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Abstract

Collective cell migration is an important activity during the process of wound
healing. In this thesis, we develop a model of a wound-healing assay using
the Cellular Potts Model in the software package Morpheus. In addition, we
describe a system of three coupled partial differential equations for different
forms of the molecule transforming growth factor β. An analysis of this system
shows the existence of a trivial and an infeasible homogeneous steady state
solution, but the system does not allow Turing patterns to form. A baseline
migration model with circular-shaped fibroblast cells is set up and tested.
This model is extended by modeling the elongated shape of fibroblasts, which
showed an increased amount of vertical cell movement. An in-depth analysis
is performed to investigate the effect of cell length on vertical cell movement.
It shows a significant increase in vertical movement when increasing the cell
length up to approximately a factor of 2. Lastly, as a proof of concept, the
reaction-diffusion system is integrated into the extended model simulating the
differentiation of fibroblasts into myofibroblasts.
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1 Introduction

1.1 Wound Healing

Wound healing is a process that is critical to maintaining human life. It is a com-
plex process that involves many factors. In this section, we will go over the basic
principles of the complete wound healing process, after which we will dive further
into the specifics of cell migration and the properties of transforming growth factor
β (TGF-β).

In the process of wound healing, there are a number of different cells that play
important roles. We will first look at the three most important cells, these are
macrophages, fibroblasts and myofibroblasts. Macrophages are a type of white blood
cell and are responsible for killing and cleaning up pathogens and other foreign sub-
stances. Fibroblasts and myofibroblasts are cells that contribute to wound healing
by producing a protein called collagen, which is essential for repairing damaged
skin and provides strength and integrity. These two cells are somewhat similar but
most notably differ in shape, fibroblasts are elongated and myofibroblasts are more
star-shaped, see Figure 1.1.

Figure 1.1: Illustration of a fibroblast and a myofibroblast [1].

Wound healing can be split up into four distinct but partially overlapping stages:
hemostasis, inflammation, proliferation and remodeling. Hemostasis is the first stage
and is characterized by bleeding and the formation of a blood clot. The platelets
present in this clot also release a number of proteins called growth factors, among
these proteins are platelet-derived growth factor (PDGF) and TGF-β. These growth
factors attract and activate macrophages and fibroblasts.

During the inflammation stage, bacteria are killed and disposed of and epithelial
cells start to form a basement membrane covering the wound area. The newly ar-
rived macrophages further clean up the wound and start producing growth factors,
including TGF-β.

Fibroblasts migrate towards the wound area as a result of the growth factors re-
leased by the macrophages and PDGF, which marks the start of the proliferation

3



stage. These fibroblasts then produce collagen for the production of a new extra-
cellular matrix (ECM) which provides structural support and is a crucial basis for
cell migration. Additionally, granulation tissue forms, new blood vessels are created
and epithelialization occurs. During the latter process a single layer of epidermal
cells covers the wound area by migrating from the wound edges. The final stage of
wound healing is called remodeling and is characterized by a continuous process of
breaking down and reforming collagen bundles. This final stage can take weeks or
even months [2].

This project focuses mainly on the proliferation stage, in particular the collective
migration of cells. We will use a computational model of a wound-healing assay
(or scratch assay). This is an experimental method where a monolayer of cells is
grown in vitro such that the layer uniformly covers an area. Then, a scratch is made
in the monolayer, creating a region that is devoid of cells. The cells then start to
migrate to close the gap. This method allows us to study cell migration as a collec-
tive instead of just as a single cell, this more closely resembles actual wound healing.

Cell migration can, in certain situations, be caused by a concentration gradient of
some substance. This process of cell migration up a concentration gradient is called
chemotaxis. Early research suggests that TGF-β is the main chemo-attractant for
fibroblast migration [3]. There are, however, not many sources supporting this claim
and the research originates from some decades ago (1987). In this project, we will
use a general polarization model for cell migration that is not linked with TGF-β.
During collective migration, cells obtain front-rear polarity and through a number
of biochemical processes the cells start to migrate in the direction of the polariza-
tion [4]. This polarization is initiated at the leading edge of the cells and slowly
propagates backward. However, it is not yet well understood how this polarization
synchronizes across all cells [5]. Although, research did show that persistent cell
movement reinforces cell polarity, creating a loop between cell movement and po-
larity [6].

During the proliferation stage, fibroblasts can differentiate into myofibroblasts under
the influence of TGF-β [7]. This differentiation can only occur when TGF-β is in its
active and freely diffusing form. After secretion of TGF-β by the wound, it forms
a structure called the large latent complex (LLC). This LLC can freely diffuse, but
the TGF-β within it is in a deactivated state. LLC can bind to receptors in the
ECM. Subsequently, the TGF-β can be freed and activated, see Figure 1.2.
In addition to having a different shape from fibroblasts, myofibroblasts are also
more motile and contract more. This higher contractile activity has been shown to
stimulate TGF-β activation.
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Figure 1.2: Illustration of the different forms of TGF-β.

1.2 Using Mathematical Modeling

In this project we use mathematical modeling to increase our understanding of the
biological process of collective migration in wound healing. However, it is impor-
tant to note that a mathematical model is a simplified representation and does not
capture all aspects of the biological system. We make use of a model as some phe-
nomena are difficult to study experimentally. Once the model represents reality well
enough, we may expand it to come up with new hypotheses.

Mathematical models, however, do introduce certain challenges. For example, it
can also be difficult to know when the model is realistic, as not all results can
be empirically verified. A lot of the model parameters are also unknown or do not
translate well into reality. For this reason, we must approximate many parameters by
trial and error to acquire realistic results. Additionally, almost all of the parameter
values used in this project are either dimensionless or do not have an actual scientific
unit. We are interested in studying the behavior of the migrating cells and for this
reason, we will not go into the units.

1.3 Thesis Outline

This project focuses on the mathematical modeling of collective cell migration. We
study this process using a wound-healing assay setup and model the cell migration
using the Cellular Potts Model (CPM), which is described in Section 2. We combine
this model with a system of coupled partial differential equations for an important
growth factor protein called transforming growth factor-β (TGF-β). In Section 3 we
describe this system of equations and perform analytical and numerical analyses on
it. Then, in Section 4 we combine the system of equations into the CPM and we
view the results of different model simulations and test the effects of varying cell
shapes. Finally, the conclusion and discussion are found in Section 5.
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2 The Cellular Potts Model

In order to analyze cell migration in the process of wound healing, we use a dis-
crete mathematical model called the Cellular Potts Model (CPM), a commonly
used agent-based mathematical model for simulating cell behavior. This CPM is an
adaptation of the Potts model which in turn is a generalization of the Ising model,
which is used in statistical mechanics to simulate magnetic fields. We will imple-
ment the Cellular Potts Model using a software program named Morpheus [8]. In
the following subsections, we explain the CPM.

2.1 Representing a cell

In the CPM each cell is represented as a finite collection of pixels in a two- or three-
dimensional grid, but for this project we will only consider the two-dimensional case.
Each cell is assigned a spin value σ ∈ S = {1, 2, 3, ..., n} where n is the number of
cells. Let τ : S → T be the function from the set of spins S to the set of cell types
T that assigns to each spin value σ its corresponding cell type τ(σ). In this model
the fibroblasts are assigned cell type τ(σ) = 1 and the myofibroblasts are assigned
to τ(σ) = 2. Typically, one uses τ(σ) = 0 to represent the medium surrounding the
cells, which is usually the ECM. Figure 2.1 shows a typical schematic of the domain
of the CPM: yellow, red and blue are three different cells, and white pixels are the
medium.

Figure 2.1: Representation of three different cells and surrounding medium on a 10
by 10 grid. Sites 1 and 2 are highlighted for use in the example below.

These cells can evolve and change shape over time. First, an initial configuration is
created. Then, at each timestep, called a Monte Carlo step, the model can impose
certain adjustments to the shape of the cells. Before executing these alterations,
the Hamiltonian (H) representing the total amount of energy of the system is taken
into account. If the Hamiltonian decreases when applying the change (∆H ≤ 0),
it is accepted. However, if the Hamiltonian increases when applying the change
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(∆H > 0), the alteration is accepted with a small probability which depends on
∆H. One might think that energetically unfavorable (∆H > 0) adjustments should
always be rejected. When this is the case, however, the cell configuration may move
towards a local equilibrium and eventually stop moving. An aspect of random spo-
radic movement is also included in the model. This inclusion of random movement
makes the model more realistic, real biological cells also possess this behavior and
it also makes the cells able to escape local minima.

Below we describe the Monte Carlo algorithm for updating the model. Take Figure
2.1 as an example. The algorithm selects one grid site at random and one of its
neighboring sites at random. We define two grid sites to be neighbors when they
either share a corner or an edge, so each grid site which is not at the boundary has
eight neighbors. Suppose the algorithm happens to select site 1 and site 2 as its
neighbor. It then makes an attempt at copying the spin of site 1 into site 2, see
Figure 2.2 for the updated configuration. It will calculate the Hamiltonian before
and after the potential spin copy, giving us a value for ∆H. The potential spin copy
is now accepted with probability

P (∆H) =

{
exp

(−∆H
T

)
, if ∆H > 0

1, if ∆H ≤ 0,

where T > 0 is the so-called cellular temperature of the system. This value of T can
be manually chosen and affects the likelihood of energetically unfavorable alterations
getting accepted, this probability increases with the value of T . Note that P (∆H)
is a decreasing function of ∆H, which implies that the probability that a spin copy
is accepted decreases as the difference in energy increases. For a n × m grid, this
algorithm is performed n · m times at every Monte Carlo step. As a result, every
grid site on average receives one potential spin copy at every time-step.

Figure 2.2: New configuration after spin copy of site 1 into site 2.

7



2.2 The Hamiltonian

In the previous subsection, we discussed the Hamiltonian, which represents the total
energy of the system. We will now dive deeper into the specifics of this Hamiltonian.
By doing this, it will become clear how it influences the behavior of the cells in such
a way that they act most naturally. We define the Hamiltonian as a sum of five
different terms:

H = HA +HP +HL +HJ +HM , (2.1)

where the term HA is tied to the cell area, HP to the cell perimeter, HL to the cell
length, HJ to the adhesion between two different cells and the surrounding medium
and HM is tied to directed cell motion. Before we specifically analyze each term, we
define the neighborhood of x. Let N (x) be the set of direct neighbors of grid site
x. We use a neighborhood of order two, which gives that N (x) has eight elements
(when x is not at the boundary).

Let us now begin with the area constraint HA. Recall that P (∆H) is a decreasing
function of ∆H such that adjustments that increase the total energy are less likely
to be accepted. We want the cells in our model to stay roughly the same area
throughout the entire simulation, we must therefore make sure that HA is large
when the cell deviates from its original size. We consider the difference aσ − Aσ,
where aσ is the total area and Aσ is the target area of all cells with spin value σ.
We take the square of this difference, sum over all values of σ and multiply by λA,σ.
This final term, known as the Lagrange multiplier, sets the strength of the area
constraint for cells with spin value σ. Putting it all together we now have

HA =
∑
σ∈S

λA,σ (aσ − Aσ)
2 . (2.2)

In the same way, we want the cells in our model to keep roughly the same perimeter
throughout the simulation, as the cell may otherwise still fluctuate a lot in shape.
Additionally, we might also consider a restriction to the cell length by means of a
length constraint. Both these constraints HP and HL are analogous to the area
constraint and thus have the same form as visible in Equation (2.7). Constraint HP

has strength λP,σ and target Pσ and constraint HL has strength λL,σ and target Lσ.

We can also consider an adhesion constraint HJ . Some cells naturally tend to bind
more easily to the medium or specific cells than others. For this reason, we want the
total energy of the system to depend on which cells are in direct contact to specific
other cells or the medium. To acquire this, we assign an adhesion energy J(τ1, τ2) to
every pair of cell types including the medium. Now for every grid site x and for all
its direct neighbors x′ ∈ N (x) we sum up the adhesion energy values only if x and
x′ belong to a different cell type. This can be done by introducing the complement
of the Kronecker delta function 1 − δσx,σx′

which equals 1 if and only if σx ̸= σx′

when x and x′ are both on the boundary of two different cells. We can now write
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the adhesion constraint as:

HJ =
∑
x

∑
x′ ∈N (x)

J(τ(σx), τ(σx′)) · (1− δσx,σx′
). (2.3)

Observe Figure 2.3 to get an idea of the effect of this adhesion energy J . Here we
see two cells with four different combinations of adhesion energies. Jaa represents
the adhesion energy between the two cells and Jam represents the adhesion energy
between the cells and the surrounding medium. We can observe that the cells drift
apart when Jaa > Jam and that the cells stick closely together when Jaa < Jam. In
general, the higher the value of Jaa and the lower the value of Jam, the less cells
stick to each other.

Figure 2.3: Cell adhesion behavior for different combinations of Jaa and Jam [9]

Finally we include the term HM in the Hamiltonian, which models directed cell
motion. In our model we consider a sheet of cells where the cells collectively mi-
grate towards the right edge. The driving force of this migration is caused by cell
polarization [10]. This polarization is initiated at the front edge of the sheet of
cells and slowly expands backwards, see Figure 2.4 for an illustration of this initial
polarization.

Figure 2.4: Illustration of initial polarization, the red cells are polarized but the yellow
cells are not.

In our model, the cell polarization is represented by the vector p⃗σ. Using this
polarization vector, the driving force vector F⃗σ is calculated by means of the Hill
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function and the parameters for the maximum force Fmax, the half-saturation rate
α and the hill coefficient n.

F⃗σ = Fmax
p⃗σ
|p⃗σ|

|p⃗σ|n

|p⃗σ|n + αn
(2.4)

Additionally, the cell polarization vector p⃗σ changes over time via the following
differential equation. Here β is the depolarization rate and φ is the polarization
rate.

dp⃗σ
dt

= −βp⃗σ(t) + φv⃗σ(t) (2.5)

This equation assumes that the cell polarization increases proportional to the cell
velocity v⃗σ(t) with rate φ and decreases proportional to its own polarization with
rate β. Using the driving force vector of Equation (2.4) we define the Hamiltonian
as the negative of the dot product of the force vector and the vector r⃗σ between the
cell’s current center of mass and the proposed new center of mass. This makes sure
that the cell is biased to move in the direction of the polarization vector.

HM = −
∑
σ∈S

F⃗σ · r⃗σ (2.6)

When we combine the formulas for the Hamiltonian of the individual constraints,
we acquire the following expression for the final Hamiltonian:

H =
∑
σ∈S

λA,σ (aσ − Aσ)
2 + λP,σ (pσ − Pσ)

2 + λL,σ (lσ − Lσ)
2+∑

x

∑
x′ ∈N (x)

J(τ(σx), τ(σx′)) · (1− δσx,σx′
)−

∑
σ∈S

F⃗σ · r⃗σ. (2.7)

2.3 Model Assumptions

In mathematical modeling we must always make some simplifications and assump-
tions. This is done to decrease the complexity and increase the efficiency of our
model. The assumptions that are used in our model are listed below:

1. The fibroblasts and myofibroblasts exist in a two-dimensional plane.

2. The cellular environment exists only of fibroblasts and myofibroblasts.

3. Cell proliferation and apoptosis (programmed death) do not occur.

4. The cell dynamics follow the rules of the CPM.

5. The chemical substances considered in the study are: unbound LLC, bound
LLC and active TGF-β.

6. The only driving force behind cell migration is polarization, which follows the
dynamics of Equations (2.4) and (2.5).

7. There is a continuous supply of unbound LLC in the wound.
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3 The Reaction-Diffusion Model

In this section we will state and analyze a reaction-diffusion model representing
TGF-β concentrations in different forms. We will model active TGF-β (w), unbound
LLC (u) and bound LLC (v) using a system of three coupled partial differential
equations. The model is an adjusted version of the model in [11]. We now only
consider a system of three partial differential equations instead of four. In our
model we do not model the concentration of available LLC receptors on the ECM
using a differential equation. Instead we assume the total capacity is constant at
B and implement a direct formula to model the available space. This decreases
unnecessary complexity of the system of differential equations.

3.1 Model Description

Below we find the system of equations governing the concentration of the different
forms of TGF-β, where u(x, t) represents the concentration unbound LLC, v(x, t)
represents the bound LLC and finally w(x, t) represents the active TGF-β. See
Figure 1.2 for an illustration of the different forms of TGF-β.

∂u

∂t
= p(x)− εuu− ru

(
1− v

B

)
+Du∇2u

∂v

∂t
= ru

(
1− v

B

)
− γ(x)v +Dv∇2v

∂w

∂t
= γ(x)v − εww +Dw∇2w

(3.1)

The decay of u and w is regulated by the parameters εu and εw respectively. The
term ru

(
1− v

B

)
models the binding of the LLC to the ECM with total binding

capacity B and coefficient r. We assume that all three different forms of TGF-β
diffuse through the domain, this diffusion is modeled using the Laplace operator
and diffusion rates Du, Dv and Dw. As v represents the LLC that is bound to the
ECM, the diffusion will be very small. Similarly, active TGF-β can diffuse more
freely than unbound LLC because the molecular complex is smaller. We therefore
assume Dv ≪ Du ≪ Dw. Finally, the functions p(x) and γ(x) represent secretion of
the unbound LLC by the wound and the release of active TGF-β respectively. We
assume that the secretion of unbound LLC only occurs at the wound where x > x̂.
We also assume that the release of active TGF-β is greater near a myofibroblast
than near a fibroblast, giving release rates γ̃1 and γ̃2 with γ̃1 < γ̃2. Following this
reasoning, p(x) and γ(x) take on the following forms:

p(x) = p0 · 1x>x̂, γ(x) =

{
γ̃1 if τσ(x) = 1

γ̃2 if τσ(x) = 2
(3.2)

Note that x = (x, y). This means that p(x) only depends on the x-coordinate, but
γ(x) depends on both the x-coordinate and the y-coordinate. Additionally, no flux
boundary conditions are imposed on the left and the right boundary. Throughout
this project, the initial values for u, v and w are set to zero. In Table 3.1, the
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parameter values for System (3.1) are used in Section 4.3.

Table 3.1: Parameter values for System (3.1) which describes the dynamics of the
molecules.

Parameter Description Value
εu Decay rate of u 0.001
εw Decay rate of w 0.001
r Binding coefficient for u 0.01
B Binding capacity of u 0.7
p0 Secretion rate of u 0.05
γ̃1 Release rate of fibroblasts 0.05
γ̃2 Release rate of myofibroblasts 0.1
Du Diffusion coefficient of u 1
Dv Diffusion coefficient of v 0.02
Dw Diffusion coefficient of w 10

3.2 Turing Pattern Analysis

For certain reaction-diffusion systems in biology, it is possible to find that a pattern
formation occurs. We will now look at the possibility that our system will express
Turing pattern formation. This is a concept that is introduced by the mathematician
Alan Turing in a 1952 paper called ”The Chemical Basis of Morphogenesis” [12].
In this paper, Turing showed that under the right conditions a homogeneous steady
state solution can become instable, after which the system can display structured
repeating patterns called Turing patterns. This kind of pattern formation is quite
common in biology and is, among others, thought to be responsible for the formation
of stripes on animal fur and human fingerprints. See Figure 3.1 for an example of
Turing pattern formation.

Figure 3.1: Example of Turing pattern formation. Initial random distribution at
t = 0 after which pattern formation is visible at t = 1200. High concentrations of the
substance are colored red and low concentrations are colored white/yellow.

In order to simplify the mathematical analysis, we will only consider one dimension
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and we will make the following two assumptions:

p(x) = 0, γ(x) = γ̃

This means that the secretion of the unbound LLC (u) by the wound is set to zero
and that the release of active TGF-β (w) is assumed to be constant and independent
of the position of the myofibroblasts.
Additionally we will write the system in the following way:

∂u

∂t
= f(u, v, w) +Du

∂2u

∂x2
(3.3)

∂v

∂t
= g(u, v, w) +Dv

∂2v

∂x2
(3.4)

∂w

∂t
= h(u, v, w) +Dw

∂2w

∂x2
(3.5)

Where the functions f, g and h are given by

f(u, v, w) = −εuu− ru
(
1− v

B

)
(3.6)

g(u, v, w) = −γ̃v + ru
(
1− v

B

)
(3.7)

h(u, v, w) = γ̃v − εww (3.8)

3.2.1 Homogeneous Steady State Solutions

In order to investigate the possibility of Turing-type pattern formation, we first need
to find the homogeneous steady state solutions (HSS). For this reason, we set all
derivatives to zero and solve the resulting three equations for u, v and w, so we
solve:

f(u, v, w) = 0 (3.9)

g(u, v, w) = 0 (3.10)

h(u, v, w) = 0 (3.11)

This system of equations turns out to have two solutions: one trivial and one non-
trivial solution.

z0 =(u0, v0, w0) = (0, 0, 0) (3.12)

z1 =(u1, v1, w1) =

(
− γ̃B (εu + r)

rεu
,
B (εu + r)

r
,
γ̃B (εu + r)

rεw

)
(3.13)

For the second solution z1 we have that u1 < 0. This would mean that the concen-
tration of unbound LLC (u) is negative, which is not physically possible. For this
reason, we will not further investigate z1.
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3.2.2 Stability of Homogeneous Steady State Solutions

One condition for Turing pattern formation is the stability of the HSS. We investigate
the stability of solution z0. We begin by defining the Jacobian matrix J:

J =

 ∂f
∂u

∂f
∂v

∂f
∂w

∂g
∂u

∂g
∂v

∂g
∂w

∂h
∂u

∂h
∂v

∂h
∂w

 =

 −εu − r
(
1− v

B

)
ru
B

0

r
(
1− v

B

)
−γ̃ − ru

B
0

0 γ̃ −εw

 . (3.14)

When we then substitute z0 in the Jacobian matrix we find:

J|z0 =

 −εu − r 0 0
r −γ̃ 0
0 γ̃ −εw

 (3.15)

Note that this is a (lower) triangular matrix, which implies that its eigenvalues are
simply the diagonal elements. Hence, we have:

λ1 = −εu − r, λ2 = −γ̃, λ3 = −εw (3.16)

Note that all parameters are defined to be positive so we find that all three eigen-
values λ1, λ2 and λ3 are negative, which implies that equilibrium solution z0 is
stable.

3.2.3 Non-Existence of Wave-number

We now investigate the possibility of Turing-type pattern formation following the
methods of [13]. When pattern formation does occur, we can define its wave number
q to be the number of pattern elements per unit length. It turns out that a necessary
and sufficient condition for pattern formation is the instability of the HSS when we
include diffusion in the Jacobian matrix in the following way:

J|z0 − q2I ·

Du

Dv

Dw

 =

 −εu − r −Duq
2 0 0

r −γ −Dvq
2 0

0 γ −εw −Dwq
2

 . (3.17)

Note that the resulting matrix is again a triangular matrix, so the eigenvalues are
the diagonal elements:

λ1 = −εu − r −Duq
2, λ2 = −γ̃ −Dvq

2, λ3 = −εw −Dwq
2 (3.18)

No q exists that makes any of the above eigenvalues non-negative, so the HSS z0
remains stable and no Turing-patterns can be formed.

3.3 Numerical Analysis

In this subsection, we will numerically analyze System (3.1) in one dimension. We
do this to get an idea of the behavior of the system for two different functions γ(x).
For this analysis, the Runge-Kutta method with a timestep of 1 is used. First, we

14



assume γ(x) is a constant and equal to 0.5. In Figure 3.2 we find a plot of u, v and
w at four different time-steps.

Figure 3.2: Plot of u, v and w with constant γ(x) at time-steps 40, 300, 800 and 1800.

We see that u has high values close to the right boundary, this can be explained by
the secretion of unbound LLC at the wound site. Interestingly, v remains very small
throughout the whole simulation, it now only serves as a buffer for the transition
of u into w. Lastly, w increases closer to the right boundary but keeps rising and
retains somewhat of the same shape throughout the entire simulation. This simula-
tion shows that u and v are quickly depleted in order for w to grow.

We now assume that we have a sheet of cells that has migrated to about x = 200.
Throughout this sheet of cells we find myofibroblasts that linearly increase in number
the closer they get to the front layer of cells at x = 200. We can adapt γ(x) to model
this distribution of myofibroblasts in the following way:

γ(x) =

{
1

200
x if x ≤ 200

0 if x > 200
(3.19)

Figure 3.3 shows the numerical simulation for this adjusted γ(x). We can see that
again u rises quickly and grows at the right boundary. Due to the form of γ(x) we
get that v is approximately zero for x < 200 and rises for x > 200. As the total
binding capacity (B) is set to 0.7, we find that v approaches this limit for x > 200
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where γ(x) is equal to zero. Finally, w rises with a small peak at x = 200, but
remains relatively flat due to its high diffusion coefficient. For large time-steps, u
and v retain relatively the same value, but w steadily but slowly increases.

Figure 3.3: Plot of u, v and w with adjusted γ(x) at time-steps 100, 600, 1700 and
3000.
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4 Wound-Healing Assay Simulations

In this section, we will model the wound-healing assay in Morpheus by simulating
the cell migration of fibroblasts and myofibroblasts. We will look at three differ-
ent versions of the cell migration model. We start with the baseline model where
only fibroblasts are present, which do not differentiate into myofibroblasts, as the
reaction-diffusing system for TGF-β is not included. In this baseline model, we
assume that fibroblasts have a circular shape. Next, specific length and surface
constraints are included, giving the fibroblasts an elongated shape which is more
biologically accurate. Here, we will also investigate the effect of cell shape on ver-
tical cell movement. Finally, the reaction-diffusion system for TGF-β is included so
that differentiation of fibroblasts into myofibroblasts is enabled. In this last model,
additional length and surface constraints are imposed to model the star-like shape
of myofibroblasts.

Table 4.1 lists the parameter values that are used for the simulations in the project,
if there is no specification. Note that the parameters Aσ and Pσ do not have one
set value, and they are varied throughout this section. We define t0 to be the value
of t at the moment that the polarization is initialized.

Table 4.1: Parameter values used in the CPM for the numerical simulations.

Parameter Description Value
T Temperature 1

λA,σ Area constraint strength 1
λP,σ Perimeter constraint strength 1
λL,σ Length constraint strength 1
Aσ Target area 50
Pσ Target perimeter -
Lσ Target length -
Jcc Adhesion energy between two cells 12
Jcm Adhesion energy between cell and medium 24 + 16 · 1t≥t0

Fmax Maximal polarization force from Equation (2.4) 1.5
n Hill coefficient from Equation (2.4) 10
α Half-saturation rate from Equation (2.4) 1
β Depolarization rate from Equation (2.5) 0.003
φ Polarization rate from Equation (2.5) 0.01

4.1 Baseline model

For the baseline model, we only consider the migration of fibroblasts without the
involvement of TGF-β. This illustrates the migration behavior in its simplest form.
The simulation is initialized by placing all cells in the leftmost quarter on a 250 by
150 grid, see Figure 4.1. Some fibroblasts are colored black in order to better track
the migration of single cells.
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Figure 4.1: Configuration of the fibroblasts at t = 25.

The number of cells created is such that they take up half of the grid when the cells
reach their target area, which is set to 50. Once the cells cover about half of the
space at t = 900, the cells at the front get polarized in the x-direction with initial
polarization value p0 = 1, see Figure 4.2.

Figure 4.2: Cell configuration at t = 900 with fibroblasts colored green and black (left)
and colored yellow (low) and red (high) showing polarization in the x-direction (right).

From this point on, the cells start to migrate to the right of the domain. The
polarization of the front layer of cells now also starts to spread towards the cells
further in the back following the dynamics of Equations (2.4) and (2.5). At the left
boundary, new cells are added to fill up the empty space that would otherwise be
created by the migration. See Figure 4.3 for the cell configuration and polarization
in the time-steps following the initial polarization.
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Figure 4.3: Cell configuration and polarization at t = 1000, t = 1200 and t = 1400.

At t = 2350 the cells have fully migrated to the right boundary and closed the
gap. Just before this the polarization force is disabled to prevent the cells from
accumulating at the right boundary, this is done by setting Fmax to zero in Equation
(2.4). See Figure 4.4 for the cell configuration at t = 2350 and just before the cells
reach the right boundary at t = 2225.

Figure 4.4: Cell configuration and polarization at t = 2350 and just before the cells
reach the right boundary at t = 2225.

4.2 Baseline Model with Additional Shape Constraints

We will now look at the extended model with added length and perimeter con-
straints for the fibroblast cells. The target length and perimeter are set to 20 and
45 respectively and the target area is kept at 50. These constraints are meant to
give the fibroblasts an elongated shape, which is more realistic. All other settings
are similar to those of the baseline model of Subsection 4.1. See Figure 4.5 for the
cell configuration and settings at t = 900 when the polarization is initialized.
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Figure 4.5: Cell configuration at t = 900 with fibroblasts again colored green and black
(left) and colored yellow (low) and red (high) showing polarization in the x-direction
(right).

Note that it might appear that there are more cells than in the baseline model, but
this is not actually the case. We see that the fibroblasts do indeed have a more
elongated shape. See Figure 4.6 for additional time-steps of this simulation.

Figure 4.6: Cell configuration and polarization at t = 1400, t = 1900 and t = 2400.

We see that the fibroblast cells take on a slightly wider shape after the polarization
is initialized than before. This is most likely due to the polarization forces pulling
on the cells. Another interesting observation is the fact that the cells move a lot in
the vertical direction. As the top and bottom of the domain have periodic boundary
conditions, cells can easily ”loop” from the top to the bottom or vice versa. In
this model, it is not uncommon to see cells make one or two full rotations in this
way. This behavior is not present in the baseline model, where the cells take on a
more circular shape. A question then arises: is the vertical cell movement directly
caused by the increased cell length? We will further investigate this question in the
following subsection.

In the previous simulation, the edge of the cell layer remains relatively straight as
the cells are migrating towards the right boundary. However, this is not the case
for every simulation. In some cases, we see that one or multiple ”fingers” of cells
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extend from the edge and move towards the right boundary. This phenomenon is
called ”fingering”. This can be caused by one of two things (or both). The first
possible cause is that the front layer of cells is unequally distributed when the initial
polarization occurs, at t = 900. Any cell present at the leading edge gets polarized
at t = 900 when it is in contact with the medium, even when this contact is only
very small. Because of this, the density of polarized cells can differ along the edge,
see the circled area in Figure 4.7. The second possible cause of ”fingering” is the
adhesion energy settings (see Equation (2.3)). When the adhesion energy between
cells and the medium is increased, the Hamiltonian also rises more rapidly when the
length of the leading edge increases. This discourages the ”fingering” behavior. See
Figure 4.7 for an illustration of the ”fingering” effect.

Figure 4.7: Illustration of ”fingering” phenomenon. In the circled area, we see a
cluster of polarized cells.

4.2.1 The Effect of Cell Length on Vertical Movement

In the previous subsection, we saw that vertical cell movement increased when we
added length and perimeter constraints to the baseline model. Here, we increased
the cell target perimeter from 25 to 45 and the cell target length from 8 to 20. This
was done in order to change the cell shape from circular to elongated. We will now
investigate the effects of these constraints by quantifying the vertical cell movement
and comparing it to different target length and perimeter settings.

We represent the i’th cell as ci with i ∈ {1, 2, 3, ..., n} and n is the amount of cells in
the simulation. The total vertical cell movement can be quantified using the velocity
of every cell, this can be tracked within Morpheus. Now, for every timestep between
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t0 and t1 of each cell ci, the absolute value of the vertical component of the cell
velocity vector v⃗i,t is summed up. We define this total value as Yi and it is given by
the formula:

Yi =

t1∑
t=t0

|bi,t|, with v⃗i,t =

(
ai,t
bi,t

)
. (4.1)

We will use t0 = 900, which is when the polarization is initialized. The value of t1
is equal to the moment when the average x-coordinate of all cells combined exceeds
115. This way we make sure that the final measurement is taken when the migration
is nearly at its end, as in some simulations the cells migrate slightly faster than in
other simulations. We then take the average value over every cell, which is given by:

Y =
1

n

n∑
i=1

Yi. (4.2)

We will use this as a representation of the total vertical cell movement. It can also
be useful to know whether all cells display the same vertical movement and move
as a collective or whether the vertical movement differs a lot from cell to cell. We
therefore also calculate the standard deviation:

SY =

√∑n
i=1(Yi − Y )2

n− 1
. (4.3)

We run the baseline model with varying cell target length and perimeter. The target
length is varied from 8 to 25 with increments of 1, the target perimeter increases
linearly to the target length following the formula: 25 + 20(target length-8)

12
. For all

eighteen length and perimeter combinations, a total of 20 simulations are run in
order to mitigate the effects of randomness. Below we find two plots displaying
the results of the simulations. In Figure 4.8a we see a box plot of Y of the twenty
simulations for each target length setting. In Figure 4.8b we find a line graph of the
standard deviation (SY ) for each target length averaged over all twenty simulations.

(a) Box plot of the vertical cell movement Y for each
target cell length.

(b) Plot of standard deviation SY averaged over 20
simulations for each target cell length.

Figure 4.8: Box plot of Y (left) and line graph of SY (right).
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When viewing Figure 4.8 we can make a few interesting observations:

1. Between a target length of 8 and 15, it seems that Y and SY are both increasing
functions of the target cell length.

2. Between a target length of 15 and 25, Y first decreases slightly and then
increases slightly with an increasing target cell length. Around target length
15 and 25, Y is generally the greatest.

3. Between a target length of 15 and 25, the standard deviation SY remains
approximately constant but high. This is an indication of a lot of variation in
the vertical movement between the different cells.

4. At target length 12 and beyond, there are more outliers for the value of Y .

To investigate whether there is a significant difference in the values of Y for different
target length settings, for this we use a two-sample t-test. In Table 4.2 we see the
p-values related to the comparison between the set of Y values for target length 8
and 15 compared to every other target length. We take 0.05 as the significance level
and observe that there is a significant difference in Y between cell target length 8
and all other target length settings after 11. This means that there is a significant
difference in Y between the baseline model of Section 4.1 and the extended model of
Section 4.3. Finally, there is no significant difference between cell target length 15
and all other target length settings after 15, this means that the above observation
(2) is ungrounded.

4.3 Proof of Concept Model with Differentiation

In this final part, we implement the system of partial differential equations into the
baseline model with added length and perimeter constraints. Additionally, when
the fibroblasts encounter a sufficiently high concentration of active TGF-β, they can
differentiate into myofibroblasts. The concentration threshold for differentiation is
set to 0.1, after which at every ten time-steps differentiation can occur with a small
probability (about 0.03). In order to model the star-like shape of myofibroblasts,
the target area, length and perimeter are set to 50, 4 and 45 respectively. Due
to the increased complexity of the simulations, we now only consider a grid of 100
by 60. Running this model on a grid of 250 by 150 takes too much time, the
computations for the diffusion of the active TGF-β require a lot of computing power.
Additionally, the cells are now spawned in the leftmost half of the domain and the
polarization is initialized at t = 300. Below, Figure 4.9 displays the results of this
model at time-step 300, 550, 800 and 1000, respectively. At each time step, there
are four subfigures: the upper left displays a plot of the cell configuration and of the
concentration of active TGF-β, the other three plots display the concentration of
unbound LLC (u), bound LLC (v) and again active TGF-β (w). Note that this serves
only as a proof of concept, many of the parameter values and simulation settings are
estimated by trial and error or chosen to be convenient. Due to the time constraint
of this project, we will also not perform any analyses on this extended model.
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Table 4.2: Two-sample t-test performed on set of twenty Y values for different cell
length targets. The p-value indicates whether there is statistically significant differ-
ence in vertical displacement between the predefined target length (8 and 15, respec-
tively) and other choices of target length.

Target Length (Lσ) p-value (Lσ = 8) p-value (Lσ = 15)
8 - < 0.01
9 0.51 < 0.01
10 0.37 < 0.01
11 0.11 0.02
12 0.03 0.27
13 0.03 0.14
14 < 0.01 0.21
15 < 0.01 -
16 < 0.01 > 0.99
17 < 0.01 0.57
18 < 0.01 0.23
19 < 0.01 0.52
20 < 0.01 0.22
21 < 0.01 0.52
22 < 0.01 0.22
23 < 0.01 0.47
24 < 0.01 0.86
25 < 0.01 0.72

Figure 4.9: Four plots for each time-step 300, 550, 800 and 1000 of the extended
model. The upper left displays the cell configuration and of the concentration of
active TGF-β, the other three display the concentration of unbound LLC (u), bound
LLC (v) and again active TGF-β (w).
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5 Conclusion and Discussion

In this project, we investigated collective cell migration during wound healing. We
presented a reaction-diffusion model consisting of three coupled partial differential
equations for the different forms of the molecule TGF-β. After analyzing this sys-
tem for the possibility of Turing-pattern formation, it became clear there are two
homogeneous steady states, of which one is the trivial solution. It turns out that
the non-trivial steady state is physically impossible and the trivial solution is stable
but does not allow for Turing-patterns to form. We also numerically analyzed the
reaction-diffusion system in one dimension to investigate its behavior for two differ-
ent functions of the active TGF-β release term. From this analysis, it became clear
that u and v deplete relatively quickly and exist mostly at the right of the domain.
As a result, w steadily grows and because of its high diffusion coefficient, is well
distributed throughout the entire domain.

We used the Cellular Potts Model and the software package Morpheus to simulate
cell migration in a wound-healing assay context. A polarity-based approach was
used for the driving force behind this migration. First, we created the baseline
model with only fibroblasts showing the concept of the wound healing assay, here
we assumed all cells are of a circular shape. The baseline model was extended by
implementing additional length and perimeter constraints that model the elongated
shape of fibroblasts. This extended baseline model showed that the cells move sig-
nificantly more in the vertical direction, suggesting a link between cell shape and
vertical movement. This phenomenon was investigated further by running multiple
simulations for varying cell lengths. We calculated the total vertical movement av-
eraged over every cell and performed a two-sample t-test. We found that there is a
significant difference in vertical cell movement between the baseline model and the
extended model. However, after increasing the cell length by approximately a factor
of 2, further increasing the cell length does not significantly change the vertical cell
movement. We also discovered that for high cell length settings, there is a lot of
variation in vertical movement between the individual cells. Finally, we combined
the reaction-diffusion with the extended baseline model. The result is a model serv-
ing as a proof of concept that demonstrates the differentiation of fibroblasts into
myofibroblasts.

A large focus of this project was investigating the effect of the cell shape on the
vertical cell movement. We found that, up to a certain point, increasing the cell
length made the cells move more in the vertical direction. One question that re-
mains is the cause of this vertical movement: is it an artifact of the CPM or does
this phenomenon also occur in actual biological experiments? It is thought this is
caused by the dynamics of how cells change their polarity based on their neighbors.
Mathematical models that implement this polarity based migration often display a
swirling pattern within the migration cells. Certain literature also shows that cells
can display this swirling motion when cell migration is studied empirically [4, 14].
We found that, for high cell length settings, there is a lot of variation in vertical
movement between the individual cells. This could indicate the presence of swirling
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motions, where some cells are involved in a swirling pattern while other cells remain
relatively stationary. We have not implemented a method to quantify the swirling
motion, further research is necessary to investigate the relation between cell length
and swirling.

The full model with fibroblast differentiation now also only serves as a proof of con-
cept. It is also only run on a smaller grid due to its high computational cost. Due
to time restrictions, no qualitative research is done on the full model. As a result,
the effect of the differentiation of fibroblasts into myofibroblasts on cell migration
remains to be investigated.

In this thesis, we used mathematical modeling to investigate cell migration, this
automatically brings certain challenges with it. As a start, a lot of the reaction-
diffusion equations and CPM parameters had to be estimated. This was mostly
done by trial and error to acquire the desired behavior. A lot of parameters do not
translate well into reality or are simply unknown. This estimation of parameters
lowers the overall level of realism of the simulations. For the Turing analysis, we
also had to assume that the unbound LLC secretion rate p0 is equal to zero and
the release function γ(x) is constant. However, this is not actually the case. By
changing these assumptions and adding other reaction terms, it might be possible to
obtain more promising results when applying a different analysis method. A linear
perturbation analysis can be performed to discover other patterns or wave analysis
to find wave-like solutions. Lastly, our model is also necessarily a simplification of
reality and some aspects are not included, for example cell proliferation and apop-
tosis as well as a more diverse chemical and cellular environment.

As the next step in this project, we could expand the full model with cell differ-
entiation to the original grid size. Using this model, a qualitative analysis can
be performed to investigate the effectiveness of the migration when varying cer-
tain parameters. Possible options include assigning fibroblasts and myofibroblasts
a different maximum polarization force and changing the condition for which cell
differentiation occurs. With this full model, it can be discovered what the effects
are of the integration of the reaction-diffusion system as well as cell differentiation.
Another possible improvement to the project is linking certain parameter values to
empirical data. Many of these parameters do not translate well into reality, but
some, such as the diffusion coefficients, can still be roughly estimated.
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