
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

An exploratory journey to combine
schema matchers for better relevance

prediction

Author:
Wang Hao WANG

Supervisor:
Asterios KATSIFODIMOS &

Andra IONESCU &
Jerry BRONS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

November 23, 2022

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Declaration of Authorship
I, Wang Hao WANG, declare that this thesis titled, “An exploratory journey to com-
bine schema matchers for better relevance prediction” and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: 23 November 2022

v

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

An exploratory journey to combine schema matchers for better relevance
prediction

by Wang Hao WANG

Current speed of data growth has exponentially increased over the past decade,
highlighting the need of modern organizations for data discovery systems. Sev-
eral (automated) schema matching approaches have been proposed to find related
data, exploiting different parts of schema information (e.g. data type, data distribu-
tion, column name, etc.). However, research showed that single schema matching
techniques fails to effectively match schemas, whilst combinatorial schema matching
systems show more promise. With the introduction of combinatorial schema match-
ing systems, new challenges arise regarding selection and combining strategies. This
research attempts to explore different techniques for determining the importance
of each matcher in a combinatorial schema matching system by determining the
weights of each matcher and comparing them through a comprehensive evaluation.

Student Number 4724925
Thesis committee: Prof.dr.ir. G.J.P.M. Houben, TU Delft

Assistant Prof.dr. A. Katsifodimos, TU Delft
Dr. L. Y. Chen, TU Delft

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

vii

Contents

Declaration of Authorship iii

Abstract v

1 Introduction 1
1.1 Problem description . 2
1.2 Contribution . 2
1.3 Research Questions . 3
1.4 Overview . 3

2 Background 5
2.1 Data discovery . 5

2.1.1 Applications . 6
Aurum . 6
Attribute discovery . 7

2.2 Relatedness . 7
2.3 Schema matching taxonomy . 8

2.3.1 Schema-based matching . 9
Element-level approaches . 10
Structure-level approaches . 10

2.3.2 Instance-based matching . 11
2.4 Combining matchers . 13

2.4.1 Matcher selection . 13
2.4.2 Aggregation Strategies . 14

2.5 Related work . 15
2.5.1 LSD (2001) . 15
2.5.2 Cupid (2001) . 16
2.5.3 Coma (2002) . 16
2.5.4 Embley et al (2002) . 17
2.5.5 MKB (2003) . 17
2.5.6 Harmony (2006) . 18
2.5.7 YAM (2009) . 18
2.5.8 Data tamer (2013) . 18

2.6 Conclusion . 19

3 Methodology 21
3.1 Approach overview . 21
3.2 Methods . 22

3.2.1 Multiplicative weight update method 22
Determining the weights . 22

3.2.2 Reinforcement learning . 23
Determining the weights . 24

3.2.3 Linear programming . 24

viii

Determining the weights . 25
3.2.4 Machine learning . 26

Machine learning model . 26

4 User Interface 29
4.1 Configuration . 29
4.2 Labelling . 29
4.3 Evaluation . 30

5 Experiments 31
5.1 Data . 31

5.1.1 TPC-H . 32
Fabricated TPC-H . 32

5.1.2 IMDb . 32
Fabricated IMDb . 32

5.1.3 ING . 33
5.2 Metrics . 33

5.2.1 Cluster Metrics . 33
5.2.2 Traditional Metrics . 34
5.2.3 Valentine Metrics for Score Quality 34

5.3 Results . 35
5.3.1 TPC-H . 35
5.3.2 Fabricated TPC-H . 39
5.3.3 IMDb . 42
5.3.4 Fabricated IMDb . 43
5.3.5 ING . 45
5.3.6 Discussion . 49

5.4 Machine Learning Results . 49
Data . 49

5.4.1 Evaluating the model . 50
5.4.2 Discussion . 52

6 Conclusion 55
6.1 Limitations . 55

A User Interface: 4-step form for configuring our methodology 57

B User Interface: Labelling ground truth clusters 59

C User Interface: Evaluation tool 61

D Manual noise mapping for fabricated TPC-H column names 63

E Results: Example of formed clusters compared to the ground truth 65

Bibliography 67

ix

List of Figures

2.1 Example tables . 8
2.2 An extended taxonomy of schema matching methods described by

Shvaiko and Euzenat, 2005. The taxonomy is divided into two lay-
ers: Granularity/input interpretation and Kind of input layer. Granular-
ity/input interpretation layer shows what kind of information is be-
ing used by the schema matching technique, whilst the kind of input
layer shows the types of possible inputs. 12

5.1 Reduction of clusters into a list of relationships 34
5.2 Valentine precision for each k . 38
5.3 Valentine recall for each k . 38
5.4 Valentine f-measure for each k . 38
5.5 Valentine metrics for each k in the TPC-H dataset 38
5.6 Valentine precision for each k . 41
5.7 Valentine recall for each k . 41
5.8 Valentine f-measure for each k . 41
5.9 Valentine metrics for each k in the fabricated TPC-H dataset 41
5.10 Valentine precision for each k . 44
5.11 Valentine recall for each k . 44
5.12 Valentine f-measure for each k . 44
5.13 Valentine metrics for each k in the IMDb dataset 44
5.14 Valentine precision for each k . 46
5.15 Valentine recall for each k . 46
5.16 Valentine f-measure for each k . 46
5.17 Valentine metrics for each k in the fabricated IMDb dataset 46
5.18 Valentine precision for each k . 48
5.19 Valentine recall for each k . 48
5.20 Valentine f-measure for each k . 48
5.21 Valentine metrics for each k in the ING dataset 48
5.22 Confusion matrix for one execution on the test set 51
5.23 Confusion matrix for one execution on the test set 52

A.1 Step 1: Select the matchers the user want to include 57
A.2 Step 2: Select the cutoff threshold (described in chapter 3.2.1) 57
A.3 Step 3: Select one of our provided methods 58
A.4 Step 4: Select the data you want to use 58
A.5 User interface to change flexible setting values 58

B.1 User interface allowing users to select columns and form a cluster . . . 59
B.2 User interface showing the created clusters and button for labelling

all the relationships based on the created clusters 59

C.1 Formed clusters are shown to the user along with the used settings . . 61

x

C.2 Zoomed-in and interactive dendrogram showing the hierarchy of the
columns . 61

C.3 Evaluation page with amount of clusters and the corresponding met-
ric scores . 62

E.1 Example chord diagram showing the clusters and comparison with
the ground truth . 65

xi

List of Tables

3.1 Selected matcher for each method . 22

5.1 Best achieved metrics from running our methods on the original TPC-
H data with the optimal settings . 37

5.2 Best achieved metrics from running our methods on the fabricated
TPC-H data with the optimal settings 40

5.3 Best achieved metrics from changing different fabrication factors for
the fabricated TPC-H data with the optimal settings 42

5.4 Best achieved metrics from running our methods on the original IMDb
data with the optimal settings . 43

5.5 Best achieved metrics from running our methods on the fabricated
IMDb data with the optimal settings . 45

5.6 Best achieved metrics from running our methods on the ING data
with the optimal settings . 47

5.7 Amount of used labelled data and its distribution amongst the related
and unrelated column-pairs . 50

5.8 The mean and standard deviation of the accuracy when we execute
the learning and test process 100 times 50

5.9 Achieved metrics of the model on the test set 50
5.10 The mean and standard deviation of the accuracy when we execute

the learning and test process 100 times with oversampling 52
5.11 Achieved metrics of the model on the test set with oversampling . . . 52

D.1 The mapping between the original fabricated data of TPC-H and the
altered data for validation of identified problem 64

1

Chapter 1

Introduction

According to the recent blog post of Hack, 2021, the speed of the growth of data
usage has been skyrocketing over the past decade. In the last decade, the data usage
has increased with almost 1500% and is forecasted to grow with an annual growth
rate of 23%. With the rise of technology, data keeps being collected in a large variety
of domains with high velocity and volumes, especially in the digital era (Dong and
Srivastava, 2013). Data can be collected through online and traditional transaction
systems, sensors, social media, mobile devices, and other diverse sources (Zikopou-
los and Eaton, 2011). This brings up the importance of being able to search, discover,
compile and analyze relevant information for a user’s specific task in science, busi-
ness, and society at large (Weikum, 2013). An immense amount of data is being
generated, whilst there exists no standardized formats, storage, and transfer mech-
anisms (Christensen et al., 2018). According to an article written by King, 2019, it
is believed that approximately 80% of the data will be unstructured in 2025. Un-
structured data creates a unique challenge for organizations wishing to use their
information for analysis. As a result of the growth of the (unstructured) data, data
analysts are drowning in data but starving for insights as finding relevant data takes
an improper amount of time.

With this immense growth of data, modern organizations will inevitably face a data
discovery problem, where the analysts has to spend more time finding the relevant
data rather than actually analyzing it (Castro Fernandez et al., 2018). For example,
an analyst needs to create a feature table for training a machine learning model to
determine the stock prices of a set of companies for the upcoming year. The informa-
tion for each company are stored in multiple locations, each possibly a good feature.
With the current growth of data, countless data online are distributed over multiple
different data sources. Finding correlated and relevant information regarding each
company takes a lot of time as the analyst needs to search through various sources
and determine the relevance by going through the data of all the data sources. It is
a very labor intensive task which requires a significant amount of time as 80% of a
data scientists’ time is dedicated for data discovery (Stonebraker, Ilyas, et al., 2018).
This example highlights the problem we are facing today where manual discovery
has reached its limits as it scales poorly with the amount of data.

In this work, our ultimate goal is to be able to provide a way to help users find
relevant information through automation to decrease the labor intensity of finding
the relevant data. Rather than automatically combining the discovered related data,
we aim to provide suggestions for relevant data to speed up the process of finding
them as state-of-the-art tools are not advanced enough to provide fully automation
yet. In order to achieve this goal, we need find a way to achieve better performance
compared to the state-of-the-art data discovery tools. This work is in collaboration

2 Chapter 1. Introduction

with ING and therefore can be evaluated using real life data.

1.1 Problem description

For many years, integrating data was done manually by experts in the field (Rahm
and Bernstein, 2001). However, with the increasing numbers of external (and inter-
nal) datasets, of increasing diversity and complexity, the difficulty of finding rele-
vant data increases as we reach our limitations of scalability for manually discover-
ing data (Bogatu et al., 2020; Castelo et al., 2021; Rahm and Bernstein, 2001). Manu-
ally discovering data results in implicitly giving meaning to the data, based on how
the user interprets it, and therefore also highlights the challenges to be faced by au-
tomated data discovery. Over the past decade, data discovery tools are developed to
automate extraction of useful information of the data to assist the analysts in finding
relevant data (Goebel and Gruenwald, 1999). To define the scope of our research,
we solely look into discovering relatedness between known (internal) datasets, and
therefore disregard the discovery process of finding the data sources. We hence focus
on detecting relatedness between known datasets. The vast majority of modern data
discovery tools are based on one common critical component: schema matching,
i.e. capturing relationships between elements of different schemas (Koutras et al.,
2021). Schema matching is in charge of identifying two objects that are semantically
related and finding semantic correspondence between elements of two schemas (Do
and Rahm, 2002). Information regarding schemas and/or instances can be exploited
for the purpose of extracting the semantic correspondences between different ele-
ments (Shvaiko and Euzenat, 2005).

Different data discovery tools exploit a certain selection of the available schema
and/or instance data (Rahm and Bernstein, 2001). For example, the work of Zhang
et al., 2011 exploits the underlying distribution of the instances, whilst Madhavan,
Bernstein, and Rahm, 2001 uses linguistic and structural similarity between the schemas.
However, as data keeps advancing due to the rapid changes in technology, individ-
ual data discovery tools fail to keep up with the additional introduced complexity
(Do and Rahm, 2002). Typically, data discovery tools exploit a selection of data char-
acteristics, e.g. data distribution, but solely depending on one data discovery tool
is not sufficient to keep up with technology changes as they are inherently fragile
and limited (Bernstein et al., 2004). Studies have therefore tried to combine different
discovery tools to improve the performance by compensating for the shortcomings
of the individual tools, with success (Do and Rahm, 2002; Engmann and Maßmann,
2007). However, as data progresses, combining different forces from different dis-
covery tools will not suffice with simple aggregation methods in complex cases (Tu
and Yu, 2005). Coma (Do and Rahm, 2002) and Coma++ (Engmann and Maßmann,
2007) are examples which tried to combine different discovery tools to achieve better
performance. They have implemented different aggregation methods such as MAX,
MIN and AVERAGE, but did not report any results for the weighted average, which
is supposedly better (Tu and Yu, 2005, Do and Rahm, 2002).

1.2 Contribution

We try to solve this problem by using a weighted approach to determine the im-
portance of each discovery tool and the similarity between columns. The assigned
similarity for each column-pair will be used for clustering in order to group related

1.3. Research Questions 3

columns together.

We propose four different methods to address the problem of tuning the weights,
each with different characteristics. Additionally, we also propose an user interface
to help the user navigate through our methodology. The four different methods are
compared with each other through comprehensive evaluation.

1.3 Research Questions

In this thesis report, we will consider two main research questions to guide this
research.

• RQ1: What characteristics determine the selection of discovery tools to use for an
effective combinatory method?

• RQ2: What method(s) combines solutions of different discovery tools into a better
performing solution?

Research question RQ1 helps us focus on picking the appropriate data discovery
tools to use for our methodology, whilst research question RQ2 helps us focus on
how to combine the tools to reach our goal.

1.4 Overview

This thesis report is structured as following: we will firstly provide the background
information necessary to understand the terminology in this thesis report in chap-
ter 2. Afterwards, the methodology will be explained in chapter 3, which provides
insight on the approach itself and its motivations. In chapter 4, the proposed user
interface will be described. Afterwards, in chapter 5, we show the comprehensive
evaluation of the different methodologies described in chapter 3. At last, a conclu-
sion will be made and remarks for future work will be made in chapter 6.

5

Chapter 2

Background

This chapter will introduce the research of data discovery in general. To dive deeper
into the specifics, we will also describe what relatedness is within the data discov-
ery research and how it can be detected using schema matching. A taxonomy of
schema matching approaches will be given and elaborated upon. Furthermore, we
dive deeper into the schema matching research and provide information about com-
bining different schema matching approaches and the respective aspects of it. At
last we mention some related work.

2.1 Data discovery

In modern enterprises, multiple co-existing information systems are used in parallel
to take care of the information of different parts of the enterprise (Ziegler and Dit-
trich, 2007). With different co-existing information systems needing to communicate
with each other, especially regarding data to provide a more unified view, the im-
portance of the data integration problem rises.

Definition: Data integration is the problem of combining data residing at different sources
and providing the user with a unified view of these data (Lenzerini, 2002)

Data integration systems allow the users to delegate the tasks such as locating dif-
ferent sources, interact with each source in isolation, and manually combine the data
from multiple sources to the data integration machines (Halevy, 2001). A core com-
ponent of such data integration system, which tries to locate different located data
sources, is the data discovery component (Koutras et al., 2021). The data discovery
component tries to tackle the data discovery problem, which is the problem where
analysts spend more time finding relevant data than actually analyzing it (Castro
Fernandez et al., 2018). By (semi-)automating the process of finding relevant data,
it reduces the amount of time needed for analysts to find relevant data. Definitions
regarding data discovery slightly varies within literature. However in our research,
we will use the term data discovery to describe the process of finding relevant in-
formation within known sources, rather than locating data sources and identifying
meanings of entities. A more formal definition of data discovery is written below.

Definition: Data discovery is the process of navigating numerous data sources in order
to find relevant datasets as well as the relationships among those datasets (Koutras et al.,
2021)

For many years, integrating data was done manually by experts in the field (Rahm

6 Chapter 2. Background

and Bernstein, 2001). However, with the increasing numbers of external (and inter-
nal) datasets, of increasing diversity, that are available for organizations to use in-
creases the difficulty of finding relevant data (Bogatu et al., 2020; Castelo et al., 2021).
A number of approaches has been proposed to organize and index data collections,
from domain-specific repositories to data lakes to make the data more discoverable
for search engines (Chapman et al., 2019). Improving the discoverability of data will
benefit the people and organizations involved in the data lifecycle, however, dif-
ferent organizations develop their own portal with support for data discovery (wu
et al., 2019). It requires collective efforts from data collectors, data providers, data
repositories, data librarians and research trainers to improve the discoverability of
the data.

Most search algorithms, used by popular search engines, focus on discovering gen-
eral web-pages rather than the characteristics of data in a specific domain (Li, 2010).
Search engines lack the judgement of the similarity between spatial objects for this
purpose. This leads to schema matching being the solution, which is responsible for
finding semantic correspondences between elements of two schemas (relatedness)
(Li and Clifton, 2000). Schema matching has become one of the most fundamen-
tal pieces in many schema and data translation and integration applications (Do
and Rahm, 2002) and has been a critical component in many data discovery tools
(Koutras et al., 2021).

Data discovery comes in different forms, serving different purposes, but all have
a common goal: augment a dataset with data previously unknown to the user (Koutras
et al., 2021). There are three identified purposes for data discovery:

1. Search for tables that can be joined (Cafarella, Halevy, and Khoussainova,
2009)

2. Augment a given table with more data entries or extra attributes (Yakout et al.,
2012)

3. Find similar tables to a given one using different similarity measures (Castro
Fernandez et al., 2018)

Typically, a data discovery tool receives a dataset as input and tries to find other
datasets in the repository which might are related to it (Koutras et al., 2021). As data
grows exponentially over the years, data discovery becomes more and more impor-
tant (MacMillan, 2014). Having mounds of data is useless unless you find a way to
extract insight from it. Data discovery is applicable in a wide range of fields. For ex-
ample, analysts need to find relevant data to be able to extract insights (Daniel, Lee,
and Naveen, 2016), whilst machine learning models need to find relevant features to
train their model on (Krawiec, 2002).

2.1.1 Applications

Aurum

Aurum is a generalized data discovery system which creates Enterprise Knowledge
Graphs (EKG) dynamically based on signatures to tackle the general data discov-
ery problem (Castro Fernandez et al., 2018). Generating and maintaining the EKG
within Aurum has a time complexity of O(N) due to their two-step process avoid-
ing all-pair comparisons: signature-building and relationship-building. The signature-
building stage summarizes each column into a profile maintaining information such

2.2. Relatedness 7

as content sketches (e.g. MinHash), data distributions, etc. The relationship-building
stage uses Locality-Sensitive Hashing (LSH) to reduce the all-pair problem to a ap-
proximate nearest neighbor problem. With these two stages, an EKG can be derived
representing columns as nodes and candidate relationships as edges with weights.
To query in the EKG, Source Query Retrieval Language (SRQL) is being used and
fastened by using G-index. Aurum relaxes the discovery problem by using approx-
imation methods and proved to be useful for varied discovery needs.

Attribute discovery

Zhang et. al. studied the possibility of grouping attributes together rather than
detecting the same data types (Zhang et al., 2011). As traditional schema matchers
often only detect simple foreign key relationships to express the relations, Zhang et.
al. tried to group columns together that are from the same attribute. For example,
telephone numbers and social security numbers are of the same primitive data type
which multiple schema matchers see as a potential relationship. By looking at this
problem from a different perspective, Zhang et. al. tried to find strongly related
columns and group them together, representing an attribute: a set of values that appear
to have the same or similar meaning within the context of a particular database instance
(Zhang et al., 2011). This is done by calculating the Earth Mover’s Distance (EMD)
for every pair of columns and use those values to cluster the columns by sorting
them and stopping at a certain EMD threshold. The clusters from the EMD method
result in distribution clusters which represents major categories. For all these major
clusters, a complete graph is created where each edge denotes a positive or negative
relationship based on the intersection EMD. The complete graph is then used for
correlation clustering to ultimately find the clusters for each attribute. Each attribute
therefore contains columns which can be joined with each other.

2.2 Relatedness

Relatedness is a very broad term used in different domains where two activities re-
quire similar knowledge or input (Hidalgo et al., 2018). When we look at the related-
ness between two schemas in data integration applications, we can use the definition
described in the paper of Bogatu et. al. (Bogatu et al., 2020).

Definition: Relatedness can be defined as having values of some attributes from table S
being drawn from the same domain represented by some attribute in table T (Bogatu et al.,
2020)

Two schemas being related means that the attribute(s) drawn from one schema is
relevant for populating the other table. To illustrate the definition behind related-
ness, we will take a look at our running example in figure 2.1, where we see that the
Movie:MovieID and Actor:PlaysIn columns both contain the same instances and
are describing the same attribute. The two respective schemas are related with each
other as the actor schema can populate the movie schema with additional informa-
tion regarding actors for each respective movie.

Relatedness within schemas can be categorized into two fundamental categories ac-
cording to Koutras et al., 2021:

• Unionable

8 Chapter 2. Background

• Joinable

For the unionable case, relations store data of the same conceptual entity type using
the same attributes. In our example data in figure 2.1, we see two schemas which are
unionable: Movie and Action Movie. They describe the exact same conceptual entity
type and use the same attributes to store information of movies. The main difference
between the two schemas is that the attributes have different names. However, the
underlying entity is exactly the same, making the schemas perfectly unionable.

For the joinable case, two relations store complementary data of same conceptual
entity type. In our example data in figure 2.1, we have a joinable case with the
Movie and Actor schemas. The Actor schema has a field PlaysIn, which describes
the same attribute as the MovieID in the Movie schema. Combining both schemas
with a join operator will result in one big schema with information about the movie
and the respectful actor.

Schemas can have different degrees of relatedness, subject to how many of their
attributes are related to some target attribute. The degree of relatedness (similarity
score) is usually normalized and indicates the likeliness of the relationship (Do and
Rahm, 2002). The similarity score therefore is a real number value ranging from 0
(strong dissimilarity) to 1 (strong similarity), indicating the similarity and the plau-
sibility of their correspondence (Do and Rahm, 2002). These similarity scores are
determined by schema matching.

FIGURE 2.1: Example tables

2.3 Schema matching taxonomy

The relatedness between schemas, which is used to determine the relationship be-
tween the schemas, are determined through the schema matching component, which
is a critical component within data discovery in modern discovery tools (Madhavan,
Bernstein, and Rahm, 2001).

Definition: Schema matching is the task of finding semantic correspondences between
elements of two schemas (Li and Clifton, n.d.)

The schema matching component is therefore in charge of identifying two objects
that are semantically related and has the task of finding semantic correspondences

2.3. Schema matching taxonomy 9

between elements of two schemas (Do and Rahm, 2002). Schema matching used
to be a time-consuming, error-prone and tedious manual process, which becomes
increasingly impractical with the higher numbers of schemas as the effort required
is typically linear with the the number of schemas to be matched (Do, Melnik, and
Rahm, 2003; Berlin and Motro, 2002). Moreover, as modern systems become more
complex and integrate complex databases and applications, their schemas become
larger, increasing the number of matches to be performed. This problem leads to
research towards (semi-)automated schema matching, which reduces the amount of
effort and time spent on finding matches (Rahm and Bernstein, 2001).

Automated schema matching approaches all have their collection of match oper-
ations, which receives different types of data and outputs the mapping of the corre-
spondences between the elements (Do and Rahm, 2002). The mapping gives an in-
dication of which elements of the input schemas logically correspond to each other.
Match operations can vary from simple similarity measures, such as Jaccard Simi-
larity, to complex algorithms involving machine learning, each exploiting different
characteristics of the data. A vast majority of the proposed solutions for automated
schema matching exploit various types of schema information and characteristics of
data instances, e.g. element names or data types (Bergamaschi et al., 2001; Madha-
van, Bernstein, and Rahm, 2001; Milo and Zohar, 1998). A general-purpose auto-
mated schema matcher is generally viewed as infeasible, but there is a recognized
need for automated schema matchers (Blake, 2007). Studies focus therefore more on
specific cases, such as only finding matches for XML data, or finding matches on the
web data only (Blake, 2007).

The match operator of the schema matching component have two types of selection
criterion available according to Castro Fernandez et al., 2018:

• Property constraints: selects the relevant data sources based on the attributes or
properties of the schema (schema similarity).

• Relationship constraints: selects the relevant data based on relations between other
schemas with e.g. structure of the schemas (content similarity).

These two selection criterion allow for a classification of the two main classes in au-
tomated schema matching approaches (Koutras et al., 2021): Schema-based match-
ing and Instance-based matching. A taxonomy was created by Rahm and Bern-
stein, 2001 and later extended by Shvaiko and Euzenat, 2005. The extended tax-
onomy on schema matching, acknowledged by Bernstein, Madhavan, and Rahm,
2011, is shown in figure 2.2. The taxonomy will be further elaborated in the follow-
ing two sections, split in the two biggest classes in schema matching: schema-based
and instance-based matching.

2.3.1 Schema-based matching

Automated schema-based matching is a schema matching approach based on the
schema similarity mentioned in section 2.2. To detect relatedness between schemas
using schema-based matching methods, either element-level and/or structure-level
matching techniques can be applied (Shvaiko and Euzenat, 2005).

10 Chapter 2. Background

Element-level approaches

Element-level matching techniques solely analyzes entities on schema-level in iso-
lation, disregarding the relationships (Rahm and Bernstein, 2001). Element-level
matching approaches can further be divided into two main categories: Syntactic or
External.

Syntactic approaches characterizes themselves by interpreting the structure of the
input as following some algorithm. Syntactic approaches have three identified cate-
gories:

• String-based approaches exploit linguistic schema information, such as names
and descriptions to determine the relatedness (Hai, 2007). These approaches
assume that similar strings are more likely to denote the same concepts. Some
popular string-based approaches which are used in schema matching are: pre-
fix, suffix, edit distance and n-gram.

• Language-based approaches are based on natural language processing (NLP)
and exploit morphological properties of the schema. Strings are regarded as
words in some natural language. Some known language-based approaches
are: tokenization (Wang, Li, and Feng, 2014), lemmatization and elimination.

• Constraint-based approaches exploit information regarding internal constraints
being applied to the definition of the entities e.g. types of attributes, cardinal-
ity of attributes, ranges of instances and keys (Zhao and Ram, 2007). Known
constraint-based approaches compare data types and multiplicity.

External approaches are techniques which exploit auxiliary resources of a domain
and common knowledge to interpret the input. There are three main categories for
external approaches:

• Linguistic resources can be used to match words based on linguistic relation-
ships such as synonyms and hyponyms. There are two linguistic resources
currently identified: Common knowledge thesauri and Domain specific thesauri.

• Alignment reuse approaches exploit alignments of previous matched schemas.
The motivation lies within the intuition that schemas to be matched are simi-
lar to already matched schemas, especially if they are derived from the same
domain. Alignment reuse can be more effectively applied when the match
problem is decomposed into smaller sub-problems.

• Upper level formal ontologies are logic-based systems (semantic), allowing
the matcher exploit the ontologies based on analysis of interpretation. Some
resources of this approach are suggested upper merged ontology (SUMO) or de-
scriptive ontology for linguistic and cognitive engineering (DOLCE).

Structure-level approaches

Structure-level matching techniques use the structural information about the database
schemas to determine the relatedness between schemas (Bernstein, Madhavan, and
Rahm, 2011). Unlike element-level matching techniques, structure-level matching
techniques only have constraint-level information available (Alwan et al., 2017).
Structure-level approaches can, unlike element-level approaches, further be divided
into three main categories: Syntactic, External and Semantics.

2.3. Schema matching taxonomy 11

Syntactic approaches for structure-level information are based on graph techniques.
Schemas are transformed into graphs and tried to be matched based on structure, or
path relations to determine the relatedness (Nguyen et al., 2014; Madhavan, Bern-
stein, and Rahm, 2001). Some known syntactic approaches for structure-level infor-
mation are:

• Graph-based approaches determine the similarity by comparing the position
of the pair of nodes from the two schemas in the graph structure. The intuition
is that the two nodes from two schemas are likely similar if the neighbors are
similar. A known graph-based approaches is: graph matching. Similarity is
often computed using graph elements as children, leaves and relations.

• Taxonomy-based approaches are also graph algorithms only considering spe-
cialization relations. The intuition is that often relationships denoting ’(A) is a
(B)’ connects terms that are already similar, therefore the neighbours are also
likely similar. Some known taxonomy-based approaches are: bounded path
matching and super(sub)-concepts rules.

External approaches for structure-level information are similar to the element-level
information. The difference lies within the information provided by external sources.
Known external approaches for structure-level information is:

• Repository of structures is an external source which stores schemas and their
fragments with pairwise similarities between them. To be matched schemas
will have their structures compared with the known structures in the reposi-
tory to determine the similarity.

Semantic approaches use some formal semantics such as model-theoretic semantics
to interpret the input. There is only one category identified for semantic approaches
in structure-level information:

• Model-based algorithms handle input based on semantic interpretation. They
are well grounded deductive methods and some of the identified approaches
are: Propositional satisfiability (SAT) and DL-based techniques

2.3.2 Instance-based matching

Automated instance-based matching is schema matching based on content similar-
ity as mentioned in section 2.2. To detect relatedness in schemas using an instance-
based matching approach, one needs a correlation measure that can handle different
data types such as real-valued numerical, discrete numerical, and categorical since
the information stored in databases are of different formats (Nguyen et al., 2014).
Additionally, an instance-based matching method should have a similarity function
which can measure the similarity of two elements and determine whether they are
related or not (Mehdi, Ibrahim, and Affendey, 2012). The essence of instance-based
matching is quite simple: use instance data to determine the matches (Duan et al.,
2012).

Similar as in schema-based matching, instance-based matching also makes use of
element-level information, and therefore also has syntactic and external approaches
which are applicable (Alwan et al., 2017). The key difference between schema-
based is that the elements in schema-based matching does not include instance data,

12 Chapter 2. Background

whereas the elements in instance-based does include instance data. So if we look
at figure 2.1, we can for instance see that the identifiers of all the movies all adhere
to a specific format: starting with #MV. This information in the instance data can
therefore be used to determine similarities between columns through for example
string-based methods.

A typical approach for instance-based matching would be using pair-wise analy-
sis to detect relatedness between two columns; that is, comparing all pairs of data
instances between two columns (Zhu et al., 2019). The relatedness can be measured
through similarity metrics like Jaccard similarity or Cosine distance. However, as
databases keep on growing in time, the search space also increases exponentially,
resulting in unacceptable run time (Dong et al., 2020). Performing exhaustive pair-
wise analysis on all available schemas would therefore be infeasible due to the na-
ture of growing data. Additionally, majority of literature focuses on equi-joins for
pair-wise analysis, which does not capture the semantics or typographical errors of
instances (Dong et al., 2020). This leads to several studies on non-equi-joins, such as
string transformations (Zhu, He, and Chaudhuri, 2017), statistical correlation (He,
Ganjam, and Chu, 2015) or even approximation techniques to reduce the time com-
plexity (Dong et al., 2020).

FIGURE 2.2: An extended taxonomy of schema matching methods
described by Shvaiko and Euzenat, 2005. The taxonomy is divided
into two layers: Granularity/input interpretation and Kind of input layer.
Granularity/input interpretation layer shows what kind of informa-
tion is being used by the schema matching technique, whilst the kind

of input layer shows the types of possible inputs.

2.4. Combining matchers 13

2.4 Combining matchers

No single schema matching technique can effectively match schemas, whilst often a
combination of schema matching techniques produces more superior results, which
is acknowledged by researchers (Blake, 2007). The challenges of schema matching
revealed that it is clear that simple matchers or single matching algorithms that use
one matching technique or a few ones, will not achieve the good results that we wish,
as there is a wide variety and heterogeneity between real life schemas (Al-Ghanim,
Noah, and Sembok, 2011). Individual matchers are much faster in process but has
a disadvantage that it is only useful in certain cases (Sutanta et al., 2016). Using
multiple matchers to account for the shortcomings of each matcher often improves
the quality of the similarity score (Peukert, Maßmann, and König, 2010). Differ-
ent approaches can be used to combine the similarity scores of multiple matchers.
However, combining multiple matchers would result in either one of the two known
classes: hybrid matcher and composite matcher (Özsu and Valduriez, 1999).

Hybrid matchers combine multiple matchers within one algorithm. Elements from
two schemas can be compared using a number of matchers within one algorithm to
determine their overall similarity (Özsu and Valduriez, 1999). The advantage of us-
ing a hybrid matcher for combining matchers consists of the improved performance
due to the reduction of operations as bad matches can be filtered. The downside
however is that a hybrid matcher is typically a hard-wired combination of matching
techniques, making it less flexible for different datasets (Rahm and Bernstein, 2001).

Composite matchers apply each matcher to the two schemas individually and in
parallel, obtaining individual similarity scores, and then apply a method to combine
these similarity scores (Özsu and Valduriez, 1999). The advantage of using a com-
posite matcher, as opposed to the hybrid matcher, is its flexibility to construct new
matchers by reusing the results. However, composite approaches scale rather poorly
compared to hybrid methods as each individual matcher calculates similarity inde-
pendently.

Composite matchers consist of three main components which are listed below (Lee
et al., 2007):

• Matcher is a component which assign column-pairs similarity scores between
0 and 1 based on the above mentioned methods in section 2.3.

• Combiner (aggregator) is a component which merges multiple similarity scores
into a single one.

• Match Selector is a component which determines which of the column-pairs
to select as a match.

2.4.1 Matcher selection

Selecting matchers for a composite approach is a known problem within schema
matching (Lee et al., 2007). Combining matchers and using their knowledge to im-
prove data discovery requires a rational selection of matchers. Individual matchers
may be imprecise, but their combination can effectively improve the quality of the
matches (Do and Rahm, 2002). The ability to analyze schema elements under differ-
ent aspects results in more stable and accurate similarity for heterogeneous schemas

14 Chapter 2. Background

(Embley, Xu, and Ding, 2004, Duchateau et al., 2009).

To identify different aspects of schema elements, the taxonomy described in section
2.3, shows a detailed description of available type of information. The taxonomy in
figure 2.2 shows that three kinds of input types can be considered as input: Termi-
nological, Structural, and Semantic. All these types of input are categorized either as
element-level or structure-level information, which can be further divided into Syn-
thetic, External, and Semantic information. Therefore, to cover all different aspects of
the available information, different types of information should be used accordingly
to the different granularity of the available information.

Research regarding data discovery methods typically implement their own matcher,
by either combining or customizing existing methods (Koutras et al., 2021). Due
to the lack of availability of schema matching methods in current research, the ma-
jority of the methods do not take advantage of the schema matching methods in
current literature (Rahm and Bernstein, 2001; Do, Melnik, and Rahm, 2003). The
reproducibility of modern schema matching methods are also very low due to the
vague descriptions or required settings for parameters. Recent work from Koutras
et al., 2021 implemented a selection of the state-of-the-art machines and made it
accessible for public use. These include: Coma, Coma++, Cupid, Similarity Flooding,
Distribution-based, SemProp and EmbDI.

2.4.2 Aggregation Strategies

Each composite matcher requires an aggregation strategy (combiner) to combine dif-
ferent matchers with each other (Do and Rahm, 2002). Matchers produce mappings
of correspondences between the elements and the similarity score for those corre-
spondences. Popular and intuitive strategies to aggregate the similarity scores of in-
dividual matchers are MIN, MAX, AVERAGE and WEIGHTED (Peukert, Maßmann,
and König, 2010).

• MIN aggregator always chooses the minimum value of the given set of simi-
larity scores computed by the individual matchers. The approach is very pes-
simistic as it requires all matchers to return high scores in order to have a good
score.

• MAX aggregator always chooses the maximum value of the given set of sim-
ilarity scores computed by the individual matchers. As opposed to the MIN
aggregator, the MAX aggregator is quite optimistic since it only requires one
matcher to give a high score

• AVERAGE aggregator computes the average score of the given set of similar-
ity scores computed by the individual matchers. The AVERAGE aggregator
assumes that the importance of each individual matcher is equal.

• WEIGHTED aggregator computes the weighted average score of the given set
of similarity scores computed by the individual matchers. The WEIGHTED ag-
gregator assumes that the importance of each individual matcher is not equal
and therefore requires relative weights which should correspond to the ex-
pected importance of the individual matcher.

Over the years, more aggregation strategies has been developed such as SIGMOID,
HADAPT, OWA and NONLINEAR, but they are all based on weights (Elshwemy

2.5. Related work 15

et al., 2014). For example, SIGMOID attempts to prepare matcher results by increas-
ing high similarity values and decreasing low similarity values before computing
the weighted sum, introducing more parameters to tune (Peukert, Maßmann, and
König, 2010). In the research of Peukert, Maßmann, and König, 2010, it was shown
that among the above mentioned aggregation strategies (excluding WEIGHTED),
the AVERAGE and NONLINEAR strategy performed the best, of which the AV-
ERAGE aggregator was more stable (also according to Do and Rahm, 2002). Stud-
ies excluded the evaluation of the WEIGHTED aggregator due to the need to set
the weights manually (Peukert, Maßmann, and König, 2010; Do and Rahm, 2002).
However, the studies also showed that the WEIGHTED approach had more poten-
tial compared to the AVERAGE approach due to its flexibility and essentially being
capable of performing the same as the AVERAGE aggregator.

2.5 Related work

2.5.1 LSD (2001)

LSD is a composite approach based on machine learning predictors for XML data
(Doan, Domingos, and Halevy, 2001). It consists of four major components: base
learners, meta-learner, prediction converter and constraint handler. LSD operates in two
main phases, a training phase and a matching phase.

The training phase is used to extract some information from each source and train
the base learners by user labelled data. A base learner uses extracted information to
learn the similarity based on the type of base learner. A selection of base learners
should be made where different aspects of the available schema elements is taken
advantage of. Before using the base learners, the user will be asked to specify map-
pings of the given sources. After these mappings are made, LSD extracts data in-
stances from the sources and manufactures training data based on the given map-
pings. Each base learner needs training data in different aspects, therefore needing
different features respectfully. The last step in the training phase is to train the meta-
learner, which is in charge of combining the predictions of the base learners. The
meta-learner learns the weights of each base learner by its predictions of the train-
ing examples.

The matching phase uses the trained learners to match schemas. This consists of
three steps: extracting data from source, application of base learners and meta-
learner, and compute mapping by the constraint handler. The matching phases starts
off by extracting (instance) data from the source. Afterwards, the base learners will
try to predict the similarity and use the meta-learner to combine the predictions by
using the weighted sum approach. This process is repeated for each instance of the
same type and the combined predictions of each instance will be combined into one
single prediction by the prediction converter. After these predictions are made, the
constraint handler uses domain constraints to reduce the amount of false predictions
by filtering the predictions based on semantic regularities. These can be hard con-
straints (can not be violated) or soft constraints (minimized violation). At last, the
constraint handler outputs the mappings of the matches.

16 Chapter 2. Background

2.5.2 Cupid (2001)

Cupid is a hybrid schema-based general-purpose schema matching strategy (Mad-
havan, Bernstein, and Rahm, 2001). Schemas are represented as schema trees where
the nodes represent schema elements. The similarity value is calculated using two
phases, linguistic matching phase and structuring matching phase.

The linguistic matching phase matches individual schema elements based on their
names, data types, domains, etc. This is done by using a thesaurus to help match
names by identifying short-forms, acronyms and synonyms. It involves three steps:
normalization, categorization and comparison:

1. Normalization makes the elements comparable by using means as tokeniza-
tion or expansion.

2. Categorization then makes groups based on concept tagging, data types and
container to reduce the amount of needed comparisons by only comparing
compatible categories. Categories are deemed as compatible when their name
similarity does not exceed some given threshold.

3. The comparison step then compares the elements of the compatible categories
based on name similarity as well. This results in a linguistic similarity values
between elements used to determine the final linguistic similarity value.

The structural matching phase is based on the similarity of their context. It looks
into the tree structure of the schema and uses part of linguistic matches to calculate
the similarity between columns. The approach is based on the TreeMatch algorithm
which determines similarity based on three intuitions:

1. Leaves of two trees are similar if they are individually similar and if their par-
ents are similar

2. Two non-leaf elements are similar when they are linguistically similar and their
subtrees are similar

3. Two non-leaf schema elements are structurally similar if their leaves are highly
similar

The similarity between leaves are initialised based on their data types to a similar-
ity value between 0 and 0.5. Setting the maximum to 0.5 allows for later increases
when more of the intuitions is satisfied. This is done by using a bottom-up approach
and the similarities are adjusted based on thresholds. When the similarity of the
comparison is below a threshold Thlow, the structural similarity value will decrease.
When the similarity is over a predetermined threshold Thhigh, the structural similar-
ity value will increase. Going over the entire tree will result in a final structural sim-
ilarity. In order to combine both the linguistic and structural similarity, a weighted
sum is calculated resulting in the final score.

2.5.3 Coma (2002)

Coma is a generic composite schema matching approach allowing the user to com-
bine multiple matchers in a flexible way (Do and Rahm, 2002). Coma takes input
schemas and converts them into a directed acyclic graph where schema elements
are graph nodes connected by directed links of different types. Once the schemas are

2.5. Related work 17

imported and processed, the match process takes place in one or multiple iterations,
depending on the mode that the user had chosen (automatic or interactive). For our
case, the automatic mode is chosen as we use several matchers to find meaningful
relationships, which already takes quite some time. Each match iteration consists of
three phases:

1. An (optional) user feedback phase

2. The execution of different matchers

3. The combination of individual match results

The first phase allows the user to determine the match strategy. This includes choos-
ing the different matchers and the strategy to combine the similarity values. In au-
tomatic mode, the settings are pre-determined.

The second phase is the execution of the chosen matchers. The matchers are all ex-
ecuted in parallel and the similarity values of each matcher are stored in a so-called
similarity cube. This cube is a k x m x n cube where k is the number of chosen match-
ers, m is the schema elements of the first schema and n is the schema elements of the
second schema.

The third and final step is the combination of the similarity values in the similar-
ity cube. This is done by aggregation of the similarity values for every element pair.
Coma knows different aggregation techniques as: Max, Weighted, Average and Min.
These simple aggregation methods are included in the evaluation of Coma, whereas
the Weighted strategy was excluded since they do not want to assume the impor-
tance of each individual matcher.

2.5.4 Embley et al (2002)

The work of Embley, Jackman, and Xu, 2002 is a composite approach which com-
bines three matchers by averaging the similarity scores. The three matchers all target
different information as we have a terminological matcher (e.g. synonyms, word
senses and hypernym grouping), data-value matcher (e.g. average values, vari-
ances and string lengths) and target-specific matcher (e.g. regular expression). Each
matcher calculates a similarity value between source and target schemas and will
be combined into a combined similarity score, which is the average. The averaged
score will be refined using structural tests and calculated the product of the chosen
structural features for the final scores (e.g. importance feature, distance feature). The
path is chosen with the highest scores for each adjacent object and averaged, which
represents the correlation score between two schemas. The approach obtained a re-
call and precision scores of 90% and above.

2.5.5 MKB (2003)

Mapping Knowledge Base (MKB) is an extension of the LSD system where the pre-
vious matching tasks are not limited to a single mediated schema but can be used
for any pair of schemas (Madhavan et al., 2003). The MKB system is a compos-
ite approach which includes five base learners: name learner (exploit names of ele-
ments), description learner (exploit available text descriptions), instance learner (ex-
ploit data instances), data type learner (exploit data types), and structure learner
(identifies elements which frequently co-occur with an element). Similar to the LSD

18 Chapter 2. Background

system, MKB also adopts a meta learner for learning the relevance of each base
learner. However, as opposed to the LSD system which adopts a linear combina-
tion for combining the learners, MKB adopts the sigmoid or logistic function for
more flexibility in choosing base learners. The experiments show that combining
the learners with the meta-learner and applying the MKB shows potential as it im-
proves the recall compared to the baseline.

2.5.6 Harmony (2006)

The system behind Harmony is also a composite approach which combines linguis-
tic matchers by iteratively updating the weights of the matchers by user feedback
or performance (Mork et al., 2006). Harmony processes the schemas linguistically
to conventional schema matching techniques and use different linguistic matchers
to determine similarity. These matchers include: bag of words (for names), bag
of words (with thesaurus expansion), edit distance (for names), acronym matcher.
Each matcher gives a confidence score in the range of [-1, +1], rather than the tra-
ditional range of [0, 1] where -1 denotes no correspondence and +1 denotes definite
correspondence. The individual matcher scores are combined by weighting the con-
fidence of each matcher by their score and the total performance of each matcher (in
an iterative way). The implemented Harmony GUI is an user interface which filter
the confidence scores by either setting a threshold, categorizing the links as human-
generated or machine-suggested, or only display confidence scores of +1 supporting
the user to iteratively mark the matches and adjust the weights.

2.5.7 YAM (2009)

Combining similarity values of different schema matchers resulted in different re-
sults to a given schema matching scenario. YAM is another composite approach
which tries to learn a matcher (dedicated matcher) over a large set of matchers
and similarity measures to determine the weights of the matchers (Duchateau et al.,
2009). The dedicated matcher is trained over a small training set by selecting simi-
larity measures for maximum correctly classified correspondences. Then afterwards,
similarity measures which solve harder cases are involved . The dedicated matcher
selects the matchers by the accuracy of the matchers on the test data (f-measure).
YAM very much depends on the diversity of the selected matchers. Compared
to COMA++ and Similarity Flooding (two high-performing traditional matchers),
learning a matcher performed better when trained on relevant matching scenarios.

2.5.8 Data tamer (2013)

Data tamer is a data curation system which includes a composite schema integra-
tion approach to determine similarity between schemas available from online sites
(Stonebraker et al., 2013). The main goal of data tamer is to group sites which de-
scribe the same entity type. The data tamer system consists of four matchers: fuzzy
string comparisons, tokenization, minimum description length, and Welch’s t-test.
The amount of matchers can be extended through API’s but are not included in the
system. Each individual matcher computes a similarity score in the range of [0, 1],
and will be aggregated using weights. The system allows for crowd-sourcing the
training data for each matcher and human interaction in the sub-processes which
are deemed effective for enterprises for scaling.

2.6. Conclusion 19

2.6 Conclusion

Data discovery is an inevitable process for modern enterprises. Tasks surround-
ing data discovery are: searching for joinable tables, augmenting tables with extra
entries/attributes, and finding similar tables. To address these tasks, schema match-
ing, the dedicated component for data discovery, has been developed. Over the
years, different schema matching techniques were developed resulting in several
sub-classes of schema matching approaches exploiting different parts of (schema)
information. Rather than using one schema matching approach, combining multi-
ple schema matching approaches is the way to go as it exploits more parts of the
schemas and compensates for an individual matcher’s shortcoming. There are two
identified types of combination approaches: hybrid or composite matchers. Hybrid
matchers are better for performance, whilst composite matchers are more flexible.
Both should include a wide range of matchers exploiting different parts of available
information to obtain better results, which is a challenge on its own. A disadvantage
of hybrid approaches is that they are hardwired and therefore less robust for differ-
ent scenario’s. The disadvantage of composite approaches is that the performance
is scaling poorly. Composite approaches need an additional aggregation strategy
to combine the scores of individual matchers. Amongst different researched aggre-
gation strategies, the weighted average is the most promising aggregation method
according to several studies. Different work shows that going for a composite ap-
proach should include matchers exploiting different parts of schema information
and should aggregate the matchers using weights to indicate the importance.

21

Chapter 3

Methodology

3.1 Approach overview

For our methodology, we will make use of a composite approach (described in sec-
tion 2.4) for combining different matchers. Going for a composite approach allows
us to flexibly add more matchers and analyze the contribution of each matcher to-
wards the final similarity score. We therefore adopt the same strategy as Coma (Do
and Rahm, 2002): run a chosen set of matchers and store them for (re)usage. Combi-
nation techniques in research for combining multiple matchers do not have analysis
on the weighted approach, which is supposedly the best performing aggregation
strategy (Tu and Yu, 2005).

We therefore extend the aggregation approach (weighted) by empirically proposing
different techniques for determining the importance of each matcher. We conduct
an exploratory research in search for positive results for a generic way of combin-
ing matchers. We explored different techniques trying to achieve better predictive
results compared to the individual matchers. Additionally, we implement the MAX
aggregator which allows us to compare it to the aggregation method which has been
evaluated. For each method, the preliminary results does not show improvements,
which led us to explore different methods.

Our methods primarily rely on the weights of the matchers indicating the impor-
tance of each matcher. Therefore the way we reduce the weights is a very impor-
tant matter for each method. Additionally, we only focus on CSV formatted data
for simplicity sake as we want to observe the aggregation approach without added
complexity. Aside from the weights and data format restrictions, our approach
also makes use of agglomerative hierarchical clustering to cluster related columns
together. Clustering allows us to find related columns through witness columns
(Zhang et al., 2011). E.g. Columns A, B and C are related, all have high similarity
scores except for the column-pair (A, C), which has a similarity score of 0. Through
clustering, we allow column B to be an intermediary column to cluster all columns
A, B and C together into one cluster due to the high similarities. The output of our
methods would be a set of clusters of where each cluster has columns which are
inter-joinable with each other (related). We use clustering by setting the distances
between columns equal to 1− scoreweighted, which sets the distance between highly
similar columns closer to 0 and highly dissimilar columns closer to 1. The distances
between columns will always be in the range of 0 and 1, as all the weighted scores
are already normalized.

22 Chapter 3. Methodology

3.2 Methods

As our methodology tries to find observe the aggregation approach, we have made
a selection of matchers for each approach (shown in table 3.1). The selection these
matchers are based on the credibility of its publication and the type of information
they use to match schemas. The chosen 5 matchers all explore different aspects of
available data such as distribution, attribute overlap, value overlap, data type, and
semantic overlap (Koutras et al., 2021) and have relative acceptable run time.

Coma Coma++ Cupid Distribution based Similarity flooding

Multiplicative weight update x - x x x
Reinforcement learning x x x x x

Linear programming x x x x x
Machine learning x x x x x

TABLE 3.1: Selected matcher for each method

3.2.1 Multiplicative weight update method

The multiplicative weight update method is our firstly implemented method. For
this method, we made the assumption that the similarity values ranging from [0, 1]
actually depicts the likeliness of the columns being related as described by Do and
Rahm, 2002. Therefore, we only included similarity scores of > 0.5 as those scores
lean more towards 1, meaning that it is more likely to be related than unrelated. This
is what we would like to call the cutoff threshold of 0.5. Similarity scores of < 0.5
are all rewritten as 0. The formula below shows the nature of the cutoff threshold
for a similarity score x:

Cuto f f (x) =

{
x if x ≥ 0.5
0, otherwise

Determining the weights

When we run all the (chosen) n matchers in parallel, we will obtain n similarity
scores for each column-pair across the available datasets. With the cutoff threshold
of 0.5 introduced above, the scores given to each column-pair must be either 0 or in
the range of [0.5, 1].

To determine the weights for each matcher, we use the multiplicative weight up-
date method, more specifically: the weighted majority algorithm (Arora, Hazan,
and Kale, 2012). This method is designed for determining the weights of experts
in decision making, but can also be used for our use case. The algorithm works in
a form of reinforcement learning, where the essence is to punish experts who are
wrong about the predictions and decrease their weights based on a learning rate.
The pseudo-code of the algorithm is depicted in algorithm 1.

3.2. Methods 23

Algorithm 1 Multiplicative weight update method for n matchers and m column-
pairs

Inputs:
W = {w0, w1, ...wn}
T = {t0, t1, tm}

Initialize:
wi ← 1, i = 0, . . . , n
ϵ← 0.05 ▷ Learning Rate

for t ∈ T do
for i = 0, 1, ..., n do

similarity← similarity score given by expert i for column-pair t

if t is a related pair & similarity = 0 then
wi ← MAX(wi · (1− ϵ), 0.0)

else if t is an unrelated pair & similarity ̸= 0 then
wi ← MAX(wi · (1− ϵ · (−similarity), 0.0)

end if
end for

end for

3.2.2 Reinforcement learning

For this method, we took information from the preliminary experiments of the mul-
tiplicative weight update method and tried to improve the overall method through
the observations. The identified observations are:

• OB1: All matchers have different similarity score distribution

• OB2: Majority of the matchers are schema-dominant, potentially leading to bias for
schema information

• OB3: Matchers who has assigned a lot of scores ≥ 0.5 lead to weights close to 0

• OB4: Multiplicative weight update method only considers individual performance for
the matchers

From observation OB1 we find that the cutoff threshold of 0.5 is not reasonable as a
0.5 could have a very different meaning for matcher X compared to matcher Y. This
leads to the end of using cutoff thresholds.

Observation OB2 shows that we use more schema-related information compared
to the instance-related information. We therefore introduce the matcher: coma++,
which has the same essentials as coma, but includes support for instance-based
matchers (Engmann and Maßmann, 2007).

Observation OB3 and OB4 are targeted at the derivation of the weights for the
matchers. The nature of the multiplicative weight update method is to only pun-
ish the wrong predictions of the matchers and award no rewards for correct predic-
tions. Additionally, the punishment is only considering the individual performance
of each matcher. As the final similarity score is aggregated through the weighted
approach, there should be a collaborative correlation between the matchers, which
is excluded from the derivation of the weights.

24 Chapter 3. Methodology

Determining the weights

In order to learn the weights collaboratively, we need to look more into group de-
cision making. In group decision making approaches, a classifiction can be made
(Koksalmis and Kabak, 2019). The two main classes within group decision mak-
ing approaches are: process-oriented or content-oriented approaches. As our reinforce-
ment learning approach is based on the content of the matchers, we dive deeper into
content-oriented approaches.

Content-oriented approaches can also can be divided into four main classes: Similarity-
based, Index-based, Clustering-based and Integrated. The most suitable class for our
use case is a tweaked version of similarity-based approaches. Similarily-based ap-
proaches determine the weights based on how similar the decision makers are com-
pared to either each other or the solution.

In our case, we do not want to compare it to the aggregated score, but to the truth.
Which means that if there is a relation of which we know that it belongs together, we
know that the best similarity score for that given relation would be 1 and for a rela-
tion which does not belong there, a similarity score of 0. Knowing this, we design
our reinforcement learning approach for determining the weights of the matchers
by comparing the contribution of the matcher.

To calculate the contribution of each matcher for the aggregated similarity score
of a column-pair, we seek to determine what effect the matcher had on the aggre-
gated similarity score and whether it pushes the aggregated similarity score to the
truth when included. The contribution of each matcher can be determined with the
following equation where S denotes the set of experts and i the expert whose contri-
bution we are calculating for a given column-pair:

Contribution(S, i) = Weighted_Average(S)−Weighted_Average(S− {i})

Note that the contribution can either be a negative or positive number. Whether a
positive number is desired, depends on the truth of the column-pair. When the truth
is that the given column-pair is a related pair, a positive contribution depicts that
the given matcher contributes positively to the aggregated similarity score. When
the truth of the given column-pair is an unrelated pair, a negative contribution is
desired. We adjust the weights of each matcher depending on its degree of contri-
bution to the score moving towards the truth with the following equation where the
truth is either 1 (denoting a related pair) or -1 (denoting an unrelated pair) and ϵ
denoting the learning rate:

New_Weight(i) = Weight(i) + ((truth) · (Contribution(S, i) · ϵ))

By adjusting the weights every time a new column-pair gets labelled by the user, we
reward the matchers who help to increase the aggregated similarity score for related
pairs and punish the matchers who do not decrease the aggregated similarity score
for unrelated pairs.

3.2.3 Linear programming

Based on the preliminary experiments for the reinforcement learning approach, we
identified the following observations:

3.2. Methods 25

• OB5: Reinforcement learning approach does not learn the weights near optimal

• OB6: Mismatched similarity score distributions of different matchers potentially cause
extra difficulty for maintaining higher scores for related column-pairs

From observation OB5 we find that dynamically updating the weights of the match-
ers through our reinforcement learning approach does not result in optimal weights.
Therefore, we will view the weight problem as a mathematical problem and solve it
mathematically using linear programming.

Observation OB6 show potential difficulty introduced due to the mismatching sim-
ilarity score distributions. The mismatching could potentially cause extra difficulty
as matchers who give lower scores in general will have difficulty keeping the aggre-
gated similarity score up. We therefore introduce to normalize all the scores with
the given similarity scores we have, to attempt to match the distributions of other
matchers.

We will have two versions to experiment on. The first version will be called Lin-
ear Programming, where we try to optimize the weights using linear programming
and exclude the normalization. The second version will be called Normalized Linear
Programming, which includes the normalization of the similarity scores. This allows
us to show the effects of normalizing the similarity scores.

Determining the weights

Linear programming is a method which tries to achieve the best outcome for the ob-
jective function in a mathematical model whose requirements are represented by lin-
ear relationships. In order to use linear programming in our methodology we need
to determine what the objective functions are and what the mathematical model
would be.

We are trying to optimize the aggregated similarity score by adjusting the weights
of the matchers. The variables which linear programming tries to optimize would
therefore be the weights of the matchers.

The objective function would either be to maximize the scores of the related column-
pairs or minimize the scores of the unrelated column-pairs. As we use clustering to
find the relationships, maximizing the related column-pairs would suit the most as
the higher scores are clustered first. Hence, we use maximization for our objective
function and try to keep the scores of unrelated column-pairs below a certain thresh-
old.

The objective function for our problem can be defined as shown below where w de-
notes the list of weights, wi denotes the weight of matcher i, and Si denotes the sum
of all similarity scores provided by matcher i for all the (known) related column-
pairs:

Maximize ∑|w|i=0 wi · Si

The mathematical model we adopt for our methodology will contain the following
variable: the weights of the matchers wi. As mentioned before, these weights can be

26 Chapter 3. Methodology

any real number between 0 and 1. Hence we can write the constraint of the weight
variable for each matcher i:

wi ∈ R

We also need to have a constraint for the variables as they have to be bounded. Since
we use the weighted aggregation method for the calculation of the final similarity
score, we can bound the sum of the weights to 1, resulting in the following con-
straint, where w is the list of weights:

∑|w|i=0 wi = 1

As we have included the related column-pairs into the objective function, we need
to include the unrelated column-pairs as constraints to the mathematical model. To
incorporate this, we define for each unrelated column-pair j a constraint, where score
is a list of scores for unrelated column-pair j:

∑|w|i=0 wi · scorei < t

The value t is the threshold, which should be as low as possible in order for the scores
of the false matches to be minimized, however, this would directly influence the best
score for the true matches. Therefore, it is recommended to try to set the threshold
in a small range of the lowest possible value and find what is most appropriate. A
very high value, would just result in giving all matchers a weight of 0 except for one,
which has a weight of 1.

3.2.4 Machine learning

Based on the preliminary experiments for all the previously mentioned approaches,
we made the following observation:

• OB7: Plain weights are unable to acquire good representative aggregated similarity
scores for both related and unrelated column-pairs

From observation OB7 we determined that the relation between the weights and the
good scores are probably much more complex than anticipated. This makes learning
the weights also very complicated and therefore worthy to explore the possibility of
using machine learning techniques to learn whether the column-pair is related or
not.

Machine learning model

Exploring the potential in the world of machine learning for combining multiple
matchers could be done through a simple regression model, rather than a compli-
cated neural network model. Neural network models are hard to explain due to the
black box nature, whilst regression models are more explainable (Burkart and Huber,
2021). For classification, Support Vector Machine (SVM) has been a very powerful
tool for solving binary classification (Cervantes et al., 2020).

SVM is well known for its ability to learn well with only a very small number of
features, its robustness against the error of models, and its computational efficiency
compared to other machine learning methods such as neural networks (Gholami
and Fakhari, 2017).

3.2. Methods 27

For our SVM model, we use the similarity scores of each matcher as features. If
we have n matchers, then we will have n features, where the values of those features
are the achieved similarity scores for the respective matcher. Our SVM model will
try to classify the column-pair as related or unrelated based on the similarity scores
of the matchers (features). We use the radial basis function kernel, kept the C value
neutral at 1 and used the scaling gamma value mentioned in the documentation of
sklearn1.

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

29

Chapter 4

User Interface

To ease the user experience of using our methodology and obtain valuable insights,
an user interface is implemented1. This section describes the user interface in more
detail and its usage.

4.1 Configuration

Our methodology consists of quite a few configuration points, including the se-
lection of matchers, the cutoff threshold (mentioned in chapter 3.2.1), the selected
method and the data space. To easily allow users to adjust the different configura-
tions such that it is easier to experiment with different settings, we implemented an
user interface which allows the user to set the configurations in a 4-step form. After
setting the configurations, we will perform all the steps for retrieving the similarity
scores with the chosen settings. The user interfaces are shown in appendix A.

The first step is to allow the user to select the matchers which are included in the
methodology. The user interface consists of a list of switches, which allows the
user to either include or exclude the prompted matchers based on whether they are
switched on.

The second step is to allow the user to select the cutoff threshold. The form prompts
a slider allowing the user to set the threshold between [0, 1].

The third step is to allow the user to select the method to determine the weights.
These are the methods described in chapter 3. The methods are depicted as radio
buttons, allowing the user to only choose one method.

The fourth step is to let the user choose the data space which the methodology will
be ran on. These data spaces are the directories in the tables folder within the project.

After setting these configurations, we run the matchers individually on the given
dataset and store those similarity scores. After this process, the user can still change
the cutoff threshold and the method described in chapter 3 through our user inter-
face, shown in appendix A figure A.5.

4.2 Labelling

All our methods are based on labelled relationships between the schemas. To make
it easier for the user to label the relationships, we provide an user interface where

1https://github.com/wanghaojiang1/thesis

30 Chapter 4. User Interface

we allow the users to create ground truth clusters. Since the ground truth is the
minority class, we can simply label all the column-pairs once we know the ground
truth. These clusters are regarded as the only true relationships and therefore be
labelled as positive relationship. The rest of the data will be regarded as negative
relationships. The user can therefore label all the relationships by only labelling the
ground truth, reducing the time needed to label all column-pairs manually (minority
group). The user interface for this functionality is shown in appendix B.

4.3 Evaluation

To ease the evaluation of our method, we implemented an user interface which
shows the clusters (appendix C figure C.1), allows the user to tweak the threshold,
provide the user a dendrogram and show the metric scores of the given threshold
(shown in appendix C figure C.2). Allowing the user to review the clusters enables
them to see and experience the effectiveness of the approach. Showing the corre-
sponding dendrogram gives the user insight on what gets clustered first and which
threshold is needed. Therefore, by allowing the user to change the threshold, the
user can tweak the clusters to a certain extend and observe which threshold leads
to the best accuracy. Additionally a page with all the metric scores of the formed
clusters are saved in a data table (appendix C figure C.3).

31

Chapter 5

Experiments

This section presents the experimental evaluation of our proposed approaches. The
experiments will revolve around the comparison between the individual matchers
and the different methods which we mentioned in chapter 3.

Our goal is to evaluate the robustness and effects of our proposed methods on dif-
ferent datasets and make them comparable with each other. To evaluate the robust-
ness, we conduct experiments on five different datasets, whereas two datasets are
fabricated using a fabrication tool. To compare the effects of our proposed methods
revolving around the weighted aggregation method, we implement a basic MAX ag-
gregation method to show the improvements. And in order to achieve our goal, we
designed metrics and use them to make the results of the experiments comparable
(described in section 5.2).

5.1 Data

Evaluating the methodology requires a sufficient amount of labelled data. In order
to evaluate our methodology properly, open-source datasets are used and used to
fabricate new datasets. The positives of fabricating the data is that we can simulate
joinable/unionable schemas and we know the ground truth. The negatives of fabri-
cating the data is that it does not represent a real-life situation. In our experiment, we
will be using TPC-H, IMDb and ING dataset to evaluate our methods. Additionally,
we will have two fabricated datasets which originates from the TPC-H and IMDb
datasets respectively. We will use the TPC-H, IMDb and their fabricated version to
evaluate our methodology and report findings. We will then use the ING dataset to
confirm the findings and effect of our methodology on real-life data.

Fabricating data can create interesting situations which tries to depict a more com-
plex dataset. By splitting a base tables, the data can lead to several different cases.
Fabricating data allows splitting the table horizontally and vertically. Splitting a ta-
ble horizontally means that we keep the columns as it is, but split the rows into two
separate tables where the rows can still have some overlap. This creates a unionable
situation. Vertically splitting creates two tables where the rows are kept, but the
columns are split into two tables which has at least one column in common, which
serves as the primary key. This creates a joinable situation. The two types of split-
ting can used interchangeably. Additionally, noise can be introduced in the data in-
stances and/or column names to introduce extra complexity. This allows for a more
representative dataset for real life scenarios as identical names for every instance or
column name is only present in an ideal world.

32 Chapter 5. Experiments

5.1.1 TPC-H

TPC-H1 is a benchmark tool used for decision support. The data model of TPC-H
simulates an industry which must sell, or distribute a product worldwide. We used
TPC-H version 3.0.0 with a scale factor of 1. Although TPC-DI is more suitable for
data integration tools, we chose for TPC-H over TPC-DI since we need to know the
relationships between different tables beforehand. Running our methodology over
the eight tables from TPC-H, resulted in some insight over how well our method can
find relationships for simple and small sets of columns.

Fabricated TPC-H

The fabricated TPC-H dataset (sixteen tables) is created by splitting all the TPC-H
(eight) tables horizontally and vertically. Each split table contains noise in approx-
imately 30% of the rows. The two split tables (T1 and T2) have approximately an
overlap of 50% in the rows, meaning that there is enough evidence for a correlation.
Additionally, the column overlap vary between one or three columns and all the col-
umn names contain noise. The column names of T1 are unaltered whilst the column
names of T2 contains the noise. After splitting the tables, thirteen relationships are
forged due to column overlap. When we combine these forged relationships with
the actual relationships, we get a total amount of 37 relationships which our method
needs to find.

5.1.2 IMDb

IMDb2 is an online Internet Movie Database which contains information related to
movies, television series, home videos, video games and streaming content online. It
is a open database which differs each day as data keeps growing over time. The used
dataset of IMDb is downloaded at 11th of May in 2022. as the database is humon-
gous in terms of rows, it has been decided to trim the data as our used computer
for evaluation is incapable of handling such big amount of data. In order to keep
the foreign key references, the data will first be ordered based on the keys and then
trimmed down to having 100.000 instances per table at max. The available tables
of the IMDb dataset have two kinds of keys: tconst and nconst, where tconst de-
notes the key of the movie and nconst denotes the keys of individuals (writers and
directors etc.).

Fabricated IMDb

The fabricated IMDb dataset (fourteen tables) is created by splitting all the IMDb
(seven) tables. The amount of instances are too big. Therefore, all the tables has
been trimmed to 100.000 instances before the fabrication process. Each IMDb table
is split horizontally and vertically into two seperate tables contain a row overlap of
80%. Additionally, similar as the fabricated TPC-H, the columns contain noise. No
row noise is introduced in the fabrication of the tables. These fabrication settings
are drawn from the preliminary results from experiments on the fabricated TPC-H
dataset.

1https://www.tpc.org/tpch/default5.asp
2https://www.imdb.com/interfaces/

5.2. Metrics 33

5.1.3 ING

The ING3 dataset is an actual dataset used for their discovery application, UCMDB
TADMM. The dataset consists of 2045 tables of which the majority are skeleton ta-
bles, consisting of no instance data. Due to the database being stored on a virtual
machine, extracting those data requires a file transfer service for security reasons.
The file transfer service is limited to 3GB files, whereas transferring files over the
limit results in failed transfers. Therefore, a selection of the tables has been made. In
the selection, all foreign keys are preserved and some skeleton tables are added as
well, since excluding those would result in explicitly removing potential false posi-
tive column-pairs. In total there will be 23 tables with varying amount of columns
and instances. The total column-pair combinations across the columns of the tables
results in a total of 46713 column-pairs.

5.2 Metrics

To evaluate the methodology on how good it finds relationships, we need metrics to
be able to compare the results. The common evaluation metrics used in data discov-
ery, is adopted from information retrieval, namely: precision, recall, and f-measure
(Bellahsene et al., 2011). Precision reflects the share of real correspondences among
all found ones, whilst recall specifies the share of real correspondences that is found
(Do, Melnik, and Rahm, 2003). Solely using precision or recall can not accurately
evaluate the methodology as both can easily be maximized at the expense of the
other metric. This calls for a combined measure, which is the f-measure where both
precision and recall are equally as important (Do, Melnik, and Rahm, 2003).

Our methodology produces clusters where each cluster consists of columns, which
represents an attribute. Therefore, we can calculate two kinds of metrics: one to
measure the quality of the clusters and one for the relations (in a traditional fashion).
We also introduce Valentine metrics to evaluate the score quality of the aggregated
similarity score (without clustering) to cover the entirety of the methodology.

5.2.1 Cluster Metrics

The metrics with clusters work a little different compared to the traditional metrics.
Whereas traditionally, each entry represents a single entry, with our methodology,
each entry represents a cluster which consists of multiple columns. Hence, to deter-
mine the metrics accurately, we adopt the same strategy as Zhang et al., 2011 to fit
our use case more. The metrics that we will use consists of two parts, one for the en-
tire list of clusters A and one for the individual cluster Ai. Only clusters with more
than one element is considered an attribute which should be included in the calcula-
tions. Singular clusters (clusters with 1 column) can lead to deceptive results as the
majority of the columns are probably singulars. The metrics used to determine the
scores of the individual cluster Ai are the traditional metrics: precision and recall,
which is known within the community. To be able to calculate these metrics, the
ground truth cluster Tj is necessary. This is the cluster known in the ground truth
where Ai has the most overlap with. The metrics for each individual clusters are
defined as:

3https://www.ing.com/Home.htms

34 Chapter 5. Experiments

Precision(Ai) =
|Ai∩Tj|
|Ai | Recall(Ai) =

|Ai∩Tj|
|Tj|

In order to have the metrics correspond to the entire list of clusters A, the scores of
the individual clusters should be combined. To do this, the sum of all the individual
clusters will be divided over the amount of clusters in the ground truth T. These
metrics are defined as:

Precision(A) = ∑|A|i=1 Precision(Ai)

|T| Recall(A) = ∑|A|i=1 Recall(Ai)

|T|

Since recall can easily be maximized at the expense of poor precision and vice versa
(Do and Rahm, 2002), an additional metric (f-measure) was introduced to tackle this
problem using both metrics. The f-measure metric is defined as:

F−measure(A) = 2·Precision(A)·Recall(A)
Precision(A)+Recall(A)

5.2.2 Traditional Metrics

The metrics used for data discovery often revolves around the relationships. The
more comparable way of calculating the metrics is through traditional approaches,
where we compare a list of relationships with the ground truth. In order to calcu-
late the metrics in this way, the clusters need to be reduced to relationships. In our
method, we use similarity scores between columns to cluster them together. This
means that similar/related columns should in theory be clustered together. Hence,
we can reduce the clusters into relationships by regarding them as cliques. This
means that each column c in cluster i is connected to all other columns in cluster i.
The reduction from clusters into relationships is shown in figure 5.1. The list of rela-
tionships can then be used to determine the metric scores in a more traditional way
with the formulas shown below where A is the list or relationships reduced from the
clusters and T is the list of relationships representing the ground truth:

Precision(A) = |A∩T|
|A| Recall(A) = |A∩T|

|T|

F−measure(A) = 2·Precision(A)·Recall(A)
Precision(A)+Recall(A)

FIGURE 5.1: Reduction of clusters into a list of relationships

5.2.3 Valentine Metrics for Score Quality

As we have the similarity scores of all the matchers and the aggregated similarity
scores of our methods, we can compare those in order to gain more insight in how
meaningful the aggregated similarity scores are. For this sole purpose, we adopt

5.3. Results 35

the same idea as described in the work of Koutras et al., 2021, where we calculate
metrics at a certain number k, where k means how much of the top scoring matches
we will consider for the calculation of the metrics. E.g. for a precision metric with
k = 10, we will firstly sort all the candidate matches based on their score and then
only use the top 10 scoring matches to calculate the precision metric. Using this way
of calculating the metrics, we can find more about how the similarity scores are for
each individual matcher and our methods. The precision, recall and f-measure are
exactly calculated as the Traditional Metrics. Note that clustering is excluded in
the calculation of the Valentine metric scores. It is hard for clustering to deter-
mine which new match has more importance compared to others. Thus we only
consider the scores to determine these metrics and use these scores to determine
how good the aggregated similarity scores are. The equations used to determine
the metrics are shown below where Ak denotes the list of k top scoring similarity
scores in the list A and T denoting the list of relationships representing the ground
truth:

Precision(A, k) = |Ak∩T|
k Recall(A, k) = |Ak∩T|

|T|

F−measure(A, k) = 2·Precision(A,k)·Recall(A,k)
Precision(A,k)+Recall(A,k)

5.3 Results

This section is dedicated to depict the results of the experiments. The results are
categorized based on each dataset. Only the best f-measure score of each method
is considered along with the corresponding precision and recall score since the f-
measure is supposed to determine the effectiveness of the method with importance
to both recall and precision. All methods, except for machine learning will be com-
pared with each other. Machine learning does not produce the same output and
therefore is hard to compare to the other proposed methods. Our machine learning
method will therefore be evaluated separately. Additionally, all best scoring formed
clusters and the correspondence with the ground truth are available on as HTML
pages, since adding 50 diagrams would result in too many pages for this report. Ad-
ditionally, screenshots of the diagram result in poor quality, hence we have HTML
pages which allows the viewer to interactively change the view of the diagrams. For
security reasons, the ING data has been mapped to custom table (table_1, table_2,
etc.) and column (A, B, C, etc.) names. How to interpret these chord diagrams is
explained in appendix E.

5.3.1 TPC-H

When we run the experiments on the TPC-H dataset, we see different metric scores
from different methods in table 5.1. What is noticeable at first sight is that the metric
scores are relatively low, all hovering around 0.5. When we look at the individ-
ual methods, we see that the Multiplicative Weight Update method had a relatively
high recall score compared to the other methods for both metrics. On the contrary,
the Normalized Linear Programming method had the maximum precision score, but
a poor recall score. This indicates that the Normalized Linear Programming method
assigned such weights that the related column-pairs were clustered first, but could
not find all of them. Out of our methods, (Normalized) Linear Programming method
had the highest metric scores for both cluster metrics and traditional metrics. And
above all, all our proposed methods performed better than the MAX aggregator.

https://github.com/wanghaojiang1/thesis/tree/main/diagrams

36 Chapter 5. Experiments

Looking at our overall metric scores, our proposed methods do not perform near
the state-of-the-art solutions where f-measure scores are around 0.9 for specific do-
mains (Zhang et al., 2011; Pei, Hong, and Bell, 2006).

To analyze the behaviour of our methodology more, we take a deeper dive into
the assigned scores for each column-pair. We see that there are a lot of unrelated
column-pairs with relatively high similarity scores (> 0.5) assigned by the matchers.
Majority of the high similarity scores came from cupid, where the average score for
unrelated column-pairs is 0.8. This is very interesting as coma, coma++ and cupid
are the matchers which found evidence for most related column-pairs. Analyzing
the assigned similarity scores, we found out that different matchers have different
score distributions. The mismatching score distribution could potentially make it
harder to combine the similarity scores as matchers with a big weight who gives
lower scores in general have difficulty keeping the scores as high as possible. How-
ever, when we look at table 5.1, we see that the Normalized version of our Linear
Programming method did not yield any better metric scores compared to the regular
Linear Programming method.

To compare the quality of the aggregated scores, we will calculate the Valentine
Metrics for every possible k and visualise it in a graph. These graphs can be found
in figure 5.5 where we show the behaviour of the precision, recall and f-measure
scores as we progress the value k. When we look at the precision graph, we see that
the multiplicative weight update method and the normalized linear programming
method are leading for all k. This means that those two methods are the best at
giving higher scores to relevant column-pairs. When we take a look at the recall,
we see that all our methods quickly rise to a score of 1.0 compared to the individual
matchers. This means that our proposed methods found all the related column-pairs
faster compared to the individual matchers. This means that the scores for unrelated
column-pairs are lower compared to the scores assigned from the individual match-
ers. The proposed methods have all the related column-pairs in the top 200 scoring
matches, whilst some individual matchers take 400+ to 1500+ matches before they
found all the matches. When we take a look at the f-measure, we see that the mul-
tiplicative weight update method is clearly the winner as it stays at top for almost
all k. The runner up is the Normalized Linear programming method, reaching a
peak f-measure score close to the multiplicative weight update method. When we
compare those metric scores to the scores mentioned in 5.1, we see that clustering
can potentially help the metric scores, but also harm them as the metric scores de-
creases. Clustering helps us grouping potential related columns together, helping
the user to search for relevant columns, but the metric scores are declining when we
take a look at the traditional metrics.

Although multiplicative weight update and normalized linear programming method
both got better f-measure scores when we solely look at the Valentine metrics, we see
however from the metrics in table 5.1 that linear programming performs the best.
This either means that adding clustering to the aggregated similarity scores either
decreased the quality of the matches for some proposed methods or either increased
the quality of some proposed methods. As we can not directly compare the two
metrics, the traditional metrics are the most comparable to the Valentine metrics. If
we were to compare it with the traditional metrics, the quality of all the proposed
methods dropped the quality of the matches. However, this can not be concluded
as we would then neglect that clusters help us group column-pairs and simplify the

5.3. Results 37

search for matches.

Summary
The matchers Coma, Coma++ and Cupid gave relatively high similarity scores for all
the related column-pairs. However, Cupid assigns relatively high similarity scores
even for columns with no relation. The matchers all have a different score distribu-
tion, but they do not affect the effectiveness of the method as the normalized version
also yields similar results. Comparing the scores only, the aggregated score can rank
the column-pairs better than each individual matcher.

Cluster metrics Traditional metrics
precision recall f-measure precision recall f-measure

Max aggregator 0.33 0.69 0.45 0.17 0.25 0.2
Multiplicative Weight Update 0.27 0.86 0.41 0.13 0.75 0.23

Reinforcement Learning 0.38 0.94 0.54 0.31 0.42 0.36
Linear Programming 0.56 0.67 0.61 0.50 0.42 0.45

Normalized Linear Programming 1.0 0.39 0.56 1.0 0.25 0.4

TABLE 5.1: Best achieved metrics from running our methods on the
original TPC-H data with the optimal settings

38 Chapter 5. Experiments

FIGURE 5.2: Valentine precision for each k

FIGURE 5.3: Valentine recall for each k

FIGURE 5.4: Valentine f-measure for each k

FIGURE 5.5: Valentine metrics for each k in the TPC-H dataset

5.3. Results 39

5.3.2 Fabricated TPC-H

When we run the experiments on the fabricated TPC-H dataset, we see that the met-
ric scores all decreased compared to the original TPC-H when we look at the scores
in table 5.2. The total amount of relationships our methods should find are 37 rela-
tionships, where 13 relationships are forged and 24 were already implicitly present.
As we can see in table 5.2, our proposed methods did not improve the cluster metric
scores. The MAX aggregator, multiplicative weight update, and reinforcement learn-
ing methods all increased their maximum f-measure score compared to the original
TPC-H dataset. All the proposed methods perform relatively the same when we
solely look at the cluster metrics. However, when we also take the traditional metrics
into consideration, we see that the (normalized) linear programming performs the
best in that aspect. This indicates that linear programming clusters relevant columns
faster/better compared to the other methods.

What is noticeable is that the multiplicative weight update method resulted in only
14 clusters (including singular clusters) where one big cluster is formed with little to
no related columns for the best f-measure for the clustered metrics. Since the mul-
tiplicative weight update method had a cutoff threshold of 0.5, only 19 out of 37
relationships had a similarity score assigned from at least one matcher. This implies
that the relationships of this dataset are harder to find for the individual matchers.

We conducted a preliminary experiment with different fabrication settings with our
multiplicative weight update method to see the effects of the different settings. We
only considered contributing factors which could potentially influence the similarity
scores. The different contributing factors of the fabrication tool are:

• Row overlap: Percentage of overlapping instances

• Row noise: Percentage of instances to be affected by noise

• Column noise: Noise in the column names in the form of abbreviation/prefixing/dropping
vowels

The column overlap should not be the issue as the overlap is exactly what our meth-
ods try to find. Therefore, increasing or decreasing the overlap of the columns is
only making more or less relationships for the methods to find. The other factors
can influence the evidence for matchers to find related column-pairs and are there-
fore compared to each other. The different factors are compared with each other
through the multiplicative weight update method. We compare the results of the
multiplicative weight update method with our fabrication settings and try to tweak
every contributing factor from the same fabrication settings individually to see the
effects. The results of the experiments are shown in table 5.3. Note that the column
overlap for checking the different factors differs compared to our baseline experi-
ment due to the randomization nature of the fabrication tool.

From table 5.3 we can see that increasing the row overlap to 80% immediately in-
creases the recall and f-measure. Although the amount of found relationships (column-
pairs with scores > 0.5) remained quite similar, there is a slight increase compared
to the baseline. The increase in recall and f-measure can be explained as the re-
lated column-pairs have higher scores compared to the baseline, ultimately leading
to being earlier discovered. Removing the row noise, we see a similar increase in
recall and f-measure, resulting in similar behaviour as the increased row overlap.

40 Chapter 5. Experiments

When we change the column names into custom made names (mapping is shown
in appendix D), we see that although the recall increased, the precision dropped,
resulting similar f-measure as our baseline. What is very noticeable from the exper-
iment with custom made column names is that all the related column-pairs had a
similarity score of at least 0.5 assigned to it. The reason for the similar f-measure
score is due to the fact that the amount of unrelated column-pairs with similarity
scores of at least 0.5 assigned to it, is 3 times as much as our baseline. Therefore, the
custom made column names introduces more confusion. Although these different
factors of fabrication can influence the results, we believe that the methods are not
affected that much and that the performance would not increase much more when
we change all these factors at once.

When we look at the quality of the aggregated score of our proposed methods and
individual matchers in figure 5.9, we see that the scores of the (normalized) linear
programming method(s) are leading in all three metrics. However, it is noticeable
that the multiplicative weight update method worked less good for the fabricated
TPC-H dataset when it performed the best on the TPC-H dataset. What is also no-
ticeable is that the maximum reaching f-measure scores is relatively low compared
to the TPC-H dataset. We only achieve a top f-measure score of 0.45 whilst for the
TPC-H dataset we had a top f-measure score of 0.6. This is due to the recall of all
the methods. In TPC-H, the related column-pairs were relatively easy to find as they
found all the related column-pairs within the top 200 scoring pairs. With the fab-
ricated TPC-H, we see however that it has more difficulty finding all the relevant
matches as all the methods (including the individual matchers) find all the relevant
matches after 1700+ matches.

Summary
Our methodology performs relatively the same with this dataset compared to the
original TPC-H dataset. The different settings of the fabrication tool used to create
the dataset could improve the scores slightly. Multiplicative weight update method
created one big cluster with little to no relevant column-pairs to maximize the f-
score. Comparing the aggregated score with the similarity scores of the individual
matchers, we see that it still performed better compared to the individual matchers.
However, this dataset is supposedly harder as the max f-measure for the Valentine
metrics is 0.45 as opposed to the original TPC-H dataset, which had a max of around
0.6 for the f-measure.

Cluster metrics Traditional metrics
precision recall f-measure precision recall f-measure

Max aggregator 0.47 0.74 0.57 0.19 0.17 0.18
Multiplicative Weight Update 0.54 0.62 0.58 0.25 0.14 0.18
Reinforcement Learning 0.46 0.66 0.54 0.70 0.20 0.31
Linear Programming 0.45 0.83 0.58 0.24 0.74 0.36
Normalized Linear Programming 0.43 0.71 0.54 0.38 0.34 0.36

TABLE 5.2: Best achieved metrics from running our methods on the
fabricated TPC-H data with the optimal settings

5.3. Results 41

FIGURE 5.6: Valentine precision for each k

FIGURE 5.7: Valentine recall for each k

FIGURE 5.8: Valentine f-measure for each k

FIGURE 5.9: Valentine metrics for each k in the fabricated TPC-H
dataset

42 Chapter 5. Experiments

Cluster metrics
Multiplicative Weight Update precision recall f-measure

Baseline 0.55 0.63 0.58
Row overlap (50% →80%) 0.54 0.82 0.65
Row noise (30% →0%) 0.53 0.78 0.63
Column noise (custom made column names) 0.46 0.79 0.58

TABLE 5.3: Best achieved metrics from changing different fabrication
factors for the fabricated TPC-H data with the optimal settings

5.3.3 IMDb

There are a few things to take into consideration when evaluating our methods with
the IMDb dataset. The trimmed IMDb dataset contains two main clusters (attributes)
which we try to create: unique IDs for titles (tconst) and unique IDs for persons
(nconst). As quite a lot of column names are similar (tconst and nconst), what is
more interesting are the columns which have different column names, e.g. titleId
and tconst. What is also interesting is that there exists a parentTconst column in
the title_episode schema, which was unable to match with the tconst in the same
schema, because they are already related. In fact, they refer to the same entity type,
but are unable to be clustered together as fast as wished due to the distance being
set to max for columns in the same table. When inspecting the similarity scores, we
can see that parentTconst has quite high similarity scores with other tconst columns,
but was unable to be clustered together with the tconst columns due to the distance
between the parentTconst and tconst from the same schema. Changing the max dis-
tance yields in similar behaviour, which therefore is a drawback of our method with
clustering. Additionally, a lot of foreign key references in the rows are most likely
removed due to the trimming, which should also be taken into consideration. As
the IMDb data tables keeps growing over time (currently at max 50 million rows per
table), it is infeasible for our available computer to run the method over all the data.

When we run the experiments on the IMDb data, we get the results shown in table
5.4. As can be seen from the table, the (normalized) linear programming method(s)
increases the cluster metric scores compared to the other methods. Compared to
the MAX aggregator, the other methods perform better when we solely look at the
cluster metrics. When we only look at the traditional metrics, the MAX aggregator
performs similar compared to all the other methods except for the normalized linear
programming method. What is interesting from the results is that the normalized
linear programming performs the best when we look at the cluster metrics, but the
worst when we look at the traditional metrics.

To check whether the results were tainted due to trimming, we checked by using the
max size our computer was able to handle (500.000 rows per schema). Hence, we
have conducted experiments for 100.000 and 500.000 rows per schema. The scores
and clusters remained exactly the same for both sizes. Therefore, the amount of
rows in this case did not have any effect on the method, probably due to the pro-
portion that is trimmed compared to the original. It is therefore impossible to say
that the given experiments showed that the matchers do not work properly in the
given methods, however, it is shown that the method is limited to 500.000 rows per
table due to the available tools and RAM. When we inspect the rows that we have,
we see in the title_crew table have references for writers and directors with values

5.3. Results 43

as nm0721526, whilst we only have columns up to nm0500000. Additionally, some
tables contain duplicate titleId titles whilst other tables contain only unique titleIds,
which might be a possible explanation why the distribution based matcher is having
more trouble finding the relationships.

When we take a look at the score quality in figure 5.13, we see again that the top
scoring f-measure is the multiplicative weight update method and the linear pro-
gramming method. Again, the top f-measure is still relatively low compared to the
state-of-the-art methods. Just as with the fabricated TPC-H dataset, the relevant
column-pairs are rather hard to find as we can see in the recall graph. As for preci-
sion, almost all the methods are quite similar. This implies that the dataset is harder
for the matchers to find the relevant column-pairs.

Summary
Our methodology was unable to run the IMDb dataset due to the amount of in-
stances. Trimming the dataset most likely resulted in less evidence, as referencing
columns instances could be removed due to trimming. The weights obtained by
linear programming gave the best performance in all metrics.

Cluster metrics Traditional metrics
precision recall f-measure precision recall f-measure

Max aggregator 0.41 0.63 0.49 0.44 0.47 0.46
Multiplicative Weight Update 0.41 0.63 0.49 0.46 0.47 0.46
Reinforcement Learning 0.41 0.63 0.49 0.44 0.47 0.46
Linear Programming 0.75 0.56 0.64 0.73 0.32 0.45
Normalized Linear Programming 0.75 0.56 0.64 0.83 0.15 0.25

TABLE 5.4: Best achieved metrics from running our methods on the
original IMDb data with the optimal settings

5.3.4 Fabricated IMDb

When we run the experiments on the fabricated IMDb dataset, we see that the metric
scores are actually higher compared to the original IMDb dataset (table 5.5). How-
ever, when we take a look at the traditional metrics, our methods perform even
worse compared to the MAX aggregator. What is more interesting to see is that the
normalized linear programming method is better when we use the Cluster metrics
compared to the linear programming method, but worse when we use the tradi-
tional metrics. Overall the findings are similar compared to the other datasets. All
the methods do not perform up to par with the state-of-the-art.

What is interesting to see when we compare the aggregated score quality, is that
Coma and Coma++ are actually leading as we can see in the f-measure in figure
5.17. The lead does not come from recall, but from precision. When we take a look at
the precision graph, we see that for the top 100 scoring matches, coma and coma++
are better compared to every other method/matcher. It is rather interesting because
the weights of Coma and Coma++ were 0 for the (normalized) linear programming
method. For the multiplicative weight update method, Coma was included, but
it had a hard time finding the relevant matches because a large part was already
pruned due to the cutoff threshold of 0.5. Which means that for this dataset, normal-
izing the scores for the multiplicative weight update method could potentially have

44 Chapter 5. Experiments

FIGURE 5.10: Valentine precision for each k

FIGURE 5.11: Valentine recall for each k

FIGURE 5.12: Valentine f-measure for each k

FIGURE 5.13: Valentine metrics for each k in the IMDb dataset

5.3. Results 45

high metric scores. However, as we can see from the other datasets, the results are
not robust and vary dependent on the dataset.

Summary
Our methodology scored higher cluster metrics scores compared to the original
IMDb dataset, but worse traditional metric scores. Our approaches all performed
similar or worse compared the the MAX aggregator when we solely look at the tra-
ditional metrics. Looking at the aggregated scores and the Valentine metrics, Coma
and Coma++ performed significantly better due to better precision.

Cluster metrics Traditional metrics
precision recall f-measure precision recall f-measure

Max aggregator 0.56 0.82 0.67 0.42 0.29 0.34
Multiplicative Weight Update 0.59 0.79 0.68 0.26 0.26 0.26
Reinforcement Learning 0.56 0.82 0.67 0.42 0.29 0.34
Linear Programming 0.65 0.75 0.70 0.48 0.23 0.32
Normalized Linear Programming 0.70 0.90 0.78 0.31 0.22 0.26

TABLE 5.5: Best achieved metrics from running our methods on the
fabricated IMDb data with the optimal settings

5.3.5 ING

Evaluating with the ING dataset allows us to see how well our approach holds in
real-life situations as it is sampled from an actual used application. When running
the experiments on the ING dataset, we noticed that the scores were relatively bad
compared to the other datasets. What is even more noticeable is that the multiplica-
tive weight update approach scores very low on the traditional metrics. Partially is
due to the deducted weights, which practically gave all the matchers a weight very
close to 0, whilst the distribution-based matcher has a significantly higher weight
than the rest. The reason for this is that the distribution based often gives scores 0,
which makes it easier for the matcher to guess the incorrect column-pairs as opposed
to the minority correct column-pairs. Similarly, the reinforcement learning approach
also give the distribution-based matcher significantly higher weights, however, the
rest of the matchers did not have a weight close to 0 as opposed to the multiplicative
weight update method. From the results in table 5.6, we see that the linear program-
ming method outperforms the rest of the methods.

Inspecting the scores and behaviour, we found that majority of the columns which
got clustered together first were columns with similar to identical names, which are
not explicitly stated as key-pairs. For example, all primary keys are given the name
’PID’ or all tables have a ’comments’ field, which in fact have little to no correlation
with each other. This is where the distribution-based matcher outperforms the rest,
resulting in getting higher weights compared to the others.

From the Valentine metrics in figure 5.21, we can see that the MAX aggregator per-
forms the best amongst the other methods. When diving into the scores, we see that
for the majority of the column-pairs, cupid assigns a score of 1 because the names are
identical. For some of the column-pairs, the distribution based gives a high score,
whereas cupid gives lower scores. There were also some column-pairs which are

46 Chapter 5. Experiments

FIGURE 5.14: Valentine precision for each k

FIGURE 5.15: Valentine recall for each k

FIGURE 5.16: Valentine f-measure for each k

FIGURE 5.17: Valentine metrics for each k in the fabricated IMDb
dataset

5.3. Results 47

related had very poor similarity scores where all the matchers gave scores close to 0.
This is due to the fact that the tables did not have any instance data, and the present
deviating column names (e.g. MovieID and ID). Comparing the recall however, we
see that the MAX aggregator finds all the relevant column-pairs later than the other
methods, whilst the precision starts off quite high. this can be explained as the ma-
jority of the related column-pairs have the exact same column name, resulting in
cupid similarity scores of 1.

As the used ING data was a small portion of the entire application, it can be ex-
pected that our methodology works even worse when more ’noise’ tables are added.
The fraction that we have used for our evaluation still contained some ’noise’ tables,
but not to the same extend as the actual database, making it easier for our method-
ology. Additionally, the run-time for forming the clusters and evaluating the clus-
ters increased exponentially as the run-time scales exponentially with the amount of
columns and tables, making evaluating all the tables take forever.

Summary
Our methodology scored the worst for this dataset compared to the other ones. The
ING dataset is supposed to depict the real-life scenario, where we use in-use appli-
cation data to determine the effectiveness of our methodology. Nevertheless, we see
that even if we use a selected fraction of the data, our methodology scored rather
disappointing. The data contained a lot of identical names, which resulted in those
being clustered together first (e.g. abbreviations). The Valentine metrics shows that
the MAX aggregator creates the best scores, which is explainable as the majority of
related columns have identical names.

Cluster metrics Traditional metrics
precision recall f-measure precision recall f-measure

Max aggregator 0.20 0.46 0.28 0.17 0.69 0.27
Multiplicative Weight Update 0.14 0.48 0.21 0.2 0.02 0.04
Reinforcement Learning 0.14 0.74 0.23 0.13 0.92 0.23
Linear Programming 0.28 0.89 0.43 0.26 0.40 0.32
Normalized Linear Programming 0.30 0.60 0.40 0.32 0.13 0.18

TABLE 5.6: Best achieved metrics from running our methods on the
ING data with the optimal settings

48 Chapter 5. Experiments

FIGURE 5.18: Valentine precision for each k

FIGURE 5.19: Valentine recall for each k

FIGURE 5.20: Valentine f-measure for each k

FIGURE 5.21: Valentine metrics for each k in the ING dataset

5.4. Machine Learning Results 49

5.3.6 Discussion

For data discovery tools, an f-measure of 0.6-0.7 is relatively low. In current exist-
ing papers, the f-measure score revolves around 0.9 or higher (Zhang et al., 2011;
Pei, Hong, and Bell, 2006). In all aspects (scores, clusters, different metrics), the
eventual metric scores were relatively disappointing compared to the state-of-the-art
methods. Inclusion of different matchers can indeed improve the overall score qual-
ity with the weighted aggregation approach. However, it requires relatively good
weights, which is hard to obtain due to the fact that related column-pairs should
be maximized, whilst unrelated column-pairs should be minimized. As there are
numerous options, determining the optimal weights is a very hard task to do. Nor-
malizing the different score distributions of the individual matchers did not yield
robust positive results.

Regardless of the weights, we see from the results that it still outperforms individual
matchers when using one of our methods. The weighted aggregation is more sta-
ble compared to the MAX aggregator, as we see that for the majority the weighted
aggregation stayed ahead of the MAX aggregator. In almost all cases, the MAX ag-
gregator performed worse compared to any of the methods we had tried with far
from optimal weights. Which shows us that the weighted aggregation is the better
approach compared to the MAX aggregator. However, from our experiment with
the ING data, we saw that the MAX aggregator actually performed better, due to the
circumstances of having identical naming for IDs.

By all those attempts for finding the best weights, we can actually see that the met-
rics does not go up by much. The best metric scores we got for the f-measure was
always in the range of 0.5 and 0.7. Plainly combining the weights is probably not the
way to go as the relations are most likely more complex than a linear combination
of the weights. This leads to an indication of using non-linear machine learning to
combine different matchers to find related column-pairs.

5.4 Machine Learning Results

As indicated from the experiments, the relation between the similarity scores of the
matchers are probably more complex than a linear combination. Therefore, we im-
plemented a Support Vector Machine model (described in chapter 3.2.4), which tries
to explore the possibilities within the machine learning world for combining simi-
larity scores of different matchers.

Data

Machine learning models need labelled data in order to learn and test the models.
We therefore use all the labelled matches from the preliminary experiments to train
and test our general model. The used labelled data and its distribution is shown in
table 5.7. The ratio indicates a typical imbalanced classification problem, where we
have a minority class and a majority class (Nguyen, Cooper, and Kamei, 2009).

The total amount of data will be split into a train set and a test set. The split will
be 80% for the train set and 20% for the test set. The split will keep the ratio of 1:32
for the related and unrelated column-pairs, meaning that both the train and test set
will have an approximate ratio of 1:32 for the related and unrelated column pairs.

50 Chapter 5. Experiments

Related Column-pairs Unrelated Column-pairs Total Labelled Data Points
176 5646 5992

TABLE 5.7: Amount of used labelled data and its distribution
amongst the related and unrelated column-pairs

5.4.1 Evaluating the model

Plainly training the model with the train set and testing the accuracy with the test set
results in quite high accuracy of 98%. To ensure that the accuracy is not a result of
a lucky partition, we conduct the same experiment 100 times and denote the mean
and standard deviation of the accuracy in table 5.8. The mean accuracy of 0.977 is
very high and seems like a very good working model.

Since our data is quite imbalanced as shown in table 5.7, we have to keep in mind
that the test set only contains 35 related column-pairs and 1150 unrelated column-
pairs. With the original dataset being 5922 data points where only 176 (3%) are
related column-pairs, the high accuracy can in fact be explained. If the majority of
the unrelated column-pairs are correctly predicted, the accuracy will naturally be
very high. The model can simply label all the column-pairs as unrelated and will
still achieve a very high accuracy.

Hence, we will look at the confusion matrix (shown in figure 5.22) to see how the
model behaves. As we can see, the true negatives is quite high, meaning that the
unrelated column-pairs are being classified quite well for the test set. However, we
can see that the related column-pairs are harder for the model to predict as only 12
out of 35 (34.3%) related column-pairs were correctly classified as related column-
pairs. Although the unrelated column-pairs are for the majority correctly classified,
the accuracy is quite deceiving due to the skewed dataset. If we would have calcu-
lated the metrics using the classified matches (all the datasets that we had used), we
would have achieved the metric scores given in table 5.9.

Mean Standard Deviation

0.976835443037974 0.0026238484069268796

TABLE 5.8: The mean and standard deviation of the accuracy when
we execute the learning and test process 100 times

precision recall f-measure

0.86 0.34 0.49

TABLE 5.9: Achieved metrics of the model on the test set

As the labelled data is quite unbalanced, we are dealing with an imbalanced clas-
sification problem. As generating more related column-pairs requires us to label a
huge amount of datasets, it is quite unfeasible to acquire a good amount of related
column-pairs by labelling alone. Therefore, with the given data that we have, we
should either use oversampling or undersampling to make the data more balanced
(Sun, Wong, and Kamel, 2009). As undersampling requires a large amount of the
minority class (related column-pairs), it is not optimal with our given dataset as we
only have 176 instances in the minority class. Oversampling, on the other hand, is

5.4. Machine Learning Results 51

FIGURE 5.22: Confusion matrix for one execution on the test set

very prone to overfitting as the data gets copied until the data is balanced, espe-
cially since our ratio is 5746:176 (close to 33:1). This would mean that we have to
copy the true match class 33 times in order to make the data balanced. This would
very much enforce overfitting behaviour and is thus undesired. An oversampling
approach which could potentially help is the Synthetic Minority Oversampling Tech-
nique (SMOTE), which samples the data by randomly picking a point of the minority
class and compute the k-nearest neighbours for the point (Chawla et al., 2002). This
way we get enough data points, without having too much replica’s. The down side
of using SMOTE is that the majority of the data points in the minority class is gen-
erated using the already known data points. This results in a lot of artificial data
points which could potentially lose merit of the actual related column-pairs.

Oversampling should only be done on the training set, rather than the entire dataset.
When we oversample the entire dataset, we bleed the information of the future test
set into the model. Hence, we should only oversample the training set in order to
have sufficient amount of training data. The test data still consists of the actual data
points and can thus be validly used to determine the performance of the trained
model, although the ratio between false and true matches is still 33:1. Doing this 100
times results in a mean accuracy and standard deviation shown in table 5.10. When
we also look at the confusion matrix in figure 5.23, we see that amount of related
column-pairs are being classified properly increased compared to the confusion ma-
trix in figure 5.22. Along with the increased accuracy for the related column-pairs,
the amount of false positives also increased. As the data used to train the model
has approximately 3% actual data and 97% oversampled data, it is quite safe to say
that the inaccuracy is likely to be influenced by the amount of actual related column-
pairs. However, even with oversampling, the model was able to increase the amount
of true positives, which tells us that there lies potential within the machine learning
world. If we were to calculate the metrics based on the confusion matrix, we would
get the results showed in table 5.11. Although the f-measure score is lower than

52 Chapter 5. Experiments

table than the experiment without oversampling, the recall score went up signifi-
cantly. The impreciseness can most likely be influenced by the approximated data
points and therefore shows potential when an appropriate amount of labelled data
is available.

Mean Standard Deviation

0.9197552742616035 0.008004961163524752

TABLE 5.10: The mean and standard deviation of the accuracy when
we execute the learning and test process 100 times with oversampling

FIGURE 5.23: Confusion matrix for one execution on the test set

precision recall f-measure

Without oversampling 0.86 0.34 0.49
With oversampling 0.22 0.77 0.33

TABLE 5.11: Achieved metrics of the model on the test set with over-
sampling

5.4.2 Discussion

Our small experiment with Support Vector Machine shows that there lies potential
in learning whether candidate matches are actual related column-pairs by using the
similarity scores of matchers as features. However, in our experiment, it showed that
quite a generous amount of unrelated column-pairs is still being recognized as re-
lated column-pairs. This could be a result due to the oversampling method SMOTE
of the related column-pairs as 97% of the data for the related column-pairs is forged.
With enough data available from different datasets, we believe that it is worthy to
take a look at machine learning for combining similarity scores of different match-
ers to find matches. An additional step would be to add statistics of the candidate

5.4. Machine Learning Results 53

matches, such as data type or data distribution. This could give more insight on how
to look at the data. However, this would probably require even more data to make
the model more accurate since we add more features.

55

Chapter 6

Conclusion

We have looked into whether combining different similarity scores of different match-
ers with the weighted aggregation approach could potentially help us find better
matches. We have created different methods, each targeting different factors of the
approach and tried to learn the weights in different approaches. The aggregated
scores show an improvement compared to the individual matchers, but the scores
are far from the state-of-the-art solutions. Compared to the MAX aggregator, the
weighted aggregation showed more positive results. We attempted clustering to find
related columns for columns which have no direct similarity but a common similar
column. The clusters are rather hard to compare with the individual matchers as the
way of calculating the metrics are not similar. However, we see that the clusters did
more harm than good as the different metrics showed more disappointing results
compared to the score quality. Plainly using weights to combine similarity scores
of matchers is not good enough to compete with the state-of-the-art as the model is
most likely not linear. We showed with a small experiment with Support Vector Ma-
chine, that machine learning has potential as long as there is enough labelled data
available and potential for more accuracy.

6.1 Limitations

The foremost limiting factor is the computer on which the experiments are ran on.
The amount of data which needed to be used for the matchers were taking hours
and could even lead to termination of the script due to memory shortage. The IMDb
data contains millions of rows, but we were only able to use 500.000 rows per table
due to the limitation of the computer. This could have influenced the scores given
by the instance-based matchers and therefore also influence the methods.

Another limiting factor is the lack of research regarding metrics for clusters. As
the metrics of the clusters are calculated differently, it makes it harder to compare
the results with the individual matchers. We can plainly compare the metric scores,
but they both mean something different. Hence, an attempt was made to translate
the clusters into relations and calculate the metrics similar to how we calculate the
metrics for the individual matchers, but the results were rather disappointing. The
translation of the clusters into relations is a limiting factor of the metric scores, still
making it hard to compare it to the individual matchers.

The machine learning approach showed potential for usage in the data discovery
world, but was limiting due to the lack of labelled data. The imbalanced problem
resulted in oversampling, making the data balanced, but very artificial. The amount
of the actual data about the related column-pairs is 3% of the available data where
97% is fabricated. It is believed that the inaccuracy of the model is caused due to the

56 Chapter 6. Conclusion

extreme amount of fabricated data points, but it is hard to show due to the lack of
data.

57

Appendix A

User Interface: 4-step form for
configuring our methodology

FIGURE A.1: Step 1: Select the matchers the user want to include

FIGURE A.2: Step 2: Select the cutoff threshold (described in chapter
3.2.1)

58 Appendix A. User Interface: 4-step form for configuring our methodology

FIGURE A.3: Step 3: Select one of our provided methods

FIGURE A.4: Step 4: Select the data you want to use

FIGURE A.5: User interface to change flexible setting values

59

Appendix B

User Interface: Labelling ground
truth clusters

FIGURE B.1: User interface allowing users to select columns and form
a cluster

FIGURE B.2: User interface showing the created clusters and button
for labelling all the relationships based on the created clusters

61

Appendix C

User Interface: Evaluation tool

FIGURE C.1: Formed clusters are shown to the user along with the
used settings

FIGURE C.2: Zoomed-in and interactive dendrogram showing the hi-
erarchy of the columns

62 Appendix C. User Interface: Evaluation tool

FIGURE C.3: Evaluation page with amount of clusters and the corre-
sponding metric scores

63

Appendix D

Manual noise mapping for
fabricated TPC-H column names

64 Appendix D. Manual noise mapping for fabricated TPC-H column names

Column name mapping
Table name Original column name New column name
customer_2 CNA customer_name

CPH customer_phone
CACCT customer_account_balance
CMKT customer_market_segment
CCOM customer_comment

lineitem_2 LORDE lineitem_order_key
LQUA lineitem_quantity
LSHIP lineitem_shipment_date
LRETUR lineitem_return
LLIN linitem_line_status
LCOM lineitem_commitment_date
LREC lineitem_receipt_date
LSHI lineitem_shipment_instruction
LSH lineitem_shipment_mode
l_comment lineitem_comment

nation_2 NNATIO nation_key
NREGI nation_region_key
NCO nation_comment

orders_2 OCL order_clerk_number
OCUS order_customer_key
OORDER order_priority
OORD order_placement_date
OSHIPP order_shipping_priority
OCOMM order_comment

part_2 PPAR part_number
PSI part_size
PCON part_container
PRETA part_retail_price
PCOM part_comment

partsupp_2 PSUPP partsupp_supply_key
PSUPPL partsupp_supply_cost
PCOMM partsupp_comment

region_2 RREGI region_key
RCOMM region_comment

supplier_2 SNA supplier_name
SSUP supplier_key
SPHO supplier_phone
SACCT supplier_account_balance
SCOM supplier_comment

TABLE D.1: The mapping between the original fabricated data of
TPC-H and the altered data for validation of identified problem

65

Appendix E

Results: Example of formed
clusters compared to the ground
truth

FIGURE E.1: Example chord diagram showing the clusters and com-
parison with the ground truth

Interpretation: Each column is represented with a circle in the outer circle of
the diagram. We distinguish the formed clusters and the ground truth clusters by

66 Appendix E. Results: Example of formed clusters compared to the ground truth

prepending ’TRUTH_’ before the column name of the ground truth clusters. The
clusters that are formed, can be seen from the color of the circle representing the col-
umn. E.g. in figure E.1 we see 3 dark brown circles in the lower right corner, forming
a cluster (partsupp.csv/ps_partkey, part.csv/p_partkey and lineitem.csv/l_partkey).
The ground truth clusters depict how the clusters should actually be, whilst the other
clusters are formed by our methodology. The chord which connects the columns,
show where the columns are in our formed clusters, allowing us to see whether the
supposedly clustered columns are clustered together or in some other cluster. Fig-
ure E.1 depicts the perfect scenario, where the formed clusters corresponds exactly
to the ground truth clusters.

67

Bibliography

Al-Ghanim, M., S. A. Noah, and T. M. Sembok (2011). “Automating XML schema
matching: A composite approach”. In: Proceedings of the 2011 International Confer-
ence on Electrical Engineering and Informatics, pp. 1–6. DOI: 10.1109/ICEEI.2011.
6021797.

Alwan, Ali A et al. (2017). “A survey of schema matching research using database
schemas and instances”. In: International Journal of Advanced Computer Science and
Applications 8.10.

Arora, Sanjeev, Elad Hazan, and Satyen Kale (2012). “The Multiplicative Weights Up-
date Method: a Meta-Algorithm and Applications”. In: Theory of Computing 8.6,
pp. 121–164. DOI: 10.4086/toc.2012.v008a006. URL: https://theoryofcomputing.
org/articles/v008a006.

Bellahsene, Zohra et al. (2011). “On Evaluating Schema Matching and Mapping”.
In: Schema Matching and Mapping. Ed. by Zohra Bellahsene, Angela Bonifati, and
Erhard Rahm. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 253–291. ISBN:
978-3-642-16518-4. DOI: 10.1007/978-3-642-16518-4_9. URL: https://doi.
org/10.1007/978-3-642-16518-4_9.

Bergamaschi, Sonia et al. (Mar. 2001). “Semantic integration of heterogeneous infor-
mation sources”. In: Data Knowledge Engineering 36, pp. 215–249. DOI: 10.1016/
S0169-023X(00)00047-1.

Berlin, Jacob and Amihai Motro (2002). “Database Schema Matching Using Machine
Learning with Feature Selection”. In: Advanced Information Systems Engineering.
Ed. by Anne Banks Pidduck et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 452–466. ISBN: 978-3-540-47961-1.

Bernstein, Philip A., Jayant Madhavan, and Erhard Rahm (2011). “Generic Schema
Matching, Ten Years Later”. In: Proc. VLDB Endow. 4.11, 695–701. ISSN: 2150-8097.
DOI: 10.14778/3402707.3402710. URL: https://doi-org.tudelft.idm.oclc.
org/10.14778/3402707.3402710.

Bernstein, Philip A. et al. (2004). “Industrial-Strength Schema Matching”. In: SIG-
MOD Rec. 33.4, 38–43. ISSN: 0163-5808. DOI: 10.1145/1041410.1041417. URL:
https://doi-org.tudelft.idm.oclc.org/10.1145/1041410.1041417.

Blake, Roger (Jan. 2007). “A Survey of Schema Matching Research”. In.
Bogatu, Alex et al. (2020). “Dataset Discovery in Data Lakes”. In: CoRR abs/2011.10427.

arXiv: 2011.10427. URL: https://arxiv.org/abs/2011.10427.
Burkart, Nadia and Marco F Huber (2021). “A survey on the explainability of super-

vised machine learning”. In: Journal of Artificial Intelligence Research 70, pp. 245–
317.

Cafarella, Michael J., Alon Halevy, and Nodira Khoussainova (2009). “Data Integra-
tion for the Relational Web”. In: Proc. VLDB Endow. 2.1, 1090–1101. ISSN: 2150-
8097. DOI: 10.14778/1687627.1687750. URL: https://doi-org.tudelft.idm.
oclc.org/10.14778/1687627.1687750.

Castelo, Sonia et al. (2021). “Auctus: A Dataset Search Engine for Data Discovery
and Augmentation”. In: Proc. VLDB Endow. 14.12, 2791–2794. ISSN: 2150-8097.

https://doi.org/10.1109/ICEEI.2011.6021797
https://doi.org/10.1109/ICEEI.2011.6021797
https://doi.org/10.4086/toc.2012.v008a006
https://theoryofcomputing.org/articles/v008a006
https://theoryofcomputing.org/articles/v008a006
https://doi.org/10.1007/978-3-642-16518-4_9
https://doi.org/10.1007/978-3-642-16518-4_9
https://doi.org/10.1007/978-3-642-16518-4_9
https://doi.org/10.1016/S0169-023X(00)00047-1
https://doi.org/10.1016/S0169-023X(00)00047-1
https://doi.org/10.14778/3402707.3402710
https://doi-org.tudelft.idm.oclc.org/10.14778/3402707.3402710
https://doi-org.tudelft.idm.oclc.org/10.14778/3402707.3402710
https://doi.org/10.1145/1041410.1041417
https://doi-org.tudelft.idm.oclc.org/10.1145/1041410.1041417
https://arxiv.org/abs/2011.10427
https://arxiv.org/abs/2011.10427
https://doi.org/10.14778/1687627.1687750
https://doi-org.tudelft.idm.oclc.org/10.14778/1687627.1687750
https://doi-org.tudelft.idm.oclc.org/10.14778/1687627.1687750

68 Bibliography

DOI: 10.14778/3476311.3476346. URL: https://doi-org.tudelft.idm.oclc.
org/10.14778/3476311.3476346.

Castro Fernandez, Raul et al. (2018). “Aurum: A Data Discovery System”. In: 2018
IEEE 34th International Conference on Data Engineering (ICDE), pp. 1001–1012. DOI:
10.1109/ICDE.2018.00094.

Cervantes, Jair et al. (2020). “A comprehensive survey on support vector machine
classification: Applications, challenges and trends”. In: Neurocomputing 408, pp. 189–
215. ISSN: 0925-2312. DOI: https : / / doi . org / 10 . 1016 / j . neucom . 2019 .
10 . 118. URL: https : / / www . sciencedirect . com / science / article / pii /
S0925231220307153.

Chapman, Adriane et al. (2019). “Dataset search: a survey”. In: CoRR abs/1901.00735.
arXiv: 1901.00735. URL: http://arxiv.org/abs/1901.00735.

Chawla, Nitesh V et al. (2002). “SMOTE: synthetic minority over-sampling tech-
nique”. In: Journal of artificial intelligence research 16, pp. 321–357.

Christensen, Scott D. et al. (2018). Automated Data Discovery, Retrieval, Manipulation,
and Publication using Python, Tethys, and HydroShare. URL: https://scholarsarchive.
byu.edu/iemssconference/2018/Stream-B/14/.

Daniel, Naveen, S Lee, and Lalitha Naveen (2016). “Information discovery by ana-
lysts”. In: 2016 American Finance Association annual meeting working paper.

Do, Hong and Erhard Rahm (Aug. 2002). “COMA - A System for Flexible Combi-
nation of Schema Matching Approaches.” In: pp. 610–621. ISBN: 9781558608696.
DOI: 10.1016/B978-155860869-6/50060-3.

Do, Hong-Hai, Sergey Melnik, and Erhard Rahm (2003). “Comparison of Schema
Matching Evaluations”. In: Web, Web-Services, and Database Systems. Ed. by Akmal
B. Chaudhri et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 221–237.
ISBN: 978-3-540-36560-0.

Doan, AnHai, Pedro Domingos, and Alon Y. Halevy (2001). “Reconciling Schemas
of Disparate Data Sources: A Machine-Learning Approach”. In: Proceedings of the
2001 ACM SIGMOD International Conference on Management of Data. SIGMOD ’01.
Santa Barbara, California, USA: Association for Computing Machinery, 509–520.
ISBN: 1581133324. DOI: 10 . 1145 / 375663 . 375731. URL: https : / / doi - org .
tudelft.idm.oclc.org/10.1145/375663.375731.

Dong, Xin Luna and Divesh Srivastava (2013). “Big data integration”. In: 2013 IEEE
29th International Conference on Data Engineering (ICDE), pp. 1245–1248. DOI: 10.
1109/ICDE.2013.6544914.

Dong, Yuyang et al. (2020). “Efficient Joinable Table Discovery in Data Lakes: A
High-Dimensional Similarity-Based Approach”. In: CoRR abs/2010.13273. arXiv:
2010.13273. URL: https://arxiv.org/abs/2010.13273.

Duan, Songyun et al. (2012). “Instance-Based Matching of Large Ontologies Using
Locality-Sensitive Hashing”. In: The Semantic Web – ISWC 2012. Ed. by Philippe
Cudré-Mauroux et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 49–64.
ISBN: 978-3-642-35176-1.

Duchateau, Fabien et al. (2009). “(Not) yet Another Matcher”. In: Proceedings of the
18th ACM Conference on Information and Knowledge Management. CIKM ’09. Hong
Kong, China: Association for Computing Machinery, 1537–1540. ISBN: 9781605585123.
DOI: 10.1145/1645953.1646165. URL: https://doi-org.tudelft.idm.oclc.
org/10.1145/1645953.1646165.

Elshwemy, Faten et al. (Mar. 2014). “Aggregation of similarity measures in schema
matching based on generalized mean”. In: pp. 74–79. ISBN: 978-1-4799-3481-2.
DOI: 10.1109/ICDEW.2014.6818306.

https://doi.org/10.14778/3476311.3476346
https://doi-org.tudelft.idm.oclc.org/10.14778/3476311.3476346
https://doi-org.tudelft.idm.oclc.org/10.14778/3476311.3476346
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/https://doi.org/10.1016/j.neucom.2019.10.118
https://www.sciencedirect.com/science/article/pii/S0925231220307153
https://www.sciencedirect.com/science/article/pii/S0925231220307153
https://arxiv.org/abs/1901.00735
http://arxiv.org/abs/1901.00735
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-B/14/
https://scholarsarchive.byu.edu/iemssconference/2018/Stream-B/14/
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1145/375663.375731
https://doi-org.tudelft.idm.oclc.org/10.1145/375663.375731
https://doi-org.tudelft.idm.oclc.org/10.1145/375663.375731
https://doi.org/10.1109/ICDE.2013.6544914
https://doi.org/10.1109/ICDE.2013.6544914
https://arxiv.org/abs/2010.13273
https://arxiv.org/abs/2010.13273
https://doi.org/10.1145/1645953.1646165
https://doi-org.tudelft.idm.oclc.org/10.1145/1645953.1646165
https://doi-org.tudelft.idm.oclc.org/10.1145/1645953.1646165
https://doi.org/10.1109/ICDEW.2014.6818306

Bibliography 69

Embley, David, David Jackman, and Li Xu (Nov. 2002). “Attribute Match Discovery
in Information Integration: Exploiting Multiple Facets of Metadata”. In: Journal
of the Brazilian Computer Society 8. DOI: 10.1590/S0104-65002002000200004.

Embley, David W., Li Xu, and Yihong Ding (2004). “Automatic Direct and Indirect
Schema Mapping: Experiences and Lessons Learned”. In: SIGMOD Rec. 33.4,
14–19. ISSN: 0163-5808. DOI: 10.1145/1041410.1041413. URL: https://doi-
org.tudelft.idm.oclc.org/10.1145/1041410.1041413.

Engmann, Daniel and Sabine Maßmann (2007). “Instance Matching with COMA++”.
In: BTW Workshops.

Gholami, Raoof and Nikoo Fakhari (2017). “Chapter 27 - Support Vector Machine:
Principles, Parameters, and Applications”. In: Handbook of Neural Computation.
Ed. by Pijush Samui, Sanjiban Sekhar, and Valentina E. Balas. Academic Press,
pp. 515–535. ISBN: 978-0-12-811318-9. DOI: https://doi.org/10.1016/B978-
0-12-811318-9.00027-2. URL: https://www.sciencedirect.com/science/
article/pii/B9780128113189000272.

Goebel, Michael and Le Gruenwald (1999). “A Survey of Data Mining and Knowl-
edge Discovery Software Tools”. In: SIGKDD Explor. Newsl. 1.1, 20–33. ISSN: 1931-
0145. DOI: 10.1145/846170.846172. URL: https://doi.org/10.1145/846170.
846172.

Hack, Ulrike (2021). What’s the real story behind the explosive growth of data? URL:
https://www.red-gate.com/blog/database-development/whats-the-real-
story-behind-the-explosive-growth-of-data.

Hai Do, Hong (2007). Schema Matching and Mapping-Based Data Integration: Architec-
ture, Approaches and Evaluation. Saarbrücken, DEU: VDM Verlag. ISBN: 3865509975.

Halevy, Alon Y. (2001). “Answering Queries Using Views: A Survey”. In: The VLDB
Journal 10.4, 270–294. ISSN: 1066-8888. DOI: 10.1007/s007780100054. URL: https:
//doi-org.tudelft.idm.oclc.org/10.1007/s007780100054.

He, Yeye, Kris Ganjam, and Xu Chu (2015). “Sema-join: joining semantically-related
tables using big table corpora”. In: Proceedings of the VLDB Endowment 8.12, pp. 1358–
1369.

Hidalgo, César A. et al. (2018). “The Principle of Relatedness”. In: Unifying Themes in
Complex Systems IX. Ed. by Alfredo J. Morales et al. Cham: Springer International
Publishing, pp. 451–457. ISBN: 978-3-319-96661-8.

King, Timothy (2019). 80 percent of your data will be unstructured in five years. URL:
https://solutionsreview.com/data- management/80- percent- of- your-
data-will-be-unstructured-in-five-years/.

Koksalmis, Emrah and Özgür Kabak (2019). “Deriving decision makers’ weights in
group decision making: An overview of objective methods”. In: Information Fu-
sion 49, pp. 146–160. ISSN: 1566-2535. DOI: https://doi.org/10.1016/j.inffus.
2018.11.009. URL: https://www.sciencedirect.com/science/article/pii/
S1566253518303464.

Koutras, Christos et al. (2021). “Valentine: Evaluating Matching Techniques for Dataset
Discovery”. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pp. 468–479. DOI: 10.1109/ICDE51399.2021.00047.

Krawiec, Krzysztof (2002). “Genetic programming-based construction of features for
machine learning and knowledge discovery tasks”. In: Genetic Programming and
Evolvable Machines 3.4, pp. 329–343.

Lee, Yoonkyong et al. (Jan. 2007). “ETuner: Tuning schema matching software using
synthetic scenarios”. In: VLDB J. 16, pp. 97–122. DOI: 10.1007/s00778- 006-
0024-z.

https://doi.org/10.1590/S0104-65002002000200004
https://doi.org/10.1145/1041410.1041413
https://doi-org.tudelft.idm.oclc.org/10.1145/1041410.1041413
https://doi-org.tudelft.idm.oclc.org/10.1145/1041410.1041413
https://doi.org/https://doi.org/10.1016/B978-0-12-811318-9.00027-2
https://doi.org/https://doi.org/10.1016/B978-0-12-811318-9.00027-2
https://www.sciencedirect.com/science/article/pii/B9780128113189000272
https://www.sciencedirect.com/science/article/pii/B9780128113189000272
https://doi.org/10.1145/846170.846172
https://doi.org/10.1145/846170.846172
https://doi.org/10.1145/846170.846172
https://www.red-gate.com/blog/database-development/whats-the-real-story-behind-the-explosive-growth-of-data
https://www.red-gate.com/blog/database-development/whats-the-real-story-behind-the-explosive-growth-of-data
https://doi.org/10.1007/s007780100054
https://doi-org.tudelft.idm.oclc.org/10.1007/s007780100054
https://doi-org.tudelft.idm.oclc.org/10.1007/s007780100054
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years/
https://solutionsreview.com/data-management/80-percent-of-your-data-will-be-unstructured-in-five-years/
https://doi.org/https://doi.org/10.1016/j.inffus.2018.11.009
https://doi.org/https://doi.org/10.1016/j.inffus.2018.11.009
https://www.sciencedirect.com/science/article/pii/S1566253518303464
https://www.sciencedirect.com/science/article/pii/S1566253518303464
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1007/s00778-006-0024-z
https://doi.org/10.1007/s00778-006-0024-z

70 Bibliography

Lenzerini, Maurizio (2002). “Data Integration: A Theoretical Perspective”. In: Pro-
ceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems. PODS ’02. Madison, Wisconsin: Association for Comput-
ing Machinery, 233–246. ISBN: 1581135076. DOI: 10.1145/543613.543644. URL:
https://doi-org.tudelft.idm.oclc.org/10.1145/543613.543644.

Li, Wen-Syan and Chris Clifton (n.d.). “Semantic Integration in Heterogeneous Databases
Using Neural Networks”. In: Proceedings of the 20th International Conference on
Very Large Data Bases (). URL: https://par.nsf.gov/biblio/10077889.

— (Apr. 2000). “SEMINT: A tool for identifying attribute correspondences in het-
erogeneous databases using neural networks”. In: Data Knowl. Eng. 33, pp. 49–
84. DOI: 10.1016/S0169-023X(99)00044-0.

Li, Wenwen (2010). “Automated Data Discovery, Reasoning and Ranking in Support
of Building an Intelligent Geospatial Search Engine”. AAI3421139. PhD thesis.
USA. ISBN: 9781124201436.

MacMillan, Don (2014). “Data Sharing and Discovery: What Librarians Need to
Know”. In: The Journal of Academic Librarianship 40.5, pp. 541–549. ISSN: 0099-
1333. DOI: https://doi.org/10.1016/j.acalib.2014.06.011. URL: https:
//www.sciencedirect.com/science/article/pii/S0099133314000950.

Madhavan, Jayant, Philip Bernstein, and Erhard Rahm (July 2001). “Generic Schema
Matching with Cupid”. In: Proc 27th VLDB Conference.

Madhavan, Jayant et al. (June 2003). “Corpus-based Schema Matching”. In.
Mehdi, Osama A., Hamidah Ibrahim, and Lilly Suriani Affendey (2012). “Instance

based Matching using Regular Expression”. In: Procedia Computer Science 10. ANT
2012 and MobiWIS 2012, pp. 688–695. ISSN: 1877-0509. DOI: https://doi.org/
10.1016/j.procs.2012.06.088. URL: https://www.sciencedirect.com/
science/article/pii/S1877050912004450.

Milo, Tova and Sagit Zohar (1998). “Using Schema Matching to Simplify Heteroge-
neous Data Translation”. In: Proceedings of the 24rd International Conference on Very
Large Data Bases. VLDB ’98. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc., 122–133. ISBN: 1558605665.

Mork, P. et al. (2006). “Integration Workbench: Integrating Schema Integration Tools”.
In: 22nd International Conference on Data Engineering Workshops (ICDEW’06), pp. 3–
3. DOI: 10.1109/ICDEW.2006.69.

Nguyen, Hien M, Eric W Cooper, and Katsuari Kamei (2009). “Borderline over-
sampling for imbalanced data classification”. In: Proceedings: Fifth International
Workshop on Computational Intelligence & Applications. Vol. 2009. 1. IEEE SMC Hi-
roshima Chapter, pp. 24–29.

Nguyen, Hoang Vu et al. (2014). “Detecting Correlated Columns in Relational Databases
with Mixed Data Types”. In: Proceedings of the 26th International Conference on Sci-
entific and Statistical Database Management. SSDBM ’14. Aalborg, Denmark: Asso-
ciation for Computing Machinery. ISBN: 9781450327220. DOI: 10.1145/2618243.
2618251. URL: https://doi.org/10.1145/2618243.2618251.

Özsu, M Tamer and Patrick Valduriez (1999). Principles of distributed database systems.
Vol. 2. Springer.

Pei, Jin, Jun Hong, and David Bell (2006). “A Novel Clustering-Based Approach to
Schema Matching”. In: Advances in Information Systems. Ed. by Tatyana Yakhno
and Erich J. Neuhold. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 60–69.
ISBN: 978-3-540-46292-7.

Peukert, Eric, Sabine Maßmann, and Kathleen König (2010). “Comparing Similarity
Combination Methods for Schema Matching”. In: GI Jahrestagung.

https://doi.org/10.1145/543613.543644
https://doi-org.tudelft.idm.oclc.org/10.1145/543613.543644
https://par.nsf.gov/biblio/10077889
https://doi.org/10.1016/S0169-023X(99)00044-0
https://doi.org/https://doi.org/10.1016/j.acalib.2014.06.011
https://www.sciencedirect.com/science/article/pii/S0099133314000950
https://www.sciencedirect.com/science/article/pii/S0099133314000950
https://doi.org/https://doi.org/10.1016/j.procs.2012.06.088
https://doi.org/https://doi.org/10.1016/j.procs.2012.06.088
https://www.sciencedirect.com/science/article/pii/S1877050912004450
https://www.sciencedirect.com/science/article/pii/S1877050912004450
https://doi.org/10.1109/ICDEW.2006.69
https://doi.org/10.1145/2618243.2618251
https://doi.org/10.1145/2618243.2618251
https://doi.org/10.1145/2618243.2618251

Bibliography 71

Rahm, Erhard and Philip Bernstein (Dec. 2001). “A Survey of Approaches to Auto-
matic Schema Matching.” In: VLDB J. 10, pp. 334–350. DOI: 10.1007/s007780100057.

Shvaiko, Pavel and Jérôme Euzenat (2005). “A Survey of Schema-Based Matching
Approaches”. In: Journal on Data Semantics IV. Ed. by Stefano Spaccapietra. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 146–171. ISBN: 978-3-540-31447-9.

Stonebraker, Michael, Ihab F Ilyas, et al. (2018). “Data Integration: The Current Status
and the Way Forward.” In: IEEE Data Eng. Bull. 41.2, pp. 3–9.

Stonebraker, Michael et al. (2013). “Data Curation at Scale: The Data Tamer System”.
In: In CIDR 2013.

Sun, Yanmin, Andrew KC Wong, and Mohamed S Kamel (2009). “Classification of
imbalanced data: A review”. In: International journal of pattern recognition and ar-
tificial intelligence 23.04, pp. 687–719.

Sutanta, Edhy et al. (2016). “Survey: Models and Prototypes of Schema Matching.”
In: International Journal of Electrical & Computer Engineering (2088-8708) 6.3.

Tu, KeWei and Yong Yu (2005). “CMC: Combining Multiple Schema-Matching Strate-
gies Based on Credibility Prediction”. In: Database Systems for Advanced Applica-
tions. Ed. by Lizhu Zhou, Beng Chin Ooi, and Xiaofeng Meng. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 888–893. ISBN: 978-3-540-32005-0.

Wang, Jiannan, Guoliang Li, and Jianhua Feng (2014). “Extending String Similarity
Join to Tolerant Fuzzy Token Matching”. In: ACM Trans. Database Syst. 39.1. ISSN:
0362-5915. DOI: 10.1145/2535628. URL: https://doi-org.tudelft.idm.oclc.
org/10.1145/2535628.

Weikum, Gerhard (July 2013). “Data Discovery”. In: Data Science Journal 12, GRDI26–
GRDI31. DOI: 10.2481/dsj.GRDI-005.

wu, Mingfang et al. (Jan. 2019). “Data Discovery Paradigms: User Requirements and
Recommendations for Data Repositories”. In: Data Science Journal 18. DOI: 10.
5334/dsj-2019-003.

Yakout, Mohamed et al. (2012). “InfoGather: Entity Augmentation and Attribute Dis-
covery by Holistic Matching with Web Tables”. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’12. Scottsdale,
Arizona, USA: Association for Computing Machinery, 97–108. ISBN: 9781450312479.
DOI: 10.1145/2213836.2213848. URL: https://doi-org.tudelft.idm.oclc.
org/10.1145/2213836.2213848.

Zhang, Meihui et al. (2011). “Automatic Discovery of Attributes in Relational Databases”.
In: Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’11. Athens, Greece: Association for Computing Machinery,
109–120. ISBN: 9781450306614. DOI: 10.1145/1989323.1989336. URL: https:
//doi.org/10.1145/1989323.1989336.

Zhao, Huimin and Sudha Ram (2007). “Combining Schema and Instance Informa-
tion for Integrating Heterogeneous Data Sources”. In: Data Knowl. Eng. 61.2, 281–303.
ISSN: 0169-023X. DOI: 10.1016/j.datak.2006.06.004. URL: https://doi-
org.tudelft.idm.oclc.org/10.1016/j.datak.2006.06.004.

Zhu, Erkang, Yeye He, and Surajit Chaudhuri (2017). “Auto-Join: Joining Tables
by Leveraging Transformations”. In: Proc. VLDB Endow. 10.10, 1034–1045. ISSN:
2150-8097. DOI: 10.14778/3115404.3115409. URL: https://doi-org.tudelft.
idm.oclc.org/10.14778/3115404.3115409.

Zhu, Erkang et al. (2019). “JOSIE: Overlap Set Similarity Search for Finding Join-
able Tables in Data Lakes”. In: Proceedings of the 2019 International Conference
on Management of Data. SIGMOD ’19. Amsterdam, Netherlands: Association for
Computing Machinery, 847–864. ISBN: 9781450356435. DOI: 10.1145/3299869.

https://doi.org/10.1007/s007780100057
https://doi.org/10.1145/2535628
https://doi-org.tudelft.idm.oclc.org/10.1145/2535628
https://doi-org.tudelft.idm.oclc.org/10.1145/2535628
https://doi.org/10.2481/dsj.GRDI-005
https://doi.org/10.5334/dsj-2019-003
https://doi.org/10.5334/dsj-2019-003
https://doi.org/10.1145/2213836.2213848
https://doi-org.tudelft.idm.oclc.org/10.1145/2213836.2213848
https://doi-org.tudelft.idm.oclc.org/10.1145/2213836.2213848
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1145/1989323.1989336
https://doi.org/10.1016/j.datak.2006.06.004
https://doi-org.tudelft.idm.oclc.org/10.1016/j.datak.2006.06.004
https://doi-org.tudelft.idm.oclc.org/10.1016/j.datak.2006.06.004
https://doi.org/10.14778/3115404.3115409
https://doi-org.tudelft.idm.oclc.org/10.14778/3115404.3115409
https://doi-org.tudelft.idm.oclc.org/10.14778/3115404.3115409
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065

72 Bibliography

3300065. URL: https://doi-org.tudelft.idm.oclc.org/10.1145/3299869.
3300065.

Ziegler, Patrick and Klaus R. Dittrich (2007). “Data Integration — Problems, Ap-
proaches, and Perspectives”. In: Conceptual Modelling in Information Systems En-
gineering. Ed. by John Krogstie, Andreas Lothe Opdahl, and Sjaak Brinkkemper.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 39–58. ISBN: 978-3-540-72677-
7. DOI: 10.1007/978-3-540-72677-7_3. URL: https://doi.org/10.1007/978-
3-540-72677-7_3.

Zikopoulos, P. and C. Eaton (2011). Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data. McGraw-Hill Education. ISBN: 9780071790543.
URL: https://books.google.nl/books?id=0sJqV1t4UVsC.

https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065
https://doi-org.tudelft.idm.oclc.org/10.1145/3299869.3300065
https://doi-org.tudelft.idm.oclc.org/10.1145/3299869.3300065
https://doi.org/10.1007/978-3-540-72677-7_3
https://doi.org/10.1007/978-3-540-72677-7_3
https://doi.org/10.1007/978-3-540-72677-7_3
https://books.google.nl/books?id=0sJqV1t4UVsC

	Declaration of Authorship
	Abstract
	Introduction
	Problem description
	Contribution
	Research Questions
	Overview

	Background
	Data discovery
	Applications
	Aurum
	Attribute discovery

	Relatedness
	Schema matching taxonomy
	Schema-based matching
	Element-level approaches
	Structure-level approaches

	Instance-based matching

	Combining matchers
	Matcher selection
	Aggregation Strategies

	Related work
	LSD (2001)
	Cupid (2001)
	Coma (2002)
	Embley et al (2002)
	MKB (2003)
	Harmony (2006)
	YAM (2009)
	Data tamer (2013)

	Conclusion

	Methodology
	Approach overview
	Methods
	Multiplicative weight update method
	Determining the weights

	Reinforcement learning
	Determining the weights

	Linear programming
	Determining the weights

	Machine learning
	Machine learning model

	User Interface
	Configuration
	Labelling
	Evaluation

	Experiments
	Data
	TPC-H
	Fabricated TPC-H

	IMDb
	Fabricated IMDb

	ING

	Metrics
	Cluster Metrics
	Traditional Metrics
	Valentine Metrics for Score Quality

	Results
	TPC-H
	Fabricated TPC-H
	IMDb
	Fabricated IMDb
	ING
	Discussion

	Machine Learning Results
	Data
	Evaluating the model
	Discussion

	Conclusion
	Limitations

	User Interface: 4-step form for configuring our methodology
	User Interface: Labelling ground truth clusters
	User Interface: Evaluation tool
	Manual noise mapping for fabricated TPC-H column names
	Results: Example of formed clusters compared to the ground truth
	Bibliography

