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Abstract

Vibrations in engineering structures can lead to severe instabilities, especially under low-frequency
excitations that traditional linear isolators cannot effectively suppress. To address this, quasi-zero
stiffness (QZS) vibration isolators, known for their high-static-low-dynamic stiffness properties, have
gained increasing attention. This report investigates the reflection and absorption characteristics of a
nonlinear string with a QZS mechanism applied as a boundary condition. The model is considered, and
the governing equations are derived and nondimensionalized. Using regular perturbation methods and the
method of multiple time scales, analytical solutions are obtained and evaluated. The analysis distinguishes
between cases where the oblique springs are extended or compressed. It is found that with compressed
springs, when the vertical damping coefficient is below unity, the system is counterintuitively stable.
Furthermore, the inclusion of oblique dampers leads to unphysical energy growth. These phenomena are
attributed to the singular nature of the system’s dynamics and the limitations of the chosen multiple
time scale method. The results indicate that the current model does not fully capture the effects of the
oblique springs and dampers, underscoring the need for further investigation into the system’s asymptotic
expansions. Moreover, exploring second-order dynamics and external forcing could provide a deeper
understanding of the system’s complex behaviour.
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1 Introduction

Vibrations in structures such as high-rise buildings and bridges pose significant engineering challenges.
Under different kinds of forcing, these vibrations can be amplified, leading to instabilities or even
catastrophic failure. One of the most famous example of this is the Tacoma Narrows bridge, which
collapsed a few months after its opening due to the oscillations caused by strong winds. More recently, the
Erasmusbrug in the Netherlands experienced severe rain-wind-induced vibrations in its cables, prompting
the installation of hydraulic dampers to suppress those vibrations [1].

Traditionally, linear vibration isolation systems are used to mitigate such effects. However, linear
isolators are only effective when the excitation frequency exceeds

√
2 times the system’s natural frequency

[2]. This limits the effectiveness for excitations with low-frequency components [3]. To circumvent this
problem, nonlinear/quasi-zero stiffness (QZS) vibration isolators have been proposed, and over the past
two decades, research has increased significantly [4].

A QZS isolator uses a positive stiffness mechanism and a negative stiffness mechanism, which is
generally nonlinear. This mechanism gives the system a high-static-low-dynamic stiffness (HSLDS), which
enables the isolators to mitigate low-frequency vibration effectively while maintaining static load stability
[4]. Among various QZS, designs one of the most studied is the three-spring configuration, originally
proposed by Molyneux in 1957 [5]. It consists of two oblique compressed springs, which generate the
negative stiffness characteristic, and one vertical spring.

Carrella et al. [6], [7] considered this system and focused on the static behaviour and transmissibility.
Yan et al. [8] used the harmonic balance method to understand the bistable dynamics. The system is
often approximated as a Duffing oscillator to analyse its nonlinear response, as such Brennan et al. [9]
calculated the jump-up and jump-down frequencies of the Duffing oscillator. The model has also been
extended by Qui et al. [10] to include a nonlinear damper, which saw increased performance. Recently,
Xie et al. [11] investigated the effects of QZS systems on bridges, showing promising results in suppressing
low modal frequencies.

Despite these advances, the wave reflection and absorption properties of QZS systems when used as
boundary conditions have not been thoroughly investigated. This report addresses that gap

In Section 2, the system of equations is derived. Here the nonlinear string equation and the boundary
condition are obtained, and the system is nondimensionalized. An asymptotic expansion is performed,
which is solved with the method of d’Alembert in Section 3. In Section 4, the model is expanded by
introducing multiple time scales, which is solved using the Laplace transform. Finally, the findings are
concluded in Section 5 and recommendations are made for future research.
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Figure 1: Diagram of the string and its stretched state with the relevant quantities displayed.

2 Derivation system of equations

2.1 Nonlinear string equation
For the derivation of the nonlinear string equation, we will follow the steps proposed by Narashima [12].
We consider a string stretched from 0 to L∗, where at x = L∗ the string is fixed. At x = 0, we have
the nonlinear vibration isolator. The nonlinear boundary condition will be derived in Section 2.2. We
assume that there is no longitudinal displacement at x = 0. The longitudinal displacement is denoted by
v = v(x, t) and the transverse displacement is denoted by u = u(x, t).

We consider the string with the x-axis defined along the string at its equilibrium position, see Figure 1.
The x coordinate is treated as a field coordinate, and to indicate a particular particle, we use its position
ξ at rest as a label, so we have that ξ is the Lagrangian coordinate. The initial position ξ and the position
x at time t are related by

ξ(x, t) = x− v(x, t). (2.1)

Thus for the full time derivative we can see that

d

dt
=

∂

∂t
+

dx

dt

∂

∂x
=

∂

∂t
+

dv

dt
(x, t)

∂

∂x
. (2.2)

If we now consider the element dξ of the string, which is stretched to ds during motion, then we have by
definition

ds

dx
=

√
1 +

(
∂u

∂x

)2

. (2.3)

The tension forces in the v and u directions are given as

Tv = T cos θ = T
dx

ds
, (2.4a)

Tu = T sin θ = T
du

dx
, (2.4b)

where θ is the angle of the string and the x-axis. By balancing the forces on the element ds we obtain

m
d2v

dt2
=

dx

ds

∂

∂x

(
T
dx

ds

)
+Qv, (2.5a)

m
d2u

dt2
=

dx

ds

∂

∂x

(
T
du

ds

)
+Qu +R, (2.5b)
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where Qv is the force working in the x direction, Qu is the force working in the direction normal to x, and
R represents whatever damping forces may be present. Finally, m = m(x, t) is the mass per unit length.

Due to the conservation of mass, we have that

m(x, t)ds = m0(ξ)dξ, (2.6)

where m0(ξ) is the value of m of the string at rest. By combining Equations (2.1) and (2.6) we can write

m
ds

dx
= m0(ξ)

dξ

dx
=

(
1− dv

dx

)
m0(x− v). (2.7)

To complete the system of equations, we need to relate the tension T with the displacements. For this,
we make the following assumptions

1. The string is very thin,
2. The material of the string is a linear elastic solid.

Assumption 1 gives that the stress can be taken to be nearly uniform. The second assumption gives that
the tension at any point is the product of the Young’s modulus E, the cross-sectional area A and the
linear strain e. Thus the tension can be written as [12]

T = T0(1 + c21λ− c22λ
2 + c23λ

3), (2.8)

where T0 is the initial tension at equilibrium , λ is the apparent strain given by

λ ≡ ds

dξ
− 1, (2.9)

and the other constants are given by

c21 =
1

λ0
− 2ν′, c22 =

2ν′

λ0
− ν′2, c23 =

ν′2

λ0
. (2.10)

Here λ0 = e0/(1 + e0) is the effective strain and ν′ = ν(1 + e0)/(1− νe0) is the effective Poisson’s ratio,
with e0 as the initial strain and ν as Poisson’s ratio.

Using Equations (2.1) and (2.3), λ can be expressed as

λ ≡ ds

dξ
− 1 =

dx

dξ

ds

dx
− 1 =

√
1 + u2

x

1− vx
− 1, (2.11)

where the subscripts denote partial derivatives.
Now Equation (2.5) can be written as

(1− vx)v̈ =
T0

m0

∂

∂x
(Λ) + Q̃v, (2.12a)

(1− vx)ü =
T0

m0

∂

∂x
(uxΛ) + Q̃u + R̃, (2.12b)

where Q̃v = Qv/m0 and similarly for Q̃u and R̃. Furthermore, we have defined

Λ ≡ 1 + c21λ− c22λ
2 + c23λ

3

(1 + λ)(1− vx)
. (2.13)

We note that the strains in the string are usually small thus λ and λ0 are small and the ci (i = 1, 2, 3)
are large. Thus we can expand Equation (2.11) into

λ = vx +
1

2
u2
x + v2x − 1

8
u2
x(u

2
x − 4vx) + ... (2.14)

So we can also assume that the amplitudes of the oscillations are small. The most significant non-linear
problem arises when v = O(u2). If v is of a higher order, then from Equation (2.12a) we would have that
in the first order Λ is independent of x, and so ux is also independent of x. On the other hand, if v is of a
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lower order, then Equation (2.12b) would reduce to a linear equation for u in the first order. Thus, we
will assume that

v = O(ε2), u = O(ε), λ = O(ε2), (2.15)

where ε is a small parameter. Then we can expand Λ as follows

Λ = 1 + c21λ+ c22λ
2 + (vx − λ)(1 + c21λ) +O(ε4). (2.16)

Putting this into Equation (2.12b) and comparing orders of magnitude, we see that the left-hand side is
of O(ε) and the right-hand side is of O(ε) +O(c21ε

3). c21 is large so there is no a priori justification for
ignoring the second term on the right-hand side unless ε is extremely small. Furthermore, if we take ε to
be extremely small we would obtain the linear string equation. Thus we consider the following limiting
process

ε → 0, c21 → ∞, c21ε
2 ≡ Γ = O(1), (2.17)

where Γ is held fixed. Since c22 and c23 are of the same order of magnitude as c21 we can also say that
c22ε

2 = c23ε
2 = O(1). Additionally, we assume that there is no longitudinal forcing so Q̃v ≡ 0. For the

transverse forcing, we assume that Q̃u = O(ε), since for the amplitude to be small the forcing also needs
to be small.

Now using that v = ε2v̂, u = εû and Q̃u = εQ̂u we see that

ε2vtt =
T0

m0
Γ

∂

∂x

(
vx +

1

2
u2
x

)
+O(ε2) (2.18a)

utt =
T0

m0
uxx +

T0

m0
Γ

∂

∂x

[
ux

(
vx +

1

2
u2
x

)]
+ R̃+Qu +O(ε2), (2.18b)

where we have dropped the .̂ for brevity.
If we neglect the left-hand side in Equation (2.18a) we can see that

vx +
1

2
u2
x = A(t). (2.19)

The function A(t) can be found by integrating the above to obtain

A(t) =
1

L∗

[
v(L∗, t)− v(0, t) +

1

2

∫ L∗

0

u2
x dx

]
=

1

2L∗

∫ L∗

0

u2
x dx, (2.20)

where we used that v(L∗, t) = v(0, t) = 0, since at x = L∗ the string is fixed and that at x = 0 we assumed
no longitudinal displacement. Finally, we obtain the equation

utt =
T0

m0

(
1 +

Γ

2L∗

∫ L∗

0

u2
x dx

)
uxx + R̃+Qu. (2.21)

2.2 Nonlinear boundary condition
In Figure 2, the configuration of the springs and dampers is shown. We have two oblique springs with
stiffness κ∗ and two oblique linear dampers with damping coefficient α∗. Furthermore, we have a vertical
linear damper with coefficient β∗. If u(0, t) = 0 then we denote the length of the spring as ℓ∗ and the
equilibrium length of the spring is ℓ0∗. The angle ϕ is the angle of the spring with the horizontal. We
have assumed that there is no longitudinal motion, so v(0, t) = 0.

We have chosen for a two spring system, without the vertical springs, to reduce the number of
components and ease the mathematical derivation. Furthermore, without the vertical spring, we can focus
on the investigation of the contributions of the oblique springs.

We have four forces working on the string: the force of the springs Fs, of the oblique damper Fo−d,
of the vertical damper Fv−d and of the string tension FT . We have assumed that there is no horizontal
movement at the boundary so we only need to consider the force balance in the vertical direction.

First, we consider FT,v, where the subscript , v denotes the vertical component. We have that

FT,v = T0 sin θ = T0
ux√
1 + u2

x

. (2.22)
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Figure 2: Diagram of the nonlinear system at the boundary x = 0. The left diagram is of a 3-dimensional
view of the system with the string, and the right diagram is a head-on view of the system.

Here θ is the angle of the string and ux = ux(0, t), where, for the sake of brevity, the evaluation is not
included in the following formulas.

The force of the spring and the damper is dependent on the length w =
√
u2 + ℓ2∗. So we have that

Fs,v = −2 sin(ϕ)κ∗(w − ℓ0∗) = −2uκ∗

(
1− ℓ0∗

w

)
, (2.23)

= −2uκ∗

(
1− ℓ0∗√

u2 + ℓ2∗

)
. (2.24)

For the oblique damper force, we need to calculate

d

dt

√
u2 + ℓ2∗ =

uut√
u2 + ℓ2∗

. (2.25)

Now we can see that

Fo−d,v = −2α∗ sin(ϕ)
d

dt

√
u2 + ℓ2∗ = −2α∗ u2ut

u2 + ℓ2∗
. (2.26)

The force of the vertical damper is given as

Fv−d = −β∗ut. (2.27)

Thus by balancing the forces we can see that

T0
ux√
1 + u2

x

= 2uκ∗

(
1− ℓ0∗√

u2 + ℓ2∗

)
+ β∗ut + 2α∗

u2

u2 + ℓ2∗
ut. (2.28)

2.3 Nondimensionalization
We have obtained the following system of equations

utt(x, t) =
T0

m0

(
1 +

Γ

2L∗

∫ L∗

0

u2
x(ξ, t) dξ

)
uxx(x, t) +R(x, t) +Qu(x, t), 0 < x < L∗, t > 0,

(2.29a)

T0
ux√

1 + ε2u2
x

= 2uκ∗

(
1− ℓ0∗√

ε2u2 + ℓ2∗

)
+ β∗ut + 2α∗

ε2u2

ε2u2 + ℓ2∗
ut, x = 0, t > 0, (2.29b)

u(L, t) = 0, t > 0, (2.29c)
u(x, 0) = f(x), 0 < x < L∗, (2.29d)
ut(x, 0) = g(x), 0 < x < L∗, (2.29e)
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where the ε is added in Equation (2.29b) since in the derivation of Equation (2.29a) the assumption u = εû
was made. To non-dimensionalize this system we introduce the following non-dimensional coordinates and
quantities

u∗(x∗, t∗) =
u(x, t)

L⋆
, x∗ =

x

L⋆
, t∗ =

t

T ⋆
, f∗(x∗) =

f(x)

L⋆
, g∗(x∗) = g(x)

T ⋆

L⋆
, (2.30)

R∗(x∗, t∗) = R(x, t)
(T ⋆)2

L⋆
, Q∗(x∗, t∗) = Qu(x, t)

(T ⋆)2

L⋆
, (2.31)

where L⋆ and T ⋆ are the characteristic length and time, respectively, chosen such that T0/m0 = (L∗/T ∗)2.
Substituting this into Equation (2.29b) we obtain the following, where we have omitted the (0, t∗),

u∗
x∗√

1 + ε2(u∗
x∗)2

= 2u
κ∗L

∗

T0

(
1− ℓ0∗/L

⋆√
ε2(u∗)2 + (ℓ∗/L⋆)2

)
+

β∗

T0

L⋆

T ⋆
u∗
t∗ + 2

α∗

T0

L⋆

T ⋆

ε2(u∗)2

ε2(u∗)2 + (ℓ∗/L⋆)2
u∗
t∗ .

(2.32)

To reduce the number of parameters in the equation, we choose L⋆ = ℓ∗ and we introduce the non-
dimensional constants

ℓ0 =
ℓ0∗
ℓ∗

, L =
L∗

ℓ∗
, κ =

κ∗ℓ∗
T0

, β =
β∗

T0

ℓ∗
T ⋆

=
β∗√
m0T0

, α =
α∗

T0

ℓ∗
T ⋆

=
α∗√
m0T0

. (2.33)

So if the oblique springs are compressed in the horizontal position, then ℓ0 > 1. Lastly, we assume that
L ≫ 1, such that δ = ℓ∗/L ≪ 1 is a small parameter. Thus now we have obtained the non-dimensional
system, where we have dropped the superscript ∗,

utt(x, t) =

(
1 + δ

Γ

2

∫ L

0

u2
x(ξ, t) dξ

)
uxx(x, t) +R(x, t) +Q(x, t), 0 < x < L, t > 0, (2.34a)

ux√
1 + ε2u2

x

= 2uκ

(
1− ℓ0√

1 + ε2u2

)
+ βut + 2α

ε2u2

1 + ε2u2
ut, x = 0, t > 0, (2.34b)

u(L, t) = 0, t > 0, (2.34c)
u(x, 0) = f(x), 0 < x < L, (2.34d)
ut(x, 0) = g(x), 0 < x < L. (2.34e)

The equations for the left boundary condition are highly nonlinear. So as an approximation, we will
use the first terms of the Taylor series [10], [13]. We have that

FT,v ≈
[
ux − 1

2
ε2u3

x +
3

8
ε4u5

x

]
, (2.35)

Fs,v ≈ −κ

[
2 (1− ℓ0)u+ ℓ0ε

2u3 − 3ℓ0
4

ε4u5

]
, (2.36)

Fd,v ≈ −2αut

[
ε2u2 − ε4u4

]
. (2.37)

Taking only up to the cubic terms we see that the force balance becomes

ux(0, t)−
1

2
ε2u3

x(0, t) = λu(0, t) + κℓ0ε
2u3(0, t) + βut(0, t) + 2αε2u2(0, t)ut(0, t), (2.38)

where we have defined λ = 2κ (1− ℓ0).

2.4 Other formulations
In the derivation of Equation (2.21) we made various assumptions. In the following, we present two
different approaches which aim to lessen the assumptions placed on the problem. By doing so, a greater
portion of the system’s full dynamics is retained, offering a clearer view of the effects and interactions
that are omitted in the final equation. Although these expressions proved too complex to be included in
the subsequent analysis, they provide valuable insights and reveal opportunities for deeper exploration in
future work.
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2.4.1 Integral representation

To obtain Equation (2.21), we neglected the left-hand side of Equation (2.18a). However, this transforms
the hyperbolic equation into a parabolic equation. Furthermore, since we had to integrate over the domain
to obtain A(t), we had to assume that the string was finite. To consider an infinite string, we can keep
the left-hand side of the equation and consider the higher orders of the right-hand side as perturbations of
the hyperbolic part. So then we can solve the following system for v

vtt = c2 [vxx + uxuxx] , x > 0, t > 0,

v(0, t) = 0, t > 0,

v(x, 0) = fv(x), vt(x, 0) = gv(x), x > 0.

Here c2 = T0Γ/(m0ε
2) and fv(x) and gv(x) are the initial position and velocity respectively. We assume

that there is no energy at ∞, so v and all its derivatives are zero for x → ∞.
Now we have a linear wave equation in v with the forcing F (x, t) = c2uxuxx. We know that the

solution is given by

v(x, t) =
1

2
[fv(x+ ct) + fv(x− ct)] +

1

2c

∫ x+ct

x−ct

gv(ξ) dξ +
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (ξ, τ) dξdτ. (2.39)

If x− ct > 0, then we can evaluate the first integral of the last term to obtain

v(x, t) =
1

2
[fv(x+ ct) + fv(x− ct)] +

1

2c

∫ x+ct

x−ct

gv(ξ) dξ (2.40)

+
c

4

∫ t

0

[
u2
x(x+ c(t− τ), τ)− u2

x(x− c(t− τ), τ)
]
dτ.

For the substitution, we need to know vx. So we obtain the following, where the notation p = x+ c(t− τ)
and m = x− c(t− τ) was used to keep the formula concise,

vx(x, t) =
1

2
[f ′

v(x+ ct) + f ′
v(x− ct)] +

1

2c
[gv(x+ ct)− gv(x− ct)] (2.41)

+
c

2

∫ t

0

[ux(p, τ)uxx(p, τ) dτ − ux(m, τ)uxx(m, τ)] dτ.

The functions fv, gv and u are only defined for x > 0, so we need to adjust the formula if x− ct < 0.
Since we have the left boundary condition v(0, t) = 0, we take the odd extensions of fv, gv and F . To
determine the forcing term, we first define t0 = t− x/c. The time t0 is the time it takes for the wave from
point x to reach the boundary. So for times τ < t0 we need to consider the influence of the boundary. We
have that∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (ξ, τ) dξdτ =

∫ t

t0

∫ x+c(t−τ)

x−c(t−τ)

F (ξ, τ) dξdτ +

∫ t0

0

∫ x+c(t−τ)

0

F (ξ, τ) dξdτ (2.42)

+

∫ t0

0

∫ 0

x−c(t−τ)

F (ξ, τ) dξdτ.

Above, we can see that we only need to consider the odd extension for the last term. Thus, if x− ct < 0,
then we have that

v(x, t) =
1

2
[fv(x+ ct)− fv(ct− x)] +

1

2c

∫ x+ct

ct−x

gv(ξ) dξ (2.43)

+
c

4

{∫ t

0

u2
x(x+ c(t− τ), τ) dτ −

∫ t

t0

u2
x(x− c(t− τ), τ) dτ −

∫ t0

0

u2
x(c(t− τ)− x, τ) dτ

}
.

Furthermore, the derivative vx, is given as

vx(x, t) =
1

2
[f ′

v(x+ ct) + f ′
v(ct− x)] +

1

2c
[gv(x+ ct) + gv(ct− x)] (2.44)

+
c

2

{∫ t

0

ux(p, τ)uxx(p, τ) dτ −
∫ t

t0

ux(m, τ)uxx(m, τ) dτ +

∫ t0

0

ux(−m, τ)uxx(−m, τ) dτ

}
.
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2.4.2 Series solution

To solve the nonlinear equation Equation (2.21), one can represent u as a Fourier series or apply the
Laplace transform. We will try to obtain a series solution for the whole system of Equation (2.18). The
series we use is

v(x, t) =
∑
n≥1

Vn(t) sin
(nπ
L

x
)
, (2.45)

u(x, t) =
∑
n≥0

Un(t)ϕn(x), (2.46)

where ϕn(x) is the solution of the system

ϕ′′
n(x) + µ2

nϕn(x) = 0, 0 < x < L, (2.47)
ϕ′
n(0) = λϕ(0), (2.48)

ϕn(L) = 0. (2.49)

This system was obtained by considering the linear first-order part of Equations (2.18) and (2.34) and
using separation of variables. Furthermore, we assumed β = 0, since complications arise for β > 0 and we
want to focus on the interaction between the equations in this section.

So we have that

ϕn(x) = sin(µnx) +
µn

λ
cos(µnx) (2.50)

with µn given by the solutions of

sin(µnL) +
µn

λ
cos(µnL) = 0. (2.51)

We can see that µ0 = 0 and µn ≈ (n+ 1/2)π/L as n becomes large. Furthermore, one can show that∫ L

0

ϕnϕm dx = 0, for n ̸= m. (2.52)

Now substituting these series into Equation (2.18) and using the orthogonality of sin(nπx/L) and ϕn for
Equations (2.18a) and (2.18b) respectively, we obtain

ε2V̈n = −Γ
(nπ
L

)2
Vn − 2Γ

L

∫ L

0

uxuxx sin
(nπx

L

)
dx, (2.53a)

Ün = −µ2
nUn − Γ

Φn

∫ L

0

{
vxuxx + uxvxx +

3

2
u2
xuxx

}
ϕn(x) dx, (2.53b)

where Φn =
∫ L

0
ϕ2
n dx. Now we need to evaluate the integrals to see how the modes interact with each

other. We will consider the cubic term as an example. Then we have∫ L

0

u2
xuxxϕn(x) dx =

∑
i

∑
j

∑
k

UiUjUk

∫ L

0

ϕ′
iϕ

′
jϕ

′′
kϕndx (2.54)

=
∑
i

∑
j

∑
k

−UiUjUkµ
3
kµj

(
µ2
i + µ2

j − µ2
k − µ2

n

)
µiµnAijkn, (2.55)

with Aijkn a fraction composed of µi, µj , µk and µn. We can see that only the modes with one of the
µi, µj , µk or µn equal to zero and

(
µ2
i + µ2

j − µ2
k − µ2

n

)
= 0 do not have an interaction with this term.

Furthermore, since there is no closed expression of µn it is difficult to evaluate the indices for which this
happens. So there are an infinite number of interactions between the two equations.
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3 Asymptotic expansion

To solve the system of Equation (2.34), we will use an asymptotic expansion. However, in the system we
have two small parameters: δ and ε. Since we have δ = ℓ∗/L, we can choose L to obtain different orders
of δ concerning ε. We consider the case δ = O(ε2).

We perform the asymptotic expansion on δ = ε2, so we have that

u(x, t) = u0(x, t) + ε2u1(x, t) +O(ε4). (3.1)

Now we substitute the above expression into Equation (2.34) with the boundary condition as Equa-
tion (2.38). Then we collect the terms of different orders of ε.

3.1 Extended oblique springs
In the asymptotic analysis, we separate the two cases where the oblique springs are extended or compressed.
These cases have respectively ℓ0 ≤ 1 and ℓ0 > 1. For the extended case, we have that λ ≥ 0, and for the
compressed case, we have that λ < 0.

We have to consider the compressed case separately since the first order force is only the outward
component. In the second order, a restoring force becomes present, however, this means that two diverging
functions have to balance.

3.1.1 First order: d’Alembert solution

The system we obtain for the first order is

O(1) :u0,tt(x, t) = u0,xx(x, t), 0 < x < L, t > 0, (3.2a)
u0,x(0, t) = λu0(0, t) + βu0,t(0, t), t > 0, (3.2b)
u0(L, t) = 0, t > 0, (3.2c)
u0(x, 0) = f(x), u0,t(x, 0) = g(x), 0 < x < L, (3.2d)

with λ = 2κ(1− ℓ0). We can see that we need to solve the wave equation with non-standard boundary
conditions. This system has been studied in [14] and we will follow a similar procedure.

The solution of the wave equation is given by the d’Alembert solution, which is given as

u0(x, t) =
1

2
f(x+ t) +

1

2
f(x− t) +

1

2

∫ x+t

x−t

g(s) ds. (3.3)

However, for x− t < 0 the functions f and g are not defined. So we need to use the boundary condition
to define these. We consider the following equation

u0(x, t) =
1

2
f(x+ t) +

1

2

∫ x+t

0

g(s) ds+
1

2
φ(t− x). (3.4)

and we substitute it in Equation (3.2b). We then obtain the differential equation

φ′(t) + κ0φ(t) = −
(
κ0

[
f(t) +

∫ t

0

g(s) ds

]
+ γ0 [f

′(t) + g(t)]

)
≡ −h(t), (3.5)

with

κ0 =
λ

1 + β
=

2κ(1− ℓ0)

1 + β
, γ0 =

β − 1

β + 1
. (3.6)

The solution of the differential equation is given as

φ(t) = f(0)e−κ0t − e−κ0t

∫ t

0

eκ0sh(s) ds, (3.7)

where we used that u(0, 0) = f(0) gives φ(0) = f(0). Now replacing t by t− x and performing integration
by parts where possible for h(s), we obtain from Equation (3.4), for x− t < 0,

u0(x, t) =
1

2
f(x+ t)− 1

2
γ0f(t− x) +

1

2
(γ0 + 1)f(0)eκ0(x−t) +

1

2

∫ x+t

t−x

g(s) ds (3.8)

+
1

2
κ0(γ0 − 1)eκ0(x−t)

∫ t−x

0

eκ0sf(s) ds− 1

2
(γ0 − 1)eκ0(x−t)

∫ t−x

0

eκ0sg(s) ds.
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(a) β = 0 (b) λ = 0

Figure 3: Reflections of the first order solutions for different values of λ and β.

We consider an initial wave which travels to the left, so we have that g(x) = f ′(x). Then we can see
that for x− t > 0 we obtain

u0(x, t) = f(x+ t). (3.9)

For x− t < 0 we have that

u0(x, t) = f(x+ t)− γ0f(t− x) + γ0f(0)e
κ0(x−t) + κ0(γ0 − 1)eκ0(x−t)

∫ t−x

0

eκ0sf(s) ds. (3.10)

In Figure 3 we have shown the reflection, x < 0, of the wave with initial conditions f(x) = sin2(x) and
g(x) = f ′(x) on π ≤ x ≤ 2π and f(x) = 0 elsewhere. The reflections are shown for different values of λ
and β. We can see that we have an even extension in the case of β = λ = 0 and an odd extension in the
limiting cases β = 0, λ → ∞ and λ = 0, β → ∞.

3.1.2 Second order

The system we obtain for the second order is

O(ε2) :u1,tt(x, t) = u1,xx(x, t) + F (x, t), 0 < x < L, t > 0, (3.11a)
u1,x(0, t) = λu1(0, t) + βu1,t(0, t) +G(t), t > 0, (3.11b)
u1(L, t) = 0, t > 0, (3.11c)
u1(x, 0) = u1,t(x, 0) = 0, 0 < x < L, (3.11d)

where the forcing terms in the wave equation and boundary condition are given as

F (x, t) =
Γ

2
u0,xx(x, t)

∫ L

0

u2
0,x(ξ, t) dξ, (3.12)

G(t) = κℓ0u
3
0(0, t) + 2αu2

0(0, t)u0,t(0, t) +
1

2
u3
0,x(0, t). (3.13)

Equation (3.11a) is the wave equation with forcing, for which the solution is known as

u1(x, t) =
1

2

∫ t

0

∫ x+t−τ

x−(t−τ)

F (ξ, τ) dξdτ. (3.14)

If x − t > 0, then we can see that ξ − τ > 0 holds for the whole integration domain. Thus, u1(x, t) is
fully defined. However, if x− t < 0, then the integral in Equation (3.14) needs to be split into four parts,
which are shown in Figure 4. In the region I, we have that ξ − τ > 0 and in the regions II and III we have
ξ − τ < 0. In region IV F (ξ, τ) is not defined since it is a function of u0 and it is not defined for x < 0.
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Figure 4: Diagram of the cone of integration for Equation (3.14)

As in the first order, we will use the boundary condition to define this part of the function. Thus, we have
that

u1(x, t) =
1

2

∫ (x+t)/2

0

∫ x+t−τ

τ

F (ξ, τ) dξdτ +
1

2

∫ (x+t)/2

x

∫ x+t−ξ

ξ

F (ξ, τ) dτdξ (3.15)

+
1

2

∫ x

0

∫ t−(x−ξ)

ξ

F (ξ, τ) dτdξ +
1

2
φ(t− x),

where the function φ has to be determined. We substitute this into Equation (3.11b) and we obtain the
following differential equation

φ′(t) + κ0φ(t) = −γ0

∫ t/2

0

F (t− τ, τ) dτ − γ0

∫ t

t/2

F (t− τ, τ) dτ − κ0

[∫ t/2

0

∫ t−τ

τ

F (ξ, τ) dξdτ (3.16)

+

∫ t/2

0

∫ t−ξ

ξ

F (ξ, τ) dτdξ

]
− 2

1 + β
G(t)

≡ −H(t), (3.17)

where κ0 and γ0 are defined as in Equation (3.6). Thus we have that

φ(t) = C1e
−κ0t − e−κ0t

∫ t

0

eκ0sH(s) ds. (3.18)

Since u1(x, 0) = 0, we can see that u1(0, 0) = 0. Thus, as an initial condition, we have φ(0) = u1(0, 0) = 0.
So, it follows that C1 = 0.

Now by again replacing t with t− x we see that

u1(x, t) =
1

2

∫ (x+t)/2

0

∫ x+t−τ

τ

F (ξ, τ) dξdτ +
1

2

∫ (x+t)/2

x

∫ x+t−ξ

ξ

F (ξ, τ) dτdξ (3.19)

+
1

2

∫ x

0

∫ t−(x−ξ)

ξ

F (ξ, τ) dτdξ − 1

2
eκ0(x−t)

∫ t−x

0

eκ0sH(s) ds,

with

H(t) = γ0

∫ t/2

0

F (t− τ, τ) dτ + γ0

∫ t

t/2

F (t− τ, τ) dτ + κ0

∫ t/2

0

∫ t−τ

τ

F (ξ, τ) dξdτ (3.20)

+ κ0

∫ t/2

0

∫ t−ξ

ξ

F (ξ, τ) dτdξ +
2

1 + β
G(t).
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(a) β = 0

(b) λ = 0

Figure 5: Reflections for extended springs plotted at t = 3π for different values of λ and β.

In Figure 5, the first-order and the second-order reflections are shown for multiple values of λ and β at
time t = 3π. In the simulations we used ℓ0 = 1/2, α = 1, Γ = 1 and L = 30. For the remainder of this
report, we will use the values Γ = 1 and L = 30. In the plots, we can see that the second-order term has a
significant contribution. Furthermore, in Figure 6, we have plotted the case of β = λ = 0 for different
values of t. Here we can see that the second order contribution grows over time.

3.1.3 Energy analysis

To further investigate the effect and growth of the second-order term, we can calculate the energy of the
system. To determine the energy, we multiply Equation (2.34a) with ut and we integrate with respect to
x from 0 to L. So then we obtain

0 =

∫ L

0

uttut dx−

(
1 + ε2

Γ

2

∫ L

0

u2
xdx

)∫ L

0

uxxut dx (3.21)

=
d

dt

∫ L

0

1

2
u2
t dx−

(
1 + ε2

Γ

2

∫ L

0

u2
xdx

)(
[uxut]

L
0 −

∫ L

0

uxuxt dx

)
(3.22)

=
d

dt

∫ L

0

1

2

[
u2
t + u2

x

]
dx+

d

dt
ε2

Γ

4

(∫ L

0

u2
xdx

)2

+

(
1 + ε2

Γ

2

∫ L

0

u2
xdx

)
ux(0, t)ut(0, t). (3.23)
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Figure 6: Reflections for extended springs with λ = β = 0 plotted for different times.

Now with Equation (2.34b) we have that

ux(0, t)ut(0, t) =
√

1 + ε2u2
x(0, t)

[
2u(0, t)ut(0, t)κ

(
1− ℓ0√

1 + ε2u2(0, t)

)

+u2
t (0, t)

(
β + 2α

ε2u2(0, t)

1 + ε2u2(0, t)

)]
(3.24)

=
√

1 + ε2u2
x(0, t)

[
d

dt

κ

ε2
(
√
1 + ε2u2(0, t)− ℓ0)

2 + u2
t (0, t)

[
β + 2α

ε2u2(0, t)

1 + ε2u2(0, t)

]]
.

(3.25)

Now if we denote

V (t) =

(
1 + ε2

Γ

2

∫ L

0

u2
xdx

)√
1 + ε2u2

x(0, t)− 1 (3.26)

then we have that

d

dt

∫ L

0

ε2

2

[
u2
t + u2

x

]
dx+

d

dt
ε4

Γ

4

(∫ L

0

u2
xdx

)2

+ (1 + V (t))
d

dt
κ
[√

1 + ε2u2(0, t)− ℓ0

]2
= −(1 + V (t))u2

t (0, t)

[
β + 2α

ε2u2(0, t)

1 + ε2u2(0, t)

]
(3.27)

In the left-hand side of the above equation, we first have the derivative of the linear energy of the string
and then we have the derivative of the energy contributed by the nonlinear term. Lastly, we have on the
left-hand side the derivative of the energy stored in the springs multiplied by a correction term, 1 + V (t).
This correction term appears because we assumed for the boundary condition that v(0, t) = 0, so we could
not do the same reduction concerning v as for the string equation. However, we can see that V (t) = O(ε2)
and that the derivative of the spring energy is of order O(ε2), so this correction only matters in the orders
of ε4 or above.

Since 1 + V (t) ≥ 0, we can see that the right-hand side of Equation (3.27) is less than or equal to zero.
So we have that

d

dt
E(t) +O(ε4) ≤ 0, (3.28)

where we have defined the energy E(t) as

E(t) =

∫ L

0

ε2

2

[
u2
t + u2

x

]
dx+ κ(

√
1 + ε2u2(0, t)− ℓ0)

2. (3.29)

Thus, we see that the energy of the system cannot increase over time.
In Figure 7, the energy is plotted, where the left plot shows the energy of u0 and the right plot shows

the energy of u0 + ε2u1. In both plots, the energy is shifted such that it is zero at t = 0. The plots are
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Figure 7: Energy of u0 and u0 + ε2u1 for different values of λ and β.

shifted instead of normalised to better show the increase in energy for the second-order terms. Since then,
the increase would be less visible for higher values of λ because the higher values of κ lead to a higher
total energy.

In the first plot, we can see that in most cases with β = 0 the energy in the system stays constant.
For λ = 4, there is a small increase in the energy during the boundary interaction, however, this is due to
computation errors in the numerical integration and the way the plots are presented. Due to computation
errors, the string does not completely settle back at u = 0 after the boundary interaction and a higher λ
increases that error more. The way the plots are presented leads to the error being visible, since if the
energies were normalised, the increase in error due to λ would be balanced by the increase in total energy.

For different values of β, we have different amounts of damping. In the case of β = 1, we have perfect
damping, so there is no energy left in the system. As β → ∞, we can see that there is less damping since
the system approaches a fixed-end boundary.

But if we now consider the second plot, we can see that in all cases the energy increases with time, and
this violates the conservation of energy of the system. This is because the asymptotic analysis introduces
secular terms as forcing for the second-order problem. These secular terms grow over time and cause this
increase in energy. The increase in energy is not yet visible after the boundary for the cases β = 1 and
β = 1/2, however, this is because the system is heavily damped. Since the growth of the second order is
relative to the first order, it is not yet visible.

3.2 Compressed oblique springs
In the case of compressed springs, the above solution is not valid, since the solution blows up. This is
what we expect in the first order, since we only have the outward force of the springs. Consequently, the
second order also diverges, and the balancing of those two diverging solutions does not result in a valid
solution. Furthermore, we will see that the stable equilibrium solution is at order O(1/ε), and so to reach
that solution, we would violate our ordering assumptions. We solve this is to make an extra assumption
on λ. Namely, we assume that |λ| = O(ε2). This way, the system is out of the compression region after a
small perturbation.

There are multiple ways to obtain the order assumption on λ. We will assume that

ℓ0 = 1 + ρε2. (3.30)

Then we have that λ = −2ρκε2 = −λ̂ε2. Another way is to use the three spring system and tune the
spring coefficients such that the linear force only has a small contribution [6].

We can use the solutions of the extended spring case with some adaptations. The outward force of
the oblique springs is shifted to the second order. Thus, for the first order, we have the same system as
Equation (3.2) but with λ = 0. Accordingl,y we have Equation (3.8) as a solution but with κ0 = 0. Hence
we have that

u0(x, t) =
1

2
f(x+ t)− 1

2
γ0f(t− x) +

1

2
(γ0 + 1)f(0) +

1

2

∫ x+t

t−x

g(s) ds− 1

2
(γ0 − 1)

∫ t−x

0

g(s) ds. (3.31)

Similarly, for the second order, we have the system Equation (3.11) with λ = 0. Additionally, we need
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to change the forcing in the boundary condition to

Gcompr(t) = −λ̂u0(0, t) + κℓ0u
3
0(0, t) + αu2

0(0, t)u0,t(0, t) +
1

2
u3
0,x(0, t). (3.32)

The second order solution is then

u1(x, t) =
1

2

∫∫
I,II,III

F (ξ, τ) dξdτ − 1

2

∫ t−x

0

Hcompr(s) ds, (3.33)

with

Hcompr(t) = γ0

∫ t/2

0

F (t− τ, τ) dτ + γ0

∫ t

t/2

F (t− τ, τ) dτ +
2

1 + β
Gcompr(t). (3.34)

Since we consider the case of compressed springs, it is important to know what the eventual equilibrium
positions of the system are. The equilibrium solutions, ueq, can be found by setting ueq,t = 0 and then
solving the system of Equation (2.34). From Equations (2.34a) and (2.34c) we see that ueq = m(1− x/L),
where m needs to be determined from the other boundary condition, eq. (2.34b). So we need to solve for
m in

−m
L√

1 + ε2m2/L2
= 2mκ

(
1− ℓ0√

1 + ε2m2

)
. (3.35)

This has no clear analytical solution, except for m = 0, which corresponds with the unstable equilibrium
point. However, since L = 1/ε2 we can see that the left-hand side of the equation is equal to −m

L up to
order O(ε6). Then we need to solve for

− ε2

2κ
= 1− ℓ0√

1 + ε2m2
. (3.36)

It follows that

m2 =
1

ε2

(
ℓ20(

1 + ε2

2κ

)2 − 1

)
=

1

ε2
(ℓ2eq − 1), (3.37)

corresponding to the stable equilibrium points. Above we have defined ℓeq = ℓ0/(1 + (2κL)−1), which is
the length of the oblique springs at the stable equilibrium points. We can see that the equilibrium length
is smaller than the rest length, where we have that if κ increases, then ℓeq approaches ℓ0. So the stable
equilibria are given by

ueq,st = ±m
(
1− x

L

)
= ±1

ε

√√√√ ℓ20(
1 + ε2

2κ

)2 − 1
(
1− x

L

)
. (3.38)

Here we can see that the stable equilibria are at a distance of order O(1/ε).
In Figure 8 we have plotted the reflections in the case of compressed springs with one of the stable

equilibrium positions. Here we have chosen t = 3π, ℓ0 = 1 + ε2, Γ = 1, β = 1/2 and κ ∈ [0, 1, 2, 4], thus
we have that λ̂ ∈ [0, 1, 2, 4]. We can see that as κ is increased, the stable equilibrium point of the system
becomes more negative. However, only in the case of κ = 0, the boundary is at the equilibrium position.
In the other cases, it is either slightly above the equilibrium position or significantly below the equilibrium
position.

This due to the assumption that |λ| = O(ε2). When we now want to calculate the equilibrium positions
of each of the orders we see that we have

u0−eq,x(0, t) = 0. (3.39)

as boundary condition for x = 0. So we obtain that u0−eq = 0. Following that, the second order boundary
condition becomes u1−eq,x(0, t) = 0 and thus we also have that u1−eq = 0. We can see this behaviour in
Figure 8, where after the wave is away from the boundary and thus there is no change with respect to
time, we have that the spatial derivative at the boundary is zero. The string at the boundary stays stuck
at a position which is determined by the asymmetry created by the dampers and springs. For lower κ,
this asymmetry is less strong, so the position at the boundary is closer to zero. Since the wave has no
information yet about the right boundary, it will stay at this level. However, as the wave travels between
the boundaries, it will eventually settle at zero due to damping at the boundary.
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Figure 8: Reflections in the case of compressed springs with one of the stable equilibrium positions. The
parameters chosen are t = 3π, ℓ0 = 1 + ε2, Γ = 1, β = 1/2 and κ ∈ [0, 1, 2, 4].
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4 Multiple time scales

To remove the growth of the second-order term and to solve the problem of the equilibrium position with
the compressed spring, we use the multiple time scale method. As our multiple time scales, we introduce
the times t0 and t1 as

t0 = t, (4.1)

t1 = ε2t. (4.2)

So then we have that u = u(x, t0, t1) and the derivative with respect to t is transformed into

d

dt
→ ∂

∂t0
+ ε2

∂

∂t1
. (4.3)

Now the system in Equation (2.34) with the boundary condition as Equation (2.38) becomes

ut0t0 + 2ε2ut0t1 + ε4ut1t1 =

(
1 + ε2

Γ

2

∫ L

0

u2
x dξ

)
uxx, 0 < x < L, t0, t1 > 0, (4.4a)

ux − 1

2
ε2u3

x = λu+ κℓ0ε
2u3 + (β + 2αε2u2)

(
ut0 + ε2ut1

)
, x = 0, t0, t1 > 0, (4.4b)

u(L, t0, t1) = 0, t0, t1 > 0, (4.4c)
u(x, 0, 0) = f(x), 0 < x < L, (4.4d)

ut0(x, 0, 0) + ε2ut1(x, 0, 0) = g(x), 0 < x < L. (4.4e)

Now we again perform the asymptotic expansion on ε2. We thus substitute the following expression into
the above system

u(x, t0, t1) = u0(x, t0, t1) + ε2u1(x, t0, t1) +O(ε4). (4.5)

If we collect orders, we obtain the first-order system as

u0,t0t0 = u0,xx, 0 < x < L, t0, t1 > 0, (4.6a)
u0,x = λu0 + βu0,t0 , x = 0, t0, t1 > 0, (4.6b)

u0(L, t0, t1) = 0, t0, t1 > 0, (4.6c)
u0(x, 0, 0) = f(x), 0 < x < L, (4.6d)

u0,t0(x, 0, 0) = g(x) 0 < x < L. (4.6e)

The second-order system is then given as

u1,t0t0 = u1,xx − 2u0,t0t1 +
Γ

2
u0,xx

∫ L

0

u2
0,x dξ, 0 < x < L, t0, t1 > 0, (4.7a)

u1,x = λu1 + βu1,t0 +
1

2
u3
0,x + κℓ0u

3
0 + βu0,t1 + 2αu2

0u0,t0 , x = 0, t0, t1 > 0, , (4.7b)

u1(L, t0, t1) = 0, t0, t1 > 0, (4.7c)
u1(x, 0, 0) = 0, 0 < x < L, (4.7d)

u1,t0(x, 0, 0) = −u0,t1(x, 0, 0), 0 < x < L. (4.7e)

In solving these equations, we again need to consider the cases of the extended and compressed springs
separately. First, we start with the extended case.

4.1 Extended oblique springs

4.1.1 First order: Laplace Transform

To solve the first-order system of equations (and the second-order), we use the Laplace transform. The
Laplace transform is defined as

L{f}(s) =
∫ ∞

0

f(t)e−stdt = F (s), (4.8)
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where s is a complex number. Using the Laplace transform we can change the partial differential equation
to an ODE, using the properties

L{f ′}(s) = sF (s)− f(0), (4.9)

L{f ′′}(s) = s2F (s)− sf(0)− f ′(0). (4.10)

We apply the Laplace transform on the system eq. (4.6) with respect to t0, so we have the transformation
u0(x, t0, t1) → U0(x, s, t1). For the t0 derivatives, we have

L{ux,t0t0(x, t0, t1)}(x, s, t1) = s2U0(x, s, t1)− su0(x, 0, t1)− u0,t0(x, 0, t1) (4.11)

= s2U0(x, s, t1)− sa0(x, t1)− b0(x, t1), (4.12)
L{u0,t0(0, t0, t1)}(x, s, t1) = sU0(0, s, t1)− a0(x, t1), (4.13)

where a0(x, t1) and b0(x, t1) are functions we need to determine using the freedom added by the extra
time scale. The functions need to satisfy the initial conditions

a0(x, 0) = u0(x, 0, 0) = f(x), b0(x, 0) = u0,t0(x, 0, 0) = g(x). (4.14)

Now putting it together we obtain the system

U0,xx(x, s, t1) = s2U0(x, s, t1)− sa0(x, t1)− b0(x, t1), 0 < x < L, s ∈ C, t1 > 0, (4.15a)
U0,x(0, s, t1) = (λ+ βs)U0(0, s, t1)− βa0(0, t1), s ∈ C, t1 > 0, (4.15b)
U0(L, s, t1) = 0, s ∈ C, t1 > 0. (4.15c)

The solution of the differential equation is given as

U0(x, s, t1) = c1(s, t1)e
sx + c2(s, t1)e

−sx +
e−sx

2s

∫ x

0

h0(ξ, s, t1)e
ξs dξ − esx

2s

∫ x

0

h0(ξ, s, t1)e
−ξs dξ, (4.16)

where h0(x, s, t1) = sa0(x, t1) + b0(x, t1). The coefficients, c1 and c2, are obtained from the boundary
conditions, which give the following system of equations

(κ0 + γ0s)c1 + (κ0 + s)c2 =
β

β + 1
a0(0, t1), (4.17)

c1e
sL + c2e

−sL = −e−sL

2s

∫ L

0

h0(ξ, s, t1)e
ξs dξ +

esL

2s

∫ L

0

h0(ξ, s, t1)e
−ξs dξ, (4.18)

where the constants κ0 and γ0 are the same as defined in Equation (3.6). Solving the system, we obtain

c1 =
1

Q(s)

[
(κ0 + s)e2sL

∫ L

0

h0(ξ, s, t1)e
−ξs dξ − (κ0 + s)

∫ L

0

h0(ξ, s, t1)e
ξs dξ − 2s

β

β + 1
a0(0, t1)

]
,

(4.19)

c2 =
1

Q(s)

[
−(κ0 + γ0s)e

2sL

∫ L

0

h0(ξ, s, t1)e
−ξs dξ + (κ0 + γ0s)

∫ L

0

h0(ξ, s, t1)e
ξs dξ +

2se2sL
β

β + 1
a0(0, t1)

]
. (4.20)

Q(s) = 2s[(κ0 + s)e2sL − γ0s− κ0]. (4.21)

Finally, we have that

U0(x, s, t1) =
P0(x, s, t1)

Q(s)
, (4.22)

P0(x, s, t1) =

[
−(κ0 + γ0s)

∫ L

0

h0(ξ, s, t1)e
−ξs dξ + (κ0 + s)

∫ x

0

h0(ξ, s, t1)e
ξs dξ +

2sβ

β + 1
a0(0, t1)

]
es(2L−x)

+ (κ0 + γ0s)e
sx

∫ x

0

h0(ξ, s, t1)e
−ξs dξ + (κ0 + s)es(2L+x)

∫ L

x

h0(ξ, s, t1)e
−ξs dξ+

(κ0 + γ0s)e
−sx

∫ L

x

h0(ξ, s, t1)e
ξs dξ −

[
(κ0 + s)

∫ L

0

h0(ξ, s, t1)e
ξs dξ +

2sβ

β + 1
a0(0, t1)

]
esx.

(4.23)
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Figure 9: Contour lines of χre(µ1, µ2) = 0 and χim(µ1, µ2) = 0 for κ0 = 1/5 and γ0 = 1/2.

To obtain u0 we need to use the inverse Laplace transform which is given as

f(t) = L−1{F}(t) = 1

2πi

∫ γ+i∞

γ−i∞
F (s)est ds, (4.24)

where γ is chosen such that all the poles of F (s) are to one side of the line. We can see that both P (x, s, t1)
and Q(s) are holomorphic in s. Thus we have that [15, p. 632]

u0(x, t0, t1) =
1

2πi

∫ γ+i∞

γ−i∞
U0(x, s, t1)e

st0 ds =
1

2πi

∮
U0(x, s, t1)e

st0 ds (4.25)

=
∑
n

Res(U0(x, s, t1)e
st0 , sn), (4.26)

where sn are the poles of U0(x, s, t1)e
st0 with respect to s. Since we have that U0(x, s, t1) = P0(x, s, t1)/Q(s)

the poles are given by the roots of Q(s).

4.1.2 Root finding characteristic function: Q(s)

From Equation (4.21) we can see that we have a root if s = 0 or if

χ(s) = (κ0 + s)e2sL − γ0s− κ0 = 0. (4.27)

We substitute s = µ1 + iµ2, where µ1, µ2 ∈ R, to obtain that

χre(µ1, µ2) = ℜ(χ(µ1 + iµ2)) = [(κ0 + µ1) cos(2µ2L)− µ2 sin(2µ2L)] e
2µ1L − γ0µ1 − κ0 = 0, (4.28)

χim(µ1, µ2) = ℑ(χ(µ1 + iµ2)) = [(κ0 + µ1) sin(2µ2L) + µ2 cos(2µ2L)] e
2µ1L − γ0µ2 = 0. (4.29)

In Figure 9 the lines corresponding to χre = 0 and χim = 0 are shown for κ0 = 1/5 and γ0 = 1/2. The
roots of the equation are where the two different lines cross. The corresponding equations can not be

19



solved analytically, and hence the roots must be found numerically. However, we do need to study these
equations to obtain good initial guesses and bounds for our numerical schemes.

Let us first consider symmetry in the equation. We can see that

χre(µ1,−µ2) = χre(µ1, µ2), (4.30)
χim(µ1,−µ2) = −χim(µ1, µ2). (4.31)

Thus if µ1 + iµ2 is a root of χ(s) then µ1 − iµ2 is also a root. So we only have to search for poles with
µ2 ≥ 0.

Now let us consider the case that µ2 = 0. Then we have that χim(µ1, 0) = 0 and that

χre(µ1, 0) = (κ0 + µ1)e
2µ1L − γ0µ1 − κ0 (4.32)

= (e2µ1L − 1)κ0 + (e2µ1L − γ0)µ1 = 0. (4.33)

We can see that we always have a root for µ1 = 0. If µ1 > 0, then we see that both terms are positive so
there is no positive root. Using that L ≫ 1, we can see that for µ1 < 0, the exponents vanish and thus
we have that the root is approximately at µ1 = −κ0/γ0. Since we have assumed that the springs are
extended, κ0 > 0, this only holds for γ0 > 0, because we have just shown that µ1 ≤ 0 Thus, we do not
have the second root if γ0 ≤ 0.

We now consider the behaviour of the whole system. If we look at the structure of the equations, we
see that we can write it as a vector equation

χ =

(
cos(2µ2L) − sin(2µ2L)
sin(2µ2L) cos(2µ2L)

)(
κ0 + µ1

µ2

)
e2µ1L −

(
γ0µ1 + κ0

γ0µ2

)
= R2µ2La− b, (4.34)

where R2µ2L denotes the rotation matrix. Thus to obtain that χ = 0 we need that

∥a∥ = ∥b∥, (4.35)
∠(a) + 2µ2L− 2kπ = ∠(b), (4.36)

where ∠(.) denotes the angle of the vector and k ∈ Z. It follows that

µ2
2 =

(γ0µ1 + κ0)
2 − e4µ1L(µ1 + κ0)

2

e4µ1L − γ2
0

=
fnum(µ1)

e4µ1L − γ2
0

, (4.37)

2µ2L− 2kπ = arctan

[
µ2κ0(γ0 − 1)

(κ0µ1 + µ2
1 + µ2

2)γ0 + κ0(µ1 + κ0)

]
. (4.38)

From the bottom equation, we can see that there exists an infinite number of solutions µk,2 where k is
chosen such that −π ≤ 2µk,2L− 2kπ ≤ π. With Equation (4.37) we can obtain bounds on µk,1 since we
must have that the right-hand side is positive.

If we have that µk,1 > 0, then we know that for the denominator e4µk,1L − γ2
0 > 0 holds. However,

using that e4µk,1L > 1 we obtain for the numerator that

fnum(µk,1) = (γ0µk,1 + κ0)
2 − e4µk,1L(µk,1 + κ0)

2 < (γ2
0 − 1)µ2

k,1 + 2µk,1κ0(γ0 − 1) ≤ 0, (4.39)

where we have used that γ0 ∈ [−1, 1). Thus we must have that µk,1 ≤ 0.
Now, if we consider the numerator, fnum(µ1), we can see that it consists of two parabolas, where the

negative one is scaled by the exponent. Since L ≫ 1, the positive parabola dominates away from zero. At
µ1 = 0 we see that fnum(0) = 0 and furthermore we have that

f ′
num(0) = −4

(
2κ0L+

1

2
(1− γ0)

)
κ0 < 0. (4.40)

So fnum is positive close to zero, where the exponent is not yet negligible, and hence fnum(µ1) ≥ 0 for
µ1 ≤ 0. Thus we need that e4µk,1L − γ2

0 > 0, which gives us the following bound

ln(|γ0|)
2L

< µk,1 ≤ 0. (4.41)

Now let us consider the case µk,2 ≫ 1, then we can see from Equation (4.37) that e4µk,1L−γ2
0 ≪ 1, since

the numerator is limited by the bound on µk,1. Thus as µk,2, k → ∞ we have that µk,1 → ln(|γ0|)/(2L).
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Figure 10: Pole locations for different values of λ and β. The real part, µk,1, is normalised by its
maximum value ln |γ0|/(2L) and the imaginary part, µk,2 is shifted by 2kπ.

So, if we substitute Equation (4.37) into Equation (4.38) to obtain a function only in µ1 and solve it
numerically. Due to this limit, we have that for larger values of k, small errors in the solution µk,1 will
blow up when calculating µk,2.

In Figure 10, the locations of the poles for different values of λ and β are plotted. The real part is
normalised by the maximal value ln(|γ0|)/(2L) and the imaginary part is shifted by 2kπ. We can see that
as k increases the real part tends to its maximal value and the imaginary value tends to 0 or −π. The
imaginary value converges to −π for β < 1, i.e. γ0 < 0, and to 0 for β > 1. Furthermore, we see that for
larger values of λ the real and imaginary parts converge more slowly towards their respective values.

To find the roots, we will minimise the function χ2
re + χ2

im. For this, the scipy [16] function, which
implements the L-BFGS-B [17], [18] algorithm, was used. As the initial guess for the minimisation problem,
we first use one of the crossings with the imaginary axis of χre = 0 or χim = 0. In Figure 10, we have
seen that as k becomes larger µk,1 will only change slightly and µk,2 will not deviate much from its
periodic shift. Thus for higher values of k, we use

(
µk−1,1, µk−1,2 +

π
L

)
as an initial guess. The L-BFGS-B

algorithm also makes use of bounds on the parameters. For the bound on µk,1 we use Equation (4.41)
and for the bound on µk,2 we use

µ
(0)
k,2 −

π

L
≤ µk,2 ≤ µ

(0)
k,2 +

π

L
, (4.42)

where µ
(0)
k,2 is the initial guess for µk,2.

To determine the crossings with the imaginary axis, we substitute µ1 = 0 and obtain the following
relations

χre : [cos(2µ2L)− 1]κ0 − µ2 sin(2µ2L) = 0, (4.43)
χim : κ0 sin(2µ2L) + [cos(2µ2L)− γ0]µ2 = 0. (4.44)

We can see that the equation from χre is always satisfied for µ2 = kπ/L, k ∈ Z. The other imaginary
axis crossing can be found if we consider µ2 → ∞, then we need that sin(2µ2L) = 0. So we have that
the crossing is approximately at µ2 = (k + 1

2 )π/L. From Equation (4.44) we find the crossings also by
considering µ2 → ∞ as µ2 = [cos−1(γ0) + 2kπ]/(2L) and µ2 = [cos−1(−γ0) + (2k + 1)π]/(2L), where
the inverse cosines are well-defined since −1 ≤ γ0 < 1. We take µ

(0)
k,2 = kπ/L as our initial guess for the

minimization scheme since that is an analytic solution for χre.

4.1.3 First order solution

With the locations of the poles known, we also need to know the order of the poles. To consider the order
we first calculate the derivative of χ(s) and we obtain

χ′(s) = [2L(κ0 + s) + 1]e2sL − γ0. (4.45)

Since we have that L ≫ 1 we see that we have χ′(s) = −γ0 for ℜ(s) ≤ 0. If γ0 ̸= 0 then there are no zeros
of χ′(s) in the left half of the complex plane and thus the zeros of χ(s) are first-order zeros. If γ0 = 0,
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then we have a zero at

s = −κ0 −
1

2L
. (4.46)

Because γ0 < 1, this point does not coincide with the zero at (−κ0/γ0, 0) and hence we again have that
the zeros of χ(s) are first-order zeros.

So we have that all non-zero roots, sk, of χ(s) are simple poles of U0 and thus we have that

Res
(
U0(x, s, t1)e

st0 , sk
)
= Res

(
P0(x, s, t1)

Q(s)
est0 , sk

)
=

P0(x, sk, t1)

Q′(sk)
eskt0 . (4.47)

However, since Q(s) = 2sχ(s), we have that s = 0 is a second-order pole. For the residue of s = 0, we have

Res
(
U0(x, s, t1)e

st0 , 0
)
= lim

s→0

d

ds

s2P0(x, s, t1)e
st0

Q(s)
= lim

s→0

d

ds

sP0(x, s, t1)e
st0

2χ(s)
= 0, (4.48)

where we obtained the result by applying l’Hôpital’s rule two times and using that P (x, 0, t1) = 0 and
d
dsP (x, s, t1)

∣∣
s=0

= 0. So we have that

u0(x, t0, t1) =
∑
k

P0(x, sk, t1)

Q′(sk)
eskt0 . (4.49)

We can see that the real part of sk indicates the amount of damping in the system, and from Equation (4.41),
we know that it is always negative or zero; hence, we have a stable system. Furthermore, the amount of
damping is limited by a function of γ0 and L.

Since each sk is a root of Q(s) we can see that

e2skL =
κ0 + γ0sk
κ0 + sk

. (4.50)

If we substitute the above relation into P (x, sk, t1), eq. (4.23), it reduces to

P0(x, sk, t1) =

[
eskx − κ0 + γ0sk

κ0 + sk
e−skx

]
·

[
−(κ0 + sk)

∫ L

0

h0(ξ, sk, t1)

(
eskξ − κ0 + γ0sk

κ0 + sk
e−skξ

)
dξ

− 2skβ

β + 1
a0(0, t1)

]
(4.51)

= ϕk(x)Ak(t1). (4.52)

Finally Equation (4.49) becomes

u0(x, t0, t1) =
∑
k

ϕk(x)Ak(t1)

Q′(sk)
eskt0 =

∑
k

ϕ̂k(x)Ak(t1)e
skt0 , (4.53)

where we have introduced ϕ̂k(x) = ϕk(x)/Q
′(sk).

It is useful to consider whether u0 above is real or not, since we are modelling a real process and
obtained a sum of complex values. First, we note that we have that s−k = sk, so we can see that

ϕ̂−k(x) = ϕ̂k(x), es−kt0 = eskt0 . (4.54)

Now, if we also have that A−k = Ak, we see that we have the sum of a complex number with its complex
conjugate, and thus we have a real result.

4.1.4 Second order; second time scale

We will use the system of the second order, Equation (4.7), to determine the functions a0(x, t1) and
b0(x, t1). However, we first need to make the boundary condition homogeneous. We introduce

u1(x, t0, t1) = ν1(x, t0, t1) +
( x
L

− 1
)
T (t0, t1), (4.55)
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where the function T (t0, t1) is determined by substitution into Equation (4.7b). We want the equation to
be homogenous in ν1, thus we have that

βTt0(t0, t1) +

(
λ+

1

L

)
T (t0, t1) =

[
βu0,t1 +

1

2
u3
0,x + κℓ0u

3
0 + 2αu2

0u0,t0

]
(0,t0,t1)

(4.56)

= ĥ(t0, t1). (4.57)

Now if we assume that T (0, 0) = 0, then it follows that

T (t0, t1) =
1

β
e−ζt0

∫ t0

0

ĥ(τ, t1)e
ζτdτ, (4.58)

where ζ = (λ+ 1/L)/β. Since we have to divide by β, additionally make the assumption β ≠ 0 for our
further analysis. Furthermore, we have to assume that β = O(1) to maintain the correct ordering.

Now we can see that Equation (4.7) becomes

ν1,t0t0 = ν1,xx −
( x
L

− 1
)( 1

β
ĥt0(t0, t1)−

ζ

β
ĥ(t0, t1) +

ζ2

β
e−ζt0

∫ t0

0

ĥ(τ, t1)e
ζτdτ

)
− 2u0,t0t1 +

Γ

2
u0,xx

∫ L

0

u2
0,xdξ, 0 < x < L, t0, t1 > 0, (4.59a)

ν1,x(0, t0, t1) = λν1(0, t0, t1) + βν1,t0(0, t0, t1), t0, t1 > 0, (4.59b)
ν1(L, t0, t1) = 0, t0, t1 > 0, (4.59c)
ν1(x, 0, 0) = 0, 0 < x < L, , (4.59d)

ν1,t0(x, 0, 0) = −u0,t0(x, 0, 0)−
( x
L

− 1
) 1

β
ĥ(0, 0), 0 < x < L. (4.59e)

We will denote the inhomogeneous forcing term in Equation (4.59a) as F̂ (x, t0, t1).
To solve the system, we will again use the Laplace transform and use the same steps as in Section 4.1.1,

so we obtain the system

V1,xx(x, s, t1) = s2V1(x, s, t1)−
[
h1(x, s, t1)− L{F̂}(x, s, t1)

]
, 0 < x < L, s ∈ C, t1 > 0, (4.60a)

V1,x(0, s, t1) = (λ+ βs)V1(0, s, t1)− βa1(0, t1), s ∈ C, t1 > 0, (4.60b)
V1(L, s, t1) = 0, s ∈ C, t1 > 0, (4.60c)

where we have that h1(x, s, t1) = sa1(x, t1) + b1(x, t1) with

a1(x, t1) = ν1(x, 0, 0) = 0, b1(x, t1) = ν1,t0(x, 0, 0) = −u0,t0(x, 0, 0)−
( x
L

− 1
) 1

β
ĥ(0, 0). (4.61)

Now the solution of the system is given by

V1(x, s, t1) =
P1(x, s, t1)− PF̂ (x, s, t1)

Q(s)
, (4.62)

where Q(s) is the same as Equation (4.21). We have split the numerator in the contribution from h1 and
L(F̂ ), this splitting is possible since P0(x, s, t1) is linear in h0(x, s, t1). Thus, we have that P1(x, s, t1) is
the same as P0(x, s, t1), eq. (4.23), but with h0 and a0 replaced by h1 and a1 respectively. Comparably,
we have that PF̂ (x, s, t1) is as P0(x, s, t1) but with h0 replaced by L(F̂ ) and without the a0 terms.

To obtain ν1(x, t0, t1), we want to apply the inverse Laplace transform again. For the first term
P1(x, s, t1)/Q(s), we can apply the transform as we did for the first order, since it has the same structure.
However, for the second term we need to study L(F̂ ) in more detail. We have that u0(x, t0, t1) =∑

k ϕ̂k(x)Ak(t1)e
skt0 , so we can write each term of the forcing also as a sum. In the following, we

interchange the infinite sum with differentiation and integration, which is allowed since the function is
continuous and since it is a solution of u0,t0t0 = u0,xx it is twice differentiable with respect to t0 and x
[19]. We have that

u0,t0t1(x, t0, t1) =
∑
n

snϕ̂n(x)A
′
n(t1)e

snt0 , (4.63)

u0,xx(x, t0, t1)

∫ L

0

u2
0,x(ξ, t0, t1)dξ =

∑
ijk

s2i ϕ̂i(x)ΦjkAijk(t1)e
sijkt0 , (4.64)
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where Φjk =
∫ L

0
ϕ̂′
j ϕ̂

′
kdξ, Aijk(t1) = Ai(t1)Aj(t1)Ak(t1) and sijk = si + sj + sk. For the term due to the

homogenization of the boundary condition, we first write

ĥ(t0, t1) =
∑
n

βϕ̂n(0)A
′
n(t1)e

snt0 +
∑
ijk

ΨijkAijk(t1)e
sijkt0 , (4.65)

with Ψijk = 1
2 ϕ̂

′
i(0)ϕ̂

′
j(0)ϕ̂

′
k(0) + (κ0ℓ0 + 2αsk)ϕ̂i(0)ϕ̂j(0)ϕ̂k(0). Thus, it follows that

1

β
ĥt0(t0, t1)−

ζ

β
ĥ(t0, t1) +

ζ2

β
e−ζt0

∫ t0

0

ĥ(τ, t1)e
ζτdτ =

∑
n

[
sn − ζ +

ζ2

sn + ζ

]
ϕ̂n(0)A

′
n(t1)e

snt0

+
∑
ijk

1

β

[
sijk − ζ +

ζ2

sijk + ζ

]
ΨijkAijk(t1)e

sijkt0

− ζ2

β
e−ζt0

∑
n

β

sn + ζ
ϕ̂n(0)A

′
n(t1) +

∑
ijk

1

sijk + ζ
ΨijkAijk(t1)

 . (4.66)

Putting it all together, we can see that

F̂ (x, t0, t1) =
∑
n

An(x, t1)e
snt0 +

∑
ijk

Bijk(x, t1)e
sijkt0 + C(x, t1)e−ζt0 , (4.67)

with

An(x, t1) =

[
−2snϕ̂n(x)−

( x
L

− 1
) s2n
sn + ζ

ϕ̂n(0)

]
A′

n(t1) = Ân(x)A
′
n(t1), (4.68)

Bijk(x, t1) =

[
Γ

2
s2i ϕ̂i(x)Φjk −

( x
L

− 1
) s2ijk
β(sijk + ζ)

Ψijk

]
Aijk(t1) = B̂ijk(x)Aijk(t1), (4.69)

C(x, t1) =
( x
L

− 1
) ζ2

β

∑
n

β

sn + ζ
ϕ̂n(0)A

′
n(t1) +

∑
ijk

1

sijk + ζ
ΨijkAijk(t1)

 . (4.70)

Taking the Laplace transform we obtain the following

L(F̂ )(x, s, t1) =
∑
n

An(x, t1)

s− sn
+
∑
ijk

Bijk(x, t1)

s− sijk
+

C(t1)
s+ ζ

. (4.71)

So we can see that PF̂ (x, s, t1) can be written as

PF̂ (x, s, t1) =
∑
n

PAn(x, s, t1)

s− sn
+
∑
ijk

PBijk
(x, s, t1)

s− sijk
+

PC(x, s, t1)

s+ ζ
, (4.72)

where PAn
(x, s, t1), PBijk

(x, s, t1) and PC(x, s, t1) are defined similar to PF̂ (x, s, t1). So now we can invert
the Laplace transform to obtain

ν1(x, t0, t1) =
∑
m

Res

P1(x, s, t1)

Q(s)
−
∑
n

PAn
(x, s, t1)

(s− sn)Q(s)
−
∑
ijk

PBijk
(x, s, t1)

(s− sijk)Q(s)

− PC(x, s, t1)

(s+ ζ)Q(s)

}
est0 , sm

)
. (4.73)

If m = n, we can see that that sm is now a second order zero of (s− sn)Q(s), thus the residue then
changes into

Res

(
PAn

(x, s, t1)e
st0

(s− sn)Q(s)
, sn

)
= lim

s→sn

d

ds

(s− sn)PAn
(x, s, t1)e

st0

Q(s)
(4.74)

=
2Q′(sn)[∂sPAn

(x, sn, t1) + t0PAn
(x, sm, t1)]−Q′′(sn)PAn

(x, sn, t1)

2(Q′(sn))2
esnt0 .

(4.75)
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Here we have a linear t0 term, which gives the growth observed in Figure 7. Similarly, if there are indices
m, i, j, k such that sm = si + sj + sk or there is an index m such that sm = −ζ, then we also obtain a
linear t0 term. To remove these growing terms, we will use the freedom given by the second time scale t1.

First, we consider if there are resonances with the ζ term. We have that ζ = (λ+ ε2)/β = O(1) and
|ℜ(sn)| < | ln |γ0|/(2L)| = O(ε2). Furthermore, since most sn have complex parts, we have that there is
no resonance for most indices. If β > 1, we have an the real pole coordinate s = −κ0/γ0 = −λ/(β − 1)
and as β is chosen to be large then s becomes smaller. To investigate this, we consider their sum

ζ + s =
λ+ ε2

β
− λ

β

(
1 +

1

β
+

1

β2
+O

(
1

β3

))
= −λ− ε2β

β2
+O

(
1

β3

)
. (4.76)

So we can see that this is O(1) if β = O(1) and then the ζ term does not produce resonances. If β is
larger than O(1/ε), then the resonances need to be taken into account. However, such a β would violate
our ordering, so it is excluded.

We now consider the linear and cubic terms. We treat the different cases where the cubic terms do
and do not contribute to the resonances separately. Since we have that for all poles ℜ(sn) < 0, for small
values of n, the cubic terms do not result in resonances. For example, the real part of s1, which is the
smallest, cannot equal any combination of three other real parts. Thus we only need to eliminate the
linear term PAn by setting

0 = PAn(x, sn, t1) = −ϕn(x)(κ0 + sn)

∫ L

0

Ân(ξ)A
′
n(t1)ϕn(ξ) dξ, (4.77)

where we can use the reduced form, Equation (4.51), since sn is a pole. It follows that we must have that
A′

n(t1) = 0 and hence An is constant in t1. We have that

An = An(0) = −(κ0 + sn)

∫ L

0

h0(ξ, sn, 0)ϕn(ξ) dξ − 2sn
β

β + 1
a0(0, 0) (4.78)

= −(κ0 + sn)

∫ L

0

(snf(ξ) + g(ξ))ϕn(ξ) dξ − 2sn
β

β + 1
f(0). (4.79)

Now we consider the first index n̂ such that sn̂ = si + sj + sk. We know that |i|, |j|, |k| < |n̂|, thus as
shown above we have that Ai, Aj and Ak are constant. We introduce

B̂(ijk) = B̂ijk + B̂ikj + B̂jik + B̂jki + B̂kij + B̂kji, (4.80)

because the expression of B̂ijk depends on the order of the indices, however, the sum si + sj + sk does not.
To remove the secular terms, we impose that

0 = PAn̂
(x, sn̂, t1) + PB(ijk)

(x, sn̂, t1) (4.81)

= −(κ0 + sn̂)ϕn̂(x)

[∫ L

0

Ân̂(ξ)A
′
n̂(t1)ϕn̂(ξ) dξ +

∫ L

0

B̂(ijk)(ξ)Aijkϕn̂(ξ) dξ

]
. (4.82)

Since the second integral is independent of t1, we can rearrange and integrate to obtain

An̂(t1) = −
∫ L

0
B̂(ijk)(ξ)ϕn̂(ξ) dξ∫ L

0
Ân̂(ξ)ϕn̂(ξ) dξ

Aijk · t1 − (κ0 + sn̂)

∫ L

0

(sn̂f(ξ) + g(ξ))ϕn̂(ξ) dξ − 2sn̂
β

β + 1
f(0). (4.83)

Consequently, for the next index m such that sm = sn̂ + si′ + sj′ becomes a polynomial of t1 with
order 2. This will continue until there are no resonances left, and then every An(t1) is a polynomial of
t1. Since the imaginary part increases linearly with n, eventually for higher values of n one would also
need high values of i, j and k to equal the imaginary part. However, the real part of the poles is bounded
by ln(|γ0|)/(2L), and thus we would have that ℜ(si + sj + sk) > ln(|γ0|)/(2L). So for higher values of k,
there are eventually no resonances anymore.

The coefficients An(t1) are finally a polynomial in t1. Because t1 = ε2t, these solutions will stay
bounded for a timescale of t = O

(
1
ε2

)
.

Now let us consider the complex conjugate of An(t1). In the case where there are no cubic resonances,
eq. (4.79), it is clear that A−n(t1) = An(t1). When there are cubic resonances, we first note that if
sn̂ = si + sj + sk for some n̂, i, j, k, then we also have that s−n̂ = s−i + s−j + s−k. We can see that

Â−n̂(t1) = Ân̂(t1), B̂(−i−j −k)(t1) = B̂(ijk)(t1). (4.84)
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Figure 11: Multiple time scale solution for κ = 2, β = 0.9, ℓ0 = 1/2 and α = 1.

Finally, since we have that for the lower values of n we have that A−n(t1) = An(t1), we can inductively
show that A−i−j −k(t1) = Aijk(t1). Thus we have that A−n(t1) = An(t1) for all n and thus we obtain a
real solution u0(x, t0, t1).

In Figure 11 the multiple time scale solution is plotted for κ = 2, β = 0.9, ℓ0 = 1/2 and α = 1. In the
plots, we have also shown the solution with t1 = 0, since this corresponds with the u0 solution in the case
of a regular perturbation. We have shown the plots for the times t = π, 15π, 25π, 45π. In the figure, we
can see that there is no visible difference between the two solutions, even for the larger times.

To further investigate this, we have plotted the logarithm of the coefficients of the polynomials
An(t1) =

∑
i≥0 c

(n)
i t11 in Figure 12. First, we see that there are indeed no resonances and no coefficients

other than the constant coefficient for small and large n. When resonances are present, we see that they
are only present in certain bands, where the bands have more coefficients for higher values of n. This
is due to the cubic multiplication with the previous terms. Furthermore, we can see that the constant
terms and linear terms all have a magnitude of order O(1), however, for higher orders, we see that the
order of magnitude drops fast; for i = 5 we already have an order of O(10−10). So the contribution of the
second time scale is minimal. Hence, we see that the nonlinearity in the case of the extended springs is
not significant for larger time scales.

4.2 Compressed oblique springs

4.2.1 Unstable region

Now we will consider the case where the oblique springs are compressed, ℓ0 > 1. We again restrict
ourselves to the case λ < 0 and |λ| = O(ε2). We assume that

ℓ0 = 1 + ρε2, (4.85)

with ρ > 0 and O(ρ) = 1. It follows that λ = −λ̂ε2 with λ̂ = 2κρ. As in Section 3.2, the outward force of
the springs is shifted to the second order. Thus after using the Laplace transform, we obtain the same
system as Equation (4.15) but with λ = 0. As the solution, we have that

U0(x, s, t1) =
Pcompr(x, s, t1)

Qcompr(s)
, (4.86)

Qcompr(s) = 2s
[
e2sL − γ0

]
, (4.87)

Pcompr(x, s, t1) =

[
−γ0

∫ L

0

h0(ξ, s, t1)e
−ξs dξ +

∫ x

0

h0(ξ, s, t1)e
ξs dξ +

2β

β + 1
a0(0, t1)

]
es(2L−x)

+ γ0e
sx

∫ x

0

h0(ξ, s, t1)e
−ξs dξ + es(2L+x)

∫ L

x

h0(ξ, s, t1)e
−ξs dξ

+ γ0e
−sx

∫ L

x

h0(ξ, s, t1)e
ξs dξ −

[∫ L

0

h0(ξ, s, t1)e
ξs dξ +

2β

β + 1
a0(0, t1)

]
esx. (4.88)

Now we need to find the roots sk of Qcompr(s), which are given by s(0) = 0 and e2skL = γ0. We can
see that for γ0 = 0, there are no other roots except for s(0) = 0. If we have that γ0 ̸= 0 and consequently
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Figure 12: Plot of the magnitude of the logarithm of the coefficients of the polynomials An(t1) =∑
i≥0 c

(n)
i t11.

β ̸= 1, then we again denote sk = µk,1 + iµk,2, and we can see that for the real part we have that

µk,1 =
ln(|γ0|)
2L

. (4.89)

For the imaginary part we must have that e2µk,2L i = sign(γ0), thus it follows that

µk,2 =

{
kπ
L if γ0 > 0,
(2k+1)π

2L if γ0 < 0.
(4.90)

We can see that

Pcompr(x, s
(0), t1) = Pcompr(x, 0, t1) = 0, (4.91)

Pcompr(x, sk, t1) =
[
eskx − γ0e

−skx
]
·

[
−
∫ L

0

h0(ξ, sk, t1)
(
eskξ − γ0e

−skξ
)
dξ − 2

β

β + 1
a0(0, t1)

]
(4.92)

= φk(x)Bk(t1). (4.93)

Now we can again apply the residue theorem to obtain u0(x, t0, t1), so we need to calculate the residues.
We now have that the pole s(0) = 0 is a first order pole, so we calculate the residue as

Res

(
Pcompr(x, s, t1)

Qcompr(s)
est0 , 0

)
= lim

s→0

sPcompr(x, s, t1)

Qcompr(s)
est0 = lim

s→0

Pcompr(x, s, t1)

2(e2sL − γ0)
est0 = 0. (4.94)

Thus, we can see that we again have that the zero-value pole has no contribution. So, when we have
γ0 = 0, we obtain only the zero solution, and we have perfect damping. The other poles, sk, are also first
order poles, but they cannot be factored out thus, we have that

Res

(
Pcompr(x, s, t1)

Qcompr(s)
est0 , sk

)
=

Pcompr(x, sk, t1)

Q′
compr(sk)

eskt0 =
φk(x)

Q′
compr(s)

Bk(t1)e
skt0 = φ̂k(x)Bk(t1)e

skt0 ,

(4.95)
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where we have defined φ̂k(x) = φk(x)/Q
′
compr(sk). Finally, we obtain

u0(x, t0, t1) =
∑
k

φ̂k(x)Bk(t1)e
skt0 . (4.96)

Second time scale We will use the second time scale to determine Bk(t1). After making the boundary
condition in the second-order system homogeneous, we obtain the same system as Equation (4.59) but
with λ = 0, ζ replaced by ζ̂ = 1/(βL) = ε2/β and ĥ(t0, t1) replaced by

ĥcompr(t0, t1) =

[
−λ̂u0 + βu0,t1 +

1

2
u3
0,x + κℓ0u

3
0 + 2αu2

0u0,t0

]
(0,t0,t1)

. (4.97)

Now we need to identify the resonances that occur in the second order. First, we see that the real
part of each sk is constant in k, so the cubic terms will not introduce resonances. Resonances can also
be created from the ζ̂ = ε2/β term. We only a real pole coordinate if β > 1, so then we can have the
resonance with s0 = ε2 ln |γ0|/2. We consider their sum

s0 + ζ̂

ε2
=

1

2
ln

(
1− 1

β

)
− 1

2
ln

(
1 +

1

β

)
+

1

β
(4.98)

=
1

2

(
− 1

β
− 1

2β2
− 1

3β3
+O

(
1

β4

))
− 1

2

(
1

β
− 1

2β2
+

1

3β3
+O

(
1

β4

))
+

1

β
(4.99)

= − 1

3β3
+O

(
1

β4

)
. (4.100)

So we do have to take this into account if β = O(1/ε2/3). For example, in our case where we have L = 30,
this would mean that there is resonance if β ≈ 3.11.

We have that

ĥcompr(t0, t1) =
∑
n

[
−λ̂Bn(t1) + βB′

n(t1)
]
φ̂n(0)e

snt0 +
∑
ijk

[...], (4.101)

where we have omitted the precise expressions for the cubic terms for conciseness, since there are no
resonances with those terms. It follows that

1

β
ĥcompr,t0(t0, t1)−

ζ̂

β
ĥcompr(t0, t1) +

ζ̂2

β
e−ζ̂t0

∫ t0

0

ĥcompr(τ, t1)e
ζ̂τdτ =∑

n

s2n

β(sn + ζ̂)

[
−λ̂Bn(t1) + βB′

n(t1)
]
φ̂n(0)e

snt0 +
∑
ijk

[...]

− ζ̂2e−ζ̂t0

∑
n

1

sn + ζ̂
φ̂n(0)B

′
n(t1) +

∑
ijk

Ψijk

β(sijk + ζ̂)
Bijk(t1)

 . (4.102)

First, we only consider the resonances due to the linear terms. Then with the −2u0,t0t1 term taken into
account and doing the same steps as in Section 4.1.4, we obtain that∫ L

0

[
2snφn(x)φ̂n(x) +

( x
L

− 1
)

φn(x)
s2n

sn + ζ̂
φ̂n(0)

]
dx ·B′

n(t1) =∫ L

0

( x
L

− 1
)
φn(x) dx φ̂n(0)

s2n

β(sn + ζ̂)
λ̂Bn(t1). (4.103)

Finally, we have that

Bn(t1) = Cne
Znλ̂t1 , (4.104)

with

Zn =

s2n
β(sn+ζ̂)

φn(0)
∫ L

0

(
x
L − 1

)
φn(x) dx

2sn
∫ L

0
φ2
n(x)dx+

s2n
sn+ζ̂

φn(0)
∫ L

0

(
x
L − 1

)
φn(x)dx

(4.105)

=
−1

(β2 − 1)snL
. (4.106)
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and with Cn the initial condition i.e.

Cn = −
∫ L

0

(snf(x) + g(x))φn(x)dx− 2
β

β + 1
f(0). (4.107)

Now let us consider the fraction Zn. First we note that snL = 1
2 [ln(|γ0|) + i(2n + 1{γ0<0})], so we

have that ℜ(snL) < 0 and ℜ(snL) = O(1) if γ0 is not close to zero. We can see that ℜ(Zn) > 0 for β > 1
and thus the solution is unstable as we would expect. Furthermore, we can see that the fraction is only
dependent on β and n; thus, if β is large, then Zn will be small and the contribution of the second time
scale will be only visible at a larger time. Conversely, since λ̂ = 2κρ, we have that if κ or ρ becomes
larger, then the effects of the second time scale will be visible at a shorter time. However, if β < 1, then
ℜ(Zn) < 0 and the solution is stable. If we take β → 0, we see that ℜ(Zn) → 0 and thus we only have
an imaginary contribution of the second time scale. This behaviour is caused by the multiple time scale
method.

To understand this, we consider the linearization of the left boundary conditions, we have

ux(0, t) = βut(0, t)− ε2λ̂u(0, t). (4.108)

Now we will solve this without delegating the outward force to the second order. Then we obtain a
characteristic function as Equation (4.27) with κ0 replaced by −ε2κ̂0, where κ̂0 = λ̂/(β + 1). So we have

χ̂(s) = (s− ε2κ̂0)e
2sL − γ0s+ ε2κ̂0 = 0. (4.109)

We want to determine the roots, s = µ1 + iµ2, of this equation with positive real part, µ1 > 0. Using the
vector equation, we again obtain that(

e4µ1L − γ2
0

)
µ2
2 + e4µ1L(µ1 − ε2κ̂0)

2 = (γ0µ1 − ε2κ̂0)
2. (4.110)

Here we can see that if µ2 ≫ 1, the equation has no solution. Furthermore, considering the shape of the
contours in Figure 9, we can assume that there are no solutions with µ1 > 0 and µ2 ̸= 0.

So we turn to solutions with µ2 = 0, then we must have that

χ̂(µ1) = (µ1 − ε2κ̂0)e
2µ1L − γ0µ1 + ε2κ̂0 = 0. (4.111)

First, we note that µ1 = 0 is a solution. To find the other solutions, we determine the derivative, which is

χ̂′(µ1) = (2L(µ1 − ε2κ̂0) + 1)e2µ1L − γ0. (4.112)

We can see that if χ̂′(0) = 1−2κ̂0−γ0 which is negative if κ̂0 > 1. Since κ̂0 = 2κρ/(β+1) and both κ and
ρ are of O(1), this is reasonable to assume. Now if µ1 ≫ 1, then we see that χ̂′(µ1) > 0 and thus we have
a positive root. Additionally, if µ1 ≪ −1, then χ̂′(µ1) ≈ −γ0 and thus we have an negative root if γ0 < 0.

When we delegated the outward force to the second order, we obtained the roots µ1 = 0 and, if
γ0 > 0, µ1 = ε2 ln |γ0|/2. Thus, in our approximation, we find only one root instead of three if γ0 < 0. If
γ0 > 0, then we find a positive root instead of a negative one. So we have a singular perturbed problem,
and from the behaviour of Zn, we can see that our multiple time scale method can capture the correct
dynamics if γ0 > 0. However, in the other case, the method cannot be corrected to the right roots, and
we unexpectedly obtain a stable solution.

We still need to calculate the value for β = O(1/ε2/3) and n = 0. In this case, we also need to take
into account the e−ζ̂t0 term in Equation (4.102). However, since ζ̂ = ε2/β, all the terms in the sums
except for n = 0 are of order O(ε2) or smaller. Thus, the growth of those terms can be neglected, and we
only need to take the n = 0 term into account. Then we obtain that∫ L

0

[
2s0φ0(x)φ̂0(x) +

( x
L

− 1
)

φ0(x)(s0 − ζ̂)φ̂n(0)
]
dx ·B′

0(t1) =∫ L

0

( x
L

− 1
)
φ0(x) dx φ̂0(0)

s20

β(s0 + ζ̂)
λ̂B0(t1). (4.113)

Finally, we have that

Z ′
0 = − βs20L

2

1 + β(β2 − 1)s30L
3
= − 2β ln2 |γ0|

8 + β(β2 − 1) ln3 |γ0|
≈ − 2β

7β2 + 1
, (4.114)
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(a) Plots with β = 1/2.

(b) Plots with β = 2.

(c) Plots withβ = 8, where ũ0(x, t0, t1) is the solution without the modified Z0.

Figure 13: Plots of the multiple time scale solution for κ = 2 and ρ = 2.5 and different values of β.
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where we used that ln |γ0| ≈ −1/β. So we can see that the n = 0 term becomes stable.
In Figure 13, we have plotted the solution with different values of β for multiple times. For the other

parameters, we have chosen κ = 2 and ρ = 2.5. First, we have shown β = 1/2, to consider the case β < 1
in Figure 13a. We can see that the solution stays bounded, and it has oscillations outside of the wave
packet, due to the second time scale. Furthermore, we can see that at t = π just before the collision with
the boundary, the multiple time scale solution already differs from the first order solution. This is because
|ℜ(Zn)| > 1 and it is large enough that the second time scale has a significant contribution before the
collision happens. This problem can be mitigated by letting the initial condition start at the boundary.

In Figure 13b, we have plotted the solution with β = 2. In the plots, we can see the unstable behaviour
of the system, where the boundary is slowly pushed out of its unstable equilibrium point and keeps
growing. Additionally, we have also shown the solution with β = 8 in Figure 13c, to investigate the change
in Z0. In the plot we have added ũ0(x, t0, t1) for which Z ′

0 was not adjusted. We can see that there is no
visible difference between the two solutions, and thus the resonance due to the ζ̂ term is not strong.

4.2.2 Stable region

The instability in Figure 13b is since we have expanded the forces of the boundary around the unstable
equilibrium point, u = 0. So the stable behaviour is not captured in the model. Thus, we need to split
the solution into a stable and unstable domain, where we expand the solution around the stable solution
ueq(x) in the stable domain. We recall that the ueq(x) = m(1− x/L), with m given by, eq. (3.37),

m2 =
1

ε2
(ℓ2eq − 1), ℓeq =

ℓ0

1 + 1
2κL

. (4.115)

First, we consider the case when the unstable solutions grow towards the upper stable solution. We
introduce

Y (x, t) = u(x, t)− ueq(x). (4.116)

Then the wave equation becomes

Ytt(x, t) = Yxx(x, t) +
ε2Γ

2
Yxx(x, t)

(∫ L

0

Y 2
x (ξ, t) dξ − ε

√
ℓ2eq − 1

∫ L

0

Yx(ξ, t) dξ + ℓ2eq − 1

)
. (4.117)

We can see that this introduces odd orders of ε into our equation; however, later we will use the assumption
on ℓ0 to simplify things. But first, we also expand the forces on the boundary

FT =
ux(0, t)√

1 + ε2u2
x(0, t)

, Fs = 2κu(0, t)

[
1− ℓ0√

1 + ε2u2(0, t)

]
, Fd = 2α

ε2u2(0, t)

1 + ε2u2(0, t)
ut(0, t).

(4.118)

We apply a Taylor expansion of the above formulas around ueq(x), so then we obtain

FT = − ε2m√
1 + ε6m2

+
1

(1 + ε6m2)
3
2

Yx(0, t) +
3

2

ε3m

(1 + ε6m2)
5
2

εY 2
x (0, t) +

12ε6m2 − 3

6(1 + ε6m2)
7
2

ε2Y 3
x (0, t), (4.119)

Fs = 2κm

(
1− ℓ0

ℓeq

)
+ 2κ

(
1− ℓ0

ℓ3eq

)
Y (0, t) + 3κℓ0

√
ℓ2eq − 1

ℓ5eq
εY 2(0, t)− κℓ0

4ℓ2eq − 5

ℓ7eq
ε2Y 3(0, t), (4.120)

Fd = 2αYt(0, t)

1− 1

ℓ2eq
+ 2

√
ℓ2eq − 1

ℓ4eq
εY (0, t) +

5− 3ℓ2eq
ℓ6eq

ε2Y 2(0, t)

 . (4.121)

Now, to simplify these expressions, we will use the assumption that ℓ0 = 1 + ρε2. Then, for example,
we can see that

ℓeq =
ℓ0

1 + 1
2κL

=
1 + ρε2

1 + ε2

2κ

= 1 +

(
ρ− 1

2κ

)
ε2 +O(ε4), (4.122)

m2 =

(
2ρ− 1

κ

)
+O(ε2). (4.123)
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We note that now we have that m = O(1), instead of the order O(1/ε) that we had before. The wave
equation becomes

Ytt(x, t) = Yxx(x, t) + ε2
Γ

2
Yxx(x, t)

(∫ L

0

Y 2
x (ξ, t) dξ − ε2

√
2ρ− 1

κ

∫ L

0

Yx(ξ, t) dξ +

(
2ρ− 1

κ

)
ε2

)
(4.124)

= Yxx(x, t) +
ε2

2
Yxx(x, t)

∫ L

0

Y 2
x (ξ, t) dξ +O(ε4). (4.125)

So we can see that we obtain the same nonlinear string equation that we had before. For the forces on the
boundary, we obtain

FT = −mε2 + Yx(0, t)−
1

2
ε2Y 3

x (0, t) +O(ε4), (4.126)

Fs = −mε2 + κ

(
4ρ− 3

κ

)
ε2Y (0, t) + 3κ

√
2ρ− 1

κ
ε2Y 2(0, t) + κε2Y 3(0, t) +O(ε4), (4.127)

Fd = 2αYt(0, t)

[(
2ρ− 1

κ

)
ε2 + 2

√
2ρ− 1

κ
ε2Y (0, t) + 2ε2Y 2(0, t) +O(ε4)

]
. (4.128)

We can see that all the extra terms due to the new expansion are pushed to the O(ε2) order or higher
orders. This simplifies our equations, and it makes sure that we can use the previous method to solve this
system. Furthermore, we can see that the constant terms in FT and Fs cancel out.

However, due to the order assumptions, we also see that we obtain new bounds on the parameters.
The first is that 2ρ− 1/κ > 0, and if we do not satisfy the bound, we see that we would have ℓeq < 1. This
means that in the current ordering, the tension force is stronger than the spring force, and so the springs
cannot push the string out of the zero position. The second bound is 4ρ− 3/κ > 0, since we want the
linear term of the spring force to be a restoring force. We can see that if we satisfy the second constraint,
we will also satisfy the first constraint.

So our final system of Y (x, t) is given by

Ytt(x, t) = Yxx(x, t) +
ε2

2
Yxx(x, t)

∫ L

0

Y 2
x (ξ, t) dξ, 0 < x < L, t > 0, (4.129a)

Yx − 1

2
ε2Y 3

x = βYt + ε2

[
(4ρκ− 3)Y + 3κ

√
2ρ− 1

κ
Y 2 + κY 3

+2αYt

(
2ρ− 1

κ
+ 2

√
2ρ− 1

κ
Y + 2Y 2

)]
, x = 0, t > 0, (4.129b)

Y (L, t) = 0, t > 0. (4.129c)

We do not specify the initial conditions here since those are determined when matching the stable region
to the unstable region.

We will follow the same steps as before. So we introduce the two time scales t0 = t and t1 = ε2t and
expand Y (x, t0, t1) = Y0(x, t0, t1)+ ε2Y1(x, t0, t1)+O(ε4). Then we obtain the following first-order system

O(1) :Y0,t0t0 = Y0,xx, 0 < x < L, t0, t1 > 0, (4.130)
Y0,x = βY0,t0 , x = 0, t0, t1 > 0, (4.131)
Y0(L, t0, t1) = 0, t0, t1 > 0. (4.132)

This is the same system as we solved above. Thus, we know that the solution is given as

Y0(x, t0, t1) =
∑
n

φ̂n(x)Dn(t1)e
snt0 , (4.133)

where Dn(t1) has to be determined by the second time scale and sn are the same eigenvalues as in the
unstable region. For the second time scale we obtain after homogenization of the boundary condition the
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same system as Equation (4.59), again with λ = 0, ζ replaced by ζ̂ and ĥ(t0, t1) replaced by

Hcompr(t0, t1) =

[
βY0,t1 +

1

2
ε2Y 3

0,x + (4ρκ− 3)Y0 + 3κ

√
2ρ− 1

κ
Y 2
0 + κY 3

0

+2αY0,t0

(
2ρ− 1

κ
+ 2

√
2ρ− 1

κ
Y0 + 2Y 2

0

)]
(0,t0,t1)

. (4.134)

We now also have quadratic terms, which can create resonances. However, since the real part of the poles
is still constant, we have that the quadratic terms do not result in resonances. By letting the linear terms
cancel, we obtain that∫ L

0

[2sn φn(x)φ̂n(x) +
( x
L

− 1
)
φn(x)

s2n

sn + ζ̂
φ̂n(0)

]
dx ·D′

n(t1) =

−
∫ L

0

( x
L

− 1
)
φn(x) dx φ̂n(0)

s2n

β(sn + ζ̂)

(
4ρκ− 3 + 2snα

(
2ρ− 1

κ

))
Dn(t1). (4.135)

Thus, it follows that

Dn(t1) = Ene
−Zn(4ρκ−3+2snα(2ρ− 1

κ ))t1 = Ene
−ZnΛnt1 , (4.136)

where we have defined Λn = 4ρκ− 3+2snα
(
2ρ− 1

κ

)
. The constant En has to be determined by matching

the two solutions together. Due to the assumptions on κ and ρ, we can see that in Λn we have that almost
all the terms are positive, except for ℜ(sn). However, since ℜ(sn) = O(ε2) we expect that ℜ(Λn) > 0. We
note that for β = O(1/ε2/3) and n = 0, we obtain Z ′

0Λ0 in the exponent.
To match the two solutions, we will first need a series representation of ueq(x). This can be found by

using the first-order solution Equation (4.96) with ueq(x) as its initial conditions and without the time
dependency. So we have that f(x) = ueq(x) and g(x) = 0. Thus the series representation becomes

ueq(x) =
∑
n

φ̂n(x)

(
−
∫ L

0

snueq(ξ)φn(ξ) dξ − 2
β

β + 1
ueq(0)

)
=

m

L
(1− γ0)

∑
n

φ̂n(x)

sn
. (4.137)

We will match on the value at the boundary x = 0, since the instability originates from the boundary
condition. We have to choose a threshold value u0 = u∗, which is reached at time t∗0 = t∗ and t∗1 = ε2t∗.
Any value between the two equilibrium positions can be chosen, so for this we will use u∗ = 1

2ueq(0) =
1
2m.

Now using that Y0(x, t
∗
0, t

∗
1) = u0(x, t

∗
0, t

∗
1)− ueq(x), we can see that∑

n

φ̂n(0)Ene
−ZnΛnt

∗
1esnt

∗
0 =

∑
n

φ̂n(0)Cne
Znλ̂t

∗
1esnt

∗
0 − m

L
(1− γ0)

∑
n

φ̂n(0)

sn
. (4.138)

It can be noted from above that it does not matter on which x position we match, since each sum has the
φ̂n(x) term. Consequently, we have that

En =

[
Cne

Znλ̂t
∗
1 − m(1− γ0)

snL
e−snt

∗
0

]
eZnΛnt

∗
1 . (4.139)

For when we need to switch from the stable region back into the unstable region, we can use the same
process as above.

Above, we have done the solution for the upper stable equilibrium point; however, there is also a lower
equilibrium point. For this region, we introduce Y(x, t) = u(x, t) + ueq(x) and then we can follow the
same steps. The only change is that in Equations (4.119)–(4.121) the terms with even powers of Y have
their sign flipped. However, since the constant terms cancel and the quadratic terms do not result in
resonances, we have that the constants, En and Λn, do not change.

In Figure 14, the reflection of the wave for different times is shown. It has the same parameters as the
plots in Figure 13b. The plots start from t = 6π, since the matching time is t∗ = 7.02π. Additionally, the
equilibrium position, ueq(x), is also shown in the plots. From the plots which straddle the matching time,
t = 7π and t = 8π, we can see that the solution stays continuous. However, after the matching, we can see
a small angle in the solution, which travels downward. This is due to the solution not being continuous in
t1, by the change in the exponent.
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Figure 14: Plots of the multiple time scale solution for β = 1.5, κ = 2, ρ = 2.5 and α = 1. The matching
time corresponding to these parameters is t∗ = 13.28.

4.2.3 Energy analysis

We defined the energy of the system in Equation (3.29), however, that was before we introduced the
second time scale. By splitting the time derivative into its t0 and t1 parts, we obtain that

E(t) =
ε2

2

∫ L

0

[
u2
t0 + u2

x

]
dx+ κ(

√
1 + ε2u2(0, t)− ℓ0)

2 + ε4
∫ L

0

ut0ut1 dx+
ε6

2

∫ L

0

u2
t1 dx. (4.140)

We can also apply our ordering assumption to the energy contribution of the boundary condition, so we
obtain

κ(
√
1 + ε2u2(0, t)− ℓ0)

2 = κε4
(
1

2
u2(0, t)− ρ+O(ε2)

)2

= κε4
(
1

2
u2(0, t)− ρ

)2

+O(ε6). (4.141)

We can see that the linear energy term should give the largest contribution to the energy of the system. In
practice, we use the full expression of the boundary energy term, since it is not much more computationally
expensive.

In Figure 15, the energy of the system for different parameter sets is plotted. For each parameter set
the matching time t∗ is also given in the legend. We have split the energy into its four different parts to
highlight the contribution of each term. The first part, Elin, is the linear energy integral and Ebnd is Elin

plus the energy of the boundary. For Ebnd, we have subtracted the initial energy of the boundary system,
κℓ20, to shift the starting energy to the same position. Emix is Ebnd plus the integral of the product of the
two time derivatives. Finally, Efull is the full equation Equation (4.140).

We first consider the case where we have changed the coefficient of the oblique damper, α. In Figure 15a,
we can see that before the matching time, the values of the energies are the same. This is as expected
since the oblique damper is not present in the first order. Furthermore, we can see that the profile of the
energy plot looks similar to the plots in Figure 7, because the first order of both solutions is the same. In
the middle of the collision, we can see that Ebnd and the other corrections are slightly different from the
linear energy. After the matching time, we can see that the energy increases and the increase is more
noticeable for higher values of α. To understand this, we have to consider the product −ZnΛn, we have
that

−ZnΛn =
1

β2 − 1

[
1

snL
(4ρκ− 3) + 2αε2

(
2ρ− 1

κ

)]
. (4.142)

We can see that the first term is negative and thus has a stable contribution. But as n becomes larger,
that term will become smaller until the positive term dominates. Thus, for larger n, the exponent will
be positive and thus the solution will grow, and as we see, the growth is more pronounced for larger α.
However, this increase in energy violates the energy conservation that has been shown. It is unclear what
causes this behaviour, but it is likely due to the multiple time scale method not correctly capturing the
dynamics as seen before.

Finally, we see that in general, the other energies, Ebnd, Emix and Efull, are almost the same as Elin.
However that around the matching time, the other energies differ significantly. This is likely because
in the transition region, the error increases. We have that the addition of the boundary energy has a
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significant contribution to the energy, it is slightly more than the expected order of ε2. Furthermore, we
can see that the mixed term has only a small contribution. However, we see that the square term, u2

t1 , has
about the same contribution as the boundary term, while it should be an order of ε2 smaller. Additionally,
in the Efull term, there is a discontinuity in the energy. This is because ut1 is not continuous due to the
difference in the factor in the exponent.

Now let us consider the case where we vary the parameter β, which is shown in Figure 15b. First, we
have shown only one case where β < 1, since the solution stays stable, the energy is comparable to the
first order energy. The matching time is given as t = 100π, however, this is because it is never reached
and thus the maximum value for the calculation is shown

Now, for β > 1, we can see that as β becomes larger, the matching time also increases. Furthermore,
we note that as β becomes closer to 1, the peaks of Efull become larger. This is because the fraction Zn

grows as β goes towards 1 and thus the contribution of ut1 becomes larger. Lastly, we can see that for low
values of β, there is an increase in energy, which becomes less for larger values of β. This is the same as
what we saw for higher values of α However, for the smaller values of β, this more noticeable effect is due
to the factor 1/(β2 − 1).

Finally, we turn to the different parameters for the springs in Figure 15c. Next to the default parameter
set, we have shown two pairs such that we have two different values of λ̂ = 2κρ with the two possible
permutations of κ and ρ. We can see that as λ̂ increases that the matching time decreases, since the
nonlinear system is stronger to push the string out of its unstable position. Furthermore, we can see that
for bigger values of ρ, we have a larger error when matching. This is because the equilibrium position
is further away, and so the unstable and stable regions become larger, which causes the matching point
to also be further away. This is most noticeable for κ = 5 and ρ = 0.5, since it has almost no difference
between the energies. Lastly, we again see an increase in energy, which is stronger for higher values of ρ.
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(a) Energies of the system for different values of α.

(b) Energies of the system for different values of β.

(c) Energies of the system for different values of κ and ρ.

Figure 15: Plots of the energy of the system and its corrections for different parameter groups.
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5 Conclusion

This report investigated the behaviour of a nonlinear string system with a quasi-zero stiffness (QZS)
boundary condition, focusing on the system’s reflection and absorption properties. First, a regular
perturbation analysis was performed, which was solved using the d’Alembert solution. Due to the
appearance of linear growth in the second order, the method of multiple time scales was applied next.
The system originating from this was solved using the Laplace transform.

The model was split into cases where the oblique springs were extended or compressed. When the
springs were extended, it was seen that the multiple time scale solution did not differ from the first-order
solution. For the case with the compressed springs, the system was unstable if the coefficient of the vertical
damper, denoted by β, was larger than one. However, if β was smaller than one, the model produced
a stable system. This outcome was unexpected as it contradicts the physical intuition for the system’s
behaviour. The discrepancy arises due to the singular nature of the system’s poles and the influence of the
multiple time scale method used. Furthermore, the addition of oblique dampers produced an unexpected
instability in the system. Instead of dissipating energy as intended, the dampers led to an increase in
the system’s energy even when the solution was at what should have been a stable equilibrium. This
counterintuitive behaviour suggests that the multiple time scale method may again be responsible, as its
approximations may fail to capture subtle interactions or nonlinear effects introduced by the dampers.
Lastly, it emerged that when matching the unstable and stable regions, higher compression of the springs
and higher spring constants resulted in higher errors in the boundary region. This was due to the stronger
nonlinear effects present in the system.

To address the unexpected results in this study, namely the stability for β < 1 and the destabilising
effect of oblique dampers, it is recommended to consider alternative asymptotic expansions or techniques.
They should be explored to determine whether they offer a more accurate representation of the system’s
dynamics. Furthermore, it is recommended to improve the analytical model by incorporating second-
order terms for the multiple time scale expansion, which would allow more of the nonlinear dynamics
to be studied. Finally, applying harmonic forcing to the system could provide deeper insights into its
damping characteristics and practical applicability. By introducing a periodic input, one can analyse the
system’s frequency response and identify resonant frequencies, amplitude amplification effects, and phase
relationships.
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A Appendix: Code

The code used for this project can be found on:
https://github.com/jvdv1912/Vibrations-of-a-nonlinear-string.
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