
modelling approach included in this comparison. It was shown that for the chosen sub-system,
using lifting functions based on the underlying differential equations of the simulation did not
result in a Koopman invariant subspace and did not improve predictions over the DMDc
predictor that did not use a lifted state. After expanding the sub-system to be able to
include more nonlinear dynamics in the lifted state, the Koopman based predictor showed
improvements over the DMDc predictor on certain sections of the training set. These were
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sections with less control actuation from the heating pipe and thermal screen. The heat
exchange dynamics closely correlated heating pipe temperature remained excluded from the
lifted state due to the choice of the sub-system borders. It was concluded that this correlation
between control actuation and accuracy of the Koopman based predictor likely meant a partial
spanning of the Koopman invariant subspace with the error resulting from the dynamics
excluded from the lifted state.

Lastly, the prediction models were also evaluated on a one hour time horizon with the ap-
plication of control in mind. Of the previously implemented prediction models, it was shown
that the advantage of the stacked LSTM model over the one week time horizon diminished on
the one hour time horizon, indicating that for the purpose of predictive control models, there
seems to not be a significant advantage of using a non-linear LSTM model over linear meth-
ods. Furthermore, the DeePC algorithm was adapted to be included in the comparison to
evaluate its predictive performance as an algorithm specifically designed for model predictive
control. The DeePC algorithm outperformed both the stacked LSTM as well as the MOESP
algorithm on the test day. Additionally, an extension to the DeePC algorithm was proposed.
The extension proposed to include lifted states as was done in the Koopman operator based
predictor with the idea to improve predictions embedding the relevant nonlinear dynamics
in the Hankel matrices. This extension, however, did not result in improved predictions,
likely cause the choice of lifting functions did not span a Koopman invariant subspace as was
previously shown.

7-2 Answer to the Research Question

The main research question was posed as:

How do different data-driven modelling approaches compare as forecast and predictive
control models when applied to greenhouse data?

In order to answer this question, the proposed sub-questions were answered.

• How does the selection of linear models compare to the selection of nonlinear models for
the purpose of week ahead forecasts?
Of the linear model, the one with the most parameters using the MOESP algorithm
performed the best on the week ahead forecast test set. However, all linear models
performed worse than the LSTM implementations. Of the LSTM implementations, the
stacked architecture performed the best, by being able to encode more of the longer
term dynamics in its weights. The KIC implementation had several issues and did not
provide any significant improvement over the non-lifted DMDc implementation. Even
when the boundary of the sub-system was expanded, the predictor did not improve
performance significantly on the test set and only showed minor improvements on some
dynamics of the training data where little control action was applied.

• How can a predictor using the Koopman in control (KIC) framework be implemented
and what are its challenges?
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Several different lifting functions were applied to find an approximation of a Koopman
invariant subspace. The initial choice of lifting functions did not yield any improvement
over the non-lifted DMDc implementation. In fact, the performance of the predictor was
worsened through the inclusion of the lifting functions. When the system was expanded
and a larger set of lifting functions was chosen, the predictor showed improvement on
certain dynamics on the training set, where little control action was applied. However,
the main issue remained that the set of lifting functions did not fully span the Koopman
invariant subspace Sn. The excluded dynamics of the floor temperature TF lr are a likely
source of the error and a possible reason why the Koopman invariant subspace was not
fully spanned. The problem became that to further increase the dimension of the lifting
functions required to continually expand the borders of the sub-system. This defeated
the purpose of choosing to model a sub-system in the first place. The approach to
choose the lifting functions based on the equations of the simulation when only partial
state and input information was available limited the ability to increase the dimension
of the observable functions. However, previous attempts that used common choices of
lifting functions had not resulted in any acceptable results.

• What data-driven modelling approaches included in the comparison are best suited for
model predictive control in the greenhouse system?

All of the models that were initially implemented as forecast models were reconfigured
to be evaluated on the shorter time horizon of one hour. Here it became clear that, while
the LSTM architectures had advantages on the longer forecast, its benefits on the shorter
time horizon diminished and its performance was in the same order as the MOESP
subspace identification approach. The DeePC algorithm had the best performance on
the test day, scoring the lowest RMSE values. It is an algorithm, specifically designed for
short term predictions with the application of predictive control in mind and integrates
easily with an objective function of a model predictive control algorithm. By implicitly
finding the behaviour of the system for the next few time-steps through constraints using
multiple previous outputs together with block Hankel matrices, the DeePC algorithm
achieves better performance than any of the other predictors. The proposed extended
DeePC (eDeePC) algorithm did not yield any improvements on the test set over the
DeePC algorithm.

• How can a Koopman theory be included in the formulation of the DeePC algorithm and
how does it perform?

Embedding nonlinear dynamics in the Hankel matrices of the DeePC algorithm was a
proposed extension to include Koopman theory. Using the same lifting functions of the
initial KIC implementation did not yield any improvements on the test or training set.
Implementing the expanded system using a larger set of lifting functions significantly
increased the computational time to the point that computation became unfeasible. In
sight of the results of the LSTM predictors performance on the short time horizon,
nonlinear embeddings in the block Hankel matrices might not provide significant im-
provement on the time horizon of one hour for the application of greenhouse climate
prediction.
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7-3 Recommendations for Future Work

LSTM Modelling: The stacked LSTM model showed the best results amongst the imple-
mented LSTM architectures and the trend in this work has been that a larger number of
parameters increases prediction accuracy. Therefore it is recommended to further investigate
how different kind of additional layers affect the results. Moreover, increasing the order of the
LSTM together with a dense layer for the output might enhance performance. Furthermore,
to fulfill its actual purpose, the stacked LSTM could be integrated with an economic forecast
model to aid decision making of the grower as has been done with single layer LSTMs. For the
application in control, the stacked LSTM does not show significant promise over the DeePC
approach and with the additional difficulty of the non-linearities in the LSTM for optimiza-
tion, there seems little reason to investigate LSTM models with the purpose of control in
greenhouses.

KIC Modelling: The implementation of the KIC approach encountered issues since the
chosen observable functions did not entirely span a Koopman invariant subspace. For future
work this means to either try to find these functions from the data. One promising approach
for finding the right lifting functions from data is using Sparse Identification of Nonlinear
Dynamics with Control (SINDYc) [4]. There also have been approaches for learning the right
choice of observable functions using deep neural networks [42]. Another route to take would
be to try to use the same approach as was done in this work but to have the ground truth
data be coming from a smaller model. If the underlying model is smaller, it would be possible
to represent all heat exchange functions in the lifted state. An alternative to this route would
be to attempt to predict the entire state of the GreenLight model in order to be able to
include all heat exchange functions in the lifted state. However, for real world applications,
data-driven discovery of the obsevables should be prioritized since it is not guaranteed that
custom observable functions from a simulation data will also result in a good predictor for
real world applications.

Extended Data Enabled Predictive Control: The implementation of the extended data
enabled predictive control algorithm could not be fully verified. In order to further investigate
this method, the algorithm should be implemented in a smaller system where the observable
functions that span a Koopman invariant subspace are fully known, such as the van der Pol
Oscillator. For the application in the greenhouse system, there only seems to be marginal
gains to be had. Additionally, there are issues caused by dimensionality that affect the
computational time when the lifted state becomes large. The most promising application
of this algorithm is hence in systems where non-linearities strongly affect the short term
behaviour and where the set of observables does not drastically increase the dimension of
the lifted state. As it was presented, this method did not provide an explanation for how
the optimization for a control input sequence would be performed when a constraint would
be dependent on a nonlinear observable function. This warrants further investigation, where
several approaches could be explored.
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