
Bachelor Thesis

The algebraic preconditioner for saddle point
systems based on the properties of a PDE

By

Joris van der Wagt
5355176

Supervisor: Dr. Carolina A. Urzúa Torres
Graduation Committee: Dr. C.A. Urzúa Torres & Prof.dr. H.M. Schuttelaars & Dr. M.E. Kootte
Instituation: Delft University of Technology
Place: Faculty of Electrical Engineering, Mathematics and Computer Science Delft
Thesis completion: July 1, 2024

Laymen’s summary

In daily life, everything changes constantly, for instance change in temperature, movement or financial
markets. This change can be described using differential equations. However, differential equations
are very difficult to solve and therefore, we often use a computer algorithm to get an approximation.
In order to set up an algorithm, the region, where the differential equation holds, needs to be chopped
into segments, or discretised, and for each segment we calculate the solution. If we make the segments
really small, we get a better approximation, but the computer algorithm takes longer to find a good
approximation.

We still want to find a good approximation for very small segments, so we use a preconditioner in
the computer algorithm. The result, the approximation, can be found faster. To find an effective
preconditioner, two approaches are known. The first type uses properties of the discretisation and the
other uses properties of the differential equation. This thesis found a connection, between the first
approach and why it works, based on the second approach.

Summary

Differential equations are commonly solved by, first, discretising the domain and then using an iterative
method on the resulting system of equations. Refining the mesh gives a more accurate solution.
However, the iterative method does not necessarily converge quickly to a good approximate solution
anymore. To deal with this issue, we can add a preconditioner to the system. A good preconditioner
enhances the speed of convergence.

Two ways of finding a good preconditioner are known. The first uses the properties of the matrix of the
system, that is an algebraic preconditioner. The second uses the properties of the differential equation
that give rise to the system, which is an operator preconditioner. This thesis makes a connection
between both types of preconditioning.

First, we discretise a differential equation and perform numerical test on the system to see if the
algebraic preconditioning works. Then, the domains on which the matrix and preconditioner act are
defined in terms of the differential equations.

We conclude that the matrix containing the differential operators acts on H(div,Ω)×H1(Ω) and the
preconditioner acts on

[
L2(Ω)

]2×H2(Ω). So we need to constrain the domains in such a way that the
operators both act on the same domain: that is, H(div,Ω)×H2(Ω). If the function is in this domain,
then we know that the algebraic preconditioner is an effective preconditioner.

i

Contents

Laymen’s summary i

Summary i

1 Introduction 1

2 Literature review 2
2.1 Saddle point systems . 2
2.2 Preconditioning . 3

2.2.1 Algebraic preconditioning . 3
2.2.2 Operator preconditioning . 4

2.3 Support-operator finite difference algorithm . 5
2.3.1 Discretisation . 6
2.3.2 Operator discretisation . 7

3 Application of the support-operator finite difference algorithm 9
3.1 Boundary operator . 10
3.2 Gradient operator . 10
3.3 Divergence operator . 11
3.4 Functionality tests . 11

4 Numerical tests 13
4.1 GMRES method without preconditioning . 14
4.2 GMRES method with algebraic preconditioning . 15

5 Properties of the PDE 18
5.1 Hilbert space of the Laplace operator . 19
5.2 Hilbert space of the preconditioner operator . 20
5.3 Condition number . 21

6 Conclusion and discussion 24

References 25

A Spectral equivalence of the LDLT-decomposition 26

B Python code for functionality tests 27

C Python code for performing GMRES 31

1 Introduction

Differential equations can be quite difficult to solve, if they can even be solved at all. However, to
calculate and predict change in daily life, like the change in temperature, they are essential. Therefore,
we solve them by discretising the differential equations and using an iterative method until we are close
enough to a good approximate solution. When this happens, we have convergence. The discretisation
of the domain in two dimensions can be done by using a finite difference algorithm. The result is a
grid with rectangles which will be referred to as grid cells. By setting up an equation for each grid cell,
it can be written in matrix form Ax⃗ = b⃗. Since the solution is only calculated at certain grid cells, one
would assume to make the length of the grid cells really small, so we approach an almost continuous
solution on the domain. Using very small grid cells will result in more grid cells on the domain, and
thus more equations and a larger matrix A. The problem that arises when doing this is an unstable
system Ax⃗ = b⃗.

When using Krylov subspace iterative methods for finding a solution for Ax⃗ = b⃗, a matrix with a
large condition number is not desirable. Convergence bounds for CG, which are described in (Wathen,
2015, Ch. 3), MINRES in (Wathen, 2015, Ch. 5) and GMRES in (Wathen, 2015, Ch. 6), are greater
for large condition numbers. According to (Mardal & Winther, 2011, Ch. 7), the condition number
κ(A) = λmax/λmin increases as the step size decreases, where λmax and λmin are defined as the largest
and smallest eigenvalue of matrix A, respectively. Thus, a lot of iterations are required until we
converge to a good approximate solution. A system with κ(A) ≈ 1, will have convergence after only a
few iterations, because the convergence bounds are really small. So, by setting up a preconditioning
matrix P , such that P−1A has κ(P−1A) << κ(A), the new system P−1Ax⃗ = P−1⃗b can be solved a
lot quicker.

This thesis takes a closer look at the preconditioning for saddle point systems. (Boffi et al., 2013,
Ch. 3) describes saddle point systems as systems that can be written in the form

Ax⃗ =

[
K BT

B 0

] [
y
z

]
=

[
f
g

]
= b⃗, (1.1)

where K ∈ Rn×n, B ∈ Rm×n, 0 ∈ Rm×m, and thus A ∈ R(n+m)×(n+m). Preconditioners for these
types of problems can be established in two ways, algebraic and operator preconditioning. Algebraic
preconditioning is based on the algebraic properties of matrix A as stated in (Axclsson & Vassilevski,
1989, Ch. 1). Whereas operator preconditioning is based on the properties of the differential equation
that gives rise to the linear operator blocks in matrix A from equation 1.1 as stated in (Hiptmair, 2006,
Sect. 1).

The aim in this thesis is to understand why, in the context of saddle point problems, the algebraic
preconditioner P from (Wathen, 2015, Ch. 5) is considered to be a good preconditioner, based on the
properties of the partial differential equation. This is done by using Poisson’s equation with Dirichlet
boundary conditions in two dimensions. That is,

−∆u = −∂
2u

∂x2
− ∂2u

∂y2
= f, (1.2)

on a rectangular domain Ω ⊂ R2. We approach this problem, by first discretising the Laplace operator
using a finite difference algorithm. (Shashkov & Steinberg, 1995, Ch. 2-3) set up a schema for general
elliptic problems, which we will apply on equation 1.2. This scheme dissects the Laplace operator into
the gradient and divergence operator. Using the matrices representing the gradient and divergence
operator, separately, we can transform this into a saddle point system. Numerical tests are performed
on the saddle point system to see how fast it converges using the GMRES iterative method. This is
firstly done without preconditioning and then with preconditioning. Once we have established that the
algebraic preconditioning from (Wathen, 2015, Ch. 5) improves the rate of convergence, we approach
the saddle point system from the perspective of the operators that give rise to the saddle point system.

1

2 Literature review

To get a clear image of the research previously done on this topic, we take a closer look on the most
important aspects of preconditioning for saddle point systems. First, what saddle point systems are,
their properties and how they can be solved will be discussed. Secondly, algebraic preconditioning for
saddle point systems and operator preconditioning in the general sense will be presented. Lastly, we
delve into how general elliptic PDE’s can be discretised using a finite difference algorithm following
the approach from (Shashkov & Steinberg, 1995, Ch. 2-3). This discretisation can, in turn, be written
as a saddle point system.

2.1 Saddle point systems

A good description where the name of saddle point systems comes from is given by (Rozložník, 2018,
Ch. Pref). He states that the name is given because the possible solutions form a horse saddle.
According to (Benzi et al., 2005, Ch. 2), this is the result of a minimisation problem subject to certain
linear constraints, which can arise in a lot of different fields, such as electromagnetism, fluid dynamics
but also economics. The formulation for saddle point problems is given in (Boffi et al., 2013, Ch. 3),[

K BT

B 0

] [
y
z

]
=

[
f
g

]
. (2.1)

In equation 2.1, K and B are matrices derived from discretising the differential equation. K is a matrix
in Rn×n, B is a matrix in Rm×n, and thus y, f are vectors in Rn and z, g in Rm.

An important property of equation 2.1, is the invertibility of the block matrix, which is necessary
for a unique solution. (Boffi et al., 2013, Ch. 3) states that the invertibility of A is dependent on
the properties of matrix K and B. Recall, that any matrix is invertible, if and only if the matrix is
non-singular, if and only if the determinant of the matrix is non-zero. We want to know when this is
the case for

A =

[
K BT

B 0

]
. (2.2)

Following the approach of (Boffi et al., 2013, Sect. 3.2), equation 2.1 can be rewritten as

Ky +BT z = f, (2.3)
By = g. (2.4)

This has a unique solution if the homogeneous system,

Ky +BT z = 0, (2.5)
By = 0, (2.6)

only has the solution x = 0 and y = 0. (Boffi et al., 2013, Thm. 3.2.1) gives the following conditions
for when this holds. That is,

- the mapping KLL : L 7→ L is surjective, where L := Ker(B) and KLL := πkKEL, in which πk is
a projection of equation 2.5 and EL is the extension operator to the subspace L,

- the mapping B : Rn 7→ Rm is surjective.

So if these conditions hold, equation 2.1 is solvable and we can find the unique solutions numerically.

Finding the unique solution for equation 2.1, (Rozložník, 2018, Ch. 5-6) takes two approaches, the
direct approach and the iterative approach. The direct approach is only possible for a symmetric
positive definite matrix K and full-column rank matrix B. If that holds, (Rozložník, 2018, Sect. 5.2)

2

uses the Schur complement matrix S = BK−1BT , defined in (Wathen, 2015, Ch. 5), and Cholesky
factorisation of matrix K. However, this is computationally expensive and iterative methods are
preferred. (Rozložník, 2018, Sect. 6.2) discusses the iterative methods, that we are interested in. This
is the Krylov subspace method, which uses preconditioning for fast convergence. The three subclasses of
Krylov subspaces are orthogonal residual methods, which uses the conjugate gradient (CG) method;
minimal residual methods, which uses the minimal residual (MINRES) method or general minimal
residual (GMRES) method; and biorthogonalisation methods, which uses the biconjugate gradient
(Bi-CG) method or quasi-minimal residual (QMR) method.

However, not every iterative method can be used in every situation. CG is only applicable for a matrix
A that is symmetric and positive definite, MINRES is only applicable for a matrix A that is symmetric
and indefinite and GMRES, Bi-CG and QMR are applicable for a general matrix A. Therefore, it is
necessary to check what type of system we are dealing with, when choosing the iterative method.

2.2 Preconditioning

Krylov subspace iterative methods, used on a general matrix equation Ax⃗ = b⃗, converge to the solution
in a number of steps. However, in order to find a solution such that the error is very small, it can take
a lot of iterations. This is where preconditioning comes in. The idea of preconditioning, as in (Wathen,
2015, Ch. 1), is to find a matrix P , such that P−1Ax⃗ = P−1⃗b converges faster to the solution than the
original equation Ax⃗ = b⃗.

The speed of convergence determines the number of steps needed to get an approximation that is close
enough to the actual solution. An upper bound for the relative error in the kth iterative determines
the speed of convergence. For CG, for example, (Wathen, 2015, Ch. 3) gives the upper bound for the
relative error as

∥x⃗− x⃗k∥A
∥x⃗− x⃗0∥A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

, (2.7)

where κ(A) = λmax(A)/λmin(A), where λ(A) are the eigenvalues of matrix A, and k is the kth iterative.
If κ ≈ 1, the upper bound would be very small, thus, the relative error would very small. So if we
could find a matrix P , such that

κ(A) =
λmax(A)

λmin(A)
>>

λmax(P
−1A)

λmin(P−1A)
= κ(P−1A), (2.8)

the Krylov subspace iterative method would take less iterations until convergence, and consequently
less computations.

For equation 2.1, (Wathen, 2015, Ch. 5) recommends to use the MINRES method, since A is symmetric,
but not necessarily positive definite. To find a preconditioning matrix P , there are two approaches.
The first is the algebraic approach, which uses the properties of matrix A. The second is the operator
approach, which uses the properties of the differential equation.

2.2.1 Algebraic preconditioning

By the properties of matrix A in equation 2.2, A is non-singular. (Wathen, 2015, Ch. 5) gives the
matrix

P =

[
K 0
0 S

]
, (2.9)

in which S = BK−1BT or the Schur complement, as a good preconditioner. (Wathen, 2015, Ch. 5)
also states that MINRES or GMRES terminates after k iterations if the system only has k distinct
eigenvalues. By (Murphy et al., 2000, Prop. 1), P−1A only has 3 distinct eigenvalues. So the MINRES
and GMRES method terminates after 3 iterations.

3

However, the matrix P is practically not that useful, since matrices K and B arise from discretisations.
Inverting K and B may be as costly as solving the original system. A better preconditioner could then
be constructed by using approximations of K and S, which results in

P̂ =

[
K̂ 0

0 Ŝ

]
. (2.10)

According to (Wathen, 2015, Ch. 5), the MINRES iterative method converges quickly, using the
preconditioner from equation 2.10, if

γ ≤ x⃗TKx⃗

x⃗T K̂x⃗
≤ Γ and υ ≤ y⃗TSy⃗

y⃗T Ŝy⃗
≤ Υ, (2.11)

for positive constant γ, Γ, υ and Υ and for all vectors x⃗, y⃗ ∈ R\{0}. By (Tyrtyshnikov & Chan, 2000,
Lem. 2.1), two Hermitian positive definite matrices A and B are spectrally equivalent if

c1 ∥x⃗∥2B ≤∥x⃗∥2A ≤ c2 ∥x∥2B , for 0 < c1 ≤ c2 and x⃗ ∈ Cn, (2.12)

⇐⇒

c1 ≤
x⃗TAx⃗

x⃗TBx⃗
≤ c2, for 0 < c1 ≤ c2 and x⃗ ∈ Cn. (2.13)

The bounds from equation 2.11 actually give that, if K̂ and Ŝ are approximations of matrices K and
S respectively, then K̂ is spectrally equivalent to K and Ŝ is spectrally equivalent to S.

2.2.2 Operator preconditioning

Since the operator preconditioning uses information given from the differential equation, it is important
to note what space the operators are in. (Hiptmair, 2006, Sect. 1) states that the differential equation
gives rise to a linear operator A : V 7→W , that maps elements from V to W . Now let B :W 7→ V be
another linear operator, then BA maps elements from V to V . (Hiptmair, 2006, Sect. 1) also states
that the discretisation of BA gives rise to a well-conditioned matrix, that is κ(BhAh) is close to 1. And
thus, Bh could be a good preconditioner. However, we will get a discrete approximation Ah : Vh 7→Wh

of A, that connects Vh and Wh. This has to be taken into account for finding a good preconditioner.

Next, (Hiptmair, 2006, Thm. 2.1) defines an upper bound for the smallest and largest eigenvalue.
This is done by first defining two reflexive Banach spaces V and W . Since V and W are Banach
spaces, (Hiptmair, 2006, Sect. 2) defines the continuous sesquilinear forms a ∈ L(V × V,C) and
b ∈ L(W ×W,C). From (Ouhabaz, 2005, Def. 1.1), we know that if a and b are continuous, then

|a(u, v)| ≤ αA ∥u∥ ∥v∥ , ∀u, v ∈ V, (2.14)
|b(q, w)| ≤ αB ∥q∥ ∥w∥ , ∀q, w ∈W, (2.15)

for αA, αB > 0. So (Hiptmair, 2006, Sect. 2) defines the finite-dimensional subspaces Vh ⊂ V and
Wh ⊂W , such that a and b satisfy

sup
vh∈Vh

|a(uh, vh)|
∥vh∥V

≥ cA ∥uh∥V , ∀uh ∈ Vh, (2.16)

sup
wh∈Wh

|b(qh, wh)|
∥wh∥W

≥ cB ∥qh∥W , ∀qh ∈Wh, (2.17)

for cA, cB > 0. Then, to connect the subspaces Vh and Wh, (Hiptmair, 2006, Sect. 2) assumes the
existence of a continuous sesquilinear form d ∈ L(V ×W,C) that satisfies

sup
wh∈Wh

|d(vh, wh)|
∥wh∥W

≥ cD ∥vh∥V , ∀vh ∈ Vh and cD > 0. (2.18)

4

And lastly, (Hiptmair, 2006, Sect. 2) introduces the Galerkin-matrices

A = (a(ki, kj))
N
i,j=1, (2.19)

B = (b(li, lj))
M
i,j=1, (2.20)

D = (d(ki, lj))
N,M
i,j=1. (2.21)

Here {k1, ..., kN} is a basis for Vh with N = dim(Vh) and {l1, ..., lM} is a basis for Wh with M =
dim(Wh). He also defines Ah : Vh 7→ V ′

h, Bh : Wh 7→ W ′
h and Dh : Vh 7→ W ′

h as the bounded linear
operators associated with the sesquilinear forms a, b and d. From this we can deduce, that

∥Ah∥Vh 7→V ′
h
= αA, thus

∥∥A−1
h

∥∥
V ′
h 7→Vh

≤ c−1
A , (2.22)

∥Bh∥Wh 7→W ′
h
= αB, thus

∥∥B−1
h

∥∥
W ′

h 7→Wh
≤ c−1

B , (2.23)

∥Dh∥Vh 7→W ′
h
= αD, thus

∥∥D−1
h

∥∥
W ′

h 7→Vh
≤ c−1

D . (2.24)

Then by (Hiptmair, 2006, Thm. 2.1), if dim(Vh) = dim(Wh), the condition number is bounded by

κ(D−1BD−TA) ≤
αAαBα

2
D

cAcBc2D
. (2.25)

The matrix D−1BD−TA is an endomorphism on Vh, since D−TA : Vh 7→ Wh and D−1B : Wh 7→ Vh.
The linear operators A and B can thus be discretised by A and D−1BD−T respectively. The linear
operator B is a preconditioner since the condition number is bounded. If the condition number is close
to one, it can be considered a good preconditioner.

In this thesis, we do not pursue the Galerkin discretisation. Instead, we will build our matrices with
a finite difference algorithm.

2.3 Support-operator finite difference algorithm

Poisson’s equation on the domain Ω ⊂ R2 with Dirichlet boundary conditions, as given below,

−∆u = f in Ω, (2.26)
u = 0 on ∂Ω, (2.27)

is an example of a second order elliptic partial differential equation defined in (Pinchover & Jacob,
2005, Sect. 7.1). A general second order elliptic partial differential equation can be written as

−div K grad u = f, (2.28)

in the domain Ω and on the boundary ∂Ω as

β(n⃗,K grad u) + αu = γ, (2.29)

given in (Shashkov & Steinberg, 1995, Ch. 1). 2.28 and 2.29 can also be written in operator form, i.e.,
Au = F . Thus

Au =

{
−div K grad u, in Ω

β(n⃗,K grad u) + αu, on ∂Ω , (2.30)

and

F =

{
f, in Ω,
γ, on ∂Ω. (2.31)

5

The operator A can then also be written as A = BKC +D, such that Au = F , where

Bw⃗ =

{
div w⃗,
−β(w⃗, n⃗),

in Ω,
on ∂Ω, (2.32)

Kw⃗ = Kw⃗, in Ω, (2.33)
Cu = −grad u, in Ω, (2.34)

Du =

{
0,
αu,

in Ω,
on ∂Ω, (2.35)

where C is the adjoint operator of B. (Shashkov & Steinberg, 1995, Ch. 2) uses the Divergence Theorem,
as in (Stolze, 1978, Eq. 3), that the following integral identity holds,∫

V
ϕ div w⃗ dV +

∫
V
(w⃗ grad ϕ) dV =

∮
S
ϕ(w⃗, n⃗) dS, (2.36)

and if the function u and v are in an arbitrary space H, then the inner product is defined as

(u, v)H =

∫
V
uv dV +

∮
∂V
uv ∂V. (2.37)

Then it can be shown that

(Bw⃗, u)H =

∫
V
u div w⃗ dV −

∮
∂V
u(w⃗, n⃗) dS, (2.38)

= −
∫
V
(w⃗, grad u) dV, (2.39)

= (w⃗, Cu)H . (2.40)

Thus, C is the adjoint operator of B.

Next, we define
w⃗ = −K grad u, (2.41)

where w⃗ is a vector field, since it is the gradient of u. Then equations 2.28 and 2.29 can be rewritten
as a saddle point system of equations,

w⃗ + K grad u = 0 in Ω, (2.42)
div w⃗ = f in Ω, (2.43)

−β (w⃗, n⃗) + αu = γ on ∂Ω. (2.44)

2.3.1 Discretisation

To solve these types of partial differential equations numerically, the domain needs to be discretised.
Using the approach as mentioned in the previous paragraph, (Shashkov & Steinberg, 1995, Ch. 3), the
finite difference scheme can be applied on a two-dimensional rectangular domain, thus u = u(x, y) for
(x, y) ∈ Ω. In the x and y direction, we take uniform steps of size hX and hY , respectively. The grid
points are given by indices (i, j), for 1 ≤ i ≤ N and 1 ≤ j ≤ M . Given that u is a scalar function, u
is discretised in one component, denoted as U . Furthermore, w⃗ is a vector field and is discretised in
two components: one in the x-direction, WX, and one in the y-direction, WY . The discretisation of
u is done by setting the value for U(i,j) to be the cell of which the grid point (i, j) is the bottom left
vertex, see Figure 2.1.

6

Figure 2.1: Discretisation of scalar function u for 1 ≤ i ≤ N and 1 ≤ j ≤M .

The same thing can be done for vector function W⃗ = (WX,WY), where WX is located halfway across
the edge above grid point (i, j), and WY is located halfway across the edge to the right of grid point
(i, j), see Figure 2.2.

Figure 2.2: Discretisation of vector function w⃗ for 1 ≤ i ≤ N and 1 ≤ j ≤M .

2.3.2 Operator discretisation

Next, (Shashkov & Steinberg, 1995, Ch. 3) continues to define discrete representations of the operators
B, K, C and D. In equation 2.32, Bw⃗ = div w⃗ in the domain and Bw⃗ = −β(w⃗, n⃗) on the boundary of
the domain. Since the divergence of w⃗ in two dimensions is defined as

div w⃗ =
[

∂
∂x

∂
∂y

] [wx

wy

]
, (2.45)

=
∂wx

∂x
+
∂wy

∂y
(2.46)

7

where wx is the x-component of w⃗ and wy is the y-component of w⃗. (Shashkov & Steinberg, 1995,
Sect. 3.3) uses the forward difference for the first order derivative of wx and wy. The boundary is
defined as −β-times the boundary vector. This results in

(BhW⃗)(i,j) =
WX(i+1,j) −WX(i,j)

hX
+
WY(i,j+1) −WY(i,j)

hY
, for i = 1, ..., N − 1 and j = 1, ...,M − 1,

(BhW⃗)(i,0) = −βWY(i,1), for i = 1, ..., N − 1,

(BhW⃗)(i,M) = βWY(i,M), for i = 1, ..., N − 1,

(BhW⃗)(0,j) = −βWX(1,j), for j = 1, ...,M − 1,

(BhW⃗)(N,j) = βWX(N,j), for j = 1, ...,M − 1. (2.47)

The discretisation Kh of K in 2 dimensions is, as in (Shashkov & Steinberg, 1995, Sect. 3.5), defined
as

Kh =

[
KXX KXY
KXY KY Y

]
, (2.48)

where the values for KXX(i,j) and KY Y(i,j) are defined at the same points as WX(i,j) and WY(i,j)
in Figure 2.2. The value for KXY(i,j) is defined at the centre of a cell. If the grid point (i, j) is the
bottom left vertex of the cell, then KXY(i+ 1

2
,j+ 1

2
) is defined at that cell centre.

Since operator K is multiplied with a vector field, we need to define the matrix-vector product with
an arbitrary vector v⃗ = (vx, vy). This will, for the x-component, be done as

(Khv⃗)
x
(i,j) =KXX(i,j+ 1

2
)vx(i,j) +

1

2
KXY(i− 1

2
,j+ 1

2
)vy(i−1,j+ 1

2
) for i = 2, ..., N − 1

+
1

2
KXY(i+ 1

2
,j+ 1

2
)vy(i,j+ 1

2
), and j = 1, ...,M − 1,

(Khv⃗)
x
(1,j) =KXX(1,j+ 1

2
)vx(1,j) +KXY(3

2
,j+ 1

2
)vy(1,j+ 1

2
), for j = 1, ...,M − 1,

(Khv⃗)
x
(N,j) =KXX(N,j+ 1

2
)vx(N,j) +KXY(N− 1

2
,j+ 1

2
)vy(N−1,j+ 1

2
), for j = 1, ...,M − 1, (2.49)

and for the y-component as

(Khv⃗)
y
(i,j) =KY Y(i+ 1

2
,j)vy(i,j) +

1

2
KXY(i+ 1

2
,j+ 1

2
)vx(i+ 1

2
,j) for i = 1, ..., N − 1

+
1

2
KXY(i+ 1

2
,j− 1

2
)vx(i+ 1

2
,j−1), and j = 2, ...,M − 1,

(Khv⃗)
y
(i,1) =KY Y(i+ 1

2
,1)vy(i,1) +KXY(i, 3

2
)vy(i+ 1

2
,1), for i = 1, ..., N − 1,

(Khv⃗)
y
(i,M) =KY Y(i+ 1

2
,M)vy(i,M) +KXY(i+ 1

2
,M− 1

2
)vx(i+ 1

2
,M−1), for j = 1, ...,M − 1. (2.50)

Next, from equation 2.34 we have Cu = −grad u, then operator C = −grad. Since

grad u =

[∂u
∂x
∂u
∂y

]
, (2.51)

Cu produces again a x- and y-component. (Shashkov & Steinberg, 1995, Sect. 3.4) chooses to use the
backwards difference for the first order derivative, because we want the derivative of the grid point
(i, j) for 1 ≤ i ≤ N and 1 ≤ j ≤M . However, the discretisation of scalar function u, as done in Figure
2.1, creates extra grid points for i = 0 and j = 0. So, we do not need the derivative for those points.
The backwards difference is therefore an obvious choice.

8

The discretisation Ch of C can then be established using the following equations for the x-component:

(ChU)x(i,j) =
U(i,j) − U(i−1,j)

hX
, for i = 2, ..., N − 1 and j = 1, ...,M,

(ChU)x(1,j) =
U(1,j) − U(0,j)

hX/2
, for j = 1, ...,M,

(ChU)x(N,j) =
U(N,j) − U(N−1,j)

hX/2
, for j = 1, ...,M, (2.52)

and the following equations for the y-component:

(ChU)y(i,j) =
U(i,j) − U(i,j−1)

hY
, for i = 1, ..., N and j = 2, ...,M − 1,

(ChU)y(i,1) =
U(i,1) − U(i,0)

hY/2
, for i = 1, ..., N,

(ChU)y(i,M) =
U(i,M) − U(i,M−1)

hY/2
, for i = 1, ..., N. (2.53)

The last operator D is defined as 0 in the domain and α on the boundary of the domain. Hence, its
discretisation Dh is

(DhU)(0,j) = α(0,j)U(0,j), for j = 1, ...,M,

(DhU)(N,j) = α(N,j)U(N,j), for j = 1, ...,M,

(DhU)(i,0) = α(i,0)U(i,0), for i = 1, ..., N,

(DhU)(i,M) = α(i,M)U(i,M), for i = 1, ..., N. (2.54)

Using the matrices Bh,Kh, Ch and Dh, we get that we can approximate A = BKC +D by

(BhKhCh +Dh)U = F . (2.55)

3 Application of the support-operator finite difference algorithm

In this thesis, we want to find a connection between the algebraic preconditioner for saddle point
systems given in (Wathen, 2015, Ch. 5) and the operator preconditioner that arises from the PDE. To
make this connection, we first have to check, if the preconditioner in (Wathen, 2015, Ch. 5) is indeed an
effective preconditioner, since we are using a finite difference discretisation, instead of finite elements.
By (Pinchover & Jacob, 2005, Sect. 7.1), Poisson’s equation with Dirichlet boundary conditions

−∆u = f in Ω, (3.1)
u = 0 on ∂Ω, (3.2)

is an elliptic PDE. So with the approach from (Shashkov & Steinberg, 1995, Ch. 3), we can discretise
Poisson’s equation 3.1 using the support-operator finite difference algorithm. This discretisation can
then be written as a saddle point problem.

For the discretisation from (Shashkov & Steinberg, 1995, Ch. 3), equation 3.1 must be written in the
form of equation 2.28. Note that the divergence is defined in equation 2.45 and the gradient in equation
2.51. Then,

div (grad u) =
[

∂
∂x

∂
∂y

] [∂u
∂x
∂u
∂y

]
, (3.3)

=
∂2u

∂x2
+
∂2u

∂yx
, (3.4)

= ∆u. (3.5)

9

Thus, equation 3.1 is of the form
−div (grad u) = f, (3.6)

which is the same as equation 2.28 where K is the identity. If we discretise K, it just stays the identity
matrix so we can neglect this. The boundary equation 3.2 is already of the form of equation 2.29,
where α = 1, β = 0 and γ = 0.

3.1 Boundary operator

The matrix representation Dh of operator D is done by the equations from 2.54. Since α = 1, we get
a matrix which is all zero except for the boundary grid points, those get value 1. However, we know
from equation 3.2, that u is zero on the boundary and those values of u are known. Therefore, U(i,j),
for i = 0, i = N , j = 0 or j =M , are not used in the discretised u. The operator D will be represented
as a matrix, so it will be more practical to transform the discretised u into a vector,

−→
U . Vector

−→
U

consists only of interior points. That is,

−→
U =

U(1,1)

U(2,1)
...

U(N−1,1)

U(1,2)
...

U(N−1,2)
...

U(N−1,M−1)

. (3.7)

One can transform this vector back in Figure 2.1. The first N − 1 indiceds are the bottom row from
left to right. The next N − 1 indices are the next row etc. Then (D

−→
U)(i,j) = 0 for 1 ≤ i ≤ N and

1 ≤ j ≤M and the matrix Dh representing the operator D is a zero matrix. Thus we can neglect it.

3.2 Gradient operator

The matrix Ch, representing gradient operator C, stems from equations 2.52 for the x-component and
2.53 for the y-component for 1 ≤ i ≤ N and 1 ≤ j ≤ M . In the equations where i = N or j = M ,
we have to use boundary values of U . We know these are zero, therefore they can be neglected.
Thus, the same vector

−→
U as in equation 3.7 is used. The result is 2 matrices, Cx

h and Cy
h, of size

[N ∗M] × [(N − 1) ∗ (M − 1)]. By stacking Cx
h and Cy

h on top of each other, matrix Ch is created,
which is a matrix of size [2 ∗N ∗M]× [(N − 1) ∗ (M − 1)], Ch ∈ R[2∗N∗M]×[(N−1)∗(M−1)].

Ch
−→
U returns a column vector

−→
CU of length 2 ∗ N ∗M . In this vector, the first N ∗M elements are

the x-derivative of the point U(i,j) for 1 ≤ i ≤ N and 1 ≤ j ≤M . It follows the same convention from
equation 3.7, where i first goes from 1 to N as j stays 1. Then j increases by one and i goes again
from 1 to N etc. up until the last element, which is the derivative at the point (N,M). The second
N ∗M elements are the y-derivative of the point U(i,j) for 1 ≤ i ≤ N and 1 ≤ j ≤M .

In order to find the gradient of the point U(i,j), one must use the [i+ (j − 1) ∗ (M − 1)]th element for
the x-derivative and the [((N −1)∗ (M −1))∗ (i+(j−1)∗ (M −1))] for the y-derivative of the column

10

vector
−→
CU . Thus,

−grad u(xi, yj) =

[
∂u(xi,yj)

∂x
∂u(xi,yj)

∂y

]
, (3.8)

= (Ch
−→
U)(i,j), (3.9)

=

[−→
CU [i+(j−1)∗(M−1)]−→

CU [((N−1)∗(M−1))∗(i+(j−1)∗(M−1))]

]
. (3.10)

3.3 Divergence operator

The matrix Bh, representing divergence operator B, is used for a matrix-vector product Bh
−→
W . From

equations 2.47, we see that that the x- and y-component of
−→
W = (WX,WY) are, for the interior

points of the domain, used in the same equation. To be able to represent the divergence as a matrix,
we set

−→
W =

WX(1,1)
...

WX(N,M)

WY(1,1)
...

WY(N,M)

, (3.11)

where the same order of numbering has been used as in equation 3.7. (Shashkov & Steinberg, 1995,
Sect. 3.3) does have equations for the divergence on the boundary i.e. i = 0, i = N , j = 0 or j = M ,
since the discretisation of u creates the boundary values of U . However, in our case β = 0, thus the
equation if i = 0, i = N , j = 0 or j = M , becomes zero and we can neglect these cases. Therefore,
the only non-zero equations are at the interior grid points. The representation of operator B becomes
matrix Bh of size [(N − 1) ∗ (M − 1)]× [2 ∗N ∗M], thus Bh ∈ R[(N−1)∗(M−1)]×[2∗N∗M].

3.4 Functionality tests

Before we can perform numerical tests with this discretisation, we need to make sure that the matrices
Bh and Ch produce the same result as the operator that they represent. The Python script can be
found in Appendix B. We choose two very simple functions of which we know what the result is of
applying the minus Laplace operator. That is, u1(x, y) = 1 and u2(x, y) = xy. Since the Laplace
operator takes the second order derivative in the x- and y-direction, both −∆u1 = 0 and −∆u2 = 0.
Thus, by equation 2.55, both

Bh ∗ (Ch ∗ U1) = 0, (3.12)
Bh ∗ (Ch ∗ U2) = 0. (3.13)

This can be seen below, in Figure 3.1.

11

Figure 3.1: Bh∗(Ch∗U1(xi, yi)) =
−→
F1 (left) and Bh∗(Ch∗U2(xi, yi)) =

−→
F2 (right) with hX = hY = 1/50.

The resulting
−→
F is zero everywhere, which is what we wanted. The discretisation of the gradient and

divergence operator act how we wanted them to work.

Finally, we also test it on a function that is zero on the boundary. So it can be used on the domain Ω.
That is,

u3(x, y) = sin (πx) sin (πy). (3.14)

Applying the minus Laplace operator gives,

−∆u3(x, y) =− ∂2u3
∂x2

− ∂2u3
∂y2

, (3.15)

=π2 sin (πx) sin (πy) + π2 sin (πx) sin (πy), (3.16)

=2π2 sin (πx) sin (πy). (3.17)

So Bh ∗ (Ch ∗ U3(xi, yj)) should be zero on the boundary and 2π2 as high as the original function
u3(x, y). The result is given below in Figure 3.2.

Figure 3.2: u3(x, y) = sin (πx) sin (πy) (left) and Bh ∗ (Ch ∗ U3(xi, yi)) =
−→
F3 (right) with hX = hY =

1/50.

12

We can see that the function u3(x, y) grows in the centre but does not get a value larger than 1.
−→
F3

almost reaches a value of 20, which is indeed, 2π2 larger than the original function. From this, we can
conclude that the matrix Ah = Bh ∗ −Ch represents the Laplace operator.

The system of equations in the domain, 2.42 and 2.43, can be written in matrix form. That is,

Ahx⃗ =

[
Ih −Ch

Bh 0

][−→
Wh−→
Uh

]
=

[−→
0
−→
F

]
= b⃗, (3.18)

where Ih is the identity matrix, 0 is a zero matrix and
−→
Wh and

−→
Uh are the result of solving the matrix

equation. The block matrices are elements defined in

Ih ∈ R[2∗N∗M]×[2∗N∗M], (3.19)

Ch ∈ R[2∗N∗M]×[(N−1)∗(M−1)], (3.20)

Bh ∈ R[(N−1)∗(M−1)]×[2∗N∗M], (3.21)

0 ∈ R[(N−1)∗(M−1)]×[(N−1)∗(M−1)]. (3.22)

The column vectors are elements in
−→
Wh ∈ R[2∗N∗M], (3.23)
−→
0 ∈ R[2∗N∗M], (3.24)
−→
Uh ∈ R[(N−1)∗(M−1)], (3.25)
−→
F ∈ R[(N−1)∗(M−1)]. (3.26)

We want matrix Ah to comply with the condition from (Boffi et al., 2013, Thm. 3.2.1). That is, Ih is
a surjective mapping, which it obviously is and Bh is a surjective mapping. By the discretisation, the
matrix Bh is of full rank, so this also holds. Note that, in (Boffi et al., 2013, Thm. 3.2.1), the upper
right block is the transpose of Bh. By the discretisation from (Shashkov & Steinberg, 1995, Ch. 2-3),
this is not the case. So we need to check that Ch is an injective mapping. By the discretisation, the
matrix Ch is of full rank, so this also holds. Thus, we can find the unique solutions numerically.

4 Numerical tests

In the previous section, we established the matrix equation 3.18 by using the support-operator finite
difference algorithm from (Shashkov & Steinberg, 1995, Ch. 2-3). However, the matrix Ah is not a
symmetric matrix since Bh ̸= −CT

h . The MINRES iterative method can not be used to solve this
system, so we use the GMRES iterative method.

First, we try to solve equation 3.18 by using the GMRES method. This equation is set up in Python,
which can be found in appendix C. First, the matrices Ih, Ch, Bh and 0 are made with the shapes as
defined in section 3.4. Then, the matrices are put together to create matrix Ah. Vector b⃗ is created by
setting up a zero column vector of length 2∗N ∗M and column vector

−→
F of length (N−1)∗(M−1) and

stacking the first onto the second. Column vector
−→
F is determined by defining a function u(x, y) on a

square domain that is zero on the boundary. Then, −∆u = f , so
−→
F is the discretised representation

of f .

For the remainder of this thesis, we choose the domain Ω to be a subset of R2 defined by

Ω =
{
(x, y) ∈ R2 : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

}
. (4.1)

Let the function u be defined as

u(x, y) = sin (πx) sin (πy), for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (4.2)

13

Then u(x, y) = 0, if x = 0, x = 1, y = 0 or y = 1. We take a uniform step size hX in the x-direction
and hY in the y-direction. For simplicity, we choose hX = hY , so we get N =M . The discretisation
of u is then defined as u(xi, yj) = U(i, j) for 1 ≤ i ≤ N and 1 ≤ j ≤M , where U(1, 1) is in the middle
of the cell in the left bottom of Figure 2.1. Thus U(1, 1) = u(x1, y1) = u(hX/2, hY/2). In general,

U(i, j) = u(xi, yj), for 1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1, (4.3)
= u(hX/2 + (i− 1) ∗ hX, hY/2 + (j − 1) ∗ hY), for 1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1. (4.4)

We can approximate
−→
F by,

f =−∆u, (4.5)

=2π2 sin (πx) sin (πy). (4.6)

This derivation is given in Section 3.4. So

F(i,j) = 2π2 sin (πxi) sin (πyj), (4.7)

= 2π2U(i, j). (4.8)

4.1 GMRES method without preconditioning

Now that everything is set up, we can use the GMRES method from the package Scipy version 1.7.3.
Matrix Ah and column vector b⃗ are, naturally, set as matrix A and column vector b⃗ from equation 3.18.
By not defining a starting guess, the initial guess will be set to a zero column vector. Furthermore,
the function counter is made for callback, which stores the iteration number and the relative residual
norm for each iteration. The standard tolerance for the absolute error is set to 10−5 with a maximum
number of iterations of 10, 000. And finally, restart is set to None, so that we have a higher chance of
convergence to an approximate solution.

For the step sizes hX = hY = 1/400, 1/800, 1/1, 600 and 1/3, 200, we perform the GMRES iterative
method which yields the following results shown in Table 4.1.

Step size hX Step size hY # of iterations Relative residual norm ∥rk∥ Measurement error ∥ek∥
1/400 1/400 2 5.284843388958746 ∗ 10−12 0.007853719213363829
1/800 1/800 2 1.87561851480186 ∗ 10−11 0.003926958014194687

1/1,600 1/1,600 12 6.0398347298582225 ∗ 10−6 0.001963491308030413
1/3,200 1/3,200 18 6.831171635516434 ∗ 10−6 0.0009817471916336502

Table 4.1: GMRES iterative method for the system Ahx⃗ = b⃗ without preconditioning.

We observe that for all the step sizes, we converge to an approximate solution. The measurement error
∥ek∥, defined as

∥ek∥ =
∥∥∥−→U −

−→
Uh

∥∥∥
∞
, (4.9)

= max
(∣∣∣−→U −

−→
Uh

∣∣∣). (4.10)

is halved, if the step sizes is also halved. So as we define more grid cells, the solution becomes more
accurate. The relative residual norm, defined as

∥rk∥ =

∥∥∥⃗b−Ahx⃗k

∥∥∥
2∥∥∥⃗b∥∥∥

2

, (4.11)

14

does become larger, especially for the step sizes 1/1, 600 and 1/3, 200. The number of iterations needed
to converge to a good approximate solution for the step sizes 1/1, 600 and 1/3, 200 is significantly higher.
Therefore, if we continue to decrease the step size, eventually we will not converge any longer to an
approximate solution within 10,000 iterations. Thus, preconditioning is needed to achieve convergence
to an approximate solution.

4.2 GMRES method with algebraic preconditioning

Now that we have established that preconditioning is necessary for small step sizes, we return to the
paper of (Wathen, 2015, Ch. 5). For the system

Ax⃗ =

[
K BT

B 0

] [
w⃗
u

]
=

[
0
f

]
= b⃗ (4.12)

as in equation 2.1, he gives a preconditioner if A is nonsingular. That is,

P =

[
K 0
0 S

]
, where S = BK−1BT . (4.13)

To put this preconditioner P to use, we must invert P . The inverse of K and S can be computationally
expensive for small step sizes. Therefore, we use approximate matrices K̂ and Ŝ for matrices K and S
and the approximate matrices K̂ and Ŝ are easy to invert.

Since we used a finite difference algorithm, instead of a finite elements algorithm that is used in
(Wathen, 2015, Ch. 5), we must check if the same algebraic preconditioner is also valid for a finite
differences algorithm. Since the system resulting from the finite difference algorithm is given by

Ahx⃗ =

[
Ih −Ch

Bh 0

][−→
W
−→
U

]
=

[−→
0
−→
F

]
= b⃗, (4.14)

where −Ch ̸= BT
h as equation 4.12, so Ah is not symmetric. The preconditioner for this system is then

given by

Ph =

[
Ih 0
0 Sh

]
, where Sh = Bh ∗ −Ch. (4.15)

To make sure Ph is a good preconditioner, we perform the GMRES for large step sizes, since the
matrices Ih and Sh can still be easily inverted. The inverse of Ih is the identity matrix, so we only
need to invert Sh. We choose step sizes 1/12.5, 1/25, 1/50 and 1/100, because an even smaller step
size is computationally too expensive. The results of the system in 4.14, can be found in Table 4.2 and
the results with preconditioner, from 4.15, can be found in Table 4.3.

Step size hX Step size hY # of iterations Relative residual norm ∥rk∥ Measurement error ∥ek∥
1/12.5 1/12.5 60 8.750497942317271 ∗ 10−6 0.24682060020751093

1/25 1/25 2 2.0254961840853918 ∗ 10−14 0.12483757379962887
1/50 1/50 2 6.23641198379237 ∗ 10−14 0.06269756800845525
1/100 1/100 2 3.325572579050993 ∗ 10−13 0.03139913382814065

Table 4.2: GMRES iterative method for the system Ahx⃗ = b⃗ with large step sizes without precondi-
tioning.

15

Step size hX Step size hY # of iterations Relative residual norm ∥rk∥ Measurement error ∥ek∥
1/12.5 1/12.5 2 3.397249763949668 ∗ 10−17 0.24682043591023792
1/25 1/25 2 1.2291530700576463 ∗ 10−16 0.12483757379962904
1/50 1/50 2 2.756916605462261 ∗ 10−16 0.06269756800845519
1/100 1/100 2 6.727883399682107 ∗ 10−16 0.031399133828140455

Table 4.3: GMRES iterative method for the preconditioned system P−1
h Ahx⃗ = P−1

h b⃗ with large step
sizes, where P−1

h is the exact inverse of Ph.

The first thing that pops out, is the number of iterations necessary in Table 4.2 for a step size of
1/12.5. This is because the step size is too large. Furthermore, we see in Table 4.3 that, even though
we still have the same number of iterations, the relative residual norm is much smaller. Thus, the
preconditioner Ph as in equation 4.15, is indeed a good preconditioner.

Matrix Sh is a product of matrices Bh and Ch, which arise from the discretisation of the divergence
and the gradient. Therefore, they are both sparse matrices. An approximation of matrix Sh that solves
systems of equations quickly, is the incomplete LU -decomposition. We take the incomplete, instead of
the complete LU -decomposition, since Sh is sparse. The resulting lower and upper triangular matrices
L and U are not necessarily sparse, which can really slow down computations. In the incomplete LU ,
we can specify a drop tolerance and a fill-in factor. The drop tolerance specifies when a value is too
small, then it will be set to 0. The fill-in factor gives the maximum growth of non-zero entries in
the matrices L and U . We choose the drop tolerance to be 10−4 and the fill-in factor to be 10. The
incomplete LU -decomposition can not be used to speed up the calculation of Ax⃗ = LUx⃗ = b⃗, since this
is not exact. However, it is close enough to the real LU , to be used in a approximation of Ax⃗ = b⃗ from
an iterative method, like GMRES. From (Chow & Saad, 1997, Ch. 6), it is known that the incomplete
LU -decomposition of Ph should be a good preconditioner.

The package Scipy has a built-in command for the incomplete LU -decomposition, which returns a
linear operator. From this linear operator, we can easily extract the matrices L and U , but then we
still need to invert L and U . To be able to do this, we first establish the matrix Ph and take the
incomplete LU -decomposition of the matrix Ph. Then, the resulting linear operator can be entered as
preconditioner in the GMRES from Scipy. We use the same input for GMRES as defined in section
4.1. The result is given in Table 4.4

Step size hX Step size hY # of iterations Relative residual norm ∥rk∥ Measurement error ∥ek∥
1/400 1/400 1,040 1.26927754724922 ∗ 10−10 0.007853707163769371
1/800 1/800 4,246 2.969129032935652 ∗ 10−11 0.003926951060014776

1/1,600 1/1,600 10,000 2.4546008870070745 ∗ 10−6 0.7631598991312758
1/3,200 1/3,200

Table 4.4: GMRES iterative method for the preconditioned system P̂−1
h Ahx⃗ = P̂−1

h b⃗, where P̂h is the
incomplete LU -decomposition of Ph.

For the step sizes 1/400 and 1/800, we converge to an approximate solution, but only after around
1, 000 and around 4, 000 iterations, respectively. For the step size 1/1, 600, we did not converge before
10, 000 iterations. Note, that this measurement error is also way bigger than the measurement error in
Table 4.1. This is, because we dit not reach convergence. Our relative residual norm is smaller than
the tolerance, but the tolerance is set for the absolute residual norm. For the step size 1/3, 200, our
script crashes, because it could not store the linear operator of the incomplete LU -decomposition for
Ph.

Since our script crashes for a step size of 1/3, 200, we look for a different way to invert matrix Sh. If
we can approximate Sh by a diagonal matrix, then this Ŝh is easy to invert. By numerical testing, we

16

see that Sh is symmetric with all positive eigenvalues. So we can apply the LDLT -decomposition for
Sh. We want

Sh = LD̂LT , (4.16)

where L is a lower triangular matrix with ones on the diagonal and D̂ is a diagonal matrix. First, we
take the incomplete LU -decomposition for sparse matrices such that

Sh ≈ LU. (4.17)

Then L is already a lower triangular matrix with ones on the diagonal and U is an upper triangular
matrix. Now let

U = D̂LT , (4.18)

multiplying both sides on the right side by the inverse of LT gives

D̂ = UL−T . (4.19)

However, we still need to take an inverse of LT , which is not desirable since it is computationally
expensive.

Since D̂ is a diagonal matrix, U an upper triangular matrix and L−T an upper triangular matrix,
the diagonal element D̂(i,i) is determined by multiplying the diagonal element U(i,i) by the diagonal
element L−T

(i,i). So we only need to find the inverse of the diagonal elements, which is done by dividing

the diagonal elements by itself. The inverse of matrix D̂ can be computed rather easily.

Since the diagonal of L−T already exists of ones, the diagonal elements of D̂ are given by the diagonal
elements of U . An approximation of Sh is given by

Ŝh ≈ D̂ =

{
U(i,j) for i = j = 1, ..., (N − 1) ∗ (M − 1),

0 for i ̸= j,
(4.20)

where U is an upper triangular matrix in R(N−1)∗(M−1)×(N−1)∗(M−1) from the incomplete LU -decomposition
of Sh.

An approximation of our preconditioner Ph is then given by

P̂h =

[
Ih 0

0 D̂

]
. (4.21)

Using this preconditioner with the GMRES method from Scipy yields the results in Table 4.5.

Step size hX Step size hY # of iterations Relative residual norm ∥rk∥ Measurement error ∥ek∥
1/400 1/400 10,000 9.755737318079203 ∗ 10−8 0.052486945147828146
1/800 1/800 10,000 4.646783984037046 ∗ 10−7 0.9994713910433102

1/1,600 1/1,600 10,000 1.1647152655330881 ∗ 10−7 0.9999036299529601
1/3,200 1/3,200 10,000 2.91394828943372 ∗ 10−8 0.9999738398465304

Table 4.5: GMRES iterative method for the preconditioned system P̂−1
h Ahx⃗ = P̂−1

h b⃗, where Ph is
defined in equation 4.21.

We never converge to an approximate solution within 10, 000 iterations. Therefore, the preconditioner
P̂h from equation 4.21 is not a good preconditioner. (Wathen, 2015, Ch. 5) gives bounds for the
approximation Sh, for which it holds that the Ŝh should be spectrally equivalent to Sh. In that case,
Ph is a good preconditioner. This does not always hold for Sh = LD̂LT and D̂, which can be read in
appendix A.

17

We check that Sh and D̂ are, in fact, not spectrally equivalent. We set hX and hY to be 1/10, so that
we get rather small matrices. We sort the eigenvalues of Sh and D̂ and plot them as seen in Figure
4.1.

Figure 4.1: Eigenvalues of Sh (red) and D̂ (green) with hX = hY = 1/10.

The eigenvalues of Sh are given in red and the eigenvalues of D̂ are given in green. It can be seen, that
the eigenvalues of D̂ are not the same as Sh.The smallest and largest eigenvalue of D̂ do not come close
to the smallest and largest eigenvalue of Sh. Thus the spectrum is different. So a better approximation
of Sh must be found that is spectrally equivalent to Sh and easy to invert.

5 Properties of the PDE

The matrices Ih, Bh and Ch from Section 3 together form the matrix Ah as in equation 4.14. The
matrices arise from the discretisation of the operators from Poisson’s equation using a finite difference
algorithm. However, to find a preconditioner that uses the properties of the PDE, i.e., an operator
preconditioner, we have to use the exact form of the saddle point system. Poisson’s equation 3.1 with
Dirichlet boundary conditions, can be rewritten as a saddle point system in block form. Once again,
we let w⃗ = −grad u, such that

−∆u = f, (5.1)

can be written as the system of equations

w⃗ + grad u = 0,
div w⃗ = f.

(5.2)

We can write this in block form as

Ax⃗ =

[
I grad

div 0

] [
w⃗
u

]
=

[
0
f

]
= b⃗, (5.3)

18

where I is the identity operator. Note that, (Arnold et al., 1997, Ch. 2) defines the two-dimensional
operators of the gradient and the divergence as,

grad =

[
∂/∂x
∂/∂y

]
, (5.4)

div =
[
∂/∂x ∂/∂y

]
. (5.5)

So the gradient operator is the transpose of the divergence operator. Equation 5.3 is equivalent to
equation 2.1, where I = K, div = B and grad = BT , thus A is symmetric.

In finite dimensional space, we know from (Horn & Johnson, 1985, Thm. 4.2.2) that the smallest and
largest eigenvalue of A are given by

λmin(A) = min
x⃗∈Rn\{0}

x⃗TAx⃗

x⃗T x⃗
, (5.6)

λmax(A) = max
x⃗∈Rn\{0}

x⃗TAx⃗

x⃗T x⃗
. (5.7)

Thus,
λmin(A)x⃗

T x⃗ ≤ x⃗TAx⃗ ≤ λmax(A)x⃗
T x⃗, ∀x⃗ ∈ Rn \ {0} . (5.8)

Since x⃗ ∈ Rn \ {0}, Rn is a real normed vector space, with the Euclidean norm. Thus, x⃗T x⃗ = ∥x⃗∥22 =
(x⃗, x⃗)2 or in general, (x⃗, y⃗)2 = x⃗T y⃗. Now we can rewrite equation 5.8 as

λmin(A)(x⃗, x⃗)2 ≤ (x⃗, Ax⃗)2 ≤ λmax(A)(x⃗, x⃗)2, ∀x⃗ ∈ Rn \ {0} . (5.9)

However, in equation 5.3 we are working in infinite dimensional space. Therefore, we introduce Hilbert
spaces and we try to find bounds as in equation 5.9.

5.1 Hilbert space of the Laplace operator

The goal of this thesis, is to understand why the algebraic preconditioner is a good preconditioner in
terms of the properties of the PDE. In order to do this, we want to find the Hilbert spaces, that the
operators A and P map between. So we define a Hilbert space H, such that A : H 7→ H ′, where H ′ is
the dual space of H. The properties of a Hilbert space H from (Rudin, 1921, Ch. 4) are:

• We can define an inner product on space H which has the properties as in (Rudin, 1921, Def. 4.1)

• H is a complete metric space.

Then we can write equation 5.9 with x ∈ H as

c1(x, x)H ≤ (x,Ax)H ≤ c2(x, x)H . (5.10)

From equation 5.1, we see that the operator A represents the −∆ operator. Thus, from equation 5.3,

A :

[
w⃗
u

]
7→
[
w⃗ + grad u

div w⃗

]
. (5.11)

We check the conditions for when the integrals on the right hand side make sense, so possible outliers
in measurements are flattened out. The integral∫

Ω
w⃗ dΩ +

∫
Ω

grad udΩ, (5.12)

makes sense if w⃗ ∈
[
L2(Ω)

]2 and if ∂u/∂x ∈ L2(Ω) and ∂u/∂y ∈ L2(Ω). The integral∫
Ω

div w⃗ dΩ, (5.13)

19

makes sense if div w⃗ ∈ L2(Ω). So from this, we can conclude that

w⃗ ∈ H(div,Ω) :=
{
w⃗ ∈

[
L2(Ω)

]2 such that div w⃗ ∈ L2(Ω)
}
, (5.14)

u ∈ H1(Ω) :=

{
u ∈ L2(Ω) such that

∂u

∂x
∈ L2(Ω) and

∂u

∂y
∈ L2(Ω)

}
. (5.15)

Thus, A : H(div,Ω)×H1(Ω) 7→
[
L2(Ω)

]2×L2(Ω). Note that, H(div,Ω) is a Hilbert space by (Tartar,
2007, Ch. 20), H1(Ω) is a Hilbert space by (Braess, 2007, Sect. 2.1) and L2-space is a Hilbert space by
(Christensen, 2010, Thm. 6.1.1).

5.2 Hilbert space of the preconditioner operator

In equation 5.10, we now add the preconditioner P for saddle point systems from (Wathen, 2015,
Ch. 5). In block form, this will translate to

P =

[
I 0
0 ∆

]
. (5.16)

Note that, P is not positive definite, since we do not have a negative sign in front of the Laplace
operator. We want that A and P map between the same spaces. So P : H 7→ H ′, where H ′ is again
the dual space of H. Let x ∈ H, then

c̃1(x, x)H ≤ (x, P−1Ax)H ≤ c̃2(x, x)H , (5.17)

with c̃2/c̃1 ≈ 1. The discretisation of the operators A and P will result in

c̃1(⃗̃x, ⃗̃x)2 ≤ (⃗̃x, P−1
h Ah

⃗̃x)2 ≤ c̃2(⃗̃x, ⃗̃x)2, (5.18)

where Ah, Ph and ⃗̃x are as defined in equation 4.12 and 4.15. From Table 4.3, we know this is a good
preconditioner. Then P maps as

P :

[
w⃗
u

]
7→
[
w⃗
∆u

]
. (5.19)

Again, checking the conditions for when the integrals on the right hand side make sense. This gives,∫
Ω
w⃗ dΩ, (5.20)

is valid if w⃗ ∈
[
L2(Ω)

]2 and ∫
Ω
∆udΩ, (5.21)

is valid if ∂2u/∂x2 ∈ L2(Ω) and ∂2u/∂y2 ∈ L2(Ω). Thus,

w⃗ ∈
[
L2(Ω)

]2
, (5.22)

u ∈ H2(Ω) :=

{
u ∈ L2(Ω) such that ∂u

∂x ∈ L2(Ω), ∂u∂y ∈ L2(Ω)

and ∂2u
∂x2 ∈ L2(Ω), ∂2u

∂x∂y ∈ L2(Ω), ∂
2u

∂y2
∈ L2(Ω)

}
. (5.23)

So P :
[
L2(Ω)

]2 ×H2(Ω) 7→
[
L2(Ω)

]2 × L2(Ω), where H2(Ω) is also a Hilbert space by (Braess, 2007,
Sect. 2.1).

Note that, H(div,Ω) ⊂
[
L2(Ω)

]2 and H2(Ω) ⊂ H1(Ω). From equation 5.17, we want that the spaces
of A and P line up. So, if we restrict the operators A and P to map as follows:

A : H(div,Ω)×H2(Ω) ⊂ H(div,Ω)×H1(Ω) 7→
[
L2(Ω)

]2 × L2(Ω), (5.24)

P : H(div,Ω)×H2(Ω) ⊂
[
L2(Ω)

]2 ×H2(Ω) 7→
[
L2(Ω)

]2 × L2(Ω). (5.25)

20

Then,
P−1A : H(div,Ω)×H2(Ω) 7→ H(div,Ω)×H2(Ω). (5.26)

We notice two things. H(div,Ω)×H2(Ω) and
[
L2(Ω)

]2 × L2(Ω) are Hilbert spaces and thus, Banach
spaces and P−1A is an endomorphism on H(div,Ω) × H2(Ω). By (Hiptmair, 2006, Thm. 2.1), if we
discretise wisely (so the matrices are squares), then our condition number is bounded.

Now that we have restricted A and P to have the same domain, we can see what this means for our
original function u. Previously stated in equation 5.1, we use the Laplace operator on u. That is, take
the second derivative in all directions and sum them. Therefore, u must be twice differentiable in all
directions. From the restriction of matrix A, we see that the bottom part of the vector, which A is
multiplied with, should belong to the H2-space. This part is the discretised function u and thus, by its
initial requirements, is already twice differentiable. The same reasoning can be made for the restriction
on the space of matrix P . Here, we take a subset of the L2-space, which is, the H(div)-space. The
divergence of the upper part of vector Au, multiplied by the inverse of P , should be in the L2-space.
By definition, this is the divergence of the gradient of u, which is ∆u, our original function.

5.3 Condition number

Since the mapping of P−1A gives an endomorphism, the condition number is bounded. This is given
by the constants c̃1 and c̃2 in equation 5.17. Now that we have defined our Hilbert space, we can define
the constants. So, let x ∈ H(div,Ω)×H2(Ω) such that

x =

[
w⃗
u

]
, where w⃗ ∈ H(div,Ω) and u ∈ H2Ω. (5.27)

Equation 5.17 becomes

c̃1(x, x)H(div,Ω)×H2(Ω) ≤ (x, P−1Ax)H(div,Ω)×H2(Ω) ≤ c̃2(x, x)H(div,Ω)×H2(Ω). (5.28)

Furthermore, we also define the inner product of H(div,Ω)×H2(Ω) to be

(α, α)H(div,Ω)×H2(Ω) = (β⃗, β⃗)H(div,Ω) + (γ, γ)H2(Ω), for α =

[
β⃗
γ

]
, (5.29)

where β⃗ ∈ H(div,Ω), and γ ∈ H2(Ω). The inner products on H(div,Ω) and H2(Ω) are defined as

(β⃗, χ⃗)H(div,Ω) = (β⃗, χ⃗)L2(Ω) + (div β⃗, div χ⃗)L2(Ω), for β⃗, χ⃗ ∈ H(div,Ω), (5.30)

(γ, ψ)H2(Ω) = (γ, ψ)L2(Ω) + (grad γ, grad ψ)L2(Ω) + (∆γ,∆ψ)L2(Ω), for γ, ψ ∈ H2(Ω). (5.31)

So,

(x, x)H(div,Ω)×H2(Ω) =(w⃗, w⃗)H(div,Ω) + (u, u)H2(Ω), (5.32)

=(w⃗, w⃗)L2(Ω) + (div w⃗, div w⃗)L2(Ω)

+ (u, u)L2(Ω) + (grad u, grad u)L2(Ω) + (∆u,∆u)L2(Ω). (5.33)

We will now deduce an upper and lower bound in the general case for (x, P−1Ax)H(div,Ω)×H2(Ω). Recall,

P =

[
I 0
0 ∆

]
7→ P−1 =

[
I 0
0 ∆−1

]
, (5.34)

A =

[
I grad

div 0

]
. (5.35)

21

So P−1Ax is given by

P−1Ax =

[
I 0
0 ∆−1

] [
I grad

div 0

] [
w⃗
u

]
(5.36)

=

[
w⃗ + grad u
∆−1div w⃗

]
. (5.37)

So the inner product, for which we want to find bounds for, can be written as

(x, P−1Ax)H(div,Ω)×H2(Ω) =(w⃗, w⃗ + grad u)H(div,Ω) + (u,∆−1div w⃗)H2(Ω), (5.38)

=(w⃗, w⃗)H(div,Ω) + (w⃗, grad u)H(div,Ω) + (u,∆−1div w⃗)H2(Ω), (5.39)

=(w⃗, w⃗)H(div,Ω) + (w⃗, grad u)L2(Ω) + (div w⃗,∆u)L2(Ω)

+ (u,∆−1div w⃗)L2(Ω) + (grad u, grad ∆−1div w⃗)L2(Ω)

+ (∆u, div w⃗)L2(Ω). (5.40)

From the divergence theorem of (Stolze, 1978, Eq. 3) with F = uw⃗, we know that∫
Ω
u div w⃗ dΩ =

∫
∂Ω

(uw⃗) · n⃗d∂Ω−
∫
Ω
w⃗ grad udΩ, (5.41)

Therefore, we can write

(grad u, grad ∆−1div w⃗)L2(Ω) = −(u, div grad ∆−1div w⃗)L2(Ω), (5.42)

= −(u, div w⃗)L2(Ω). (5.43)

Reapplying the divergence theorem, gives

−(u, div w⃗)L2(Ω) = (grad u, w⃗)L2(Ω). (5.44)

Plugging this into equation 5.40,

(x, P−1Ax)H(div,Ω)×H2(Ω) =(w⃗, w⃗)H(div,Ω) + 2(w⃗, grad u)L2(Ω) + 2(div w⃗,∆u)L2(Ω)

+ (u,∆−1div w⃗)L2(Ω), (5.45)

=(w⃗, w⃗)H(div,Ω) + 2(w⃗, grad u)H(div,Ω) + (u,∆−1div w⃗)L2(Ω). (5.46)

By the Cauchy-Schwarz inequality, that is

|(α, β)H | ≤ ∥α∥H ∥β∥H , for α, β ∈ H, (5.47)

we can bound the absolute value the inner product by

∣∣(x, P−1Ax)H(div,Ω)×H2(Ω)

∣∣ = ∣∣(w⃗, w⃗)H(div,Ω) + 2(w⃗, grad u)H(div,Ω) + (u,∆−1div w⃗)L2(Ω)

∣∣ , (5.48)

≤
∣∣(w⃗, w⃗)H(div,Ω)

∣∣+ 2
∣∣(w⃗, grad u)H(div,Ω)

∣∣+ ∣∣(u,∆−1div w⃗)L2(Ω)

∣∣ , (5.49)

≤∥w⃗∥2H(div,Ω) + 2 ∥w⃗∥H(div,Ω) ∥grad u∥H(div,Ω)

+ ∥u∥L2(Ω)

∥∥∆−1div w⃗
∥∥
L2(Ω)

. (5.50)

22

By Young’s inequality (Carothers, 2000, Lem. 3.6), that is,

ab ≤ ap

p
+
bq

q
, for any a, b ≥ 0 and

1

p
+

1

q
= 1 for 1 < p, q <∞, (5.51)

we have that

≤2 ∥w⃗∥2H(div,Ω) + ∥grad u∥2L2(Ω) + ∥∆u∥2L2(Ω) +
∥u∥2L2(Ω)

2

+

∥∥∆−1div w⃗
∥∥2
L2(Ω)

2
, (5.52)

=2(w⃗, w⃗)H(div,Ω) +
1

2
(u, u)H2(Ω) +

1

2
(grad u, grad u)L2(Ω)

+
1

2
(∆u,∆u)L2(Ω) +

1

2

∥∥∆−1div w⃗
∥∥2
L2(Ω)

. (5.53)

By the absolute values of equation 5.48, we can find a lower and upper bound. For the general case,
we can not find the constant c̃1 and c̃2 in equation 5.17. The last term of the lower and upper bound,∥∥∆−1div w⃗

∥∥2
L2(Ω)

, can not be written as (w⃗, w⃗)H(div,Ω) or (u, u)H2(Ω. If this term is of the same size

as ∥u∥2L2(Ω), then we are able to find the constants.

In the specific case of Poisson’s equation as in equation 5.2, we have that w⃗ = −grad u. Continuing
from equation 5.46, we get

(x, P−1Ax)H(div,Ω)×H2(Ω) =(w⃗, w⃗)H(div,Ω) + 2(w⃗, grad u)H(div,Ω) + (u,∆−1div w⃗)L2(Ω), (5.54)

=(grad u, grad u)H(div,Ω) − 2(grad u, grad u)H(div,Ω) − (u, u)L2(Ω), (5.55)

=− (grad u, grad u)H(div,Ω) − (u, u)L2(Ω), (5.56)

=− (grad u, grad u)L2(Ω) − (∆u,∆u)L2(Ω) − (u, u)L2(Ω), (5.57)

=− (u, u)H2(Ω). (5.58)

The upper and lower bound as in equation 5.32, then becomes

(x, x)H(div,Ω)×H2(Ω) =(w⃗, w⃗)H(div,Ω) + (u, u)H2(Ω), (5.59)

=(grad u, grad u)L2(Ω) + (∆u,∆u)L2(Ω) + (u, u)L2(Ω) + (grad u, grad u)L2(Ω)

+ (∆u,∆u)L2(Ω), (5.60)

=(u, u)H2(Ω) + (grad u, grad u)L2(Ω) + (∆u,∆u)L2(Ω). (5.61)

Note that, since an inner product is always greater or equal to 0, we have that

(u, u)H2(Ω) = (u, u)L2(Ω) + (grad u, grad u)L2(Ω) + (∆u,∆u)L2(Ω), (5.62)

≥ (grad u, grad u)L2(Ω) + (∆u,∆u)L2(Ω). (5.63)

Thus for the lower bound,

(x, P−1Ax)H(div,Ω)×H2(Ω) =− (u, u)H2(Ω), (5.64)

≥− (u, u)H2(Ω) − (grad u, grad u)L2(Ω) − (∆u,∆u)L2(Ω), (5.65)

=− 1 ∗ (x, x)H(div,Ω)×H2(Ω). (5.66)

23

And for the upper bound,

(x, P−1Ax)H(div,Ω)×H2(Ω) =− (u, u)H2(Ω), (5.67)

=− 1

2
(u, u)H2(Ω) −

1

2
(u, u)H2(Ω), (5.68)

≤− 1

2
(u, u)H2(Ω) −

1

2
(grad u, grad u)L2(Ω) −

1

2
(∆u,∆u)L2(Ω), (5.69)

=− 1

2
∗ (x, x)H(div,Ω)×H2(Ω). (5.70)

So, if we let c̃1 = −1 and c̃2 = −1/2, we have that

−(x, x)H(div,Ω)×H2(Ω) ≤ (x, P−1Ax)H(div,Ω)×H2(Ω) ≤ −1

2
(x, x)H(div,Ω)×H2(Ω), (5.71)

or
1

2
(x, x)H(div,Ω)×H2(Ω) ≤ −(x, P−1Ax)H(div,Ω)×H2(Ω) ≤ (x, x)H(div,Ω)×H2(Ω) (5.72)

The negative sign flips the sign inside P , such that we get the negative Laplace operator. So the
condition number is c̃2/c̃1 = 2, which is rather close to 1. So P is a good preconditioner.

The algebraic preconditioner from (Wathen, 2015, Ch. 5) for saddle point systems resulting from
a elliptic PDE is a good preconditioner, since the function used in the PDE already meets all the
requirements. We have also shown that, the inner product is always bounded from below and above
and that the condition number for Poisson’s equation is equal to 2.

6 Conclusion and discussion

The goal of this thesis, is to understand when and why the algebraic preconditioner for saddle point
systems is considered to be a good preconditioner, based on the properties of the partial differential
equation. The block representation of the Laplace operator in saddle point formulation, maps elements
from H(div,Ω)×H1(Ω) to

[
L2(Ω)

]2×L2(Ω). The block representation of the preconditioner operator,
maps elements from

[
L2(Ω)

]2 ×H2(Ω) to
[
L2(Ω)

]2 × L2(Ω). If we restrict the domains to align, such
that they both map elements from H(div,Ω)×H2(Ω) to

[
L2(Ω)

]2×L2(Ω), the product of the inverse
preconditioning operator and the Laplace operators is an endomorphism. The condition number of the
corresponding matrix will then be bounded and of order O(1). The restriction does not constrain our
solution whatsoever, since the solution meets the requirements by definition. So, the algebraic precon-
ditioner is a good preconditioner. What must be noted, is that the sign inside our preconditioner is
positive, which results in a negative definite block. For operator preconditioning, we want the blocks
to be positive definite. Future research could look into this problem.

We came to this restriction, by first checking numerically, if the algebraic preconditioner for saddle
point systems from (Wathen, 2015, Ch. 5) is a good preconditioner. This was done, by first discretising
Poisson’s equation using the finite difference algorithm from (Shashkov & Steinberg, 1995, Ch. 2-3).
We only discretised Poisson’s equation for a rectangular domain, however, one can use the same paper
to find a discretisation of general second order elliptic PDE and a general domain. This should, in fact,
provide the same result, if applied on a rectangular domain. The discretisation of Poisson’s equation
returns matrices that represent gradient and divergence operator. A function, which is in the discre-
tised domain, multiplied by these operators, does indeed return the output of Poisson’s equation.

These matrix representations, together, can form a saddle point system, which can be solved using the
GMRES iterative method. For the step size 1/1, 600, we do reach a good approximate solution, but
it takes more iterations. If we take even smaller step sizes, the number of iterations will then grow
bigger. Applying the inverted preconditioner matrix for large step sizes on the saddle point system,
results in roughly the same number of iterations and a smaller relative residual norm. From this, we

24

can conclude that the algebraic preconditioner is, indeed, an effective preconditioner. However, future
research could look into finding an approximation of this inverse for very small step sizes. We first
tried the incomplete LU -decomposition of the whole preconditioner matrix. This approach resulted in
too much complication, so we tried to approach the non-identity block in the preconditioner matrix
by a diagonal matrix. This matrix would then, in turn, be easy to invert. However, this also did
not result in less iterations needed. By (Wathen, 2015, Ch. 5), an approximation could work, if this
approximation was spectrally equivalent. The diagonal matrix that we used was clearly not spectrally
equivalent. Further research could look into spectrally equivalent approximations of symmetric positive
definite matrices, for which the inversion should not be too computationally expensive.

Once we established that the algebraic preconditioner is a good preconditioner, the Hilbert spaces for
both the matrix containing the operators and the preconditioner matrix are defined, indicating the do-
mains and co-domains they map between. These Hilbert spaces did not align, so we could not combine
the two. However, if we take a subset of the domains of both Hilbert spaces, the domains align. The
product of the inverse of the preconditioner matrix and the operator matrix forms an endomorphism,
from which we can conclude that this is a good preconditioner.

References

Arnold, D. N., Falk, R., & Winther, R. (1997). Preconditioning in H(div) and applications. Mathe-
matics of Computations, 66 (219), 957-984.

Axclsson, O., & Vassilevski, P. S. (1989). Algebraic multilevel preconditioning methods. I. Numerische
Mathematik , 56 , 157-177. doi: https://doi.org/10.1007/BF01409783

Benzi, M., Golub, G. H., & Liesen, J. (2005). Numerical solutions of saddle point problems. Acta
Numerica, 14 , 1-137. doi: https://doi.org/10.1017/s0962492904000212

Boffi, D., Brezzi, F., & Fortin, M. (2013). Mixed Finite Element Methods and Applications. Springer.
doi: https://doi.org/10.1007/978-3-642-36519-5

Braess, D. (2007). Finite elements: Theory, fast solvers, and applications in solid mechanics (3th ed.
ed.). Cambridge University Press.

Carothers, N. (2000). Real analysis. New York, United States: Cambrigde University press.

Chow, E., & Saad, Y. (1997). Experimental study of ILU preconditioners for indefinite matrices.
Journal of Computational and Applied Mathematics, 86 (2), 387-414. doi: https://doi.org/10.1016/
s0377-0427(97)00171-4

Christensen, O. (2010). Functions, Spaces and Expansions. Boston, MA: Birkhäuser. doi: https://
doi.org/10.1007/978-0-8176-4980-7

Hiptmair, R. (2006). Operator Preconditioning. Computers & Mathematics with Applications, 52 (5),
699-706. doi: https://doi.org/10.1016/j.camwa.2006.10.008

Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge, UK: Cambridge Univeristy Press.

Mardal, K.-A., & Winther, R. (2011). Preconditioning discretizations of systems of partial differential
equations. Numerical Linear Algebra with applications, 18 (1), 1-40. doi: https://doi.org/10.1002/
nla.716

Murphy, M., Golub, G., & Wathen, A. (2000). A Note on Preconditioning for Indefinite Linear
Systems. SIAM Journal on Scientific Computing , 21 (6), 1969-1972. doi: https://doi.org/10.1137/
S1064827599355153

25

https://doi.org/10.1007/BF01409783
https://doi.org/10.1017/s0962492904000212
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1016/s0377-0427(97)00171-4
https://doi.org/10.1016/s0377-0427(97)00171-4
https://doi.org/10.1007/978-0-8176-4980-7
https://doi.org/10.1007/978-0-8176-4980-7
https://doi.org/10.1016/j.camwa.2006.10.008
https://doi.org/10.1002/nla.716
https://doi.org/10.1002/nla.716
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1137/S1064827599355153

Ouhabaz, E. M. (2005). Analysis of Heat Equations on Domains. Princeton, New Jersey: Princeton
University Press.

Pinchover, Y., & Jacob, R. (2005). An Introduction to Partial Differential Equations. Cambrdige,
United Kingdom: Cambridge University Press.

Rozložník, M. (2018). Saddle-Point Problems and Their Iterative Solution. Cham, Switzerland:
Birkhäuser. doi: https://doi.org/10.1007/978-3-030-01431-5

Rudin, W. (1921). Real and complex analysis (3th ed. ed.). New York, New York: McGraw-Hill Book
Company.

Shashkov, M., & Steinberg, S. (1995). Support-Operator Finite-Difference Algorithms for General
Elliptic Problems. Journal of Computational Physics, 118 (1), 131-151. doi: https://doi.org/10.1006/
jcph.1995.1085

Stolze, C. H. (1978). A history of the divergence theorem. Historia Mathematica, 5 (4), 437-442. doi:
https://doi.org/10.1016/0315-0860(78)90212-4

Tartar, L. (2007). An Introduction to Sobolev Spaces and Interpolation Spaces. Berlin, Heidelberg:
Springer. doi: https://doi.org/10.1007/978-3-540-71483-5

Tyrtyshnikov, E. E., & Chan, R. H. (2000). Spectral equivalence and proper clusters for matrices
from the boundary element method. Numerical Methods in Engineering , 49 (9), 1211-1224. doi:
https://doi.org/10.1002/1097-0207(20001130)49:9<1211::AID-NME998>3.0.CO;2-X

Wathen, A. J. (2015, May). Preconditioning. Acta Numerica, 24 , 329-376. doi: https://doi.org/
10.1017/S0962492915000021

A Spectral equivalence of the LDLT-decomposition

Lemma A.1. If the LDLT-decomposition of a symmetric positive definite matrix A is given by A =
LDLT , then the matrices A and D are spectrally equivalent if and only if L is the identity matrix.

Proof. By (Tyrtyshnikov & Chan, 2000, Lem. 2.1), two Hermitian positive definite matrices A and B
are spectrally equivalent, if there exists positive constants c1 and c2 such that

c1 ≤
x⃗TAx⃗

x⃗TBx⃗
≤ c2, (A.1)

for any x⃗ ∈ Rn.
Let the LU -decomposition of a symmetric matrix A be given by

A = LU, (A.2)

where L is a lower triangular matrix with ones on the diagonal and U an upper triangular matrix. Let
U = DLT , where D is a diagonal matrix (and thus symmetric), then

A = LDLT , (A.3)

which is the LDLT -decomposition. Then

∥x⃗∥2A = x⃗TAx⃗, (A.4)

= x⃗TLDLT x⃗, (A.5)

= (LT x⃗)TDLT x⃗, (A.6)

= y⃗TDy⃗, (A.7)

26

https://doi.org/10.1007/978-3-030-01431-5
https://doi.org/10.1006/jcph.1995.1085
https://doi.org/10.1006/jcph.1995.1085
https://doi.org/10.1016/0315-0860(78)90212-4
https://doi.org/10.1007/978-3-540-71483-5
https://doi.org/10.1002/1097-0207(20001130)49:9<1211::AID-NME998>3.0.CO;2-X
https://doi.org/10.1017/S0962492915000021
https://doi.org/10.1017/S0962492915000021

for any x⃗, y⃗ ∈ Rn. We can find a lower and upper bound for this norm. That is,

∥x⃗∥2A = y⃗TDy⃗, (A.8)

≥ λmin(D) ∥y⃗∥22 , (A.9)

= λmin(D)
∥∥LT x⃗

∥∥2
2
, (A.10)

and

∥x⃗∥2A = y⃗TDy⃗, (A.11)

≤ λmax(D) ∥y⃗∥22 , (A.12)

= λmax(D)
∥∥LT x⃗

∥∥2
2
. (A.13)

By combining the spectral equivalence equation A.1 and the lower and upper bound for ∥x⃗∥2A, we have
that

c1 ≤
x⃗TDx⃗

x⃗TAx⃗
≤ c2, (A.14)

c1 ≤
∥x⃗∥2D
∥x⃗∥2A

≤ c2, (A.15)

c1 ∥x⃗∥2A ≤∥x⃗∥2D ≤ c2 ∥x⃗∥2A , (A.16)

λmin(D)
∥∥LT x⃗

∥∥2
2
≤ c1 ∥x⃗∥2A ≤∥x⃗∥2D ≤ c2 ∥x⃗∥2A ≤ λmax(D)

∥∥LT x⃗
∥∥2
2
, (A.17)

λmin(D)
∥∥LT x⃗

∥∥2
2

∥x⃗∥2A
≤ c1 ≤

∥x⃗∥2D
∥x⃗∥2A

≤ c2 ≤
λmax(D)

∥∥LT x⃗
∥∥2
2

∥x⃗∥2A
. (A.18)

Then it is only bounded if ∥∥LT x⃗
∥∥2
2
= ∥x⃗∥22 , (A.19)

which is when LT is an orthogonal matrix. Since L is a lower triangular matrix with ones on the
diagonal, this only holds when L is the identity matrix.

B Python code for functionality tests

import numpy as np
import matplotlib.pyplot as plt
from scipy.sparse import csr_matrix, csc_matrix, bmat, lil_matrix

Defining the grid
x_start = 0
x_end = 1
hX = 1/50

y_start = 0
y_end = 1
hY = 1/50

Defining the points in the grid
x = np.arange(x_start, x_end+hY/2, hX)
y = np.arange(y_start, y_end+hY/2, hY)
N = len(x)
M = len(y)

27

x = np.append(-hX/2, x)
y = np.append(-hY/2, y)
for i in range(N):

x[i] = x[i] + hX/2
y[i] = y[i] + hY/2

Functions for u
def u_constant(x,y):

u = np.zeros(((N+1),(M+1)))
for j in range(M+1):

for i in range(N+1):
u[i,j] = 1

u = u.flatten(’F’)
u = u.reshape(-1,1)
u = np.matrix(u)
return u

def u_xy(x,y):
u = np.zeros(((N+1),(M+1)))
for j in range(M+1):

for i in range(N+1):
u[i,j] = x[i]*y[j]

u = u.flatten(’F’)
u = u.reshape(-1,1)
u = np.matrix(u)
return u

def u_sinsin(x,y):
u = np.zeros(((N+1),(M+1)))
for j in range(M+1):

for i in range(N+1):
u[i,j] = np.sin(np.pi * x[i]) * np.sin(np.pi * y[j])
if abs(u[i,j]) < 10**(-6):

u[i,j] = 0
u = u.flatten(’F’)
u = u.reshape(-1,1)
u = np.matrix(u)
return u

Creating the gradient operator C_h
def C(N,M):

Cx = lil_matrix((N*M, (N+1)*(M+1)))
Cy = lil_matrix((N*M, (N+1)*(M+1)))
k = 0
for i in range(N):

for j in range(M):
if j == 0 or j == M-1:

Cx[k,k+i+N+1] = -2/hX
Cx[k,k+i+N+2] = 2/hX

else:
Cx[k,k+i+N+1] = -1/hX

28

Cx[k,k+i+N+2] = 1/hX

if i == 0 or i == N-1:
Cy[k,k+i+1] = -2/hY
Cy[k,k+i+N+2] = 2/hY

else:
Cy[k,k+i+1] = -1/hY
Cy[k,k+i+N+2] = 1/hY

k+=1
C = bmat([[Cx],[Cy]])
C = C.tocsr()
C = -1*C
return C

Creating the divergence operator B_h
def B(N,M):

Bx = lil_matrix(((N+1)*(M+1), N*M))
By = lil_matrix(((N+1)*(M+1), N*M))
k = 0
for j in range(M+1):

for i in range(N+1):
if (j != 0 and j != M) and i == 0:

Bx[k,k - (N+j)] = 0 # since beta is in our case 0
elif (j != 0 and j != M) and i == N:

Bx[k,k - (N+j+1)] = 0 # since beta is in our case 0
elif(j != 0 and j != M) and (i != 0 or i != N):

Bx[k,k - (N+j)] = 1/hX
Bx[k,k-1 - (N+j)] = -1/hX

if j == 0 and i != 0 and i != N:
By[k,k-1] = 0 # since beta is in our case 0

elif j == M and i != 0 and i != N:
By[k,k-(N+j+1)] = 0 # since beta is in our case 0

elif (j != 0 and j != M) and (i!= 0 and i != N):
By[k,k-(j+1)] = 1/hY
By[k,k-(j+1+N)] = -1/hY

k += 1
B = bmat([[Bx, By]])
B = B.tocsr()
return B

Calling matrices B and C
B = B(N,M)
C = C(N,M)

#Calling for the functions for u #####################################
u_constant = u_constant(x,y)
u_xy = u_xy(x,y)
u_sinsin = u_sinsin(x,y)

Applying the matrices on u

29

lapl_u_constant = B*C*u_constant
lapl_u_xy = B*C*u_xy
lapl_u_sinsin = B*C*u_sinsin

Transforming the vectors into a grid as in Section 2
matrix_u_constant = lapl_u_constant.reshape((N+1,M+1))
matrix_u_constant = np.flipud(matrix_u_constant)

matrix_u_xy = lapl_u_xy.reshape((N+1,M+1))
matrix_u_xy = np.flipud(matrix_u_xy)

matrix_u_sinsin = u_sinsin.reshape((N+1, M+1))
matrix_u_sinsin = np.flipud(matrix_u_sinsin)

matrix_u_sinsin_lapl = lapl_u_sinsin.reshape((N+1,M+1))
matrix_u_sinsin_lapl = np.flipud(matrix_u_sinsin_lapl)

Plotting the results
Defining the numbers on the axes
def set_axis_labels(ax, num_ticks = 6):

tick_labels = np.linspace(0, 1, num_ticks)
num_data_points = matrix_u_sinsin_lapl.shape[0]
ticks = np.linspace(0, num_data_points - 1, num_ticks)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(np.round(tick_labels, 2))
ax.set_yticklabels(np.round(np.flip(tick_labels), 2))

Display the first image
fig1, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

cax1 = ax1.imshow(matrix_u_constant, cmap=’viridis’,vmin = 0, vmax = 1)
fig1.colorbar(cax1, ax=ax1, orientation=’vertical’)
ax1.set_title(’B*C*U1(x_i, y_j)=B*C*1’)
ax1.set_xlabel(’x-value’)
ax1.set_ylabel(’y-value’)
set_axis_labels(ax1)

cax2 = ax2.imshow(matrix_u_xy, cmap=’viridis’,vmin = 0, vmax = 1)
fig1.colorbar(cax2, ax=ax2, orientation=’vertical’)
ax2.set_title(’B*C*U2(x_i, y_j)=B*C*(x_i*y_i)’)
ax2.set_xlabel(’x-value’)
ax2.set_ylabel(’y-value’)
set_axis_labels(ax2)
fig1.tight_layout()
plt.show()

Display the second image
fig2, (ax3, ax4) = plt.subplots(1, 2, figsize=(12, 6))

cax3 = ax3.imshow(matrix_u_sinsin, cmap=’viridis’, vmin = 0, vmax = 1)

30

fig2.colorbar(cax3, ax=ax3, orientation=’vertical’)
ax3.set_title(’U3(x_i, y_j) = sin(pi*x_i)sin(pi*y_j)’)
ax3.set_xlabel(’x-value’)
ax3.set_ylabel(’y-value’)
set_axis_labels(ax3)

cax4 = ax4.imshow(matrix_u_sinsin_lapl, cmap=’turbo’, vmin = 0, vmax = 20)
fig2.colorbar(cax4, ax=ax4, orientation=’vertical’)
ax4.set_title(’B*C*U3(x_i, y_j)=B*C*sin(pi*x_i)sin(pi*y_j)’)
ax4.set_xlabel(’x-value’)
ax4.set_ylabel(’y-value’)
set_axis_labels(ax4)
fig2.tight_layout()
plt.show()

C Python code for performing GMRES

import numpy as np
from scipy.sparse.linalg import gmres, inv, spilu, LinearOperator
from scipy.sparse import diags, csr_matrix, csc_matrix, bmat, identity, lil_matrix
import time

Defining the grid
x_start = 0
x_end = 1
hX = 1/400

y_start = 0
y_end = 1
hY = 1/400

Defining the points in the grid
x = np.arange(x_start, x_end+hY/2, hX)
y = np.arange(y_start, y_end+hY/2, hY)
N = len(x)
M = len(y)
x = x[:-1]
y = y[:-1]
for i in range(len(x)):

x[i] = x[i] + hX/2
y[i] = y[i] + hY/2

Functions for u(x,y) = sin(pi*x)*sin(pi*y)
def u_sinsin(x,y):

u = np.zeros(((N-1),(M-1)))
for j in range(M-1):

for i in range(N-1):
u[i,j] = np.sin(np.pi * x[i]) * np.sin(np.pi * y[j])
if abs(u[i,j]) < 10**(-6):

u[i,j] = 0
u = u.flatten(’F’)

31

u = u.reshape(-1,1)
u = np.matrix(u)
return u

Creating the gradient operator C
def C(N,M):

Cx = lil_matrix((N*M, (N-1)*(M-1)))
Cy = lil_matrix((N*M, (N-1)*(M-1)))
k = 0
for i in range(N):

for j in range(M):
if j == M-1 and i != N-1:

Cx[k, k-1-i] = -2/hX
elif j == 0 and i != N-1:

Cx[k,k-i] = 2/hX
elif i != N-1:

Cx[k,k-i-1] = -1/hX
Cx[k,k-i] = 1/hX

if i == 0 and j != M-1:
Cy[k,k-i] = 2/hY

elif i == N-1 and j != M-1:
Cy[k,k-i-(N-1)] = -2/hY

elif j != M-1:
Cy[k,k-i] = 1/hY
Cy[k,k-i-(N-1)] = -1/hY

k+=1
C = bmat([[Cx],[Cy]])
C = C.tocsr()
C = -1*C
return C

Creating the divergence operator B
def B(N,M):

Bx = lil_matrix(((N-1)*(M-1), N*M))
By = lil_matrix(((N-1)*(M-1), N*M))
k = 0
for j in range(M-1):

for i in range(N-1):
Bx[k,k+j] = -1/hX
Bx[k,k+j+1] = 1/hX

By[k,k+j] = -1/hY
By[k,k+M+j] = 1/hY
k += 1

B = bmat([[Bx, By]])
B = B.tocsr()
return B

Creating the laplace operator F
def f(B,C,u):

32

f = 2*np.pi**2*u
o = np.zeros((2*N*M,1))
F = np.vstack((o,f))
return F

Creating matrix A
def A(B, C):

K = identity(2*N*M, format = ’csr’)
O = csr_matrix(((N-1)*(M-1), (N-1)*(M-1)))
A = bmat([[K,-1*C],[B,O]])
A = A.tocsr()
return A

Creating the exact inverse of matrix P
def P_inv_exact(B,C):

S = B*C
S = S.tocsc()
S_inv = inv(S)
K = identity(2*N*M, format = ’csr’)
O = csr_matrix((2*N*M, (N-1)*(M-1)))
OT = csr_matrix(((N-1)*(M-1), 2*N*M))
P_inv = bmat([[K, O],[OT, S_inv]])
return P_inv

Creating the inverse of matrix P
Incomplete LU decomposition to approximate the inverse of P
def P_inv_linearoperator(B,C):

S = B*C
K = identity(2*N*M, format = ’csr’)
O = csr_matrix((2*N*M, (N-1)*(M-1)))
OT = csr_matrix(((N-1)*(M-1), 2*N*M))
P = bmat([[K, O],[OT, S]])
P = P.tocsc()
P_ilu = spilu(P)
P_inv = LinearOperator(P.shape, P_ilu.solve)
return P_inv

Creating the inverse of matrix S = LDL^T
def S_inv(B, C):

S = B * C
S = S.tocsc()
S_ilu = spilu(S)
U = S_ilu.U
diagonal_elements = U.diagonal()
reciprocal_diagonal_elements = 1.0 / diagonal_elements
D_inv = diags(reciprocal_diagonal_elements)
return D_inv

S__inv_approx = D_inv to approximate the inverse of P
def P_inv_approx(B, C, S_inv):

K = identity(2*N*M, format = ’csr’)

33

O = csr_matrix((2*N*M, (N-1)*(M-1)))
OT = csr_matrix(((N-1)*(M-1), 2*N*M))
P_inv = bmat([[K, O],[OT, S_inv]])
P_inv = P_inv.tocsc()
return P_inv

Calling for matrices B, C, u, F, A and P_inv
B = B(N,M)
C = C(N,M)
u_sinsin = u_sinsin(x,y)
F = f(B,C,u_sinsin)
A = A(B,C)

P_inv1 = P_inv_exact(B,C)

P_inv2 = P_inv_linearoperator(B,C)

S_inv_approx = S_inv(B,C)
P_inv3 = P_inv_approx(B,C), S_inv_approx)

Checking the eigenvalues of S_h and S = D_hat (only use if hX = hY < 1/20)
##S = B*C
##def D(S):
S = S.tocsc()
S_ilu = spilu(S)
U = S_ilu.U
diagonal_elements = U.diagonal()
D = diags(diagonal_elements)
return D
##D = D(S)
##
##S = S.toarray()
##v_S, w_S = np.linalg.eig(S)
##v_S = np.sort(v_S)
##
##D = D.toarray()
##v_D, w_D = np.linalg.eig(D)
##v_D = np.sort(v_D)
##
##plt.plot(v_S, marker = ’.’, linestyle =’’, color = ’r’)
##plt.plot(v_D, marker = ’.’, linestyle =’’, color = ’g’)
##plt.xlabel("Eigenvalue index")
##plt.ylabel("Eigenvalue value")
##plt.title("Eigenvalues of S_h and D_hat")
##plt.show()

Setting up a counter for GMRES
class gmres_counter(object):

def __init__(self, disp=True):
self._disp = disp
self.niter = 0

34

self.rk = []
def __call__(self, rk=None, x = None):

self.niter += 1
self.rk.append(rk)

Performing GMRES methods
u_sinsin_array = np.squeeze(np.asarray(u_sinsin))

print(’Start now with GMRES method with step size ’, hX)
print(’’)

The original system Ax = b
print(’Ax=b’)
start_time1 = time.time()
counter1 = gmres_counter()
gmres_sol, exit_clause = gmres(A,F, maxiter = 10000, callback = counter1, restart = None)
print(’The total number of iterations is ’, counter1.niter)
print(’The last residual norm is ’, counter1.rk[-1])
end_time1 = time.time()
elapsed_time1 = end_time1 - start_time1
print(’Elapsed time: ’, elapsed_time1, ’ seconds’)

error1 = u_sinsin_array - gmres_sol[2*N*M-1:-1]
measurement_error1 = np.linalg.norm(error1, ord = np.inf)
print(’The measurement error for the original system Ax = b is ’, measurement_error1)
print(’’)

The preconditioned system P-1Ax = P-1b, where P is the exact inverse
print(’PAx=Pb with P exact inverse’)
start_time2 = time.time()
counter2 = gmres_counter()
gmres_sol_pre_exact, exit_clause_pre_exact = gmres(A,F, maxiter = 10000, M = P_inv1,

callback = counter2, restart = None)
print(’The total number of iterations is ’, counter2.niter)
print(’The last residual norm is ’, counter2.rk[-1])
end_time2 = time.time()
elapsed_time2 = end_time2 - start_time2
print(’Elapsed time: ’, elapsed_time2, ’ seconds’)
print(’’)

error2 = u_sinsin_array - gmres_sol_pre_exact[2*N*M-1:-1]
measurement_error2 = np.linalg.norm(error2, ord = np.inf)
print(’The measurement error for the preconditioned system P-1Ax = P-1b is ’,

measurement_error2)
print(’’)

The preconditioned system P-1Ax = P-1b, where P = ILU
print(’PAx=Pb with P incomplete LU’)
start_time3 = time.time()
counter3 = gmres_counter()

35

gmres_sol_pre_ILU, exit_clause_pre_ILU = gmres(A,F, maxiter = 10000, M = P_inv2,
callback = counter3, restart = None)

print(’The total number of iterations is ’, counter3.niter)
print(’The last residual norm is ’, counter3.rk[-1])
end_time3 = time.time()
elapsed_time3 = end_time3 - start_time3
print(’Elapsed time: ’, elapsed_time3, ’ seconds’)
print(’’)

error3 = u_sinsin_array - gmres_sol_pre_ILU[2*N*M-1:-1]
measurement_error3 = np.linalg.norm(error3, ord = np.inf)
print(’The measurement error for the preconditioned system P-1Ax = P-1b is ’,

measurement_error3)
print(’’)

The preconditioned system P-1Ax = P-1b, where P = D
print(’PAx=Pb with P=D’)
start_time4 = time.time()
counter4 = gmres_counter()
gmres_sol_pre_D, exit_clause_pre_D = gmres(A,F, maxiter = 10000, M = P_inv3,

callback = counter4, restart = None)
print(’The total number of iterations is ’, counter4.niter)
print(’The last residual norm is ’, counter4.rk[-1])
end_time4 = time.time()
elapsed_time4 = end_time4 - start_time4
print(’Elapsed time: ’, elapsed_time4, ’ seconds’)
print(’’)

error4 = u_sinsin_array - gmres_sol_pre_D[2*N*M-1:-1]
measurement_error4 = np.linalg.norm(error4, ord = np.inf)
print(’The measurement error for the preconditioned system P-1Ax = P-1b is ’,

measurement_error4)
print(’’)

36

	Laymen's summary
	Summary
	Introduction
	Literature review
	Saddle point systems
	Preconditioning
	Algebraic preconditioning
	Operator preconditioning

	Support-operator finite difference algorithm
	Discretisation
	Operator discretisation

	Application of the support-operator finite difference algorithm
	Boundary operator
	Gradient operator
	Divergence operator
	Functionality tests

	Numerical tests
	GMRES method without preconditioning
	GMRES method with algebraic preconditioning

	Properties of the PDE
	Hilbert space of the Laplace operator
	Hilbert space of the preconditioner operator
	Condition number

	Conclusion and discussion
	References
	Spectral equivalence of the LDLT-decomposition
	Python code for functionality tests
	Python code for performing GMRES

