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Introduction

In recent years, the evolution of Dutch healthcare practices has underscored the importance of innovative
solutions to foster sustainable healthcare delivery. Recognizing this imperative, a collaborative effort between
PostNL Health and ANWB Medical Air Assistance in the Netherlands seeks to address this gap by leveraging a
fleet of drones to transport medical materials.

While the companies are actively engaged in safety testing for drone technology, they are concurrently
developing a comprehensive business case for their proposed service, Medical Drone Service. This endeavor
involves careful considerations, from identifying potential customer segments to assessing daily operational
costs to inform pricing strategies.

Seeking expert input, the companies contacted Delft University of Technology to devise a tailored strategy
aligned with their unique network requirements. Consequently, we developed a fleet management strategy
characterized by its adaptability to unpredictable demand. The company provided valuable insights through-
out the process through bi-weekly update meetings and active participation in milestone events such as kick-
off, midterm, and green light meetings. Enabling this company to embark on its journey holds promise for
fostering sustainable innovations in healthcare.

This thesis report is structured as follows: Part I presents the scientific paper detailing our research find-
ings. Part II encompasses a comprehensive literature review that provides a theoretical foundation for our
study. Finally, Part III offers additional insights and results from our research efforts.
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Design and Assessment of a Fleet Management Strategy for UAV
Pickup and Delivery Networks

Nikki Kamphuis∗

Delft University of Technology, Delft, The Netherlands

Abstract

The Dutch healthcare sector wrestles with rising costs, staff shortages, and increased demand
due to healthcare centralization. This, coupled with worsening traffic congestion, underscores
the need for efficient solutions like drone-based medical transport. This paper addresses the
need for effective fleet management strategies tailored to the unique demands of the health-
care environment. Specifically, it seeks to develop an adaptive strategy that accommodates the
network’s expansion and the inherently stochastic and urgent nature of pickup and delivery
orders associated with medical transport. Utilizing an agent-based model formulation, the pa-
per introduces a novel approach combining adapted temporal sequential single-item auctions
for allocation and scheduling with reinforcement learning for drone repositioning to optimize
fleet management. Our findings highlight the strategy’s consistent efficiency across various
demand scenarios, maintaining performance within predefined limits. Notably, the reposition-
ing module significantly enhances the fleet utility and the fraction of served orders, albeit at
the expense of increased cost per delivery. Conversely, the reallocation module causes mini-
mal performance improvement. Under heightened stochasticity introduced by urgent orders,
the strategy maintains stable costs per delivery while fleet utility and order fulfillment rates
decline. Additionally, our investigation underscores the increasing benefits of repositioning in
more stochastic scenarios. Moreover, exploring hybrid fleets reveals that while short-range
high-payload drones can reduce cost per delivery, they compromise overall fleet utility and
order fulfillment rates. Furthermore, we identify the under-utilization of payload capacity in
scenarios with orders weighing up to 2 kilograms for a drone with a payload of 10 kilograms.

1 Introduction

Confronted with escalating service demands and a con-
tracting workforce, the Dutch healthcare sector is ur-
gently seeking innovative solutions and enhanced sup-
port to maintain its services. The Dutch Healthcare
Authority (NZa) has recognized the resource strains
and the imperative for strategic and operational re-
forms, identifying the centralization of services as an
essential tactic(NZa-Magazines 04, 2022). However,
the move towards centralization increases the necessity
for medical transport, underscored by the 3.5 million
medical deliveries made annually (Dogterom, 2023).
This need emerges amid escalating traffic congestion,
which saw a significant surge of 17% in 2023 alone,
further burdening the already overloaded Dutch road
network (ANWB Verkeersinformatie, 2023).

Simultaneously, the increasing need for rapid and
efficient delivery solutions has stimulated interest in
drone-assisted delivery, which avoids common issues
like traffic congestion and enables access to remote lo-
cations, reducing the environmental impact of deliver-
ies. Moreover, the carbon-neutral nature of drones fur-
ther reduces their environmental impact (Demir et al.,
2022).

Operational cases using drone technology have al-
ready been established, setting a precedent for fur-
ther implementation of this application. For instance,
the company Zipline stands out as a front-runner in
this field, particularly renowned for delivering medical
supplies to remote areas like Rwanda. This pioneer-
ing company has successfully showcased the potential
of drones to revolutionize healthcare logistics by de-
livering medical supplies to remote and underserved
communities, thereby demonstrating the transforma-
tive impact and feasibility of drone technology in crit-
ical services (Zipline, 2023).

Building on the promising capabilities of drone-
assisted deliveries, Medical Drone Service (MDS), a
drone-based delivery service, presents a vital solution
for the Dutch healthcare industry, addressing the press-
ing need for swift and dependable medical transport.
By guaranteeing cost-effective and reliable drone deliv-
eries of medical supplies, the ambitions of MDS align
with sustainable healthcare practices. The challenge,
particularly for companies like MDS, revolves around
learning efficient fleet management to maintain oper-
ational efficiency while preserving the commitment to
high service quality standards. This balance is crucial
in an environment characterized by fluctuating and un-

∗Msc Student, Sustainable Air Transport, Faculty of Aerospace Engineering, Delft University of Technology

1



predictable demand, where reliability is paramount due
to the critical nature of medical transport.

Existing drone pickup and delivery strategies are
often developed with simpler, static environments in
mind, lacking the flexibility to adapt to dynamic, real-
time variations. This stands in contrast to adaptive
ground-vehicle-based research, which mainly serves
ride-hailing services. However, these are limited to
processing single requests sequentially, a notable short-
coming. Additionally, insights from traditional vehicle
pickup and delivery research underscore the limitations
of fully centralized approaches, highlighting their po-
tential to constrain scalability. This highlights a cru-
cial research gap: the need for scalable, adaptive algo-
rithms capable of handling real-time changes, like fluc-
tuating demand and environmental conditions, while
efficiently managing multiple orders simultaneously.

This framework is proposed within an agent-based
model formulation, which is advantageous due to its in-
herent modularity. This feature enables the model to
mirror the complexities of the network accurately and
offers opportunities for decentralization. The choice
of auction mechanisms for allocation and scheduling
is grounded in their scalability and capacity to yield
near-optimal results efficiently. Moreover, the incorpo-
ration of reinforcement learning techniques for drone
repositioning is motivated by their adaptability to un-
foreseen scenarios and proficiency in making informed
decisions based on anticipated future conditions. To-
gether, these novel approaches promise to dynamically
adjust fleet management to accommodate changing op-
erational demands and environmental conditions. This
strategic combination aims to significantly reduce op-
erational costs and boost efficiency within the critical
domain of medical logistics, demonstrating a tailored
response to the unique challenges presented in this sec-
tor.

The structure of this paper is organized as follows:
Initially, section 2 delves into a detailed examination of
the operational conditions and the rationale behind the
selection of our techniques. Following this, section 3
outlines the agent-based model formulation, elaborat-
ing on each component. Section 4 then offers an in-
depth look at our fleet management strategy. We con-
duct experiments detailed in section 5 to evaluate the
strategy’s effectiveness, with the outcomes presented in
section 6 .section 7 summarizes the results and reflects
on the initial hypotheses and puts forth recommenda-
tions, and section 8 discusses the conclusion.

2 Background

This section starts with a problem description, stating
all relevant details about the operational process of the
drone delivery service for medical transport. Then, a
literature study on similar problems is presented, indi-
cating the gap in current literature. Finally, we provide
the reasoning behind the selected approach.

2.1 Problem Description
The operational process of MDS is the foundation of
our model. This process is organized as follows: When
an order is received, the MDS operations center as-
signs it to a suitable drone. Before the drone departs
and arrives at the pickup location, safety checks such
as weather assessments are made to determine if con-
ditions permit flight. Although these pre-flight and
landing checks are crucial in practice, they are omitted
in our simulation for simplification.

Following the safety assessment, the order is loaded
onto the drone. A battery life check is then conducted
to ensure the drone has sufficient power for the flight,
which, if necessary, leads to a battery swap. Once
the delivery is completed, the drone undergoes another
battery check and is sent to an appropriate station to
await the next task.

MDS aims to deploy drones with a range of approx-
imately 100 kilometers at a speed of 90 kilometers per
hour and a maximum payload of 3 kilograms. This
capacity enables the possibility of handling multiple
deliveries simultaneously. For scenarios where drone
delivery is not feasibledue to weather conditions, op-
erational constraints, or insufficient capacitya backup
network of cars is available to guarantee service conti-
nuity.

Orders are categorized into three categories based
on their urgency: urgent, semi-urgent, and same-day.
Urgent orders are to be delivered within one hour of
receipt, semi-urgent orders within two to four hours,
and same-day orders by the end of the day they are
placed. This urgency categorization adds a layer of
unpredictability to the operation, necessitating robust
management strategies to uphold high service stan-
dards. Accordingly, these urgency levels play a sig-
nificant role in our simulation model, influencing how
deliveries are prioritized and managed.

Thus, the task is to devise a fleet management stra-
tegy that satisfies the following requirements (denoted
as Rn):

• R1 - Modular: Given that MDS is in its pilot
phase and thus subject to significant growth, the
model must support easy modification, including
the expansion, adjustment, and removal of vari-
ables.

• R2 - Explainable: As the model informs future
decision-making, it must be transparent, allowing
easy understanding of its processes and decisions.

• R3 - Scalable: MDS intends to create a nation-
wide network covering all sorts of medical part-
ners. Therefore, the fleet management strategy
must emphasize scalability.

• R4 - Efficient: Given the capabilities of the in-
tended drone, the strategy must be able to inte-
grate orders to facilitate efficient operations.

• R5 - Adaptable: The strategy must be capable
of adjusting to the stochastic nature of order ar-
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rivals, ensuring robust performance in a dynamic
environment.

2.2 Research Context
Literature relevant to the problem can be split into two
categories: literature on drone-based pickup and de-
livery problems and ground-vehicle-based pickup and
delivery problems.

Starting with drone-based problems, Macrina et al.
(2020) comprehensively discusses the drone delivery
problem (DDP). Their discussion shows that complex-
ities faced by MDS, like managing dynamic conditions
and meeting strict time requirements in a multi-region
environment, still need to be explored. The tendency
of current research on the drone delivery problem to
focus on small-scale scenarios underscores a gap in ad-
dressing more complex operational frameworks.

For instance, Liu (2019) introduces a rolling horizon
optimization algorithm for on-demand meal delivery
with drones. They recommend a shift away from cen-
tralized decision-making models, citing enhanced scala-
bility and an improved capacity to navigate uncertain-
ties. Similarly, Huang et al. (2022) create a methodol-
ogy for task allocation and scheduling drones, utilizing
an iterative heuristic. They underscore the importance
of looking into inter-region delivery systems.

Furthermore, Campuzano et al. (2022) examine
managing drone fleets for time-sensitive orders. Their
research, focused on the balance between dispatching
drones and recharging to minimize delays, primarily
revolves around operations from a single central hub,
indicating a limitation in scope that may only partially
translate to broader, more decentralized networks.

Zhen et al. (2023) tackle the complexities of large-
scale assignment and routing problems with a mixed-
integer programming (MIP) formulation and column
generation heuristic. Despite their contributions, they
acknowledge a significant oversight in not incorporat-
ing dynamic order assignment optimization based on
real-time demand fluctuations.

Lastly, the application of Q-learning for dynamic
drone dispatching by Chen et al. (2022b) shows
promise for same-day deliveries. However, they note li-
mitations in scalability and adaptability to large-scale
operational changes, which reflects a common theme
across existing research.

The collective insights from these studies highlight
a critical gap in the literature on the DDP: a lack of
comprehensive strategies that are both scalable and
adaptive to the specific and complex needs of networks
like MDS.

Turning our attention to the literature on ground-
vehicle-based pickup and delivery, research on dynamic
ride-sharing is very relevant to the problem posed by
MDS.

Beirigo et al. (2022) and Kullman et al. (2021)
delve into mobility on demand, respectively introduc-
ing an approximate dynamic programming and deep
reinforcement learning formulation for dispatching and

rebalancing vehicles or incorporating third-party ve-
hicles to sustain service levels or optimizing for cost.
They argue that these methods surpass reactive opti-
mization strategies. However, research on ride-sharing
is limited in usefulness due to the disability to process
more than a single request at a time.

Agatz et al. (2012) discuss consolidation of orders
through traditional optimization and note the advan-
tages of decentralized matching algorithms for large-
scale networks, pointing towards the need for more
agile and adaptable operational frameworks. Arslan
et al. (2018) work on a rolling horizon algorithm for
crowd-sourced delivery and underscore a gap in using
predictive data for order arrivals, indicating a direction
for future research.

Hildebrandt et al. (2023)’s proposal to integrate re-
inforcement learning with traditional vehicle routing
problem solvers for stochastic dynamic vehicle routing
problems (SDVRP) hints at the potential for a predic-
tive, comprehensive approach to addressing the com-
plexities of SDVRPs.

In conclusion, while research on ride-hailing ser-
vices is promising, it faces a notable limitation in appli-
cability to MDS by processing single requests sequen-
tially. Additionally, insights from traditional vehicle
pickup and delivery research highlight the drawbacks
of fully centralized approaches, underscoring their po-
tential to limit scalability. These conclusions combined
with the insights drawn from research on the DDP un-
derscores the usefulness of our research objective: to
design and assess an adaptive strategy for large-scale
pickup and delivery networks.

2.3 Selection of Methods
Various techniques have been evaluated to develop the
vehicle management strategy. The following subsec-
tions provide a detailed overview of the considerations
for each component of this strategy.

2.3.1 Agent-Based Modelling

The decision to use an agent-based modelling tech-
niques was made to meet requirements R1, R2, and
R3. Agent-based models are favored for their bottom-
up approach, which enhances modularity. New agents
with unique properties can be easily integrated into the
model. Additionally, these models are inherently de-
centralized, aligning with previously mentioned strate-
gies for enhancing scalability. This decentralization
contributes to the system’s flexibility and capacity to
better reflect complex scenarios. Lastly, agent-based
modeling stands out for its dual capability to conduct
local and system-wide analyses, enhancing our ability
to understand the model’s dynamics in detail. Such
an understanding is crucial for accurately interpreting
outcomes and making well-informed decisions (Macal
and North, 2009). To implement agent-based mod-
elling, Python’s Mesa library is used. Mesa enables
users to quickly develop agent-based models with pre-
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built core components like spatial grids, agent sched-
ulers, or custom implementations.

2.3.2 Task Allocation and Scheduling

The selection process for a task allocation and schedul-
ing method suitable for the MDS network focused on
the need for a method that satisfies the requirements
set in section 2.1.

In Multi-Robot Task Allocation (MRTA) research,
strategies have evolved from centralized to decentral-
ized, auction-based methods. Highlighted by Khamis
et al. (2015) and Korsah et al. (2013), auction-based
methods merge centralized planning’s reliability with
distributed systems’ adaptability, efficiently manag-
ing dynamic environments and uncertainties while en-
suring robustness by avoiding single failure points.
Though they might not always reach the optimal out-
comes of optimization strategies in complex scenarios,
these auction-based approaches offer scalability and
(near-)optimal solutions as proven by Lagoudakis et al.
(2005), embodying a favorable compromise for design
modularity required in R1.

Consequently, different auction mechanisms were
investigated to identify the most appropriate method
to meet our specific requirements. The Sequential
Single-Item (SSI) and Sequential Single-Cluster (SSC)
auctions stood out for effectively balancing compu-
tational demands with utilizing inter-task synergies
(Koenig et al., 2010; Heap and Pagnucco, 2013). The
Temporal Sequential Single-Item (TeSSI) auction de-
veloped by Nunes and Gini (2015), an extension of
SSI, was particularly appealing due to its capability
to handle temporal constraints. However, the method
does not allow flexible pickup and delivery operations
in which the delivery task does not directly follow the
pickup task.

The Adapted TeSSI auction, developed by Chen
et al. (2022a), was selected for its ability to intri-
cately schedule and optimize the routes between pickup
and delivery points, unlike the original TeSSI auc-
tion. This method efficiently arranges all pickup and
delivery tasks, improving the MDS network’s overall
scheduling and routing efficiency, thus satisfying R4.
This method will be enhanced with a feature that per-
mits the decommitment from tasks to cater to the dy-
namism within the MDS network as required by R5,
allowing for greater flexibility and responsiveness to
changes.

2.3.3 Repositioning

Vehicle repositioning is essential in emergency health-
care, taxi services, and bike-sharing sectors to ensure
an efficient match between supply and demand. The
strategic placement of resources such as ambulances or
taxis can significantly enhance service responsiveness
and customer satisfaction by minimizing wait times
and ensuring availability in high-demand areas. Given
the nature of the urgent orders in the MDS network,
we deem it necessary to include repositioning in our ve-

hicle management strategy to make our strategy more
adaptable (R5).

Studies, including those by Sayarshad and Chow
(2015), highlight the superiority of non-myopic,
forward-looking models over simpler, myopic alterna-
tives for their ability to anticipate and prepare for fu-
ture demand. This foresight is crucial for drone repo-
sitioning within the MDS network, ensuring drones are
strategically placed in anticipation of peak demand pe-
riods. Therefore, our focus is primarily on non-myopic
methods that evaluate expected future demand, en-
abling more informed and proactive decision-making
to optimize drone positioning for upcoming needs.

Among the various repositioning strategies exam-
ined, real-time relocation models, compliance tables,
and reinforcement learning approaches present unique
advantages and challenges. Inspired by ambulance
relocation strategies, real-time models offer rapid re-
sponse to changing demands but are computation-
ally intensive, often requiring precomputed solutions
to mitigate delays (Bélanger et al., 2019). Compliance
tables are less demanding computationally, thanks to
precalculation, but their static nature hampers dy-
namic adaptability, leading to potential inefficiencies
in vehicle use (van Barneveld, 2016).

Reinforcement learning introduces a dynamic where
an agent learns to make decisions by adapting its ac-
tions based on received feedback in the form of rewards
or penalties. Within this realm, the Monte Carlo Pol-
icy Gradient method stands out. It updates the agent’s
decision-making policy towards higher rewards based
on the outcomes of entire episodes without requiring a
model of the environment.

This reinforcement learning approach is particu-
larly promising, balancing adaptability and computa-
tional efficiency. It facilitates incremental improve-
ments and system adjustments more smoothly than
the rigid frameworks of approximate dynamic program-
ming, real-time optimization, and compliance tables
(Schmid, 2012; Nasrollahzadeh et al., 2018). These
benefits make it a strong candidate for effectively repo-
sitioning drones within the network.

Consequently, the Monte Carlo policy gradient is
identified as the most suitable technique for vehicle
repositioning drones within the MDS network, offering
a good blend of adaptability, efficiency, and strategic
foresight essential for managing the dynamic demands
of the network.

3 Model Formulation
Agent-based modeling techniques are applied to simu-
late the operational environment of MDS and assess the
capabilities of the devised strategy. This class of mod-
eling methods is particularly suited for the problem at
hand due to its modularity. This section provides an
in-depth exploration of the model components, encom-
passing pre-processing procedures, underlying assump-
tions, and the specifications governing the environment
and the agents.
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3.1 Pre-processing
The model incorporates pre-computed routes for
drones and cars, calculated through the methodology
established by van Haasteren (2022).

For drones, van Haasteren employs an A* algo-
rithm capable of minimizing either distance or third-
party risk (TPR). These two optimization criteria de-
fine routes as either being fast or safe. The environ-
ment is discretized into a grid for the TPR computa-
tion, and a risk value is computed for each cell. This
risk assessment is based on four failure types: ballis-
tic descent, uncontrolled glide, parachute descent, and
flyaway. By considering the probability of each failure
occurrence and the population density of each cell, a
corresponding risk value is assigned to that cell. Con-
sequently, the A* algorithm utilizes the assigned risk
values for navigation.

Van Haasteren employs the BING Maps Distance
Matrix API for cars. Through this API, the model
calculates the anticipated travel time and distance for
each hour throughout the week, considering the vari-
ability in traffic conditions. The routes generated by
the API are designated as safe routes. For fast routes,
the effect of using lights and sirens is incorporated us-
ing a speeding factor.

Although van Haasteren conducted experiments in-
volving a combination of the two route types, this
study operates under the assumption that exclusively
safe routes are employed. The assumption is built on
the expectation that risk-free drone routes will be the
standard for air traffic control in the foreseeable fu-
ture. The presence of cars in the network is solely for
backup purposes; thus, using fast routes is not deemed
necessary.

3.2 Assumptions
Key assumptions have been established to refine the
study’s focus and practical applicability. These as-
sumptions lay the groundwork for studying UAV oper-
ational dynamics within the network.

3.2.1 Energy Consumption

In the UAV research domain, the intricacies of energy
consumption often serve as a focal point as demon-
strated by Dorling et al. (2017) and Troudi et al.
(2018). However, this research adopts a simplified ap-
proach using a maximum range in this research to limit
the scope.

This study assumes a battery swap is viable at each
client location within the network. Consequently, this
assumption leads us to the critical premise that each
flight leg must be constrained to a distance shorter than
the maximum range achievable by the UAV. It is im-
portant to note that while each flight leg is limited in
range, the cumulative sum of these combined legs for
a given order may surpass the individual UAV’s maxi-
mum flight range.

3.2.2 Backup Network

MDS has implemented a contingency plan by incor-
porating a backup network of cars to fulfill orders in
instances where no drones are available. These cars
are assumed always to be positioned at an origin when
needed, and their presence is abundant within the
model. Despite the undesirable nature of relying on
cars instead of drones, the associated costs are inte-
grated into the fixed costs of the network. Conse-
quently, their influence on key performance indicators
(KPIs) is limited.

3.2.3 Observability

Due to the centralized organization of the network, full
observability is assumed. This means communication
barriers are nonexistent, and the coordinating agent is
fully aware of all drone schedules and positions. The
centralized structure facilitates seamless coordination
and presents an opportunity to maximize overall net-
work performance.

3.2.4 Maintenance

Excluded from the scope of this study are maintenance
events for drones, which occur once every 200 flight
hours. This timeframe significantly surpasses the plan-
ning horizon under consideration, allowing us to con-
centrate on operational aspects without the influence
of routine maintenance occurrences.

3.3 Environment Specification
In our agent-based model, we construct the environ-
ment by representing (a portion of) the Netherlands as
a bi-directional graph. Within this graph, each node
indicates either a customer of MDS or a designated
MDS hub for drones (potentially located at a customer
location). The connections between these nodes are as-
signed weights that could signify various factors such
as travel time, risk, emissions, or distance between the
nodes. These weights are used to determine the details
of a single flight, which serve as input to the fleet mana-
gement strategy. Please note that the weights depend
on the vehicle type, car or drone. The environment can
be classified as fully observable.

3.4 Agent Specifications
In this section, we discuss the different types of agents
within the network. Among these agents, the drone
and car agents are dynamic in nature as their pri-
mary role involves the delivery of packages. On the
other hand, the command center agent and customer
agents fall under the category of static agents. These
static agents predominantly engage in planning activ-
ities rather than dynamic, on-the-move operations. A
full overview of agent interactions is found in Figure 1.
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Figure 1: Agent interactions based on agent-based model formulation.

3.4.1 Drone Agent

The drone agent is the primary agent responsible for
deliveries within the MDS network. These agents
travel to the order’s point of origin, retrieve the or-
der, and subsequently transport it to its designated
destination. Hence, drone agents are involved in the
network’s planning and repositioning aspects.

In our model, the specifications for the standard
drone within the network are closely aligned with those
used by MDS, ensuring relevance and applicability.
The key specifications of the UAV are outlined in detail
in Table 1.

Table 1: Overview of specifications standard drone MDS.
Specification Value Unit

Speed 90 km/h
Maximum payload 3 kg

Range 100 km

We outline the properties of the drone agent below:

• Bidding property: Each drone agent can formu-
late a bid when competing in auctions for order
allocation. The determination of bids is based on
a method selected by the end user of the model.
The primary method is outlined in section 4.1.2.

• Moving property: Drone agents are equipped to
navigate over the links of the environment. The
speed of these agents is assumed to be constant,
resulting in the consistent movement of a fixed
distance during each time step. Vital aspects of
the moving property include departure and ar-
rival, during which orders are processed in the
model. Furthermore, a mandatory turnaround
time of 5 minutes is imposed, requiring each
drone to wait at least 5 minutes before initiat-
ing another departure.

• Reallocating property: Drone agents can assess
their flight schedules to identify orders suitable
for reallocation. Upon determining a suitable or-
der, the agent presents it to the command center
for potential reallocation efforts. Orders are only
reallocated when the total cost is reduced, ensur-
ing a cost-effective approach.

• Repositioning property: Following the completion
of a mission and arrival at the destination, a
drone agent in correspondence with the command
center can relocate to another position only when
the drone agent has no further flights planned.

3.4.2 Car Agent

Car agents function as the secondary delivery entities
within the network, serving as backups in scenarios
where drone agents cannot fulfill an order within the
stipulated deadline. Given their role as secondary vehi-
cles, car agents operate with reduced properties but are
consistently available, ensuring a car is always ready
to execute an unallocated order within the model. We
outline the following properties for car agents:

• Bidding property: Car agents can formulate bids
for order allocation when participating in sec-
ondary auctions. Bids are computed using rout-
ing information extracted from BING Maps Dis-
tance Matrix API. A car agent bids the sum of
the traveling costs towards the origin and the des-
tination. If the agent cannot meet the order’s
deadline, it will not provide a bid.

• Moving property: Car agents also navigate the
links of the environment. Although their speed
may vary during a journey, an average speed is
assumed, reflecting the total duration provided
by the routing API. Consequently, the move-
ment remains consistent, rendering a fixed dis-
tance during each time step. Like drone agents,

6



the processing of orders occurs during the depar-
ture and arrival phases.

3.4.3 Command Center Agent

The command center Agent plays a vital role in main-
taining a comprehensive overview of the network, over-
seeing all aspects of order and vehicle agent manage-
ment through strategic planning actions. The proper-
ties inherent to the command center are as follows:

• Order management property: The command cen-
ter manages the coordination of orders. It re-
ceives new orders from clients and publishes
them. Upon the completion of an order, the cen-
ter closes the order.

• Auctioning property: The command center allo-
cates new orders by auctioning them to vehicle
agents. Various auction types can be employed
to facilitate this allocation process, offering flex-
ibility and adaptability to different scenarios.

• Repositioning property: With a clear understand-
ing of where agents are located in the network
and knowledge of anticipated demand, the com-
mand center determines a new location for vehi-
cle agents considering repositioning maneuvers.

3.4.4 Customer Agent

Customer agents in the medical drone service network
represent various medical entities, including hospi-
tals, out-patient clinics, laboratories, and blood banks.
These entities engage with the drone service to facili-
tate the transportation of medical packages.

• Ordering property: One key functionality of cus-
tomer agents is their ability to create orders for
shipping medical material. When creating an or-
der, customers provide information such as the
package’s mass and the desired delivery deadline.
The process of order publication follows a Pois-
son process.

The Poisson process models the occurrence of
events over time. In this case, the events are
the creation of orders for package delivery. The
rate parameter λ of the Poisson process is deter-
mined by the average number of flights per day
for each link in the network. The average num-
ber of flights is calculated based on the demand
requirements and pre-determined relations. To
ensure a realistic simulation, there is a constraint
on the maximum average number of flights, set
to 5 flights per leg. The average number of flights
per leg is used to sample the time between the ar-
rivals of consecutive flights. This time represents
the duration between successive orders being cre-
ated by the customer agent.

4 Fleet Management Strategy
We introduced a multi-agent system with various agent
properties in the previous section. Within this sys-
tem, the drone agents have three key properties: bid-
ding, reallocation, and repositioning, constituting the
core elements of our fleet management strategy. This
section further elaborates on these components. Each
component is thoroughly explained in the subsequent
subsections

4.1 Allocation
To allocate resources effectively, we utilize an enhanced
version of the Adapted TeSSI allocation mechanism ini-
tially introduced by Chen et al. (2022a). Unlike the
traditional TeSSI auctions, our Adapted TeSSI mecha-
nism diverges by replacing the simple temporal net-
work with a simultaneous pickup and delivery opti-
mization framework. This modification allows for more
flexible pickup and delivery operations, where the de-
livery task does not directly follow the pickup task. For
instance, a drone can first visit two pickup destinations,
before going to a delivery destination. Consequently,
we gain the ability to intricately schedule orders, lead-
ing to more optimal routes.

We extend the formulation of the Adapted TeSSI
optimization problem by introducing drone-related
constraints and constraints specific to the MDS use-
case.

4.1.1 Adapted TeSSI Auction Mechanism

The operational workflow of the auctioneer is detailed
in Algorithm 1, where each task is directly assigned to
a vehicle agent following their publication.

The auctioneer conducts two sequential auctions to
allocate the order. First, the auctioneer tries to assign
an order to the set of drone agents, D, in the initial
auction. During this auction, drone agents bid based
on their increase in itinerary costs, conditioned on their
ability to fulfill the order within the specified deadline.

If no drone agent can meet the order’s deadline, the
auctioneer proceeds to a second auction involving the
set of car agents, C. In this auction, car agents bid
their lowest cost for executing the order. It is criti-
cal to note that drones and cars operate on distinct
scheduling mechanisms, a topic further explained in
section 4.1.2. As car agents are assumed to be abun-
dantly available, the algorithm concludes after this
stage.

Upon identifying the auction winner, the corre-
sponding order is incorporated into the agent’s set of
orders, denoted as O. Simultaneously, the agent’s pre-
vious schedule is substituted by the newly computed
schedule generated during the bidding process. Note
that flights already in progress will remain in the new
schedule.
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Algorithm 1 Pseudo algorithm for auctioneer
1: Input:

D: Set of drone agents
C: Set of car agents
Oa: Set of orders in schedule of agent a
o: Order to be allocated

2: Output:
sd/c: New schedule of either agent d ∈ D or c ∈ C

3: lowestBid = M
4: winner, winnerSchedule = None, None
5: for d ∈ D do
6: bid, newSchedule = d.makeBid(d.currentSchedule, o)
7: if bid < lowestBid then
8: lowestBid = bid

winner, winnerSchedule = d, newSchedule
9: end if

10: end for
11: if lowestBid < M then
12: o.assignedVehicle = winner

winner.replaceSchedule(winnerSchedule)
winner.orders = Owinner ∪ o

13: else
14: for c ∈ C do
15: bid, newSchedule = c.makeBid(c.currentSchedule, o)
16: if bid < lowestBid then
17: lowestBid = bid

winner, winnerSchedule = c, newSchedule
winner.orders = Owinner ∪ o

18: end if
19: end for
20: end if

4.1.2 Scheduling Mechanisms and Bids

We utilize two separate scheduling methods to man-
age car and drone agents within the system. Given
the abundant availability of car agents and their mini-
mal impact on the model’s key performance indicators,
aside from network availability, we opt for a relatively
simple scheduling approach outlined by van Haasteren
(2022). In this method, cars submit bids representing
the cost of traveling to an order’s origin and destination
points, guaranteeing they can meet the order’s dead-
line. Orders are only combined when they share the
same origin and destination. The auction is won by
the agent with the lowest bidding cost.

Figure 2: Example of drone agent schedule solution, pickup
locations are shown in white, while delivery locations are
shown in black.

On the other hand, drone agents follow a more in-
tricate scheduling procedure. When incorporating a

new order into their itinerary, drone agents solve a
version of the Simultaneous Pickup and Delivery Prob-
lem (SPDP). This approach determines the sequence of
origins and destinations to be visited. An illustrative
solution to the SPDP in the context of the MDS net-
work is presented in Figure 2. The diagram showcases
that a destination does not have to succeed its corre-
sponding origin directly, provided that the precedence
relationship between the origin and destination is up-
held. Furthermore, the combined mass of the orders on
board during each flight leg cannot exceed the payload
capacity.

When an order is received, the drone agent iden-
tifies the moment in its schedule when a complete cy-
cle of deliveries is finished. At this point, there might
be some tasks that are pending but not yet initiated.
From this moment forward, it reoptimizes the schedule
for the pending tasks and the newly published task.

The underlying mathematical model is based on
the formulation by Chen et al. (2022a), which is ex-
tended to suit the premise of the MDS network. The
formulation of the problem is as follows:

Parameters

• n: number of pickup nodes

• ñ: number of delivery nodes coupled to a pickup
node
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• P : set of pickup nodes, P = {1, ..., n}

• D: set of delivery nodes coupled to a pickup
node, D = {n+ 1, ..., n+ ñ}

• {0, 2n+ 1}: virtual start and end nodes

• V : set of all nodes, P ∪D ∪ {0, 2n+ 1}

• A: set of all arcs {(i, j) : i, j ∈ V, i ̸= j, i ̸=
2n+ 1, j ̸= 0, (i, j) ̸= (0, 2n+ 1)}

• G(V,A): Bi-directional graph, containing the
nodes on V and arcs on A

• C: payload capacity of a drone in grams

• cij : cost of traversing arc (i, j)

• di: deadline associated with node i

• lij : distance associated with travelling arc (i, j)

• mi: mass to be collected at node i

• R: range of the drone agent

• TAT : turnaround time for a drone agent

• TATi: turnaround time associated with node i,
dependent on previous movement

• tij : time in minutes associated with traversing
arc (i, j)

• tmax: maximum time order can spend on board
of the drone in minutes

Decision Variables

• Xij : Binary variable equal to 1 if arc (i, j) is used
and equal to 0 if not

• Qi: Integer variable stating the mass of the UAV
at node i. Mass is discretized to multiples of 10
grams and max(Qi) = (C/10)

• Bi: Integer variable stating time of arrival at
node i, 0 < Bi ≤ 1440.

• Zi: Binary variable to prevent subtours, equal to
1 if tij and TATi are both zero

Objective Function

The objective is to integrate the order into the cur-
rent schedule with minimal impact on the total sched-
ule cost. Therefore, we re-optimize the sequence of
pickup and delivery destinations, including the new or-
der, to minimize the total schedule cost, as depicted in
Equation 1. Here, cij represents the cost of traveling
from one node to another. Thus, cij can be zero if both
nodes are at the same location.

min
∑

(i,j)∈A

Xijcij +
∑

i∈{P+D}

Zi (1)

Constraints

This section outlines the constraints that govern
the limitations and connections within the SDPD opti-
mization problem. Equation 2 establishes that only one
arc can enter each node, except for the starting node.
Similarly, Equation 3 asserts that only one arc can
exit each node, excluding the end node. Moving for-
ward, Equation 4 ensures mass continuity, while Equa-
tion 5 prevents exceeding mass capacity. Additionally,
the sequence of pickup and delivery nodes is enforced
by Equation 6, guaranteeing that every pickup node
is visited before its corresponding delivery node. The
turnaround time at each node is defined by Equation 7,
which specifies a turnaround time of 0 when the preced-
ing node was at the same location or was the starting
node. Moreover, Equation 8 maintains time continuity
and prevents the formation of subtours. Equation 9
guarantees that each node is visited before its dead-
line. Lastly, Equation 10 ensures that the drone agent’s
range is respected, Equation 11 specifies the maximum
time on board, and Equation 12 mandates that the
drone is empty upon completing the schedule.∑

i∈V \{2n+1}

Xij = 1 ∀j ∈ V \ {0} (2)

∑
j∈V \{0}

Xij = 1 ∀i ∈ V \ {2n+ 1} (3)

Qj ≥ Qi +mjXij ∀(i, j) ∈ A (4)

max(0,mi) ≤ Qi ≤ min(C,C −mi) ∀i ∈ V (5)

Bi ≤ Bi+n ∀i ∈ P (6)

TATi =
∑

j∈V \{2n+1}, lji ̸=0

XjiTAT ∀i ∈ V \ {2n+ 1} (7)

If j = 0 and Xji = 1 with lji ̸= 0, then TATi = 0

Bj ≥ (Bi + tij + TAT + Zi)Xij ∀(i, j) ∈ A (8)

Zi ≥ 1− TATi if lij = 0

Zi = 0 otherwise

Bi ≤ di ∀i ∈ V (9)

Xij lij ≤ R ∀(i, j) ∈ A (10)

Bi+n −Bi ≤ tmax ∀i ∈ P (11)

Q2n+1 = 0 (12)
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4.2 Reallocation

We have devised a reallocation mechanism to ensure
allocated orders remain optimally assigned as new or-
ders emerge. However, continuously re-auctioning ev-
ery pending order at each time step incurs high compu-
tational costs. Although only a few orders are typically
published and auctioned per time step, the backlog of
pending orders can quickly accumulate. To address
this challenge, we have developed a heuristic method
for selecting orders for reallocation.

When a drone agent becomes idle, it performs a
single re-evaluation of its current schedule. During this
process, an order for re-auctioning is identified based
on the proportion of costs contributed to the overall
schedule cost. Specifically, the order with the high-
est cost fraction exceeding a pre-established threshold
is selected for reallocation. Additionally, analysis has
revealed that urgent orders are unsuitable for realloca-
tion and, therefore, excluded from consideration. Once
an order is selected for reallocation, it is auctioned
to the other agents using the procedure described in
the previous section, and a winning agent is selected.
However, the results from the auction have yet to be
definitive. Reallocation only occurs if the combined

cost of the original schedules of both the auctioning
agent and the winning agent exceeds the total cost of
the new schedules. After this is confirmed, the order
is transferred to the winning agent, and the respective
schedules are updated.

The reallocation algorithm is outlined in Algorithm
2. Given the schedule of the reallocating drone agent
S1 and a threshold value, the algorithm outputs the
updated schedules S1 and S2 for the reallocating drone
agent and the winning drone agent, respectively.

The algorithm iterates through the orders in S1,
excluding urgent orders, and computes the cost frac-
tion for each order. It then selects the order with the
highest cost fraction for potential reallocation. If the
cost fraction of the selected order exceeds the specified
threshold, the algorithm proceeds with reallocation.

During reallocation, the algorithm removes the se-
lected order from S1 and re-auctions it to determine
the new schedules S1_new and S2_new for both agents
involved. If the total cost of the original schedules ex-
ceeds that of the new schedules, the algorithm updates
S1 and S2 accordingly.

This reallocation mechanism optimizes the alloca-
tion of orders while mitigating computational costs, en-
suring efficient operation in dynamic environments.

Algorithm 2 Reallocation Mechanism
1: Input:

S1: Schedule of the reallocating drone agent
threshold: Threshold for initiating reallocation

2: Output:
S1, S2: Updated schedules of the reallocating drone agent and the winning drone agent

3: orderForAllocation, highestCostFraction← None, None
4: for each order in S1 do
5: if order.urgency ̸= urgent then
6: costFraction← computeCostFraction(order)
7: if costFraction < highestCost then
8: orderForAllocation, highestCostFraction← order, costFraction
9: end if

10: end if
11: end for
12: if highestCostFraction > threshold then
13: S1_old ← S1

14: S1_new ← removeOrderFromSchedule(order)
15: S2_new, S2_old, newAgent← reAuction(order)
16: if cost(S1_old + S2_old) > cost(S1_new + S2_new) then
17: S1 ← S1_new

18: S2 ← S2_new

19: end if
20: end if

4.3 Repositioning
To effectively maneuver drone agents in dynamic en-
vironments and anticipate long-term consequences, we
employ reinforcement learning (RL). RL is well-suited
for this task due to its ability to adapt to changing
conditions, make forward-looking decisions, and han-
dle unforeseen scenarios, making it an ideal solution

for the expanding MDS network.

Specifically, we utilize the REINFORCE algorithm
developed by Williams (1992), a policy gradient learn-
ing approach. This algorithm employs a parameter-
ized policy updated through stochastic gradient as-
cent (Sutton and Barto, 2018). These updates rely on
numerous samples of the gradient of the performance
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measure to match the actual expectation of the perfor-
mance measure, essentially making this a Monte Carlo
method. However, REINFORCE may suffer from high
variance, leading to slow learning. To mitigate this, a
baseline is introduced. Although other policy gradient
methods, like the actor-critic method, have lower vari-
ance, they introduce bias. Ultimately, REINFORCE
was selected for its straightforward implementation,
aligning with the simplicity requirements outlined in
section 2.1.

4.3.1 Hub Determination

Drone agents within the network are repositioned to
hub locations. To identify these hubs and their re-
spective areas of coverage, we address a variant of the
p-median problem, as elaborated by Daskin and Maass
(2015). The p-median problem focuses on placing p
facilities, or in our case hubs, to minimize the overall
demand-weighted average distance between demand
nodes and their closest selected facility. In our adapta-
tion of the problem, we opt not to weigh distances by
demand due to the dynamic nature of demand, which
is instead incorporated into the problem through al-
ternative means. The specifics of our approach to the
p-median problem are outlined below.

Parameters

• I: set of locations requiring service

• J : potential facility locations, where J ⊆ I

• dij : distance between two locations

• p: intended number of facilities

Decision Variables

• xij : binary variable, states whether location i, is
coupled to hub j

Objective Function

The objective is to minimize the sum of distances
between the locations and their coupled hub location.

min
∑
i∈I

∑
j∈J

dijxij (13)

Constraints
First, Equation 14 specifies that each location is

served by a single hub. Following this, Equation 15 en-
sures the total count of hubs matches p. Lastly, Equa-
tion 16 mandates that each hub also serves its own
location. ∑

j∈J

xij = 1 ∀i ∈ I (14)

∑
i∈I

xii = p (15)

∑
j∈j

∑
i∈I

xjj ≤ xij (16)

4.3.2 Reinforcement Learning Formulation

We present a detailed description of our repositioning
problem through an RL framework. This framework
encompasses the definition of the state space, action
space, rewards, and the conditions for reaching the
terminal state of an episode. In this setup, the drone
agent requests a repositioning location from the com-
mand center, which employs a policy to choose the
appropriate location. Therefore, the command center
agent exclusively executes the RL policy, which over-
sees the entire network. Upon arriving at a terminal
state within the simulation, rewards are distributed
for all actions executed throughout the episode. This
reward system provides feedback, enabling the agent
to refine and improve its policy for future decisions.

State Space
The state space structure is outlined in Equa-

tion 17. Within this framework, D represents a vec-
tor of length p (the number of hubs), which indicates
the anticipated demand for each region. Each region
is defined by a hub and its associated locations, with
the demand vector being dynamic, subject to change
throughout the day, possibly reflecting demand fore-
casts for specific time segments. Furthermore, N is
a vector of length p that denotes the count of drone
agents available in each region. The variable r signifies
the current region of the agent. Finally, C, another
vector of length p, records the repositioning cost to
each hub.

The demand and cost vectors are normalized to in-
crease the clarity of the data and improve learning sta-
bility. This normalization is necessary as the values
within these vectors can become significantly large and
challenging to interpret directly. In contrast, the dis-
tribution of drone agents remains naturally bounded
by the total number of agents, thereby eliminating the
need for normalization in their case.

S = [D,N, r, C] (17)

Action Space
As outlined in Equation 18, the action space rep-

resents a vector of hubs a drone agent can reposition
to, thus equating the number of actions to the hub
count. In this investigation, we constrain our attention
to a subset of locations, comprising approximately 10
to 20% of all possible locations. This constraint is im-
posed to uphold computational feasibility and provide
proof of concept. For instance, in a study encompass-
ing a network of 65 customer locations, 9 locations are
designated as repositioning hubs. The complexity of
including all locations exceeds the current scope, ne-
cessitating a simplified approach. While this method-
ology demonstrates key ideas and strategies, a full-scale
application would require more advanced methods and
computational power.

A = [h1, h2, ..., hp] (18)

Rewards
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The primary goal of the strategy outlined in this
paper is to maximize cost efficiency. We have explored
various reward mechanisms contributing to cost reduc-
tion to achieve this. Through our investigation, net-
work availability emerged as the most effective reward
metric. We define availability, used interchangeably
with delivery success rate, as the ratio of orders com-
pleted by drone agents to the total orders placed within
the network, as shown in Equation 19. Optimizing
for higher order fulfillment with fewer drones leads to
a leaner fleet, reducing maintenance and depreciation
expenses. Additionally, this efficiency facilitates easier
expansion of the network.

R =
completed orders by drones

total orders
(19)

Terminal State
The terminal state is reached at end of a day,

t = 1440. Therefore, regardless of the agents’ actions
the algorithm wil reach the terminal state.

4.3.3 Training Process

The training process for repositioning agents is de-
picted in Figure 3. At every timestep, the model exe-
cutes operations as previously described, during which
it identifies drone agents requiring repositioning. The
primary criterion for flagging involves drones that have
completed a flight and do not have any subsequent
flights scheduled. Upon completing a timestep, the
model temporarily exits the simulation environment,
and a repositioning action is implemented for each
flagged drone using a policy π, initiated randomly at
the start of the training process. Each repositioning
action, along with its corresponding state, is recorded.

This procedure is repeated continuously through-
out the simulation. After concluding the simulation,
the algorithm calculates the reward for the entire sim-
ulation and associates this reward with the recorded
state-action pairs. The accumulation of state-action
pairs and their corresponding rewards continues until
the predetermined batch size is reached. At this point,
the policy undergoes an update process, using the col-
lected rewards and state-action pairs.

As mentioned, our approach utilizes a policy gradi-
ent algorithm augmented with a baseline. The incor-
poration of a baseline serves to mitigate variance and
accelerate the learning phase. Our algorithm’s update
process, illustrated in Figure 3, adheres to the formula
specified in Equation 20. Within this context, the vec-
tor θ comprises the policy’s parameters, α signifies the
learning rate, γ the discount factor, and δ represents
the discrepancy between the actual reward R and the
estimated value v̂(St,w). Here, π denotes the policy,
and w are the weights of the value function.

θt+1 = θt + α γ δ ∇ln π(At|St,θ) (20)

δ = R− v̂(St,w)

Table 2 outlines the hyper parameters for our RL
setup. Firstly, the Adam optimizer is employed for its

adaptive nature, dynamically adjusting learning rates
for individual parameters based on past gradients and
variances. This adaptability promotes faster conver-
gence and enhanced performance compared to conven-
tional optimizers like vanilla stochastic gradient de-
scent (Ruder, 2016).

Figure 3: Flow diagram of repositioning training process.

Additionally, the learning rate policy (λπ) and
learning rate value function (λv) are set at 0.001, ensur-
ing stable and gradual updates to the policy and value
function parameters, thus preventing abrupt changes
that could lead to instability or divergence in learning.
Higher learning rates were experimented with but did
not lead to policy convergence.

We deviate from conventional practice in the choice
of the discount factor (γ), which is set to 1 instead of
the more commonly used value closer to 0.99. This
discrepancy influences the policy’s behavior by assign-
ing equal importance to immediate and future rewards,
potentially overestimating the significance of long-term
consequences. Adjusting the discount factor to align
with standard practices in reinforcement learning may
lead to a policy that better captures the dynamics of
the problem.

Lastly, the simulation horizon (tend) is set at 1440,
reflecting the maximum number of time steps in a sim-
ulation episode and allowing the algorithm to capture
long-term patterns and dependencies in the environ-
ment, possibly corresponding to the duration of a day
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in real-world applications.
The neural networks for both the policy and the

value function leverage PyTorch’s nn.Module, enabling
us to construct multi-layer perceptrons (MLPs) that
effectively map state inputs to either action probabil-
ities or value estimates. We opted for MLP architec-
tures due to their straightforward design and ease of
implementation. In these architectures, input features
extracted from the state are first processed by individ-
ual fully connected layers. Subsequently, these features
are concatenated and passed through two more layers
for further refinement. The final layer employs a soft-
max function for the policy network to normalize the
outputs into action selection probabilities.

Table 2: Overview of all learning parameters
Hyper-Parameter Value
Optimizer Adam
Learning rate policy (λπ) 0.001
Learning rate value function (λv) 0.001
Discount factor (γ) 1
Simulation horizon (tend) 1440

5 Case Studies
To illustrate the effectiveness and adaptivity of our pro-
posed strategy, we conducted a case study. This case
study comprises three distinct experiments, each de-
signed to assess the strategy’s performance in varying
contexts: demand dynamics, order urgency levels, and
the utilization of a hybrid fleet. These experiments
show that the devised strategy is capable of handling
various scenarios, making it highly suitable for growing
networks. Detailed descriptions of these experiments
are provided in the subsections that follow.

5.1 Experimental Set Up
Our experiments are set in the central-western region
of the Netherlands, the operational country of MDS.
Spanning from The Hague and Rotterdam in the West
to Arnhem in the East, this area offers diverse testing
conditions with densely populated zones in the West
and sparser regions in the East, including bodies of
water and natural reserves. This area was discretized
into a grid containing squares of 500x500 meters, lead-
ing to a grid size of 273x187. Customers are placed in
this grid based on the locations of actual Dutch hospi-
tals.

For the optimization of agent schedules, Gurobi 9
was used to perform the optimization. For reposition-
ing the policy was trained until the reward stabilized,
of which further details are found in Appendix A.

All simulations are conducted on an 8-core Intel
Core i7 chip with 16 GB RAM. For each parameter
setting 30 simulations were run. This is the number
for which the coefficient of variance (σ

µ ) became con-
stant. More elaborate substantiation for this choice
can be found in the appendix of the thesis report.

In addition to the variable factors tested in the ex-
periments, several model inputs were held constant to
provide a stable baseline for comparison. These static
inputs, used consistently unless otherwise stated, are
listed for reference in Table 3.

Table 3: Overview of static model inputs
Input Value
Payload capacity 3 kg
Turnaround time 5 min
Order mass 0.5 kg
Speed 90 km/h
Range 100 km
Number of customer locations 65
Number of repositioning hubs 9
Variable flight cost 1 e/ min
Realloction threshold 1.4 [-]
Fixed flight cost 20 e/ flight
Fraction urgent orders 0.6
Fraction semi-urgent orders 0.3
Fraction same-day orders 0.1
Simulations per setting 20
Demand spread Medium

5.2 Experiment A: Demand Spread
In our first experiment, we assess the adaptability
of our strategy (allocation, reallocation, and reposi-
tioning) across three distinct demand patterns. Here,
adaptability entails dynamic resource allocation ad-
justment to accommodate diverse demand spread pat-
terns, ensuring efficient and effective delivery opera-
tions under unpredictable scenarios. We aim to main-
tain consistent performance across these varied pat-
terns, showcasing the strategy’s adept response to vary-
ing scenarios.

For this experiment, we maintained a constant to-
tal of 1200 orders for each simulation and explored
three methods for distributing these orders among cus-
tomers. The first approach implements a high demand
spread, evenly dispersing orders across all network lo-
cations. Conversely, the second strategy concentrates
the majority of orders within specific hubs. The third
approach involves a medium demand spread with ad-
ditional orders allocated to hospital locations near se-
lected hubs. Visual representations of demand distri-
butions are presented in Figure 4, Figure 5, and Fig-
ure 6.

Below, the reader can find the hypotheses for this
experiment. The first three hypotheses assess the stra-
tegy’s robustness to different demand spread inputs,
aiming to demonstrate stable performance across sce-
narios. Subsequently, we focus on the contributions
of the reallocation and repositioning modules to over-
all performance. Given its core objective of reducing
costs and the observed side effect of a more evenly bal-
anced workload, we anticipate the reallocation module
will benefit all three KPIs. Furthermore, repositioning
is expected to enhance the delivery success rate and
fleet utilization as a result of more efficient resource
distribution. However, this may come at the cost of
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higher operational expenses, attributed to the inclu-
sion of empty flights in the drones’ schedules. All hy-
potheses are tested with a significance level of α = 0.05.
Results for this experiment can be found in section 6.1.

• HA1: The difference in delivery success rate
performance of the fleet management strategy
among the three demand spread scenarios (high,
medium, and low) is less than 10%.

• HA2: The difference in costs per delivery
performance of the fleet management strategy
among the three demand spread scenarios (high,
medium, and low) is less than 10%.

• HA3: The difference in fleet utilization of the
fleet management strategy among the three de-
mand spread scenarios (high, medium, and low)
is less than 10%.

• HA4: Reallocation, as part of the fleet manage-
ment strategy, reduces the costs per delivery by
more than 5% for every demand spread scenario.

• HA5: Reallocation, as part of the fleet manage-
ment strategy, improves the delivery success rate
by more than 5% for every demand spread sce-
nario.

• HA6: Reallocation increases fleet utilization by
more than 5% for every demand spread scenario.

• HA7: Repositioning, as part of the fleet manage-
ment strategy, increases the delivery success rate
by more than 5% for every demand spread sce-
nario.

• HA8: Repositioning, as part of the fleet manage-
ment strategy, increases the costs per delivery by
less than 5% for every demand spread scenario.

• HA9: The effect of repositioning on the delivery
success rate is the highest in scenarios with low
demand spread.

• HA10: Repositioning increases fleet utilization by
more than 5% for every demand spread scenario.

Figure 4: Map depicting high demand spread, where the
intensity of demand at each location is indicated by color
variation.

Figure 5: Map depicting a low demand spread, where the
intensity of demand at each location is indicated by color
variation.

Figure 6: Map depicting a medium demand spread, where the intensity of
demand at each location is indicated by color variation.
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5.3 Experiment B: Urgency Levels
In our second experiment, we delve deeper into the
fleet management strategy by focusing on the urgent
orders present in the delivery network. These orders,
characterized by their strict time constraints requir-
ing completion within an hour of publication, intro-
duce heightened stochastic challenges due to their un-
plannable nature. Our objective is to demonstrate the
robustness of our strategy for increasing shares of ur-
gent orders, showcasing its effectiveness in navigating
these time-sensitive deliveries.

Each trial within this experiment maintains a con-
sistent number of orders across medium-spread de-
mand scenarios to ensure fair testing conditions. As
we progress through the scenarios, we systematically
increase the proportion of urgent orders from 40% to
60% and 80%, with the remaining orders evenly dis-
tributed between semi-urgent and same-day deliveries.

The hypotheses for this experiment are outlined be-
low. The initial three hypotheses investigate the stra-
tegy’s robustness to varying order compositions, aim-
ing to showcase consistent performance despite these
fluctuations. The last two hypotheses focus on evalu-
ating the efficacy of the reallocation and repositioning
modules. We anticipate these modules to exhibit the
highest effectiveness in scenarios with 80% urgent or-
ders, given their heightened demand for adaptability
and flexibility. We aim to test every hypothesis with a
significance of α = 0.05. The results of this experiment
are detailed in section 6.2.

• HB1: The difference in delivery success rate per-
formance among the three distinct order compo-
sitions is less than 10%.

• HB2: The difference in cost per delivery perfor-
mance among the three distinct order composi-
tions is less than 10%.

• HB3: The difference in fleet utility performance
among the three distinct order compositions is
less than 10%.

• HB4: Repositioning is the most effective for or-
der compositions with 80% urgent orders.

• HB5: Reallocation is the most effective for order
compositions with 80% urgent orders.

5.4 Experiment C: Hybrid Fleet
Our final experiment aims to demonstrate the advan-
tage of employing a hybrid drone fleet with two drone
types to enhance efficiency and flexibility. This ap-
proach illustrates how varying drone capabilities can
be optimized to address diverse delivery demands.

The first drone type, characterized by its speed of
90 km/h, a payload capacity of 3 kg, and a range of
100 km, is suited for urgent deliveries that require swift
transportation over longer distances. The second drone
type, with its 10 kg payload capacity, 25 km range, and
75 km/h speed, is tailored for heavier deliveries within

more localized areas. By integrating these two drone
types, our experiment seeks to showcase a balanced
approach to managing a variety of delivery scenarios,
from time-sensitive orders to those necessitating larger
payloads.

During the experiment, demand consists of a fixed
number of orders with a medium spread, ensuring a
fair and unbiased assessment. We test, several fleet
compositions as displayed in Table 4.

Table 4: Overview of fleet compositions used for the exper-
iment.

Fleet
Composition

Short Range
High Payload

Long Range
Low Payload

1 0% 100%
2 10% 90%
3 20% 80%
4 30% 70%

The effectiveness of the fleets is evaluated based
on three primary performance metrics: the total num-
ber of successful deliveries, the cost per delivery, and
fleet utility. A diversified fleet is anticipated to out-
perform a uniform fleet in cost efficiency, utility, and
delivery success rates. This outcome is attributed to
the expectation that a larger payload capacity will fa-
cilitate the consolidation of orders, thereby enabling
more efficient routing and delivery execution. Based
on these expectations, we formulated the hypotheses
below, which we aim to test with a significance level
of α = 0.05. This experiment aims to demonstrate the
efficiency of hybrid fleets and leverage their associated
benefits. Further insights can be found in section 6.3.

These expectations from the basis for the following
hypotheses:

• Hypothesis HC1: Costs per delivery for hybrid
fleets will be lower compared to a homogeneous
fleet.

• Hypothesis HC2: The delivery success rate for hy-
brid fleets will be higher compared to a homoge-
neous fleet.

• Hypothesis HC3: The utility for hybrid fleets will
be higher compared to a homogeneous fleet.

• Hypothesis HC4: More than 50% of flights pe-
formed using the short range drones, utilize the
10 kg payload capacity to at least 75% of its full
potential.

6 Results
In this section, we present the findings from a series
of experiments designed to evaluate the performance
of our strategy under varying operational conditions.
The results are structured into three subsections, each
dedicated to a specific experiment.
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6.1 Experiment A: Demand Spread

Figure 7 provides insights into the performance of the
complete fleet management strategy across three key
performance indicators (KPIs): cost per delivery, fleet
utility, and delivery success rate.

Cost per delivery is defined as the sum of fixed costs
associated with each performed flight and the variable
cost based on the duration of each flight. It increases

with the growing number of drones due to the growing
number of repositioning movements as shown in Fig-
ure 15 in Appendix C. Fleet utility is defined as the
fraction of time the fleet spends flying with payload on
board. It decreases as the fleet size expands, indicative
of underutilization of resources. Delivery success rate is
defined as the fraction of orders performed by drones.
It rises proportionally with fleet size, indicating im-
proved capacity to handle the workload effectively.
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Figure 7: Comparison of different performance metrics across varying demand spreads and fleet sizes.

We compare the worst and best-case data for each
parameter setting to test the strategy’s adaptability.
In the graph above, these cases correspond to low-
spread and high-spread scenarios. Notably, the high-
spread scenario consistently demonstrates the best per-
formance, while the low-spread scenario exhibits the
worst performance across all parameters. These obser-
vations may be explained by the heightened consolida-
tion of orders into trips when demand spread increases,
as depicted in Figure 14 of Appendix C.

Only for the delivery success rate do we observe
that the performance for the medium demand spread
is very close to that of the high demand spread. Specif-
ically, these datasets are statistically indifferent for
drone numbers 18 and 22. However, data from 26
drones exhibit statistically significant differences, with
the high-spread scenario performing best. Therefore,
we compare the performance of high and low-spread
scenarios in Table 5.

Table 5: Statistical data of comparison of low demand spread input scenario to high demand spread scenario Differences
are stated with respect to the high demand-spread scenario.

Numer of drones KPI
Shapiro-Wilk test

p-value
Mean observed

difference (95% CI)
One-sample

one-tailed t-test p-value

18
Cost per delivery 0.187 8.50% ± 1.17% 6.67e-3

Utility 0.235 -4.88% ± 1.83% 1.68e-6
Delivery succes rate 0.697 -6.02% pm 1.32% 5.38e-7

22
Cost per delivery 0.837 8.02% ± 0.993% 1.60e-4

Utility 0.296 -5.80% ± 2.02% 1.01e-4
Delivery succes rate 0.495 -6.42% ± 1.48% 1.50e5

26
Cost per delivery 0.315 6.86% ± 0.830% 7.86e-4

Utility 0.967 -6.75% ± 2.04% 1.47e-3
Delivery succes rate 0.550 -6.55% ± 1.34% 6.15e-6
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The comparison is conducted by calculating the
performance differences for each iteration. These it-
erations are paired, meaning that the same input is
utilized for each comparison. We verify the normal-
ity of the computed differences using the Shapiro-Wilk
test, which indicates non-normality when the p-value
falls below 0.05. Subsequently, the observed differences
are presented alongside a 95% confidence interval (CI),
and a one-tailed one-sample t-test is performed to de-
termine if these means are below the absolute value of
10%. Each p-value in Table 5 is found to be below
0.05, thereby allowing us to accept hypotheses HA1,

HA2, and HA3 with a significance of α = 0.05.
The graphs in Figure 8 illustrate the performance

of the fleet management strategy under various con-
figurations. Simulations were conducted with different
modules of the strategy deactivated. Notably, reposi-
tioning significantly enhances utility and delivery suc-
cess rates compared to the original strategy, albeit at
an increased cost. Conversely, the effects of realloca-
tion appear to be less pronounced. The plots show
that the full fleet management strategy closely mimics
the performance of the strategy with the repositioning
module only.
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Figure 8: Performance of strategy including and excluding reallocation (realloc.) and repositioning (repo.) modules and
for various demand spreads.

This observation is further supported by the sta-
tistical analyses presented in Table 10 of Appendix B.
Regarding costs per delivery, all conducted statistical
tests aimed at confirming a decrease of 5% have failed,
leading us to reject HA4. The observed decreases range
from -1.34% to -0.14%, with no statistically significant

evidence to suggest a consistent reduction. It is note-
worthy that the reallocation module exhibits its largest
contributions to mitigating costs under high-spread de-
mand scenarios. The analysis presented in Figure 17
provides insights into the underlying factors contribut-
ing to these results. While a considerable number of or-
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ders are attempted for reallocation (10 to 20%), the fig-
ures reveal that only a small fraction achieves success-
ful replanning. This outcome stems from the circum-
stance where alternative agents are not deemed more
suitable for the given orders, resulting in the rejection
of reallocation attempts. Despite this, the substantial
cost savings achieved through reallocation underscore
the potential benefits of effective order reallocation as
shown in Figure 18.

Similarly inconclusive are the findings concerning
the effects of reallocation on utility and delivery suc-
cess rate, with no indication of a 5% increase. Conse-
quently, we reject both HA5 and HA6.

Nevertheless, the statistical analysis presented in
Table 11 of Appendix B regarding the impact of repo-
sitioning reveals notable disparities. Firstly, imple-
menting the repositioning module results in a consid-
erable escalation in operational costs, substantiated by
failed statistical tests displayed in Appendix B. Con-
sequently, we reject HA8, posing a marginal increase of
5%. The observed increments vary significantly, with
the smallest being 9.1% and the largest reaching 18.4%.
Additionally, this escalation demonstrates an amplify-
ing trend as the fleet size expands.

However, despite the cost escalation, repositioning
also improves fleet utility and delivery success rate,
demonstrating values ranging from 5.94% to 21.71%.
The statistical tests for these two KPIs yield predom-
inantly favorable outcomes, with only one exception.
Consequently, we accept HA7 and HA10, affirming the
effectiveness of repositioning in improving fleet utility
and enhancing the delivery success rate.

To assess the validity of hypothesis HA9, which
posits that repositioning is most effective for low-
demand spread scenarios, we conducted the Kruskal-

Wallis test to examine whether the enhancements
across different demand spreads exhibit statistical dis-
tinctions. For drone quantities of 18 and 22, the test
yielded respective p-values of 0.61 and 0.58, leading to
the rejection of the hypothesis. Conversely, the hy-
pothesis is accepted for a drone quantity of 26 with a
p-value of 0.022. However, it is noteworthy that the
observed enhancements across two-thirds of the fleet
sizes lacked statistical significance. Furthermore, the
observed improvements do not align with the assump-
tion of increased effectiveness for low-spread demand
scenarios. Consequently, we reject hypothesis HA9.
Visualisations of repositioning movements throughout
the simulation were also analysed in Figure 19, Fig-
ure 20 and Figure 21 of Appendix C. However, these
did not show any conclusive patterns for the three dif-
ferent spreads.

6.2 Experiment B: Urgency Levels
In the second experiment, we explore the impact of
urgent orders on fleet management effectiveness and
the role of reallocation and repositioning in improving
performance. Figure 9 illustrates fleet management
strategy performance in terms of delivery costs, fleet
utility, and success rate across different fleet sizes and
urgent order proportions. Results indicate that perfor-
mance is poorest when 80% of orders are urgent, while
it peaks at 40%. This discrepancy arises due to two
factors. First, as urgent orders decrease, trip efficiency
improves, as seen in Figure 22 of (Appendix E). Sec-
ond, fewer repositioning movements lead to cost reduc-
tions, evident in Figure 23 of (Appendix E). Similar
trends to Figure 7 are observed with increasing drone
numbers.
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Figure 9: Comparison of different performance metrics across varying order compositions and fleet sizes.

Similar to the comparison in section 6.1, we eval-
uate the discrepancy between the worst and best per-
formances to establish whether performance remains
within acceptable bounds. Presented in Table 6, the

table compares the performance metrics under the 80%
urgent orders scenario against those under the 40% ur-
gent orders scenario. The table first verifies the nor-
mality of the data using the Shapiro-Wilk test and
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subsequently presents the observed changes in perfor-
mance alongside their respective 95% confidence inter-
vals. Subsequently, one-sample one-tailed t-tests are
conducted to assess hypotheses HB1, HB2, and HB3.

For the fleet utility and delivery success rate, statis-
tical tests aimed at demonstrating a performance de-
crease of less than 10% failed to meet the significance
criteria. Consequently, hypotheses HB1 and HB3 are
rejected. However, the observed increase in cost per

delivery is slightly less pronounced. While most tests
support the hypothesis that costs remain within a 10%
threshold, one test narrowly falls short of significance
(p = 0.059), prompting the rejection of HB2. Further
analysis indicates that adjusting the bound to 10.1%
results in all three tests yielding statistically significant
results (p-values of 0.035, 0.014, and 0.024, for drone
quantities 20, 24 and 28 respectively).

Table 6: Statistical analysis comparing the performance between order compositions with 80% urgent orders and 40%
urgent orders. Percentual differences are expressed relative to the performance observed under the 40% urgent order
composition.

Number of
drones

KPI
Shaprio-Wilk
test p-value

Mean observed
difference (95% CI)

One-sample one-tailed
t-test p-value

20
Cost per delivery 0.128 9.40% ± 0.76% 0.059

Utility 0.991 -14.37% ± 1.24% 1.00
Delivery success rate 0.492 -12.29% ± 1.11% 1.00

24
Cost per delivery 0.264 9.07% ± 0.92 0.023

Utility 0.723 -14.02% ± 1.14% 1.00
Delivery success rate 0.756 -12.88% ± 1.18% 1.00

28
Cost per delivery 0.305 9.14% ± 0.95% 0.037

Utility 0.390 -10.56% ± 1.57% 0.763
Delivery success rate 0.978 -10.11% ± 1.48% 0.56

To evaluate for which order composition reposition-
ing is most effective, we compare samples of perfor-
mance improvements in Table 7 for each order compo-
sition using the the One-way ANOVA test. The data
in table shows all p-values below 0.05, indicating that
performance improvements are significantly different
across the three order compositions, leading to further
investigation.

Table 7: Results of a One-Way ANOVA test comparing
samples representing the differences in performance be-
tween the strategy with repositioning and the strategy
without repositioning across different order compositions,
treated as independent variables.

KPI
20

Drones
24

Drones
28

Drones
Cost per delivery 2.57e-45 1.53e-30 8.36e-29
Utility 1.41e-5 8.03e-6 1.75e-12
Delivery success rate 1.8e-3 1.74e-4 5.56e-8

Consequently, the Tukey test is employed to deter-
mine the differences among samples of the effects of
the repositioning module. The outcomes of the Tukey
test are shown in Appendix D. Please note that the
comparison revolves around the effects of repositioning
rather than the actual performance, of which a visual
is provided in Figure 10 for clarity.

The Tukey test on the cost per delivery reveals a
trend: the influence of repositioning on costs increases
as the fraction of urgent orders rises. Regrettably, this

surge in costs is deemed unfavorable. Furthermore, the
Tukey tests focusing on utility and delivery success rate
indicate that repositioning is more effective in scenar-
ios comprising 80% urgent orders than those compris-
ing 40% urgent orders. However, comparisons between
scenarios involving 60% and 80% urgent orders occa-
sionally yield statistically insignificant outcomes. No-
tably, for the largest fleet size of 28 drones, statistically
significant results emerge, confirming that the impact
of repositioning is most pronounced in demand com-
positions containing 80% urgent orders. Consequently,
we can accept HB4 for larger fleet sizes based on these
findings.

For reallocation, we also start by performing the
One-Way ANOVA test in Table 8. The data in ta-
ble shows all p-values far above 0.05, indicating that
performance improvements are not statistically differ-
ent across the three order compositions. Therefore, we
reject HB5.

Table 8: Results of a One-Way ANOVA test comparing
samples representing the differences in performance be-
tween the strategy with reallocation and the strategy with-
out reallocation across different order compositions, treated
as independent variables.

KPI
20

Drones
24

Drones
28

Drones
Cost per delivery 0.087 0.462 0.657
Utility 0.758 0.32 0.635
Delivery success rate 0.983 0.484 0.663
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Figure 10: Performance of strategy with repositioning (True) and without repositioning (False) for several drone quan-
tities (20, 24, 28).

6.3 Experiment C: Hybrid Fleet

The concluding experiment assesses the performance of
various hybrid fleets comprising long-range and short-
range drones. The objective is to analyze the benefits
of having such a fleet. Each fleet composition is de-
noted by a numerical identifier (the higher, the more
short-range drones), as specified in Table 4 in the pre-
sentation of results.

Figure 11 illustrates the performance of fleets on
key performance indicators (KPIs), including cost per
delivery, fleet utility, and delivery success rate. Analy-

sis of the graphs reveals that while a homogeneous fleet
exhibits the highest cost per delivery, it also demon-
strates a superior fleet utility and delivery success rate.
The graphs show that with an increase in the propor-
tion of short-range drones in the fleet, there is a cor-
responding decrease in cost per delivery, fleet utility,
and delivery success rate. Additionally, as the fleet
size grows, differences in performance metrics such as
fleet utility and delivery success rate become less dis-
cernible. Nevertheless, outcomes from the One-way
ANOVA statistical test indicate noticeable differences
in fleet performances across most parameter settings.
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Figure 11: Comparison of different performance metrics across varying fleet compositions and fleet sizes.

Statistical findings presented in Table 15, Table 17,
and Table 16 corroborate these observations, albeit
with inconclusive data for certain fleet sizes. Specif-
ically, we can support hypothesis HC1, asserting the
cost advantages of hybrid fleets for fleet sizes 22 and 26.

However, statistical and graphical data analysis about
delivery success rate suggests no discernible benefits
associated with hybrid fleets. This conclusion holds
primarily for a fleet size of 18, where we reject hypoth-
esis HC2. A similar trend is observed regarding the
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utility hypothesis HC3, which we reject for fleet sizes
18 and 22. The reduction in performance for these
KPIs is most likely attributed to the range constraints
of short range drones.

Table 9: p-values of One-Way ANOVA test comparing per-
formances of different fleet compositions for various KPIs.

KPI
18

Drones
22

Drones
26

Drones
Cost per delivery 4.34e-7 2.30e-14 8.64e-17

Utility 4.79e-29 6.18e-23 0.015
Delivery success rate 3.64e-26 3.23e-24 0.057

Figure 12 illustrates the average payload on board
the two drone types across different fleets. Long-range
drones demonstrate consistent payload-carrying capac-
ity in all fleets, with a slight reduction observed as
fleet size increases. Conversely, fleets comprising short-
range drones exhibit less definitive patterns. Remark-
ably, none of the short-range drones carry an average
payload exceeding 2 kilograms, suggesting an under-
utilization of their 10-kilogram capacity. Moreover, a
noticeable decline in average payload onboard occurs
with a fleet size of 22 drones. Delving into this decline
in Appendix G, Figure 24 reveals significant variance
in order allocation to each drone for hybrid fleets, in-
dicating uneven distribution. This is corroborated by
Figure 25, illustrating order distributions from sampled
simulations, where the model favors long-range drones
over short-range ones, potentially explaining the pay-
load dip.

Each simulation sampled the percentage of short-
range drone flights with a payload capacity exceeding
75% of the total capacity. Except for one simulation,
where this percentage was 1.6%, all other instances re-
sulted in a percentage of 0.0%. Consequently, it ap-
pears reasonable to dismiss HC4 without further sta-
tistical analysis.
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Figure 12: Payload for both drone types across four differ-
ent fleet compositions for various fleet sizes.

7 Discussion

This section revisits and deliberates on the hypotheses
set at the formulation of each experiment. By critically
evaluating the outcomes against the initial predictions,
we aim to draw insights and understand the implica-
tions of our findings within the broader context of the
study.

Experiment A aimed to evaluate the adaptability
of the fleet management strategy to different demand
spreads and to assess the additional benefits of order
reallocation and drone repositioning. Results from Ex-
periment A demonstrated that the fleet management
strategy maintained stable performance across various
scenarios of demand spread, thereby supporting the ac-
ceptance of hypotheses HA1, HA2, and HA3. However,
findings indicated that the implementation of realloca-
tion did not significantly enhance the effectiveness of
the study, resulting in the rejection of hypotheses HA4,
HA5, and HA6.

Further analysis of the underlying data revealed
that while the reallocation method attempted to redis-
tribute a substantial proportion of orders, only a lim-
ited number of reallocation attempts proved successful.
These findings suggest the possibility of either excep-
tionally optimal initial allocation or a subpar quality
of the selection criteria used for reallocation. Conse-
quently, exploring alternative selection criteria thor-
oughly and conducting a deeper analysis of the char-
acteristics of orders being reallocated is recommended.

Given the potential cost-saving benefits associated
with order reallocation, a nuanced understanding of
task attributes such as urgency level, distance, and spe-
cific requirements could lead to more substantial cost
reductions and enhance operational efficiency. There-
fore, future research efforts should clarify the relation-
ships between task attributes and cost savings to opti-
mize reallocation.

Contrary to reallocation, the benefits of reposition-
ing were evident. In the best scenario, the fleet utility
and delivery success rate improved by approximately
20% due to the repositioning module, leading to the ac-
ceptance of hypotheses HA7 and HA10. However, while
increases in costs were anticipated, they exceeded ex-
pectations, resulting in the rejection of hypothesis HA8.

To mitigate the cost increase, future research may
explore adding more repositioning locations and con-
sider incorporating the option to remain stationary
within the action space used for the reinforcement
learning algorithm. However, such enhancements must
be applied with an alternative algorithm instead of the
REINFORCE algorithm. A limitation of the REIN-
FORCE algorithm is its slow learning process due to
high variance, which restricts the expansion of the ac-
tion space. Moreover, the current framework struggles
to effectively attribute rewards to specific actions due
to delayed rewards, a phenomenon known as the credit
assignment problem. To clarify, the benefits of a repo-
sitioning action are not immediately evident and may
not even directly impact the repositioning agent.
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Foerster et al. (2018) and Nguyen et al. (2018)
present two interesting studies on this subject. Al-
though the project’s scope precluded the adoption of
these advanced methodologies, their potential for im-
proving adaptability while mitigating cost increases
justifies future exploration.

In Experiment B, we evaluated the effectiveness of
the designed fleet management strategy under increas-
ingly stochastic scenarios by augmenting the propor-
tion of urgent orders, thereby demonstrating its adapt-
ability to unpredictable demand. While the observed
increase in cost per delivery remained only just within
the predefined thresholds (HB2), the magnitude of re-
duction in fleet utility and delivery success rate ex-
ceeded expectations, leading to the rejection of hy-
potheses HB1 and HB3. Prioritizing the implementa-
tion of previously proposed alterations is expected to
yield improved performance.

Furthermore, we examined whether the modules
exhibited enhanced effectiveness in stochastic scenar-
ios. Contrary to expectations, the reallocation module
failed to demonstrate significant improvement (HB5);
however, it had already been established that this mod-
ule had limited effectiveness. In contrast, the reposi-
tioning module yielded additional benefits (HB4), em-
phasizing its usefulness.

The final experiment, Experiment C, aimed to
quantify the benefits of a hybrid fleet for enhanced
adaptability. While hybrid fleets reduced the cost
per delivery (HC1), this improvement came at the ex-
pense of fleet utility and delivery success rate (HC2
and HC3). The proposed short-range drone with in-
creased payload capacity underutilized its potential
(HC4). Exploring alternative drone types is recom-
mended to balance cost and service levels better. More-
over, refining the model’s assumptions and inputs is
essential to enhance the reliability of these findings for
decision-making.

While we simulated demand using an origin-
destination matrix and a Poisson process, this ap-
proach lacks the complexity of actual demand patterns.
Developing a model based on customer demographics
and historical ordering trends would offer deeper in-
sights into demand behavior.

Furthermore, our current framework activates a
backup network solely when drone capacity reaches
its limits, neglecting other critical factors like adverse
routing conditions and weather. Integrating a decision-
making module to assess these factors would enhance
the model’s fidelity, mirroring real-world operational
challenges more accurately. Additionally, our model
considers nominal time for traveling. In reality, how-
ever, this is untrue. Lastly, assuming battery swap-
ping as the primary means of replenishing drone energy
presents logistical challenges, particularly in the scal-
ability of operations; hence, a detailed battery model
would offer a more accurate and practical representa-
tion of operational logistics. Such improvements would
add realism to our simulations and provide a stronger
foundation for conclusions to be drawn.

8 Conclusions
This paper presents and evaluates a fleet manage-
ment strategy for dynamic and highly stochastic drone
transportation networks handling pickup and deliv-
ery orders. The strategy comprises allocation via the
Adapted Temporal Sequential Single-Item auction and
two adaptive components: reallocation using a heuris-
tic method and repositioning using a policy obtained
via reinforcement learning with the REINFORCE al-
gorithm. Our investigation centers on demonstrating
the strategy’s adaptability and the effectiveness of its
adaptive components.

Our findings highlight the strategy’s consistent effi-
ciency across various demand scenarios, maintaining
performance within predefined limits. Notably, the
repositioning module significantly enhances the fleet
utility and the fraction of served orders, albeit at the
expense of increased cost per delivery. Conversely, the
reallocation module causes minimal performance im-
provement. Under heightened stochasticity introduced
by urgent orders, the strategy maintains stable costs
per delivery while fleet utility and order fulfillment
rates decline. Additionally, our investigation under-
scores the increasing benefits of repositioning in more
stochastic scenarios. Moreover, exploring hybrid fleets
reveals that while short-range high-payload drones can
reduce cost per delivery, they compromise overall fleet
utility and order fulfillment rates. Furthermore, we
identify the underutilization of payload capacity in sce-
narios with orders weighing up to 2 kilograms for a
drone with a payload of 10 kilograms.

For future research, refining the repositioning
method to mitigate extra costs is essential, along-
side enhancing the selection criteria for reallocation
and delving deeper into the characteristics of success-
fully reallocated tasks. To strengthen the reliabil-
ity of conclusions drawn from the model, refining de-
mand modeling techniques and integrating assessments
for adverse conditions are crucial for enhancing op-
erational realism. Additionally, modeling drone bat-
tery life and charging will contribute to more accurate
representations of operational dynamics. These ad-
vancements will contribute to more robust high-level
decision-making.
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Appendices
A Repositioning Algorithm Training Process
The policy was trained using a training data set in which (combinations of) different regions in the model
were subject to concentrated demand. A single simulation contained 1440 timesteps in which approximately
100 repositioning actions are conducted. One policy update used a batch of 10 simulations. This number is
based on the diversity and complexity of the input scenarios, aiming to strike a balance between computational
efficiency, convergence, and overfitting.

The training duration was extended until rewards exhibited stability. This stabilization phenomenon is
graphically demonstrated in Figure 13, where an increase in the time window for the moving average corresponds
to a convergence of rewards.

While pursuing further training could have been favorable, it is essential to acknowledge the practical con-
straints encountered. The training process had already consumed over four days. Given the resource-intensive
nature of continued training within the existing framework, extending training further without reassessing
computational resources or methodological adaptations became impractical.

Figure 13: Convergence of rewards over training iterations with increasing time window for the moving average.
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B Experiment A: Statistical Data
Table 10 compares the fleet management strategy with and without reallocation (repositioning is not included.
Stated differences are respective to the strategy without the reallocation module. Depending on normality of
the data the one-sample one-sided t-test or Wilcoxon test is performed to confirm the hypotheses. For cost per
delivery we intend to confirm a decrease of 5% in cost and for utility and delivery success rate a 5% increase.

Table 10: Comparison of strategy with reallocation module to strategy without reallocation module.

Number of
drones

Demand
scenario KPI Shapiro-Wilk

test p-value
Mean observed

difference
One-sample one-sided

t-test/Wilcoxon p-value

18

Low

Cost per
delivery 0.268 -0.63% pm 0.70% 1.00

Utility 0.053 0.22% pm 1.54% 1.00
Delivery

success rate 0.397 0.96% pm 1.71% 1.00

Medium

Cost per
delivery 0.751 0.02% pm 0.69% 1.00

Utility 0.809 -0.41% pm 1.38% 1.00
Delivery

success rate 0.546 -0.18% pm 1.48% 1.00

High

Cost per
delivery 0.914 -1.34% pm 0.80% 1.00

Utility 0.658 0.39% pm 1.57% 1.00
Delivery

success rate 0.387 0.80% pm 1.54% 1.00

22

Low

Cost per
delivery 0.763 -0.72% pm 0.54% 1.00

Utility 0.639 0.18% pm 1.83% 1.00
Delivery

success rate 0.459 1.94% pm 1.96% 1.00

Medium

Cost per
delivery 0.081 -0.17% pm 0.65% 1.00

Utility 0.025 -2.20% 1.00
Delivery

success rate 0.075 -0.87% pm 1.51% 1.00

High

Cost per
delivery 0.161 -0.72% pm 0.75% 1.00

Utility 0.549 1.55% pm 1.85% 1.00
Delivery

success rate 0.892 2.57% pm 1.53% 1.00

26

Low

Cost per
delivery 0.752 -0.14% pm 0.40% 1.00

Utility 0.792 -0.25% pm 1.58% 1.00
Delivery

success rate 0.564 -0.28% pm 1.47% 1.00

Medium

Cost per
delivery 0.977 -0.24% pm 0.61% 1.00

Utility 0.690 0.17% pm 1.77% 1.00
Delivery

success rate 0.065 0.69% pm 1.73% 1.00

High

Cost per
delivery 0.527 -0.83% pm 0.67% 1.00

Utility 0.546 -1.14% pm 1.58% 1.00
Delivery

success rate 0.511 -0.30% pm 1.41% 1.00
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Table 11 compares the fleet management strategy with and without repositioning (reallocation is not in-
cluded. Stated differences are respective to the strategy without the repositioning module. Depending on
normality of the data the one-sample one-sided t-test or Wilcoxon test is performed to confirm the hypotheses.
For cost per delivery we intend to confirm an increase less than 5% and for utility and the delivery success rate
a 5% increase.

Table 11: Comparison of strategy with repositioning module to strategy without reallocation module.

Number of
drones

Demand
scenario KPI Shapiro-Wilk

test p-value
Mean observed

difference
One-sampe one-sided

t-test/Wilcoxon p-value

18

Low

Cost per
delivery 0.245 9.1% ± 0.83% 1.00

Utility 0.439 5.94% ± 1.48% 0.101
Delivery

success rate 0.745 7.13% ± 1.48% 0.0031

Medium

Cost per
delivery 0.066 9.95% ± 0.81% 1.00

Utility 0.904 6.71% ± 1.62% 0.020
Delivery

success rate 0.623 7.61% ± 1.56% 9.47e-4

High

Cost per
delivery 0.072 9.26% ± 0.65% 1.00

Utility 0.933 9.20% ± 1.42% 7.29e-7
Delivery

success rate 0.190 10.05% ± 1.33% 6.69e-9

22

Low

Cost per
delivery 0.834 12.02% ± 0.86% 1.00

Utility 0.441 9.28% ± 1.90% 3.69e-5
Delivery

success rate 0.657 11.4% ± 1.86% 4.82e-8

Medium

Cost per
delivery 0.525 14.79% ± 0.92% 1.00

Utility 0.349 11.44% ± 1.75% 1.30e-8
Delivery

success rate 0.784 12.8% ± 1.93% 2.09e-9

High

Cost per
delivery 0.907 13.23% ± 1.04% 1.00

Utility 0.959 17.91% ± 2.46% 6.348e-12
Delivery

success rate 0.272 19.12% ± 2.39% 3.77e-13

26

Low

Cost per
delivery 0.986 16.2% ± 0.71% 1.00

Utility 0.558 12.98% ± 2.43% 1.13e-7
Delivery

success rate 0.800 13.75% ± 2.42% 1.82e-8

Medium

Cost per
delivery 0.210 18.4% ± 0.87% 1.00

Utility 0.332 15.92% ± 2.35% 1.01e-10
Delivery

success rate 0.596 16.65% ± 1.95% 3.07e-13

High

Cost per
delivery 0.346 17.2% ± 0.90% 1.00

Utility 0.115 20.48% ± 2.42% 5.486e-14
Delivery

success rate 0.063 21.71% ± 2.38% 5.096e-15
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C Experiment A: Additional Graphs
C.1 Full Fleet Management Strategy
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Figure 14: Average payload per trip for different de-
mand spreads and fleet sizes.
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Figure 15: Average number of repositioning move-
ments for different demand spreads and fleet sizes.

Figure 16: Time to order completion for different demand spreads and fleet sizes.

C.2 Reallocation Module

Figure 17: Fraction of attempted order replanning and their corresponding success rates.
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Figure 18: Spread of saved of costs due to reallocation of tasks for different fleet sizes and demand spreads.

C.3 Repositioning Module

Figure 19: Repositioning movements for high demand spread scenarios (fleet size 22).

Figure 20: Repositioning movements for medium demand spread scenarios (fleet size 22).

Figure 21: Repositioning movements for low demand spread scenarios (fleet size 22).
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D Experiment B: Statistical Data

Table 12: Results of Tukey Test for performance differences in cost through repositioning across three orders compositions
(40%, 60%, and 80% urgent orders).

20 Drones 24 Drones 28 Drones
Comparison Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI

40 - 60 -4.846 0.000 -5.827 -3.864 -4.838 0.000 -6.276 -3.400 -4.489 0.000 -5.941 -3.037
40 - 80 -11.831 0.000 -12.813 -10.850 -11.006 0.000 -12.444 -9.568 -10.468 0.000 -11.919 -9.016
60- 40 4.846 0.000 -12.813 -10.850 4.838 0.000 3.400 6.276 4.489 0.000 3.037 5.941
60 - 80 -6.986 0.000 -7.938 -6.004 -6.167 0.000 -7.606 -4.729 -5.979 0.000 -7.431 -4.527
80 - 40 11.831 0.000 10.850 12.813 11.006 0.000 9.568 12.444 10.468 0.000 9.016 11.919
80 - 60 6..986 0.000 6.004 7.968 6.176 0.000 4.729 7.606 5.979 0.000 4.527 7.431

Table 13: Results of Tukey Test for performance differences in utility through repositioning across three orders compo-
sitions (40%, 60%, and 80% urgent orders).

20 Drones 24 Drones 28 Drones
Comparison Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI

40 - 60 -3.724 0.009 -6.663 -0.786 -5.081 0.006 -8.917 -1.245 -6.283 0.000 -9.928 -2.637
40 - 80 -6.175 0.000 -9.114 -3.236 -8.278 0.000 -12.114 -4.442 -13.242 0.000 -16.887 -9.597
60 - 40 3.724 0.009 0.786 6.663 5.081 0.006 1.245 8.917 6.283 0.000 2.637 9.928
60 - 80 -2.451 0.121 -5.389 0.488 -3.196 0.121 -7.032 0.640 -6.960 0.000 -10.605 -3.314
80 - 40 6.175 0.000 3.236 9.114 8.278 0.000 4.442 12.114 13.242 0.000 9.597 16.887
80 - 60 2.451 0.121 -0.488 5.389 3.196 0.121 -0.640 7.032 6.960 0.000 3.314 10.605

Table 14: Results of Tukey Test for performance differences in delivery success rate through repositioning across three
orders compositions (40%, 60%, and 80% urgent orders).

20 Drones 24 Drones 28 Drones
Comparison Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI

40 - 60 -2.478 0.107 -5.361 0.405 -3.985 0.028 -7.611 -0.358 -4.100 0.019 -7.628 -0.571
40 - 80 -4.449 0.001 -7.331 -1.566 -6.611 0.000 -10.238 -2.984 -9.419 0.000 -12.948 -5.890
60 - 40 2.478 0.107 -0.405 5.361 3.985 0.028 0.358 7.611 4.100 0.019 0.571 7.628
60 - 80 -1.971 0.239 -4.854 0.912 -2.627 0.201 -6.253 1.000 -5.319 0.002 -8.848 -1.790
80 - 40 4.449 0.001 1.566 7.332 6.611 0.000 2.984 10.238 9.419 0.000 5.890 12.948
80 - 60 1.971 0.239 -0.912 4.854 2.627 0.201 -1.000 6.253 5.319 0.002 1.790 8.848
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E Experiment B: Additional Graphs
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Figure 22: Average payload on board for different order compositions and fleet sizes.
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Figure 23: Average payload on board for different order compositions and fleet sizes.
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F Experiment C: Statistical Data

Table 15: Results of Tukey Test for performances in cost per delivery of different fleet compositions (fleets 1, 2, 3, 4).

18 Drones 22 Drones 26 Drones
Comparison Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI

1 - 2 0.254 0.854 -0.572 1.079 1.772 0.000 0.965 2.579 1.632 0.000 0.809 2.455
1 - 3 1.280 0.001 0.454 2.105 2.076 0.000 1.269 2.884 1.989 0.000 1.165 2.812
1 - 4 1.635 0.000 0.809 2.460 2.821 0.000 2.014 3.629 3.291 0.000 2.468 4.114
2 - 1 -0.254 0.854 -1.079 0.572 -1.772 0.000 2.014 3.629 -1.632 0.000 -2.455 -0.809
2 - 3 1.026 0.008 0.200 1.852 0.305 0.759 -0.503 1.112 0.357 0.672 -0.466 1.180
2 - 4 1.381 0.000 0.555 2.207 1.049 0.005 0.242 1.857 1.659 0.000 0.836 2.482
3 - 1 -1.280 0.001 -2.105 -0.454 -2.076 0.000 -2.884 -1.269 -1.989 0.000 -2.812 -1.165
3 - 2 -1.026 0.008 -1.852 -0.200 -0.305 0.759 -1.112 0.503 -0.357 0.672 -1.180 0.466
3 - 4 0.355 0.677 -0.471 1.181 0.745 0.082 -0.062 1.552 1.302 0.000 0.479 2.125
4 - 1 -1.635 0.000 -2.460 -0.809 -2.821 0.000 -3.629 -2.014 -3.291 0.000 -4.114 -2.468
4 - 2 -1.381 0.000 -2.207 -0.555 -1.049 0.005 -1.857 -0.242 -1.659 0.000 -2.482 -0.836
4 - 4 -0.355 0.677 -1.181 0.471 -0.745 0.082 -1.552 0.062 -1.302 0.000 -2.125 -0.479

Table 16: Results of Tukey Test for performances in fleet utility of different fleet compositions (fleets 1, 2, 3, 4).

18 Drones 22 Drones 26 Drones
Comparison Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI

1 - 2 0.018 0.000 0.011 0.025 0.007 0.037 0.000 0.013 -0.001 0.973 -0.008 0.006
1 - 3 0.027 0.000 0.020 0.034 0.016 0.000 0.010 0.023 0.004 0.429 -0.003 0.011
1 - 4 0.043 0.000 0.036 0.050 0.031 0.000 0.024 0.037 0.007 0.071 -0.000 0.014
2 - 1 -0.018 0.000 -0.025 -0.011 -0.007 0.037 -0.013 -0.000 0.001 0.973 -0.006 0.008
2 - 3 0.009 0.008 0.002 0.016 0.010 0.001 0.003 0.016 0.005 0.213 -0.002 0.012
2 - 4 0.025 0.000 0.018 0.032 0.024 0.000 0.018 0.031 0.008 0.023 0.001 0.015
3 - 1 -0.027 0.000 -0.034 -0.020 -0.016 0.000 -0.023 -0.010 -0.004 0.429 -0.011 0.003
3 - 2 -0.009 0.008 -0.016 -0.002 -0.010 0.001 -0.016 -0.003 -0.005 0.213 -0.012 0.002
3 - 4 0.016 0.000 0.009 0.023 0.015 0.000 0.008 0.021 0.003 0.780 -0.004 0.010
4 - 1 -0.043 0.000 -0.050 -0.036 -0.031 0.000 -0.037 -0.024 -0.007 0.071 -0.014 0.000
4 - 2 -0.025 0.000 -0.032 -0.018 -0.024 0.000 -0.031 -0.018 -0.008 0.023 -0.015 -0.001
4 - 4 -0.016 0.000 -0.023 -0.009 -0.015 0.000 -0.021 -0.008 -0.003 0.780 -0.010 0.004
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Table 17: Results of Tukey Test for performances in delivery success rate of different fleet compositions (fleets 1, 2, 3,
4).

18 Drones 22 Drones
Comparison Statistic p-value Lower CI Upper CI Statistic p-value Lower CI Upper CI

1 - 2 0.028 0.000 0.019 0.038 0.008 0.166 -0.002 0.019
1 - 3 0.031 0.000 0.022 0.041 0.025 0.000 0.015 0.035
1 - 4 0.051 0.000 0.042 0.061 0.052 0.000 0.041 0.062
2 - 1 -0.028 0.000 -0.038 -0.019 -0.008 0.166 -0.019 0.002
2 - 3 0.003 0.813 -0.006 0.012 0.017 0.000 0.006 0.027
2 - 4 0.023 0.000 0.014 0.032 0.043 0.000 0.033 0.054
3 - 1 -0.031 0.000 -0.041 -0.022 -0.025 0.000 -0.036 -0.015
3 - 2 -0.003 0.813 -0.012 0.006 -0.017 0.000 -0.027 -0.006
3 - 4 0.020 0.000 0.011 0.029 0.026 0.000 0.016 0.037
4 - 1 -0.051 0.000 -0.061 -0.042 -0.052 0.000 -0.062 -0.041
4 - 2 -0.023 0.000 -0.032 -0.014 -0.043 0.000 -0.054 -0.033
4 - 4 -0.020 0.000 -0.029 -0.011 -0.026 0.000 -0.037 -0.016

G Experiment C: Additional Graphs
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Figure 24: Variance of orders per drone across four different fleet compositions for various fleet sizes.

Figure 25: Spread of orders for a sample of simulations with varying fleet compositions (fleet size 22)
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1
Introduction

In today’s fast-paced and interconnected world, the need for on-demand services and fast delivery is be-
coming increasingly large. The emergence of this phenomenon places significant pressure on the domain
of logistics and transportation. For a while now, delivery using unmanned aerial vehicles (UAVs) has been
suggested as a means to cope with this increased pressure. The benefits of employing UAVs are compelling;
they can avoid congestion, have the ability reach areas that are hard to access, are cost-efficient, and have a
wide range of potential applications. Such applications include transport and logistics, agriculture, but also
military operations. In the medical domain too, the use of UAVs is gaining interest. For example, they are
of large value when disaster strikes, by being able to deliver medical supplies to inaccessible areas. In rural
regions too, where healthcare is scarce and distances are hard to cover due to bad infrastructure, the use of
drones is extremely beneficial. A company that is already active within this field is Zipline. Zipline started out
on the continent of Africa in Rwanda and is now the national drone service provider in this country with the
aim to perform over 2 million drone by 2029. Furthermore, the company has expanded to, amongst others,
Ghana, Côte d’Ivoire, the United States, and Japan, showing the enormous potential of delivery using UAVs.

In the Netherlands, not the absence of good infrastructure, but the increased levels of congestion and
need for cost efficiency are instigating the need for medical delivery using UAVs. This year alone, the number
of traffic jams has already increased by 10% compared to pre COVID-19 times. As a result, urgent deliveries
of blood are at risk of being delayed too much. Furthermore, resource shortages in terms of personnel and
budget call for increased centralisation of healthcare. Therefore, a solution that would enable such centrali-
sation and is cost-efficient is necessary. Medical Drone Service (MDS) is a company that is initiated to fulfill
this need. The company’s ambition is to contribute to the accessibility and availability of healthcare in the
Netherlands through innovative mobility solutions. To achieve this, MDS is setting up a nation-wide network
of UAVs to ship medical material between various types of partners. Various questions arise when design-
ing such a network. Because how should the network cope with such stochastic demand and strict temporal
requirements? How should resources and delivery tasks be allocated to achieve maximal availability at mini-
mum cost?

This literature study aims to provide an answer to the previously posed questions, as well as a description
of what the MDS network looks like. The first two chapters aim to provide some context on Medical Drone
Service. First, chapter 2 elaborately introduces Medical Drone Service. Next, chapter 3 further introduces
the main carrier of the network, the UAV. This chapter also provides other companies that utilise UAVs for
their services. Then, to understand the research gap, chapter 4 dives into research on UAV delivery problems
and general dynamic pickup and delivery problems. The next two chapters look into techniques that could
be implemented in a model for the MDS network. chapter 5 looks into allocation and scheduling methods
and provides a trade-off. Subsequently, chapter 6 documents and chooses suitable repositioning methods.
Finally, the proposed research is outlined in chapter 7
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2
Medical Drone Service

In this chapter, Medical Drone Service, the company for which a UAV network will be developed, is intro-
duced. First, section 2.1 introduces the ambition of the company. Then, section 2.2 shortly describes the
project history. Next, section 2.3 sheds light on why such a service is needed in the Netherlands. The con-
cept of operations is described in detail in section 2.4. Lastly, resulting from the previous section a list of
requirements is constructed in section 2.5.

2.1. Ambition of Medical Drone Service
Medical Drone Service is an initiative from ANWB Medical Air Assistance (MAA) and PostNL Health (for both
logos are displayed in Figure 2.1 and Figure 2.2). ANWB MAA is the Dutch medical air transportation com-
pany that operates trauma helicopters to transport Mobile Medical Teams. Besides, ANWB MAA operates an
ambulance helicopter to transport patients from the West Frisian Islands. PostNL is a logistic service provider
in the Netherlands and is also active in healthcare. For instance, the company delivers medical posts for di-
agnostic centres and supplies medication at hospitals, pharmacies and to patients at home [73].

Together with several other medical partners, MDS researches how drones could contribute to delivering
healthcare at the right place and time. MDS’s ambition is to contribute to the accessibility and availability of
healthcare in the Netherlands through innovative mobility solutions. The employment of drones should bring
healthcare faster and closer to the patient while strengthening the connection between medical institutions
in the Netherlands. The ultimate goal is to set up a nationwide network of medical drones to increase medical
transport’s sustainability and delivery rates in the Netherlands [74, 75].

Figure 2.1: PostNL logo. Figure 2.2: ANWB logo.

2.2. Project History
In 2019, MDS, a consortium of ANWB MAA, PostNL, Erasmus MC, Sanquin, and technology partners KPN
and Avy, first reached the news for their initiative. This news came at the start of a three-year pilot project. In
preparation for this project, ANWB MAA already bought the first UAV in 2018. The pilot project was split up
into different phases. The first step of the intended pilot project was to fly the drone above a protected test
location within a maximum radius of 4 kilometres. These test flights included Beyond Visual Line of Sight
(BVLOS) operations. The next step was to test flights from point to point above sparsely populated areas. The
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42 2. Medical Drone Service

last step was to fly from medical location to medical location, ultimately with a payload of medical nature
[27].

At the end of 2020, ANWB announced the first test flights between the hospital locations of Isala, Meppel
and Zwolle. These locations are approximately 15 kilometres apart, and most of the route contains flying over
rural areas. However, instead of directly landing at Isala Zwolle, the medical drone landed on a meadow north
of Zwolle to avoid flying over densely populated areas. During the test flights, no medical payload was carried
along. Figure 2.3 shows a photo which was taken during one of the test flights. The test flights were carried
out until mid-2021 [3].

Test flights also started between Rhoon and Oud-Beijerland in May 2021. Erasmus MC and Sanquin,
a dutch hospital group and blood bank, commissioned these flights. These test flights investigated which
technical adjustments are necessary to fly the intended routes [67].

Figure 2.3: A photo that was taken during a test flight [71].

In 2022, it was announced that the first medical drone flights would start in 2023. Medical Drone Ser-
vice could build a medical airlift between Meppel and Zwolle with all the information gathered from the test
flights. Although the flight is autonomous, an operator located in the Hague will monitor the flight [14].

Moreover, MDS collaborated with the European project AMU-LED that same year to perform test flights
within the Controlled Tower Region (CTR) of Rotterdam The Hague Airport. This project is an essential step
towards improving regulations for unmanned flight in Europe. The test flight shows how manned and un-
manned flights can simultaneously operate in the same airspace. From the test flights it was concluded that
current communication procedures result in a high workload for the drone pilot [72].

Now, the goal is to start medical flights between the two Isala locations. Furthermore, the aim to also start
carrying out medical flights at other locations, for instance, near Rotterdam, which provides another opera-
tional scenario [76]. For the future, there will be technological developments to make flying above densely
populated areas possible and MDS’s network will expand to a nation-wide network.

2.3. Service Need
In the first part of this section, the situation and challenges of the Dutch healthcare sector are sketched.
Afterwards, these challenges are concretised into issues explicitly relating to MDS, and the service’s added
benefit to the sector is shown.

At the end of 2022, the Dutch Healthcare Authority (NZa) published an article highlighting trends in Dutch
healthcare. The authority concluded that the demand for care is increasing in every healthcare sector due to
the effects of an ageing population. However, the labour market for healthcare is decreasing, resulting in
personnel shortages. Furthermore, the increased demand puts pressure on financial resources. The risk is
that long waiting lists will develop when too few resources are available, leading to longer waiting times. This
phenomenon could further increase social segregation due to social and geographical inequalities. Manage-
ment should deploy resources more strategically to cope with this scarcity of financial resources and person-
nel. This strategic deployment requires revising current operational procedures and intensive cooperation to
make centralisation possible [1].
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As stated earlier, centralisation could partially solve personnel and resource shortages. The minister of the
Dutch Ministry of Health has mentioned areas of improvement regarding this subject. For instance, not all
hospitals should offer fully equipped emergency departments. These fully equipped emergency departments
could be centralised to regional hospitals with the appropriate resources and expertise. Local hospitals can
still execute basic acute care; however, complex acute care will be referred to regional hospitals. This example
of centralising a specialisation, such as a fully equipped emergency department, can happen for all speciali-
sations, each in a different local hospital. Therefore, intensive collaboration on a regional level is necessary.
Consequently, transport between hospitals will increase due to an increased need for exchanging medical
materials. Furthermore, resulting from this increased centralisation, there is a greater need for digitisation
and central databases to improve communication between medical institutions [42].

The National Institute for Public Health and Environment (RIVM) also focuses on the theme of ’sustain-
able care and prevention’ to make healthcare accessible and affordable considering the current hazards. The
institute focuses on innovation, organisation and funding, and prevention. Regarding the first topic, it is vital
for the RIVM to make a trade-off between the costs and benefits of new technologies. These analyses take
not only the final results but also operational characteristics into consideration. Moreover, is there a need
for these technologies, and do they replace current procedures or add to them? The RIVM commits to devel-
oping more cost-and-benefit analyses on this matter. Concerning the second topic, it comes down to which
party does what and when? Making an effective division can decrease costs and workload, as elaborated in
the previous paragraph [86].

As mentioned earlier, a vital issue in reducing personnel shortages is ensuring the correct entity takes the
right action at the right time and place. Logistics make up a significant part of medical operations, even more,
when centralisation is increasingly implemented. Centralisation also has the downside that the physical ac-
cessibility of medical specialisations decreases, which again increases the need for transport. To visualise the
need for transport in the medical sector, on a yearly basis, 3.5 million medical deliveries are made to patients
at home and the same number is delivered to hospitals [30]. An example is Erasmus MC, a Dutch hospital
that delivers medication to approximately 10.000 patients at home [27]. Moreover, traffic congestion hinders
most of these deliveries, which could be vital in the case of emergency deliveries. ANWB Traffic Information
even concluded that road congestion has increased by 10 % for the first quarter of 2023 compared to 2019
(pre-COVID era) [4].

This is where MDS comes in. The service provides a solution that takes the workload off of medical per-
sonnel and is cost-effective and time-efficient. By outsourcing medical deliveries, hospital personnel can
focus more on their core tasks. Furthermore, the service can be cost-effective because it can collaborate with
multiple medical institutions, centralising resources for medical deliveries. This centralisation leads to fur-
ther cost reductions. Until now, hospitals have been used as the only example for medical deliveries. Plenty
of other medical institutions, such as pharmacies, blood banks, and laboratories, also perform medical de-
liveries, creating an enormous market for MDS. The deployment of drones also avoids a big issue in trans-
portation: traffic congestion. When deliveries cost less time, available resources increase and costs decrease.
Therefore MDS could fill a gap in the current Dutch healthcare environment. Besides, the service exploits
innovation and has the potential to reduce environmental impact through the use of UAVs making it, which
adds to its attractiveness.

2.4. Concept of Operations
This section describes the entire concept of operations of MDS. First, subsection 2.4.1 describes the charac-
teristics of the UAV used for operations. Then, subsection 2.4.2 what type of orders the network will have to
process. Next, subsection 2.4.3 describes the operational process when an order is received. Finally, subsec-
tion 2.4.4 elaborates on the backup network in place.

2.4.1. UAV Characteristics
MDS uses the Avy Aera 3 for their operations, depicted in Figure 2.4. The aircraft has a wingspan of 2.4 meters
and is a hybrid UAV that can perform VTOL with a fixed-wing design. The UAV can autonomously fly up to 100
kilometres at 90 kilometres per hour. There will be an operator located on the ground that monitors the flight.
The UAV can hold a payload of up to 3 kilograms, and Avy provides the Avy Medkit for medical cargo [9, 30].
Avy developed this kit together with Sanquin, a Dutch blood bank. The kit can maintain stable temperatures
up to 40 degrees Celsius for 100 minutes. Moreover, the kit contains sensors that allow the user to monitor
the cargo’s state during flight. The operational window of the UAV is large; it can fly with winds up to 25 knots
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and rain up to 3 millimetres per hour [7]. The latter is comparable to regular shower that is common in the
Netherlands.

Figure 2.4: Render of Avy Aera 3 [6]. Figure 2.5: Render of Avy docking station [8].

Every time the UAV arrives at a new destination, personnel that receives the UAV will swap the battery.
Hence, each flight starts with full battery capacity. Furthermore, the drones can stay on the landing pad
for approximately two hours after arrival. After that point, drones should return to their docking stations to
maximise their lifespan and prevent unnecessary maintenance. This docking station is also provided by Avy
[8]. It has the advantage of being weatherproof and remotely controlled. The station is shown in Figure 2.5.
These docking stations will not be located at every location that MDS serves but at clients whose location
frequently acts as a pickup destination.

2.4.2. Order Specifications
The orders that MDS receives are always pickup and delivery orders. These can have a certain level of urgency
attached to them. MDS differentiates between three levels of urgency. The first level is regular transport; this
has to happen on a given day but is not bound to a specific time. The second level is urgent transport. This
type of transport usually has a deadline within 2 to 4 hours from order arrival. The third level is very urgent
transport. These orders must arrive at their final destination within approximately 1 hour of order arrival.

The MDS network is going to ship three categories of products: blood, medication, and diagnostic materi-
als. Each of these products has specific temperature requirements. Therefore it is rarely possible to combine
orders. Orders can originate from clients such as hospitals, laboratories, blood banks, large retailers, and
general practitioners.

2.4.3. Operational Process
The process surrounding an order looks like the following. A client generates an order, and the MDS oper-
ations centre receives the order. This centre is active round-the-clock and has a complete overview of all
operations. A drone is assigned and scheduled to perform the order. Before the UAV departs, the operator
inspects the weather conditions to ensure safe operations. The order is prepared just before the UAV lands at
the pickup location. As soon as the UAV lands at the pickup location, the order is loaded onto the UAV and the
UAV’s battery is swapped. It is assumed that these actions do not cause much delay. When the UAV departs
for its delivery destination, weather conditions are inspected again. Once the UAV arrives, it is unloaded, and
its battery is swapped again. If no docking station is present at the delivery location, the UAV can either stay
put for a maximum of two hours or return to its docking station.

2.4.4. Backup Network
As mentioned earlier, the UAV has a specific operational window. When winds or rain are too heavy, the drone
cannot fly. Moreover, it is not possible to fly everywhere due to airspace restrictions. For instance, a delivery
location could be located in a region where drone flight is (temporarily) prohibited. Therefore, it is necessary
to have a backup network in place.

This backup network will consist of ground vehicles (either bikes, motorcycles or cars). Whenever it is
impossible to carry out a delivery by air, the ground network carries out the order in a similar fashion as that
described in subsection 2.4.3. Furthermore, the ground network could be deployed to prevent the fleet size
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from becoming unnecessarily large due to, for instance, overlapping orders.

2.5. Model Requirements
In order to obtain a cost-efficient network and to be able to make managerial decisions, a model must be
created. This model has to allocate and schedule UAVs to tasks and simulate the execution of those tasks.
The previously described setup and interviews with MDS and industry partners have led to an elaborate set
of requirements. These requirements serve as the basis for decisions that are made in this document. Each
of the requirements and an accompanying explanation are listed below.

• Modular: MDS is still in the piloting phase. Hence there is much room for growth and adjustments to
operational processes. The chosen techniques must allow for the expansion, adjustment, and removal
of variables.

• Explainable: The model is meant to provide information about future scenarios to decision-makers.
Therefore, the model cannot act as a black box, and understanding the model’s reasoning is essential.

• Scalable and computationally efficient: The ultimate goal of MDS is to create a nationwide network
covering all sorts of medical partners. The model must be capable of handling large instances with over
100 clients and UAVs.

• Centralised nature: MDS centralises healthcare transport logistics. Hence, a model should reflect this
characteristic.

• Cooperative: All agents are in service of MDS and, therefore, cooperative.

• Suitable for a highly dynamic environment: The arrival of part of the orders is a stochastic process.
Therefore, implemented methods should be able to handle a dynamic environment.

• Anticipating: A vital part of task assignment in the described environment is considering orders that
may arrive in the future. Implemented techniques should therefore possess anticipating features.

• Handle tasks with heterogeneous deadlines: As previously described, the orders that MDS receives
have a certain urgency. Therefore, the model must be able to cope with this urgency.

• Multiple tasks: Although assigning pickup and delivery is the model’s core. Tasks such as repositioning
and scheduling are also included. Therefore, implemented techniques must be able to handle a diverse
set of tasks.

• Heterogeneous fleet: As described earlier, next to UAVs, ground vehicles also ship orders. Hence the
network must be able to handle multiple types of vehicles.





3
On UAV Deployment

This chapter introduces the primary vehicle of the Medical Drone Service (MDS) network, the drone. The
research field of drones, or unmanned aerial vehicles (UAVs), is a very active field. This is proven by the
abundance of recent literature on the topic that is available.

First, section 3.1 provides a description of UAVs. Then, section 3.2 highlights the strengths and weaknesses
of UAVs. Next, the potential applications of UAVs are discussed in section 3.3. Lastly, section 3.4 zooms in on
UAV delivery applications in practice.

3.1. Introduction to Unmanned Aerial Vehicles
The term ’UAV’ denotes an aircraft without an on-board human pilot that is operated remotely. Other terms
that are used to describe this type of aircraft are drone or remotely piloted aircraft (RPA). According to the
International Civil Aviation Organization (ICAO), the latter reflects best that although there is no human on-
board, it is still piloted remotely by human operators. To also include all of the associated elements with the
unmanned aircraft, the terms unmanned aerial system (UAS) or remotely piloted aircraft system (RPAS) are
used [57].

According to Hassanian and Abdelkefi [37], the aerial vehicle discussed in chapter 2 are categorized as
UAVs. These vehicles fall within a weight range of 5 to 15,000 kilograms and can have a wingspan spanning
from 2 to 61 meters. Specifically, the Avy Aera 3 belongs to this UAV class and is designed with a fixed-wing
configuration. This configuration offers the advantage of reduced complexity, making repairs and mainte-
nance easier. However, it also means that the vehicle is unable to hover, unlike other configurations like
rotary-wing.

The current market for drones is exponentially growing. In the United States only, McKinsey & Company
reports a rise in the worth of drone enterprises from 40 million dollars to 1 billion dollars from 2012 to 2017.
The company estimates this value to grow to 31 to 46 billion dollars by 2026. Startups drive most UAS activ-
ity. Over 300 companies have entered the market since 2000, typically focusing on hardware, operations, or
support devices such as navigation [24].

Furthermore, the European Union adopted the European Drone Strategy 2.0, stating that the drone ser-
vices market could grow to 14.5 billion euros in 2030 with the proper framework. The European Union has
already played a role in establishing an extensive drone regulatory framework that facilitated the sector’s
development. The strategy focuses on two main objectives: expanding the drone services market and en-
hancing the Union’s civil and military industry capabilities and synergies [25].

3.2. Advantages and Limitations of UAV Deployment
The utilization of UAVs in various market applications has gained significant attention due to their potential
for tailored solutions to modern-day challenges. This section aims to provide an extensive overview of the
strengths and weaknesses associated with UAV deployment.

3.2.1. Strengths
One notable strength of drones is their high speed, which is attributed to both their configuration and the
ability to travel directly [22, 29, 50]. By avoiding physical infrastructure, drones can take more direct routes,
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bypassing traffic congestion. This not only reduces travel time but also leads to more reliable arrival time esti-
mations and lower energy consumption. Additionally, the absence of infrastructure dependencies enhances
accessibility to areas that are difficult to reach due to geographical challenges or lack of established infras-
tructure. Collectively, these factors result in time and cost savings, leading to improved operational efficiency
and increased resource availability for companies and clients [5, 10, 45, 64].

Furthermore, the environmental impact of UAVs is considered positive by several authors. Most drones
are battery-powered, ensuring zero emissions during operation. Moreover, their implementation in logis-
tics can reduce the number of delivery vans in urban environments, resulting in decreased emissions, noise
pollution, and traffic congestion [15, 31, 33, 45].

In addition, the modular nature of UAVs contributes to their high flexibility in application. Drones can
be customized with varying characteristics such as range, payload capacity, and configuration, enabling tai-
lored solutions for diverse challenges [45, 64]. For instance, during the COVID-19 pandemic, UAVs facilitated
contactless delivery, mitigating the spread of the virus [5, 10]. Banik et al. [11] developed a decision support
model for selecting the optimal drone for different applications. Further exploration of the wide array of UAV
applications can be found in section 3.3.

3.2.2. Weaknesses
However, the use of drones also has a few weaknesses. Many authors highlight the existing regulatory frame-
work (or lack thereof) as a hindrance to the commercial application of UAVs [10, 11, 31, 62]. Additionally,
liability issues pose significant challenges. The current guidelines lack specificity regarding coverage policies
for personal and commercial liability, personal injury, and privacy infringement.

Moreover, public perception and acceptance play crucial roles. Privacy invasion and personal injury are
commonly perceived as major concerns by the public [62]. Privacy-related issues include concerns about
spying and data collection [10, 22, 64]. There is also a risk of valuable information being compromised
by malicious attackers. Regarding personal injury, technological failures leading to drone crashes, hacking
through jamming or spoofing, collisions with objects or other aircraft, and unauthorized intrusion into re-
stricted airspace (e.g., airports) can all potentially cause harm. Technological advancements have room for
further development in addressing these concerns.

Another weakness of drone deployment is the initial cost. While many authors argue that drone-based
solutions can be cost-efficient, reaching a certain level of utilization is necessary. In the case of delivery
operations, McKinsey & Company suggests that an operator would need to control as many as 20 drones for
them to become cost-competitive [26]. In the medical domain, it has become apparent that the frequency of
system utilization must outweigh the capital costs involved [10, 55].

Lastly, UAVs still have limited capabilities compared to traditional trucks. They are constrained by payload
capacity, have restricted range and battery life, and face limitations imposed by natural conditions such as
weather and geography [10, 22, 45, 58].

3.3. Possible UAV Applications
As mentioned in section 3.2, the deployment of UAVs offers broad applicability across multiple sectors. Mac-
rina et al. [47] categorize the main application areas as civil, environmental, and defence. Within the civil
sector, Otto et al. [58] have identified several promising applications, including physical infrastructure, agri-
culture, and transport.

In the realm of physical infrastructure, operators utilize drones for terrain examination, monitoring con-
struction site progress, and inspecting facilities for maintenance purposes. These activities can be carried out
at a relatively low cost while minimizing risks for employees.

In agriculture, UAVs play a crucial role in tasks such as fertilizer spraying, crop health assessment, and soil
property mapping. The agricultural sector, especially in the United States, anticipates significant growth in
the adoption of drone technology.

Transportation applications of UAVs primarily focus on delivery services, with emphasis on first- and last-
mile delivery, as these segments are typically labor-intensive. Developing countries also show considerable
interest in utilizing drones for the delivery of medical supplies, addressing infrastructure limitations and en-
hancing reliability. Other notable applications include surveillance, disaster management, entertainment
and media, as well as telecommunications.

Furthermore, UAVs find utility in environmental endeavors. They are employed for tasks such as mon-
itoring air quality, managing national parks, and surveying ecosystems. These applications contribute to
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environmental conservation efforts and enable more effective ecosystem management.

Lastly, the field of defense has been the traditional domain for drone technology. UAVs serve various pur-
poses in this sector, including combat operations, surveillance, intelligence gathering, and supply logistics.

The versatility of UAVs allows for their integration into a wide range of sectors, offering novel solutions
and capabilities across diverse industries.

3.4. UAV Deployment Examples in Medical Applications
In recent years, the use of UAVs, in the medical domain has gained significant attention due to its potential to
revolutionise healthcare delivery. Aside from MDS, there are several other notable projects and partnerships
in this domain that showcase the diverse applications and benefits of drone technology.

3.4.1. Matternet
One prominent example is the collaboration between Swiss Post and Matternet, which produces an end-
to-end drone-based solution, to transport lab samples between hospitals and laboratories. They conducted
trials in Zürich, Bern, and Lugano from 2017 to 2022. These trials demonstrated tangible benefits, including
a clear reduction in delivery time. However, it became apparent that the operational costs of drone-based
deliveries were high, making profitability in the medium term challenging. As a result, Swiss Post decided to
hand over the project to Matternet, who will continue operations in Lugano this year [60].

Figure 3.1: Photo of operations of Swiss Post above Lugano, retrieved from ...

Apart from the Swiss Post partnership, Matternet has partnered with many other organisations in the
medical domain. For example, Matternet worked with UPS to deliver COVID-19 vaccines to a North Car-
olina hospital group in 2021 [79]. This collaboration demonstrated the potential for drones to contribute
to emergency healthcare responses, especially during critical situations such as a pandemic. Furthermore,
the Department of Health of Abu Dhabi has partnered with Matternet and SkyGo to transfer medical sup-
plies within the healthcare sector. This system will work around the clock to distribute medical supplies,
medicine and blood units, vaccines and samples between laboratories, pharmacies and blood banks [56].
Lastly, Matternet also started a collaboration in Germany with Labor Berlin. This organisation is responsible
for diagnostic services for a large part of patient beds in Berlin. Trials have started by connecting three out of
thirteen locations. During trials, Matternet wants to explore how drone delivery can be integrated best into
the existing workflow [48].
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3.4.2. Delft University of Technology
Another example of using UAVs in the medical domain is the Ambulance Drone designed by Alec Momont
from Delft University of Technology. This drone can carry medical equipment such as an Automated External
Defibrillator, medication, and Cardiopulmonary Resuscitation aids. What sets this drone apart is its capabil-
ity to fly indoors, making it invaluable in emergency situations where quick response times are crucial. The
Ambulance Drone has the potential to provide critical support in the immediate aftermath of accidents or
medical emergencies, enhancing the effectiveness of first responders and potentially saving lives. TU Delft,
in collaboration with relevant stakeholders, is currently considering further steps for the development and
implementation of this groundbreaking technology. [49].

3.4.3. Zipline
Zipline, a pioneering company in drone-based medical deliveries, has also made significant strides in this
field. Zipline started delivering blood and vaccines in Rwanda in 2016. Rwanda is known for its many hills
making medical facilities hard to reach. Therefore a drone-based solution could have a significant impact.
Several studies have now shown that this is indeed true. A study published by the Lancet shows that the
average delivery time was reduced by 79 minutes, reducing blood wastage by 67 per cent [53]. Moreover, the
Bill & Melinda Gates Foundation found that Zipline contributes to increased health access and equity.

Encouraged by its success in Rwanda, Zipline expanded its operations to several other countries, includ-
ing the United States, Nigeria, Ghana, Kenya, Côte D’Ivoire, and Japan. With over 540,000 deliveries com-
pleted, Zipline has emerged as a frontrunner in the field, contributing to increased health access and equity.
Building on its accomplishments in the medical domain, Zipline has diversified its services and ventured
into other sectors such as E-commerce and agriculture. This expansion demonstrates the versatility of drone
technology and its potential to revolutionize various industries beyond healthcare [88].

3.4.4. Conclusion
In conclusion, the medical domain has witnessed notable advancements in the application of UAVs, or drones,
for a range of purposes. These projects, partnerships, and initiatives, such as those involving Matternet and
Zipline, exemplify the potential of drone technology in healthcare. From transporting lab samples and medi-
cal supplies to facilitating emergency responses and improving access to essential medical resources, drones
are proving to be a promising tool for enhancing efficiency, reducing delivery times, and ultimately trans-
forming the way healthcare services are delivered.

However, less is known about the scalability and cost-effectiveness of drone-based medical delivery sys-
tems. Although the mentioned projects have demonstrated the feasibility and benefits of using drones for
transporting medical materials, there is still a need for further research on how to scale up these operations
and make them financially viable in the long term. Research could explore strategies to optimize operational
costs, overcome regulatory challenges, and design efficient logistical networks to support widespread imple-
mentation of drone-based medical delivery systems.
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Related Research

This chapter presents an overview of the UAV-related problems that have been studied, aiming to identify any
gaps in the current research. Specifically, the first section (section 4.1) focuses on routing problems related
to UAVs. Subsequently, the following section (section 4.2) provides further insights into dynamic pickup and
delivery problems.

4.1. UAV-based Literature
This section provides a detailed examination of the literature related to UAV-based research. Firstly, subsec-
tion 4.1.1 categorizes the literature into different problem categories. Subsequently, subsection 4.1.2 explores
the drone delivery problem, while subsection 4.1.3 focuses on the parallel drone scheduling TSP and VRP.

4.1.1. Classification of UAV-based Delivery Models
Macrina et al. [47] proposed a classification scheme for literature on drones in delivery, shown in Figure 4.1.
They identified four main categories. Additionally, they introduced two overarching macro classes that en-
compass these categories.

The first macro class includes scenarios where both trucks and drones are involved in deliveries. Within
this class, two distinct categories exist: TSP with drones and VRP with drones. The differentiation between
these categories lies in the number of trucks considered in the problem. In TSP with drones, there is a sin-
gle truck accompanied by one or more drones, and their objective is to find an optimal tour. On the other
hand, VRP with drones involves multiple trucks, each aiming to find a tour that covers all locations with
the assistance of several drones. Furthermore, both categories can be further classified based on the nature
of truck-drone operations, specifically as parallel or synchronous operations. In the parallel operations cate-
gory, the truck and drone operate independently of each other, while in the synchronous operations category,
their actions are interdependent.

The second macro class is characterized by scenarios where only drones are responsible for deliveries.
This class encompasses two categories: the drone delivery problem (DDP) and the carrier-vehicle with drones
problem. The drone delivery problem represents a drone-only variant of the VRP, where all customer requests
must be fulfilled exclusively by drones. The carrier-vehicle with drones problem explores the research area
where drones can hitch a ride on larger vehicles to conserve battery power.

Although all of these categories describe relevant problems in the context of drone deliveries, the MDS
network is primarily concerned with studies related to the drone delivery problem, as well as the TSP and
VRP problems where drone operations are parallel.

4.1.2. The Drone Delivery Problem
As stated, the drone delivery problem is a drones-only variant of the VRP. Table 4.1 shows a summary of the
reviewed papers on the DDP. In order to relate the studies in this table to the MDS, it is important to remember
the MDS problem characteristics. The most notable characteristics are pickup and delivery tasks; deadlines;
multiple-region coverage; absence of a central depot; and highly stochastic requests.
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Figure 4.1: Classification of UAV delivery models as classifed in [47].

In Table 4.1, there is no paper present that relates closely to the previously described concept. The table
shows that only two out of eight papers discuss pickup and delivery operations. Furthermore, three out of
eight papers discuss a dynamic network. For these dynamic networks task allocation and scheduling is per-
formed using optimisation alogrithms. Only Sawadsitang et al. [68] discuss a network that handles deliveries
with time windows without a central depot present. However, their approach only allows UAVs to carry one
package at a time, and their formulation does not consider the dynamic nature of the environment.

Most of the presented papers utilise heuristics, simulated annealing or a commercial solver to solve their
formulation of the problem. Additionally, a large part of the objectives is cost related in some manner. Only
the papers specifically addressing meal delivery focus on minimizing delivery time. Furthermore, all papers
discussed are on a regional scale and some of them mention the expansion of networks to utilise inter-region
synergies. The following few paragraphs briefly summarize the papers presented, organising them based on
their respective concept of operations.

Liu [46] and Huang et al. [40] both develop a UAV network for meal delivery. Their primary objective is
to minimize delivery time, which they refer to as "tardiness" or "lateness". Liu additionally incorporates a
hierarchical objective that prioritizes safety, followed by minimizing lateness, and maximizing efficiency. To
address the dynamic nature of the environment, Liu employs a rolling horizon approach and solves an MIP
formulation. Huang et al., on the other hand, propose a Stochastic Event Scheduling framework. They cluster
tasks and solve the scheduling problem for each cluster, allocating the resulting schedules to the appropriate
UAVs. The framework also incorporates rescheduling of unexecuted tasks to adapt to the dynamic environ-
ment. Both papers address the challenge of a dynamic, infinite-horizon Vehicle Routing Problem (VRP) with
en-route vehicle diversion, which closely aligns with the challenge posed by MDS.

Campuzano et al. [17] and Sawadsitang et al. [68] explore the concept of a UAV network with the pos-
sibility of outsourcing deliveries to ground vehicles at a higher cost. Campuzano et al. discuss a dynamic
network with a central depot where UAVs can make round-trip flights to customers. At each time step, the
coordinator must decide which drones need to be charged and which ones should perform deliveries. If no
UAV is available for a particular delivery, the delivery is outsourced to a ground carrier, incurring a high cost.
The objective is to minimize the number of occurrences of outsourcing events. Campuzano et al. employ
approximate value iteration, a reinforcement learning method. Sawadsitang et al. adopt a similar setup, but
assign individual depots to each drone. In this case, outsourcing is necessary due to uncertainties like ad-
verse weather conditions. They solve an MILP formulation using a commercial solver. Both papers consider
time windows for deliveries. An interesting aspect of these studies is their approach to incorporating backup
vehicles, which is also a key element in the MDS network.

Dorling et al. [32], Troudi et al. [80] and Gómez-Lagos et al. [35] individually address solving UAV routing
problems in the context of delivery applications. Dorling et al. solve a VRP, where a UAV can visit a depot mul-
tiple times. Their energy consumption model highlights the optimisation of battery weight. Gómez-Lagos et
al. incorporate pickup and delivery operations by sending a UAV to pick up an order at a facility before deliv-
ering it to the customer. They explore various mathematical formulations to achieve this. Troudi et al. tackle
a capacitated VRP with time windows, determining fleet size based on delivery forecasts. Although each of
the concepts has distinctive features, they are not closely related to the MDS project.

Furthermore, Coelho et al. [23] propose a microgrid system specifically designed for UAV delivery. This
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Table 4.1: Summary of characteristics of papers on the drone delivery problems.

Problem

Formulation

Solved

Time

Windows

Central

Depot
Method Objectives

Other

Characteristics
Application

Dorling et al.

[32]

Multi Trip

VRP
7 3

Simulated

annealing

Cost

Delivery time

· Energy model

· Multiple parcels

· Multi-trip

Package delivery

Coelho et al.

[23]

Green

Dynamic

VRP

7 7 Matheuristic
Multi-objective

using 7 indicators

· Realistic operational

constraints

· Package exchange

· Microgrid system

· Heterogeneous fleet

Package delivery

Troudi et al.

[80]

Capacitated

VRP with

Time Windows

3 3
Commercial

Solver

Distance

n UAVs

n batteries

· Energy model

· Multiple parcels

· Multi-trip

Fleet

dimensioning

in delivery

Liu [46]
Dynamic

PDP
7 7

MIP rolling

horizon based

heuristic

Lateness or

hierarchical

(safety, lateness,

efficiency)

· Multiple orders

· Restriction on

combinations of

orders

· Battery swap

· Multi-trip

· Arbitrary pickup and

delivery locations

· Multiple couriers per

order

Meal delivery

Huang et al. [40]

Dynamic

Capacitated

VRP

7 7

Hybrid of

K-Means++

and simulated

annealing

Total tardiness

· Task scheduling

· Multiple orders

· Battery swap

· Multi-trip

Meal delivery

Campuzano

et al. [17]

Dynamic

Drone

Scheduling

Delivery

Problem

3 3
Reinforcement

Learning

Minimize number

of used backup

vehicles

· One unit load

· Ground vehicle

backup

· Charge or deliver

Package delivery

Sawadsitang

et al. [68]

Multi-objective

Drone

Delivery

Problem

3 7

MILP with

commercial

solver

Multi-objective

using 3 indicators

· One unit load

· Ground vehicle

backup

· Realistic operational

constraints

Package delivery

Gómez-Lagos

et al. [35]

Pickup to

Delivery Drone

Routing

Problem

7 3

Greedy

Randomized

Adaptive

Search

Procedure

Makespan

· Multiple orders

· No mixing of orders

· Battery swap

· Facility inventory

Package delivery

system consists of multiple layers, with each layer accommodating a different type of drone. UAVs are allowed
to transfer packages between different layers in order to consolidate deliveries. While this concept is very
innovative, it is not applicable within the context of the MDS network.

4.1.3. Parallel drone scheduling TSP and VRP
In the parallel drone scheduling TSP and VRP, both UAVs and trucks are involved in carrying out deliveries
simultaneously. These problems offer interesting opportunities for the MDS project because of the backup
network that is in place.

An overview of studies on the parallel drone scheduling TSP and VRP is presented in Table 4.2. Most of
these studies do not allow for more than one delivery per trip, considering capacity constraints. However,
Hamid et al. [36] deviate from this approach by incorporating a detailed energy model of the UAV, enabling
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multiple deliveries per trip. Ulmer, Thomas, and Chen [20, 82] address the problem by considering stochastic
requests and time windows. They employ solution methods based on reinforcement learning, which effec-
tively leverage the advantages of using either UAVs or trucks in specific areas. These findings can be valuable
for determining threshold travel times for transitioning from trucks to UAVs and dividing service regions into
areas served by either UAVs or trucks. The authors also propose exploring re-assignment strategies to better
handle stochastic requests. Finally, Hamid et al. [36] extend the problem by incorporating various other types
of agents, such as motorcycles and crowd-sourced couriers, each with their own distinct set of constraints.

Table 4.2: Summary of characteristics of papers on parallel drone scheduling TSP and VRP

TSP or

VRP

Stochastic

requests

Time

Windows

More than one

delivery per UAV

trip

Solution

Method

Objective

Function

Saleu et al.

[66]
VRP 7 7 7

Hybrid

metaheuristic

Min. completion

time

Nguyen et

al. [52]
VRP 7 7 7 Heuristic Min. cost

Ulmer and

Thomas [82]
VRP 3 3 7

Approximate

Dynamic

Programming

Max. nr. of served

customers

Chen et al. [20] VRP 3 3 7
Deep

Q-Learning

Max. nr.

of served

customers

Hamid et al. [36] VRP 7 3 3
Self-adaptive

hyper-heuristic

Min. cost,

Max. freshness,

Max. due-date satisfaction

Saleu et al. [65] TSP 7 7 7
MILP-based

heuristic
Min. makespan

Dell’Amico et al. [28] TSP 7 7 7
Matheuristic

methods

Min. maximum

work time

4.2. Dynamic Pickup and Delivery Problems
In pickup and delivery problems (PDPs), goods must be carried from an origin to a destination. These prob-
lems are vehicle routing problems and can be categorised into three groups: many-to-many, one-to-many-
to-one and one-to-one. In the first group, any node can serve as an origin or destination for a commodity.
To illustrate, a famous problem in this category is the swapping problem. Each node possesses a specific
commodity and desires one in this problem. The goal is to create the shortest possible route so that each
customer possesses their desired commodity. In the second group, one-to-many-to-one, goods are stored in
a depot and delivered to customer nodes. Additionally, customers store goods that can be taken back to the
depot. Lastly, each request has a given origin and destination in the third group. Applications of this group of
problems include courier operations. The MDS problem falls in the one-to-one category.

In a dynamic PDP, user requests are revealed over time, and the planning horizon is continuous, con-
trary to the static version of the problem. Hence, the solution to a dynamic problem should be a solution
strategy that specifies the correct action under certain circumstances instead of being a static output. In this
category, again, different subproblems exist: the dynamic vehicle routing problem with pickups and deliv-
eries, the dynamic stacker crane problem and the dynamic dial-a-ride problem. The first group allows for
the consolidation of packages, while the second does not. The dynamic dial-a-ride problem could be cat-
egorised together with the first group. However, the problem differentiates itself due to tight time windows
and maximum ride time constraints. The MDS model is a dynamic vehicle routing problem with pickups and
deliveries.

Berbeglia et al. [12] describe the general framework of a PDP. A request is an order to ship a load from
an origin node to a destination node. PDPs are defined on a directed graph G = (V , A), where V is the set of
origin and destination nodes, including the depot, and A represents the set of arcs between these nodes. A
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route is a tour along a subset of nodes that starts and ends at the depot. At each time point, all vehicles in
the problem either serve a customer node, wait at a customer node or move towards a customer node. The
problem contains two types of decisions. When an agent is finished serving a customer node, it can decide
to wait at that node or go towards the customer node of the subsequent request. Furthermore, incoming
requests can either be accepted or rejected. Of course, many extensions, such as time windows and capacity
constraints, are possible. The quality of algorithms that solve PDPs can be assessed by inspecting the total
cost or distance travelled, the number of accepted requests, and the computational time.

A frequently used solution strategy for the dynamic PDP is to adapt an algorithm that applies to the static
PDP. For instance, a static PDP could be solved each time a new request arrives. In this case, continuity
constraints would have to be implemented. A disadvantage of this method is that it is computationally costly.
Another method is to solve the static version of the problem once at the start of the planning horizon and
then insert a new request using an insertion heuristic. These heuristics are computationally efficient and can
be used in real-time computations.

Stochastic PDPs refer to the type of PDPs where there is some prior knowledge of future requests in the
form of a probability distribution, which is often approximated using historical data due to the complexity
of the problem. This approximation is commonly used in many dynamic PDPs and dynamic vehicle routing
problems. Anticipation of future requests can then be implemented using, for instance, scenario sampling.
Future requests may also be accounted for using waiting strategies. A waiting strategy determines how long a
vehicle should wait at a node before continuing its route. Such a strategy could be beneficial in anticipation
of future requests. The strategy can also be reversed. Then requests are held for a certain amount of time
before being assigned to a vehicle. This is called a buffering strategy. Repositioning of idle vehicles is also
considered [12].

Stochastic Dynamic Vehicle Routing Problems (SDVRP) are a class of problems that extend traditional
static VRPs by incorporating time-dependent changes and uncertainty represented through probability dis-
tributions. This class is closely related to stochastic PDPs. These problems are relevant in on-demand services
such as meal delivery, parcel delivery, and ride-hailing, as well as emergency healthcare. SDVRPs are typi-
cally modeled using Markov Decision Processes (MDP) that consist of states, actions, rewards, and transition
functions. Early research focused on optimizing resource usage based on the current state, while another
area concentrated on identifying actions that would be advantageous for future dynamics. Cost function ap-
proximation methods integrated policy function approximation into the optimization process, combining
comprehensive search of the action space with evaluation of future value. An alternative approach involves
data-driven methodologies like reinforcement learning and scenario sampling, where predictions are made
about future developments. The multiple scenario approach considers all possible scenarios simultaneously,
while the post-decision rollout algorithm narrows down the action space and evaluates potential actions
through simulations. These methods thoroughly evaluate actions but require computation effort. Partition-
ing an SDVRP into assignment and routing has also been considered. By implementing such a partition, the
solution space is effectively narrowed down, enabling the utilization of advanced techniques [39].

In recent literature about PDPs the use of electric ground vehicles has also gained attention in pickup
and delivery problems [2, 19]. These studies introduce battery constraints into the classical PDP formulation.
Agrali and Lee [2] suggest introducing drones as a new vehicle type, while noting that UAVs have much stricter
battery and capacity constraints, but can obtain higher speeds. Furthermore, through literature study, it
becomes clear that many studies still use static environments to solve their respective problem formulation
and propose an extension to the dynamic realm. Moreover, most of the performed experiments are on a small
scale and simplified. Hence, a proven strategy that can cope with the complexity of the operations of the MDS
project and its intended scale is still missing. Finally, a very limited body of literature exploits repositioning
of vehicles in the context of PDPs, creating an opportunity for further investigation in this area.





5
Task Allocation and Scheduling

This chapter describes how the choice for a method that allocates and schedules tasks was made. First, sec-
tion 5.1 provides some background on task allocation and scheduling. Then, section 5.2 elaborates on the
classes of solution methods. Next, section 5.3 dives deeper into the different types of auction mechanisms.
Finally, section 5.4 presents a trade-off between the different mechanisms.

5.1. Background of Task Allocation and Scheduling
A first taxonomy of task allocation and scheduling problems presented by Gerkey and Matari defined multi-
robot task allocation problems along three axes [34]. The first axis differentiates between problems where
robots can only execute one task at a time and problems where robots can perform multiple tasks simulta-
neously. The agents in these types of problems are called single-task (ST) robots and multi-task (MT) robots,
respectively. Along the second axis, the taxonomy distinguishes between single-robot (SR) and multi-robot
tasks (MR), referring to the number of robots necessary to complete a task. The final axis makes a distinction
between instantaneous assignment (IA) and time-extended assignment (TA). The previous allocates tasks
without planning future tasks, while the latter is concerned with current and impending allocations that must
be executed according to a schedule.

The problem described in chapter 2 belongs to the MT-SR-TA category. It belongs to the MT category
because UAVs can ship multiple orders at a time if all environmental requirements are satisfied. Furthermore,
it belongs to the SR category because UAVs cannot cooperate in executing delivery orders. Finally, it is also
possible to schedule tasks in advance due to some partners’ decreased urgency levels. Hence, a schedule for
a UAV can be created.

However, the two authors of the earlier mentioned taxonomy observe that this taxonomy still needs to
capture problems with interrelated utilities and task constraints. The authors in [44] propose iTax, a tax-
onomy which adds to the previously described one. They propose a two-level taxonomy in which the first
level describes the interdependencies and the second level provides extra information using the taxonomy
provided by Gerkey and Matari. iTax defines four levels of problems. In the first level, no dependencies
are present (ND). In these types of problems, the presence of other agents or tasks is independent of the
task’s utility. The second level contains in-schedule dependencies (ID). In ID problems, the utility of an agent
performing a task depends on other tasks that the agent performs. The third level has cross-schedule de-
pendencies (XD). In these types of problems, the utility of an agent performing a task depends not only on
its own schedule but also on other agents’ schedules. The last problem category contains complex depen-
dencies (CD). In this case, the utility of an agent performing a task depends on other agents’ schedules, the
agent’s schedule, and the decomposition of the complex task from which it originates. Figure 5.1 provides an
overview of the previously described dependencies.

According to this taxonomy, the problem described in chapter 2 belongs to the ID category. Each order
will bring a UAV to a new location that will determine its proximity to the pickup location of its next order; a
larger proximity to the next destination results in fewer costs. Therefore, the utility of the UAV’s tasks depends
on its schedule. However, there are no relations between different orders, and they cannot be decomposed
into simpler tasks. Hence, this problem does not belong to the XD or CD category. The authors of the iTax
taxonomy mention that auction-based or market-based approaches are frequently used to solve problems in
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this category.

Figure 5.1: Overview of level 1 dependencies from iTax taxonomy [44].

5.2. Classes of Solution Methods
Chen [18] describes four common classes of solution methods for task allocation, namely optimization ap-
proaches, evolutionary and swarm algorithms, auction mechanisms, and game-theoretic approaches. In the
following paragraphs each of these methods will be shortly explained.

Optimization approaches formulate the task allocation problem as an optimization model with specific
constraints and objectives. These models can be solved using algorithms to find the optimal assignment
and scheduling of tasks. Common optimization problems are the vehicle routing problem or the pickup and
delivery problem. There exist exact methods to solve these problems such as the Hungarian algorithm or
the brand and bound method. However, for large problems heuristic solvers are also applied. Optimization
approaches can provide optimal and complete solutions, but also generally require long computation times.
Hence, these methods are poorly scalable. Furthermore, because the task allocation happens all at once it is
impossible to adjust costs based on the ongoing allocation progress [77].

Evolutionary and swarm algorithms are inspired by nature and can also be used to find solutions to the
earlier mentioned mathematical formulations. Evolutionary algorithms use a set of possible solutions that is
slowly improved by applying the principles of natural evolution, such as selection, recombination, and mu-
tation. Swarm algorithms replicate swarm movement. Each particle in the swarm is attracted to the best
solution found so far, furthermore each particle is also attracted to the best solution that it has experienced
itself. Another algorithm that replicates nature is the ant colony optimization algorithm. Here, pheromones
are left to indicate the quality of the solutions found. Ants will follow paths based on the pheromone con-
centration. Evolutionary and swarm algorithms have been widely applied to successfully solve optimization
problems [87].

Auctions act as some kind of market mechanism. For task allocation each vehicle would determine its
cost and the task would be rewarded to the lowest bidder. Here, it is critical to establish the right bidding and
scheduling rules to achieve the desired objective. Contrary to real auctions, auction mechanisms in multi-
agent task allocation are cooperative. These methods pose a solution to issues concerning computational
time and communication limits for centralized systems. Auction mechanisms were successfully applied for
dynamic pickup and delivery problems in [18] and [63].

Game-theoretic approaches to task allocation involve modeling the strategic interactions between self-
interested agents. Agents are viewed as rational entities seeking to maximize their own utility. Cooperative
game-theoretic approaches focus on forming coalitions and coordinating actions to achieve mutual benefits,
while non-cooperative game-theoretic approaches analyze individual decision-making and seek stable out-
comes such as Nash equilibria. These approaches aim to allocate tasks efficiently by considering factors such
as fairness, stability, and efficiency.

The author of [63] classifies auction mechanisms as the most appropriate approach to pick-up and deliv-
ery problems. They are robust since they can include uncertainties in bids and are adaptable to a changing
environment, contrary to centralized approaches, such as optimization approaches or evolutionary/swarm
algorithms. The reason for this is that these methods have to resolve the whole problem when changes oc-
cur. Although these methods do not guarantee optimal solutions, they still provide decent, and sometimes
suboptimal, solution quality. Furthermore, auction mechanisms are scalable and efficient. They outperform
optimization techniques, which need long computational time for large scale instances. Although evolution-
ary/swarm algorithms are fast, they also require many iterations to converge. Finally, auction mechanism
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are very flexible, allowing the system designer to tailor the mechanism to their own preference. Therefore,
auctions mechanisms will be considered for task allocation and scheduling of UAVs in the MDS project. The
next section will elaborate on the different types of auctions.

5.3. Auction Mechanisms
In the realm of auction theory, there exist multiple classes of auction mechanisms. These are categorized
based on their distinct rules and mechanisms. It is possible to make a first division by separating mechanisms
based on the presence of a central auctioneer.

Auctions in which a central auctioneer is present are, for instance, parallel or combinatorial auctions. In
parallel auctions tasks are allocated via independent and simultaneous single-round auctions. As a result,
synergies between tasks are not taken into account, hence the resulting total cost is high. Combinatorial
auctions allocate all tasks in one single-round auction. Here each agent bids on all bundles of targets. This
method takes synergies between tasks into account. However, a significant challenge arises as the genera-
tion, transmission, and processing of bids (exponential in the number of tasks) requires much more com-
putational power than parallel auctions. Sequential single-item (SSI) auctions combine the best of both of
the previously mentioned auctions. In this type of auction all tasks are allocated in one auction consisting of
multiple rounds. Every agent bids on all tasks, and the winner is the one provided the lowest bid to a task that
is then allocated to it. The bid is made up of the smallest cost of adding the task to the agent’s task set (consist-
ing of previously allocated tasks). There exist a number of extensions to this type of auction, such as roll-outs,
bundle bids, and regret clearing [43]. Sequential single-cluster (SSC) auctions are another step towards com-
binatorial auctions. In a similar fashion to SSI auctions, clusters of tasks are auctioned to agents. This type of
task allocation is able to capture synergies between tasks, while also being able to reduce computational time
[38].

Auctions without a central auctioneer include the consensus-based bundle algorithm (CBBA). This algo-
rithm is first presented by Choi et al. as a generalization of the consensus-based auction algorithm (CBAA).
The CBBA algorithm consists of two phases. In the first phase, all agents create their own bundle of tasks.
In the second phase, conflicts between the constructed bundles are resolved. The authors prove that CBBA
guarantees 50 % optimality [21]. Many extensions to CBBA exist. For instance, there are algorithms capa-
ble of handling time windows, heterogeneous agents, re-planning of tasks, and mandatory tasks [13, 59].
Furthermore, the Asynchronous CBBA was formulated to improve the consensus phase of CBBA, which is
sensitive to communication overflow for larger problem instances [41]. A special extension to CBBA is the
performance impact algorithm. This algorithm introduces two metrics used in the task inclusion and con-
sensus phase: inclusion performance impact and removal performance impact. Through these metrics, the
performance impact algorithm is able to solve time-critical problems that CBBA cannot. An extension to this
algorithm known as PI-MaxAss, maximizes the number of assigned tasks through a redefinition of the earlier
mentioned metrics. The authors of this extension state that it could also be used in combination with any
other scheduling method [81].

Table 5.1 shows an overview of the discussed allocation techniques. In the context of the MDS network, as
stated in chapter 2, it is important that an allocation and scheduling method is centralised and cooperative,
as this reflects the true concept of operations. Therefore, algorithms such CBBA and performance impact
are not considered. Furthermore, it is important that synergies for regular transport requests are captured to
increase profitability. For this reason, parallel auctions are also disregarded. Finally, combinatorial auctions
can be challenging computationally. While, they could work for small instances, they are not suitable for
large problems. Because scalability is a requirement for the MDS network, these type of auctions are also
not considered. This leaves SSI and SSC auctions. The next subsections further elaborate on these type of
auctions. However, emphasis will be put on extensions that can handle temporal constraints. The reason for
this is that the auction method should solve a pickup and delivery problem with deadlines, hence considering
methods that do not include temporal constraints is of no use.

5.3.1. Temporal Sequential Single-Item Auction
The first method that will be discussed is the Temporal Sequential Single-Item auction (TeSSI) algorithm.
This algorithm allocates tasks using an extension to the SSI algorithm. The algorithm uses an auctioneer that
communicates tasks to agents, receives bids, determines the allocation and communicates this to agents.
The advantage of an auctioneer is that they ease communication among agents and enables a comprehensive
overview of individual allocations. However, contrary to centralised approaches the auctions offer the benefit
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Table 5.1: Overview of auction mechanism characteristics.

Centralised Number of rounds
Account for

inter-task synergies

Computational

Power

Parallel auction 3 Multiple Low Low

Combinatorial

auction
3 Single High High

SSI 3 Single Medium Medium

SSC 3 Single Medium-High Medium

CBBA 7 Two Medium High

ACBBA 7 Two Medium Medium

PI-algorithm 7 Two Medium High

PI-MaxAss 7 Two Medium High

of distributing bid calculations among agents. The agents function as bidders, with each agent independently
determining the cost associated with executing each task based on its own private schedule.

The process of TeSSI auctions, works the following way. It starts when available tasks are announced for
bidding by the auctioneer. Each agent sends a bid vector and the auctioneer selects the task with the lowest
bid out of all the sent bids. This task is then allocated to the agent that sent the bid and each agent is notified
about the allocation. Tasks that no robot is able to perform are added to the set of unallocated tasks. The
auction then restarts with the remaining set of unallocated tasks and continues until this is empty.

Each agent computes its bid by considering its current schedule. This schedule is kept as a spatial tem-
poral network (STN). An example of an STN is displayed in Figure 5.2. In an STN, the time points St and Ft

represent each individual task. Furthermore, it contains an origin time point that references the starting point
(omitted in Figure 5.2). Self-loop arrows are used to represent the fact that time windows are present. Hence,
a task must be executed between ESt and LFt . Two types of constraints are present between each pair of
time points: travel time and duration constraints. Travel time constraints are enforced when two consecutive
time points belong to different tasks. These constraints also enforce that a task is finished before the agents
heads on to the next task. When two time points belong to the same tasks, duration constraints are enforced.
These constraints ensure that a task cannot finish before it is started. The agents calculate a bid for a task by
attempting to place the task in each possible time segment in the agent’s schedule and choosing the position
that minimizes the makespan while avoiding any temporal conflicts. Tasks are added by adding the start and
finish time points to the already existing STN, together with the accompanying constraints. They STN is reset
after each try and is only updated when the agent actually wins the auction.

Figure 5.2: Example of a spatial temporal network as given by [54].

Nunes and Gini, the authors of the TeSSI algorithm [54], consider two types of objectives. Agents can
either bid using the makespan of their schedules or combine it with the distance traveled. The latter means
that the makespan and total travelled distance are linearly combined and is referred to as TeSSIduo. Note that
minimizing the makespan, maximizes the agents’ availability.

The TeSSI auction produces in total n × m bids, where n represents the number of agents and m the
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number of tasks, for m iterations (every tasks is auctioned separately). Hence, the resulting complexity is
O (nm2). Furthermore, scheduling tasks for each agent requires up to O (|Tr |2), where |Tr | represents the size
of the set of tasks allocated to an agent. Additionally, the Floyd-Warshall algorithm that propagates an STN
after adding a task is O (m3) for worst-case scenarios.

Results of experiments done using the TeSSI algorithm show that TeSSI outperforms CBBA and a greedy
algorithm in terms of number of necessary agents and number of allocated tasks. The use of the makespan to
conduct bids allows TeSSI to allocate more tasks than CBBA, because tasks can be moved around. For dynam-
ically arriving tasks, it becomes apparent TeSSI performs just as well as a greedy algorithm, when not many
tasks are available, because it is not able to incorporate the synergies between tasks. However, when many
tasks are available, the performance of TeSSI quickly increases. Experiments also show that clustered tasks
based on, for instance, their relative distance allow TeSSI to allocate more tasks. Furthermore, it shows that
TeSSIduo is able to generate paths that are consistently lower in total distance, without significantly increas-
ing the makespan. Hence, when the total travelled distance is of importance, TeSSIduo is preferred. Next to
that, the computation time of the TeSSI algorithm is two orders of magnitude less than the computation time
of the CBBA algorithm [54].

In conclusion, concerning scalability and efficiency the TeSSI algorithm seems suitable. However, taking
advantage of synergies is important and the TeSSI algorithm does not fully satisfy this requirement. Furhter-
more, the STN presented does not allow for mixed pickup and delivery tasks because a task cannot start before
the other task is finished. Finally, when TeSSI is not able to allocate a task it puts it in the set of unallocated
tasks. As a high number of allocations is preferred, this is a feature that should be improved upon.

5.3.2. Probabilistic Temporal Sequential Single-Item Auction
Rizzo and Sharpanskykh continued the work on the TeSSI algorithm in the context of pickup and delivery
problems with time windows. They state that time windows substantially complicate the allocation prob-
lem, because agents have to reflect on the temporal consistency of their schedules, rather than only spatial
synergies. Two shortcomings of TeSSI algorithm are given:

• The STN representation lacks flexibility in enabling agents to express and analyze potential sources of
uncertainty in task durations.

• Re-auctioning of tasks is impossible. Once an allocation is made, it cannot be revisited, hence limiting
the number of synergies that can be exploited.

A probabilistic version of TeSSI (pTeSSI) is proposed that includes re-auctioning of tasks. This algorithm
is proposed in the setting of meal delivery, where each delivery includes a pickup point and a delivery point,
and a time window in which the order must be completed. Contrary to TeSSI, durations of tasks are regarded
as random variables with known distributions. The principle of the auction method is the same as that of SSI
and TeSSI auctions.

Two team objectives to be minimized are presented, shown in Equation 5.1 and Equation 5.2. Here, S
represents set of all agent schedules. Furthermore, Mi (Si ) represents the minimum time an agent i needs
to finish its schedule Si . Next to that, Di (Si ) refers to the total distance agent i needs to travel to finish its
schedule Si . Note that each of the two objectives contains the penalty ρ ·Ri (Si ). This penalty is meant to
capture the risk of unsuccessful dispatch of a schedule. Here, ρ indicates how heavily unsuccessful dispatch
is penalized, while Ri (Si ) indicates the probability of an agent not being able to finish its schedule. For
each task auction an agent bids the minimum incurred cost of being allocated a task, using mathematical
reformulation it is deducted that the bids that are conducted follow Equation 5.3 and Equation 5.4 for the
two objectives respectively. In this formulation Pi refers to the partial allocation before the auctioned task is
allocated and P ′

i to the partial allocation after allocation of the task. It is concluded that to determine Mi and
Di a TSP with time windows with time windows has to be solved, which is an NP-hard optimization problem.
The formulation of this problem using an STN allows for determining these variables in a highly efficient way.

MAX-T : F (S) = max
i

[Mi (Si )+ρ ·Ri (Si )] (5.1)

SUM-DIST : F (S) =∑
i

[Di (Si )+ρ ·Ri (Si )] (5.2)

Mi (P ′
i )+ρ ·Ri (P ′

i ) (5.3)
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Di (P ′
i )+ρ ·Ri (P ′

i )− (Di (Pi )+ρ ·Ri (Pi )) (5.4)

The authors introduce the spatial temporal network with uncertainty (STNU) as displayed in Figure 5.3.
Four actions are used to represent a single pickup and delivery task: travel to pickup location, perform pickup
action, travel to delivery location, perform delivery action. For each of these variables the duration is respec-
tively denoted as T Tpi , pi , tdi , and di for a task Ti . In the STNU curved arrows, also called contingent con-
straints, are used to represent when these variables are uncertain. They are then interpreted as a random
variable with upper and lower bounds. The straight arrows represent requirement constraints to enforce the
sequence in which the different tasks must be carried out. Finally, the dashed arrows indicate the time win-
dow in which the task must be carried out with respect to the origin node. This node is continuously updated
based on the agent’s current position and state. Minimizing the number of nodes utilized for representing
a schedule and applying compacting operations whenever possible is always preferable, as the runtime of
algorithms executed on the STNU escalates with the network’s size.

Just like in the TeSSI auction, an agent positions a task up for auction at each possible position in its
STNU. Eligible positions include the one right after origin node or after each last node of another task. The
validity of each insertion is checked by inspecting if for two consecutive tasks the earliest delivery time of the
first task is no later than the latest delivery time of the second task. For a valid insertion point, the agent first
the determines the risk associated with adding this task to its task set. If this risk is below a certain threshold
the agent will compute its bid. The agent submits the best computed bid from insertion point i∗ to the
auctioneer. After winning the auction the agent will directly insert the task at position i∗.

Figure 5.3: Example of a spatial temporal network with uncertainty as found in [63].

To compute risk of adding a task to an existing schedule the degree of dynamic controllability is used. This
is also known as the probability that the realization of contingent edges is such that network is dynamically
controllable. First, the network is inspected for conflicts. These are sets of constraints that cannot be satisfied
simultaneously by any execution strategy. When a network contains no conflicts, it is said to be dynamically
controllable. Otherwise, the operator investigates how the intervals on contingent edges should be shrunk to
resolve conflicts and ensure dynamic controllability. Then the probability is computed that contingent edges
will actually fall within the shrunk intervals.

The complexity of the bidding procedure in pTeSSI is described to be O (mn +m2). This is because after
the first round, where each agent bids on each task, in the next rounds only the winning agent has to reevalu-
ate its bids for the remaining tasks, since its schedule has changed. Furthermore, the bidding and scheduling

algorithm has an overall complexity of O ( m6

n4 ), which is similar to the original TeSSI algorithm although the
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operations are more elaborate. Finally, the algorithm always terminates, however optimality of the final allo-
cation is not guaranteed due to the nature of the sequential auction.

The main disadvantage of pTeSSI (and TeSSI too) is that the number inter-task synergies to can be consid-
ered is limited. The current auction strategy only considers the synergies between the task set on auction and
each of the agent’s individual schedules, but no combinations. To solve this problem, agents are allowed to
temporarily decommit from the tasks in their schedules an re-auction them. To decrease the duration of the
auction tasks are bundled together. The version that makes bundles of tasks is called the probabilistic tempo-
ral sequential single bundle (pTeSSB) auction. Tasks selected to remove from an agent’s schedule by comput-
ing the improvement of the objective by removing the task. If this improvement exceeds a certain threshold,
the task is removed from the agent’s task list. Bundles are constructed using an hierarchical agglomerative
mechanism. For two tasks, first their sequence is inspected for validity. This term points to whether it is
possible to carry out the two tasks consecutively with acceptable risk. Afterwards, the distance between two
tasks is measured through computing the alignment of the time windows and the travel time. Bundles are
only combined if the distance is below a certain threshold. The bidding phase is similar to pTeSSI. However,
a bid is now constructed by inserting every task of a bundle B into the agent’s schedule. Only when the agent
can successfully insert all task, it will bid a valid number. The authors state that the number of generated bid
is now less than before but that this offset by the extra operations required in the bidding and scheduling pro-
cedure. To mitigate this effect, the bidding procedure has been modified, practically making pTeSSB faster
than pTeSSI. It is noted that pTeSSI (and other TeSSI auction algorithms) makes wiser decisions when the set
of already allocated tasks is larger as it able to better capture synergies with the agent’s schedules. Therefore,
the threshold for decommiting from tasks should not be too low [63].

While the re-auctioning mechanism is interesting for dynamic allocation problems, the STNU is an ad-
dition to the MDS network that does not add to the current objective. The bundling of tasks is interesting,
however, the authors mention little on how bundling tasks affects the objective.

5.3.3. Adapted TeSSI Auction
To allocate and schedule tasks for ground support equipment vehicles, the author in [18] used an adapted ver-
sion of the TeSSI algorithm. They state that the strength of the TeSSI algorithm is its ability to handle temporal
constraints. However, they modify the algorithm because the STN is substituted by a pickup and delivery op-
timization model. The bidding mechanism remains the same, just like the two objectives of minimizing the
makespan and the total distance (or travel time).

When tasks are supposed to be inserted into the STN to compute the new makespan, an optimization
algorithm is carried out to generate a schedule. There is limit on the computation time, to ensure that the
algorithm is suitable for real-time implementation. In the case that an optimal solution is not reached before
the time limit, a feasible solution is returned. When it is also not possible to find a feasible solution, the
agent will bid an infinite number. The algorithm solves the single pickup and delivery problem tailored to
the concept aircraft ground handling operations. An example of a schedule is provided in Figure 5.4. The
advantage of such an algorithm is that it allows for mixed pickup and delivery operations, something that is
not possible when using an STN.

Figure 5.4: Example of schedule generated by single vehicle pickup and delivery problem algorithm [18].

To reduce the allocation time, tasks are bundled. The idea of non-overlapping bundles taken from the
bundle generation problem (BuGP) is used to construct bundles. However, in this case a heuristic is used.
Whenever it is impossible to allocate a bundle, the bundle is split into individual tasks and these tasks are
allocated. It is stated that bundling is not ideal as if affects the overall optimality of the auction results. Fur-
thermore, the objective of reducing the overall computation time is not achieved through bundling tasks. Two
possible reasons are given for this. The first reason is that it could be possible that the integration between the
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bundles and the optimizer has to be improved. The second reason is that through the generation of bundles,
the time windows might have become tighter, therefore increasing the problem complexity.

To cope with uncertainties, two measures are taken. The first measure introduces buffer coefficients into
computations to deal with uncertainties. The other allows for re-allocation because of disruptions in the op-
erational process. Only tasks that the disrupted agent has not yet started to process are reallocated. However,
although re-planning in this model provides higher task allocation rates it did not yet manage to improve the
makespan.

5.4. Trade-Off
This section aims to provide a concise summary of the decision-making process and present the final selected
method.

Firstly, Table 5.2 displays the decision regarding the category of methods that deserves greater considera-
tion. The criteria used in the table are defined as follows:

• Robust: Ability to handle uncertainties and adapt to a changing environment.

• Scalable and efficient: Presence of computational requirements that are deemed acceptable.

• Solution quality: Acceptable performance level concerning solution optimality.

• Flexibility: Capability to customize the algorithm according to the preferences of the designer.

Based on the analysis presented in the table, it can be inferred that auction mechanisms are the most
suitable for the MDS network. Subsequently, decentralized auction mechanisms were excluded from consid-
eration as they do not accurately reflect the operational setting of the MDS network.

Table 5.2: Overview of whether different allocation and scheduling criteria satisfy the minimum requirement for model criteria.

Robust Scalable and Efficient Solution Quality Flexibility

Optimisation 3 3

Evolutionary/Swarm

Algorithms
3 3

Auction Mechanisms 3 3 3 3

Game-Theory 3

The decision-making process narrows down the options to parallel, combinatorial, and sequential auc-
tions. Among these, sequential auctions emerge as the primary candidate due to their satisfactory solution
quality and efficiency. Further filtering for methods that accommodate temporal constraints leads to the
consideration of extensions of the TeSSI algorithm.

Consequently, the adapted TeSSI auction is identified as the most suitable choice. This decision is based
on the fact that the optimizer used in this algorithm enables the incorporation of mixed pickup and deliv-
ery operations, which is not possible with the STN approach. Moreover, allowing agents to decommit from
tasks, as described in the pTeSSI algorithm, addresses the dynamic nature of the problem. While the STNU
approach described in pTeSSI is appealing for handling uncertainty, incorporating margins and allowing for
reallocation in extreme scenarios will effectively address the uncertainty inherent in the MDS network.
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Vehicle Repositioning

This chapter discusses the method selection for repositioning UAVs in the network. First, section 6.1 dis-
cusses the background of repositioning and proposes suitable methods. Then, section 6.2, section 6.3, and
section 6.4 each treat one of the proposed methods. Finally, section 6.5 makes a trade-off between the differ-
ent methods.

6.1. Background of repositioning
Vehicle repositioning is crucial in balancing supply and demand across various industries, including emer-
gency healthcare, the taxi industry, and bike-sharing systems. The efficient location of emergency vehicles,
such as ambulances, can significantly affect the patient’s survival. Therefore, it is essential to strategically
position these vehicles throughout an area to ensure prompt responses to emergencies. Similarly, in the taxi
industry, it is crucial to have sufficient vehicles available to cater to the customers’ demands at any given time.
Repositioning vehicles in high-demand areas can reduce customer waiting times and cruising times for taxi
drivers, ultimately increasing customer satisfaction. In the case of bike-sharing systems, moving bikes from
less popular stations to high-demand areas can ensure that enough bikes are available for users to rent. This
strategy can help bike-sharing companies increase usage rates and profitability.

Sayarshad and Chow [69] state that several studies have indicated that dynamic models capable of look-
ing ahead, also known as "non-myopic" models, perform better than myopic dynamic models. These stud-
ies have covered the areas of pickup and delivery problems, fleet management, adaptive network design
problems, and facility relocation problems. Non-myopic policies lead to better-informed decisions and are
therefore beneficial. Therefore, primarily non-myopic methods are considered for the repositioning of UAVs.
Bélanger et al. present three different categories of methods to treat dynamic vehicle relocation problems in
emergency medical services [16]. These categories are online methods, compliance table/offline methods,
and learning based methods and each of these categories will be considered for method selection.

6.2. Real-time Relocation Models
Real-time approaches strive to determine optimal relocation plans by considering the system’s current state
when making decisions. These approaches involve solving or approximating relevant models each time a
decision is required. Because UAV relocation in the MDS network resembles ambulance relocation, such a
real-time model would be based on static ambulance location models, such as the double standard model
(DSM). This model tries to maximize the demand covered twice within a certain timespan S. Furthermore, it
ensures that a fraction of the demand is covered within S, while all demand is covered within S′, where S′ > S.
The proposed ambulance relocation problem (RP t ) is based mainly on the DSM but also seeks to minimize
relocation costs simultaneously. Since this model must be solved each time a vehicle is sent to perform a
pickup and delivery request, it can become computationally expensive. Therefore, the developers propose to
compute the solution for each possible allocation decision beforehand.

Other static ambulance location models could serve as a basis for real-time ambulance relocation. The
earliest optimization models are the location set covering problem (LSCP) and the maximal covering location
problem (MCLP). While the former seeks to minimize the number of required vehicles to satisfy coverage con-
straints, the latter tries to maximize coverage for a given number of vehicles. Hence the former is helpful for
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strategic fleet decisions, while the latter can be employed to make fleet management more efficient. Many
variants of these two formulations exist, such as the earlier presented DSM, to overcome the initial assump-
tions made. Furthermore, probabilistic and stochastic versions of these problems exist. One such model is
the maximum expected covering location problem (MEXCLP) and extension of the MCLP, which incorporates
vehicle availability through a busy fraction.

Furthermore, techniques have emerged to avoid requiring recomputation each time a vehicle is dis-
patched. This method defines a preparedness measure, which denotes the system’s ability to meet future de-
mands. Equation 6.1 shows how this measure is computed. Here, i represents a demand zone. Furthermore,
ai represents the weight associated with this demand zone based on the fraction of requests it generates. Ki

denotes a predetermined number of vehicles (typically the closest) that will be used in computing the pre-
paredness. t k

i represents the travel time for each vehicle k to zone i and γk the contribution factor associated
with each vehicle. When the preparedness for a zone drops below a certain threshold, the computation for
the relocation of vehicles is launched.

ρi = 1

ai

Ki∑
k=1

γk

t k
i

(6.1)

Finally van Barneveld et al. [84] developed a method for ambulance management in rural regions, where
the number of ambulances is limited. As a consequence, dispatching a vehicle to a request affects cover-
age more. Furthermore, the demand variance in different zones is much higher, affecting en-route coverage
and thus making ambulance relocation more risky. To solve their problem, authors developed a one-step
look-ahead heuristic that can act according to different performance measures. The heuristic allows for a re-
location decision at each time step instead of only when an event occurs. The dynamic ambulance relocation
process is formulated as an MDP. The action space consists of dispatching an ambulance to its neighbour-
ing nodes or letting it hold its current position. Given an incoming request, the heuristic chooses an action
that minimizes the weighted penalties for the minimum achieved response time in each next possible state.
A limitation of this heuristic is that it only allows for gradual changes in the ambulance configuration since
ambulances can only move to their neighbouring nodes. Furthermore, many extensions, such as incorporat-
ing request priority levels and multiple ambulance types, are still possible. Lastly, the authors state that this
heuristic outperforms methods based on compliance tables.

6.3. Compliance Tables
Compliance tables are offline methods to compute vehicle repositioning strategies. For larger instances, more
computational power is required for online methods making real-time decision-making harder. These meth-
ods solve the ambulance relocation problem for each possible system state a priori. However, in this case the
system state only depends on the number of available or idle vehicles. Hence, these types of methods contain
little detail about the system’s environment. A weakness of compliance tables is that there is no cohesion be-
tween different states, resulting in unwanted relocations of vehicles. This challenge can be solved by putting
bounds on the number of relocations that occur when transitioning from one state to another. The strength
of the method is that it is easy to complain and that the tables can be computed in advance.

One example of the application of compliance tables is presented by van Barneveld [83]. He introduced
the minimum expected penalty relocation problem to compute compliance tables. The objective of this prob-
lem can be based on several performance measures such as maximizing total coverage, which why the au-
thors introduced the penalty function. Furthermore, the authors extend their model in such a way that it
overcomes the binary definition of coverage and is more realistic concerning the availability of ambulance
waiting sites. Additionally, the authors investigated the effects of a relocation threshold to prevent unneces-
sary relocations.

Aside from computing compliance tables, vehicles also have to be assigned to a waiting site when the
number of available vehicles changes. According to van Barneveld [83] this can either be done by solving
a minimum weighted bipartite matching problem to minimize the total travel time, or by solving a linear
bottleneck assignment problem to minimize the maximum experienced travel time. For these two problems
fast solving methods exist, therefore they could be solved online.
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6.4. Reinforcement Learning
As mentioned in section 6.1, non-myopic policies, policies capable of looking ahead have been shown to
perform better than myopic policies. Reinforcement learning, therefore, presents an interesting opportunity.
Reinforcement learning tries to find the optimal way of interacting with the environment to maximize the
reward signal. The method is especially useful for large state spaces and is one of the first methods to address
computational issues that may arise in this type of problem setting.

Most reinforcement learning problems share the following characteristics. First, there is interaction be-
tween a decision-making agent and its environment. Furthermore, the agent aims to achieve a certain goal
within its environment, which most of time contains some kind of uncertainty. As a result, the agent’s actions
can affect future states, but never fully determine the next state. Hence, the agent must display foresight to
achieve its goal. Most of reinforcement learning theory is based on environments that satisfy the Markov
property. This property states that all future states can only depend on the current state. If the environment
satisfies the Markov property the environment is called a Markov decision process (MDP). The objective in
reinforcement learning is to find the optimal policy. This policy maps actions to states such that the reward
signal is maximized.

Two reinforcement learning methods are of interest for repositioning. The first method is approximate dy-
namic , as it has been successfully applied in previous studies by Nasrollahzadeh et al. and Schmid [51, 70].
The second is Monte Carlo methods, since this method is model-free and can be applied offline. subsec-
tion 6.4.1 elaborates on the theory of dynamic programming and approximate dynamic programming, while
subsection 6.4.2 elaborates on Monte Carlo methods.

6.4.1. Dynamic Programming
This subsection discusses dynamic programming. First, the theoretical concept is discussed. However, ap-
proximate dynamic programming is also highlighted since dynamic programming is only sometimes appli-
cable due to high computational requirements. These heuristics are based on the core idea of dynamic pro-
gramming.

Exact Method
Dynamic programming can be used used to solve finite MDPs. In a finite MDP, the number of possible states
and actions is finite. The method assumes that the environment’s dynamics are fully known. These dynamics
are represented by p(s′,r |s, a). This expression refers to the probability of transitioning to state s′ and obtain-
ing reward r , while choosing action a in state s. The main essence of dynamic programming is to use state
value functions to ease the search for adequate policies.

The state value function can be approximated using the Bellman equation. Equation 6.2 shows the update
for each iteration of the state value function used by dynamic programming.

vk+1(s) = Eπ[Rt+1 +γvk (St+1)|St = s]

=∑
a
π(a|s)

∑
s′,r

p(s′,r |s, a)[r +γvk (s′)] (6.2)

Where:

• v(s) is the state value function

• k is the iteration number

• t is the time step in the model

• Rt+1 is the reward signal obtained at time t+1

• r is a realisation of Rt+1

• γ is the discount factor

• S represents the set of all possible states

• s is realisation of S

• π is the policy that is adhered to
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• a is a possible action

This iterative process is usually repeated when the absolute difference between vk+1 and vk is sufficiently
small. Once the value function is determined, this function is used to improve the current policy by making
it greedy towards the newly determined value function as shown in Equation 6.3.

π′(s) = argmax
a

∑
s′,r

p(s′,r |s, a)[r +γvπ(s′)] (6.3)

The process of approximating the value function and improving the policy based on this approximation
is repeated as shown in Equation 6.3 until both are value function and policy are optimal. Dynamic pro-
gramming is quite efficient because the time to find an optimal policy is polynomial in the number of states
and actions. Hence, it is faster than any exhaustive policy search that provides the same optimality guaran-
tee. Linear programming methods provide better convergence guarantees but become impractical at a much
smaller number of states.

π0 → v0 →π1 → v1 → ... →π∗→ v∗ (6.4)

Although dynamic programming is efficient, its disadvantage is that it involves operations over the entire
state set. For large state spaces, this can be very expensive computationally. Asynchronous dynamic pro-
gramming poses a solution to this issue. Here, instead of the method updating the value function for all
states, some subset of states is improved. As a result, the policy can be improved more quickly [78].

Approximate Dynamic Programming
Approximate dynamic programming is a branch of dynamic programming that addresses the challenges
posed by high-dimensional problems that suffer from the ’curses of dimensionality’ [61]. It aims to find so-
lutions that are close to the optimal policy by evaluating the post-decision state based on an estimated value
function.

To achieve this, approximate dynamic programming employs various techniques. One important aspect
is simplifying the stochastic dynamic system described earlier. This can be done by aggregating states, which
involves grouping similar states together and computing a single value for each group. This reduces the
complexity of the problem. Additionally, certain areas of the state space that are unlikely to be relevant can
be excluded.

The action space can also be streamlined using a technique called decomposition. This approach divides
the problem into a top-level and base-level subproblem, such as task assignment and routing. The top-level
problem is thoroughly analyzed, while the sub-level problem may be addressed using heuristics or simplified
models. Another option is to omit details and aggregate decisions, which further reduces complexity. Finally,
the number of decision points can be minimised.

In approximate dynamic programming, there are several methods available, such as the roll-out algo-
rithm, which approximates the value function, and approximate value iteration.

6.4.2. Monte Carlo Methods
Monte Carlo methods differ from dynamic programming because they only require experience and no knowl-
edge of the model. This experience could either be a real-time or simulated experience. The latter still re-
quires some model knowledge but no complete knowledge of all the transition probabilities, which can be
a significant advantage. The method is based on averaging sample returns for episodic tasks. An episodic
task is a task for which there exists a terminal state that ends the task. This property is valid for, for instance,
playing a chess game.

In Monte Carlo methods, an episode is generated using a policy π. Returns are stored each time that state
s is visited and averaged at the end to determine vπ(s). The method is proven to converge to the actual value
function as the number of visits to state s goes to infinity. As a result, contrary to dynamic programming, each
state is assessed individually, and its value estimate is not based on the value estimates of other states. This
feature is attractive when one only wants to examine a subset of all possible states. Monte Carlo methods
can estimate state action values qπ(s, a) in the same manner by averaging returns after a visit to state action
pair (s, a). This characteristic is beneficial for improving the policy as it only has to be made greedy towards
qπ(s, a). The process of improving the state value function and the policy is the same as the one described
in subsection 6.4.1. Monte Carlo methods have to overcome two significant problems. The first problem
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is obtaining a satisfactory result without an infinite number of simulations. The second problem is how to
ensure that all states are visited.

To summarize, Monte Carlo methods are beneficial because they allow the agent to learn optimal be-
haviour from interaction with the environment without full knowledge of its dynamics. This feature is ad-
vantageous because, in many applications, it is hard to construct an explicit model such as the one required
for dynamic programming. Furthermore, the method allows the user to focus on smaller subsets of states.
Finally, because the method does not bootstrap, it is less sensitive to violations of the Markov property [78].

6.5. Method Trade-off
Having thoroughly examined and discussed all the candidate methods suitable for vehicle repositioning, a
comparative analysis can be made to evaluate and trade-off these approaches. To achieve this the the follow-
ing criteria are used to assess the different methods:

• Modularity: Refers to the ease of integration of the method with the rest of the model.

• Flexibility: Refers to the possibility to customize algorithm according to the preferences of the designer.

• Explainability: Refers to the ability of a method to provide clear and understandable explanations of
its learning and decision-making processes.

• Anticipative: Refers to the ability of a method to estimate the value of an action by considering future
consequences or looking ahead in the decision-making process.

• Scalability and efficiency: Assesses the computational requirements of the proposed methods.

Because each of the previously presented methods are unmistakably centralised and cooperative, these
two criteria are omitted from the trade-off performance measures. They will be more relevant to the issue of
task allocation, where decentralised methods are more prominent.

Furthermore, the earlier presented methods are categorised into four categories: real-time methods,
compliance tables, Monte Carlo methods, and approximate dynamic programming. Real-time methods
point to the methods that solve optimization problems in real-time or heuristics that are applied in the same
manner. Compliance tables are methods that precompute the solutions to optimization problems for dif-
ferent system states. Monte Carlo methods and approximate dynamic programming are both reinforcement
learning methods, but they have been separate because of the large differences in their nature.

Figure 6.1 shows the results of the trade-off of the method categories. Each of the methods was given a
score from 1 to 4 (4 being the best score). As can be read from the diagram, Monte Carlo methods are the
best performing category for repositioning. An explanation on the scores for different performance criteria is
given in the following paragraphs.

For the modularity performance criterion, Monte Carlo methods score the best. These methods sample
and estimate the action values through repeated interaction with the environment, in which each episode
is standalone. This model-free approach allows for incremental improvements, while also allowing system
adjustments. Approximate dynamic programming scores the worst because it allows for bootstrapping, thus
modifications to a specific part of the system affect the entire process. Furthermore, ADP models require
tuning of parameters, hence adjusting the environment will affect the system configuration. Real-time opti-
mization methods and compliance tables score higher than ADP, but below Monte Carlo methods. The reason
for this is that the optimization algorithms used, the systems dynamics, and the decision-making process are
tightly coupled. Hence, altering a part of the model could require significant alterations to the whole system.

Regarding the criterion of explainability, it is observed that Monte Carlo methods and compliance tables
exhibit the best performance among the various method categories. Monte Carlo methods provide a clear
and intuitive approach to learning and decision-making, as they directly simulate and evaluate episodes.
The estimation process in Monte Carlo methods relies on empirical averages, enabling relatively straight-
forward interpretation and explanation of the outcomes. In contrast, approximate dynamic programming
and real-time optimization techniques often involve intricate mathematical formulations and complex non-
linear function approximators, optimization algorithms, or control policies. Consequently, these methods
pose challenges when it comes to providing clear explanations, particularly in understanding the rationale
behind specific decisions or the impact of parameter choices. In terms of explainability, compliance tables
outperform real-time techniques as they explicitly specify the preferred vehicle configurations in each situa-
tion, although potentially lacking clarity regarding the underlying reasons behind such specifications.
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Figure 6.1: Diagram of trade-off for vehicle repositioning methods.

The next criterion is scalability and efficiency. Here, ADP methods score the highest because reinforce-
ment learning methods are meant to address computational problems in large solution spaces. Monte Carlo
methods score slightly worse because they have the potential to be computationally more expensive. Real-
time methods, although providing near-optimal solutions, can become infeasible for large instances. While
compliance tables aim to solve this by computing solutions beforehand, these methods contain little detail
about the environment. Therefore, these methods will provide worse results than the others.

Concerning the methods’ anticipative skills, for this criterion both Monte Carlo and ADP methods score
the best. Both of these methods are anticipative and able to estimate the value of an action by looking ahead.
To a lesser extent, real-time methods are also able to do this by, for example, looking one step ahead or via
stochastic programming. Real-time methods are generally more suitable for highly dynamic environments
compared to compliance tables. On the other hand, compliance tables are static tables that specify prede-
termined configurations or actions for specific conditions. These tables are designed based on preexisting
knowledge or predefined rules and are not updated in real-time.

The last criterion is the flexibility criterion. Here again, Monte Carlo methods score the highest since
these methods are model-free. ADP methods often rely on specific model knowledge, optimisation methods
require well-defined mathematical models and constraints, and compliance tables lack adaptability. These
factors limit their flexibility compared to Monte Carlo methods, which can learn and make decisions solely
based on interaction with the environment, adapt to unknown systems, estimate various value functions,
focus on specific subsets of states, and improve policies without a complete model.

Summarized Monte Carlo methods score the highest on four out of five criteria, although they require
more computational power, than, for instance, ADP. However, the maximum size of the possible problem
instances for MDS is limited. The modularity and suitability for dynamic environments make these methods
attractive to use.
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Research Proposal

This chapter discusses the research proposal. First, section 7.1 discusses the research gap that became appar-
ent during the literature study. Then, section 7.2 and section 7.3 define the research objective and research
questions. Next, section 7.4 defines the project further by providing assumptions, requirements, the scope
and constraints. Finally, section 7.5 elaborates on the approach and planning of the project.

7.1. Research Gap
Developing efficient algorithms that can be applied to large-scale pickup and delivery networks is becoming
more and more relevant in today’s fast-paced economy. A strategy that is able to handle the envisioned scale
and complexity of the MDS network does not exist yet. Such a strategy would partially fulfill the need for
scalable algorithms that can optimise allocation while considering various factors, such as traffic conditions,
vehicle capacities, time windows, and dynamic changes in the network in a reasonable timeframe.

Next to that incorporating real-time adaptability into such strategies is an important research direction.
Most algorithms for dynamic pickup and delivery problems are formulated and tested in a small static en-
vironment and then applied to dynamic environments afterwards. As a result, these algorithms do not take
advantage of methods that improve real-time adaptability such as repositioning or request buffering.

While research has already progressed a lot in the area of ground vehicles, strategies for complex net-
works incorporating UAVs are still lacking. While van Haasteren [85] built a UAV model based on the MDS
project. Much of his efforts focused on model development itself and his analysis was on a much smaller
scale. Hence, there is an opportunity to focus on resource management through novel allocation and repo-
sitioning strategies for a large-scale network. Doing so should add to understanding the impact, potential
benefits and challenges, of incorporating UAVs in such networks.

7.2. Research Objective
The research objective is formulated as the following:

’To design and evaluate a strategy for allocating and repositioning a fleet of UAVs with the goal of minimis-
ing operational costs in the context of large-scale dynamic pickup and delivery tasks with deadlines for medical
material’

7.3. Research Questions
In order to achieve the previously stated objective, several research questions are identified. These are listed
below:

1. How can the allocation and scheduling of UAVs be designed to minimise operational costs of a UAV
fleet in large-scale dynamic pickup and delivery networks?

• What do requests to be allocated look like?

• What does the environment that the UAVs operate in look like?

• What assumptions are present?
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• How should uncertainty surrounding different variables be dealt with?

• What constraints are present during allocation?

• What technique should be implemented? From literature study it becomes clear that this technique
is adapted TeSSI.

• What bidding rule should be used?

• How should the cost of bid be computed?

• What is the mathematical optimisation problem that has to be solved for scheduling?

• What method should be used to solve the optimisation problem?

• What steps can be undertaken to ensure the speed of the allocation procedure?

• How to implement reallocation of tasks as proposed in pTeSSI?

• What is the relation between cost minimisation and other key performance indicators such as
timeliness or emissions?

• How does replanning tasks affect operational cost?

• What can be said about the scalability of the implemented strategy?

2. How does repositioning UAVs affect the operational costs of an allocation strategy in a large-scale dy-
namic pickup and delivery network?

• What technique should be implemented? From literature study it becomes clear that this should
Monte Carlo methods in the context of reinforcement learning?

• How should the states, actions and rewards of the problem be defined?

• What techniques within Monte Carlo methods is suitable for the problem at hand?

• What algorithm using Monte Carlo methods is suitable for implementation?

• Which Python libraries are out there to support the implementation of Monte Carlo methods?

• How should the algorithm be trained and tuned?

• How does repositioning affect other key performance indicators such as timeliness?

• What is the influence of repositioning on the scalability of the strategy?

• What UAV moving patterns become apparent?

• Is the information from moving patterns useful to making strategic decisions such as placing UAV
hubs?

7.4. Project Definition
7.4.1. Assumptions

1. Each location is able to swap the battery of a drone.

2. The battery of the drone is swapped each time it arrives at a new destination.

3. The control center has full knowledge of the schedules and positions of each of the UAVs in the network.

4. The quality of communication between the control center and the UAV agents does not hinder opera-
tions.

5. Maintenance is considered out of scope, since it is only necessary every 200 flight hours.

6. A binary variable is used to reflect whether or not a UAV is allowed perform an order. This variable will
reflect the effects of extreme weather conditions and commands by air traffic control.

7. The generation of routes will be based on the work performed by van Haasteren [85], these routes are
assumed to be conflict-free.

8. Whenever it is impossible perform a delivery using UAVs, a ground vehicle will carry out the delivery.
The safety net that accommodates these type of deliveries is assumed to always be available, but is
subject to current traffic conditions.

9. Docking stations are neglected.
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7.4.2. Requirements
1. The strategy must allocate each request to either a UAV or a ground vehicle.

2. The strategy must be able to generate a schedule from a set of allocated tasks to UAV.

3. The strategy must be able to reposition UAVs.

4. The strategy must allow for replanning of allocated tasks.

5. The strategy must be able to cope with instances in which UAV flight is prohibited.

6. The strategy must be able to cope with UAV failure.

7. Each order must be completed by the MDS network within its deadline.

8. The range of a UAV for a single leg from location A to location B cannot be exceeded.

9. The combined mass and volume of orders cannot exceed the mass and volumetric capacity of the UAV.

10. The strategy must be capable of efficiently managing a client set with a size on the order of thousands.

11. The model architecture must be modular.

7.4.3. Scope
Figure 7.1 illustrates the proposed process that will be used to address the research questions. This process
will be implemented in Python through agent-based simulation, following the approach implemented by van
Haasteren [85]. Utilising this modeling technique offers several advantages, such as the ability to accurately
capture system complexity, facilitate modularity, and enable analysis of both system-wide and local behav-
iors.

Figure 7.1: Structure of envisioned process.

The model requires the incorporation of various inputs, consisting of both simple and more complex ele-
ments. Simple inputs include UAV specifications, fleet size, and operational cost details. On the other hand,
more complex inputs encompass UAV routes matrices, request data, and information regarding prohibited
flights.

To generate UAV routes matrices, van Haasteren’s work [85], which leverages geographical characteristics,
will be used to determine these routes. Moreover, requests for a full day will be pre-generated, modeling
potential customers for MDS based on their size. The scope of clients will primarily be limited to hospitals
and blood banks due to the availability of publicly accessible information on these institutions.
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Additionally, careful consideration will be given to situations in which UAV flights are not possible and
how they should be represented in the model. This will be accomplished by introducing a binary variable
that indicates that flight is prohibited. The goal is to determine the distribution of this variable in advance.

The process itself requires the implementation of an allocation technique and a repositioning technique.
The technique that will be used for allocation is Adapted TeSSI and the technique that is used for reposition-
ing is Monte Carlo methods in the context of reinforcement learning.

Regarding the backup network, tasks are only allocated to ground vehicles in case no UAV is available or
when flight is prohibited. There will be a module in place that can determine the effects of such an allocation
on cost and on-time performance. However, the ground vehicles themselves are not modelled.

7.4.4. Key Performance Indicators
The quality of the strategy is analysed using several key performance indicators. The list below denotes each
of the indicators. For each of these indicators it is possible to analyse their sum or to scale them based on the
request input.

• Variable costs (€)

• Fixed costs (€)

• Emissions (kilogram CO2)

• Time left to task deadline (minutes)

• Share of orders that are on time (%)

• Share of orders allocated to backup network (%)

• Computational time (seconds)

7.5. Approach and Planning
Table 7.1 shows an overview of the identified work packages and their estimated durations. In the following
subsections each of these packages is discussed in more detail and deliverables are defined.

It can be noted that work package 1 and 2 have the same deadline. This is due to the fact that both of
these work packages require a lot information provided by business partners. Therefore, the work packages
are executed in parallel to prevent any unnecessary delays.

Furthermore, the time planned for some tasks may seem excessive. However, this is due to external activ-
ities that take approximately 20 to 25 hours a week.

Finally, the mid-term and green light meetings are planned after work package 5 and 6 respectively.

Table 7.1: Overview of identified work packages and their estimated workload.

Work Package

Number

Work Package

Name

Estimated

Duration

Approximate

Deadline

1
Demand

Generation
2 weeks 23 August ’23

2 Agent-based Simulation 6 weeks 23 August ’23

3
Allocation

Algorithm
3.5 weeks 22 September ’23

4 Replanning 2 weeks 6 October ’23

5 Repositioning 5 weeks 10 November ’23

6
Verification, Valiation

and Analysis
6 weeks 22 December ’23

7 Finalisation 4 weeks 17 January ’24
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7.5.1. Work Package 1: Demand Generation
Description
The purpose of this work package is to be able to create a module that can generate a request schedule for a
given timeframe and client base. The first step is to set up a database of potential clients and to determine
relations between these clients. Then, a module can be created that can generate a schedule based on this
information. The final step is to implement customer agents and requests in the agent-based simulation.

Deliverables
• Module that pre-generates demand

• Python files containing client agents and request objects

• Report on work package

7.5.2. Work Package 2: UAV Operating Environment
Description
This package is concerned with setting up the remainder of the agent-based simulation. The goal is to set
up the simulation and implementing the described KPIs so that the model can run using a simple greedy
allocation strategy.

Furthermore, UAV routes must be generated for the full set of locations and a decision must be made on
how to implement no-fly conditions.

While this package accounts for a lot of work, it is possible to built on the work of van Haasteren [85],
therefore decreasing the workload.

Deliverables
• Agent-based simulation of MDS

• File containing all possible UAV routes based on client set

• Report on work package

7.5.3. Work Package 3: Allocation Algorithm
Description
The goal of this package is to implement Adapted TeSSI in the working agent-based simulation. Before this
can be done, some theoretical work must be performed. This includes determining the bidding rule, de-
termining constraints and formulating the scheduling problem. The work by Chen [18] can be used as a
foundation.

Deliverables
• Allocation and scheduling module implemented in Python

• Report on work package

7.5.4. Work Package 4: Replanning
Description
This work extends the allocation algorithm developed in the previous package, by allowing agents to decom-
mit from already scheduled tasks as described by Rizzo [63].

Deliverables
• Implement replanning in Python.

• Report on work package
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7.5.5. Work Package 5: Repositioning
Description
The goal of this work package is to integrate repositioning into the agent-based model. The initial step in-
volves doing theoretical work to determine the specific implementation approach. While it is clear that Monte
Carlo methods in reinforcement learning will be utilised, there are still numerous options to consider. These
options include selecting between on-policy or off-policy methods and choosing between first-visit or every-
visit methods. Additionally, it is necessary to define the system states, actions, and rewards. Then, an ap-
propriate algorithm must be selected for the implementation. Finally, the module must be implemented in
Python.

Deliverables
• Repositioning module

• Report on work package

7.5.6. Work Package 6: Verification, Validation and Analysis
Description
At this point, the full model is in place. The first step is to verify the model through extensive debugging,
testing, and stressing the model. Then, proper validation methods must be chosen through literature study.
Once a proper plan for validation is established, the model can be validated.

Finally, experiments are set up and conducted for analysis. The results of these experiments must be anal-
ysed and a sensitivity analysis must be conducted to determine their reliability. If time allows, improvements
to the model could be implemented to increase computation speed or to increase realism in the model. Fi-
nally, an article has to be written about the model and the conclusions that were drawn.

Deliverables
• Draft article

• Report on work package

7.5.7. Work Package 7: Finalisation
Description
This is the final phase of the thesis. At this point, the green light meeting was successful. Hence, the article
and the thesis document can be completed and a presentation can be prepared.

Deliverables
• Article

• Presentation
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1
Verification

This chapter performs a comprehensive verification of our model. We start by investigating the model’s re-
sponse to various parameter variations to confirm its coherence with expectations. Subsequently, we subject
the model to stress tests using extreme values to assess its robustness and ensure performance.

1.1. Sensitvity
This section focuses on analyzing the model’s sensitivity to parameter variations, aiming to verify its behavior
under diverse conditions. Various assumptions are tested, as well as overall sensitivity

1.1.1. On Board Time
One notable feature of the Adapted TeSSI scheduling algorithm is its ability to allow Unmanned Aerial Ve-
hicles (UAVs) to be on board for multiple flight legs. While a constraint is in place to prevent orders from
remaining on board for extended periods, it is valuable to gain insights into the actual time spent on board.

The sensitivity analysis presented in Figure 1.1 illustrates how the number of drones in the network af-
fects the average time a UAV spends on board with order. The total number of orders remained constant
throughout the 20 simulations per parameter setting. Consequently, a decreasing number of drones indi-
cates a higher workload per drone. As anticipated, the analysis demonstrates that the time spent on board
increases when there is a smaller number of drones. This phenomenon is attributed to the higher workload,
leading to more complex routes where orders are more likely to be on board for several flight legs.
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Figure 1.1: Average time spent on board of a UAV by an order for the
Adapted TeSSI scheduling algorithm with and without replanning.

Additionally, we investigate the impact of replanning on the efficiency of our system. We anticipate re-
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planning will simplify complex routes by reassigning orders to different UAVs, thus simplifying the overall
operation. We employ the Mann-Whitney U test and the Vargha Delaney A measure to substantiate our find-
ings. Detailed results from these statistical tests are presented in Table 1.1.

In this table, the parameter AF T indicates the likelihood of obtaining higher values from the population
without replanning compared to the population with replanning. Analyzing Figure 1.1, it becomes apparent
that, for scenarios involving 4 to 6 drones, replanning does not significantly impact the time a UAV spends on
board. This observation is supported by the p-values provided in Table 1.1, which prevents us from rejecting
the null hypothesis that the two populations are identical.

However, when considering a fleet of 3 drones, we can confidently assert that replanning does have a
tangible effect on the time spent on board. This conclusion is further supported by both the A- and p-values,
signifying a reduction in on-board time when replanning is implemented.

Number of drones U-value p-value AF T -value

3 54 < 0.01 0.865
4 203 0.532 0.508
5 181 0.302 0.548
6 185 0.335 0.463

Table 1.1: Details of Mann-Whitney U test and Vargha Delaney A measure
for results shown in Figure 1.1.

1.1.2. Battery Swap
One fundamental assumption within our model is the ability to swap the drone agent’s battery at every op-
erational location. This assumption enables drone agents in our system to maintain continuous operation.
In this section, we delve into the implications of this assumption by examining the average distance a drone
covers during flight. Specifically, we explore whether the assumption would significantly impact our system’s
performance if not upheldfor instance, if a drone could only exchange batteries after completing two or three
flights.

Figure 1.5 illustrates the average flight distance across algorithm configurations and workloads, quantified
by the number of drones allocated relative to the demand volume, which is kept constant. Notably, the graph
reveals minimal discrepancies among the four algorithm configurations studied. Moreover, the aggregated
data showcases an average flight distance of approximately 13.1 kilometers. This distance represents roughly
one-seventh of a drone’s full operational range. Furthermore, it accounts for approximately one-third of the
maximum distance achievable during a single flight leg, 43.2 kilometers. This observation suggests that our
model inherently tends to steer operations away from prolonged flight distances, aligning with operational
feasibility considerations.
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Figure 1.2: Average distance flown for different parameter configurations.
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1.1.3. Turnaround Time Length
autoreffig:TAT2, Figure 1.4, and Figure 1.2 illustrate the model’s sensitivity to variations in turnaround time.
As expected, both the utility (fraction of time with payload on board) and the availability (fraction of orders
performed by drone agents) decrease with higher turnaround times.

However, an interesting observation is the decrease in cost per flight with an increase in turnaround time.
This phenomenon occurs because a higher turnaround time can lead to a holding pattern, where orders are
not executed immediately. Subsequently, when another order arises, reoptimization occurs, allowing the
model to benefit from synergies between tasks. This effect becomes less pronounced for higher workloads.
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Figure 1.3: Average Utility for turnaround times.
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Figure 1.4: Average Availability for turnaround times.
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Figure 1.5: Average Value for different turnaround times.

1.1.4. Speed
Figure 1.6 illustrates the model’s sensitivity to variations in speed concerning the KPI availability. The plot
distinctly demonstrates that availability increases as speed increases.

However, it is notable that this effect diminishes as speeds become increasingly higher, suggesting that
there may not be a significant advantage to employing UAV models with higher speeds.
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Figure 1.6: Average availability replans for different speeds under different workloads.

1.2. Extreme Values
To comprehensively verify our model, we conduct stress tests involving extreme values for crucial input pa-
rameters. Parameters selected for testing encompass the number of drones, turnaround time (TAT), and
drone agent speed. While numerous other parameters are subject to variation, their purpose is to provide
insights rather than identify anomalous behavior. The subsequent subsections outline the specific tests un-
dertaken and their respective methodologies.

1.2.1. Number of Drones
This section evaluates the model’s performance under extreme values of the number of drones, encompass-
ing scenarios with no drones, a single drone, and a surplus of drones.

No Drones at All
Scenario: Only cars are available to fulfill orders.
Results: The model executed without encountering any errors, and the output data aligned with expectations.
Performance: All deliveries were successfully completed using cars.
Conclusion: Drones are not essential for model execution in this scenario.

Single Drone
Scenario: A single drone is employed for simulation.
Result: The model executed flawlessly without errors, yielding expected output data.
Performance: On average, the drone completed 62 orders per simulation day, and the entire day’s simulation
was processed within 30 seconds.
Conclusion: The model effectively operates with a singular drone, suggesting that the number of drones need
not be plural for model utilization.

Abundance of Drones
Scenario: 100 drones are employed for simulation.
Result: The model executed flawlessly without errors, yielding expected output data.
Performance: The drone agents performed all published requests. However, due to the large number of
drones the simulation was significantly slower, about 1.5 minutes per day.
Conclusion: The model can handle large numbers of drone agents, but is slowed down by the larger number
of computations that have to be performed.

1.2.2. Turnaround Time
This section assesses the impact of varying turnaround time (TAT) values on the model’s performance. The
minimum TAT is set to 1 minute to prevent the occurrence of subtours in the scheduling optimization algo-
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rithm. Additionally, scheduling constraints dictate that flights cannot start and end at the same timestamp.
Besides, it is unrealistic to disregard turnaround time entirely. We further examine the effects of an extended
TAT for a configuration using 5 drone agents.

2-hour TAT
Scenario: In this scenario, each drone agent participating in the simulation operates with a specified TAT of
2 hours.
Result: The model executed smoothly without encountering any errors, producing the anticipated output
data.
Performance: Drone agents handled a small portion of the requests, primarily focusing on tasks located near
their assigned positions.
Conclusion: The model adeptly handles turnaround time considerations, demonstrating consistency in its
performance without encountering any anomalies.

1.2.3. Speed
The analysis in subsection 1.1.4 demonstrates the effects of speed for quite a large range already. This part
looks into what extrimities speed of 1 km/h and a speed of 200 km/h do with the model. Simulations are just
like before performed with the same demand scenario and 5 with 5 drone agents.

1 km/h
Scenario: Each drone agent is restricted to a speed of 1 km/h.
Result: The model faced challenges due to onboard time constraints, as travel time exceeded the maximum
allowed time onboard. After temporarily removing these constraints, the model was able to correctly provide
information.
Performance: Drone agents were only able to execute same-day delivery orders that required a single flight.
These were less than 1 % of the full number of orders.
Conclusion: While the model demonstrated its capabilities at low speeds, other constraints prevented the
model from providing information. Evaluating performance at these speeds necessitates a reconsideration
of the constraints present.

200 km/h
Scenario: Each drone agent can move at a speed of 200 km/h.
Result: The simulation ran smoothly, producing the anticipated outcomes.
Performance: As indicated in subsection 1.1.4, availability at this speed only marginally increased for the
same number of drones. This can be attributed to the timing of order arrivals, which are better addressed by
increasing drone quantity rather than speed. Additionally, while variable costs decreased due to shorter flight
durations, fixed costs rose as orders were promptly executed upon publishing, rather than being delayed due
to capacity limitations.
Conclusion: The model effectively accommodates high UAV speeds, delivering accurate results.





2
Algorithmic Design choices

This appendix provides insights into the decision-making process behind the algorithm’s design. First, sec-
tion 2.1 explores the initiation point for re-optimization of an existing schedule in the Adapted TeSSI algo-
rithm. Then, section 2.2 delves into the details of the reallocation algorithm.

2.1. Adapted TeSSI
We investigate the functionalities of the Adapted TeSSI algorithm, specifically its ability to reoptimize an
agent’s schedule while it still has unfinished tasks. Unfinished tasks are allocated tasks that have already
been picked up but have yet to be delivered. Hence, tasks allocated to the agent but not yet picked up are not
considered unfinished tasks.

To analyze the usefulness of this ability, we implement a counter-algorithm that chooses another starting
point for its optimization. Where the version that can handle unfinished tasks starts as soon as the current
flight is finished, the counter algorithm starts when the current task set of the agent is entirely different from
the previous time step. This event indicates a full pickup and delivery round has just been completed. Fig-
ure 2.1 and Figure 2.2 visualize the previously described starting points.

Figure 2.1: Re-optimization starts after a full pickup and
delivery loop is finished.

Figure 2.2: Re-optimization starts directly after the current
flight is finished.

We evaluate the algorithms using three key performance indicators (KPIs): cost, availability, and utility.
To assess cost, we analyze the cost per flight. Availability is measured by determining the proportion of orders
that drone agents are capable of executing. As for utility, we consider the fraction of time a drone spends in
flight with payload onboard.

Figure 2.3, Figure 2.4, and Figure 2.5 show the respective performance on these KPIs for varying num-
bers of drones using 60 simulations per parameter setting. During these simulations, three different demand
scenarios are tested to ensure that conclusions are generally valid.

Upon reviewing Figure 2.4 and Figure 2.5, it is apparent that the counter-algorithm outperforms the al-
gorithm designed to handle unfinished tasks. Regarding cost implications, as depicted in Figure 2.5, the
counter-algorithm demonstrates a notable advantage in operational expenses. Statistical analyses reinforce
this observation. Specifically, the Mann-Whitney U test yields p-values consistently below 0.001 across all
drone quantity scenarios, rejecting the null hypothesis that the samples are indifferent. Furthermore, the
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Vargha-Delaney A measure indicates an average probability of 0.75 that the original algorithm results in a
higher cost per flight.

Additionally, Figure 2.4 illustrates that the counter-algorithm facilitates a higher volume of orders per
drone. Nevertheless, the difference in performance is marginal. For a statistical significance level set at α =
0.05, most computed p-values exceed the threshold, indicating a lack of statistical significance.
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Figure 2.3: Average utility of drone agents for different
workloads.
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Figure 2.4: Average availability of drone agents for different
workloads.
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Figure 2.5: Average cost per flight for different workloads.

The results just described go against our expectations. We expected that introducing more planning flex-
ibility would increase our algorithm’s performance on the respective KPIs. Figure 2.3 explains this event. The
figure shows that our original algorithm does have a higher utility than the counter algorithm. Still, utility is
defined as the time spent with payload onboard. Hence, an explanation could be that handling unfinished
tasks in schedule optimization results in constraints that require unnecessarily complex routes, therefore de-
ducting the benefits of added flexibility. Furthermore, moving the start of re-optimization further back will
delay the execution of the newly published task.

2.2. Reallocation
This section explores the reallocation algorithm, which assesses pending pre-allocated tasks to ensure their
assignment to the appropriate agent. Due to the computational demands of reallocation, the algorithm em-



2.2. Reallocation 87

ploys a heuristic approach for task selection instead of trying to reallocate every pending task. Specifically,
subsection 2.2.1 details the determination of the threshold employed in this heuristic, while subsection 2.2.2
examines the criteria for identifying tasks suitable for reallocation.

2.2.1. Reallocation Threshold
The figures below depict how the algorithm performs across various thresholds and workloads. In Figure 2.6,
we observe the impact of thresholds on percentage cost savings. The graph demonstrates a consistent down-
ward trend across all thresholds, suggesting that task reallocation is most effective during high workloads.
Additionally, with the exception of the threshold set at 0.5, most thresholds exhibit similar performance. As a
result, the threshold set at 0.5 is excluded from further consideration.
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Figure 2.6: Percentual cost gain for different
replanning thresholds under different workloads.
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Figure 2.7: Succesful replans for different replanning
thresholds under different workloads.
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Figure 2.8: Average number of selected tasks for replanning for different thresholds and number of drones.

Furthermore, the graph depicted in Figure 2.7 illustrates the effectiveness of the algorithm, measured
by the proportion of tasks selected that were successfully replanned. This graph also reveals a trend: the
algorithm’s effectiveness increases as the workload diminishes. However, the variation in effectiveness across
different thresholds is not particularly pronounced.

Based on the analysis of the two figures, it is evident that there is minimal performance advantage in
selecting one threshold over another. However, as previously mentioned, replanning tasks demands signif-
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icant computational resources. Figure 2.8 demonstrates a noticeable difference in performance between
the thresholds, guiding us towards choosing the threshold that minimizes the number of tasks selected for
replanning. Given that the threshold of 0.5 is not under consideration, we have established the standard
threshold at 0.4.

2.2.2. Type of Reallocated Tasks
Analyzing the chosen threshold, we focus on the specific tasks that are being reallocated. From Figure 2.9,
we observe that semi-urgent tasks are predominantly the ones being reassigned. This is due to the fact that
urgent tasks have tighter time constraints, making them difficult to reallocate. On the other hand, same-day
tasks have the flexibility to be executed at any time during the day, fitting more easily into an agent’s schedule.
Consequently, semi-urgent tasks, which carry a sense of urgency but are not as tightly bound by time, emerge
as suitable candidates for reallocation.

Considering the average fraction of reallocated urgent tasks is zero across all workload settings, we have
decided to exclude them from the replanning process altogether to enhance its effectiveness.
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Figure 2.9: Boxplot of composition of reallocated tasks based on urgency levels. The levels displayed are urgent (cyan), semi-urgent
(purple) and same-day (red).



3
Determination of Number of Simulations

To establish the number of simulations, we ensured a stable coefficient of variation across the most variable
parameter setting for each KPI. This chapter summarizes the most variable parameter settings observed in
each experiment for three key performance indicators. Furthermore, the evolution of the coefficient of vari-
ation for these settings is displayed.

3.1. Experiment A: Demand Spread

Table 3.1: Overview of most variable parameter setting for each KPI

KPI Number of drones Demand spread Reallocation Repositioning
Cost 22 Low True True

Utility 18 Low False True
Delivery success rate 26 Low False False

Figure 3.1: Evolution of coefficient of variation for cost per delivery KPI.
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Figure 3.2: Evolution of coefficient of variation for delivery
success rate KPI.

Figure 3.3: Evolution of coefficient of variation for utility KPI.

3.2. Experiment B: Urgency Levels

Table 3.2: Overview of most variable parameter setting for each KPI

KPI Number of drones Fraction urgent orders Reallocation Repositioning
Cost 28 80% True True

Utility 20 80% False False
Delivery success rate 28 80% False False

Figure 3.4: Evolution of coefficient of variation for cost per
delivery KPI.

Figure 3.5: Evolution of coefficient of variation for delivery
success rate KPI.

Figure 3.6: Evolution of coefficient of variation for utility KPI.
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3.3. Experiment C: Hybrid Fleet

Table 3.3: Overview of most variable parameter setting for each KPI

KPI Number of drones Fraction short range drones Fraction long range drones
Cost per delivery 26 0.2 0.8

Utility 26 0 1
Delivery success rate 26 0.2 0.8

Figure 3.7: Evolution of coefficient of variation for cost per
delivery KPI.

Figure 3.8: Evolution of coefficient of variation for delivery
success rate KPI.

Figure 3.9: Evolution of coefficient of variation for utility KPI.
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