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Abstract 

A frequency-domain Boussinesq model with good linear shoaling, improved linear dispersion 

characteristics and a dissipation formulation to account for wave breaking is extended to include 
the computation of the vertical structure of the horizontal velocity. The extended model is used to 

predict bottom velocities and resulting velocity variance and skewness in (partially) breaking 
irregular waves. The comparison of measured and computed velocity moments indicates that for 

moderately long waves the spectral Boussinesq model can be successfully used for sediment 

transport purposes. For shorter waves the crest velocity values of the higher waves are signifi- 

cantly underestimated, and as a result the velocity skewness as well. Q I YY7 Elsevier Science H.V. 

Keywords: Boussincsq mod&; Particle velocituzs; Wave kinematics; Surf zone: Wave breaking; Coastal 

hydrodynamics 

1. Introduction 

The development of numerical models capable of reproducing the hydrodynamics 

field in the shoaling region and the surf zone is of particular interest to coastal 
morphological problems. From an evaluation of sediment transport formulations (Bailard, 
198 I ; Roelvink and Stive, 1989), it appears that the third and fourth oscillatory velocity 
moments (( u”) and ( lul’u) respectively), are the most important parameters in deter- 
mining the magnitude of the wave-induced sediment transport. These moments are 
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non-zero only for asymmetric (non-linear) motions such as occur in shallow water. The 
generation of free and bound sub- and super-harmonics in shallow water leads to 
asymmetries of the free-surface and velocity time series about both the horizontal and 
vertical axis. Since Boussinesq equations include non-linearity, they are suitable for the 
description of these asymmetry effects. Moreover, they require relatively little computa- 
tional effort, since the equations are integrated over the water depth and therefore only 
formulated in the horizontal space. 

Boussinesq equations, describing relatively long, small amplitude waves propagating 
in water of varying depth, are derived from the potential flow equations assuming that 
the depth-dependence of the velocity field is weak. The vertical momentum equation is 
eliminated while ignoring the non-linear vertical acceleration. This implies that a 
parabolic vertical structure of the horizontal velocities is assumed. The equations are 
stated in the surface elevation and one single horizontal velocity variable, the so-called 
computational velocity. Many different forms of Boussinesq equations exist, which 
differ in frequency-dispersion and shoaling characteristics as well as in the computa- 
tional velocity variable. Because of the water-depth restriction of Boussinesq equations, 
efforts have recently been spent on improving the linear frequency dispersion with 
respect to the conventional Boussinesq equations. Reference is made to Witting (1984), 
Madsen et al. (199 l), Madsen and Sorensen (1992), Nwogu (1993), Dingemans ( 1994. 
1997) and Schrijter (199.5). Improvement of the frequency dispersion typically leads to 
another form of the equations in which different third derivative frequency-dispersion 
terms occur. 

The validation of Boussinesq models has been primarily focused on the surface 
elevations. Madsen and Sorensen (1992) suggested time-domain equations valid for a 
slowly-varying bathymetry in which the frequency dispersion was improved with respect 
to the conventional Boussinesq equations. They verified the numerical model with 
respect to shoaling and refraction-diffraction in deep and shallow water. Beji and 
Battjes (1994) presented a one-dimensional time-domain model based on a form of the 
equations derived from Madsen et al. (199 1). Comparisons for non-breaking waves 
showed good agreement between the numerical results and measurements obtained from 
experiments in a wave channel with a submerged trapezoidal bar. 

Besides these time-domain formulations, frequency-domain formulations have been 
developed leading to coupled evolution equations for slowly-varying complex Fourier 
amplitudes. Evolution equations have been presented by numerous authors on the basis 
of various forms of Boussinesq-type equations. Freilich and Guza (1984) were the first 
to consider evolution equations valid for a mildly sloping bottom and non-breaking 
waves. They made the assumption that bound wave energy could be neglected and that 
substantial carrying wave energy should be present at all frequencies at all times. 
Applications and verifications of their model (Elgar and Guza, 1985, 1986; Elgar et al., 
1990; Freilich et al., 1990) showed good agreement between measured and computed 
spectral properties in the shoaling region, i.e. outside the breaker zone. 

Frequency-domain versions of equations with improved frequency dispersion (Mad- 
sen and Sorensen, 1992) and without the assumptions made by Freilich and Guza ( 1984) 
were presented by Madsen and Sorensen (1993). They concluded that the agreement 
between the spectral evolution equations and the time-domain counterpart is most 
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satisfactory, except for the peak values of the highest waves which are underestimated 
by the spectral evolution equations. 

Attempts have also been made to include a formulation for wave breaking in 
Boussinesq equations to extend their applicability to the surf zone. Deigaard (1989) 
suggested the concept of surface rollers to describe the breaking mechanism in Boussi- 
nesq equations. A modification of this approach was incorporated in conventional 
time-domain Boussinesq equations by Schaffer et al. (1993). Eldeberky and Battjes 
(1996) supplemented the evolution equations of Madsen and Sorensen (1993) with a 
spectral breaking term which accounts for the energy dissipation due to wave breaking 

(see, also, Battjes et al., 1993). 
The knowledge about the capability of Boussinesq models in reproducing the velocity 

field is very limited. Recently, efforts have been spent on testing Boussinesq models 
against velocity data. Both Brocchini et al. (1992) and Quinn et al. (1994) considered 
velocity data for waves breaking partially on a gently sloping beach. The velocity data 
were compared with results obtained with amongst others a model based on conven- 
tional Boussinesq equations. The description of the breaking process was based on the 
roller concept (Schlffer et al., 1993). Brocchini et al. (1992) worked out comparisons on 
velocity data, both on depth-averaged horizontal velocities and on vertical profiles 
related to the depth-averaged velocity through a parabolic expression. It was found that 
the Boussinesq model gave a systematic overestimation of the velocity. A more 
extensive comparison was carried out by Quinn et al. (1994). They found that the 
computed depth-averaged velocity components slightly exceeded the measured values. 
Further, it was concluded that the reconstruction of the velocity field by imposing a 
parabolic profile is in good agreement with measured vertical profiles, especially in the 
near-bed zone (see, also, Bosboom et al., 1996). The parabolic profile however, was 
seen to exceed the measured values near the surface, particularly in the crest locations. 
Using the model of Freilich and Guza (1984), Elgar et al. (1990) found good agreement 
between predicted and measured second and third moments of horizontal velocity and 
acceleration fields in the shoaling region. 

The purpose of this paper is to validate the Boussinesq modelling of horizontal 
velocities under (breaking) waves, especially in the near-bed zone, using a frequency- 
domain model extended with breaking dissipation (Eldeberky and Battjes, 1996). This 
model is based on time-domain equations with good shoaling behavior and improved 
frequency dispersion (Madsen and Sorensen, 1992). 

We present the extension of the spectral model, which is stated in terms of the 
surface elevation only, with the computation of the depth-averaged velocity and, 
consequently, the vertical profile of the horizontal velocity by imposing a parabolic 
profile, as is consistent with the Bousssinesq approximation. The parabolic profile to 
obtain the horizontal velocity as a function of the depth was found to yield realistic 
results (Quinn et al., 1994; Bosboom et al., 1996), especially in the near-bed zone where 
we will focus on in this paper. The model is verified through comparisons with 
measured bottom velocities in laboratory measurements of irregular waves (partially) 
breaking on a sandy beach. The comparison between measurements and computations is 
performed on velocity variance and skewness, the latter being the most important 
variable in determining the magnitude of the net bed-load transport rate. 
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The organization of this paper is as follows. Section 2 recapitulates the spectral 
model with breaking dissipation and presents the extension to compute the vertical 
profile of the horizontal velocity. Further, this section deals with the discretization of the 
model equations. Verification of the spectral velocity modelling is presented in Section 
3. Finally, in Section 4 a summary and conclusions are given. 

2. Spectral Boussinesq model and flow field reconstruction 

2. I. Governing equations 

A frequency-domain approach based on evolution equations and Fourier series 
approximations is used. Assuming slowly-varying uni-directional wave propagation, 
evolution equations for the complex amplitudes were derived by Madsen and Sorensen 
(1993) and supplemented with a breaking formulation by Eldeberky and Battjes (1996). 
In this section the extension of this spectral model with the computation of the vertical 
profile of the horizontal velocity is presented. 

Starting point of the derivation of the spectral equations were time-domain Boussi- 
nesq equations stated in terms of the volume flux per unit width q (Madsen and 
Sorensen, 1992). The Boussinesq approximation is valid for weakly non-linear moder- 
ately long waves: 

F=” <( I, 
h 

non-linearity parameter, 

2 

-=z 1, dispersion parameter, 

“=0(l). 
P 

where a is the wave amplitude, h is the undisturbed water depth and L is the wave 
length. The assumption that p < 1 implies that the bottom slope Id h/dxl I p’j2 
(Dingemans, 1994, 1997). Madsen and Sorensen (1992) further assume a slowly-varying 
bathymetry (Idh/dxl << ~-1”~); bottom-slope squared and bottom-curvature terms are 
neglected in the equations. Their equations read: 

i, + g, = 0, (la> 

+ hh,[tq,x + 2bM,,]. (lb) 
Here the subscripts denote partial differentiation with respect to the indicated indices, 5 
is the free-surface elevation, q is the depth-integrated horizontal velocity (or the volume 
flux per unit width), g is the acceleration due to gravity and b is a fitting parameter for 
obtaining the best agreement with the frequency dispersion according to Stokes’ first 
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order theory. For b = I/ 15 the phase celerity errors are minimized over the whole range 
of kh (see Madsen and Sorensen, 1992; Dingemans, 1994, 1997). 

In deriving the frequency-domain counterpart of Eqs. (la> and (lb), Madsen and 
Sorensen (1993) formulated solutions for the free-surface elevation in terms of Fourier 
series with spatially varying coefficients: 

((x, t) = E Ap(x)exp[i(o,t-lG;(x))]~ (2) 
p= -m 

where p indicates the rank of the harmonic, A, is the complex Fourier amplitude, wp is 
the angular frequency and d @Jd x = k,,(x) is the wave number in the linear approxima- 
tion, with k, determined from the linear dispersion relation of the equations. Note that 
w = --UP’ $_, = -t,$,, A-, =A; with ‘ * ’ denoting the complex conjugate. The 
fr&encies are determined by wp = PAW where Aw is the lowest frequency of interest. 

A lowest-order estimate of the volume flux per unit width 9 is obtained by 
combining the Fourier series expansion for 5 (2) with the continuity Eq. (la) while 
neglecting the first derivatives of A, and k,: 

(3) 

Inserting Eqs. (2) and (3) in the time-domain equations yields after some algebraic 
manipulations first-order evolution equations for the complex Fourier amplitudes. In this 
procedure, first derivatives of A,, k, and h are assumed to be small and products of 
derivatives and higher derivatives of these quantities are neglected in the formulation. 

Madsen and Sorensen (1993) found that the agreement between the surface elevations 
predicted by the time-domain equations and the evolution equations is most satisfactory. 
The only discrepancy is found in the highest waves where the evolution equations 
underestimate the peak values. 

Eldeberky and Battjes (1996) supplemented the evolution equations with a semi-em- 
pirical dissipation formulation for the total energy loss due to breaking which reduces 
the spectral amplitudes in the same proportion without affecting the spectral shape. The 
evolution equations then read, with p covering the interval from p = 1 to 30, 

(4) 
where the first term in the right-hand side of Eq. (4) represents linear shoaling, the 
second and the third term represent the triad sum and difference interactions respectively 
and the last term is the dissipation term representing the contribution due to wave 
breaking. Here F is the total local rate of energy flux per unit width and D is the total 
local rate of random-wave energy dissipation per unit area due to breaking. The terms 
F,’ and FPP are defined by 

P-i (y+ 

F- = f $A6,A,+,,exp[ -i(h+, - 
I’ k*p)]. 

m=l 1 
(5) 
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For expressions for the shoaling coefficient & in Eq. (4) and the interaction 
coefficients p, , a+ and ~ (Y in Eq. (5) one is referred to Madsen and Sorensen (1993) 
and Eldeberky and Battjes (1996). The energy dissipation rate D can be computed using 
the energy dissipation model of Battjes and Janssen (1978) or comparable methods (e.g., 
Thornton and Guza, 1983); here we use the model of Battjes and Janssen (1978). 

The extended model has been used by Eldeberky and Battjes (1996) to predict surface 
elevations and surface elevation spectra. The results showed encouraging agreement 
with observed surface elevation time series as well as spectra. It was found that the 
effects of wave breaking were adequately described by the reduction of the complex 
amplitudes A,, with a frequency-independent real factor; there is no need of a phase 
shift induced by wave breaking. 

Since we are interested in horizontal velocity values at various heights, an expression 
must be found for the horizontal velocity as a function of the depth in terms of the 
complex Fourier amplitudes A,,. 

In the linear approximation, the depth-averaged velocity is determined from the 
lowest-order approximation of the volume flux y (Eq. (3)) as follows: 

U( x, t) = ; = c sA,,( -x) exp[i( w,,t - +,,c-~))]. ,,= - x ,’ 

(6) 

Note that in this way only the purely oscillating part of the horizontal velocity is 
predicted by the model; the time-averaged component of the velocity is eliminated upon 
linearization. 

In order to compute the horizontal velocity profile as a function of the depth, a 
parabolic profile is imposed. As a first approximation we use the parabolic profile for 
the constant depth situation: 

U(X, z, t) =Z- [~h’+zh+~?]E~,,, (7) 

where z = 0 corresponds to the undisturbed position of the free surface. Substitution of 
Eq. (6) in Eq. (7) while neglecting all derivatives of A,,, k,, and h, yields the following 
expression for the horizontal velocity profile in terms of Fourier series: 

-rc 

u( x, z, f> = C U,,(x, z)exP[i(o,~r-~,,(x))], ,,= -jr 

with 

2.2. Numerical integrution 

(8b) 

The evolution equations (Eq. (4)) are first-order ordinary differential equations. They 
are numerically integrated using a fourth-order Runge-Kutta method. The upwave 
boundary condition for the integration is a set of complex amplitudes A,, ( p = 1, 2, 3, 
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. . ) P>. Those amplitudes can be obtained from measured time records of the surface 
elevation by the use of a standard fast Fourier transformation algorithm. 

The result of the numerical integration is a set of complex amplitudes A, at each 
location. The phases of the complex amplitudes, predicted by the evolution equations, 
only contain the non-linear phase. The linear part of the phase function is computed 
separately by integrating k, spatially. The non-linear and linear parts are added in order 
to obtain the total wave phase. 

The numerical model of Eldeberky and Battjes (1996) was extended to compute the 
complex amplitudes UP at each output location and at various vertical positions by 
multiplication of A, by the expression in the right-hand side of Eq. (8b). The surface 
elevation and velocity time records can be obtained by post-processing the complex 
amplitudes by means of an inverse fast Fourier transformation. 

3. Verification of the extended model 

3.1. Experimental data 

The prediction of horizontal velocities and velocity moments was verified against 
wave channel measurements of irregular (partially) breaking waves propagating over a 
concave sandy beach. The experiments were carried out within the framework of the 
EU-sponsored Large Installations plan (Arcilla et al., 1994; Roelvink and Reniers, 
199.5). Two different experimental data sets (i.e., test la and lc) were used. These two 
experiments were already used by Eldeberky and Battjes (1996) for the comparison of 
measured and computed surface elevation time series and spectra. 

The incident wave conditions are listed in Table 1, in which TP is the peak period and 

H mO the significant wave height. Table 1 also shows the non-linearity parameter 
E = a/h (in which the wave amplitude a = H,,,/2) and the dispersion parameter 
p = (h/L)* (in which L is the wave length corresponding to the peak period) at a water 
depth h = 4.1 m. 

In the experiments the low-frequency wave channel resonances were prevented by an 
active wave absorption system at the wave-maker. Surface elevations and velocities 
were measured at several locations along the wave channel. The velocity measurements 
were carried out at several distances from the bed. The velocity measurement locations 
are indicated in Fig. 1, for both experiments. Since the spectral model only predicts the 
purely oscillating part of the velocity the time-averaged velocity component was filtered 
from the measured signals. 

Table 1 

Wave parameters for experiments la and Ic 

Test 

la 

Ic 

TP 6) H,, (m) 6 P 

4.9 0.9 0.11 0.021 

8.0 0.6 0.07 0.007 
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(4 

0 20 40 60 80 100 120 140 160 180 200 

distance (m) 

(b) 

) 
II,, 

0 1 J ’ * ” ” I’ .’ 
0 20 40 60 80 100 120 140 160 180 200 

distance (m) 

Fig. 1. Bed profile and location of electronic current meters for (a) experiment la and (b) experiment Ic 

(Roelvink and Reniers, 1995). 

For experiment la, the incident wave conditions are such that the wave breaking is 
strong. The monotonic sandy beach profile (Fig. la) allows for wave breaking to take 
place over a large distance; the experiments showed a gradual decrease of the significant 
wave height at distances from 100 m up to about 140 m from the wave board, beyond 
which the wave breaking gets strong. In experiment lc on the contrary, a barred beach 
profile is present (Fig. lb). The wave breaking is mild and is concentrated behind the 
bar, the crest of which is located around 138 m. 

The upwave boundary conditions used in the numerical computations are obtained 
from the measured surface elevations at 20 m by the use of a standard FFT algorithm. 

3.2. Computational parameters 

Besides the bottom geometry and the upwave boundary, the model input comprises 
the breaking coefficient y = H,,,/h in which H, is the maximum wave height, the 
bandwidth A f, the number of frequency components P and the spatial step A X. The 
spatial step was chosen A x = 0.5 m and the breaking coefficient y = 0.85 in accordance 
with the y-value used by Eldeberky and Battjes (1996). This value is on the high side to 
compensate for the use of the mean frequency instead of the more commonly used peak 
frequency in the formulation of the energy-dissipation rate D. 
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The sampling rate in the measurements is 10 Hz implying a maximum cut-off 

frequency in the simulations of 5 Hz. Too large a cut-off frequency however, resulted in 
extremely noisy velocity signals due to the amplification of higher harmonics in the 
computation of iiXX in Eq. (7). This could be avoided by choosing a cut-off frequency of 
1 Hz in the simulations, which was still high enough to adequately represent all 
harmonics. The length of the simulated time record was T = 2048 s for both experi- 
ments, resulting in a number of frequency components P = 2048 and a bandwidth 
Af = 4.883 x lop4 Hz. 

3.3. Analysis of time-series 

In view of the approximately uniform vertical distribution of the horizontal velocity 
in both experiments, only bottom velocities, measured at 10 cm above the bed, were 
focused on. The comparison between measurements and computations was carried out 
on bottom velocity time series, variance and skewness. For experiment la, also surface 
elevation time records will be shown in order to compare the accuracy in predicting the 
horizontal velocities and the surface elevation. 

In computing the variance and skewness of the bottom velocity, it was assumed that 
the total oscillatory velocity signal u consists of a short wave averaged low-frequency 
component u10 and a short wave component 11~~. 

Assuming u10 and uhi to be uncorrelated, the velocity variance is given by: 

(U*) = (Uzi> + <“fo>> (9a) 
where the ( ) indicate time-averaging over the short wave and wave group scale. 

Assuming in addition that u,,, << uhi, Roelvink and Stive (1989) demonstrated that the 
most important contributions of the oscillatory part of the velocity to the velocity 
skewness are given by: 

(u3>=(~4;i>+3(u;iu,,)+ . . . . (9b) 
The first term in the right-hand side of Eq. (9b) is related to the short wave asymmetry, 
whereas the second term is associated with the interaction between the long wave 
velocity and the slowly-varying short wave velocity variance. 

For both the measured and the computed bottom velocity time series, the terms in the 
left-hand side as well as the right-hand side of Eqs. (9a) and (9b) were calculated using 
half the peak frequency for the lowest short wave frequency. 

3.4. Discussion of results 

The comparisons between the predicted and measured results are given in Figs. 2-6. 
Generally, it was found that the accuracy in predicting the bottom velocity is comparable 
to the accuracy in predicting the surface elevation; for test la, this can be seen by 
comparing Figs. 2 and 3. 

Figs. 2 and 3 demonstrate that in test la both the predicted surface elevation time 
series, which correspond with the results presented in Eldeberky and Battjes (1996) and 
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Fig. 2. Comparison of time series of measured (solid line) and computed (dotted line) surface elevation\ for 

experiment I a. 

bottom velocity time series underestimate the peak values of the highest waves, resulting 
in too much symmetry in the computed signals. 

Fig. 4 shows that, except for the last station behind the bar, the short wave velocity 
variance is very well predicted, suggesting that the spectral energy density for the higher 
frequencies is well reproduced by the model. The model slightly underestimates the total 
velocity variance for the stations closest to the bar. This can be seen to originate from 
the inaccurate reproduction of the long wave velocity variance for these stations. It may 
be that the dissipation due to short wave breaking should not have been applied in this 
frequency band. Note that Eldeberky and Battjes (1996) on the basis of their results 
could not draw firm conclusions on whether to apply the breaking dissipation to the 
low-frequency waves. Another possible explanation might be the presence of a standing 
low-frequency wave pattern near the beach with a node in the low-frequency surface 
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Fig. 3. Comparison of time series of the measured (solid line) and computed (dotted line) bottom velocity for 

experiment I a. 

elevation and hence large velocity amplitudes around station 5. Standing waves are not 
reproduced by the model because of the assumption of uni-directional wave propagation. 

As a result of the underestimation of the velocity crest values of the highest waves, 
the velocity skewness (Fig. 41, which can be seen to be dominated by the short wave 
asymmetry, is largely underestimated by the model. The agreement is reasonable for the 
last two stations where strong wave breaking occurs. The long wave contribution is 
predicted rather well. Increasing the maximum frequency and the frequency resolution 
did not improve the numerical results. 

Test lc shows an encouraging agreement between measured and predicted bottom 
velocity time series (Fig. 5), variance and skewness (Fig. 61, especially up to the bar 
crest. In contrast with test la, both the peak values and form of the velocity signal are 
predicted reasonably well. The underestimation of the peak values is less significant than 
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skewness (right): long wave contribution, short wave contribution and total moment respectively; experiment 

la. 

for test la. The less good agreement beyond the bar crest, also found by Eldeberky and 
Battjes (1996) for surface elevation spectra, can possibly be ascribed to the relatively 
steep bottom beyond the bar crest (h,/p ‘I2 = 0 52) which is in contrast with the 
assumption of slowly-varying bottom (Iz,/~‘/~ -=z I). 

The velocity variance in test lc (Fig. 6) and therefore the spectral energy density is 
predicted well. The difference between the total velocity variance determined from the 
computed and measured time series at the bar crest is for the larger part the result of the 
incorrect representation of the long wave energy. As for test la, this can possibly be 
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Fig. 5. Comparison of time series of the measured (solid line) and computed (dotted line) bottom velocity for 

experiment 1 c. 

ascribed to a standing wave pattern near the beach or to too strong a reduction of 
low-frequency energy by the breaking formulation. 

It can be concluded that for test lc the velocity skewness compares very well with the 
measurements. For test la as well as lc, the short wave energy is predicted well by the 
model. The underprediction of the short wave asymmetry by the model in test la is 
therefore the result of an incorrect representation of the phases of the harmonic 
components. This might be partly due to the larger degree of non-linearity as compared 
to test lc, such that the wave breaking already occurs at 100 m from the wave board and 
continues for a large propagation distance. Besides, the peak period is smaller in test la 
which decreases the accuracy of the frequency dispersion as well as the validity of the 
assumption of slowly-varying complex amplitudes underlying the evolution equations. 
The latter two effects will be explained in the following. 
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Fig. 6. Comparison of measured (crosses) and computed (diamonds) bottom velocity variance (Icft) and 

skewness (right): long wave contribution, short wave contribution and total moment respectively; experiment 

Ic. 

Inaccurate frequency dispersion of the Boussinesq equations for freely moving 
shorter wave components can partly contribute to the discrepancies between computa- 
tions and measurements in test la. The errors in the phase celerity can be computed as 

‘B,m\ - ’ 
* loo%, 

c 

where c is the exact linear phase velocity and cRCIUS is the phase velocity corresponding 
to the Boussinesq equations with improved frequency dispersion. For the second and 
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Table 2 

Percent errors in the phase velocity for the second and third harmonic 

h=4.1 m h= 1.8 m 

f’= 2f” f=3f, f = 2.f,, f=3f, 

Test la 2.0 16 0.1 I .I 

Test Ic 0.04 1.1 0.01 0.1 

third harmonic these percent errors are listed in Table 2 with values for kh correspond- 
ing to a water depth of 4.1 m (at the upwave boundary) as well as a water depth of 1.8 
m (at 100 m). From Table 2, it can be seen that as a result of the smaller peak period Tp, 
the errors in experiment la are considerably larger than in experiment lc, especially for 
the third harmonic. The phase errors originate for the most part in deeper water close to 
the wave board and become significant for larger propagation distances. 

Besides, the underestimation of the crest values could possibly originate from the 
transformation of the time-domain equations into the frequency domain; Madsen and 
Sorensen (1993) already pointed out that the frequency-domain model yields lower 
crest values than its time-domain counterpart. They did not give an explanation for this 
discrepancy. 

The underestimation of the crest values might be due to the violation of the 
assumption of slowly-varying complex amplitudes A,,( x> which underlies the procedure 
to obtain the spectral equations. The rate at which the complex amplitudes A,r(x) vary 
in both tests can be quantified by computing the ratio of recurrence length L, to the 
wave length of the first harmonic L,. Due to the interplay between the free and bound 
second harmonic, the second harmonic amplitude is periodic with the recurrence length 
L,. The recurrence length L, can be expressed as (see e.g., Hulsbergen (1974) or 
Dingemans (1994, 1997)) 

2%- C 
L, = ’ L =p 

k2 - 2k, 
23 

c, - C2 

where k, = w/c, and k2 = 2 w/c2 are the wave numbers pertaining to the free first and 
second harmonics respectively. The amplitudes A,,(x) can be said to be slowly varying 
if the ratio L,/L, is sufficiently large. For both tests, the ratio L,/L, is computed at 
both the upwave boundary (at 20 m) and at 100 m. The wave length of the second 
harmonic L, is computed from linear theory, while the wave length of the first 
harmonic L, is computed using c* = g(h + j) in order to account for amplitude 

Table 3 

Ratio L, /L, of recurrence length to first harmonic wave length 

Test la 

Test Ic 

h=4.1 m h= 1.8 m 

0.7 1.2 
2.0 2.9 
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dispersion. At both 20 m and 100 m, 6 was chosen as i = H,,/2 = 0.45 m for 
experiment 1 a and 5 = H,,,,/2 = 0.3 m for experiment 1 c (see Roelvink and Reniers, 
1995). The results are listed in Table 3, showing that in both tests the values of L,/L, 
are not large, as assumed. Nevertheless, this ratio is a factor 2 smaller in test la than in 
Ic, which means that the assumption of slow variation is more strongly violated in test 
1 a than in test lc. This difference between experiment 1 a and 1 c might explain the 
underestimation of the short wave asymmetry and, consequently, of the velocity 
skewness found in experiment la. 

4. Summary and concluding remarks 

The modelling of horizontal velocities in the near-bed zone in (partially) breaking 
waves using a frequency-domain Boussinesq model has been studied. The near-bed 
velocities were obtained from the depth-averaged velocity by imposing a parabolic 
profile. The model has been applied to tests of irregular (partially) breaking waves on a 
beach. 

The computation of the bottom velocities from the surface elevation yields results 
with an accuracy comparable to the accuracy of the predicted surface elevations. The 
velocity variance is predicted fairly well. For the wave test with the longer wave period, 
the velocity skewness is predicted well by the model. The shorter wave test however, 
shows an underestimation of the velocity skewness due to an underestimation of the 
crest values of the highest waves. 

This underestimation of the crest values was seen to be the result of an inaccurate 
representation of the phases of the higher harmonics. It was argued that both the 
water-depth restriction of the Boussinesq equations and the assumption of slowly-vary- 
ing amplitudes may contribute to these discrepancies. Additional research is relevant in 
order to determine whether the discrepancies result from the water-depth restrictions of 
the Boussinesq equations or from additional assumptions made in the derivation of the 
evolution equations underlying the present model. Further, attention should be paid to 
the inclusion of higher-order derivatives in the spectral evolution equations and the 
mean velocity in the velocity computations. 
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